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Diploma Thesis

MOVIE SHOT TYPE RECOGNITION USING DEEP LEARNING

Antonia Petrogianni

Abstract

Visual information contains the most important characteristics of a movie regarding the re-

lated content and filming techniques. Especially the way the camera moves to capture the

scene is vital to define the director’s aesthetics. However, most of the machine learning tasks

existing in the literature treat the movie as shallow content, rather than as an artistic work,

and therefore focus on detecting objects and faces, recognizing activities and extracting plot-

related topics. On the other hand, cinematography is closely connected to the choice of dif-

ferent ways to handle the camera, and thus camera movements include information that is

useful in order to analyse the artistic style of a movie. In this work we present an original,

publicly available* dataset for film shot type classification that is associated with the distinc-

tion across 10 types of camera movements that cover the vast majority of types of shots in real

movies. In addition, two different methods are evaluated on the new dataset, one static that

is based on feature statistics across frames, and one sequential that tries to predict the target

class based on the input frame sequence using LSTMs. According to the evaluation process

it is inferred that the sequential method is more suited for modeling the camera movements.

Keywords:
shot classification, camera movement classification, movie analysis, machine learning, deep

learning, LSTM

*https://github.com/magcil/movie_shot_classification_dataset

https://github.com/magcil/movie_shot_classification_dataset
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Διπλωματική Εργασία

ΑΝΑΓΝΩΡΙΣΗ ΤΥΠΟΥ ΚΙΝΗΜΑΤΟΓΡΑΦΙΚΩΝ ΣΚΗΝΩΝΜΕ

ΧΡΗΣΗ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ

Αντωνία Πετρόγιαννη

Περίληψη

Οι οπτικές πληροφορίες περιέχουν τα πιο σημαντικά χαρακτηριστικά μιας ταινίας όσον

αφορά το περιεχόμενο και τις τεχνικές κινηματογράφησης. Ειδικά ο τρόπος που κινείται η

κάμερα για να απαθανατίσει τη σκηνή είναι καθοριστικός για τον καθορισμό της αισθητι-

κής του σκηνοθέτη. Ωστόσο, οι περισσότερες από τις έρευνες που υπάρχουν στη βιβλιογρα-

φία με χρήση μηχανικής μάθησης αντιμετωπίζουν την ταινία ως ρηχό περιεχόμενο, παρά

ως καλλιτεχνικό έργο, και ως εκ τούτου επικεντρώνονται στην ανίχνευση αντικειμένων και

προσώπων, στην αναγνώριση δραστηριοτήτων και στην εξαγωγή συμπερασμάτων που σχε-

τίζονται με την πλοκή. Από την άλλη πλευρά, η κινηματογραφική τέχνη συνδέεται στενά

με την επιλογή διαφορετικών τρόπων χειρισμού της κάμερας. Έτσι οι κινήσεις της κάμερας

περιλαμβάνουν πληροφορίες που είναι χρήσιμες για την ανάλυση του καλλιτεχνικού στυλ

μιας ταινίας. Σε αυτή τη διπλωματική εργασία παρουσιάζουμε ένα πρωτότυπο, δημοσίως

διαθέσιμο σύνολο δεδομένων† για την ταξινόμηση του τύπου πλάνων ταινιών. Συγκεκρι-

μένα στοχεύουμε στη διάκριση μεταξύ 10 τύπων κινήσεων της κάμερας που καλύπτουν τη

συντριπτική πλειοψηφία των τύπων λήψεων σε πραγματικές ταινίες. Επιπλέον, δύο διαφο-

ρετικές μέθοδοι αξιολογούνται στο νέο σύνολο δεδομένων, μία στατική που βασίζεται σε

στατιστικά χαρακτηριστικά σε όλα τα καρέ ενός βίντεο και μία διαδοχική που προσπαθεί να

προβλέψει την κλάση με βάση την ακολουθία καρέ ενός βίντεο, με τη χρήση LSTMs. Σύμ-

φωνα με τη διαδικασία αξιολόγησης των μεθόδων συμπεραίνουμε ότι η διαδοχική μέθοδος

είναι πιο κατάλληλη για τη μοντελοποίηση των κινήσεων της κάμερας.

Λέξεις-κλειδιά:
ταξινόμηση πλάνων, ταξινόμηση κινήσεων κάμερας, ανάλυση ταινιών, μηχανική μάθηση,

βαθιά μάθηση, LSTM

†https://github.com/magcil/movie_shot_classification_dataset

https://github.com/magcil/movie_shot_classification_dataset
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Chapter 1

Introduction

Amovie shot is a “series of frames that runs for an uninterrupted period of time” [18]; a

single take that can last from a few seconds to several minutes. Movie producers use a variety

of video shot types to draw the audience’s attention and enhance their viewing experience.

As a result, video shot classification is critical for comprehending and accessing the movie’s

content [19]. Since there are so many different movie genres, shooting techniques, and shot

types, movie shot classification is a necessary but difficult task.

Both Machine and Deep learning methodologies have been greatly applied in order to

conduct movie analysis. Extensive research has been published on different kinds of problems

such asmovie reccomentation [20] [21] [22] [23], movie summarization [24] [25] [26], movie

genre classification [27] [28] [29] or movie scene detection [30] [31] [32]. These problems

have been faced using different types of approaches (e.g., traditional machine learning or

deep learning architectures) or different types of representations (e.g., multimodal recomme-

ndation [33] or summarization [34]).

Most of the existing tasks in computer vision primarily focus on content rather than style

understanding. That is the analysis of movies, which are a work of art, cannot be properly

conductedwhen excluding cinematographic style. Shot type classification could enrichmovie

analysis techniques and result in a more inclusive automated movie understanding.

The existing datasets presented in the works described above, are either private or do

not focus on camera movements. However, camera movement is important for expressing

mood and style in a movie, and as such, it is crucial to be considered as an attribute in any

movie analysis system: movie indexing and search, movie visualization and, of course, movie

recommendation systems. To put it simple, the way the directors decide tomove their cameras

1



2 Chapter 1. Introduction

makes us, the viewers, like or not a movie, among other characteristics.

In this thesis, we propose a publicly available dataset that contains shots coming strictly

from movies. The proposed collection is concerned about camera movements and proposes

the categorization of shots in the following extensive 10 classes: static, panoramic, zoom-

in, travelling-out, vertical movement, aerial, travelling-in, tilt, handheld, panoramic lateral.

We report classification metrics on our dataset based on (i) a static method which is based on

aggregated statistics on the feature sequence, and (ii) a sequential method where an LSTM is

applied directly on the sequential features, which is not the usual case in the literature since

most of the existing works depend on feature aggregations [35].

The rest of this thesis is organized as follows. In Chapter 2 a detailed theoretical presenta-

tion is provided in order to comprehend the fields of machine and deep learning, which serve

as the cognitive background for our model’s implementation. In Chapter 3 several related

works are discussed in the first place. The dataset compilation along with the annotation

procedure is discussed. The feature extraction process, as well as the proposed methodologies

are also explained in this chapter. In Chapter 4 the experimental results are provided, where

Chapter 5 concludes our work and proposes some future work directions.



Chapter 2

Background

2.1 Artificial Intelligence

Artificial intelligence (AI) is an application in computer science and information techno-

logy related to the development of intelligent machines to accomplish activities that would

require human intellect. That is, systems that mimic human actions [36]; Systems that not

only act like human beings, but systems that also think rationally. They are machines that

can do a variety of human-like tasks in terms of achieving a specific goal. Besides, the word

itself says so. With the word ‘intelligence’ we refer to the computational component of one’s

capacity to perform tasks in the real world.

AI possesses tremendous advantages and is constantly evolving in a way that enhances

our quality of life. It affects our everyday lives, since it’s used in a variety of applications;

including recommender systems, self-driving cars, image classification, human speech reco-

gnition,mathematics, computer vision, andmore [37].Machine Learning andDeep Learning,

both subcategories of AI (Figure 2.1), were employed in this thesis. The subchapters that

follow examine and explain these subjects.

2.2 Introduction to Machine Learning

With such an exponential growth in AI, Machine learning (ML) is becoming one of the

most popular fields of the century. It is one of AI’s branches and it investigates computer

systems that learn and evolve based on data over time. Observations, data analysis, and past

experience, all contribute to the learning process and to the predictions made. When we talk

3



4 Chapter 2. Background

Figure 2.1: Machine and Deep Learning as sub-fields of AI[1]

about ‘past experience’, we refer to previously accessible knowledge, or data that has already

been highlighted and labeled. The accuracy of the predictions, is dependent on the quality

and quantity of data. Essentially, computers seek patterns in data in order to make better

decisions in the future. The ultimate goal is for them to learn and adapt their behavior to the

circumstances, without the need for human involvement. Machine Learning algorithms have

had a lot of success in a variety of applications, especially in cases where manually built

techniques to address issues is challenging; such as Computer Vision and Natural Language

Processing.

Computer vision is a field, inwhichmachines learn to study and analyze digital multimedia.

Its goal is to understand and automate operations that a human is capable of doing. This

involves strategies of acquiring, processing and analyzing, as well as techniques for extraction

of data to produce valuable insight [38].

Natural language processing (NLP) constitutes a subject of computer science. Here, the

computer systems use software to automate themanipulation of natural language. It is built on

the capability to interpret both written and spoken words in the same manner a human-being

does [39] [40]. It is a subset of linguistics.

We will not deal with text or words in this research; instead, we will focus on extracting

information from videos.
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2.2.1 Types of Machine Learning

An interesting topic in ML is the categorization into three subfields: Supervised, Unsupe-

rvised, Reinforcement Learning. We will discuss on when to use the algorithms of each

category along with their applications (Figure 2.3).

Figure 2.2: Distinction between types of machine learning [2]

Supervised Learning

One of the most fundamental forms of machine learning is supervised learning. This

method needs labeled data -which means that the output is known- to train models. The

algorithm will then forecast the label for each case and provide feedback on whether it

anticipated the right answer or not. By this process and after identifying new patterns and

correlations, the model will improve. In the end, the algorithm will be able to predict the

output of new data that has never seen before [41].

Supervised algorithms are split into two main categories: Regression and Classification.

In the former case, datasets contain continues values and the algorithms work by estimating

how one variable influences the other. In the latter case, the idea is to forecast discrete

values. There are two significant categories of classification problems to examine: binary

classification, where the instances of a task are classified into two categories (e.g., if something

is true or not true), and multi-class classification, where the instances of a task are classified

to more than two different categories [42]. In this thesis, we are going to provide results on

experiments for both binary and multi-label classification.



6 Chapter 2. Background

Unsupervised Learning

The definition of the term ‘Unsupervised’ is to act without being overseen or without

somebody’s guidance. This word here refers to the absence of labeled data. In this type of

learning, unlabeled data are getting analyzed and clustered into groups either because they

have similarities or due to their differences. Themachines must discover features and patterns

in order to forecast the output [43].

Reinforcement Learning

A number of software and computers employ this type of learning to find the best possible

route to take in a specific scenario. The algorithms learn to attain a goal by either receiving

a reward for a successful move or receiving a punishment for acting incorrectly; e.g., an

algorithm can learn, by playing a game repeatedly, until the maximum points of the game

are gained [44]. This domain of learning permits agents to fulfill a task while increasing the

value of a numerical reward signal, until it gets the maximum value.

Figure 2.2 depicts in which type of learning labeled and unlabeled data are being used,

and when agents need to take actions in order to boost the performance of the models. The

separation of the most popular applications between the different kinds of Machine Learning

is illustrated in Figure 2.3.

Figure 2.3: Types of Machine Learning[3]
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2.2.2 Supervised Model performance assessment

Any project should include an evaluation procedure. The data should be divided into three

unique splits for this purpose. The basic idea is to split them into training, validation and test

sets.

First of all, in the training process, the algorithm is fed input data which correlate to

specific outputs. Then, the model examines the data regularly and tries to find hidden features

and patterns in order to get a better understanding of the data’s behavior. It adjusts to achieve

the model’s aim. The training set should always comprise a broad range of inputs, so that the

model may be trained in all possible scenarios and forecast any unseen future data samples.

The validation set is a small subset of the original dataset, which is independent from

the training set described above. This set serves as an initial test against unknown data and

provides information that we could take advantage of and use in optimizing the model’s

hyperparameters and settings. The major goal we want to achieve using this set is to avoid

overfitting, which occurs when a model becomes extremely effective at categorizing samples

in the training procedure, but is unable to generalize and make accurate predictions on unseen

data from the test set later on.

The test set is a distinct collection of data that is used to put the model through the process

of making predictions, once it has been trained and validated [45][4]. The illustration in

Figure 2.4 helps us understand better how these sets work.

The test set provides an answer to our queries; if the model performs good enough, if we

can verify that the algorithm was properly trained and if it could predict new unseen data.

But how do we understand if the model performs well or not? The evaluation metrics will

provide us with such information.

Confusion Matrix

In an either binary or multi-label classification task, the confusion matrix is a graphic

depiction of actual versus predicted values; it is a performance metric that gives a quick

overview of the forecast outcomes [7]. It is also called ‘error matrix’. It represents the four

different combinations of actual and predicted values, as shown in Figure 2.5.

Let’s examine what the components of the confusion matrix are:

• TP (True Positive): The positive values were correctly forecasted as positive ones
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Figure 2.4: Training, validation and test procedure [4]

• FN (False Negative): The positive values were mistakenly forecasted as negative ones

• FP (False Positive): The negative values were mistakenly forecasted as positive ones

• TN (True Negative): The negative values were correctly forecasted as negative ones

Figure 2.5: Confusion Matrix for the binary task [5]

Whether the problem is a complex one or if the classes are imbalanced, we cannot always

rely on the confusionmatrix; there aremultiplemetrics wemay use to evaluate the performance

of our model. We are going to refer to some of them below.

Accuracy

The equation below (Figure 2.6) shows how many of the total instances were correctly

forecasted. Although the level of accuracy should be high, using this metric as the primary

indicator to assess our model’s performance will fail in the scenario of imbalanced data.
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Figure 2.6: Accuracy [6]

Precision

The equation in Figure 2.7 shows how many of the total instances that were forecasted as

positive were truly positive ie. how many times the model is precise when predicting a value

as a positive one? The level of precision should be as high as feasible. Let’s say that we have

to identify if a person has cancer or not. If our model’s level of precision is unsatisfactory,

then many people will be mistakenly informed that they have cancer [46]].

Figure 2.7: Precision [5]

Recall or Sensitivity

The equation below (Figure 2.8) shows how many instances were correctly forecasted as

positive out of a total number of positive outcomes; ie. out of all the positive values, how

valid are the outcomes? The level of recall should be high as well. For the example presented

above, if our model’s level of recall is poor, then many people will be mistakenly informed

that they do not have cancer, when they do have.

Figure 2.8: Recall [5]

F-measure

The F-score (Figure 2.9) is a tool for assessing both recall and precision at the same time

and that’s why it is also characterized as the harmonic mean of those values. A strong F1

score indicates that the FP and FN rate are both low. As a result, we come to the conclusion

that the F1-score should be as high as possible. When applying the macro-averaged F1-score
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as our criterion for assessing the effectiveness of our model, each label will be given the

same priority. A high macro-F1 score means that our model works well not just for the

neutral classes, but also for the non-neutral ones. This would be useful when dealing with

an imbalanced dataset [6] [47].

Figure 2.9: F1-score [7]

2.2.3 Fundamental Machine Learning Algorithms

Linear Regression

A collection of input variables (x) that is utilized to calculate an output variable (y). These

variables have a connection and the purpose is to quantify this connection. By fitting the

optimal line, we may establish a link between the independent (input) and dependent (output)

variables. The aim is to find one that fits themajority of the points the best [8]. It is represented

by the linear equation Y = a ∗ X + b (Figure 2.10). The purpose of linear regression is to

determine the coefficients a (intercept) and b (slope).

Figure 2.10: Linear Regression represented as a line [8]

There are two forms of linear regression: simple linear regression and multiple linear

regression. One independent variable characterizes the former, while multiple independent

variables characterize the latter.
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Decision Trees

A supervised learning method that’s extensively used to solve both regression and classi-

fication tasks. An example is illustrated in Figure 2.11. It has the structure of a tree, as it’s

name implies, where internal nodes contain the dataset attributes (ie. the condition), branches

represent decision rules, and their end, which cannot be split anymore represents a leaf node

[48]. These nodes are the result of those decisions and do not include any branches [8].

Figure 2.11: A Decision tree example [9]

Choosing which characteristics to employ and which conditions to use for splitting, as

well as understanding when to stop, are all parts of the process of growing a tree. They are

generally easy to understand, but also complicated, since they have several layers.

Support Vector Machine

A method of classification. Support Vector Machine (SVM) is an algorithm responsible

for determining the decision boundary that will divide the various groups and maximize the

margin. A margin shows how far the data, as shown in Figure 2.12, are from the line. SVM

must determine the ideal line to separate the data of each group. This will be the line along

which the distances between the two groups’ nearest points are the greatest [49][50]. This is

how the optimal hyperplane is created.
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Figure 2.12: Support Vector Machine - Optimal Hyperplane [10]

2.3 Deep Learning

The line between Deep Learning and Machine Learning is, in some ways, hazy. Deep

learning is a machine learning approach that allows computers to learn by acting in the

same way that people do; they imitate how people acquire knowledge. It deals with artificial

neural networks, which are algorithms inspired by the structure and function of the brain. A

computer model in this type of learning, executes categorization tasks directly from pictures,

texts, audios or videos. Many AI applications and services rely on deep learning to enhance

automation by performing analytical and physical activities without the need for human

intervention. These techniques have vastly improved the state-of-the-art in voice recognition,

visual object identification, and a variety of other domains. Models are trained by utilizing

massive quantities of labeled data [51][52]. But how all these things work?

2.3.1 Artificial Neural Networks

Let us imagine we need to create a model that can tell if a vehicle is a car or a bus. In

typical machine learning we instruct the computer what sorts of things it should search for,

to determine if a picture contains either a car or a bus. Deep learning offers the benefit of

creating feature vectors automatically without the need for human intervention.

Initially, the programwill be given training data, whichwill consist of a set of photographs

classified by a person, indicating whether it is a car or a bus. Then feature vectors for the

vehicles are created and a prediction model using the information is built. In this scenario,
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the computer’s first model may suggest that everything in the picture that consists of wheels

and windows should be identified as a car. Naturally, the software is not aware of the terms

‘wheels’ and ‘windows’. It will just search the digital data for pixel patterns. After each

iteration, the prediction model becomes more and more accurate [51]. This is the general

idea, but let’s explore how exactly this is done.

2.3.2 Architecture of Artificial Neural Networks

The term “neural networks” along with their structure are derived from the human brain,

and they resemble the way real (human) neurons communicate. Neural networks are multi-

layer networks of neurons which attempt to mimic the human brain and discover correlations

between the data they have to process [53].

Figure 2.13: Artificial Neural Network Architecture [11]

Artificial neural networks (ANN) consist of an input and an output layer and, in between,

one or more hidden layers, as illustrated in Figure 2.13. These networks are made up of layers

of neurons. The artificial neurons (or nodes) are the core processing units of the network.

The input layer, which connects with hidden layers, feeds data into a neural network. A node,

which is a small unit, is connected to the others and has a weight and threshold attached to

it. The hidden layer’s nodes receive input signals, that are multiplied by the ‘weights’ of the

connections they pass through [54]. They perform some processing and calculations with

the use of “activation functions”, which specify how far a signal must travel through the

network to effect the final output. If the node’s output reaches a specific threshold, the node

gets ‘activated’, and sends the data to the next unit connected to it. Finally, the output layer

is where the outputs of the last hidden layer are collected [55].



14 Chapter 2. Background

Weights are the links between units and they may be positive or negative; they reflect how

much of an impact a previous unit’s input has on the output of the next unit. Altering amodel’s

weights is the primary method that networks are taught. Throughout testing, they are fixed,

but during training, we will modify these quantities in order to ‘tune’ our network. When

compared to features with larger weights, features with weights close to zero are deemed to

be less important in the prediction process. A neural network learns when given feedback

about whether it took the right action or not. The network will make modifications based on

the feedback to address the problem [54] [56].

Activation Functions

They are an important aspect of a neural network’s architecture. Transfer Functions is

another name for them. They determine if a neuron should be activated. This means that

they will use mathematical operations to identify whether the neuron’s input to the network

is essential. The type of predictions the model may produce is determined by the activation

function used in the output layer [57]. The principal aim is to convert the node’s summed

weighted input into an output value that may be passed to the next hidden layer or used as

output. The Activation Functions may be classified into two categories: Linear Activation

Function and Non-linear Activation Functions [12].

• Linear or Identity Activation Function

It is also known as a straight-line function, where the activation is proportional to the

input, which is the weighted sum of neurons. It does not affect the input’s weighted

sum in any way and simply returns the value; it does not capture complex patterns [58]

[59]. It has a straightforward function based on the equation: f(x) = ax + c (Figure

2.14).

• Non-linear activation functions

– Sigmoid

The sigmoid function’s curve is S-shaped, as its name implies. It transforms data

in the range of 0 to 1 (Figure 2.15). It is extensively used when our model must

predict probabilities. It is continuously differentiable and is also non-symmetric

near zero. As a result, all of the neurons’ output will be of the same sign. From its
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Figure 2.14: Linear Activation Function [12]

derivativewe observe that for ranges -3 and 3, the gradient values are considerable,

but the graph becomes significantly flatter. This means that gradients will be very

modest for values more than 3 or less than -3. The network is not truly learning

when the gradient value approaches zero [58].

Figure 2.15: Sigmoid Function [12]

– Tanh or hyperbolic tangent

The tanh function and the sigmoid function are quite similar; tanh also has an S-

shaped structure. It is symmetric around the origin, which is where these functions

differ. The output is in the range of -1 to 1. It has a non-negative derivative at each

point and is defined for all real input data. The diagram below (Figure 2.16) shows

how it is plotted.

– ReLU

The benefit of employing the ReLU function is that it does not simultaneously

stimulate all of the neurons. This means they’ll only be silenced if the outcome of
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Figure 2.16: Tanh or hyperbolic tangent function [13]

the linear transformation is less than zero. As we can see from the diagram below

(Figure 2.17), if the input value is negative, then it is returned as zero; otherwise,

the same value is returned. When compared to the sigmoid and tanh functions, it

is considerably faster since only a small number of neurons remain active [60].

Figure 2.17: ReLU Function [12]

– LeakyReLU

This function is a better variant of the ReLU function. The gradient for the ReLU

function is 0 for negative values, as we observed, deactivating the neurons in that

area. Instead of the value being zero, a tiny slope is now added in the negative

range. As a result, there would be no more dead neurons in that area. It is depicted

in Figure 2.18. The mathematical representation is: f(x) = max(0.05x, x) [61].
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Figure 2.18: LeakyReLU Function [13]

Loss Function

One of the most significant components of Neural Networks is the Loss Function. It is

the method for calculating the prediction error. It demonstrates how much the predicted from

the real values differ. Optimizers are also used to reduce the loss and improve predictions’

accuracy. The gradients, which are used to update neural network’s weights, are calculated

using the loss function [62]. It is how the Neural Network is getting trained and we can obtain

information on how well or poorly the model is doing.

• Categorical Cross Entropy Loss

In multi-label classification tasks, cross-entropy-based loss functions are often utilized.

The difference between two probability distributions is measured by cross entropy

[62]. It operates in such a way that when the predicted probability approaches the

ground truth, the loss diminishes. The last layer’s output should go through a softmax

activation, giving each node a probability value between [0-1]. The loss is calculated

according to the formula (2.1).

LCE = −
n∑

i=1

yi log(pi), (2.1)

where yi is the actual value (0 or 1) and pi is the corresponding forecasted value for

the ith class.

• Binary Cross Entropy Loss

This is used in binary classification tasks. The binary loss is calculated according to

the formula (2.2), which results from the above equation (2.1) for Ν=2 [63]. The out-

put value should be processed via a sigmoid activation function, with an output range

between [0-1].
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BCE = −(y log(p) + (1− y) log(1− p)), (2.2)

where y is the actual value (0 or 1) and p is the corresponding forecasted value.

• Mean Squared Error Loss

For regression tasks, MSE() loss is employed. This is estimated by calculating the

mean of squared discrepancies between actual and forecasted values (2.3). Because

MSE is sensitive to outliers, it would be preferable that the actual values are normally

distributed around a mean value [63].

LMSE =
1

N

N∑
i=1

(yi − pi)
2, (2.3)

where yi is the actual value (0 or 1) and pi is the corresponding forecasted value for

the ith class.

Optimization

As it was mentioned previously, a small loss indicates that our model will perform better.

Optimization is the process of reducing the loss. Optimizers are techniques or approaches that

adjust some of the characteristics of a neural network, such as weights and learning rate, to

decrease the loss. Optimization algorithms are in charge of minimizing losses and delivering

the most accurate outcomes [64].

There are many different types of optimizers:Gradient Descent, is widely used in linear

regression and classification techniques. It indicateswhichway theweights should bemodified

to bring the function closer to a minimum. The gradient descent technique is also used in

backpropagation in neural networks. It may be easy to compute and to implement, but it is

possible that it gets ‘trapped’ at a local minimum. Also, only after computing the gradient on

the entire dataset, the weights get updated [65]. This means that if the dataset is too vast, the

process may take even years to be completed. Stochastic Gradient Descent, tries to update

the parameters of the model more often in comparison to the former. After each training

example’s loss has been computed, the model parameters are modified. Model parameters

here are updated often, resulting in faster convergence.Adam, retains a learning rate for each

network parameter and modifies them individually during training. It adjusts the learning rate

for each weight based on estimates of the first and second moments of gradient [66].
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Backpropagation

The core of neural net training is backpropagation. The chain rule is used by the backpro-

pagation method in ANNs to determine the gradient of the loss function for a single weight.

What exactly happens is after the feed-forward process discussed above, when reaching to

the output layer of the network, the loss is fed backwards to the hidden layers. This will result

to modified weights in such a way so the error decreases [67].

Dropout

Dropout refers to the practice of disregarding neurons during the training phase of a

randomly selected group. By “disregarding”, we mean that forces a neural network to learn

more robust characteristics that can be applied to a number of different random subsets of

other neurons [68] . These units are not taken into account during a forward or backward

pass. It is a strategy for decreasing overfitting. Large networks are time-consuming, making

it difficult to avoid overfitting by merging predictions from several neural networks at test

time. Dropout is dealing with this issue. This method has been discovered to increase the

performance of neural nets in a range of applications as stated in [69]. A neural network

before applying Dropout and after applying it is shown in Figure 2.19

Figure 2.19: Dropout Neural Network Model [14]

Normalization

Deep neural networks with many layers are difficult to train because they are sensitive

to the learning algorithm’s initial random weights and setup. Normalization is a data pre-
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processing technique for converting numerical data to a common scale without changing the

form of the data, to guarantee that our model can generalize correctly [70]. Regularization

techniques aid in the improvement of a model and allow it to converge more quickly and

prevents the model from over-fitting.

Batch-Normalization, entails the use of the current batch’s mean (μ) and variance (σ2)

to normalize activation vectors from hidden layers.It speeds up the training process by nor-

malizing the hidden layer activation [71]. Batch normalization smooths the loss function and

makes the model more consistent, while eliminating the requirement for Dropout [72].

2.3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of neural network that specializes in

processing data with a grid-like architecture, such as images and videos. A binary represen-

tation of visual data is a digital picture. It consists of a grid-like arrangement of pixels with

pixel values.

A convolutional layer, a pooling layer, and a fully connected layer are the three layers

that compose a CNN, as illustrated in the Figure 2.20.

Figure 2.20: Convolutional neural Network [15]

In convolutional neural networks, the fundamental building elements are convolutional

layers. This is the initial layer that extracts the different characteristics from the input photos.

The convolution mathematical operation is done between the input picture and a filter or

‘kernel’ of a certain sizeM ∗M in this layer. The dot product between the filter and the input

picture is calculated and a feature map is created displaying the positions and intensity of a

recognized feature in an input. This is then supplied to the next layers [73] [74].



2.3.4 Recurrent Neural Networks 21

The Pooling layer aims to decrease the size of the map and it is accomplished by reducing

the connections between layers. There are numerous sorts of Pooling procedures: such asMax

Pooling, Average Pooling, Sum Pooling. How they are chosen depends on the mechanism

utilized. The preceding layers’ input images are flattened and supplied to the Fully Connected

Layer layer. The classification procedure follows [75].

2.3.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are the state-of-the-art method for time-series or se-

quential data due to their internal memory. Recurrent neural networks (RNNs) are named like

this, because they complete the same function for each element of a sequence, with the result

being dependent on the prior computations [76]. They include loops in them that allow data

to endure.

All of the inputs are interconnected [77], as we can see from the Figure 2.21.

Figure 2.21: An unrolled RNN [16]

One of the allures of RNNs is the possibility of connecting earlier data to the current

task, such as using previous video frames to inform comprehension of the current frame.

But are they capable to do so? They work just fine when the problem consists of short-term

dependencies. They do not have the ability to keep valuable insight in memory for a long

period of time though. The solution to this problem was the improved RNNs, called Long

Short-Term Memomry (LSTM) networks, that make it simpler to recall past information in

memory [16]. They consist of 3 gates: Forget Gate, Input gate and Output Gate as illustrated

in Figure 2.22.

The Input gate is responsible for how the memory will be modified. Τhe Sigmoid function

will decide which data will pass to next layers and the tanh function will assign a weight to

the data, based on how significant they are to the network.



22 Chapter 2. Background

Figure 2.22: LSTM gates [17]

The Forget gate figures out which data should not be kept. The Sigmoid function is re-

sponsible for this process, looking both at the previous state and the input, it produces a

number in the range [0, 1]. It omits the number if it’s zero, but maintains the number if it’s

one.

The Output gate will be determined by the block’s input and the memory. The Sigmoid

function is responsible of which values are allowed through, while tanh function assigns

weight to values that pass through [77].

In this project we have implemented an LSTM network, using sequences of visual fea-

tures, in order to classify movie shots.

2.4 Hyperparameter Tuning

Hyperparameter tuning will be mentioned many times in the following chapters, since it

is an important procedure. A hyperparameter is a parameter whose value is determined prior

to the start of the learning process. The main difference between the model parameters and

the hyper-parameters is that the former are acquired directly from the data, while the latter

are the parameters that specify the model architecture. The height of the tree in a decision tree

algorithm, the parameter ‘C’ in an SVM algorithm, the learning rate, the batch size in a neural

network; these are all hyperparameters. Default hyperparameter settings cannot ensure the

optimal performance of the algorithms. Therefore, the process while these are getting fine-
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tuned in order to find the best architecture is called hyperparameter tuning [78]. Because

this process can be time-consuming, techniques such as grid search and random search are

employed [79].

2.5 Cross-Validation process

To construct a machine learning model, we frequently divide the dataset into train, vali-

dation and test sets of data as mentioned previously. But this is often done randomly. Because

the model’s accuracy fluctuates when the random state of the split changes, we are unable

to obtain a fixed accuracy for the model. Cross-validation is a technique for analyzing and

testing the performance of a machine learning model. Cross-validating a model may be ac-

complished using a variety of methods. Nonetheless, they all use the same algorithm [80].

k-Fold Cross-Validation, for example, includes the k parameter, which specifies the

number of groups into which a given data sample should be divided. The basic idea is that

the dataset is split into k− 1 groups with approximately equal data distribution, and for each

unique fold the k − 1 groups form a training set. The data of the group that was not used in

the training set form the test set. This process is repeated k times.

This methods helps us use our data properly, and gives us valuable insight about our

algorithm’s performance.
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Methodology

3.1 Related Work

The literature on shot classification is mostly centered around machine learning methods

in sports events (e.g., [81]) that classify the corresponding shots into one of the following ba-

sic categories: long,medium, close and out-field respectively. Most of the movie shot analysis

methods adopt this type of categorization in order to form the shot scale classification prob-

lem, where a shot is classified based on the apparent distance of the camera lens from the

main subject of a scene. Most of the works (e.g., [82], [83] ) examine the three-class problem

of long, medium and close-up shots. Recent methods have employed Deep Learning architec-

tures [84] and others enrich their overall architecture with the use of semantic segmentation

[85]. However, in these methods, the shot analysis is on frame level rather than on video

level, and thus the Deep Learning architecture does not include the temporal dimension.

One of the first studies to introduce a cinematographic shot taxonomy based on cam-

era movements is [86], which ends up with the following classes: stationary, contextual-

tracking, focus-tracking, focus-in, focus-out, intermittent/planing establishment and chaotic.

This taxonomy is followed by [87] where a new dataset of 5226 shots is created. A method

for videography-based video analysis is introduced in [88], where camera operation classifi-

cation is used as a module on the proposed architecture in order to classify the shot among

four categories, namely static, pan, tilt and zoom.

The so far mentioned works on camera movement classification and their predecessors

(e.g., [89]) evaluate their respective approaches on their own private collections, which are

not made available. The first publicly available dataset is introduced in [90] with shots cate-

25
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gorized as aerial, bird eye, crane, dolly, establishing, pan, tilt, and zoom. However this col-

lection is rather small, consisting of just 263 shots, where most of them are not from movies.

The most relevant work is that of [35] MovieShot, a publicly available dataset that contains

classes for both scale and camera movement. Still, the proposed camera movement types are

rather generic including only static, motion, push shot (zoom in) and pull shot (zoom out).

Most of these studies laid the groundwork for the detection of objects or classification

of actions in films, but they overlooked one of the most important procedures, the camera

movement. Also, some of them are not movie-oriented since they include other types of

videos. The camera motion is critical, as it has a significant impact on whether he likes the

movie or not, since it helps arouse his emotions. This is the purpose of the work we present.

3.2 Dataset compilation

A data collection procedure, along with a labeling and an agreement process, were fol-

lowed for the training and evaluation of the classifiers. Because there are no publicly available

labeled movie datasets on the internet, this data collection method was performed in the con-

text of the research. The sections that follow outline all of the steps that were performed to

produce a fully annotated movie shot dataset.

3.2.1 Video shot generation

Video shots are basic structural elements in film-making and video production that con-

tain a series of frames and run for an uninterrupted period of time [91]. Types of shots can

be characterized (among others) with regards to the respective camera movement. Camera

movement in film-making is a technique that causes a change in frame or perspective through

the movement of the camera. The types of camera movement are crucial in the direction film

process, since through these, directors can cause separate feelings to the audience: for exam-

ple, fast camera movements can cause the viewer anxiety or irritation.

In this thesis, our goal is to classify the types of shots based on the cinematic aesthetics

of camera movements. Towards this end, we have created a manually annotated dataset. To

our best knowledge, there is no corresponding dataset that represents a wide range of cam-

era movement styles that is able to cover the vast majority of shot types in any movie. The

dataset is created using video shots from 48 films in which a basic shot detection algorithm
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was applied to generate successive shots. The generated detected video shots were randomly

sampled and then led to a multi-annotator pipeline, leaning to the final annotated dataset.

In order to detect shots from movies, we adopted a very basic and fast shot-detection

algorithm that is based on three thresholding criteria. In particular, as a first step, the following

features are computed on a frame basis:

• Average value of magnitudes of optical flow vectors (mag_mu). Optical flow vec-

tors are modeling local movements of video blocks in successive frames [92]. In other

words, a flow vector indicates how a particular block from a frame will ‘move’ into the

next frame. The rationale behind using this feature is that, if the value of magnitudes

of flow vectors changed abruptly from the current frame to the next, then it would

probably occur a shot change.

• Proportion of pixels with high absolute differences between two successive frames

(gray_diff ): in particular, we count pixels whose differences is over 50 between two

successive frames.

• Average absolute diffs in the histograms of the gray values between two successive

video frames (f_diff ).

In order to select the aforementioned parameters, we created a small dataset of man-

ually annotated shots (in terms of segment endpoints) and selected the parameters values

mag_mu = 0.08, gray_diff = 0.65 and f_diff = 0.02 which resulted to an almost 80

macro F1 performance in the binary task of endpoint shot detection, with a tolerance of 1

second (i.e., the allowed time distance from the ground truth shot endpoints). The aforemen-

tioned method has been implemented in the GitHub repository that also implements the basic

feature extraction adopted in this thesis, called multimodal_movie_analysis 1.

As soon as this parameter setting of the shot detection algorithm was completed, we ex-

ecuted the algorithm on 48 movies from various genres and eras. This process resulted in

around 80,000 detected shots. We then discarded shots shorter than 2 seconds and randomly

selected 4000 shots as the final “annotation pool”. In the next Sections we describe the an-

notation process of these 4000 shots and the way we handled the inter-annotator agreement

to form the final ground-truth.

1https://github.com/tyiannak/multimodal_movie_analysis

https://github.com/tyiannak/multimodal_movie_analysis
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3.2.2 Video shot taxonomy

In order to define the set of classes in which the shots have been labelled, we collaborated

with a professional director and at the same time we focused in having a minimum set of

classes that covers as many shots as possible from all movies. Our basic criterion for defining

the classes was the type of camera movement. Based on this, the following classes have been

defined:

1. Static, The camera is locked on a tripod or pedestal and remains still. Among other

types of scenes, it is commonly used in dialogues. A static camera does not necessarily

indicate a static scene. Actors and even the background can move while the camera

remains still. (Link-for-static-video)

2. Vertical movement, of the camera lens while the camera remains locked on a tripod. It

is equivalent to someone tilting his head up/down. (Link-for-vertical-movement-video)

3. Tilt, Moving the entire camera up or down without moving its lens. Tilting up is like

one is moving up his entire body from a sitting position. (Link-for-Tilt-video)

4. Panoramic, Lateral movement of the camera lens while the camera remains locked

down on its tripod or pedestal. It is like someone is moving his head from one side to

another. (Link-for-Panoramic-video)

5. Panoramic Lateral, The camera follows the action moving parallel to characters.

Specifically, the camera captures the lateral movement of the subject, for example the

camera moves parallel to a person walking down the street to keep them in the frame.

(Link-for-Panoramic-lateral-video)

6. Travelling in, in this type of shot, the camera moves forward, pushes in a character or

follows a character. (Link-for-Travelling-in-video)

7. Travelling out, in this type of shot, the camera pulls out, moving away from the subject

and revealing the surroundings. (Link-for-Travelling-out-video)

8. Zoom in, In this type of shot, the camera lens are adjusted so that the image gradually

appears larger and closer. (Link-for-Zoom-in-video)

https://www.youtube.com/watch?v=yVmLHAhVKss
https://youtu.be/5QlGRnkKKy0
https://youtu.be/Udi2FJQAq0g
https://www.youtube.com/watch?v=0P5nPMXtz6w
https://youtu.be/Hh-w3QLGAqo
https://www.youtube.com/watch?v=0pIfyTXphgE
https://youtu.be/qWpTA0IH8Ko
https://www.youtube.com/watch?v=r5-WbBJBkSo
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9. Aerial, the camera is flown above the action, using a helicopter, drone or a plane.

(Link-for-Aerial-video)

10. Handheld, the camera is moving throughout the filming set, while the camera operator

is physically holding it. These camera shots are shaky and create a hectic feeling. (Link-

for-Handheld-video)

Initially we used five more classes that have been found in the literature, but these have

been rarely found in the annotation process (in particular they gathered less than 30 annota-

tions after the aggregation procedure described in the next Section). These classes are: (1)Car

FrontWindshield, the camera is mounted on the front windshield, (2)Car SideMirror, the

camera is mounted on the side mirror and the viewer can see the driver (and co-driver) from

the side (3) Zoom out, the entire image appears much smaller and further away (4) Vertigo,

a combination of travelling and zoom and (5) Panoramic 360, a semicircular movement of

the camera. These types of shots appeared in less than 30 annotations (i.e., in less than 0.75%

of the total data), and therefore their recognition would be of low significance in a real-world

scenario of movie analysis. Furthermore, any supervised procedure would fail to model these

classes with such few data points.

3.2.3 Annotation process and agreement

As soon as the 4000 shots had been selected from the 48 films, we began the annotation

procedure. Towards this end, we used a simple Python-based video annotation web tool 2.

Figure 3.1 presents a screenshot of the tool: the user can simply view the video and assign it

a video shot label. Note that the users had also the ability to annotate a video as ‘N/A’: this

label was used for cases that corresponded to either corrupted videos, or to videos with a non

clear and fuzzy type of camera movement, or even to videos with more than one types of

camera movements. Video shots that have been annotated as ‘N/A’ were discarded from the

final dataset.

This process has been carried out by 17 human annotators that annotated an arbitrary

number of randomly selected shots. In total, 7500 individual annotations have been made.

Each sample must have a single label at the end. For this to happen, we proceeded to applying

a simple aggregation rule: for each video shot, two minimum annotations (by two different
2https://github.com/theopsall/video_annotator

https://www.youtube.com/watch?v=bo2QZdqy7e4
https://www.youtube.com/watch?v=HSUtcYp0s9A
https://www.youtube.com/watch?v=HSUtcYp0s9A
https://github.com/theopsall/video_annotator
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Figure 3.1: Annotation tool
Figure 3.2: Inter-annotator agreement

Figure 3.3: Web tool and annotation agreement

annotators) were required, along with a minimum annotator agreement of 60%. This means

that if a shot was annotated by two persons, this shot will be used in the final ground truth only

if both annotators agreed on the label. Similarly, if three persons annotated a video shot, this

would be used in the final ground truth if at least two of the annotators agreed on the label

(higher than 60% agreement). Figure 3.2 visualizes the agreement between the individual

annotators for all adopted classes. The overall inter-annotator agreement was above 80%.

After this process, 1877 videos from all 15 classes “survived” with a confident aggregated

label. However, for 5 of these classes, the number of samples was below 30 and therefore have

not been used in the final dataset. Given that, the final size of the dataset was 1803. Table 3.1

shows the final aggregated counts per final class (for the 10 adopted classes).

3.3 Experimental set-up

3.3.1 Feature extraction

Feature extraction is extensively used in pattern recognition, machine learning and

image processing. This is a method of a low-dimensional representation, where limited re-

sources are used to describe a large dataset. That is, the main goal is to extract the most

significant insight from the original dataset and present it in a low-dimensional space [93].

Image classification methods are usually based on features extracted from well-established

Deep Learning computer vision architectures, such as the VGG [94] and ResNet [95] net-
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Table 3.1: Number of samples per class of the final dataset

Class Samples

Static 985

Handheld 273

Panoramic 207

Travelling in 55

Vertical movement 52

Aerial 51

Zoom in 51

Travelling out 46

Panoramic lateral 46

Tilt 37

works. However, in the task of Video Shot Classification we are more interested in capturing

the image flow rather than the actual visual information.

That is the reason why the hand-crafted video features presented in [96], which meaning-

fully describe the flow of the visual information, where chosen. Particularly, every 0.2 sec,

these 88 features of visual information are being extracted from the corresponding frame:

• Color-related features (45 features):

– 8-bin histogram of the red values

– 8-bin histogram of the green values

– 8-bin histogram of the blue values

– 8-bin histogram of the grayscale values

– 5-bin histogram of the max-by-mean-ratio for each RGB triplet

– 8-bin histogram of the saturation values

• Average absolute difference between two successive frames in grey scale (1 feature)

• Facial features (2 features): The Viola-Jones [97] OpenCV implementation is used to

detect frontal faces and the following features are extracted per frame:

– number of faces detected
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– average ratio of the faces’ bounding boxes areas divided by the total area of the

frame

• Optical-flow related features (3 features): The optical flow is estimated using the Lucas-

Kanade method [92] and the following 3 features are extracted:

– average magnitude of the flow vectors

– standard deviation of the angles of the flow vectors

– a hand-crafted feature that measures the possibility that there is a camera tilt

movement – this is achieved by measuring a ratio of the magnitude of the flow

vectors by the deviation of the angles of the flow vectors.

• Current shot duration (1 feature): a basic shot detection method is implemented in this

library. The length of the shot (in seconds) in which each frame belongs to, is used as

a feature.

• Object-related features (36 features): We use the Single Shot Multibox Dete-

ctor [98] method for detecting 12 categories of objects. For each frame, as soon as the

object(s) of each category are detected, three statistics are extracted: number of objects

detected, average detection confidence and average ratio of the objects’ area to the area

of the frame. So in total, 3x12=36 object-related features are extracted. The 12 object

categories we detect are the following: person, vehicle, outdoor, animal, accessory,

sports, kitchen, food, furniture, electronic, appliance and indoor [96].

For the feature extraction procedure described above, the multimodal_movie_analysis

library3 was used. Therefore, features representing visual characteristics are obtained.

The aforementioned features allow for a variety of representation levels, including low

(simple color aggregates), mid (optical flows) and high (presence of objects and faces) ones.

Our goal is to describe a broad range of flow information that may be associated with camera

movements, which is why we chose such a diverse set of attributes.

3.3.2 Feature selection for static and sequential methods

In order to approach the problem from two different perspectives, which will be discussed

in Section 3.3.3, we create two different types of features:
3https://github.com/tyiannak/multimodal_movie_analysis

https://github.com/tyiannak/multimodal_movie_analysis
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• Static features

The following video-level statistics are calculated for each frame sequence:

– six (6) video-level statistics of the 52 non-object features. In particular, mean,

standard deviation (std), median by std ratio, top-10 percentile, mean of the delta

features and std of the delta features.

– for the object detection, the frame-level predictions are post processed under lo-

cal time windows with two different ways: (i) the object frame-level confidences

are smoothed across time windows in terms of increasing the accuracy of the

predictions and (ii) every object that is not present to at least a minimum num-

ber (threshold) of subsequent frames, is excluded from the final feature vector.

However, this smoothing procedure is the only post-processing performed on the

object-related features: no other statistics are extracted for the whole video, other

than the object features’ simple averages.

This process therefore results to (52 ∗ 6)+ 36 = 348 feature statistics that describe the

whole video in a static feature vector.

• Sequential features

A post processing procedure is applied on the feature sequence in order to smooth the

representation across successive frames. Median-filtering with kernel size of 4 (i.e.,

0.8 seconds) was chosen. The processed sequence can be used in a temporal modeling.

3.3.3 Baseline classification

In this section we propose two distinct classification methods that can give an intuition

about the separability of the introduced classes. These methods will serve in order to report

baseline classification metrics and understand the latent correlations across classes.

Static method

The first method is based on the static video representation described in Section 3.3.1. It

adopts an SVM algorithmwith the appropriate data normalization and parameter tuning. This

approach aims on finding significant correlations between statistical frame representations
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and the target shot styles. Such methods can learn to separate continuous camera movements

from static shots, but may under-perform in cases of abrupt shot style changes.

Sequential method

This method is aimed to predict the shot style from the temporal feature sequence. In such

a case, it would be easier to model different kinds of camera movements since the approach

is expected to capture the temporal frame dependencies.

An LSTM architecture was chosen, since it is a well established Recurrent Neural Net-

work that can capture long-term temporal information [99]. Batch-normalization [71] and

linear layers where used along with ReLU activation functions in order to perform the clas-

sification task. Temporal standard scaling was applied to the input sequence, that is each

instance of a feature along the sequence were standarized using the same statistical values

(mean value and standard deviation).
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Experiments

In this section, experimental results are presented for both static and sequential methods.

4.1 Classification tasks

By combining different shot categories, four classification tasks, one binary and three

multi-label, are defined.

4.1.1 Binary classification task

The binary task includes the static and non-static classes. The former consists of shots

that have been annotated as static, while the latter contains all the classes from the original

dataset that are associated with any type of camera movement. That is the corresponding

sub-classes are Panoramic Lateral, Vertical Movement, Handheld, Zoom-in, Travelling-

in, Panoramic, Aerial, Travelling-out, Tilt. The static class, along with the classes that

represent the non-static class, are those that have been presented in Section 3.2.2.

4.1.2 Multi-Label classification tasks

As it will be described in the results section below, predicting the type of camera move-

ment is not a trivial task. At the same time, as explained in the introduction (in Chapter 1),

it is a task that can be mostly used as an automated attribute movie extractor, that is used in

the context of a more complex system (such as movie recommendation). Therefore, it is not a

task that can form a standalone application or product. Given that, it makes sense to analyze

35
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the movie in various levels of detail with regards to its camera movement styles. In this the-

sis, apart from the initial 10-class classification task, we have defined two more classification

tasks, by merging classes of similar camera movement (e.g., all vertical movements).

So in total, we define three multi-label classification tasks in which the static class is the

original annotated class, while the others are merges from other class combinations.

• 3-class The corresponding classes are Zoom, Static and Vertical & Horizontal Move-

ments. The Zoom class consists of the Zoom-in, Travelling-in and Travelling-out sub-

classes, which all contain shots in which the perimeter image changes at very fast in-

tervals, while the centre image remains static or changes at a slower rate. The Vertical

& Horizontal Movements class consists of the Vertical Movement, Tilt, Panoramic

and Panoramic Lateral sub-classes from the original dataset, where the position of the

camera is moving either in a vertical or in a horizontal way.

• 4-class In this task, the Static and Zoom classes of the 3-class problem were kept,

while the Vertical & Horizontal Movements class was separated into 2 sub-classes;

Tilt, which includes all vertical movements and consists of the Vertical Movement and

Tilt original classes, and Panoramic that contains shots with lateral movements and

consists of the Panoramic and Panoramic Lateral original classes.

• 10-class This task includes all provided class from the original dataset, namely: Static,

Panoramic, Zoom-in, Travelling-out, Vertical Move-

ment, Aerial, Travelling-in, Tilt, Handheld and Panoramic Lateral.

4.2 Experimental procedure

With regard to the static method mentioned in section 3.3.3, an SVM classifier with

rbf kernel was initialized. After the data has been scaled using a zero-mean normalization,

parameter tuning was performed over the ‘C’ parameter using GridSearchCV().

Concerning the sequential method mentioned in section 3.3.3, we initially performed a

sequential zero-mean normalization. That is, by treating each frame as a different instance, the

mean and standard deviation of all features across all frames of the training set of the dataset

was calculated and then used to normalize each frame of the dataset, resulting in normalized
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feature sequences. The most crucial part of the task was choosing the hyperparameters of the

model, so that the best macro-averaged f1_score is achieved. The ‘LSTM’ architecture was

tuned for each of the four tasks in order to achieve the optimal dropout, weight decay, learning

rate and LSTM’s hidden dimension. For the binary task, the binary cross entropy loss was

used, while for the rest, cross entropy was adopted. Adam was chosen to be the optimizer

with the integration of a reduce-on-plateau learning rate scheduler, while the best model was

chosen using early stopping.

In order to evaluate the classifiers a cross validation procedure of totally 10 iterations

was performed. For each iteration, the shots of the dataset were randomly split in a stratified

manner (i.e., keep the initial class distribution) into 20% test set for testing, 9.6% validation

set for parameter tuning and 70.4% train set for training.

4.3 Results

The use of the macro-averaged F1-score (or macro-F1 score) to assess classification per-

formance in both binary and multi-label categorization is common. Each class will be given

the same weight when using the f1macro, since all classes contribute equally, regardless of

how frequently they appear in the dataset. In this thesis, we to obtain valuable insight about

the performance of our models using f1macro. The outcomes of the experiments will be ex-

amined, both per classification task and at an overall level, so they can be discussed as binary

and multi-label classification tasks separately as well.

4.3.1 Binary task

The resulted evaluation metrics for the binary task are listed in Table 4.1, while the

corresponding, aggregated from all iterations, confusion matrices are presented in Figure 4.1.

Classification Metrics Static Sequential

f1macro 73.9% 79%

accuracy 74.5% 79.4%

Table 4.1: Classification metrics for the binary task for both Static and Sequential methods
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As can be clearly seen from the results above, the sequential method completely outper-

forms the static one in terms of the binary task, by scoring a 7% relatively higher score.

That is an expected result since the basic distinction of the static and non-static classes is the

camera movement, which is easier to capture by a sequential method.
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Figure 4.1: Confusion matrices based on aggregated predictions for the binary task

4.3.2 3-class task

With regard to the 3-class classification task, the resulted evaluation metrics are listed

in Table 4.2, while the confusion matrices for this task are presented in Figure 4.2.

Classification Metrics Static Sequential

f1macro 50.6% 53%

accuracy 72.6% 66.6%

Table 4.2: Classification metrics for the 3-class classification task for both Static and Sequen-

tial methods

As we can see from the metrics above, the sequential method achieves a higher by 4.7%

performance compared to the static method (based on the macro-F1 score). The accuracy of

the static method seems to be greater than the accuracy of the sequential method. However,

as it is clearly depicted in the Figure 4.2 below, the Sequential method provides a reliable
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Classification Metrics Class Static Sequential

Precision

Zoom 25% 18%

Static 78% 84%

Vertical and Horizontal Movements 62% 57%

Recall

Zoom 10% 30%

Static 91% 76%

Vertical and Horizontal Movements 53% 57%

Table 4.3: Precision and Recall per class for both Static and Sequential methods for the 3-

class task

prediction of the non-neutral classes (Zoom, VH_movements1) in comparison with the static

method.Macro-averaged f1-score of the non-neutral classes (ie. excluding static class), which

is calculated on the aggregated predictions across all 10 cross-validated iterations, is 35.7%

for the Static and 39.8% for the Sequential method. Precision and Recall per class are pre-

sented in Table 4.3.
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Figure 4.2: Confusion matrices based on aggregated predictions for the 3-class classification

task

1VH_movements class represents “Vertical And Horizontal Movements” class
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4.3.3 4-class task

In terms of the 4-class classification task, the evaluation metrics obtained are shown in

Table 4.4, while the confusion matrices for this task are presented in Figure 4.3.

Classification Metrics Static Sequential

f1macro 39.5% 40%

accuracy 69.9% 58.2%

Table 4.4: Classification metrics for the 4-class classification task for both Static and Sequen-

tial methods

Classification Metrics Class Static Sequential

Precision

Tilt 24% 13%

Panoramic 52% 44%

Static 77% 85%

Zoom 25% 18%

Recall

Tilt 8% 27%

Panoramic 40% 43%

Static 92% 69%

Zoom 13% 30%

Table 4.5: Precision and Recall per class for both Static and Sequential methods for the 4-

class task

From the Table above, we can see that the sequential method performs slightly better by

1.3% than the static one (based on the macro-F1 score). The accuracy of the static method

is again greater than the accuracy of the sequential method. Nevertheless, as illustrated in

the confusion matrix of Figure 4.3, we observe that the Sequential method predicts the non-

neutral classes (Tilt, Panoramic Zoom) significantly better than the static method. Macro-

averaged f1-score of the non-neutral classes, for all 10 cross-validated iterations, is 24.8%

for the Static and 27.8% for the Sequential method. Precision and Recall per class are pre-

sented in Table 4.5.
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Figure 4.3: Confusion matrices based on aggregated predictions for the 4-class classification

task

4.3.4 10-class task

The evaluation metrics for the 10-class classification task are reported in Table 4.6,

while the confusion matrices for this task are illustrated in Figure 4.4.

Classification Metrics Static Sequential

f1macro 15.7% 15.4%

accuracy 58.6% 32.7%

Table 4.6: Classification metrics for the 10-class classification task for both Static and Se-

quential methods

For this 10-class task, the static method performs 1.9% better than the sequential method,

as demonstrated in the table above. Despite this, comparing the confusion matrices in Figure

4.4, it is apparent that while the Sequential method does not predict as many instances for

the dominant class as the Static method does, it does identify instances for all the non-neutral

classes, where the static method fails to predict even one instance correctly. Precision and



42 Chapter 4. Experiments

Classification Metrics Class Static Sequential

Precision

Static 68% 77%

Panoramic 31% 25%

Zoom in 0% 4%

Travelling out 21% 5%

Vertical movements 0% 2%

Aerial 6% 11%

Travelling in 5% 3%

Tilt 0% 3%

Handheld 39% 27%

Panoramic lateral 0% 7%

Recall

Static 92% 45%

Panoramic 24% 20%

Zoom in 0% 10%

Travelling out 5% 13%

Vertical movements 0% 2%

Aerial 3% 51%

Travelling in 1% 7%

Tilt 0% 6%

Handheld 37% 20%

Panoramic lateral 0% 21%

Table 4.7: Precision and Recall per class for both Static and Sequential methods for the 10-

class task
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Recall per class are presented in Table 4.7.
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Figure 4.4: Confusionmatrices based on aggregated predictions for the 10-class classification

task

4.4 Commentary

In terms of the binary task, the sequential method completely beats the static method,

as mentioned above. This is to be expected, given that the primary difference between the

static and non-static classes is camera movement of the lens, which is easier to capture using

a sequential method.

It is observed, though, that the more the classes are in the tasks, the less the difference

between the two methods is. That is mostly due to the fact that some of the 10 classes are

underrepresented and thus a deep learning architecture is harder to learn from that amount of

data compared to a traditional machine learning algorithm. As far as it concerns the multi-

label task, where the neutral class (static class) is dominant in terms of number of instances,

the macro-averaged f1 metric cannot properly represent the performance of the methods. By

examining the confusionmatrices, it can be clearly seen that the sequential method achieves to

adequately predict the non-neutral classes.More specifically, as illustrated in Table 4.8, which

includes the macro-averaged f1 metrics based only on the non-neutral classes (ie. excluding

the static class), the sequential method is 11.5% and 12.1% relatively better for the 3 and
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Classification task Static Sequential

3-class 35.7% 39.8%

4-class 24.8% 27.8%

Table 4.8: Macro-averaged f1 of the non-neutral classes (ie. excluding static class) calculated

on the aggregated predictions across all 10 cross-validated iterations

4-class problem respectively. Thus it can be inferred that including temporal information in

the classifier leads to better distinction across camera movements.

The SVC() algorithm outperformed other classic Machine Learning classifiers in the

static approach, which is why we maintained its results, to compare them to the LSTM for

the sequential technique.

It needs to be noted that the selection of the features used in our method was not ran-

dom. More specifically, our pipeline was evaluated by training and testing the LSTM on

feature sequences extracted from the first linear layer of the pre-trained VGG16 network.

The results showed that when the LSTM is trained on our features (produced by the multi-

modal_movie_analysis library), it performs 21.5%, 23.6%, 24% and 7.7% better for the 2,

3, 4 and 10-class tasks respectively, compared to the model trained on the V GG16 features.

This outcome is reasonable since while the VGG features contain better image-related infor-

mation, our features achieve to better model the camera movement, an attribute that is crucial

for shot type classification.
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Conclusion & Future Challenges

In this Thesis we explore a very interesting task, that of movie analysis, based on the

visual part of a movie shot. As a result of completing the literature review, for this purpose,

a new publicly available 1 dataset for film shot classification with annotations in the camera

movement styles was presented. This data collection fills the gap in the literature of cine-

matographic style analysis, since the existing datasets are either private or are not concerned

about camera movements in an extensive manner. Additionally, we experimented with two

types of model architectures, where two different methods were used as baseline evaluation;

one static and a sequential one, showing that camera movement classification is better per-

formed when modeling sequential information. More particular, we observed that the LSTM

algorithm outperforms the SVM algorithm in the binary task, whereas in multi-label tasks,

the difference between the two techniques appears to be less significant in terms of metrics.

Yet, the LSTM succeeds in recognizing non-common classes to a greater extent. This arises

because some of the classes are unbalanced, making it more difficult for a deep learning ar-

chitecture to be trained with such a small volume of data, compared to a typical machine

learning method.

It would be interesting to train the suggested approach on a robust training dataset fea-

turing a large selection of films from many genres, annotated by a larger number of individ-

uals. Models trained on this dataset could be used in a future work in order to create artistic

profiles of either directors or movies that can describe in an informative way the correspond-

ing movie. Moving a step forward, this research can provide a new way of representing the

movies in recommender systems, so that the extracted recommendations are content-driven

1https://github.com/magcil/movie_shot_classification_dataset
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and, in particular, driven by the actual underlying visual aesthetics of the movies. One of the

most difficult aspects of multimodal data is combining information from various modalities

in such a way that complementary information is combined.

Several of the methodologies followed in the studies [100] [33] could be exploited to ex-

pand the scope of the project, for multimodal representation.We could also study [101] which

presents a model trained from raw pixels of videos and [28] for automatic genre classification,

where visual features are extracted from trailers.
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Appendix

Code

Thewhole code for this study can be found in the github repositoryhttps://github.

com/tyiannak/multimodal_movie_analysis, specifically in the ‘main’ branch

and in the branches: pipeline, LSTM_binary, multi-class, VGG16_LSTM. Indicatively, the

basic LSTM architecture for the binary task is implemented as follows:

c l a s s LSTMModel ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , i n p u t _ s i z e , h i d d en_ s i z e , num_layers ,

o u t p u t _ s i z e , d r opou t _p rob ) :

super ( LSTMModel , s e l f ) . _ _ i n i t _ _ ( )

s e l f . h i d d e n _ s i z e = h i d d e n _ s i z e

s e l f . num_laye r s = num_laye r s

s e l f . l s tm = nn .LSTM( i n p u t _ s i z e , h i d d en_ s i z e , num_layers ,

b a t c h _ f i r s t =True )

s e l f . d rop = nn . Dropout ( p= d ropou t _p rob )

s e l f . f c = nn . L i n e a r ( h i d d en_ s i z e , o u t p u t _ s i z e )

s e l f . fnn = nn . S e q u e n t i a l ( O rde r edD i c t ( [

( ’ r e l u 1 ’ , nn . ReLU ( ) ) ,

( ’ bn1 ’ , nn . BatchNorm1d ( s e l f . h i d d e n _ s i z e ) ) ,

( ’ f c1 ’ , nn . L i n e a r ( s e l f . h i d d en_ s i z e , o u t p u t _ s i z e ) ) ] ) )
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def f o rwa rd ( s e l f , X, l e n g t h s ) :

packed_ou tpu t , _ = s e l f . l s tm (X)

ou tpu t , _ = unpack ( packed_ou tpu t , b a t c h _ f i r s t =True )

l a s t _ s t a t e s = s e l f . l a s t _ b y _ i n d e x ( ou tpu t , l e n g t h s )

l a s t _ s t a t e s = s e l f . d rop ( l a s t _ s t a t e s )

o u t p u t = s e l f . fnn ( l a s t _ s t a t e s )

re turn ou t p u t

@s t a t i cme thod

def l a s t _ b y _ i n d e x ( ou t pu t s , l e n g t h s ) :

# Index o f t h e l a s t o u t p u t f o r each sequence .

i dx = ( l e n g t h s − 1 ) . view ( −1 , 1 ) . expand ( o u t p u t s . s i z e ( 0 ) ,

o u t p u t s . s i z e ( 2 ) ) . unsqueeze ( 1 )

re turn o u t p u t s . g a t h e r ( 1 , i dx . type ( t o r c h . i n t 6 4 ) ) . s queeze ( )


	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Background
	Artificial Intelligence
	Introduction to Machine Learning
	Types of Machine Learning
	Supervised Model performance assessment
	Fundamental Machine Learning Algorithms

	Deep Learning
	Artificial Neural Networks
	Architecture of Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Hyperparameter Tuning
	Cross-Validation process

	Methodology
	Related Work
	Dataset compilation
	Video shot generation
	Video shot taxonomy
	Annotation process and agreement

	Experimental set-up
	Feature extraction
	Feature selection for static and sequential methods
	Baseline classification


	Experiments
	Classification tasks
	Binary classification task
	Multi-Label classification tasks

	Experimental procedure
	Results
	Binary task
	3-class task
	4-class task
	10-class task

	Commentary

	Conclusion & Future Challenges
	Bibliography
	Code 

