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xii Abstract

Diploma Thesis

COMPUTATIONAL METHODS FOR OPTIMIZING THERAPIES

FOR DUCHENNE MUSCULAR DYSTROPHY

ELENI KOUTSONI

Abstract

Duchenne Muscular Dystrophy (DMD) is a neuromuscular disorder caused by the ab-

sence of the dystrophin protein. If left untreated, it causes movement problems at the age of

10-12 years, and death occurs in the 20-30 years due to heart failure. There is currently no

cure for this disease, only symptomatic treatment.

Genome editing approaches like the CRISPR-Cas9 technology can provide new oppor-

tunities to ameliorate the disease by eliminating DMD mutations and restoring dystrophin

expression. Because of its capability to modify specific genes and genomic regions comple-

mentary to an engineered single guide RNA (sgRNA), the CRISPR-Cas9 system has sparked

much interest as a genome editing approach in recent years. While it is true that on-target

activity can be influenced by the guide specificity, we would focus here on the devastating

results that off-target cleavage can cause (e.g., unexpected mutations). This is why reducing

off-target effects is the first priority in guide design.

The rapid growth of the Artificial Intelligence field has helped researchers employ artifi-

cial feature extraction and Machine Learning approaches to evaluate the potential off-target

scores.

This thesis presents our approach in evaluating off-targets of CRISPR-Cas9 gene editing

specifically for the DMD disorder, using Machine Learning. We offer a comparison between

four regression methods that predict the insertions-deletions (indels) produced based on a

pair guide RNA and the equivalent off-target. We evaluate the results using the Spearman

correlation metric.

Finally, we proposed themost suitable method (Decision Tree Regressor) for this problem

and compared the results with some state-of-art tools. The performance of our tool with CV

is better than the independent performance of the other tools except from Elevation which
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performed about as good as ours.

Keywords:
Machine Learning, DMD, CRIPSR-Cas9, off-targets



xiv Περίληψη

Διπλωματική Εργασία

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΘΕΡΑΠΕΙΩΝ ΓΙΑ ΤΗΝ ΜΥΪΚΗ ΔΥΣΤΡΟΦΙΑ DUCHENNE

ΕΛΕΝΗ ΚΟΥΤΣΩΝΗ

Περίληψη

Η μυϊκή δυστροφία Duchenne (DMD) είναι μια νευρομυϊκή διαταραχή που προκαλείται από

την απουσία της πρωτεΐνης δυστροφίνης. Εάν δεν εφαρμοστεί θεραπεία, προκαλεί κινητικά

προβλήματα στην ηλικία των 10-12 ετών και ο θάνατος επέρχεται στην ηλικία των 20-30

χρόνων λόγω καρδιακής ανεπάρκειας. Επί του παρόντος, δεν υπάρχει διαθέσιμη θεραπεία,

αλλά μόνο συμπτωματική αντιμετώπιση.

Οι προσεγγίσεις επεξεργασίας γονιδιώματος, όπως η τεχνολογία CRISPR-Cas9, μπο-

ρούν να προσφέρουν νέες ευκαιρίες για τη βελτίωση της νόσου εξαλείφοντας τις μεταλ-

λάξεις DMD και αποκαθιστώντας την έκφραση της δυστροφίνης. Λόγω της ικανότητάς του

να τροποποιεί συγκεκριμένα γονίδια και γονιδιωματικές περιοχές συμπληρωματικά σε ένα

κατασκευασμένο single guide RNA (sgRNA), το σύστημα CRISPR-Cas9 έχει προκαλέσει

μεγάλο ενδιαφέρον ως προσέγγιση επεξεργασίας γονιδιώματος τα τελευταία χρόνια. Αν και

είναι αλήθεια ότι η δραστηριότητα επί του στόχου μπορεί να επηρεαστεί από την ειδικότητα

του gRNA, θα εστιάσουμε εδώ στα καταστροφικά αποτελέσματα που μπορεί να προκαλέσει

η διάσπαση εκτός στόχου (off-target) (π.χ. απροσδόκητες μεταλλάξεις). Για αυτό το λόγο

η μείωση των αποτελεσμάτων εκτός στόχου είναι η πρώτη προτεραιότητα στο σχεδιασμό

οδηγών.

Η ταχεία ανάπτυξη του τομέα της τεχνητής νοημοσύνης βοήθησε τους ερευνητές να χρη-

σιμοποιήσουν προσεγγίσεις τεχνητής εξαγωγής χαρακτηριστικών και μηχανικής μάθησης για

την αξιολόγηση των πιθανών αποτελεσμάτων εκτός στόχου.

Η παρούσα διατριβή παρουσιάζει την προσέγγισή μας στην αξιολόγηση των ακολουθιών

εκτός στόχου της γονιδιακής επεξεργασίας CRISPR-Cas9 ειδικά για τη διαταραχή DMD,

χρησιμοποιώντας μηχανική μάθηση. Προσφέρουμε μια σύγκριση μεταξύ τεσσάρων μεθόδων

παλινδρόμησης που προβλέπουν τις εισαγωγές-διαγραφές (indels) που παράγονται με βάση

ένα ζεύγος οδηγού RNA και τον αντίστοιχο εκτός στόχου. Αξιολογούμε τα αποτελέσματα

χρησιμοποιώντας τη μετρική συσχέτισης Spearman.
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Τέλος, προτείναμε την καταλληλότερη μέθοδο (Decision Tree Regressor) για αυτό το

πρόβλημα και συγκρίναμε τα αποτελέσματα με ορισμένα εργαλεία τελευταίας τεχνολογίας.

Η απόδοση του εργαλείου μας με cross-validation είναι καλύτερη από την ανεξάρτητη από-

δοση των άλλων εργαλείων εκτός από το Elevation το οποίο είχε περίπου την ίδια καλή

απόδοση με το δικό μας.

Λέξεις-κλειδιά:
Μηχανική Μάθηση, Μυϊκή Δυστροφία Duchenne, CRISPR-Cas9, ακολουθίες εκτός στόχου





Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiv

Table of contents xvii

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Subject of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Duchenne Muscular Dystrophy . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 CRISPR-Cas9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Prokaryotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Eukaryotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 CRISPR for DMD . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Off-Target effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Off-target effects in DMD . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Off target prediction tools . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xvii



xviii Table of contents

2.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 21

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Results 27

4.1 Evaluation with Cross Validation – Kfold . . . . . . . . . . . . . . . . . . 27

4.2 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Comparison with state-of-the-art tools . . . . . . . . . . . . . . . . 31

4.3 Feature Importance and selection of the best model . . . . . . . . . . . . . 33

5 Conclusions 35

Bibliography 37

APPENDICES 45

A Code 47



List of figures

2.1 The location of the dystrophin gene on the Xp21 chromosome, the gene, the

translated mRNA and the protein produced. Adapted from Sinnreich et al. [1] 4

2.2 The two phases of adaptive immunity in bacteria and archaea [2]) . . . . . 5

2.3 Binding of the CRISPR-Cas9 to the target [3]) . . . . . . . . . . . . . . . . 6

2.4 A diagram of DNA repair mechanisms for CRISPR/Cas9 gene editing in a

hypothetical DMD patient with an exon 50 deletion mutation. [4]) . . . . . 7

2.5 On target vs Off target effects [5] . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Upon the inclusion of each feature from left to right, the top figure shows the

ROC-AUC, PRC-AUC, r2, and root mean square error (RMSE). The bars

show feature relevance, or how much each feature contributes to the predic-

tion accuracy as calculated by the Random Forest algorithm [6]. . . . . . . 11

2.7 Pearson correlation coefficient computed for each sgRNA: CRISTA (aver-

aged r2 = 0.80, sd = 0.13), CCTop (averaged r2 = 0.46, sd = 0.22),

OptCD (averaged r2 = 0.32, sd = 0.28), CFD score (averaged r2 = 0.65,

sd = 0.28) [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Comparison of different off-target prediction methods. The weighted Spear-

man correlation on the Y-axis is defined by the weight of the X-axis counter-

part. The weight ranges from 10−2 to 106. The elevation model consistently

outperforms the other models in this experiment [7]. . . . . . . . . . . . . . 13

2.9 Categories of Machine Learning algorithms according to training data nature 14

2.10 Decision Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Random Forest Regressor [8] . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Frequency of mismatches on the collected data. . . . . . . . . . . . . . . . 24

3.2 (a) Monotonically decreasing, (b) Monotonically increasing, (c) Not monotonic 25

xix



xx List of figures

4.1 5-Fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Comparison of the models based on the nested cross validation score . . . . 29

4.3 Average importance of the dataset features based on the Decision Tree Re-

gressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



List of tables

2.1 CRISPR gRNA design services (including off-target scoring) . . . . . . . . 9

2.2 Characteristics used by CRISTA to estimate cleavage propensity. . . . . . . 9

3.1 Sample of the data collected . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Part 1 of the processed data . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Part 2 of the processed data . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 XGBoost Regressor results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Decision Tree Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Support Vector Regressor results . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Random Forest Regressor Results . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Spearman Corellation between the original indels and the tools’ predictions. 32

4.6 Average importance of the dataset features based on the Decision Tree Re-

gressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xxi





Abbreviations

DMD Duchenne Muscular Dystrophy

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

PAM Protospacer-associated motif

sgRNA Single guide RNA

indel Insertion or deletion

DMD_DTR The Decision Tree Regressor developed for this thesis

xxiii





Chapter 1

Introduction

Duchenne Muscular Dystrophy (DMD) is a neuromuscular disorder caused by the ab-

sence of the dystrophin protein. It is an X-linked disease, affecting one in 3,500 [9] males,

making it the most common muscular dystrophy. DMD is caused by mutations in the DMD

gene that encodes the dystrophin protein, which acts as a link between the cytoskeleton and

the extracellular substance. If left untreated, it causes movement problems at the age of 10-12

years, and death occurs in the 20-30 years due to heart failure.

Genome editing approaches like the CRISPR-Cas9 technology can help patients present

a less severe disorder or hopefully get entirely cured. The CRISPR-Cas9 system has been

widely used in target gene repair and gene expression regulation as a genome-editing tech-

nique. The CRISPR-Cas9 system can increase on-target knockout effectiveness with great

sensitivity and specificity by selecting optimal sgRNA (sgRNAs can be synthesized or pro-

duced from a DNA template). However, off-target cleavage can occur when the CRISPR-

Cas9 system is used. Several prediction approaches for sgRNA’s off-target tendency at spe-

cific DNA segments have been established so far. To get the off-target scores, most of them

employ artificial feature extraction and Machine Learning approaches. However, all the ex-

isting tools that have been developed are generic and could not perform ideally in specific

diseases.

1.1 Subject of the thesis

In this thesis, we present our approach in evaluating off-targets specifically for the DMD

disorder. The goal was to create a model that can serve as an advisory tool so that the ap-

1



2 Chapter 1. Introduction

plication of CRISPR-Cas9 gene therapy is sufficiently good. Our method was derived from

the comparison of four Machine Learning Regression algorithms (Decision Tree Regressor,

XGBoost Regressor, Random Forest Regressor, and Support Vector Regressor) that predict

the indels produced based on a pair guide RNA and the equivalent off-target. Moreover, we

evaluate the results using the Spearman correlation metric.

1.2 Organization of the thesis

The thesis is organized in the following manner. In Chapter 2, a background about DMD,

the CRISPR-Cas9 system, the off-target effects, and the Machine Learning algorithms we

studied is presented. Then, in Chapter 3, the basic methodology of the implementation is

introduced. Chapter 4 describes the results and the comparison we conducted with some state-

of-the-art tools. Finally, in Chapter 5, we provide a conclusion of the thesis and some thoughts

about future work.



Chapter 2

Background

2.1 Duchenne Muscular Dystrophy

Dystrophinopathies are X-linked muscle diseases that can be characterized as either more

severe or milder. They are the result of mutations in the DMD gene, which encodes the dys-

trophin protein, which is needed to stabilize the plasma membrane of striated muscle cells. In

the category of mild dystrophinopathies we observe the phenotypes of asymptomatic increase

in serum creatine phosphokinase (CK) concentration andmuscle cramps with myoglobinuria,

while the most severe include Duchenne Muscular dystrophy (DMD), Becker Muscular dys-

trophy (BMD) and DMD-associated dilated cardiomyopathy (DCM) [10].

Duchenne muscular dystrophy is the most serious and common dystrophinopathy which,

if left untreated, leads to the death of the patient. Due to theway it is inherited, it mainly affects

boys (1: 3500) while girls can be carriers of the disease with rare cases of girls who get sick

(<1 per million). From a very young age the first symptoms appear such as gait abnormalities,

difficulty getting up from the ground and frequent falls of the patient. At the age of 10 to

12 years, most patients with DMD are confined to a wheelchair. Dilated cardiomyopathy

and arrhythmias as well as chronic respiratory failure are also observed. If left untreated the

maximum life expectancy is the 20’s due to cardiorespiratory complications that lead to death

[11].

DMD is caused by mutations in the DMD gene (Figure 2.1) which produces the dys-

trophin protein, located in skeletal muscle and heart muscle and is necessary as it acts as a

link between the cytoskeleton and the extracellular substance. The DMD gene is the largest

in the human body and mutations in this gene cause some dysfunctional or no dystrophin

3



4 Chapter 2. Background

Figure 2.1: The location of the dystrophin gene on the Xp21 chromosome, the gene, the

translated mRNA and the protein produced. Adapted from Sinnreich et al. [1]

production at all. It extends 2.4 mega bp in the short arm of the X chromosome, includes 79

exons and takes 16 hours to complete the transcription including transcription splicing (con-

trascriptional splicing). Dystrophin corresponds to 1% of the X chromosome and 0.08% of

the entire genome.

2.2 CRISPR-Cas9

2.2.1 Prokaryotes

After the discovery of the unique way in which bacteria and archaea protect themselves

against cellular invaders, scientists realized that this discovery enables them to cut genomic

DNA at precise points in eukaryotic cells. This defense mechanism is represented by Clus-

tered Regulatory Interspaced Short Palindromic Repeats or CRISPR, along with the

CRISPR-associated Proteins or Cas proteins.

Bacteria and archaea [2] develop cellular memory of previous invaders by incorporat-

ing DNA sequences in their genome that are identical to previous invaders (Figure 2.2). The

first phase is the integration, that takes place at a variable site in the genome of these bac-

teria called CRISPR locus. This site has two distinct characteristics: non-contiguous repeats

that are separated through variable sequences, termed spacers. This system recognizes the

acquired sequences as foreign and then degrades them in case of invasion. CRISPR therefore

functions as an adaptive immune system for prokaryotes.

In the next step, the RNA generated by the CRISPR region (crRNA) is loaded into a Cas

protein and this complex is directed through the crRNA to the desired site in the targeted
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Figure 2.2: The two phases of adaptive immunity in bacteria and archaea [2])

DNA. These CRISPR-Cas systems are divided into three main subgroups, type I, type II

and type III. My study focuses only on type II. To produce the crRNA, the CRISPR site

containing the sequence of the previous invaders is transcribed to create the pre-crRNA, and

then a second trans-activating CRISPR RNA (tracrRNA) is produced from the region just

after the CRISPR region. The tracrRNA is complementary to the repetitive CRISPR region.

It then binds to the precrRNA. The resulting product is a double-stranded RNA which is

cleaved with the help of an enzyme that recognizes double-stranded RNA(RNase III), thus

creating the final crRNA.

Eventually the binding of the crRNA to the Cas9 protein produces a complex that locates

the invading and cleaved sequences (Figure 2.3). The aforementioned complex recognizes

invaders in the cell and more specifically detects a 20 nucleotide sequence followed by an

adjacent pattern sequence (PAM) due to complementarity with the crRNA. Different Cas9

proteins recognize a different PAM sequence for this reason and the most widely used are

Streptococcus pyogenes (SpCas9) or Staphylococcus aureus (SaCas9), the first recognizing

the 5’-NGG-3 ’PAM sequence and the second due to the fact that it is a smaller protein in

size and is better packaged for viral delivery [12].
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Figure 2.3: Binding of the CRISPR-Cas9 to the target [3])

2.2.2 Eukaryotic

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR - asso-

ciated protein 9 (Cas9) system CRISPR-Cas9 is an effective mechanism for quick and easy

application of genome engineering in eukaryotic cells[2]. CRISPR-Cas9 genome process-

ing procedures use a non-specific endonuclease (Cas9) to cut the genome and a small RNA

(gRNA) to guide this nuclease to a user-defined cut region. This procedure is one of the main

tools for genome processing due to various options, such as manipulating, detecting, and

displaying particular DNA and RNA sequences in the cell.

Double strand breaks in DNA created by the Cas9 protein are restored by the cell in two

main ways, either by non-homologous end joining (NHEJ), which leads to random indels at

the site of cleavage, or by homologous-directed repair (HDR).

2.2.3 CRISPR for DMD

Genes are the genetic directive that produces proteins and are composed of introns and ex-

ons. Exons are the pieces needed to produce the protein. As previously mentioned, the DMD

gene is the most extensive in the human body containing 79 exons. It has been observed that

patients with DMD have large mutations that lead to the deletion of much of the DMD gene,

and a smaller percentage show duplications or point mutations. These mutations affect the
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production of the full length of the protein as they disrupt the DMD reading frame, typically

creating a premature codon. In order to avoid the mutation that causes early termination, re-

searchers developed an approach called exon skipping. Exon skipping is used to repair the

reading frame by skipping one or more exons in which there is a mutation that affects the

production of functional protein and can be achieved via either classical/indirect (splice site

disruption) or direct (exon deletion) methods.

As mentioned previously, DSBs in DNA created by the Cas9 protein are repaired by the

cell in two main ways, either by NHEJ, leading to random indels at the cleavage site, or by

HDR where a DNA template is used to precisely edit the targeted site. Although HDR is

more accurate it is not often applied to post-mitotic cells, such as skeletal muscle cells. There

is also still a limit in the length of the template that can be used by HDR, which makes it

impossible to correct large deletions that span multiple exons. For this reason, it is not con-

sidered as a potential method of repair for DMD where NHEJ is primarily applied and exon

skipping (single-cut), exon deletion (double-cut), and exon reframing (single-cut) are some

of the processes through which these indels might restore dystrophin production[4](Figure

2.4).

Figure 2.4: A diagram of DNA repair mechanisms for CRISPR/Cas9 gene editing in a hypo-

thetical DMD patient with an exon 50 deletion mutation. [4])

2.3 Off-Target effects

One of the greatest impediments to CRISPR-Cas9 clinical translation is its off-target ef-

fects, which can have uncontrollable and unforeseen outcomes, including malignant trans-

formation [13]. Off-target effects refers to mutagenesis at sites in the genome other than the

desired on-target site (Figure 4.5). More specifically, CRISPR nucleases can identify DNA /

RNA sequences in the genome with small mismatches or bulges and cleave these sequences,
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creating potentially undesirable mutations.

A major hurdle in selecting the right gRNA is the fact that it is quite difficult for most

laboratories to have the gRNA genome due to the high cost [14]. For this reason the main

purpose is to predict the CRISPR cutting specificity as well as the design of optimal gRNAs.

The prediction of the CRISPR cutting specificity can be achieved in two ways either through

a method based on alignment or through a method based on scoring [5]. The first alignment-

based method uses conventional or specialized algorithms to align gRNA against a certain

genome and as a result returns off-target sequences and positions. In the second scoring-

based method, which is used to determine off-targets in silico, sgRNAs are scored and further

classified based on the use of identified targets from the alignment procedure to pick the most

suitable for experiments.The gRNA scoring approaches involve either hypothesis orMachine

Learning [5].

Most off-target locations may be found using alignment-based approaches but this does

not mean that there will be a split in all of these positions as other characteristics such as

the position where the discrepancy is located have a significant impact[5]. In this method a

huge number of off-target sequences can occur at the output which we can limit by setting a

maximum mismatch value [5].

The approach we are interested in is Machine Learning and it is also the approach we

have chosen to develop in the proposed tool. Based on the above, gRNAs are graded and pre-

dicted according to a Machine Learning model that takes into account many features beyond

alignment.

In each of the two categories tools have been developed that are widely used to select the

appropriate gRNA (Table 2.1).

Therefore, Machine Learning prediction of the best gRNAs is the ideal choice as it allows

the cheap and fast investigation of off-target silicon effects for unexplored sequences [14].

Current genome editing techniques urge that researchers carefully choose guides to avoid

potential off-target effects and test many to optimize on-target activity [15].

2.3.1 Off-target effects in DMD

Due to the capabilities of CRISPR-Cas9 in clinical applications, research interest in this

field is particularly high, as are concerns about the safety and effectiveness of this technique.

Research in a range of species, as well as non-human primates, has proved that CRISPR-
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Table 2.1: CRISPR gRNA design services (including off-target scoring)

Shorthand Main Features

Elevation and Azimuth
Machine-learning-based models, intergrates

both CFD an epigenetic features

MIT server Hand-Crafted rules

CCTop
Empirical score based on number of

mismatches

CRISTA
Machine Learning, sequence composition and

epigenetic features

CFD 20bp sgRNA without PAM

Table 2.2: Characteristics used by CRISTA to estimate cleavage propensity.

CRISTA Features

PAM type

nucleotide composition

GC content

chromatin structure

DNA methylation

RNA secondary structure

Cas9 technology can be used to accurately modify the genome without serious mutations

being observed. However, mutations can occur except the one we want to correct. Addressing

these issues needs to be done in order to create large models of human diseases [16].

2.3.2 Off target prediction tools

CRISTA

TheCRISPRTarget Assessment (CRISTA) program employs the Burrows-Wheeler Aligner

as an off-target search tool and uses a variety of characteristics (Table 2.2) to estimate cleav-

age propensity [6, 17]. CRISTA is based on a Random Forest approach for developing a

regression model. All of this adds up to a complicated model that can estimate the likelihood

of cleavage at a particular genomic location. As a result, one of the most valuable features of

CRISTA’s prediction framework is investigating the impact of various qualities. Their study
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Figure 2.5: On target vs Off target effects [5]

also demonstrates that bulges are not uncommon and should be taken into account through-

out the prediction process. CRISTA’s estimated score indicates the frequency of genomic

indels at a specific location compared to a highly effective sgRNA’s on-target cleavage. Ad-

ditionally, they assessed CRISTA’s prediction performance in a leave-one-sgRNA-out cross-

validation process, and compared it to competing techniques. They determined the squared

Pearson correlation coefficient (r2) between the experimentally observed and predicted cleav-

age frequencies over all the samples in their dataset. With a r2 of 0.65, the predicted scores

in cross-validation agreed with the observed values. In comparison, OptCD had a r2 of 0.13,

while CCTop scores had a r2 of 0.23 and CFD score had a r2 of 0.52 (Figure 2.7).

CRISPOR

CRISPOR [18] is a web tool where someone can conduct genome editing experiments.

More specifically, given a input sequence it discovers all the suitable guide RNAs and eval-

uates them based on multiple scores like the possible off-targets and on-target efficiency.

CRISPOR also appears to have a constantly growing number of genomes uploaded (more

than 150 in the previous two years).

Additionally, CRISPOR is aweb tool which provides a complete solution including gRNA

selection, cloning, and expression, but also the primers that can be used for the possible off-

targets and for assessing the guide activity.

CRISPOR examines the whole genome and locates regions similar to the input sequence
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Figure 2.6: Upon the inclusion of each feature from left to right, the top figure shows the ROC-

AUC, PRC-AUC, r2, and root mean square error (RMSE). The bars show feature relevance,

or howmuch each feature contributes to the prediction accuracy as calculated by the Random

Forest algorithm [6].

(the potential off targets) with up to 4 mismatches tolerance. Consequently, they rate and

rank the gRNAs based on their scores. For each gRNA the potential off-target sequences are

ranked using the CFD score [19], which was found to be the more accurate in the comparison

they made between four different scores. Finally, they proposed through their experiments

that as the specificity increases the likelihood of significant off-targets effects decreases. They

also demonstrate that while the forecast accuracy isn’t outstanding, the existing predictions

are useful, but there’s no assurance that using CRISPOR alone would prevent off-target con-

sequences.

Elevation

Elevation is a method for scoring individual guide–target pairs as well as aggregating

them into a single, comprehensive summary guide score [14]. It is a machine-learning-based

off-target summarymodel. Individual scores for each off-target location are predicted, as well

as an overall score for gRNAs. As shown in the comparison from 5 independent datasets (Kle-

instiver (Kleinstiver, et al., 2016), Listgarten (Listgarten, et al., 2018), Haeussler (Haeussler,

et al., 2016), Tsai (Tsai, et al., 2015),Slaymaker (Slaymaker, et al., 2016)) the elevation model
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Figure 2.7: Pearson correlation coefficient computed for each sgRNA: CRISTA (averaged

r2 = 0.80, sd = 0.13), CCTop (averaged r2 = 0.46, sd = 0.22), OptCD (averaged r2 = 0.32,

sd = 0.28), CFD score (averaged r2 = 0.65, sd = 0.28) [6].

outperformed the MIT, CFD, and CCTop. (Figure 2.8) [7].

Elevation is suitable for human genome editing. It also considers both the sequence and

DNA accessibility/epigenetic data to see whether there are any off-target consequences. It

uses a two-layer regression model to estimate the off-target activity of a single mismatch

first and integrate predictions for gRNA-target pairings with many mismatches.

2.4 Machine Learning

Definition 2.1. “A computer program is said to learn from experience (E) with respect to

some class of tasks (T) and performance measure (P), if its performance at tasks in T, as

measured by P, improves with experience E”, Tom Mitchell [20].

Machine Learning is a subset of AI that uses sample data, referred as “training data”,

to create a mathematical model that can make exact predictions [21]. Electronic data gath-

ered and prepared for analysis is commonly referred to as sample data. Machine Learning

approaches have helped pattern recognition, computer vision, economics, computational bi-

ology, and biological and medicinal applications.

TheMachine Learning algorithms are “soft programmed” in the notion that they automat-
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Figure 2.8: Comparison of different off-target prediction methods. The weighted Spearman

correlation on the Y-axis is defined by the weight of the X-axis counterpart. The weight

ranges from 10−2 to 106. The elevation model consistently outperforms the other models in

this experiment [7].

ically change or adjust their design to complete the desired task. The process of adaptation is

known as training, and it involves providing samples of input data along with desired outputs.

The algorithm then optimizes its configuration such that it can not only provide the intended

result when given the training inputs, but also adapt to achieve the desired result when given

new, previously unknown data [22].

A computer algorithm can adapt in a variety of ways regarding to training. The input data

will be chosen andweighted to produce themost conclusive results. Iterative optimization can

be used to adjust the algorithm’s variable numerical parameters. It may have a grid of potential

computational paths that it arranges for the best outcomes. This could take the supplied data

to generate probability distributions and use them to forecast outcomes [22].

Machine Learning aspires to replicate the way humans learn to analyze sensory (input)

data in order to achieve a goal [22]. It is classified as supervised, unsupervised, or semi-

supervised depending on the nature of the data labeling (Figure 2.9).
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Figure 2.9: Categories of Machine Learning algorithms according to training data nature

2.4.1 Models

The subject of our research was formulated as a regression problem. The regression

problem is a variation of the classification problem where the model outputs a continuous-

valued result instead of a finite-valued one. In other terms, a regression model approximates

a continuous-valued multivariate function [23].

Decision Tree Regressor

Non-parametric supervised Machine Learning approaches for creating prediction models

from data include classification and regression trees. The models are created by recursively

splitting the data space and fitting a basic prediction model to each division. Consequently,

the partitioning may be graphically represented as a decision tree.

The basic algorithm of decision trees is:

1. Start at the root node as parent node.

2. Split the parent node at the feature a to minimize the sum of the child node impurities

(maximize information gain).

3. Assign training samples to new child nodes.

4. Stop if leave nodes are pure or early stopping criteria is satisfied, else repeat steps 1

and 2 for each new child node.
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In a decision tree, the attributes that carry the most information about the variable we want

to predict are selected and placed as nodes in the tree. This results in only a few attributes

participating in the procedure while solving the dimensionality reduction problem. The deci-

sion tree structure helps the analyst comprehend and interpret the given information at each

level, in contrast to the black box process of the neural networks [24].

The algorithm that builds regression trees is CART (Classification and Regression Trees)

[25]:

1. Find the appropriate split for each characteristic to reduce impurity.

2. Identify the characteristic that reduces impurity the most.

3. Split the node using the best split on that feature.

4. Repeat this process for each of the leaf nodes.

For continuous target variables, a reduction in variance approach is applied (regression

problems). To find the optimal split, this method uses the usual variance formula. Then, the

population is split according to the split with the lowest variance.

Variance is calculated in the following steps:

1. Calculate variance for each node.

2. As a weighted average of each node’s variance, calculate variance for each split.

Finally, a tree is created with decision nodes and leaf nodes (Figure 2.10) [24]. The tree

contains a root node, which corresponds to the best predictor and is the highest decision node.

XGBoost Regressor

XGBoost is a scalable tree-boosting Machine Learning method. The most crucial factor

in XGBoost’s effectiveness is its capability to scale in any situation. The system is ten times

faster than previously commonly used approaches on a single machine, and it can handle

billions of samples in distributed or memory-limited scenarios. Numerous key system and

algorithmic innovations, such as sparse data management and parallel and distributed com-

puting, contribute to XGBoost’s scalability. However, the most significant characteristic is

that it allows data scientists to handle hundreds of millions of instances on a single machine

using out-of-core processing.
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Figure 2.10: Decision Tree Structure

Gradient Boosting

Gradient boosting is among the most successful methods for developing predictive mod-

els. The notion of boosting emerged from the consideration of whether a poor learner could

be improved. The objective was named the Hypothesis Boosting Problem byMichael Kearns

[26]. A weak hypothesis, also known as a weak learner, is one where the results are at least

marginally more suitable than random chance. The idea behind this hypothesis boosting was

to filter observations, leaving only those that the weak learner could handle, and then focus

on constructing additional weak learners to address the remaining challenging observations.

Gradient boosting is composed of three parts:

1. A loss function that has to be improved.

2. A weak learner that makes predictions.

3. A model that adds weak learners to reduce the loss function.

Decision regression trees are applied as the weak learner in gradient boosting because

their continuous outputs can be combined, allowing for the addition of future model outputs

and the adjustment of residuals in predictions.

Existing trees in themodel are left unchanged, while new trees are added one after another.

When adding trees, a gradient descent approach is utilized to minimise the loss. Gradient
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descent has typically been used to reduce a set of parameters, like the number of variables in

a model or the coefficients in a regression equation.

Based on a dataset with n observations and m features D = {(xi, yi)}, (|D| = n, xi ∈

IRm, yi ∈ IR), we can represent a tree model with K additive functions for the output predic-

tion and the space of the regression trees as follows [27]:

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F, where F = {(f(x) = wq(x)}

and q : IRm → T,w ∈ IRT is the structure of each tree and T is the number of leaves in that

tree that have weight w.

We minimize the following objective.

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi) + Ω(ft)), where Ω(f) = γT +

1

2
λ∥w∥2

The difference between the prediction ŷi and the target yi is measured by l, which is a differ-

entiable convex loss function.

By applying second order approximation we get:

L(t) ≃
n∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

where

gi = ϑŷ(t−1)l(yi, ŷ
(t−1)
i )

and

hi = ϑ2
ŷ(t−1)l(yi, ŷ

(t−1)
i )

By removing the constant terms we get the following simplified objective at step t:

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft)

=
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j [27]

where Ij = {i|q(xi) = j} is the instance set of leaf j.

We can calculate the optimal weight w∗
j for a fixed structure q(x) as follows:

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
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and the scoring function as a measure of a tree structure q:

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT [27]

The smaller the value is, the more suitable is the tree structure. As the enumeration of all

tree topologies is difficult, a greedy approach is employed to repeatedly add branches to the

tree. After splitting, the instance sets of the left and right nodes are IL and IR. The gain

formula enumerates the possible segmentation points and picks the minimal target function

and maximum gain partition.

G =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ [27]

In practice, this method is commonly used to evaluate split candidates. During splitting, the

XGBoost model generates a large number of simple trees that are utilized to score each leaf

node. The equation’s first, second, and third components indicate the left, right, and original

leaf scores, respectively [28].

Random Forest Regressor

A random forest is a classifier composed of a number of tree-structured classifiers h(x, k)

k = 1, ..., each of which votes for the most popular class at input x with a single unit vote

[29]. Random forests are formed in regression by building trees from a random vector, with

the tree predictor h(x) utilizing numerical values instead of class labels. The output values are

numerical, and the training set is selected separately from the random vector Y, X distribution.

In addition to bagging, we apply random feature selection in regression forests [29].

Boosting and arcing algorithms can help minimize both bias and variance. The adaptive

bagging approach in the regression was created to eliminate bias and works well in both

classification and regression. However, it does vary the training set as it progresses, similar

to arcing. Forests provide similar results to boosting and adaptive bagging, but the training

set is not modified over time. Their precision indicates that they are working to minimize

bias [29].

In contrast to a conventional tree, a random forest splits each node using the best group

of predictors randomly selected at that node. Because it just needs a few parameters – the

number of trees in the forest and variables at each node in the random subset – it’s a simple

approach to employ [30].
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The steps of the Random Forest Regression method are as follows [31]:

1. Take an nt bootstrap sample using the real data.

2. A regression tree must be created with some modifications for each bootstrap sample:

At each node, randomly choose mt of the predictors and determine the optimal split

among the variables.

3. Compute themost recent data by adding thent tree predictions (average for regression).

Random forest= DT(base learner)+ bagging(Row sampling with replacement)+ feature

bagging(column sampling) + aggregation(mean/median, majority vote) [32] (Figure 2.11)

Figure 2.11: Random Forest Regressor [8]

Support Vector Regressor

SVMs are a form of pattern classifier developed by Vapnik and his colleagues based on a

revolutionary statistical learning approach [33]. Through the increase of the margin between

the separating hyperplane and the data, the SVM’s optimization problem entails to reduce the

upper bound of the generalization error. As a result, SVMs are better than the classic observed

risk minimization approach most neural networks use in terms of generalizing successfully

even in high dimensional spaces under few training sample conditions [34].

Empirical Risk Minimization is a term used to describe how traditional learning algo-

rithms are meant to reduce error on the training dataset (ERM). SVMs, on the other hand,
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is based on the statistical learning theory’s Structural Risk Minimization (SRM) concept. It

improves generalization skills , and SRM is achieved by minimizing the upper bound of the

generalization error [34].

SVR is based on a training set, (x1, y1), ...., (xi, yi) ⊂ X×R (X space of input patterns).

In Support Vector regression, our aim is to find a fitting function f(x) with a deviation less

than the target (yi) for the corresponding training data set. It’s best if the function is rather

flat. Alternatively, any mistake of less than ϵ is acceptable [34]. The linear function is:

f(x) =< w, x > +b =
M∑
j=1

wjxj + b, y, b ∈ R, x, w ∈ RM

The dot product of X is represented by < w, x >, and flatness is given by w . To ensure this,

we must limit the norm to a bare minimum. Because the SVM determines the hyperplane

with the highest margin, it may be obtained by minimizing
1

2
w2.
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Methodology

3.1 Data Collection

For the first step towards the implementation of this thesis, CRISPR-Cas9 off-target data

for the DMD disease were collected. Due to the fact that there was not an available integrated

dataset for the off-target effects we compiled our own dataset. Both research papers [35, 36,

37, 38, 39, 40, 41] and patents [42, 43, 44, 45] were reviewed and data for HEK293T cells

(a derivative human cell) and mouse organisms were collected. The data collected contained

information about the gRNA sequence, the corresponding off-target sequence, and the indels

that were observed. Ιn order for all sequences to be converted to sequences of the same length

23-nt, the Ensembl BLAST tool [46] was used (Table 3.1).

3.2 Data manipulation

In order to develop off-target prediction models, we need to manipulate the collected data

to extract features that can be useful for off-target evaluation.

From the data we collected, we extracted some basic information that we used in the

Machine Learning models. The DNA melting temperature prediction accuracy is critical to

the experimental performance and outcome of numerous molecular biology procedures (Tm).

• TheWallace–Ikatura rule is frequently used as a guideline when estimating theMelting

Temperature. The temperature at which the bonds between the chains are broken is

calculated using the following formula:

Tmwallace
= 64.9 + 41 ∗ (yG+ zC − 16.4)/(wA+ xT + yG+ zC)

21
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gRNA off-target indels (%) organism

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGAGCAACAATAAGG 0.25 mouse

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGATCAACAAAATAG 0.68 mouse

TCTTTGAAAGAGCAACAAAATGG TCTGTGAAAGAGTAACAAAATGG 0.27 mouse

GATACTAGGGTGGCAAATAGAGG GATACTAGTGTGGCTCATAGAGG 0.19 mouse

GATACTAGGGTGGCAAATAGAGG GATACGATGGTGGCAAATCGTGG 0.28 mouse

GATACTAGGGTGGCAAATAGAGG GATACTAGGGTGGGGAATAAAGG 0.44 mouse

GCCTACTCAGACTGTTACTCTGG TCCTACTCACACTGTTACTCAGG 9.3 HEK293T cells

GCCTACTCAGACTGTTACTCTGG ACCTGCTCACACTGTTACTCCAG 0 HEK293T cells

GCCTACTCAGACTGTTACTCTGG GCATTCTCAAACTGTTACTCAGG 0 HEK293T cells

GATTGGCTTTGATTTCCCTAGGG AATTGGCATTGATTTCCCTAGAG 0.8 HEK293T cells

GATTGGCTTTGATTTCCCTAGGG CATTGGCTTTAATTTCCCTATAG 0 HEK293T cells

GATTGGCTTTGATTTCCCTAGGG GATAGGCTGTGATTTCCCTAGAG 0 HEK293T cells

Table 3.1: Sample of the data collected

for oligos > 13 [47].

• The biopython method [48], which calculates the melting temperature using empirical

formulas based on GC content, is:

TmGC
= 4GC + 2TA

• The nearest neighbors method [49] is the principal technique we employ to determine

Tm for oligonucleotides with sequence lengths ranging from 15 to 120 bases (upper

length limit of our standard DNA oligos offering). This approach is the most accurate

since it considers the oligonucleotide sequence rather than simply the base composi-

tion like the other way. In addition, the nearest neighbours technique considers thermo-

dynamic and other influences on Tm, such as oligonucleotide and monovalent cation

concentrations. The formula used is:

Tm =
∆H

A+∆S +R ln C
4

− 273.15 + 16.6 log[Na+]

where:

– Tm = melting temperature in °C

– ΔH = enthalpy change in kcalmol−1

– A = constant of -0.0108 kcalK−1∗mol−1



3.3 Evaluation metrics 23

gRNA off-target indels(%) Tm_Wallace Tm_GC Tm_NN GC_content

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGAGCAACAATAAGG 0.25 52.0 41.954892 45.955119 0.30

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGATCAACAAAATAG 0.68 52.0 41.954892 45.955119 0.30

TCTTTGAAAGAGCAACAAAATGG TCTGTGAAAGAGTAACAAAATGG 0.27 52.0 41.954892 45.955119 0.30

Table 3.2: Part 1 of the processed data

– ΔS = entropy change in kcalK−1∗mol−1

– R = gas constant of 0.00199 kcalK−1∗mol−1

– C = oligonucleotide concentration in M or mol L−1

– -273.15 = conversion factor to change the expected temperature in Kelvins to °C

– [Na+] = sodium ion concentration in M or mol L−1

• The paired G and C nucleotides in double-stranded DNA are connected by three hy-

drogen bonds, while the A and T nucleotides have just two. As a result, GC pairings

are “stronger” than AT pairs, and the GC/AT ratio of a DNA sequence has a significant

impact on its physical characteristics (such as its “melting point”) [50]. The method to

calculate the GC frequency is:

GCfrequency = float(Ccount +Gcount)/length

• The amount of mismatches between the target sequence and the prospective off-target

sequence is thought to have a major impact on the incidence of off-target effects. The

number of mismatches is calculated using the hamming distance method.

We applied the aforementioned methods to the collected data and transformed the

dataset to include numerical data. More specifically, in order to apply the melting tem-

perature methods, we only kept a sub-string with size 20-nt from the 23-nt gRNA and

23-nt off-target sequence. Additionally, we computed the mismatches, and they ap-

pear to have values in the range (2, 17) as shown in the Figure 3.1. The mean value

of the mismatches is 4.8, and the standard deviation is equal to 2.13. A sample of the

processed data is presented in the Table 3.2 and 3.3.

3.3 Evaluation metrics

For the evaluation of the methods, we chose the Spearman Correlation coefficient. Spear-

man’s rank correlation coefficient, named after Charles Spearman, is a nonparametric mea-
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Figure 3.1: Frequency of mismatches on the collected data.

gRNA off-target Tm_Wallace_off Tm_GC_off Tm_NN_off GC_content_off mismatches

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGAGCAACAATAAGG 50.0 39.904892 43.566767 0.25 3

TCTTTGAAAGAGCAACAAAATGG TTTTTGAAAGATCAACAAAATAG 48.0 37.854892 41.929952 0.20 3

TCTTTGAAAGAGCAACAAAATGG TCTGTGAAAGAGTAACAAAATGG 52.0 41.954892 44.378333 0.30 2

Table 3.3: Part 2 of the processed data

sure of rank correlation usually represented in statistics by the Greek letter ρ or as r. It assesses

the ability of a monotonic function to describe the relationship between two variables.

Spearman correlation calculates correlation in the sameway that Pearson correlation does,

with the only difference being that Pearson evaluates linear correlations as opposed to Spear-

man, which evaluates monotonic ones between the rank variables (whether linear or not)

(Figure 3.2) .

When one variable is the ideal monotone function of the other, and there are no repeated

values, a perfect Spearman correlation returns the values +1 or -1. Spearman’s coefficient

is suitable for continuous as well as discrete ordinal variables. The n raw scores Xi, Yi are

transformed to ranks for a sample of size n, R(Xi),R(Yi), and rs is computed as:

rs = ρR(X),R(Y ) =
cov(R(X),R(Y ))

σR(X)σR(Y )

where ρ is the standard Pearson correlation coefficient applied to rank variables, σR(Y ) are

the standard deviations of the rank variables, and cov(R(X),R(Y )) is the covariance of the

rank variables [51].
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Figure 3.2: (a) Monotonically decreasing, (b) Monotonically increasing, (c) Not monotonic

3.4 Implementation

In the implementation we propose, the sequences we collected start from the first stage of

preprocessing. The 23-nucleotide guide RNA sequence and the corresponding 23-nucleotide

off-Target sequence are converted to numerical data using the methods of the Biopython

library [52]. More specifically the sequences are converted to 20-nt sequence and then the

methods Tm_Wallace, Tm_GC, Tm_NN and the getGCFreq function from the CCTOP tool

[53] are applied to them. The mismatches between the two initial strings are then calculated

using the hamming distance function.

In the next step, we apply the Machine Learning algorithms we chose to the processed

data. More specifically, as the available data is limited in number, we decided to use the im-

plementations provided by the sklearn library[54] combined with a Nested Cross-Validation

approach in order to select the most suitable model.

Finally having come up with the model which has the best Spearman correlation using the

original data we compare our results with those of three tools designed to evaluate off-targets

(CRISTA[6], CRIPSOR[18], Elevation[14]).





Chapter 4

Results

4.1 Evaluation with Cross Validation – Kfold

Cross-validation is a statistical method for estimating and comparing learning algorithms

that splits data into two parts: training and validation sets[55]. K-fold cross-validation is

the most fundamental type of cross-validation. Both training and validation sets must pass

through in successive rounds in traditional cross-validation so that each data point can be

validated against the other.

Figure 4.1: 5-Fold Cross Validation

27
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More specifically, in k-fold cross-validation, the data is initially partitioned into k equally

sized segments or folds. Subsequently, k iterations of training and validation are run, with

each iteration holding out a different fold of the data for validation and the rest k - 1 folds

being used for learning (Fig. 4.1). Ten fold cross-validation (k = 10) is the most standard

cross-validation used in Machine Learning.[55]

When we utilize data to develop an ML model, we often split it into training and valida-

tion/test sets. The validation/test set is employed to validate the model on previously unseen

data, whereas the training set is used for training. A straightforward 80 % -20 % split is the

standardmethod. K-fold cross-validation produces a less biasedmodel than other approaches,

such as a simple train/test split.

By using cross-validation, we create K distinct models, allowing us to make predictions

on all of our data. In addition, Cross-Validation can be used to select the best parameters

of a Machine Learning model. Nested cross-validation is a method for optimizing model

hyperparameters and determining models that aim to solve the problem of overfitting the

training dataset. Hyperparameter search is less prone to overfitting the dataset in this approach

since it is only exposed to a subset of the dataset supplied by the outer cross-validation phase.

A major drawback is that the number of model assessments conducted dramatically in-

creases when using nested cross-validation as the number of the fits gets from n∗k to k∗n∗k

since the method is repeated k times for each fold.

4.2 Comparative analysis

Because the data set is small enough to apply deep learning algorithms, we applyMachine

Learning and cross validation to the data. We use k-fold cross-validation with 10 folds and

apply a XGBoost Regressor, a Decision Tree Regressor, a Support Vector Regressor and a

Random Forest Regressor. For the evaluation we use the Spearman scorer we defined, which

calculates spearman correlation between the real observed indels and the predicted ones.

After completing the preprocessing stage follows the stage of the cross validation and the

training of the models. As mentioned above the split of the dataset into train and test sets is

achieved with the use of k-fold cross-validation where in my implementation k = 10 so we

have (k − 1) = 9 training sets and 1 test set. As long as all sets have been used as test sets

the procedure stops and the final result is the average Spearman score of all iterations.
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Figure 4.2: Comparison of the models based on the nested cross validation score

Initially for each of the models we applied cross validation with a base model, which

means that we only used some default parameters. In order to apply hyper-parameter tuning

we split our dataset in training and test subsets based on the train_test_split function with

test_size = 0.2 and training_size equal to 0.8. For each method we applied the Hyper

Parameter Tuning function we defined we used Grid Search to find the best hyper parameters.

We used the 80% training set to fit the grid search algorithm and the evaluated the result using

the 20% test set using the Spearman Score. Subsequently we applied nested cross validation

in order to find the best combination of hyperparameters that provide the best Spearman

corellation and additionally to see the average Spearman score for each one of them in order

to compare their performance. The nested-cross validation provides a less biased result in

comparison to the hyper parameter tuning. The following tables show the results we got for

each one of the models.

For the XGBoost Regressor from the Table 4.1 we observe that the baseline model does

not provide a satisfying performance. Additionally we see that the average score of the nested

cross validation (0.659) is good enough in comparison to the hyper-parameter tuning score

(0.616). We primarily focus on the nested cross validation score for the evaluation of the

models, because as mentioned before this score is not prone to overfitting.

For the Decision Tree Regressor from the Table 4.2 we observe that the baseline model
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Table 4.1: XGBoost Regressor results

Model XGBoost Regressor

Baseline Model Hyper Parameter Tuning Nested Cross Validation

Parameters
Default

Parameters

learning_rate = 0.01,

max_depth = 5,

n_estimators = 500,

subsample = 0.5

Best Parameters:

learning_rate = 0.01,

max_depth = 10,

n_estimators = 1000,

subsample = 0.799

Spearman

Correlation
Mean = 0.443 0.616 Average Score = 0.659

Table 4.2: Decision Tree Results

Model Decision Tree Regressor

Baseline Model Hyper Parameter Tuning Nested Cross Validation

Parameters Default Parameters

max_features = auto,

max_depth = 10,

min_samples_split = 2,

min_samples_leaf = 2

Best Parameters:

max_features = auto,

max_depth = 110,

min_samples_split = 2,

min_samples_leaf = 1

Spearman

Correlation
Mean = 0.544 0.628 Average Score = 0.724
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Table 4.3: Support Vector Regressor results

Model Support Vector Regressor

Baseline Model Nested Cross Validation

Parameters
Default

Parameters

Best Parameters:

kernel = linear,

C = 1.5,

gamma = 0.0001,

epsilon = 0.1

Spearman Correlation Mean = 0.365 Average Score = 0.416

does not provide a satisfying performance. Additionally we see that the average score of the

nested cross validation (0.724) is good enough in comparison to the Hyper parameter tuning

score (0.628). We can conclude that the initial observation is that the Decision tree Regressor

outperforms the other methods as shown in the Figure 4.2.

For the Support Vector Regressor from the Table 4.3 we observe that the baseline model

has the worst performance in comparison with the other models. Additionally, we see that

the average score of the nested cross validation (0.416) is also not good enough as it is less

than 0.5. We can confirm these results from the Figure 4.2.

For the Random Forest Regressor from the Table 4.4 we observe that the baseline model

does not provide a satisfying performance. Additionally we see that the average score of the

nested cross validation (0.546) is not as good as the Hyper Parameter Tuning (0.65). Although

we use the nested cross validation as a metric for comparison with the rest models.

4.2.1 Comparison with state-of-the-art tools

Based on the previous research we conducted, we observed that Elevation outperforms

the other off-target evaluation tools (i.e., CRISTA, CRISPOR) and this is also evident in Table

4.5, as the Spearman correlation is close to the average Spearman correlation of my Decision

Tree Regressor. On the other hand, CRISTA and CRISPOR performed poorly on the DMD

dataset with scores 0.196 and 0.095, respectively.
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Table 4.4: Random Forest Regressor Results

Model Random Forest Regressor

Baseline Model Hyper Parameter Tuning Nested Cross Validation

Parameters
Default

Parameters

max_depth = 90,

max_features = 80,

min_samples_leaf = 3,

min_samples_split = 12,

n_estimators = 30

Best Parameters:

max_depth = 90,

max_features = 2,

min_samples_leaf = 3,

min_samples_split = 8,

n_estimators = 10,

bootstrap = True

Spearman

Correlation
Mean = 0.441 0.65 Average Score = 0.546

Table 4.5: Spearman Corellation between the original indels and the tools’ predictions.

Off-target tool CRISTA CRISPOR ELEVATION DMD_DTR

Spearman Correlation 0.196 0.095 0.6 0.724
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Table 4.6: Average importance of the dataset features based on the Decision Tree Regressor

Features Average Importance

Tm_Wallace 0.0157

mismatches 0.3246

Tm_NN_off 0.0930

Tm_Wallace_off 0.0733

Tm_GC 0.3178

GC_content_off 0.0263

GC_content 0.0021

Tm_NN 0.1371

Tm_GC_off 0.0097

4.3 Feature Importance and selection of the best model

Comparing the performance of all models based on the nested cross validation score

we conclude that the model with the best performance is the Decision Tree Regressor with

the following parameters max_features = auto, max_depth = 110, min_samples_split = 2,

min_samples_leaf = 1.

In the next step, we applied once more a nested cross validation in order to check which

features of the dataset are the most important features for predicting the output. We observe

that the column ‘mismatches’ (0.3246) is the most significant followed by the ‘Tm_GC’

(0.3178) and ‘Tm_NN’ (0.1371).
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Figure 4.3: Average importance of the dataset features based on the Decision Tree Regressor



Chapter 5

Conclusions

In this thesis, we presented a solution for evaluating off-targets for the DMD disorder us-

ing regression, a field ofMachine Learning that has been one of the most basic and researched

tools. In particular, we collected all the available until now data for the off-targets that have

been observed for DMD using the CRISPR-Cas9 gene-editing approach. Subsequently, we

prepared the data to get processed by the Machine Learning models and defined the scoring

function (Spearman Correlation). From the models we explored (XGBoost Regressor, Deci-

sion Tree Regressor, Random Forest Regressor, Support Vector Regressor) the Decision Tree

Regressor seemed to predict the indels that occur from the off-targets more accurately than

the other. Additionally, we compared the performance of the cross-validation applied to Deci-

sion Tree Regressor with three more generally designed tools(CRISTA,CRISPOR,Elevation)

specified in the evaluation of the off-targets. TheDecision TreeRegressor with cross-validation

performed better than the other tools, and Elevation was the only one that performed com-

paratively satisfactorily.

Due to the small amount of data available (161 entries from 15 distinct gRNAs) , we

cannot apply deep learning techniques because it would most certainly overfit. A further

approach would include gathering additional data resulting from new research to develop

more complex models. Additionally, off-target cleavage sites should be examined muchmore

thoroughly and rigorously to get information about the genetic features that could assist in a

much more efficient approach.

Finally, the Decision Tree Regressor has been integrated into an into an online tool for

in-silico evaluation of experiments for DMD therapies. The user inserts the guide RNA they

want to evaluate, and subsequently, the algorithm scans the whole human genome and finds

35



36 Chapter 5. Conclusions

potential off-target sequences with up to 4 mismatches (using the FlashFry tool [56]). The

possible off-target sequences are evaluated using the Decision Tree Regressor model we de-

veloped in this thesis, and an aggregated score for the single guide RNA input is produced,

that could be useful for estimating the performance of new CRIPSR-Cas9 experiments for

DMD therapies.
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Appendix A

Code

The code which was created for this thesis is available in the following link: https:

//github.com/elenikou/Off_Target_Evaluation_DMD

’ ’ ’ C a l c u l a t i o n o f Me l t i ng Tempera tu r e u s i n g t h e ‘Wal lace ’ r u l e ,

u s i n g emp i r i c a l f o rmu l a s based on GC con t e n t , u s i n g n e a r e s t n e i ghbo r

the rmodynamics and of t h e GC f r e q u e n c e . ’ ’ ’

f o r i i n r ange ( l e n ( d f ) ) :

df_tm [ ’23 n t gRNA ’ ] [ i ] = df_tm [ ’23 n t gRNA ’ ] [ i ] [ : 2 0 ]

Tm_Wallace = [ ]

Tm_GC= [ ]

Tm_NN=[ ]

GC_content = [ ]

f o r i i n r ange ( l e n ( d f ) ) :

my s t r i n g =df_tm [ ’23 n t gRNA ’ ] [ i ]

myseq = Seq ( mys t r i n g )

Tm_Wallace . append ( mt . Tm_Wallace ( myseq ) )

Tm_GC. append ( mt .Tm_GC( myseq ) )

Tm_NN. append ( mt .Tm_NN( myseq ) )

GC_content . append ( getGCFreq ( df_tm [ ’23 n t gRNA ’ ] [ i ] ) )

df_tm [ ’ Tm_Wallace ’ ] = Tm_Wallace
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df_tm [ ’Tm_GC’ ]=Tm_GC

df_tm [ ’Tm_NN’ ]=Tm_NN

df_tm [ ’ GC_content ’ ] = GC_content

#Spearman Sco r e r

de f Spearman (X, Y ) :

Spearman , p_va lue = s t a t s . spea rmanr (X, Y)

r e t u r n Spearman

spearman = make_sco re r ( Spearman )

#Nes ted Cross −V a l i d a t i o n

#Gr id C r e a t i o n f o r Dec i s i o n Tree Reg r e s s o r

max_depth = [ i n t ( x ) f o r x i n np . l i n s p a c e ( 10 , 110 ,

num = 11 ) ]

max_depth . append ( None )

c r i t e r i o n = spearman

m i n _ s amp l e s _ s p l i t = [ 2 , 5 , 10]

m in_ s amp l e s_ l e a f = [ 1 , 2 , 4 ]

max_ f e a t u r e s = [ ’ au to ’ , ’ s q r t ’ ]

g r i d = { ’ max_ fea t u r e s ’ : max_ fea t u r e s ,

’ max_depth ’ : max_depth ,

’ m i n_ s amp l e s _ s p l i t ’ : m i n_ s amp l e s _ s p l i t ,

’ m in_samp le s_ l e a f ’ : m i n_ s amp l e s _ l e a f }

p r i n t ( g r i d )

# I n n e r c r o s s v a l i d a t i o n

g r i d _ c r o s s _ v a l i d a t i o n = KFold ( n _ s p l i t s =3 , s h u f f l e =True ,

r a ndom_s t a t e =1)

#model

d t r = De c i s i o nT r e eReg r e s s o r ( r a ndom_s t a t e =1)
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#Gr id s e a r c h f o r t h e h yp e r p a r ame t e r s g r i d

# u s i ng t h e i n n e r c r o s s v a l i d a t i o n

g r i d _ s e a r c h = GridSearchCV ( d t r , g r i d , s c o r i n g =spearman , n_ j ob s =1 ,

cv= g r i d _ c r o s s _ v a l i d a t i o n , r e f i t =True )

#Oute r c r o s s v a l i d a t i o n

f i n a l _ c r o s s _ v a l i d a t i o n = KFold ( n _ s p l i t s =10 , s h u f f l e =True ,

r a ndom_s t a t e =1)

#Nes ted c r o s s v a l i d a t i o n s e a r c h

s c o r e s = c r o s s _ v a l _ s c o r e ( g r i d _ s e a r c h , df , t a r g e t , s c o r i n g =spearman ,

cv= f i n a l _ c r o s s _ v a l i d a t i o n , n_ j ob s =−1)

#Average Spearman Score

p r i n t ( ’ Average Spearman Score : %.3 f (%.3 f ) ’ %

(mean ( s c o r e s ) , s t d ( s c o r e s ) ) )
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