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Abstract

The developments in cellular mobile technologies and the rise of multi­tenant 5G net­

works accelerated the transition to a virtualized and finally cloud­native­based context. These

new approaches mark the evolution of the technology of computer networks, called Network

Function Virtualization (NFV). Network Functions Virtualization infrastructure aims to pro­

vide a common interface for technology developers and service operators for the instantiation

of virtual network functions over generic equipment. It can help to save costs since it allows

the use of virtualized base stations instead of physical deployment options, supporting their

deployment in different areas more easily.

To achieve a high level of virtualization and to homemultiple components in high processing­

powered hosts, Kubernetes enters the picture. This framework tool manages the former, in a

well­defined and scalable manner, permitting a fellow developer/researcher to cover from a

wide variety of state­of­the­art use cases, met in real­life scenarios (e.g. V2X/Autonomous

Driving, VR/AR, Smart Grid applications, etc.).

Considering the above, this thesis covers many details that relate to the setup and de­

ployment of a Kubernetes­based virtualized 5G Network, while to apply these concepts in a

practical & usable manner, we utilize the NITOS Testbed.

xi
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Chapter 1

Introduction

The demand for Network Services market kickstarted the telecommunications revolution

that is taking place to this day, as it leads to the constant finding and introduction of innovative

ideas. By achieving high system capacity, leveraged peak data rates and low latency, 4th

generation network comes to reduce operating costs, with flexible bandwidth operations. The

configuration of LTE is one of the most important milestones for wireless communications.

Subsequent increase in user demand for mobile data and high speed services made clear

that new ideas had to surface. Some of the use cases that are introduced through these de­

mands, increasingly used in our everyday lives are VR, AR and V2X. Those demands that are

transforming to new technologies, led to 5th generation networks. Network scaling in LTE

is a time­taking and complex task which increases the operating expenses of providers. 5G

networks address this problem with auto­scaling of the infrastructure meaning that network,

software and resources can be scaled­up and down according to current needs and situations.

At the same time cloud­based functionality which is already accommodated since the previ­

ous generation networks has shown that virtualization and containerization will be inevitably

be used.

Following ETSI NFV, network functions are now sliced and distributed in a well­defined

and scalable manner to multiple users of different use case scenarios and demand. NFV ar­

chitecture allows hardware resources to be utilized and shared virtually with components

called VNFs Virtual Network Functions. In parallel with that, containerized technology, that

Docker introduced, can be used to add these VNFs to containers. To tackle with problems

that relate to the management and orchestration of multiple Docker containers that home our

virtualized NFs, tools like Kubernetes will be deployed on a real­life testbed environment

1



2 Chapter 1. Introduction

(NITOS testbed).

In this work, we present a study and realization of a modern virtual 5G topology that

relates to typical use cases and concerning the connectivity and maintenance of a user equip­

ment (UE). This scheme is deployed under Kubernetes­based orchestration with pods acting

as network components that form a fully­fledged Core & Radio Access Network (RAN),

utilizing the srsRAN implementation that has open­source availability.

1.1 Thesis Structure

This thesis is structured in five chapters. The first chapter is this introduction itself. The

second chapter sets the technological background and theoretical concepts of Mobile Tech­

nologies and Network Virtualization. In the third chapter the architecture of the thesis’s ap­

proach is presented, explaining the components used and in the fourth are provided details

about the implementation and design of the whole system. Lastly, the fifth chapter draws

conclusions and mentions future directions.

1.2 Related Work

In the areas of virtualized mobile telecommunications, we may find relevant implemen­

tations like Kube5G [1]. The latter was first presented in 2021 with a relevant demo that

included setting up the Core and Access networks with the help of OpenAirInterface (OAI)

and connecting a single 5G UE to the architecture. Other examples include Nervion [2], a

scalable and flexible RAN emulator for mobile core system evaluation that features a novel

cloud­native approach.

The examples presented above, show that a virtualized Cloud­RAN approach is desired

for current and future 5G­based deployments, and based on these efforts, we will present

our own setup and implementation concerning a virtualized and Kubernetes­orchestrated 5G

network.



Chapter 2

Background

2.1 LTE Networks

LTE or 3GPP Long Term Evolution is the state­of­the­art technology used for high­

speed wireless communication and networking of mobile devices. It relies on pre­existing

GSM/EDGE(2G) and UMTS/HSPA(3G/3G+) networks, increasing network capacity and

speed using new configuration techniques [3]. Unlike previous networks generations, 4th

generation, otherwise known as LTE, does not support the traditional switching telephony

service, but it supports Internet­based IP protocol communication, such as IP telephony. The

transmission of multiple OFDMA carriers and other frequency balancing (FDE) systems

enabled the transmission of higher data rates across multiple paths compared to the radio

spectrum propagation technology used in 3G systems which was widely used [4]. Maximum

upload data rates are in the range of 75 Mbps and maximum download data rates are in the

300 Mbps range.Moreover, connectivity to WLAN, satellite and older systems(GSM) is sup­

ported. Additionally, 4G networks uses techniques such as MIMO, a technology that uses

multiple antennas at both the transmitter and the receiver, to improve signal quality and bit

rates for mobile phone users. Furthermore, MIMO increases the signal quality and bit rates

by employing spatial multiplexing, diversity and beamforming techniques.

2.1.1 LTE Architecture

LTE architrecture and the interfaces between the different parts of the system are illus­

trated in Figure 2.1 below:

3



4 Chapter 2. Background

Figure 2.1: LTE Architecture

The high­level network architecture of LTE is comprised of:

• the User Equipment(UE)

• the Evolved UMTS Terrestrial Radio Access Network (E­UTRAN)

• the Evolved Packet Core (EPC)

The internal architecture of theUE for LTE is identical to the one used byUMTS andGSM

which is a mobile equipment. The E­UTRAN handles the radio communications between the

mobile and the evolved packet core and has just one component, the evolved base station, also

known as eNodeB or eNB. Each eNB connects with the EPC by the means of the S1 interface

and it can also be connected to nearby base stations by the X2 interface, which is mainly used

for signalling and packet forwarding during handover. The LTE EPC architecture consists of

MME, SGW, PGW, HSS and PCRF. The mobility management entity (MME) controls the

high­level operation of the mobile by means of signalling messages and Home Subscriber

Server (HSS). The Packet Data Network (PDN) Gateway (P­GW) communicates with the
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outside world. The serving gateway (S­GW) acts as a router, and forwards data between

the base station and the PDN gateway. The Home Subscriber Server (HSS) component is a

central database that contains information about all the network operator’s subscribers. The

Policy Control and Charging Rules Function (PCRF) is a component responsible for policy

control decision­making, as well as for controlling the flow­based charging functionalities in

the Policy Control Enforcement Function (PCEF), which resides in the P­GW.The interface

between the serving and PDN gateways is known as S5/S8. This has two slightly different

implementations, namely S5 if the two devices are in the same network, and S8 if they are in

different networks.

2.2 5G Networks

The main advantage of the new networks is that they will have greater bandwidth, giving

higher download speeds, eventually up to 10 gigabits per second (Gbit/s). The latter is noted

to happen in combination of ultra­density and ”zero­downtime” availability.

By focusing on virtualization and disaggregation of its critical parts, 5G access networks

address scalability and availability restrictions that applies to the now legacy implementation

of the LTE standard.As a consequence, various abstracted network utilities can be packaged

inside a network function that can be orchestrated efficiently.

2.2.1 5G Architecture

5G architecture and the interfaces between the different parts of the system are illustrated

in Figure 2.2 below:
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Figure 2.2: 5G Architecture

5G network architecture is much more service oriented than previous generations. Ser­

vices are provided via a common framework to network functions that are permitted to make

use of these services. Modularity, reusability and self­containment of network functions are

additional design considerations for a 5G network architecture. The components of the 5G

core architecture include:

• User plane Function (UPF)

• Data network (DN) e.g. operator services, Internet access or 3rd party services

• Core Access and Mobility Management Function (AMF)

• Authentication Server Function (AUSF)

• Session Management Function (SMF)

• Network Slice Selection Function (NSSF)

• Network Exposure Function (NEF)
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• NF Repository Function (NRF)

• Policy Control function (PCF)

• Unified Data Management (UDM)

• Application Function (AF)

User Equipment (UE) like 5G smartphones or 5G cellular devices connect over the 5G

New Radio Access Network to the 5G Core and further to Data Networks (DN), like the In­

ternet. The Access and Mobility Management Function (AMF) acts as a single­entry point

for the UE connection. Based on the service requested by the UE, the AMF selects the re­

spective SessionManagement Function (SMF) for managing the user session.The User Plane

Function (UPF) transports the IP data traffic between the User Equipment (UE) and the exter­

nal networks.The Authentication Server Function (AUSF) allows the AMF to authenticate

the UE and access services of the 5G Core.Other functions like the Session Management

Function (SMF), the Policy Control Function (PCF), the Application Function (AF) and the

Unified Data Management (UDM) function provide the policy control framework, applying

policy decisions and accessing subscription information, to govern the network behavior [5].

2.2.2 5G Network Slicing

Network slicing is a type of virtual networking architecture that are moving modern net­

works toward software­based automation. Software­defined networking (SDN) and network

functions virtualization (NFV) are network technologies that assist in network slicing. This

allows for the creation of multiple virtual networks atop a shared physical infrastructure. In a

virtualized network scenario, physical components are dynamically partitioned according to

current needs. As these needs change, so can the devoted resources. Using common resources

such as storage and processors, network slicing permits the creation of slices devoted to log­

ical, self­contained, and partitioned network functions. [6]

Network slicing has a plethora of use cases and for that reason 5G characterized as a use

case driven technology. Most of these cases fit into one of three service categories:

• Enhanced Mobile Broadband (eMBB)

This service type, seen as an evolution of currently available LTE services, covers Use

Cases with different demands by means of user density, traffic capacity and user mo­
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bility but has a common need for seamless radio coverage that is irrelevant to location

and timing.

• Massive Machine Type Communications (mMTC)

This use case category related by the mass deployment of billions of low­cost, low­

powered devices. Can support use cases like home automation including sensors and

actuators, and machine monitoring systems that require low data rates. Required as

a foundation for the digitisation of many industrial applications, like agricaltural or

logistics applications through using cellular IoT technologies.

• Ultra­Reliable Low Latency Communication (uRRLC)

Ultra­reliable low latency communication is when highly reliable connectivity is re­

quired to offer extremely low latencies of one millisecond or below.5G NR can enable

latencies of 1 millisecond or below to support use cases like self­driving cars, mission­

critical applications, industrial automation and many others.

2.3 Network Function Virtualization

State­of­the­art data centers and telecoms enterprises increasingly build upon network

functions virtualization (NFV), to scalably offer what is needed over their deployed network

system infrastructure. NFV is thus considered a network architecture concept that leverages

virtualization techniques to flexibly and scalably share entire classes of network node func­

tions into building blocks that can also be chained together, creating and delivering com­

munication services and utilities. NFV decouples software from hardware by replacing vari­

ous network functions such as firewalls, load balancers and routers with running virtualized

software instances. The NFV architecture defined by ETSI, in 2013. The European Telecom­

munications Standards Institute (ETSI) is a European standards organisation in the telecoms

industry.

2.3.1 NFV Architecture

The high level architecture is composed of the Management and Orchestration (MANO),

which is in turn composed of the NFV Orchestrator (NFVO), the VNF Manager (VNFM),
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and the Virtualized Infrastructure Manager (VIM). NFVO manages the life­cycle of the in­

stantiated networking services. VNFM manages the life­cycle of its instantiated VNFs. VIM

allocates the virtual resources required by the NFVO and/or the VNFM on the physical in­

frastructure. [7]

Figure 2.3: 5G High­level Architecture

2.3.2 NFV MANO Standard

NFV MANO is the key framework, that ETSI defined, for the management and orches­

tration of the resources in a virtualized data center such us compute, networking, storage, and

virtual machine resources. NFVMANO has the role to manage the NFVI and orchestrate the

allocation of resources needed by the NSs and VNFs, in addition with allowing the flexible

on­boarding of network components. The functional blocks of NFVMANO are the NFV Or­

chestrator (NFVO), the VNF Manager (VNFM) and the Virtualised infrastructure manager

(VIM). Each of these blocks has a number of responsibilities and works on specific entities.

2.3.2.1 NFV Infrastracture

The environment providing computing, storage and network capabilities on which Vir­

tual Network Functions are instantiated, includes both physical resources such as servers,

network­attached storage and switches, and software, hypervisors, operating systems, and
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virtual infrastructure managers. NFV Infrastructure includes the virtualization layer that al­

lows partitioning and access to physical resources, allowing an hardware­independent life­

cycle for VNFs [8].

2.3.2.2 Virtual Network Functions

Virtual Network Functions (VNF) are entities responsible of the task of handling specific

Network Functions. It generally runs on virtual machines on top of the physical network

infrastructure. A VNF is meant to perform a certain network function e.g. router, switch,

firewall, load­balancer, etc. and a combination of these VNFs may be required to implement

the complete network segment that is being virtualized.

2.3.2.3 VNF Manager

The VNF Manager is an NFV­MANO block that controls, manages and monitors the

VNFs lifecycle under the direction of the NFVO. Especially, it is responsible for instantiation­

and configuration­ related procedures, by using a VNF Template that is able to control the

state of VNF instances and thus manage the related software. It can also handle procedures

like scaling in/out or other procedures related to the administrative termination of VNF in­

stances. As mentioned above, each VNF is defined in a template called Virtualised Network

Function Descriptor (VNFD) and is stored in a VNF package repository, called the VNF cat­

alog. The VNFD defines the operational behaviour of a VNF, specifying how it should be

deployed by providing a full description of its attributes and requirements.

2.3.2.4 NFV Orchestrator

NFVO is the component that manages the lifecycle of virtualized network services, by

communicating with both the VNF Manager and the VIM. Key features observed in NFV

Orchestrator are:

• Resource Orchestration is the function that manages resources to services that already

provided by NFVI, bypassing any VIM.Some of the features provided by this function

are:

– Validation and authorization of NFVI resource requests from the VNFManagers,

to control how the allocation of the requested resources interacts within one NFVI
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or across multiple NFVI.

– NFVI resource management, including the distribution, reservation and alloca­

tion of NFVI resources to NS and VNF instances. Also resolves the location of

VIMs, providing it to the VNFMs if required.

– Validation and authorization of any NFVI resource request that may come from

a VNF Manager, to control its impact on the current Network Services

– Verification of the integrity, authenticity and consistency of deployment tem­

plates, including the on­boarding of new Network Services and VNF Packages

that are available in any NFVI, with support of VIM.

• Network Service Orchestration, meaning the function of the NFVO that uses the ser­

vices exposed by the VNF Manager function and by the Resource Orchestration func­

tion to provide important capabilities such us:

– Management of the instantiation of VNFs, in coordination with VNF Managers

– Network Service instantiation and Network Service instance lifecycle manage­

ment, through operations like updating, querying, scaling and terminating a Net­

work Service. This also includes collecting performancemeasurement results and

recording events

– Management of the VNF Forwarding Graphs that define the topology of a Net­

work Service instance

– Validation and authorization of any NFVI resource request that may come from

a VNF Manager, to control its impact on the current Network Services

– Verification of the integrity, authenticity and consistency of deployment tem­

plates, including the on­boarding of new Network Services and VNF Packages

that are available in any NFVI, with support of VIM.

• Management of the VNF Forwarding Graphs that define the topology of a Network

Service instance

2.3.2.5 Virtualized Infrastructure Manager

The MANO block that manages hardware resources and performance (availability, sta­

tus, power and utilization) is contained in an NFV infrastructure is VIM. In parallel, VIM
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can define the amount of resources needed for Network Functions both on the Physical and

Virualization Layer or across the End­to­end Network Service, but also into multiple NFVI.

The role of a VIM is to configure the compute, hypervisor and infrastructure network

domains. Considering the correlation between NFVI and VIM, we note that NFVIs through

the Virtualization Layer join the hardware physical resources to Virtual Hardware. Such as

Computing, Storage and Network resources are perceived as Virtual Computing, Storage

and Network, as per ETSI framework. Therefore Computing (CPU plus Memory) can be

converted to pool and be used by different host through a cluster formatted resource. Virtual

Storage can be formatted into NAS topology and be assigned or de­assigned to devices when

needed. Respectively Virtual Networking can combine NICs via available ports from routers,

switches Optical transponders and Wi­Fi to provide capacity when needed. It must be men­

tioned that these functional blocks are independent from each other and not mandatory to

run on a single device. The whole process and management of this function is managed from

VIM [9].

In particular, VIM deals with: • Resource management. VIM is in charge of allocating,

and releasing resources from the NFVI when requested by the NFVO; keeps track of used

resources and their physical allocation, optimizing hardware usage. Manages the pooling of

hardware resources, and the list of available virtual and physical resources available. • Net­

working. Provides the networking infrastructure supporting the VNF Forwarding Graphs in

the form of virtual links, networks, and subnets. • Imagemanagement. Manages the catalog of

software images available to the NFVO, and allows creation, update, and deletion of images.

• Reporting. Collects metrics about performance and faults, making information available

when requested from the NFVO.

2.3.3 Cloud­native Network Functions

In recent years, the market has adopted a cloud­native approach, which is based on mi­

croservices and container orchestration systems, for problems like weaknesses of a network

function performance as it trying to foresee and be ready for the future evolution needs. These

also fall under the umbrella of NFV but are implemented with containers instead of virtual

machines. Containers share the underlying operating system, which means they make more

efficient use of resources than VMs.

As CNF is a network function that designed and implemented to run inside a container in­
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stead of a virtual machine. They inherit all the principles consisted in a cloud­native scenario,

introducing a number of advantages[10]:

• Performance. CNF processing in user space, NIC hardware control, multi­core tun­

ing and kernel bypass all contribute to maximum throughput and resource efficiency.

Characterizing CNF performance is underway in the CNF Testbed project.

• Agnostic to host environments.

• Stateless Configuration. CNFs operate in pods. Pods are durable, but if something

breaks, or new functions are needed, then you can tear down pods and start a new

instance. The dynamic nature of cloud native environments precludes centralized or

stateful CNF configuration management.

• Lifecycle parity with application containers. CNFs receive, at no cost, all existing best

practices bestowed to application pods. These include: development environments,

toolchains, CI/CD, K8s orchestration, 12­factor app, distributed management, logging,

and telemetry streaming.





Chapter 3

System Architecture

3.1 NITOS Testbed

NITOS (Network Implementation Testbed using Open Source code) is a heterogeneous

testbed located in the campus of University of Thessaly, in Greece. NITOS managed by the

Network Implementation Testbed Laboratory (NITlab) of the Electrical and Computer En­

gineering Department in collaboration with the Center of Research and Technology Hellas

(CERTH). The NITOS testbed gives access to researchers to perform experiments and test

their implementations in real­time environments.

Figure 3.1: NITOS Logo

3.1.1 Testbed Architecture

The testbed consists of wireless nodes based on open­source software and are partitioned

across three different testbed locations (two indoor, one outdoor), running any of the major

UNIX based distributions. The testbed provides the necessary extensions to our framework

in order to deploy services over virtualized wireless network interfaces, hosted on the generic

networking nodes. The NITOS testbed architecture illustrated in Figure3.2 .

15
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Figure 3.2: NITOS Testbed Architecture

The indoor testbeds comprise of multiple Icarus nodes, that have been developed by the

NITlab team. They are able to execute many realistic scenarios through the multiple hetero­

geneous interfaces they dispose. The basic manufacture characteristics of ICARUS nodes

are that they are equipped with 802.11a/b/g and 802.11a/b/g/n wireless interfaces and feature

new generation intel 4­core CPU’s and new generation solid­state drives.

Figure 3.3: ICARUS Node

3.1.2 Orchestration Infrastructure

The orchestration software that is running in the testbed is acting as the “glue” between

the developed software frameworks and the physical infrastructure of the testbed. Network

Functions Virtualization Management and Orchestration (NFV­MANO) provides a standard­

ized approach on the management and effortless deployment of (virtual) services. Although

NFV­MANO initially focused on the deployment of services over datacenters, the introduc­

tion of fully softwarized network architectures even for the wireless part creates fertile ground
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for the re­conception of the manner through which the underlying hardware is managed. As

all of our prior contributions in the testbed are software based, the NFV­MANO architec­

ture can be employed for the efficient orchestration of the frameworks in the testbed. NITOS

has adopted the Open Source MANO framework for provisioning virtual services on top of

the virtualized wireless equipment. Through extensions to the Virtual Infrastructure Man­

ager service for the testbed, we are able to establish and manage virtualized wireless network

interfaces, hosted on the generic networking nodes of the testbed [6]. The extensions are in­

troduced transparently and as an optional feature to the existing operation of the orchestrator,

in order to allow the portability of network services and network functions to instances that

do not implement our extensions. With our contributions, we manage to deploy virtual func­

tions inter­networked over wireless links, as well as maintain the traditional NFV MANO

deployment process [11].

3.2 Architecture Components

3.2.1 Docker

Docker is an open source project providing a systematic way to automate the faster de­

ployment of Linux applications inside containers. Docker containers are created using base

application­level images. A Docker image can include just the OS basic configurations, or it

can consist of an application stack, ready to deploy.

Figure 3.4: Docker Logo

3.2.1.1 Virtual machines and containers

Virtual machines is the predecessor virtualization technology of containerization tech­

nologies. Virtual machines are built on top of a hypervisor, which allows several virtual ma­
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chines to run on one machine. Each virtual machine instance contains a full copy of an op­

erating system and all the dependencies needed to run an application, which take up several

gigabytes of storage space. On the contrary containers are built on top of the Host operating

system with the possibility to run simultaneously and share the same Operating System ker­

nel. Each container runs as an isolated process in user space, which means that there is not

necessarily communication between them. Container sizes vary but are generally in a range

that is usually less than 1GB, while being able to boot up almost instantly, owing to their

lightweight nature.

Figure 3.5: Virtual machine and Docker container high­level architecture

3.2.2 srsRAN

srsRAN is an open­source 4G and 5G software radio suite that provides UE and RAN

solutions. It can leverage off­the­shelf equipment, RF hardware, for both the UE and eN­

odeB/gNodeB applications. The srsRAN includes features like srsEPC, srsENB and srsUE.srsRAN

uses srsEPC as a lightweight implementation of a complete LTE core network (EPC). How­

ever, srsEPC can run as a single binary and still provide the key EPC components such as

Home Subscriber Service (HSS), Mobility Management Entity (MME), Service Gateway (S­

GW), and Packet Data Network Gateway (P­GW). srsRAN uses srsENB in conjunction with

srsEPC to implement functionalities of a complete 4G/5G BS.

srsUE is an application running on Linux­based systems. Its major advantage over other

candidate software implementations like OpenAirInterface (OAI), is its ability to be deployed
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either on 4G LTE or 5G NR NSA modes. Using this software, a client may request, connect

and receive service over standardized interfaces andmethods and carry out different tasks that

may include Downlink (DL) and Uplink (UL) traffic, as made possible by the containerized

network components.

Figure 3.6: srsRAN Architecture

srsRAN library deals with buffers of samples in system memory, thus it is able to work

with any RF front­end. It currently provides interfaces to the Universal Hardware Driver

(UHD), giving support to the Ettus USRP family of devices. Our requirements thus are a

USRP B210 RF­frontend, the number of antennas it requires and also a CPU set (Intel x86­

64) running the software application of the E­UTRAN (in this case srsLTE eNB). These tools

constitute the necessary hardware & software equipment that our implementation requires

[12].
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3.2.3 Kubernetes

At June 2014 Google Developer Forum, Kubernetes was announced, an open source clus­

ter manager for Docker containers. Kubernetes plays the role of a container orchestration tool

which automates container deployment, scaling and load balancing, grouping the former into

logical units.

Figure 3.7: Kubernetes Logo

3.2.3.1 Kubernetes Architecture

The following figure 3.8 illustrates a general Kubernetes cluster.
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Figure 3.8: Kubernetes Architecture

The central component of Kubernetes is the cluster. A cluster is made up of many virtual

or physical machines that each serve a specialized function either as a master or as a worker

node. Each node hosts groups of one or more containers, which contains applications, and

the master communicates with nodes about when to create or destroy containers. At the same

time, it tells nodes how to re­route traffic based on new container alignments.[13]
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3.2.3.2 Master Node

The Kubernetes master is the control plane, from which administrators and other users

interact with the cluster to manage the scheduling and deployment of containers. The master

stores the state and configuration data for the entire cluster in etcd, a persistent and distributed

key­value data store. Each node has access to ectd, and through it, nodes learn how tomaintain

the configurations of the containers they’re running. Master nodes communicate with the rest

of the cluster through the kube­apiserver, the main access point to the control plane.

3.2.3.3 Worker Node

Each Worker Node must be configured with a container runtime, like Docker.The con­

tainer runtime starts and manages the containers as Kubernetes deploys them to nodes in the

cluster. Kubelet is an agent process that runs in alla nodes and is responsible for managing

the state of the node: starting, stopping, and maintaining application containers based on in­

structions from the control plane. The kubelet collects performance and health information

from the node, pods, and containers that it runs. It shares that information with the control

plane to help it make scheduling decisions. The kube­proxy is a network proxy that runs on

worker nodes and works as a load balancer for services running on each node.

3.2.3.4 Pod

The basic scheduling unit is a pod, which consists of one or more containers sharing

resources among each other. Each pod is assigned a unique IP address within the cluster, al­

lowing the application to use ports without conflict. Thei main purpose of a pod is to support

co­located and managed helper programs, like proxies, file and data loaders, log and check­

point backups. In practice, microservices are containerized and deployed on a Kubernetes

cluster as pods. Pods can be created manually as well as by controllers. A pod’s template

along with its desired number of replicas and other information such as upgrade strategy and

labels are included in a controller specification.Once the controller is deployed to the cluster,

it creates the desired number of pods based on the provided template and continuously main­

tains their number equal to the desired number. Controllers are watch loops that continuously

work to bring the current state of the application to its desired state.[14]
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3.2.3.5 Similar to Kubernetes

Kubernetes is not the only option available for container orchestrator engine. There is a

plethora of options but the majority of them using different forms of Kubernetes. Two of the

most common used alternatives to Kubernetes are:

• Docker Swarm

Open source solution coming from Docker’s team. By default, any software, ser­

vices, or tools that run with Docker containers, has full support in Swarm. It uses

the same command line from Docker. Simpler to use and to install than Kuber­

netes, but not recommended in production environments.

• Mesos

Open source software that provides efficient resource isolation and sharing across

distributed applications or frameworks. Mesos architecture is based on a master­

slave approach, where daemons run task on the slaves. Mostly recommended for

multi­cloud and multi­region clusters. Mesos has more complexity than Kuber­

netes, thus is currently being adapted to add a lot of the Kubernetes concepts and

to support the K8s API.

3.2.4 Ansible

Ansible is an open­source software provisioning, configurationmanagement, and application­

deployment tool enabling infrastructure as code. It runs on many Unix­like systems and uses

agent­less architecture. Communication between workstation and managed nodes is over

SSH. A typical scenario using Ansible is the following:

• Ansible connects over SSH to the host node. The user can be authenticated with pass­

word or key.

• Pushes programs to the host node, called ”Ansible modules”. These programs define

how the system should be configured.

• Ansible executes those programs and transmits their output to workstation’s terminal.

• Ansible removes those programs from managed node.
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Figure 3.9: Ansible Architecture

Ansible starts up the environments according to a playbook. Playbooks are Ansible’s

configuration, deployment and orchestration language, which executes selected commands

in wanted order. These files are expressed in YAML format and have a minimum of syntax.

One playbook can contain a single or multiple play which are run in the order specified in

the playbook. Also playbooks use the hosts­file that contains all the relevant information

for the needed environment in order to initialize the connections between the nodes of the

environment.
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Design

The purpose of this section is to describe the integration of the system architecture com­

ponents that were mentioned previously. The 5G NFV network model, following the archi­

tecture by ETSI is combined with the deployment of VNFs in Docker containers. The latter

are orchestrated and managed by Kubernetes, with an overview of its integration on top of

the relative network context presented below.

4.1 Topology Initialization

The deployment flow of our network topology begins with serving and deploying four

nodes on the NITOS Testbed with Linux operating system, Ubuntu 18.06 as shown below on

the Figure 4.1.

25
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Figure 4.1: Initialization Topology in NITOS Testbed

The first one, the Ansible Node, connects with the other three nodes over SSH, labeling

them as Worker or Master Node. It is responsible for installing and deploying Docker, Ku­

bernetes and any dependencies needed in the other nodes and eventually for the initialization

of the Kubernetes Cluster. The Workers node require to have USRP connected, as there will

be taking place the experimentation scenario of 5G NFV model.

The Ansible Node contains the hosts file, where there is all the information needed to

initial the connection between topology nodes, such as IP­addresses and node roles. All the

playbooks that are used in this design operate with the host file to target the desired node and

execute the specific tasks. As we mentioned before, playbooks are models of configuration

processes written in YAML format. In this design the yaml files are the following:

• initial.yml

Is responsible for the establishing the connection between the Ansible Node and the

other three nodes over SSH.

• docker­k8s­dependencies.yml

Installing Docker, Kubernetes to the Master and Workers Nodes

• master.yml

Initializing and deploying the Master Node as Kubernetes control plane
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• workers.yml

Connecting the Worker Nodes in the Kubernetes Cluster

4.2 Kubernetes Integration

As the Kubernetes framework has been deployed and the control plane node is running in

the testbed infrastructure, which has direct network access to the to the wireless nodes of the

testbed, the Master Node contains the K8s control plane. The two workers shown represent

5G Network Components, so we assign the UE role to the first worker and the eNodeB,

EPC roles are collocated in the second worker node. Regarding the selection of Kubernetes

Network, we deploy the Flannel CNI (Container Network Interface) plugin to the cluster.

Flannel is a simple overlay network that acts as a network of containers and consequently as

a pod network. This feature is possible, while also we use the Multus plugin to add more than

one interface to the pods.
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Figure 4.2: Topology after Kubernetes Intergation

4.2.1 Pods Setup

With the help of Kubernetes command­line tool, kubectl, we apply the configuration that

is described in the respective YAML files in order to deploy the desired pod network. This

network design consists by two pods deployed in Worker Node 1 where the roles assigned

were described previously. All following YAML files utilize srsRAN Docker container im­

ages.

• srsepc­pod.yml

Deploying a pod as EPC service to Worker Node 1, using the srsepc image.

• srsenb­pod.yml

Deploying a pod as eNodeB service to Worker Node 1, using the srsenb image.
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• srsue­pod.yml

Deploying a pod as the UE component on the network to Worker Node 2, using the

srsue image.

Figure 4.3: Thesis’s Kubernetes Cluster

4.3 Testbed Integration

NITOS testbed uses a scheduler interface in order to give the opportunity to researchers

to select the number of nodes they want to use within a timeslot. Timeslots are a unit of

time where nodes can be scheduled. During these time­slots we can operate our virtualized

5G solution we the tools described before. After all network components are initialized as

containers in the pods network, the firing order is EPC, eNB and finally UE. In this setup the

eNB component is connected to the core network (EPC) while the UE, after registering with

the core receives connectivity from the eNB. For connectivity troubleshooting we test with
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the ping utility or common network traffic tools, like iperf. Both traffic directions must be

tested to make sure that UE reaches core network and vice versa.



Chapter 5

Conclusion & Future Work

In this thesis, we first provided an outline of the Radio Access Network evolution across

the last two major generations. We then provided an overview of our system and network

components, with an emphasis on extensive network disaggregation and virtualization of the

logic components that make up typical procedures met in current 5G deployments. These

containerized software instances are adapted according to the needs of the network that in­

cludes either the incorporation of more nodes or simply just more clients that need to be con­

nected and maintained in real­life workloads that our network deployments comes across.

By a proof­of­concept implementation, we covered how can a developer/researcher of the

relevant fields we have worked on, can setup, deploy and manage a virtualized 5G network

in real­life testbed conditions.

Concerning future efforts and directions, visualization is key concerning the real­time

monitoring of consumption and usage by our deployment. Web­based dashboards can serve

this purpose, easily integrated with the main application (see e.g. Kubernetes dashboard,

Prometheus, etc.). Further, we can investigate and integrate various cutting­edge use cases,

like Machine Learning­based provisioning services that are known to require intensive CPU

usage and/or GPU devices, also viewing them on a web­based visualization service (e.g.

Tensorflow’s Tensorboard, etc.).
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