
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Design and Development of Artificial Intelligence methods

for efficient real­time scheduling of wireless clients in 5G

and beyond networks

Diploma Thesis

Ilias Chatzistefanidis

Supervisor: Athanasios Korakis

Volos 2020

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Design and Development of Artificial Intelligence methods

for efficient real­time scheduling of wireless clients in 5G

and beyond networks

Diploma Thesis

Ilias Chatzistefanidis

Supervisor: Athanasios Korakis

Volos 2020

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Σχεδιασμός και Υλοποίηση αλγορίθμων τεχνητής

νοημοσύνης για την χρονοδρομολόγηση σε πραγματικό

χρόνο ασύρματων πελατών δικτύων 5ης και πέραν της 5ης

γενιάς

Διπλωματική Εργασία

Ηλίας Χατζηστεφανίδης

Επιβλέπων/πουσα: Αθανάσιος Κοράκης

Βόλος 2020

v

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Antonios Argyriou

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Dimitrios Bargiotas

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Date of approval: 20­9­2020

vii

Acknowledgements

Many people helped and supported me through my undergraduate journey to fulfill my

studies. I would like to express my deepest gratitude to a group of people that undoubtedly

contributed and assisted in my degree completion. It is certain that I could not achieve it

without them.

First, I would like to sincerely thank my supervisor, Associate Professor Thanasis Ko­

rakis, who supported me and gave me the opportunity to join and learn from such an inspir­

ing research team in NITlab. Moreover, I could not forget mentioning the senior researcher

and postdoctoral Nikos Makris, that guided me carefully through the telecommunication re­

search world. I would like to underline that his help was one of the most valuable things for

completing my studies. With his immense support, I learned so many things and got involved

in numerous state­of­the­art projects. Finally, I would like to deeply thank the emeritus pro­

fessor Elias N. Houstis that introduced me to the world of machine learning and artificial

intelligence and provided me his support with his knowledge and resources.

Additionally, I want to express my gratitude to my friends and the people that were always

on my side supporting me on this journey. Every single one knows that certainly has a special

place in my heart.

Last but not least, I have no words to express my gratitude and love to my family. By

taking a step backward and looking back in time through the past generations, it is undeniable

that I would not even come close to where I am today without their love, support, and faith.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Ilias Chatzistefanidis

15­9­2020

x

Abstract

Towards enabling innovative and enormous scale applications such as 4K video stream­

ing, Augmented Reality (AR), Virtual Reality (VR), eHealth, Holographic Telepresence, and

many more, the urgent need for more powerful telecommunication network architectures

is vital. Specifically, the user’s data demand is growing more and more daily, leading to

the research of more robust cellular network designs beyond 5G. Several approaches for the

next generation systems propose integrating machine learning and artificial intelligence tech­

niques through the whole network stack as a critical step towards creating self­organized net­

works adaptive to the fluctuations and the network conditions at every time. In this work, we

design, develop, and evaluate an AI­Driven framework for real­time scheduling of wireless

clients between heterogeneous technologies, such as WiFi, 5G, LTE, on a 5G disaggregated

RAN architecture.

Building this framework requires two steps­milestones. First, we develop and evaluate

a scheduling scheme for the different technologies on a disaggregated architecture based on

LTE RAN slicing. Then, we extend this work by incorporating an ML & AI unit to moni­

tor and predict the LTE channel’s quality and make scheduling decisions for the technology

to use. This way, it ensures enhanced network performance and optimized user Quality of

Service (QoS) and Quality of Experience (QoE). To validate and evaluate our work in a real

environment, we utilize the NITOS Testbed in Volos, Greece. Precisely, we implement a com­

plete 5G disaggregated architecture utilizing the OpenAirInterface and FlexRAN platforms

for the network infrastructure and commercial LTE USB Dongles for the User Equipment

(UE). Moreover, we emulate a realistic car route inside the testbed using software­defined

radios (SDR) and programmable attenuators. This way, we reproduce LTE channel quality

fluctuation data collected from real commercial networks in Volos city. Finally, we compare

the experimental results of the network performance when employing the ML & AI unit and

when using the default network configuration to determine the efficiency of our framework.

xi

Περίληψη

Για την υλοποίηση καινοτόμων εφαρμογών τεράστιας κλίμακας, όπως η ροή βίντεο 4K,

η Επαυξημένη Πραγματικότητα (AR), η Εικονική Πραγματικότητα (VR), η ηλεκτρονική

υγεία, η ολογραφική τηλεπαρουσία και πολλά άλλα, η επείγουσα ανάγκη για ισχυρότερες αρ­

χιτεκτονικές τηλεπικοινωνιακών δικτύων είναι ζωτικής σημασίας. Συγκεκριμένα, η ζήτηση

δεδομένων των χρηστών αυξάνεται καθημερινά όλο και περισσότερο, γεγονός που οδηγεί

στην έρευνα για πιο ισχυρά σχέδια κυψελοειδών δικτύων πέραν του 5G. Αρκετές προσεγ­

γίσεις για τα συστήματα επόμενης γενιάς προτείνουν την ενσωμάτωση τεχνικών μηχανικής

μάθησης και τεχνητής νοημοσύνης σε ολόκληρη τη στοίβα του δικτύου ως ένα κρίσιμο βήμα

προς τη δημιουργία αυτοοργανωμένων δικτύων που προσαρμόζονται στις διακυμάνσεις και

τις συνθήκες του δικτύου ανά πάσα στιγμή. Στην παρούσα εργασία, σχεδιάζουμε, αναπτύσ­

σουμε και αξιολογούμε ένα πλαίσιο βασισμένο στην τεχνητή νοημοσύνη για τον προγραμ­

ματισμό σε πραγματικό χρόνο των ασύρματων πελατών μεταξύ ετερογενών τεχνολογιών,

όπως WiFi, 5G, LTE, σε μία 5G διαχωρισμένη αρχιτεκτονική RAN.

Η δημιουργία αυτού του πλαισίου απαιτεί δύο βήματα­ορόσημα. Πρώτον, αναπτύσσουμε

και αξιολογούμε ένα σχήμα χρονοπρογραμματισμού για τις διαφορετικές τεχνολογίες σε μια

διαχωρισμένη αρχιτεκτονική που βασίζεται στο LTE RAN slicing. Στη συνέχεια, επεκτεί­

νουμε αυτή την εργασία με την ενσωμάτωση μιας μονάδαςML&AI για την παρακολούθηση

και πρόβλεψη της ποιότητας του καναλιού LTE και τη λήψη αποφάσεων χρονοπρογραμ­

ματισμού για την τεχνολογία που θα χρησιμοποιηθεί. Με αυτόν τον τρόπο, εξασφαλίζεται

ενισχυμένη απόδοση δικτύου και βελτιστοποιημένη ποιότητα υπηρεσίας (QoS) και ποιό­

τητα εμπειρίας (QoE) των χρηστών. Για να επικυρώσουμε και να αξιολογήσουμε την εργα­

σία μας σε πραγματικό περιβάλλον, χρησιμοποιούμε το NITOS Testbed στο Βόλο, Ελλάδα.

Συγκεκριμένα, υλοποιούμε μια πλήρη διαχωρισμένη αρχιτεκτονική 5G χρησιμοποιώντας τις

πλατφόρμες OpeanAirInterface και FlexRAN για την υποδομή δικτύου και εμπορικά LTE

USB Dongles για τον εξοπλισμό χρήστη (UE). Επιπλέον, προσομοιώνουμε μια ρεαλιστική

xiii

xiv Περίληψη

διαδρομή αυτοκινήτου μέσα στο δοκιμαστικό περιβάλλον με τη χρήση ραδιοσυχνοτήτων

καθορισμένων από λογισμικό (SDR) και προγραμματιζόμενων εξασθενητών. Με αυτόν τον

τρόπο, αναπαράγουμε τα δεδομένα διακύμανσης της ποιότητας του καναλιού LTE που συλ­

λέγονται από πραγματικά εμπορικά δίκτυα στην πόλη του Βόλου. Τέλος, συγκρίνουμε τα

πειραματικά αποτελέσματα της απόδοσης του δικτύου όταν χρησιμοποιούμε τη μονάδα ML

& AI και όταν χρησιμοποιούμε την προεπιλεγμένη διαμόρφωση του δικτύου για να προσ­

διορίσουμε την αποτελεσματικότητα του πλαισίου μας.

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxiii

Abbreviations xxv

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.1.1 Contribution . 2

1.2 Thesis Synopsis . 2

2 Background 5

2.1 Introduction to Mobile Telecommunication Systems 5

2.2 4G Mobile Networks . 6

2.2.1 Introduction . 6

2.2.2 Key Technologies . 6

2.2.3 LTE Architecture . 8

2.2.4 LTE Protocol Stack . 10

2.3 5G Mobile Networks . 13

2.3.1 Introduction . 13

xv

xvi Table of contents

2.3.2 Key Technologies . 14

2.3.3 Functional Split Architecture . 16

2.4 Future Networks Beyond 5G . 18

2.4.1 Introduction . 18

2.4.2 Application of ML/AI in 6G Networks 19

2.5 AI & Machine Learning . 20

2.5.1 Introduction . 20

2.5.2 Supervised Learning . 21

2.5.3 Machine Learning Steps . 22

2.6 Experimental Tools and Methods . 23

2.6.1 NITOS Testbed . 24

2.6.2 The OpenAirInterface Platform 26

2.6.3 The FlexRAN Platform . 26

3 Framework for Scheduling among Heterogeneous DUs 29

3.1 Introduction . 29

3.2 Framework . 30

3.2.1 Initial Topology . 30

3.2.2 Proposed Approach . 30

3.3 Experiments . 32

3.3.1 Experimental Setup . 32

3.3.2 Experimental Scenario . 33

3.3.3 Experimental Results . 33

4 AI­Driven Real­time Scheduling between Heterogeneous DUs 35

4.1 Introduction . 35

4.2 System Architecture . 36

4.3 Data . 37

4.3.1 Attenuation Data . 37

4.3.2 Designing Basic Attenuation Scenario 38

4.3.3 Attenuation Data Augmentation 39

4.3.4 CQI Data Collection . 40

4.3.5 CQI Data Pre­processing . 42

Table of contents xvii

4.4 Searching and Evaluation of ML & AI Algorithms 43

4.4.1 Linear Regression . 44

4.4.2 Ridge Regression . 45

4.4.3 Lasso Regression . 47

4.4.4 Elastic Net Regression . 48

4.4.5 Polynomial Regression . 50

4.4.6 ARIMA . 51

4.4.7 Support Vector Regression . 53

4.4.8 k­Nearest Neighbors . 55

4.4.9 Decision Tree . 56

4.4.10 Random Forest . 58

4.4.11 Bagging Scikit­learn . 59

4.4.12 XGBoost . 60

4.4.13 LightGBM . 61

4.4.14 GBM Scikit­learn . 62

4.4.15 CatBoost . 62

4.4.16 AdaBoost . 63

4.4.17 Feedforward Neural Network . 64

4.4.18 Long short­term memory (LSTM) 66

4.4.19 Bidirectional LSTM . 67

4.4.20 Gated Recurrent Unit (GRU) . 68

4.4.21 Convolutional Neural Network (CNN) 68

4.4.22 CNN­LSTM Neural Network . 69

4.4.23 Models Comparison . 70

4.5 Experiments . 72

4.5.1 Experimental Setup . 72

4.5.2 Experimental Scenario . 73

4.5.3 Experimental Results . 74

5 Conclusion 77

5.1 Summary and Conclusions . 77

Bibliography 79

List of figures

2.1 LTE High­level Architecture . 8

2.2 High­level Protocol Architecture . 10

2.3 Protocols used on the air interface and by the fixed network. 11

2.4 C­plane Protocol Stack . 12

2.5 U­plane Protocol Stack . 12

2.6 C­RAN Architecture: BBU­pool and RRHs 17

2.7 Functional Splits in LTE Protocol Stack proposed by 3GPP. 18

2.8 CU/DU architecture for the PDCP/RLC split 18

2.9 Machine Learning Applications in 6G Networks 19

2.10 Artificial Intelligence Domains . 21

2.11 Machine Learning Pipeline from data collection to prediction 22

2.12 Overall NITOS Architecture . 24

2.13 Indoor RF Isolated Testbed . 25

2.14 Outdoor Testbed . 25

2.15 Office Testbed . 25

3.1 Heterogeneous andDisaggregatedRANArchitecture incorporating FlexRAN

. 30

3.2 A Downlink FlexRAN Slice Example . 31

3.3 The Message Format with the Slicing Values to be sent via F1 Interface. . . 31

3.4 Proposed Approach for Scheduling between WiFi and LTE DUs 31

3.5 PDCP Scheduling Technique for LTE and WiFi DUs 32

3.6 Experimental Setup with NITOS Testbed. 32

3.7 UE’s LTE Interface . 34

3.8 UE’s WiFi Interface . 34

xix

xx List of figures

3.9 LTE/WiFi Bandwidth Monitoring with FlexRAN Slice Reconfiguration . . 34

4.1 Overall System Architecture incorporating Real­time Scheduling with the

ML & AI Unit . 36

4.2 Attenuation Data Available from Real Commercial Networks 37

4.3 Basic Attenuation Data Scenario including car turn­around and red traffic light. 39

4.4 Attenuation Data Augmentation: Simulating the continuous monitoring of a

specific city pathway. Every augmented scenario corresponds to a car that

traverses the pathway with a unique driving style. 40

4.5 Nitos Testbed Data Collection Architecture 41

4.6 Collected CQI data. 41

4.7 CQIData Pre­processing: Sequence Flattening&SlidingWindowTechniques

. 42

4.8 Time Series Cross­Validation Technique: Every square represents one Fold.

This figure shows five iterations where we increase the training set by one

Fold and use the following one for validation. In the end, we obtain the mean

of all validation errors. 43

4.9 Linear Regression Generalization Evaluation 45

4.10 Time Series Cross­Validation Evaluation of Linear Regression Model. . . . 45

4.11 Ridge Regression Grid­Searching of Hyperparameter alpha. 46

4.12 Ridge Regression Generalization Evaluation with alpha = 3 46

4.13 Lasso Regression Grid­Searching of Hyperparameter alpha. 47

4.14 Lasso Regression Generalization Evaluation with alpha = 0.1 48

4.15 Elastic Net Regression Grid­Searching of Hyperparameters alpha and l1_ratio. 49

4.16 Elastic Net RegressionGeneralization Evaluationwith alpha= 0.01 and l1_ratio

= 0.01 . 49

4.17 Polynomial Regression Generalization Evaluation with 2nd­order Degree . 50

4.18 Polynomial Regression Model Grid­Searching of Hyperparameter degree . 50

4.19 ARIMA Hyperparameter Grid­Searching. 52

4.20 Seasonal ARIMA Hyperparameter Grid­Searching. 52

4.21 ARIMA (p=2, d=1, q=2) Generalization Evaluation. 52

4.22 One­Dimensional Linear Support Vector Regression 53

4.23 SVR Generalization Evaluation with C = 10 54

List of figures xxi

4.24 SVR Model Grid­Searching of Regularization Hyperparameter C 54

4.25 k­NN Generalization Evaluation with k = 23 56

4.26 k­NN Model Grid­Searching of Regularization Hyperparameter k 56

4.27 Decision Tree Model Grid­Searching . 57

4.28 Decision Tree Generalization Evaluation with max_features = 10 and

min_samples_leaf = 1 . 57

4.29 Random Forest Generalization Evaluation with n_estimators = 200 . . . 58

4.30 Random Forest Model Grid­Searching . 58

4.31 Scikit­learn Bagging Generalization Evaluation with n_estimators = 200 . 59

4.32 Scikit­learn Bagging Model Grid­Searching 59

4.33 XGBoost Generalization Evaluation with n_estimators = 10000 60

4.34 XGBoost Model Grid­Searching . 60

4.35 LightGBM Generalization Evaluation with n_estimators = 1000 61

4.36 LightGBM Model Grid­Searching . 61

4.37 Scikit learn GBM Generalization Evaluation with n_estimators = 1000 . . 62

4.38 Scikit learn GBM Model Grid­Searching 62

4.39 CatBoost Generalization Evaluation with n_estimators = 10000 63

4.40 CatBoost Model Grid­Searching . 63

4.41 AdaBoost Generalization Evaluation with n_estimators = 10 64

4.42 AdaBoost Model Grid­Searching . 64

4.43 Feedforward Neural Network Structure 64

4.44 Feedforward NN Generalization Evaluation 65

4.45 LSTM Generalization Evaluation . 66

4.46 Bidirectional LSTM Generalization Evaluation 67

4.47 GRU Generalization Evaluation . 68

4.48 CNN Generalization Evaluation . 69

4.49 CNN­LSTM Generalization Evaluation 70

4.50 Overall Comparison between the various ML & AI Model based on the Gen­

eralization MAE from the non­augmented data. 71

4.51 Overall Comparison between the various ML&AIModel based on the train­

ing time on the augmented data. 72

4.52 Experimental Topology utilizing six machines on NITOS Testbed 73

xxii List of figures

4.53 UE Experienced Bandwidth, Jitter and Packet Loss without and with the in­

corporation of the ML & AI Unit . 75

List of tables

2.1 Minimum 5G technical performance requirements (ITU­R) 15

4.1 Feedforward NN Configuration . 65

4.2 LSTM Configuration . 66

4.3 Bidirectional LSTM Configuration . 67

4.4 GRU Configuration . 68

4.5 CNN Configuration . 69

4.6 CNN­LSTM Configuration . 70

xxiii

Abbreviations

1G, ..., 6G 1st Generation, ..., 6th Generation

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

ANN Artificial Neural Network

APN Access Point Name

ARIMA Autoregressive Integrated Moving Average

ARQ Automatic Repeat Request

Bagging Bootstrap Aggregation

BBU Baseband Unit

BLER Block Error Rate

CBC Cell Broadcast Centre

CDMA Code Division Multiple Access

CNN Convolutional Neural Network

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

CU Central Unit

DU Distributed Unit

EC Edge Computing

EI Edge Intelligence

EIR Equipment Identity Registry

eMBB Enhanced Mobile Broadband

eNB evolved Nodes B

E­UTRAN Evolved UMTS Terrestrial Radio Access Network

EPC Evolved Packet Core

EPS Evolved Packet System

xxv

xxvi List of tables

ETWS Earthquake and Tsunami Warning System

FDMA Frequency Division Multiple Access

FNN Feedforward Neural Network

GBM Gradient Boosting Machine

GTP­U GPRS tunneling protocol user part

GRU Gated Recurrent Unit

HARQ Hybrid Automatic Repeat Request

HSS Home Subscriber Server

IP Internet Protocol

ISI Intersymbol Interference

LSTM Long Short­Term Memory

LTE Long­Term Evolution

MAC Medium Access Control

MAE Mean Absolute Error

MIMO Multiple­Input and Multiple­Output

ML Machine Learning

MME Mobility Management Entity

mMTC Massive Machine­Type Communications

MSE Mean Squared Error

NITlab Network Implementation Testbed Laboratory

NITOS Network Implementation Testbed based on Open­Source software

OAI OpenAirInterface

OFDMA Orthogonal Frequency Division Multiple Access

PCEF Policy Control Enforcement Function

PCRF Policy Control and Charging Rules Function

PDCCH Physical Downlink Control Channel

PDN Packet Data Network

P­GW Packet Data Network Gateway

QoE Quality of Experience

QoS Quality of Service

PDCP Packet Data Convergence Protocol

RB Resource Block

List of tables xxvii

RLC Radio Link Control

RNN Recurrent Neural Network

RRC Radio Resource Control

RRH Remote Radio Head

SCTP Stream Control Transmission Protocol

SDN Software­Defined Networking

SDR Software Defined Radio

S­GW Serving Gateway

SRS Sounding Reference Signal

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

UDP User Datagram Protocol

UE User Equipment

UMTS Universal Mobile Telecommunications System

URLLC Ultra­Reliable and Low­Latency Communications

USRP Universal Software Radio Peripheral

Chapter 1

Introduction

Telecommunication systems have been evolved tremendously over the past few years to

fill the users’ needs. Specifically, the rise of the internet and the evolution of mobile devices

bring a tremendous need for data that prior cellular architectures could not support. For this

reason, the telecommunication systems structure is continuously growing, starting from the

first generation systems (1G) to currently the fifth generation (5G).

Nevertheless, the digitization and rising of numerous industries results in a massive in­

crease in the data flow nowmore than ever. Precisely, new applications are coming, including

Augmented Reality (AR), Virtual Reality (VR), eHealth, holographic telepresence, among

many others. Thus, the need for more robust and powerful systems is growing, leading us to

research the next generation of cellular networks beyond 5G.

Many works [1], [2], [3] study the necessary steps towards enabling next­generation sys­

tems, highlighting the importance of machine learning and artificial intelligence. In detail,

the wide network softwarization creates opportunities for innovations in every component

of the network stack. With the integration of ML & AI techniques, the network could be­

come self­organizing to overcome fluctuations and adapt to the various network conditions

resulting in enhanced network management, QoS and QoE.

1.1 Motivation and Problem Statement

In this thesis, we design, develop, and evaluate an AI­Driven framework for the real­

time scheduling of wireless clients. Precisely, we build on top of the disaggregated RAN

architecture that exists in 5G networks [4] by implementing a scheduling technique between

1

2 Chapter 1. Introduction

the heterogeneous wireless network technologies, such as LTE, 5G, WiFi, and more. In real­

time, we utilize machine learning methods to predict future network conditions and make

scheduling decisions to improve network performance and QoE.

We complete this work on two milestones. First, we develop the scheduling scheme

among the heterogeneous technologies, utilizing theOpenAirInterface and the FlexRANplat­

forms. Then, we extend this work by inserting ML&AI methods to handle the scheduling by

real­time monitoring the channel quality. To achieve it, we emulate channel quality patterns

based on real car routes in Volos city.

Finally, we validate and evaluate this work by testing it in a real environment. Specifi­

cally, we deploy a complete cellular disaggregated network in NITOS Testbed with the help

of the OpenAirInterface and FlexRAN platforms utilizing real devices. Moreover, we emu­

late a realistic car route in the testbed by employing SDRs and programmable attenuators.

Finally, we deploy and evaluate our ML & AI unit in real­time, making conclusions about its

contribution in enhancing the network performance and user’s QoS and QoE.

1.1.1 Contribution

The overall thesis contributions are summarized as follows:

• To develop an efficient manner of scheduling the network downlink traffic among het­

erogeneous technologies.

• To develop a robust ML & AI unit that monitors and predicts the LTE channel quality

and also makes efficient scheduling decisions that ensure enhanced network perfor­

mance.

• To investigate and evaluate numerousmachine learning techniques for finding themost

appropriate models for real­time LTE channel quality forecasting.

• To evaluate the developed framework in a testbed environment, using real devices in

real­time.

1.2 Thesis Synopsis

In chapter 2, we provide the essential background knowledge needed to understand the

contribution of our work. Precisely, we present the evolution of the telecommunication sys­

1.2 Thesis Synopsis 3

tems, the structure of the functional split disaggregated architecture, the research direction

for future networks beyond 5G, and the machine learning methodologies. Finally, we refer

to the experimental environment used for the evaluation of our work. In chapter 3, we de­

sign, develop, and evaluate the framework for scheduling between heterogeneous wireless

technologies. Chapter 4 extends this work by designing, developing, and evaluating the ML

& AI unit that monitors and predicts the channel quality and makes scheduling decisions in

real­time. To achieve this, we study and evaluate a large number of machine learning algo­

rithms. Finally, chapter 5 summarizes our work and provides the conclusion and the thoughts

for future work.

Chapter 2

Background

2.1 Introduction to Mobile Telecommunication Systems

In the early 1980s, mobile telecommunication systems were initially launched [5]. The

first fully functional systems (1G) relied on analog techniques, being, in this way, unable

to utilize the available spectrum. Due to their big size and high cost, mobile devices were

exclusively available for corporate usage.

The breakthroughmomentwas the introduction of 2G systems in the early 1990s [6]. They

provide digitization and a more efficient bandwidth/spectrum allocation, applying multiple

access schemes, such as FDMA, TDMA, and CDMA. Thus, they improved the voice qual­

ity significantly and originated the first data services. Moreover, they brought a semi­global

roaming system to advance connectivity internationally.

The third generation (3G) systems were introduced in the years after 2000, supporting

broadband andmultimedia services. Some of their key features are the IP network technology,

the enhancement in voice quality and data rate, global roaming and Quality of Service (QoS).

In the beginning, voice calls dominated the traffic in cellular networks. Nevertheless,

the years to come brought an enormous growth of mobile data and massive demand for low

latency, mobility, and enhancedQoS. As a result, it was critical to buildmore robust networks.

5

6 Chapter 2. Background

2.2 4G Mobile Networks

2.2.1 Introduction

The 3GPP [7] established the fourth­generation systems as the result of research into the

long­term evolution of UMTS. They are referred to as 3GPP Long­Term Evolution (LTE)

systems and are widely known as LTE.

LTE appeared to be a promising technology for meeting users’ demands for reduced la­

tency and high data rates [6] [8] [9]. It was required to deliver a downlink peak data rate of

100 Mbps and an uplink peak data rate of 50 Mbps. The final system surpassed these criteria,

with peak data speeds of 300 Mbps and 75 Mbps, respectively. However, these performances

are only possible under idealistic circumstances and are entirely unattainable in any actual

scenario. Thus, the spectral efficiency, which reflects the typical capacity of one cell per unit

bandwidth, is a better metric. In the downlink, LTE has to enable a spectral efficiency three to

four times higher than Release 6 WCDMA (3G) and two to three times greater in the uplink.

Another significant issue is latency, which is highly essential for time­sensitive appli­

cations like speech and interactive games. There are two aspects to consider. Firstly, the

standards specify that data should move between a mobile phone and a fixed network in less

than 5 milliseconds if the air interface is not congested. Secondly, there are two operation

modes in mobile phones: an active mode in which they are connecting with the network and

a low­power idle one. The standards stipulate that a phone shall go from idle to active status

in fewer than 100 milliseconds following a user intervention.

Finally, there are also coverage and mobility specifications. LTE is enhanced for cell

ranges up to 5 kilometers, operates with decreased performance up to 30 kilometers, and can

support cell sizes up to 100 kilometers. It’s also suited for mobile velocities of up to 15 km/h,

has valuable performance up to 120 km/h, and can handle speeds up to 350 km/h. Finally,

LTE offers a wide range of bandwidths, spanning from 1.4 MHz to a maximum of 20 MHz.

2.2.2 Key Technologies

LTE incorporates numerous essential technologies that allow it to deliver all the features

mentioned. Some of the most important are worth mentioning.

• Orthogonal Frequency Division Multiple Access (OFDMA): LTE utilizes OFDM

2.2 4G Mobile Networks 7

for the downlink to transmit data over several narrowband carriers instead of distribut­

ing one signal over the entire carrier bandwidth. TheOFDM symbols are organized into

resource blocks, and every user allocates a number of them in the time­frequency grid.

The ability of OFDM to cope with extreme channel circumstances without the need for

sophisticated equalization filters is its dominant benefit. Furthermore, because of the

low symbol rate, inter­symbol interference (ISI) may be avoided.

• Multiple­Input and Multiple­Output (MIMO): MIMO is a technique for increasing

the capacity of a radio link by employing multiple transmission and receiving anten­

nas and thus utilizing multipath propagation. MIMO antennas benefit mobile radio

systems, with more dependable operation in low signal situations, enhanced spectral

efficiency, and higher data rates for individual users. The LTE standard enables several

MIMO operation modes and allows dynamic mode switching adapting to various radio

situations.

• Link Adaptation: LTE optimizes air interface efficiency by selecting the appropriate

modulation and channel coding rate based on several essential metrics. Channel Quality

Indicator (CQI) is a primary metric that indicates the received SINR and thus the chan­

nel quality as experienced by the UE. Moreover, Physical Downlink Control Channel

(PDCCH) provides scheduling information to individual UEs when Block Error Rate

(BLER) defines the in­sync or out­of­sync indication during radio link monitoring. Fi­

nally, Sounding Reference Signal (SRS) gives a more precise estimation of the user’s

uplink channel.

• Hybrid Automatic Repeat Request (HARQ) LTE adopts an enhanced version of

Automatic Repeat Request (ARQ) called HARQ. When a block of data fails the Cyclic

Redundancy Check (CRC) in the simple ARQ, the receiver discards it. On the other

hand, HARQ keeps any meaningful data in a buffer and continues to the phase of error

detection/correction. If the CRC fails, the data is sent again by the transmitter. Now,

however, the receiver analyzes the data from the buffer along with the re­transmissions.

In this way, the signal energy rises at the receiver, leading to improved performance.

8 Chapter 2. Background

Figure 2.1: LTE High­level Architecture

2.2.3 LTE Architecture

The high­level architecture of the Evolved Packet System (EPS), widely known as LTE,

consists of three main components as shown in Figure 2.1 [10]. The User Equipment (UE),

the Evolved UMTS Terrestrial Radio Access Network (E­UTRAN) and the Evolved Packet

Core (EPC).

User Equipment (UE)

Any device used by an end­user to communicate is called User Equipment (UE). It could

be a smartphone, a laptop computer with a mobile broadband adaptor, or any other gadget.

Evolved UMTS Terrestrial Radio Access Network (E­UTRAN)

E­UTRAN responsibility is to handle the radio communication between UE and EPC. It

consists of several base stations known as evolved Nodes B (eNB). Each eNB uses the Uu

interface to manage a UE in one or many cells specified as its serving eNB. The S1 interface

connects to the EPC, while the X2 interface, which employs signaling and packet forwarding

during handover, may also connect to adjacent base stations.

An eNB handles UE’s downlink/uplink traffic by routing user plane data to S­GW. On

the controlling side, it implements radio resource management, for instance, radio bearer

control, radio admission/connection mobility control, and dynamic scheduling. Furthermore,

it manages low­level operations such as handovers. Finally, ciphering, packet dependable

2.2 4G Mobile Networks 9

delivery, and header compression are all eNodeB functionalities.

Evolved Packet Core (EPC)

The EPC is the LTE network’s core element. It consists of several nodes, the most im­

portant of which are MME, SGW, PGW, and HSS. They provide various services, including

mobility management, authentication, session management, bearer setup, and the application

of various Quality of Service levels.

• Home Subscriber Server (HSS): HSS is a central database that collects data on all of

the subscribers of a network provider. It is one of the few LTE features that has been

carried over from previous generation systems. It also has mobility management, call

and session creation, user authentication, and access authorization features.

• Packet Data NetworkGateway (P­GW): The EPC’s point of interaction with the out­

side world is the packet data network gateway (P­GW). Each PDN gateway commu­

nicates with many external devices or packet data networks through the SGi interface,

such as the network provider’s servers, the internet, or the IP multimedia subsystem.

An access point name (APN) corresponds to each packet data network. Usually, the

network provider utilizes various APNs, one for the internet, one for the IP multime­

dia subsystem, and more.

• Serving Gateway (S­GW): The serving gateway (S­GW) is a high­level router that

connects the base station to the PDN gateway. A typical network could include several

serving gateways, each responsible for the mobiles in a specific geographic area. Every

mobile belongs to a single serving gateway; however, if the mobile goes far enough,

the serving gateway may be changed.

• Mobility Management Entity (MME):MMEmanages the mobile’s high­level func­

tioning by transmitting messages about concerns like security and data stream man­

agement unrelated to radio communications. A typical network may comprise several

MMEs, each responsible for a particular geographical area, similar to the serving gate­

way. Each mobile corresponds to a singleMME, known as the servingMME; however,

this could change if the mobile travels a long distance. The MME also has control over

the other network parts through internal EPC signaling messages.

10 Chapter 2. Background

Figure 2.2: High­level Protocol Architecture

• PolicyControl andChargingRules Function (PCRF):The Policy Control andCharg­

ing Rules Function (PCRF) is not visible in Figure 2.1. However, it is responsible for

policy control decision­making and directing the flow­based charging features in the

Policy Control Enforcement Function (PCEF), placed in the P­GW.

• Other components: There are also components not shown in Figure 2.1 but worth

mentioning. The Earthquake and TsunamiWarning System (ETWS) is one of them, and

it exploits the Cell Broadcast Centre (CBC), which UMTS previously used. Another

one is the Equipment Identity Registry (EIR), which contains the details of lost or stolen

mobile phones, was inherited from UMTS too.

2.2.4 LTE Protocol Stack

There are two planes in the protocol stack as shown in Figure 2.2. The user plane pro­

tocols deal with data relevant to the user, such as data routing within a network. In contrast,

the control plane protocols manage signaling messages that are primarily of interest to the

network elements, such as signaling communication between two devices. Finally, data and

signaling messages are sent from one place to another via the underlying transport protocols.

In LTE, there are two specific types of protocol structures: the air interface and the fixed

network protocols, as demonstrated in Figure 2.3. Between the mobile and the eNB is the

air interface, also known as the Uu interface. The physical layer comprises the digital and

analog signal processing operations that the mobile and eNB employ to exchange data. The

data connection layer, or layer 2 of the OSI model, comprises the following three protocols.

The medium access control (MAC) protocol manages the physical layer at a basic level,

scheduling data transactions between the mobile and the eNB. The radio link control (RLC)

protocol keeps the data connection between the two devices running smoothly, for example,

2.2 4G Mobile Networks 11

Figure 2.3: Protocols used on the air interface and by the fixed network.

by assuring dependable delivery of data streams that must arrive on time. Last but not least,

the packet data convergence protocol (PDCP) performs high­level transport services such as

header compression and security.

The fixed network utilizes the OSI layers to transfer information between components

of the eNB and EPC. The transport network can use any appropriate protocol for the bottom

two layers, for instance, the Ethernet. Then assigns an IP address to each network unit, and

the internet protocol (IP) routes data from one network element to the next. A transport layer

protocol exists above IP with three different protocols in use. The user datagram protocol

(UDP) distributes data packets from one network device to another, whereas the transmission

control protocol (TCP) re­sends packets that arrive improperly. TCP is the foundation of the

stream control transmission protocol (SCTP), which has additional capabilities making it

ideal for signaling message delivery. The user plane always utilizes UDP as its transport

protocol for faster data delivery.

The majority of user plane interfaces use the GPRS tunneling protocol user part (GTP­

U), which employs tunneling, a mechanism to forward packets from one network node to

another.

LTE supports a diverse set of signaling methods. The base station regulates a mobile’s

radio communications via the air interface using signaling messages specified in the radio

resource control (RRC) protocol. An MME uses the S1 application protocol (S1­AP) to gov­

ern the base stations within its pool area in a radio access network. Furthermore, the X2

Application Protocol (X2­AP) bridges the communication between two eNBs.

12 Chapter 2. Background

Figure 2.4: C­plane Protocol Stack

Figure 2.5: U­plane Protocol Stack

The MME uses two protocols at the non­access stratum of the air interface to manage a

UE’s high­level operation. These protocols are the EPS session management (ESM), which

manages internal accounting inside the EPC, and the EPS mobility management (EMM),

which regulates the data streams through which a mobile connects with the outside world.

The HSS and MME use the Diameter protocol to interact within the EPC for authentica­

tion, authorization, and accounting. Diameter is based on the Remote Authentication Dial In

User Service (RADIUS) protocol, an earlier standard.

The majority of the other EPC interfaces employ the GPRS tunneling protocol control

portion (GTP­C). This protocol specifies protocols for peer­to­peer communication between

the EPC’s various components and the management of the GTP­U tunnels mentioned earlier.

Figures 2.4 and 2.5 depict the protocol stack’s flows for the communications between

2.3 5G Mobile Networks 13

UE/MME and between UE/S­GW accordingly.

2.3 5G Mobile Networks

2.3.1 Introduction

5G is the next significant step in mobile telecommunication systems due to the increasing

demand for higher data rates and reduced latency. Data­hungry mobile devices and the grow­

ing demand for sophisticated multimedia applications such as UltraHigh Definition (UHD),

3D video, augmented reality, and immersive experience prompted the need for more resilient

networks [11].

Many industry efforts have outlined eight primary needs that 5G technology must meet,

and these objectives may be summarized as follows.

• 99.999% availability

• Full coverage (100%)

• 90% less energy consumption

• 1000 times more bandwidth per unit area

• 1–10 Gbps data rate for all nodes of the network

• Up to ten years battery life for low­power mode

• Supporting 10–100 times more connected devices

• 1 ms end­to­end (E2E) loop delay in the network (latency).

The ITU Radiocommunication Sector is one of the three parts of the International

Telecommunication Union (ITU) and has stipulated the International Mobile Telecommu­

nications 2020 (IMT­2020) as mobile systems in Resolution ITU­R 56­2. The IMT­2020,

according to the ITU­R, will be more advanced than the IMT­2000 and IMT­Advanced. It

opens up new avenues for 5G’s expanded capabilities, including Enhanced Mobile Broad­

band (eMBB), Ultra­Reliable and Low­Latency Communications (URLLC), and substantial

Machine­Type Communications (mMTC).

• EnhancedMobile Broadband (eMBB):Consumers would enjoy improved speed and

reliable service in future mobile networks compared to existing systems based on this

14 Chapter 2. Background

use model. The eMBB comprises many scenarios, including wide­area coverage and

hotspot scenarios. When considering the wide­area situation, anticipate full coverage,

increased mobility, and increased data speeds. The expected data speeds will be in the

gigabit per second range. On the contrary, considering the hotspot scenario, high user

density and traffic capacity are needed. Still, the mobility requirements in this scenario

are just for foot­traveler velocities.

• Ultra­reliable and low­latency communications (URLLC): For URLLC, there are

various essential requirements in terms of dependability, availability, and latency; for

instance, E2E latency should be less than five milliseconds. Smart grids, remote mon­

itoring and control, vehicle­to­everything (V2X), intelligent transport systems, tactile

internet applications, and other fields are among the most commonURLLC application

domains.

• Massive machine­type communications (mMTC): The mMTC framework can ac­

commodate many devices with latency­insensitive designs, cheap costs, and extended

battery life; for example, it will use millions of low­power sensors and actuators.

ITU­R defines the minimum performance requirements for 5G mobile communication

networks. This report includes some key performance indicator (KPI) metrics presented in

Table 2.1 for various use scenarios.

2.3.2 Key Technologies

5G networks combine several critical technologies to give all of the above characteristics

while overcoming the limitations of previous­generation systems. It is worth discussing a few

of the most essential.

• Massive Multiple­Input Multiple­Output (Massive MIMO) Technology: Massive

MIMO is a variant of the MIMO idea that advocates for the employment of larger

and more antennas in each base station (100 or more). Massive MIMO’s primary goal

is to expand the MIMO concept to larger scales, upgrading technologies to help 5G

mobile networks achieve more stability, security, and efficiency in terms of energy and

spectrum. It has a more considerable power gain resulting in a significant increase in

the strength of the received signal. They also improve system throughput when base

stations with massive antenna arrays serve more users.

2.3 5G Mobile Networks 15

Table 2.1: Minimum 5G technical performance requirements (ITU­R)

KPI Model Values

Peak data rate eMBB DL: 20 Gbps, UL: 10 Gbps

Peak spectral efficiency eMBB DL: 30 bps/Hz, UL: 15 bps/Hz

User experienced data rate eMBB DL: 100 Mbps, UL: 50 Mbps (for Dense Urban case)

5% user spectral efficiency eMBB DL: 0.3 bps/Hz, UL: 0.21 bps/Hz (for Indoor Hotspot)

DL: 0.225 bps/Hz, UL: 0.15 bps/Hz (for DenseUrban)

DL: 0.12 bps/Hz, UL: 0.045 bps/Hz (for Rural)

Average spectral effi­

ciency

eMBB DL: 9 bps/Hz/TRxP, UL: 6.75 bps/Hz/TRxP (for In­

door Hotspot)

DL: 7.8 bps/Hz/TRxP, UL: 5.4 bps/Hz/TRxP (for

Dense Urban)

DL: 3.3 bps/Hz/TRxP, UL: 1.6 bps/Hz/TRxP (for Ru­

ral)

Area traffic capacity eMBB DL: 10 Mbps/m2 (for Indoor Hotspot)

User plane latency eMBB, URLLC 4 ms for eMBB and 1 ms for URLLC

Control plane latency eMBB, URLLC 20 ms

Connection density mMTC 1,000,000 devices per km2

Energy efficiency eMBB Supporting low energy consumption capability when

there is no data

Reliability URLLC 1–10−5 success probability of transmitting a layer 2

protocol data unit of 32 bytes within 1 ms in channel

quality of coverage edge

Mobility eMBB Up to 500 km/h for high­speed vehicular

Mobility interruption time eMBB, URLLC 0 ms

Bandwidth eMBB Minimum 100MHz, up to 1 GHz for higher frequency

band operation

16 Chapter 2. Background

• MillimeterWave (mmWave) Systems andmmWaveMassiveMIMO:The extremely

high frequency (EHF) band, commonly known as the mmWave band, includes the fre­

quency range of 30 to 300 GHz. The super­high frequency (SHF) band covers the

frequency range of 3 to 30 GHz. Because the radio waves in these bands have the same

propagation characteristics, the frequency range between 3 and 300 GHz s collectively

referred to as mmWave bands with 1 to 100 mm wavelengths.

The fact that mmWave frequencies have such a broad range is an advantage. The spec­

trum of today’s cellular networks below 3 GHz is both rich and constrained. Because of

the strong attenuation impact of open space in mmWave communications, they might

also reuse the same frequency more often. Furthermore, the antennas in the mmWave

frequency have modest physical dimensions, and the mmWave band offers a more se­

cure and private communication medium owing to its restricted transmission space and

beam widths.

• Beamforming Techniques for 5G Mobile Communication Systems: In mmWave

networks, beamforming is a critical strategy for reducing interference and compen­

sating for high channel attenuation. The base stations can use multiplexing to increase

data rate and spatial diversity to improve durability by applying beamformingmethods.

There are numerous communication modes to choose from when setting up a wireless

connection, including completely directional, omnidirectional, and semi­directional.

Firstly, the base station and user equipment both have a directional structure in a fully

directional setup. Additionally, in omnidirectional mode, both the base station and the

user equipment have an omnidirectional structure. However, in semi­directional mode,

one base station or user equipment has omnidirectional and the other has directional

mode. Finally, analog, digital, and hybrid beamforming methods are the three types of

beamforming techniques.

2.3.3 Functional Split Architecture

The third­generation systems introduced splitting the base station into two parts; the Re­

mote Radio Head (RRH) utilizing all radio capabilities and the Baseband Unit (BBU) em­

ploying baseband processing functions. These parts build the so­called fronthaul network.

Later, 4G networks originated the idea of Cloud­RAN, where BBUs exist in a central area,

2.3 5G Mobile Networks 17

Figure 2.6: C­RAN Architecture: BBU­pool and RRHs

the BBU­pool, as shown in Figure 2.6. This way, it splits the computational processing by

shifting some of it to Cloud­based virtual machines.

Cloud­RAN is now a critical part of 5G mobile networks. However, the fronthaul net­

work’s capacity requirement is massively high, leaving the opportunity for more advance­

ments. Thus, the research focuses on finding the optimal functional splits. In other words, to

indicate how many functions should remain locally at RRH and how many should exist in

the cloud. Finally, several proposals [12] reached up to eight functional splits, as illustrated

in Figure 2.7.

Many of these proposals, based on much research [4], are not proved beneficial. Thus,

studies on real­world experimentation environments, such as Testbeds, focus primarily on

PDCP/RLC and MAC/PHY split. They found that the PDCP/RLC split has the most neg­

ligible overhead and offers compatibility with various technologies, allowing for increased

network capacity.

The PDCP/RLC split architecture consists of two units as shown in Figure 2.8:

• Central Unit (CU): It incorporates the processes of the PDCP layer and upwards.

• Distributed Unit (DU): It supports the processing of the RLC layer and downwards.

A single CU may manage numerous DUs, forming a one­to­many connection, but each

DU has only one CU (one­to­one connection). The DUs implement numerous heterogeneous

wireless network technologies including 5G, LTE, WiFi, and more. The F1AP protocol con­

trols the communication over the new F1 interface between the CU and DU. Like the S1­U

interface, data traffic is carried through the F1­U interface, wrapped with GTP headers over

UDP/IP. Moreover, similar to the S1­C interface, the control plane employs the F1­C inter­

face, which runs via SCTP/IP. Because the separation of base station functions occurs at a

18 Chapter 2. Background

Figure 2.7: Functional Splits in LTE

Protocol Stack proposed by 3GPP.

Figure 2.8: CU/DU architecture for the

PDCP/RLC split

higher layer, it enables the incorporation of lower layer splits, resulting in a multi­tier disag­

gregated design. As such, this interface is known as the midhaul interface.

2.4 Future Networks Beyond 5G

2.4.1 Introduction

As 5G networks are being deployed, new challenges will emerge. Numerous industries

are continuously digitizing, resulting in a massive increase in the data flow. For example, we

foresee holographic telepresence, eHealth applications, industry 4.0 with enormous robotics,

widespread 3D mobility, augmented reality (AR), and virtual reality (VR) in the future,

among other things. Thus, ultra­broadband and ultra­low­latency connection, as well as more

efficient wireless communication technologies, are more critical than ever.

Recently, 6G Flagship, an exceptional research program funded by the Academy of Fin­

land, introduced the first 6G White Papers [1], [2], [3]. The research indicates that one of the

primary vital missing elements in 5G networks is Machine Learning and AI. Consequently,

machine learning and artificial intelligence approaches will probably be critical enablers of

future 6G systems.

2.4 Future Networks Beyond 5G 19

Figure 2.9: Machine Learning Applications in 6G Networks

2.4.2 Application of ML/AI in 6G Networks

The applications of ML/AI in the future 6G Networks will be vast, spanning the entire

protocol stack, as illustrated in Figure 2.9.

• Physical LayerAt the physical layer, channel coding combined with deep learning ap­

proaches could address various complicated problems.Moreover, auto­encoders promise

to optimize performance in synchronizationwhileML techniques could solve non­line­

of­sight (NLOS) multipaths restrictions in positioning. Finally, at channel estimation,

online training neural networks could help estimate the channel’s conditions accurately.

• MACLayerAt theMAC layer, determining users’ orientations andmobility is accom­

plished by deploying a federated echo state network (ESN) prediction algorithm. Fur­

thermore, predictive resource allocation will decrease the latency, enhancing machine­

type communications (MTC) performance. In addition, predicting traffic could in­

crease adaptive power­saving, and ML solutions could help alleviate the side effects

of asymmetric traffic accommodation.

• Network Layer Adopting ML/AI algorithms will optimize the Quality of Service at

the Network Layer. Also, centralized Deep Neural Networks could boost handover

efficiency while various ML methods could assist in developing advanced Multi­hop

cellular networks.

• App & Transport Layer Numerous innovative applications will come from integrat­

ing ML/AI at the Application and Transport layers, including network performance

20 Chapter 2. Background

management automation, ML­aided UAV control, opportunistic data transfer in vehic­

ular networks, ML­as­a­service, Client­centric networking, intelligent IoT, and many

more.

Along with the fascinating applications that 5G and beyond technologies enable, new

security issues arise. Consequently, ML/AI methods will aid in network security from an

end­to­end viewpoint. To begin, it might validate the authenticity of connected peers, re­

sulting in secure information sharing. Moreover, both defensive and attacking mechanisms

should be adopted in wireless communications due to wireless medium vulnerability in in­

terference. For instance, defending methods involve cryptography, while attack techniques

require the proactive execution of an attack, such as jamming or eavesdropping, to safeguard

future communications.

Edge Intelligence (EI) using ML/AI methods is another vital component of enabling 6G

networks to support their efficiency, new functionalities, and new services. The devices that

produce and use data are frequently positioned at the network’s edge, close to the users,

and monitored, surveilled, or controlled systems, producing zettabytes of data. The plethora

of such resources (high density of base stations and devices in big cities) require big data

handling with ML/AI approaches. These resources form a foundation for edge and cloud

computing.

Edge computing (EC) is a subset of cloud computing. A portion of the data processing and

storage is moved from the cloud to edge network nodes located geographically and logically

close to data suppliers and end­users. In this way, it will result in performance gains, traffic

enhancement, and new ultra­low latency services.

2.5 AI & Machine Learning

2.5.1 Introduction

Artificial Intelligence is a method for developing systems that replicate human reasoning,

decision­making, problem­solving, and perceiving. Thousands of applications are utilizing it

in industry and academics to handle unique challenges. AI is a fast­growing multipurpose

technology with seemingly great potential for the future.

Machine Learning is a subfield of AI that uses data to solve problems. These algorithms

2.5 AI & Machine Learning 21

Figure 2.10: Artificial Intelligence Domains

are trained models based on probability theory and linear algebra. ML algorithms utilize our

data to learn and complete prediction tasks automatically.

As shown in Figure 2.10, deep learning is a subdomain of machine learning that refers

to algorithms that evaluate data the way the human brain does. Specifically, DL applications

use a layered structure of algorithms known as artificial neural networks (ANNs). ANNs

implement a group of so­called artificial neurons inspired by the biological neural network

of the human mind.

There are three fundamental branches of Machine Learning; supervised, unsupervised,

and reinforcement learning. Supervised learning involves learning a function that translates

input to an output based on examples labeled training data. The validation of the algorithm

comes from the generalization error. On the other hand, unsupervised learning algorithms do

not need labels and seek patterns on their own. Moreover, reinforcement learning is the ML

branch associated with intelligent agents taking actions in an environment. It does not require

labeled data since the agents obtain knowledge through exploration and maximizing a reward

function. Finally, these branches also have combinations, such as semi­supervised learning

and partially reinforcement learning algorithms.

2.5.2 Supervised Learning

As previously stated, supervised learning is concerned with acquiring knowledge via the

use of labeled data. It consists of two types; regression and classification. The regression

objective is to approximate a mapping function between continuous input variables and a

continuous output variable (a continuous quantity). On the contrary, classification is the task

of predicting a discrete output variable (discrete class label).

Our primary focus in this study is on supervised regression approaches. Numerous so­

22 Chapter 2. Background

Figure 2.11: Machine Learning Pipeline from data collection to prediction

phisticated algorithms are in use, each of which stands on a different design. Linear models,

such as Linear Regression, assume a linear relationship between the independent variables.

There are also models supporting non­linear relationships; for instance, Support Vector Ma­

chines rely on high dimensional feature space, the hyperplane. Furthermore, as Decision Tree,

tree­based models are very robust, utilizing thresholds­driven decisions. Finally, ensemble

techniques, for example, XGBoost, employ multiple learning models leading to enhanced

performance.

Deep learning algorithms, on the other hand, have a great deal to contribute. Multilayer

perceptron (MLP) is an Artificial Neural Network utilizing multiple layers of neurons and

non­linear activation functions. Another significant model that critically impacts Time Series

Forecasting problems is the long short­term memory (LSTM) recurrent neural network. Its

huge advantage is processing entire time sequences of data by employing a cell, an input gate,

an output gate, and a forget gate. Moreover, Convolutional Neural Networks (CNNs) have

dominated computer vision due to their various building ingredients, including convolutional

layers, pooling layers, and fully connected layers. Of course, hybrid models such as CNN­

LSTMs dominate today, providing the best of both worlds.

2.5.3 Machine Learning Steps

Numerous distinct steps exist in order to construct an effective prediction algorithm. As

illustrated in Figure 2.11, the whole procedure consists of data collection, data preprocess­

ing, model selection, model training, model evaluation, hyperparameter tuning, and finally,

predictions. It is worth delving a little more into each of them.

• Data Collection: Data collection is the technique of collecting and analyzing data on

selected variables. This data rely on the corresponding predicting problem, and they

2.6 Experimental Tools and Methods 23

are, at this point, in a raw format.

• Data Preprocessing: Preprocessing data is a critical step that involves converting raw

data to a comprehensible format before use, improving efficiency. This step may in­

clude cleaning missing or noisy data, normalization, standardization, dimensionality

reduction, and more.

• Model Selection: This step determines the most relevant model for the problem at

hand. As discussed earlier, there is a wide variety of machine learning techniques.

However, appropriate model selection plays an essential role in performance.

• Model Training: Here the model is trained on a specific subset of the available data,

called the training set. The model adapts to the data by modifying its internal state with

various techniques, such as minimizing a cost function, using the Gradient Descent

approach.

• Model Evaluation: Model evaluation is an essential process in concluding whether

the model performs well or not. It relies on data splitting techniques such as train­

ing/test/validation split or, a more sophisticated one, k­Fold Cross­Validation. More­

over, validating a regression model includes studying many error metrics such as Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error

(MAE).

• Hyperparameter Tuning Every model accepts a set of pre­defined arguments, called

hyperparameters. Hyperparameter tuning is the method of searching and carefully con­

figuring the appropriate model hyperparameters to enhance overall performance.

• Predictions Finally, after all the steps mentioned above, the model is ready to be ap­

plied and make predictions.

2.6 Experimental Tools and Methods

This section analyzes all the resources and tools used for the experiments. It consists

of the NITOS wireless testbed [13] [14], located at the University of Thessaly, Greece, the

OpenAirInterface platform [15] used to develop real cellular network components, and the

FlexRAN platform [16] utilized to implement scheduling of clients.

24 Chapter 2. Background

Figure 2.12: Overall NITOS Architecture

2.6.1 NITOS Testbed

Since 2007, the NITLAB unit at the University of Thessaly has run the Network Imple­

mentation Testbed utilizing Open Source platforms (NITOS), evaluating cutting­edge net­

working research. The NITOS testbed is one of the most extensive open experimental de­

partments in Europe, allowing users globally to access highly programmable and remotely

accessible equipment using the cOntrol and Management Framework (OMF) open­source

software, as shown in Figure 2.12. The testbed is integrated into more prominent resource

federations, such as OneLab and Fed4FIRE, supporting more heterogeneous resource test­

ings. It consists of three separate deployments: the Indoor RF Isolated Testbed, the Outdoor

Testbed, and the Office Testbed, as illustrated in Figures 2.13, 2.14 and 2.15.

Numerous critical and cutting­edge components comprise the NITOS testbed:

• The wireless experimentation testbed incorporates 100 well­equipped nodes, fea­

turing multiple wireless interfaces and allowing experimentation with heterogeneous

wireless technologies, such as Wi­Fi, WiMAX, LTE, Bluetooth.

• The Cloud infrastructure comprises seven HP blade servers and two rack­mounted

servers with a combined volume of 272 CPU cores, 800 GB of RAM, and 22 TB of

storage. The network is connected using an HP 5400 series modular Openflow switch,

2.6 Experimental Tools and Methods 25

Figure 2.13: Indoor RF Isolated Testbed Figure 2.14: Outdoor Testbed

Figure 2.15: Office Testbed

supporting 10Gb Ethernet communication between cluster modules and 1Gb between

the cluster and GEANT.

• The wireless sensor network testbed consists of three components: a manageable

testbed installed in UTH’s buildings, a city­scale sensor network installed in Volos,

and city­scale mobility sensing infrastructure based on volunteer users’ bicycles. All

sensor platforms are unique and built by UTH; they run on Arduino firmware and

communicate via various wireless methods (ZigBee, Wi­Fi, LTE, Bluetooth, IR).

• The Software Defined Radio (SDR) testbed is made up of Universal Software Radio

Peripheral (USRP) devices connected to the NITOS wireless nodes via USB. USRPs

enable the researcher to program numerous physical layer characteristics (for example,

modulation), enabling devoted PHY layer or cross­layer study.

• The Software­Defined Networking (SDN) testbed comprises numerous switches at­

tached with OpenFlow technology to the NITOS nodes, allowing for experimenta­

tionwith switching and routing networking protocols. Experiments utilizingOpenFlow

technology can be integrated with wireless networking technologies, allowing for more

diverse experimental scenarios.

26 Chapter 2. Background

2.6.2 The OpenAirInterface Platform

TheOpenAirInterface (OAI)wireless technology platform is the first open­source software­

based implementation of the LTE system, including thewhole protocol stack defined by 3GPP

specs. It incorporates developments to the Evolved Packet Core and E­UTRAN. Thus, re­

searchers implement base stations and core networks and attach real UEs, building a complete

4G and beyond infrastructure. It is ideal for cutting­edge experimentation on novel 4G/5G

and beyond configurations validating theoretical models and algorithms.

OAI is written in standard C and is distributed as free software under the GNU General

Public License provisions(GPLv3). OAI provides a thorough development environment with

built­in tools, including realistic emulation, soft monitoring/debugging instruments, protocol

analyzer, performance profiler, and a configurable logging system for all layers and channels.

This thesis implements a realistic experimentation environment on the NITOS Testbed

using OAI. Additionally, we contribute to the development of OAI’s code by incorporating

uniquemethods andmethodologies on wireless clients’ scheduling described in the following

sections.

2.6.3 The FlexRAN Platform

FlexRAN is a resilient and programmable open­source implementation of a Software­

Defined Radio Access Networks. It comprises two primary components: the FlexRAN Ser­

vice and Control Plane and the FlexRAN Application Plane.

The FlexRAN service and control plane is hierarchical, consisting of a Real­time Con­

troller (RTC) coupled to several underlying RAN runtimes, one for each RAN module; for

instance, one for monolithic 4G eNB, or multiple for a disaggregated 4G and 5G.The RAN

runtime environment is an abstraction layer between the RAN module and the RTC and con­

trol applications, separating the control and data planes.

FlexRAN protocol enables the communication between the real­time controller and the

runtime environment’s RAN agent. RAN control applications may exist on top of the RAN

runtime or the RTC SDK, enabling the monitoring, control, and coordination of RAN infras­

tructure. These applications can range from simple real­time monitoring to more complex

distributed apps that affect the status of the RAN in real­time, such as a MAC scheduler.

We utilize FlexRAN for the efficient scheduling ofwireless clients. Specifically, FlexRAN

enables the slicing of base station resources between the clients (UEs). We exploit this tech­

2.6 Experimental Tools and Methods 27

nique to schedule clients among different wireless technologies, such as LTE, WiFi, 5G, and

more. A FlexRAN slice could include various parameters such as:

• dl: A list of configuration items for downlink slices.

• id: The slice’s unique identifier.

• percentage: The number of resource blocks that this slice may utilize, as a percentage

of the total bandwidth

• maxmcs: The maximum MCS that this slice is permitted to employ.

Chapter 3

Framework for Scheduling among

Heterogeneous DUs

3.1 Introduction

In 5G and beyond networks, efficient scheduling between different wireless technologies

is critical. Thus, in the functional split architecture described in section 2.3.3, the CU unit

should act as a coordinator by balancing the traffic load among the various DUs. This chapter

constructs and evaluates this advanced architecture under realistic experimental situations.

Currently, there are many experimental disaggregated architectures for heterogeneous

RANs. Especially, a work [4] has proposed one equipped with both LTE and WiFi DUs un­

der the guidance of a single CU. They build the experimental environment using NITOS

Testbed described in section 2.6.1, incorporating the OpenAirInterface for the cellular topol­

ogy implementation detailed in section 2.6.2.

Our target is to build on top of this work, providing a novel scheduling scheme that utilizes

the Flexran Platform illustrated in section 2.6.3. In the following sections of this chapter, we

describe, validate and evaluate the framework under the same experimental circumstances.

29

30 Chapter 3. Framework for Scheduling among Heterogeneous DUs

Figure 3.1: Heterogeneous and Disaggregated RAN Architecture incorporating FlexRAN

3.2 Framework

3.2.1 Initial Topology

First of all, the fundamental topology used is illustrated in Figure 3.1. Several compo­

nents are essential, beginning from the core network (EPC) that connects the RAN architec­

ture with the outer world. Moreover, following the functional split architecture, a single CU

unit is connected with one LTE DU and one WiFi DU providing heterogeneous connectivity

to a single UE. Last but not least, the FlexRAN controller is an essential instrument commu­

nicating with the FlexRAN Agent located in the LTE DU to provide LTE traffic slicing. In

this way, the slicing control of the LTE interface is handled with a single slice post to the

FlexRAN controller, as shown in Figure 3.1 with the red arrows. For instance, a slice with a

percentage value equal to 50 percent will force the LTE DU to provide half of the resource

blocks (RBs) available to the specific UE. Consequently, if all RBs were used before the slice

post, the link’s capacity and bandwidth will now drop to half. An example of a FlexRAN slice

is illustrated in Figure 3.2.

3.2.2 Proposed Approach

The proposed approach is heavily based on FlexRAN slicing implementation. The pri­

mary goal is the usage of the slice by the CU to schedule traffic based on its percentage value.

3.2 Framework 31

Figure 3.2: A Downlink FlexRAN

Slice Example

Figure 3.3: The Message Format with the

Slicing Values to be sent via F1 Interface.

Figure 3.4: Proposed Approach for Scheduling between WiFi and LTE DUs

For this reason, when the slice arrives at the FlexRAN agent, it should be sent directly to the

CU, as shown in Figure 3.4.

The full implementation of this communication flow resides on a struct data structure.

When the posted slice arrives at the FlexRAN Agent from the Controller, we retrieve it at the

MAC layer and save the percentage and id values in a struct. Then, as illustrated in Figure 3.3,

we compose a message utilizing these values and forward it to the CU via the F1 interface.

The PDCP layer receives the message on the CU side and stores the values in its struct.

Now, the percentage item assists in implementing a scheduling scheme between the DUs in

a Round­robin fashion. Precisely, there are one hundred slots available for every round, each

one representing one percent. Every DU exploits a slot to transmit a packet to UE. The LTE

32 Chapter 3. Framework for Scheduling among Heterogeneous DUs

Figure 3.5: PDCP Scheduling Technique for LTE and WiFi DUs

Figure 3.6: Experimental Setup with NITOS Testbed.

DU assigns its slots first, followed by the WiFi DU; for example, if the posted percentage in

slice equals 90 percent, the LTE DU will allocate the first 90 slots, while the WiFi DU will

employ the remaining 10, as shown in Figure 3.5.

3.3 Experiments

3.3.1 Experimental Setup

The experiments assist in validating and evaluating the proposed approach in realistic cir­

cumstances. Specifically, we use the NITOS Testbed for our experimental topology, depicted

in Figure 3.6.

The system architecture employs six NITOS machine nodes. First, one node deploys the

core network, including the HSS, MME, and SPGW components. Secondly, a node equipped

with a USRP B210 device sets up both CU and LTE DU. We use the LTE implementation

3.3 Experiments 33

of the OpenAirInterface platform, due to its stability and efficiency, compared to the 5GNR

implementation at the time of writing. Nevertheless, the solution can be directly projected

to the 5G implementation by interchanging the core network components with the 5G ones

(HSS/UDM, MME/AMF, SPGW­U/UPF, SPGW­C/SMF) and the disaggregated eNB with

a disaggregated gNB. Moreover, there is a WIFI DU node and two nodes implementing the

UE; one for the WiFi interface equipped with a Qualcomm Atheros AR9380 chipset and one

for the LTE supplied with a Huawei LTE USB Dongle. Finally, we utilize a node for hosting

the FlexRAN Controller.

3.3.2 Experimental Scenario

The testing scenario is constructed to demonstrate the efficient scheduling between the

DUs in real­time. Specifically, we operate the iperf tool for traffic injection and live network

performance monitoring. The goal is to send a 10 Mbps downlink traffic from the core net­

work to the UE and observe the differences when posting new slices in FlexRAN Controller.

Initially, the percentage value in the slice is 70 percent, meaning that 70% of the traffic

will be scheduled to the LTEUE and the other 30% to theWiFi. At 10 seconds approximately,

we post another slice with a percentage value of 25 percent, replacing the previous one. We

want to observe the traffic at the LTE interface dropping from 70% to 25% and at WiFi

increasing from 30% to 75%.

3.3.3 Experimental Results

The experimental results come to validate the framework giving the expected outcome.

In the beginning, as illustrated in the iperf server (UE) logs in Figures 3.7 and 3.8, the total 10

Mbps traffic is scheduled as expected based on the first slice (with the 70 percent value); that

is 7 Mbps (70%) LTE and 3 Mbps (30%) WiFi traffic. At 10 seconds, the red horizontal line

represents the post of the new slice with a percentage value of 25 percent. Then, after this time

threshold, the LTE bandwidth is dropped to 2.5 Mbps (25%) while the WiFi one increases to

7.5 Mbps (75%), as desired. Figure 3.9 depicts more clearly this scheduling transition.

34 Chapter 3. Framework for Scheduling among Heterogeneous DUs

Figure 3.7: UE’s LTE Interface Figure 3.8: UE’s WiFi Interface

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20

B
a
n
d
w

id
th

Time (sec)

LTE/WiFi Bandwidth in Time

LTE WiFi

Figure 3.9: LTE/WiFi Bandwidth Monitoring with FlexRAN Slice Reconfiguration

Chapter 4

AI­Driven Real­time Scheduling between

Heterogeneous DUs

4.1 Introduction

Future generation networks set the urgent need for ML and AI applications and methods

in every network stack component, as described in section 2.4.2 [1] [2] [3]. As a result, the

whole infrastructure will become more flexible, robust, and efficient in handling the massive

traffic data while providing minimum latency.

This chapter proposes, validates, and evaluates an AI­Driven framework for scheduling

between heterogeneous DUs in 5G disaggregated RAN architectures.We build upon the work

of the previous chapter by implementingML and AI techniques for scheduling the DUs based

on the LTE channel quality. Specifically, after continuous LTE link monitoring, the proposed

scheme makes scheduling decisions to ensure optimal network conditions and QoE.

The monitoring focuses on the Channel Quality Indicator (CQI). In LTE systems, the

CQI is a metric that provides the channel quality to the base station showing the level of

modulation and coding the UE could function. Especially, it ranges from 0 to 15 in values.

That means from no to 64QAM modulation, from zero to 0.93 code rate, from zero to 5.6

bits per symbol, from less than ­1.25 to 20.31 SINR (dB), and from zero to 3840 TBS bits.

The following sections utilize CQI data of car routes from real commercial networks and

reproduce them under a controllable and realistic experimental environment. Additionally,

we build an ML & AI unit by analyzing the data and evaluating various machine and deep

learning models. This unit monitors and forecasts the LTE CQI values continuously in real­

35

36 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

Figure 4.1: Overall System Architecture incorporating Real­time Scheduling with the ML &

AI Unit

time. Subsequently, it posts the appropriate slices to the FlexRAN controller based on a slice

allocation algorithm to enhance resource management and provide optimal network perfor­

mance and user experience. In the end, we validate and evaluate the whole framework under

the NITOS Testbed in terms of efficiency, QoS, and QoE.

4.2 System Architecture

The overall baseline system architecture is depicted in figure 4.1, presenting the incor­

poration of the ML & AI unit in the RAN disaggregated network of the previous chapter.

The main idea is to employ a monitoring scheme on the side of the Flexran controller to sniff

the UE’s CQI values continuously. Then, machine learning techniques analyze the patterns

in the data predicting future CQI values in real­time. This way, the ML & AI unit sends new

and more appropriate scheduling configurations (slices) to the FlexRAN controller. Subse­

quently, the slices arrive at the CU utilizing our communication implementation between the

FlexRAN agent and the CU discussed in the previous chapter. Then, the CU continuously

reconfigures the DU scheduling among the heterogeneous DUs based on the slice that came

from the ML & AI unit, enhancing the overall network performance resulting in a better QoS

4.3 Data 37

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

A
tt
e
n
u
a
ti
o
n

Time

Attenuation in Time

Figure 4.2: Attenuation Data Available from Real Commercial Networks

and QoE.

4.3 Data

In this section, we describe the methodology followed from acquiring the data to prepar­

ing them for the models. Precisely, we begin by describing the attenuation data used to simu­

late the car routes. Then, we present the data augmentation step where we enrich the attenua­

tion data to obtain many different car route patterns. Finally, we detail the CQI data collection

and pre­processing steps.

4.3.1 Attenuation Data

The goal of this work is to study CQI data of real car routes in city Volos. The CQI values

vary across different geographical areas of the city as the car is moving. Specifically, it is

high in areas with good link conditions, while it drops in regions with poor LTE coverage.

In order to emulate the car routes inside our experimental environment, we need to give

the illusion of a moving machine node. To achieve this, we install programmable attenua­

tors on the USRP’s outputs. Thus, we control the experienced CQI by modifying the USRP

attenuation, giving the sense of motion. In this way, we adjust the CQI values based on our

collected data from real car routes in commercial networks.

We possess some attenuation data from real vehicle pathways in Volos, Thessaly, Greece,

where our university and testbed are. Figure 4.2 depicts data from a long pathway with ap­

38 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

proximately one thousand attenuation values. In the beginning, the attenuation values are

sufficiently low, corresponding to high CQI, and after the 400th time unit, the attenuation

rises to 120, giving low CQI.

4.3.2 Designing Basic Attenuation Scenario

This section constructs a basic attenuation scenario based on the available data. It will

represent an actual car route, and we will use it in our analysis from now on. Our goal is

to demonstrate the ability of our framework to adapt to extreme CQI transitions. In detail,

we need a case where the CQI drops from high to low values and also an opposite situation

where it rises from low to high values.

As already has been stated, our available attenuation data include the first case where the

CQI is initially high and later drops to low values. Now, in order to create a larger scenario

that also contains the second case, we use a copy of the available attenuation data. Precisely,

we obtain a copy of them, reverse it and append it at the end. This way, we simulate a car turn­

around at the end of the pathway to traverse it in the opposite direction. Since the geographical

area is the same and the direction is the opposite, we expect the attenuation data for this part

to be the same or very similar values as the first part but in a reversed sequence.

Now that we built a larger scenario with both cases, we need to ensure that our model

has enough time to prepare and start predicting before the first CQI transition phase in our

experiment. Specifically, this phase is approximately at the 400th time unit, and at this point,

we could not be sure whether this window is large enough for our models. Thus, it is a good

idea to extend it.

We could achieve that by inserting a car­stop at a red traffic light any time inside this

window. A regular traffic light cycle is 120 seconds, meaning that the longest waiting time at

a red light is 90­120 seconds. So, we assume that the car waits for approximately two minutes

at the red light before it continues. To illustrate this with attenuation values, we insert 120

constant values. Understandably, when the car is immovable, it stays in the same geographical

area, and as a result, it has a constant attenuation and CQI value.

Finally, after experimentation with these attenuation data in the testbed, we conclude that

it is necessary to rescale the values in the range 0­15. Thus, Figure 4.3 illustrates the basic

attenuation scenario used to develop the framework in the following sections. In detail, we

observe the car waiting at the red light at time values 130­250, the first transition from low to

4.3 Data 39

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000

A
tt

e
n

u
a

ti
o

n

Time

Attenuation in Time

Figure 4.3: Basic Attenuation Data Scenario including car turn­around and red traffic light.

high attenuation at 500 seconds, the turn­around at 1050 seconds, and the second transition

from high to low attenuation at 1600 seconds.

4.3.3 Attenuation Data Augmentation

This section describes the process for augmenting our data in order to obtain more slightly

altered attenuation scenarios based on the basic one. In this way, we simulate many different

cars that traverse through the same city pathway. Understandably, only one car route scenario

is not enough to build a robust model that generalizes well adapting to new unseen car routes.

This procedure is called data augmentation in the literature.

There are many data augmentation techniques for time series data, including adding

noise, cropping, scaling, and time­warping, among many others. Also, advanced augmen­

tation methods are Adversarial Training, Neural Style Transfer, and Generative Adversarial

Networks (GANs) based augmentation. This thesis utilizes Tsaug [17], a python library for

time series augmentation that offers a set of augmentation schemes for time series forecasting

that could be stacked in a pipeline of multiple connected augmenters.

After experimentation with the possible augmenters, we conclude to employ a Tsaug

pipeline of time­warping, noise, and cropping. As a result, we create multiple scenarios

slightly altered from the basic one, representing many different cars. Specifically, this ap­

proach simulates the continuous monitoring of a specific city pathway that many vehicles

traverse with various velocities and different driving methods. Nevertheless, the same atten­

uation pattern exists in all the car routes since they drive through the same geographical area.

There are only some minor differences ­ fluctuations based on the driving style and the noise.

40 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

Figure 4.4: Attenuation Data Augmentation: Simulating the continuous monitoring of a spe­

cific city pathway. Every augmented scenario corresponds to a car that traverses the pathway

with a unique driving style.

Figure 4.4 shows five indicative augmented scenarios representing five different cars driving

through the city pathway.

4.3.4 CQI Data Collection

This section describes the procedure for collecting CQI data based on the augmented

attenuation scenarios mentioned in the previous section. Precisely, we reproduce the car be­

haviors captured from the city pathway monitoring under a complete infrastructure in the

NITOS Testbed. The experimental architecture is similar to that described in the preceding

chapter, as seen in Figure 4.5. The only difference is that we do not need the UE’s WiFi

interface for now since only the LTE CQI data are required.

The FlexRAN Controler plays a vital role in the data collection process. First, we deploy

the complete topology of Figure 4.5 and start the experiment. We obtain a random attenuation

scenario (a car route) from the augmented data available and start configuring the USRP’s

attenuation accordingly. Meanwhile, we continuously parse the UE’s CQI values with the

ML & AI unit hosted on the FlexRAN Controller’s node. To achieve this, we periodically

send a GET request to the Controller inquiring about the based station’s statistics. Then we

extract the CQI value from the returned JSON and store it in a CSV. This process continues

4.3 Data 41

Figure 4.5: Nitos Testbed Data Collection Architecture

Figure 4.6: Collected CQI data.

until the attenuation scenario is completed (about 2500 CQI values). In this way, we get the

CQI data for one scenario corresponding to one car that passes the city pathway.

Repeating this methodology many times, we collect approximately 70 scenarios corre­

sponding to 70 different cars passing the specific road. Finally, we build 70 univariate time­

series sequences with a total of 182.000 CQI values. Figure 4.6 depicts five of them, showing

slight differences from car to car. Additionally, focusing on the first sequence of the figure,

we can spot the first transition when the CQI drops (entering an area with poor coverage)

at about 600 seconds and the second phase when the CQI rises (leaving the area with poor

coverage) at about 2100 seconds. In this way, we build the final data that represent realistic

car behaviors on a specific city road.

42 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

Figure 4.7: CQI Data Pre­processing: Sequence Flattening & Sliding Window Techniques

4.3.5 CQI Data Pre­processing

To begin the data pre­processing, we normalize the sequence. Generally, the large inputs

in the unscaled data restrain the network’s learning and convergence and, in certain situations,

prevent it from learning correctly. Our data range is not so large since it is from 0 to 15.

Nevertheless, we rescale them to the range [0,1] to boost model training and efficiency.

As a next step, we shrink the data sequences’ lengths (N), assisting in better data handling

by the model. Precisely, we flatten the time sequences by continuously collecting the means

for windows with length m, as shown in Figure 4.7. In our case, m’s optimal value is 4,

resulting in flattened sequences with N /4 length.

Then, we form the flattened sequences in such a way to feed them appropriately in a

model. Specifically, we utilize a sliding window technique transforming the time­series fore­

casting problem to a supervised one, as illustrated in Figure 4.7. More accurately, we obtain

one flattened sequence and split it into several sub­sequences based on a sliding window with

length 100. Hence, the model’s input is a univariate time­series window with a length 100

corresponding to 400 non­flattened sequence values. At the same time, the output is a single

continuous value, representing the predicted CQI as a mean of the following 15 flattened

CQI values corresponding to 60 non­flattened values. To summarize, we practically obtain

4.4 Searching and Evaluation of ML & AI Algorithms 43

Figure 4.8: Time Series Cross­Validation Technique: Every square represents one Fold. This

figure shows five iterations where we increase the training set by one Fold and use the fol­

lowing one for validation. In the end, we obtain the mean of all validation errors.

400 non­flattened values and predict the mean of the next 60 continuously by flattening and

feeding them into the model.

4.4 Searching and Evaluation of ML & AI Algorithms

This section investigates numerous machine and deep learning techniques to find the best

model for fitting the data. Beginning from simple linear algorithms like Linear Regression,

we reach to employing complicated neural network architectures such as LSTMs utilizing the

Tensorflow­Keras API. We use all the augmented traffic scenarios available as training data

while employing the basic non­augmented scenario only for validation. In general, we grid­

search and tune the hyperparameters for every algorithm to find its best version and follow a

2­step evaluation technique.

Every tested model has its subsection where we implement and evaluate it. As first­step

evaluation, we implement a time­series cross­validation technique based on K­fold cross­

validation but designed to keep the time sequence, as shown in Figure 4.8. Specifically, we

split the augmented sequences (training data) equally in folds and create two sets, the training,

and the validation set. Then, on every iteration, we increase the training set by appending one

following Fold, and we use its next one for validation. Finally, we obtain the mean of all

validation errors, calculating the final model validation value. From now on, we refer to this

step as cross­evaluation.

As a second evaluation step, we utilize the obtained CQI values from the basic non­

44 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

augmented car route scenario, which was excluded from the training set. We will use these

data for the final experiment on the Testbed, validating the model’s generalization to unseen

data. From now on, we refer to this step as generalization evaluation.

Both these steps are highly essential for the overall model evaluation. The generalization

one allows us to measure how well the model finds the pattern in unseen and unaugmented

data since it is only trained on the augmented scenarios. It also indicates the model’s perfor­

mance on the data used for the experiment. Finally, the cross­evaluation shows us the model’s

ability to find the pattern in the augmented data adapting to new unseen fluctuations.

Every model is trained and evaluated utilizing the Google Colab Notebooks using a non­

premium subscription with a TPU backend for faster model analysis. We also measure its

training time as another important metric for finding the faster one. Thus, we need to keep

this configuration in mind when studying the evaluation results for every algorithm.

4.4.1 Linear Regression

Linear Regression is a basic algorithm used for regression problems in machine learning

assuming a linear relationship between the predictors [18]. The mathematical formula for the

simple univariate linear regression with one explanatory variable is:

ŷi = w0 + w1 ∗ xi + ϵi, (4.1)

where ŷi is the dependent variable, xi is the explanatory variable, w0 is the intercept, w1 is

the slope and ϵi is the random noise for instance i. We generally consider the input a dataset

with n instances­rows described by p explanatory variables. When p > 1, the multiple linear

regression formula is:

ŷi = w0 + w1 ∗ xi1 + w2 ∗ xi2 + ...+ wn ∗ xin + ϵi (4.2)

ŷi = w0 +

p∑
j=1

(wj ∗ xij) + ϵi (4.3)

The w1 can be interpreted as the average effect on ŷi of a one­unit increase in xi1, holding all

other predictors fixed.

The model fits the data by calculating all the appropriate wj and w0 coefficients that min­

imize a cost function. Specifically, the most common fitting technique is the Least Squares

that minimizes the residual sum of squared errors (RSS).

RSS =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(
yi −

p∑
j=1

wj ∗ xij − w0

)2

, (4.4)

4.4 Searching and Evaluation of ML & AI Algorithms 45

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Linear Regression Basic Scenario Model Evaluation

yhat y

Figure 4.9: Linear Regression Generaliza­

tion Evaluation

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

MAE RMSE

E
rr

o
r

V
a

lu
e

Augmented Scenarios Model Evaluation

Figure 4.10: Time Series Cross­Validation

Evaluation of Linear Regression Model.

where yi are the real expected values and the ŷi are the predictions.

In our case, the model’s input window forms a multivariate vector with a length of 100,

as mentioned in section 4.3.5. Thus, we employ the scikit­learn multiple linear regression

implementation for data fitting [19]. Figure 4.9 illustrates the results for the generalization

evaluation on the basic non­augmented traffic scenario. The calculated MAE is 1.24, while

the MSE is 2.72.

Figure 4.10 shows the cross­evaluation results on the augmented scenarios. Specifically,

we implement a 20­Fold time­series evaluation with Folds of 500 values. We repeat it for 10

iterations to acquire enough confidence for the validity of the results. Finally, the distributions

of theMAE andMSE are shown in Figure 4.10, with the median cross­evaluationMAE being

1.19, while the MSE is 2.39. Understandably, the model does not fit the data optimally.

On the timing side, the measurements show that the model fits the data quickly. Precisely,

the cross­evaluation duration is 70 seconds, while the training­data fitting duration is 0.4

seconds.

4.4.2 Ridge Regression

Ridge Regression or L2 Regularization is a regularization technique for Linear Regres­

sion. The main drawback of Linear Regression is instability in minimizing the RSS when

highly correlated variables exist. Precisely, it can lead to growing large positive wj coeffi­

cient values on some variables and large negative on others, creating a high variance or an

overfitting model.

L2 Regularization inserts a penalty term proportional to the squared values of wj (ex­

46 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900

M
A

E

alpha

L2-Regularization Hyperparameter Grid-Search

Figure 4.11: Ridge Regression Grid­Searching of Hyperparameter alpha.

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Ridge Regression Basic Scenario Model Evaluation

yhat y

Figure 4.12: Ridge Regression Generalization Evaluation with alpha = 3

cluded w0) in the cost function to address this problem:

RSSL2 =
n∑

i=1

(
yi −

p∑
j=1

xij ∗ wj − w0

)2

+ λ

p∑
j=1

w2
j , (4.5)

This way, it controls the size of the coefficients providing numerical stability and increasing

predictive performance.

We implement Ridge Regression utilizing the scikit­learn library [20]. Moreover, we ap­

ply a 25­Fold time series cross­evaluation with Folds of 200 values. For finding the optimal

regularization hyperparameter λ (alpha in scikit­learn documentation), we grid­search mul­

tiple values from 0 to 900, as shown in Figure 4.11. However, there are no significant MAE

changes for almost all tested values except the last large ones, where the MAE rises. Thus,

we randomly choose one of the first values and precisely the value 3.

We evaluate the model by calculating the median cross­evaluation MAE to be 1.18, while

the MSE is 2.45. Additionally, Figure 4.12 illustrates the results for the generalization eval­

4.4 Searching and Evaluation of ML & AI Algorithms 47

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900

M
A

E

alpha

L1-Regularization Hyperparameter Grid-Search

Figure 4.13: Lasso Regression Grid­Searching of Hyperparameter alpha.

uation on the basic non­augmented traffic scenario. The calculated MAE is 1.24, while the

MSE is 2.72. As a result, the model does not fit the data efficiently.

On the timing side, the measurements show that the model fits the data fast. Precisely,

the cross­evaluation duration is 86 seconds, while the training­data fitting duration with the

final hyperparameter is 0.1 seconds.

4.4.3 Lasso Regression

Lasso Regression or L1 Regularization is also a regularization technique for Linear Re­

gression that overcomes the disadvantages of L2 Regularization. Precisely, despite the latter’s

benefits, the L2­norm does not encourage sparsity, resulting in non­zero and ofter similar

coefficient values. On the other hand, L1 Regularization provides a regularized feature se­

lection approach by minimizing the irrelevant features resulting, this way, on a low variance

non­overfitting model. By replacing the L2 norm with the L1 one in equation 4.5, the Lasso

Regression’s cost function becomes:

RSSL1 =
n∑

i=1

(
yi −

p∑
j=1

xij ∗ wj − w0

)2

+ λ

p∑
j=1

|wj|, (4.6)

We implement Lasso Regression utilizing the scikit­learn library [21] and use a 25­Fold

time series cross­evaluation with Folds of 200 values. For finding the optimal regularization

hyperparameter λ (alpha in scikit­learn documentation), we grid­search multiple values from

0.1 to 900, as shown in Figure 4.13. However, all tested values give huge MAE values. Thus,

we randomly choose the value 0.1.

48 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Lasso Regression Basic Scenario Model Evaluation

yhat y

Figure 4.14: Lasso Regression Generalization Evaluation with alpha = 0.1

We calculate the median cross­evaluation MAE equal to 2.4, while the MSE is 6.7. Ad­

ditionally, Figure 4.14 illustrates the results for the generalization evaluation on the basic

non­augmented traffic scenario with the alpha to be 0.1. The calculated MAE is 2.55, while

the MSE is 7.77. We conclude that the model completely fails to fit the data.

On the timing side, the measurements show that the model fits the data fast. Precisely,

the cross­evaluation duration is 66 seconds, while the training­data fitting duration with the

final hyperparameter is 0.08 seconds.

4.4.4 Elastic Net Regression

Elastic Net Regularization is also a regularization technique for Linear Regression pro­

posed to solve Lasso Regression’s restrictions [22]. Specifically, one drawback of Lasso is

that its feature selection may be unstable since it is too dependent on data. Also, it is unable

to perform grouped selection since it only picks a single variable from a group of similar

features.

The solution is combining L2 and L1 Regularization to obtain the benefits of both worlds.

Thus, Elastic Net’s cost function is:

RSSElasticNet =

∑n
i=1

(
yi −

∑p
j=1 xij ∗ wj − w0

)2
2n

+ λ(
1− a

2

p∑
j=1

w2
j + a

p∑
j=1

|wj|) (4.7)

Here, there are two tunable hyperparameters, the λ and the α. The λ is the regularization

strength as in Ridge and Lasso Regression, while the α is the mixing parameter between L2

(α=0) and L1 (α=1) Regularizations. With the appropriate tuning of the hyperparameters,

4.4 Searching and Evaluation of ML & AI Algorithms 49

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
A

E

Alpha - L1_ratio Combination

Elastic Net Regularization Hyperparameter Grid-Search

Figure 4.15: Elastic Net Regression Grid­Searching of Hyperparameters alpha and l1_ratio.

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Elastic Net Regression Basic Scenario Model Evaluation

yhat y

Figure 4.16: Elastic Net Regression Generalization Evaluation with alpha = 0.01 and l1_ratio

= 0.01

we could utilize L1 to generate a sparse model and the quadratic part (L2) to encourage the

grouping effect and the L1 feature selection stability.

We implement Elastic Net Regularization utilizing the scikit­learn library [23] and use

a 25­Fold time series cross­evaluation with Folds of 200 values. The hyperparameter λ is

the alpha in the sklearn documentation, and the α is the l1_ratio. For finding the optimal

regularization hyperparameters, we grid­search multiple combinations for α and l1_ratio, as

shown in Figure 4.15. The best one is the first with α and l1_ratio equal to 0.01.

Using these values, we find that the median cross­evaluation MAE equals 1.2, while the

MSE is 2.47. Additionally, Figure 4.16 illustrates the results for the generalization evaluation

on the basic non­augmented traffic scenario. The calculated MAE is 1.27, while the MSE is

2.78. In conclusion, the model is not able to fit the data optimally.

On the timing side, the measurements show that the model fits the data fast. Precisely,

50 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

2nd-order Polynomial Regression Basic Scenario Model Evaluation

yhat y

Figure 4.17: Polynomial Regression Gener­

alization Evaluation with 2nd­order Degree

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1st 2nd

M
A

E

Degree Order

Polynomial Regression Degree Order
Hyperparameter Grid-Search

Figure 4.18: Polynomial Regression Model

Grid­Searching of Hyperparameter degree

the cross­evaluation duration is 106 seconds, while the training­data fitting duration with the

final hyperparameters is 0.09 seconds.

4.4.5 Polynomial Regression

Polynomial Regression is a technique to fit non­linear data by utilizing polynomial equa­

tions [24] [25]. Nevertheless, it is a linear estimation since the coefficients come from a linear

regression function E(y|x). Thus, it is considered a special case of Linear Regression. The

mathematical formula for a simple univariate polynomial regression is:

ŷi = w0 + w1 ∗ xi + w2 ∗ x2
i + w3 ∗3i +...+ wn ∗ xn

i , (4.8)

ŷi = w0 +
n∑

k=1

wk ∗ xk
i , (4.9)

where n is the order of the polynomial.

Polynomial Regression can also be applied to multiple regression variables, called mul­

tivariate polynomial regression. The mathematical formula for a second­order polynomial

regression with two regression variables is:

ŷi = w0 + w1 ∗ xi1 + w2 ∗ xi2 + w11 ∗ x2
i1 + w22 ∗ x2

i2 + w12 ∗ xi1 ∗ xi2 + ϵi, (4.10)

where the w0 + w1 ∗ xi1 + w2 ∗ xi2 is the linear component, the w11 ∗ x2
i1 + w22 ∗ x2

i2 is the

quadratic component and the w12 ∗ xi1 ∗ xi2 is the cross product or interaction component.

We implement Polynomial Regression by utilizing the scikit­learn library and the Linear

Regression. We use a 5­Fold time series cross­evaluation with Folds of 1000 values since

4.4 Searching and Evaluation of ML & AI Algorithms 51

the polynomial training is more time­demanding from the previous implementations. To find

the optimal regularization hyperparameter degree, we grid­search two values (1st and 2nd

degrees) as shown in Figure 4.18. We avoid testing higher­order polynomials because they

demand prohibitively huge memory capacity and training time that do not scale.

The results indicate that the optimal polynomial order is 2.We calculate the median cross­

evaluation MAE equal to 0.47, while the MSE is 0.39. Additionally, Figure 4.17 illustrates

the results for the generalization evaluation on the basic non­augmented traffic scenario. The

calculated MAE is 0.53, while the MSE is 0.47. We conclude that the model fits the data with

high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data sufficiently fast.

Precisely, the cross­evaluation duration is 989 seconds (16.5 mins), while the training­data

fitting duration with the final hyperparameter is 214 seconds (3.5 mins).

4.4.6 ARIMA

ARIMA stands for Autoregressive Integrated Moving Average and is one of the most

widely used forecasting models for univariate time series data forecasting. It is a generaliza­

tion of the simpler AutoRegressiveMoving Average incorporating the concept of integration.

Its key characteristics are:

• Autoregression (AR): An algorithm utilizing the dependent relationship between the

observation and several lagged observations. The lag order is specified as the p param­

eter.

• Integrated (I): A method to make the time series stationary by employing the differ­

encing of the observations, for instance, subtracting an observation from another one

at a preceding time slot. The degree of differencing is specified as the d parameter.

• Moving Average (MA): An algorithm exploiting the relationship between an obser­

vation and the residual error of a moving­average algorithm applied to lagged obser­

vations. The order of moving average is specified as the q parameter.

ARIMA models are very robust when dealing with the trend in a time series, but they

do not support seasonality handling. Thus, there is an extension of the ARIMA supporting

seasonality modeling called the SARIMA model.

52 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

E

(p, d, q) Combinations

ARIMA Hyperparameters Grid-Search

Figure 4.19: ARIMA Hyperparameter Grid­

Searching.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1st 2nd 3rd 4th 5th 6th 7th

M
A

E

(p, d, q) (P, D, Q, m) Combinations

SARIMA Hyperparameters Grid-Search

Figure 4.20: Seasonal ARIMAHyperparam­

eter Grid­Searching.

Seasonal Autoregressive Integrated Moving Average (SARIMA) or Seasonal ARIMA

incorporates three new additional hyperparameters (P , D, Q) for the seasonal part, related

to the autoregression (AR), the differencing (I), and the moving average (MA). Moreover, it

specifies another hyperparameterm for the seasonality interval.

In our implementation, we employ both Seasonal [26] and simple ARIMA [27] to find

which fits our data in the best way. To do that, we need to merge all the time series available,

creating a large univariate sequence. Then, we flatten it following the same procedure as

described in the pre­processing section(4.3.5). After analyzing the autocorrelation plot, we

grid­search various combinations both for the ARIMA’s (p,d,q) values and for the SARIMA’s

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

C
Q

I

Time (flattened unit)

ARIMA (p=2, d=1, q=2) Basic Scenario Model Evaluation

yhat y

Figure 4.21: ARIMA (p=2, d=1, q=2) Generalization Evaluation.

4.4 Searching and Evaluation of ML & AI Algorithms 53

Figure 4.22: One­Dimensional Linear Support Vector Regression

(p,d,q) and (P , D, Q, m) values, as shown in Figures 4.19 and 4.20, to find the optimal

hyperparameters by using a 5­Fold time series cross­evaluation with Folds of 100 values.

The results show that the ARIMA outperforms the SARIMAmodel in terms of the Mean

Absolute Error. Thus, we chooseARIMA’s best combination of parameters for fitting the data,

including p equals 2, d equals 1, and q equals 2. The calculated median cross­evaluationMAE

equals 1.05. Additionally, Figure 4.21 illustrates the results for the generalization evaluation

on the basic non­augmented traffic scenario. The calculated MAE is 1.07, while the MSE is

2.64. We conclude that the model does not fit the data optimally.

On the timing side, the measurements show that the model does not fit the data fast.

Precisely, the training­data fitting duration is 192 seconds, with the model fitted only in 20%

of the training data. That means that the model’s fitting could last up to 1000 seconds (16.5

mins) for the complete training set. Moreover, a considerable drawback of ARIMA models

for our framework is the need for repeated data fitting before every prediction. This need

dramatically slows the prediction process, making it difficult for real­time applications.

4.4.7 Support Vector Regression

Support Vector Regression (SVR) is an efficient regression method based on the Support

Vector Machines (SVMs) used for classification [28]. It is a generalization of the latter, pro­

ducing a continuous output value. The univariate one­dimensional approximation function is

shown in Figure 4.22, and the mathematical formula is given below:

y =
M∑
j=1

wjxj + b, (4.11)

54 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

SVR Basic Scenario Model Evaluation

yhat y

Figure 4.23: SVR Generalization Evaluation

with C = 10

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 10 100 1000

M
A

E

C

SVR C Regularization Hyperparameter Grid-Search

Figure 4.24: SVR Model Grid­Searching of

Regularization Hyperparameter C

where y, b ∈ R and x,w ∈ RM . For the multivariate equation, to simplify the formula,

include b in the w and increase x by one.

y =

w
b

T x
1

 = wTx+ b,

where x,w ∈ RM+1.

It is an optimization problem trying to find the narrowest tube centered around the surface

while minimizing the prediction error, in other words, the distance between the predictions

and the real values. Thus, the optimization function is:

minw
1

2
∥ w ∥2 (4.12)

Implementing a soft­margin approach similar to SVMs, slack variables ξ,ξ∗ are employed to

specify the number of the tolerated outliers. This way, the optimization function becomes:

minw
1

2
∥ w ∥2 +C

N∑
i=1

ξi + ξ∗i , (4.13)

subject to

yi − wTxi ≤ ϵ+ ξ∗i , i = 1, ..., N (4.14)

wTxi − yi ≤ ϵ+ ξi, i = 1, ..., N (4.15)

ξi, ξ
∗
i ≥ 0, i = 1, ..., N (4.16)

The C is the regularization parameter giving more weight in minimizing the error.

4.4 Searching and Evaluation of ML & AI Algorithms 55

We implement Support Vector Regression by utilizing the scikit­learn library [29] using

a 4­Fold time series cross­evaluation with Folds of 200 values. To find the optimal regular­

ization hyperparameter C, we grid­search four values (1, 10, 100, 1000), as shown in Figure

4.24, while employing an RBF kernel.

The results indicate that a good choice is C equals 10. We calculate the median cross­

evaluation MAE equal to 0.69, while the MSE is 0.59. Additionally, Figure 4.23 illustrates

the results for the generalization evaluation on the basic non­augmented traffic scenario. The

calculated MAE is 0.73, while the MSE is 0.80. We conclude that the model fits the data with

high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data fast. Precisely, the

cross­evaluation duration is 2887 seconds (48 mins), while the training­data fitting duration

with the final hyperparameter is 139.1 seconds (2.5 mins).

4.4.8 k­Nearest Neighbors

k­Nearest Neighbors or kNN is a simple algorithm used for classification but could also

be applied to regression problems when the data labels are continuous rather than discrete

variables. The kNN regression model stores all the training data and make predictions by

calculating the average value from the input’s k nearest neighbors in the training set. The

number of the nearest neighbors (k) used is a hyperparameter and needs to be configured

appropriately. kNN calculates the k nearest neighbors utilizing a distance function such as:

• Euclidean Distance: √√√√ n∑
i=1

(xi − yi)2

• Manhattan Distance:
n∑

i=1

|xi − yi|

• Minkowski Distance: (
n∑

i=1

|xi − yi|p
)1/p

We implement kNN by utilizing the scikit­learn library [30] using a 10­Fold time series cross­

evaluation with Folds of 500 values. We grid­search several values to find the optimal hy­

perparameter k, as shown in Figure 4.26.

56 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

k-NN Basic Scenario Model Evaluation

yhat y

Figure 4.25: k­NN Generalization Evalua­

tion with k = 23

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 5 10 15 20 25 30

M
A

E

k

k-NN Hyperparameter Grid-Search

Figure 4.26: k­NNModel Grid­Searching of

Regularization Hyperparameter k

The results indicate that the optimal choice is k equals 23. We calculate the median cross­

evaluation MAE equal to 0.19, while the MSE is 0.18. Additionally, Figure 4.25 illustrates

the results for the generalization evaluation on the basic non­augmented traffic scenario. The

calculated MAE is 0.175, while the MSE is 0.054. We conclude that the model fits the data

with extremely high accuracy, making it an excellent choice.

On the timing side, the measurements show that the model fits the data fast. Precisely,

the cross­evaluation duration is 0.47 seconds, while the training­data fitting duration with

the final hyperparameter is 0.007 seconds. Nevertheless, these values are misleading since

the kNN is a non­parametric algorithm that does not calculate coefficients or weights. On

the contrary, it just stores the training data and calculates the distances only at the prediction

time. This technique is a considerable drawback when used on real­time applications since

the prediction time could be dramatically slowed down depending on the amount of training

data.

4.4.9 Decision Tree

Decision Tree is one of the most widely used machine learning techniques deployed in

classification and regression analysis [31]. A decision tree is a specific type of flowchart

structure consisting of several decision­making nodes leading to a final prediction value based

on decision thresholds rules.

Regression Decision Tree’s target is to predict a continuous variable by combining de­

cision trees and linear regression. Precisely, they receive input features and apply decision

and splitting rules based on an efficient recursive partitioning algorithm utilizing a least­

4.4 Searching and Evaluation of ML & AI Algorithms 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
A

E

Combinations of max_depth, max_features, min_samples_leaf and max_leaf_nodes

Decision Tree Hyperparameter Grid-Search

Figure 4.27: Decision Tree Model Grid­Searching

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Decision Tree Basic Scenario Model Evaluation

yhat y

Figure 4.28: Decision Tree Generalization Evaluation with max_features = 10 and

min_samples_leaf = 1

squares criterion. There are various decision tree algorithms for regression, such as CART

and CHAID, that assign a constant mean leaf value. Moreover, RETIS and M5 algorithms

utilize linear regression models at the leaves.

We implement Decision Tree Regression by utilizing the scikit­learn library [32]. We use

a 10­Fold time series cross­evaluation with Folds of 500 values. To find the optimal regular­

ization hyperparameters, we grid­search various combinations of max_depth, max_features,

min_samples_leaf, and max_leaf_nodes, as shown in Figure 4.27.

The results indicate that the optimal tuning is with max_features equals 10, and with

min_samples_leaf equals 1, configuring all the others to their default value. We calculate

the median cross­evaluation MAE equal to 0.26, while the MSE is 0.39. Additionally, Figure

4.28 illustrates the results for the generalization evaluation on the basic non­augmented traffic

scenario. We see some prediction fluctuations­bursts at some points, but the overall accuracy

seems high. The calculatedMAE is 0.378, while theMSE is 0.48.We conclude that the model

58 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Random Forest Basic Scenario Model Evaluation

yhat y

Figure 4.29: Random Forest Generalization

Evaluation with n_estimators = 200

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

10 100 200

M
A

E

n_estimators

Random Forests
Hyperparameter Grid-Search

Figure 4.30: Random Forest Model Grid­

Searching

fits the data with high accuracy, making it a very good choice.

On the timing side, the measurements show that the model fits the data very fast. Pre­

cisely, the cross­evaluation duration is 200 seconds (3.5 mins), while the training­data fitting

duration with the final hyperparameters is 0.36 seconds.

4.4.10 Random Forest

Random Forests are an ensemble technique utilized for both classification and regression

tasks. They are widely used and considered a very robust algorithm since they outperform

many other approaches, including Decision Trees. The main principle of Random Forests is

using multiple Decision Trees (a forest) at training time. The regression output is the average

of all these trees’ predictions resulting, this way, in higher precision avoiding the overfitting.

Random Forests utilize the bagging ensemble approach, also called Bootstrap Aggrega­

tion, commonly used to reduce the variance in a noisy dataset. Precisely, many subsamples of

a training set are chosen with replacement (some data points more than once) forming several

training subsets. Subsequently, week learners are trained on them, and finally, the results are

aggregated to construct the average output for the regression problems, resulting in better

performance.

We implement Random Forest Regression by utilizing the scikit­learn library [33]. We

use a 4­Fold time series cross­evaluation with Folds of 500 values. To find the optimal hyper­

parameter n_estimators, we grid­search three values (10, 100, and 200), as shown in Figure

4.30.

The results indicate that the optimal value is 200.We calculate themedian cross­evaluation

4.4 Searching and Evaluation of ML & AI Algorithms 59

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Scikit-learn Bagging Basic Scenario Model Evaluation

yhat y

Figure 4.31: Scikit­learn Bagging General­

ization Evaluation with n_estimators =

200

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

10 100 200

M
A

E

n_estimators

Scikit-learn Bagging
Hyperparameter Grid-Search

Figure 4.32: Scikit­learn Bagging Model

Grid­Searching

MAE equal 0.20, while the MSE is 0.13. Additionally, Figure 4.29 illustrates the results for

the generalization evaluation on the basic non­augmented traffic scenario. We see some pre­

diction fluctuations­bursts at some points, but the overall accuracy seems high. The calcu­

lated MAE is 0.34, while the MSE is 0.275. We conclude that the model fits the data with

high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data sufficiently fast.

Precisely, the cross­evaluation duration is 2816 seconds (30.5 mins), while the training­data

fitting duration with the final hyperparameter is 469 seconds (7.8 mins). Both training and

prediction times are significantly affected by the number of estimators. Thus, if necessary,

we could also choose lower estimator values since we need a real­time implementation.

4.4.11 Bagging Scikit­learn

Scikit­learn library provides its own implementation for the BootstrapAggregation scheme

[34]. We will deploy it for comparison with the other methods in order to find the best ap­

proach for fitting our data. We use a 4­Fold time series cross­evaluation with Folds of 500

values. To find the optimal hyperparameter n_estimators, we grid­search three values (10,

100, and 200), as shown in Figure 4.32.

The results indicate that the optimal value is 200.We calculate themedian cross­evaluation

MAE equal 0.20, while the MSE is 0.13. Additionally, Figure 4.31 illustrates the results for

the generalization evaluation on the basic non­augmented traffic scenario. The calculated

MAE is 0.315, while the MSE is 0.24. We conclude that the model fits the data with high

60 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

XGBoost Basic Scenario Model Evaluation

yhat y

Figure 4.33: XGBoost Generalization Eval­

uation with n_estimators = 10000

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 100 1000 10000

M
A

E

n_estimators

XGBoost
Hyperparameter Grid-Search

Figure 4.34: XGBoost Model Grid­

Searching

accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data fast. Precisely, the

cross­evaluation duration is 3019 seconds (50.5 mins), while the training data fitting duration

is 481 seconds (8 mins).

4.4.12 XGBoost

XGBoost or Extreme Gradient Boosting is one of the top algorithms in terms of perfor­

mance and precision [35]. It is an open­source library that implements the gradient boosting

algorithm in an efficient manner.

Gradient Boosting is an ensemble approach applied to classification and regression tasks.

The main principle is boosting, where an ensemble model is constructed based on decision

trees, and new ones are continuously fitted to correct the current prediction error. It also

utilizes various differentiable loss functions and gradient descent optimization methods.

We implement XGBoost Regression by utilizing the xgboost library [36].We use a 4­Fold

time series cross­evaluation with Folds of 500 values. To find the optimal hyperparameter

n_estimators, we grid­search four values (10, 100, 1000, and 10000), as shown in Figure

4.34.

The results indicate that the optimal value is 10000. We calculate the median cross­

evaluation MAE equal 0.33, while the MSE is 0.20. Additionally, Figure 4.33 illustrates

the results for the generalization evaluation on the basic non­augmented traffic scenario. The

calculated MAE is 0.384, while the MSE is 0.40. We conclude that the model fits the data

with high accuracy, making it a good choice.

4.4 Searching and Evaluation of ML & AI Algorithms 61

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

LightGBM Basic Scenario Model Evaluation

yhat y

Figure 4.35: LightGBM Generalization

Evaluation with n_estimators = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 100 1000 10000

M
A

E

n_estimators

LightGBM
Hyperparameter Grid-Search

Figure 4.36: LightGBM Model Grid­

Searching

On the timing side, themeasurements show that themodel does not fit the data sufficiently

fast. Precisely, the cross­evaluation duration is 4228 seconds (1 hour and 10 mins), while the

training­data fitting duration with the final hyperparameter is 954.5 seconds (15.9 mins).

Finally, the prediction time is very fast despite the large number of estimators.

4.4.13 LightGBM

LightGBM is another popular implementation of the gradient boosting approach [37].

Precisely, it is a tree­based algorithm developed for distributed and faster performance. By

incorporating automatic feature selection and also focusing on samples with larger gradients,

LightGBM is able to speed up the training and enhance the prediction accuracy.

We implement LightGBM Regression by utilizing the lightgbm library. We use a 4­Fold

time series cross­evaluation with Folds of 500 values. To find the optimal hyperparameter

n_estimators, we grid­search four values (10, 100, 1000, and 10000), as shown in Figure

4.36.

The results indicate that the optimal value is 1000.We calculate themedian cross­evaluation

MAE equal 0.24, while the MSE is 0.13. Additionally, Figure 4.35 illustrates the results for

the generalization evaluation on the basic non­augmented traffic scenario. The calculated

MAE is 0.319, while the MSE is 0.20. We conclude that the model fits the data with high

accuracy, making it a very good choice.

On the timing side, the measurements show that the model fits the data extremely fast.

Precisely, the cross­evaluation duration is 654 seconds (11 mins), while the training­data

fitting duration is 17 seconds.

62 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Scikit-learn GBM Basic Scenario Model Evaluation

yhat y

Figure 4.37: Scikit learn GBM Generaliza­

tion Evaluation with n_estimators = 1000

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 100 1000

M
A

E

n_estimators

Scikit-learn GBM
Hyperparameter Grid-Search

Figure 4.38: Scikit learn GBM Model Grid­

Searching

4.4.14 GBM Scikit­learn

Scikit­learn library provides its own implementation for the Gradient Boosting scheme

[38]. We will deploy it for comparison with the other methods in order to find the best ap­

proach for fitting our data. We use a 4­Fold time series cross­evaluation with Folds of 500

values. To find the optimal hyperparameter n_estimators, we grid­search three values (10,

100, 1000), as shown in Figure 4.38.

The results indicate that the optimal value is 1000.We calculate themedian cross­evaluation

MAE equal 0.43, while the MSE is 0.35. Additionally, Figure 4.37 illustrates the results for

the generalization evaluation on the basic non­augmented traffic scenario. The calculated

MAE is 0.449, while the MSE is 0.37. We conclude that the model fits the data with high

accuracy, making it a good choice.

On the timing side, the measurements show that the model does not fit the data fast.

Precisely, the cross­evaluation duration is 2463 seconds (41 mins), while the training­data

fitting duration is 572 seconds (9.5 mins).

4.4.15 CatBoost

CatBoost is another open­source implementation of the gradient boosting approach on

decision trees [39]. Its main benefits are great performance without the need for excessive

hyperparameter tuning, improved categorical feature handling, scalable GPU support, among

many others. We implement CatBoost Regression by utilizing the catboost library. We use a

4­Fold time series cross­evaluation with Folds of 500 values. To find the optimal hyperpa­

4.4 Searching and Evaluation of ML & AI Algorithms 63

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

CatBoost Basic Scenario Model Evaluation

yhat y

Figure 4.39: CatBoost Generalization Eval­

uation with n_estimators = 10000

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 100 1000 10000

M
A

E

n_estimators

CatBoost
Hyperparameter Grid-Search

Figure 4.40: CatBoost Model Grid­

Searching

rameter n_estimators, we grid­search four values (10, 100, 1000, and 10000), as shown in

Figure 4.40.

The results indicate that the optimal value is 10000. We calculate the median cross­

evaluation MAE equal 0.23, while the MSE is 0.11. Additionally, Figure 4.39 illustrates the

results for the generalization evaluation on the basic non­augmented traffic scenario. The cal­

culated MAE is 0.286, while the MSE is 0.14. We conclude that the model fits the data with

high accuracy, making it an excellent choice.

On the timing side, the measurements show that the model fits the data fast. Precisely, the

cross­evaluation duration is 1234 seconds (20.5 mins), while the training­data fitting duration

is 278 seconds (4.5 mins).

4.4.16 AdaBoost

AdaBoost or Adaptive Boosting is one of the first algorithms developed following the

Boosting scheme. Precisely, in order to build an ensemble model, it utilizes numerous Deci­

sion Stumps; small decision trees with only one split (root and two leaves).

We implement AdaBoost Regression by utilizing the scikit­learn library [40]. We use a

4­Fold time series cross­evaluation with a prediction window­fold of 500 values. To find the

optimal hyperparameter n_estimators, we grid­search three values (10, 100, and 1000), as

shown in Figure 4.42.

We choose 10 estimators since the results indicate that the model’s error increases as we

add more of them.We calculate the median cross­evaluationMAE equal 1.29, while theMSE

is 2.25. Additionally, Figure 4.41 illustrates the results for the generalization evaluation on

64 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

AdaBoost Basic Scenario Model Evaluation

yhat y

Figure 4.41: AdaBoost Generalization Eval­

uation with n_estimators = 10

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

10 100 1000

M
A

E

n_estimators

AdaBoost
Hyperparameter Grid-Search

Figure 4.42: AdaBoost Model Grid­

Searching

Figure 4.43: Feedforward Neural Network Structure

the basic non­augmented traffic scenario. The calculatedMAE is 1.30, while theMSE is 2.29.

We conclude that the model fails to fits the data optimally.

On the timing side, the measurements show that the model fits the data fast. Precisely, the

cross­evaluation duration is 2144 seconds (36 mins), while the training­data fitting duration

is 6 seconds.

4.4.17 Feedforward Neural Network

From now on, we apply deep learning techniques to extract the most information possible

from our data [41]. Feedforward Neural Networks (FNN) are the first simple Artificial Neural

Networks (ANN) that do not form node cycle connections and move forward from one layer

to the next.

Figure 4.43 illustrates the structure of NN, which consists of the input, several hidden, and

the output layers. In addition, every layer contains numerous neuron nodes that connect with

4.4 Searching and Evaluation of ML & AI Algorithms 65

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

Feedforward NN Basic Scenario Model Evaluation

yhat y

Figure 4.44: Feedforward NN Generaliza­

tion Evaluation

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 60

Flattening window time­steps (m) 4

Hyper­parameter Configuration

Layers 2 Hidden Dense + 1 Output Dense

Input Shape 100 (after flattening)

Hidden Neurons 25

Output Neurons 1

Activation Function ReLU for Hidden Layers

Optimizer Adam

Compile loss Mean Squared Error

Epochs 640

Batch_size 26

Table 4.1: Feedforward NN Configuration

nodes in prior and following layers with weighted edges. Every neuron calculates its weighted

input sum, and whether it is above or below a threshold value based on an activation function,

it produces the appropriate output to the next layer.

Feedforward Neural Networks utilize the backpropagation approach to reduce their pre­

diction error. Specifically, the model’s output is compared with the actual values, and the

error is fed back to the network. It traverses the opposite­backward direction, adjusting the

weights utilizing the gradient descent approach. This way, it finds the appropriate weights,

enhancing the model’s predictive performance.

We implement a Feedforward Neural Network utilizing the Tensorflow­Keras API [42].

After trying various hyperparameter combinations to find the optimal model structure, we

pick the values presented in Table 4.1. Since neural networks take a long time for training,

we do not implement a time­series cross­evaluation scheme but follow a training­validation

evaluation approach.

The calculated training MAE on the augmentation data is 0.02, while the MSE is 0.0011

indicating low bias. On the validation data from the basic non­augmented scenario, the mea­

sured MAE is 0.199, while the MSE is 0.069 showing low variance. Figure 4.44 shows the

model predictions on the validation data. In conclusion, there is a balance in the bias­variance

tradeoff leading to a successful model generalization to unseen data without under­/over­

fitting. On the timing side, we see that the model’s training is completed sufficiently fast.

Precisely, we train the model for 640 epochs, and the training finishes after 1141 seconds (19

mins).

66 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

LSTM Basic Scenario Model Evaluation

yhat y

Figure 4.45: LSTM Generalization Evalua­

tion

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 50

Flattening window time­steps (m) 4

Hyper­parameter Configuration

Layers 2 Hidden LSTM + 1 Output Dense

Input Shape (100,1)

Hidden Neurons 25

Output Neurons 1

Activation Function ReLU for Hidden Layers

Optimizer Adam

Compile loss Mean Squared Error

Epochs 20

Batch_size 26

Table 4.2: LSTM Configuration

4.4.18 Long short­term memory (LSTM)

Long Short­Term Memory (LSTM) networks are a specific type of Recurrent Neural

Networks (RNN) widely used for Time Series Forecasting and sequence prediction problems

[43]. They are very robust and often outperform other algorithms such as simple Feedforward

NNs by employingmemory components or conventional RNNs by dealing with the vanishing

gradient problem.

The key enabler of their success is their unique design. An LSTM layer comprises nu­

merous memory blocks which contain one or more recurrent memory cells and three units;

the input, output, and forget gates. These gates continuously provide write, read, and reset

methods to the cell based on the associated weights calculated during the training. This way,

the model is able to adapt appropriately to the problem at hand by memorizing values over

arbitrary time intervals.

We implement an LSTM Neural Network utilizing the Tensorflow­Keras API. After try­

ing various hyperparameter combinations to find the optimal model structure, we pick the

values presented in Table 4.2.

For the model evaluation, we follow a training­validation evaluation approach. The cal­

culated training MAE on the augmentation data is 0.023, while the MSE is 0.0014 indicating

low bias. On the validation data from the basic non­augmented scenario, the measured MAE

is 0.328, while the MSE is 0.228 showing low variance. Figure 4.45 shows the model predic­

tions on these data. In conclusion, there is a balance in the bias­variance tradeoff leading to

a successful model generalization to unseen data without under­/over­fitting. On the timing

side, we see that the model’s training is completed sufficiently fast. Precisely, we train the

4.4 Searching and Evaluation of ML & AI Algorithms 67

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

C
Q

I

Time (flattened unit)

Bidirectional LSTM Basic Scenario Model Evaluation

yhat y

Figure 4.46: Bidirectional LSTM General­

ization Evaluation

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 70

Flattening window time­steps (m) 5

Hyper­parameter Configuration

Layers 2 Hidden Bi­LSTM + 1 Output Dense

Input Shape (80,1)

Hidden Neurons 25

Output Neurons 1

Activation Function ReLU for Hidden Layers

Optimizer Adam

Compile loss Mean Squared Error

Epochs 55

Batch_size 26

Table 4.3: Bidirectional LSTM Configura­

tion

model for 20 epochs, and the training finishes after 1340 seconds (22 mins).

4.4.19 Bidirectional LSTM

Bi­directional LSTMs extend the simple LSTMs providing an additional reversed se­

quence learning. Precisely, the main idea is incorporating two recurrent layers side­by­side,

where the first one handles the original sequence as it is, while the second uses it in the oppo­

site direction. This way, the model could acquire information both from the past and future

simultaneously. This technique is utilized in various applications and often enables enhanced

predictive performance.

We implement a Bi­directional LSTM Neural Network utilizing the Tensorflow­Keras

API. After trying various hyperparameter combinations to find the optimal model structure,

we pick the values presented in Table 4.3.

For the model evaluation, we follow a training­validation evaluation approach. The cal­

culated training MAE on the augmentation data is 0.016, while the MSE is 0.0007 indicating

low bias. On the validation data from the basic non­augmented scenario, the measured MAE

is 0.157, while the MSE is 0.041 showing low variance. Figure 4.46 shows the model predic­

tions on these data. In conclusion, there is a balance in the bias­variance tradeoff leading to

a successful model generalization to unseen data without under­/over­fitting. On the timing

side, we observe that the model needs much time for training. Precisely, we train the model

for 55 epochs, and the training finishes after 3600 seconds (1 hour).

68 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

GRU Basic Scenario Model Evaluation

yhat y

Figure 4.47: GRUGeneralization Evaluation

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 60

Flattening window time­steps (m) 4

Hyper­parameter Configuration

Layers 2 Hidden GRU + 1 Output Dense

Input Shape (100,1)

Hidden Neurons 25

Output Neurons 1

Activation Function ReLU for Hidden Layers

Optimizer Adam

Compile loss Mean Squared Error

Epochs 55

Batch_size 26

Table 4.4: GRU Configuration

4.4.20 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is another popular type of Recurrent Neural Network sim­

ilar to LSTM. It utilizes a gated mechanism to form both long­ and short­term memory by

incorporating two gates, including the reset and the update gate. Thus, its difference from

LSTM is that it does not use an output gate employing, this way, less trainable parameters.

This approach often results in a similar performance to the LSTM but with faster training.

We implement a GRU Neural Network utilizing the Tensorflow­Keras API. After trying

various hyperparameter combinations to find the optimal model structure, we pick the values

presented in Table 4.4.

For the model evaluation, we follow a training­validation evaluation approach. The cal­

culated training MAE on the augmentation data is 0.019, while the MSE is 0.0010 indicating

low bias. On the validation data from the basic non­augmented scenario, the measured MAE

is 0.256, while the MSE is 0.117 showing low variance. Figure 4.47 shows the model predic­

tions on these data. In conclusion, there is a balance in the bias­variance tradeoff leading to

a successful model generalization to unseen data without under­/over­fitting. On the timing

side, we observe that the model needs much time for training. Precisely, we train the model

for 50 epochs, and the training finishes after 3315 seconds (55 mins).

4.4.21 Convolutional Neural Network (CNN)

Convolutional Neural Networks are a specific deep learning technique widely used in the

field of computer vision. One of their primary characteristics is the use of kernel filters to

4.4 Searching and Evaluation of ML & AI Algorithms 69

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

CNN Basic Scenario Model Evaluation

yhat y

Figure 4.48: CNNGeneralization Evaluation

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 60

Flattening window time­steps (m) 4

Hyper­parameter Configuration

Layers Conv1D, MaxPooling1D, Flatten, Dense_1 and Dense_2

Input Shape (10,10)

Conv1D filters=64, kernel_size=2, activation=ReLU

MaxPooling1D Layer pool_size=2

Dense_1 Layer 50 Neurons, activation=ReLU

Dense_2 Layer 1 Neuron (output)

Optimizer Adam

Compile loss Mean Squared Error

Epochs 490

Batch_size 26

Table 4.5: CNN Configuration

extract low­level features from the input data by constructing a feature map. Moreover, they

utilize pooling layers to extract dominant features, deal with the noise and perform dimen­

sionality reduction resulting, this way, in a more efficient and faster model training. Finally,

they also utilize fully connected layers and feed them with the information gathered from

prior layers to learn a suitable non­linear function.

We implement a CNN Neural Network utilizing the Tensorflow­Keras API. After trying

various hyperparameter combinations to find the optimal model structure, we pick the values

presented in Table 4.5.

For the model evaluation, we follow a training­validation evaluation approach. The cal­

culated training MAE on the augmentation data is 0.016, while the MSE is 0.0007 indicating

low bias. On the validation data from the basic non­augmented scenario, the measured MAE

is 0.210, while the MSE is 0.081 showing low variance. Figure 4.48 shows the model predic­

tions on these data. In conclusion, there is a balance in the bias­variance tradeoff leading to

a successful model generalization to unseen data without under­/over­fitting. On the timing

side, we observe that the model needs much time for training. Precisely, we train the model

for 490 epochs, and the training finishes after 1718 seconds (29 mins).

4.4.22 CNN­LSTM Neural Network

A hybrid approach consisting of both CNN and LSTM could result in a more robust

and enhanced model. This technique is widely used in many research fields, such as activity

recognition, image, and video description. The primary idea is to construct a type of encoder­

decoder model architecture. Precisely, the CNN handles the feature extraction procedure,

while the LSTM uses the features and analyzes their time sequence to make forecasting.

70 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

C
Q

I

Time (flattened unit)

CNN-LSTM Basic Scenario Model Evaluation

yhat y

Figure 4.49: CNN­LSTM Generalization

Evaluation

Pre­processing Configuration

Input time­steps (non­flattened) 400

Prediction time­steps (non­flattened) 60

Flattening window time­steps (m) 4

Hyper­parameter Configuration

Layers Conv1D, MaxPooling1D, Flatten, RepeatVector,

LSTM_1, LSTM_2, Dense

Input Shape (10,10)

Conv1D filters=64, kernel_size=3, activation=ReLU

MaxPooling1D Layer pool_size=2

RepeatVector Layer 1

LSTM_1 & LSTM_2 Layers 25 Neurons, activation=ReLU

Dense Layer 1 Neuron (output)

Optimizer Adam

Compile loss Mean Squared Error

Epochs 70

Batch_size 26

Table 4.6: CNN­LSTM Configuration

We implement a CNN­LSTMNeural Network utilizing the Tensorflow­Keras API. After

trying various hyperparameter combinations to find the optimal model structure, we pick the

values presented in Table 4.6.

For the model evaluation, we follow a training­validation evaluation approach. The cal­

culated training MAE on the augmentation data is 0.017, while the MSE is 0.0010 indicating

low bias. On the validation data from the basic non­augmented scenario, the measured MAE

is 0.148, while the MSE is 0.038 showing low variance. Figure 4.49 shows the model predic­

tions on these data. In conclusion, there is a balance in the bias­variance tradeoff leading to

a successful model generalization to unseen data without under­/over­fitting. On the timing

side, we observe that the model completes the training extremely fast. Precisely, we train the

model for 70 epochs, and the training finishes after 350 seconds (6 mins).

4.4.23 Models Comparison

Towards finding the optimalML&AImodel for our data, we have investigated numerous

algorithms with different designs and have seen both bad and excellent results. To better

understand the overall evaluation, we gather all the MAE values from the generalization

evaluation of every model in Figure 4.50. The values are sorted in a descending order based

on their validation MAE on the non­augmented generalization data (basic car route scenario

that was excluded from the training set).

To begin, the Lasso Regression model has completely failed to fit the data with a MAE

value of 2.55. Moreover, some models find a way to fit the data but not optimally, including

the AdaBoost, the Elastic Net, the Ridge Regression, the Linear Regression, and the ARIMA

4.4 Searching and Evaluation of ML & AI Algorithms 71

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

L
a
ss

o

A
d
a
B

o
o
st

E
la

st
ic

 N
e
t

R
id

g
e

L
in

e
a
r

A
R

IM
A

S
V

R

P
o
ly

n
o
m

ia
l

G
B

M
 s

kl
e
a
rn

X
G

B
o
o
st

D
e
ci

si
o
n
 T

re
e

R
a
n
d
o
m

 F
o
re

st

L
S

T
M

L
ig

h
tG

B
M

B
a
g
g
in

g
 s

kl
e
a
rn

C
a
tB

o
o
st

G
R

U

C
N

N

F
N

N

k-
N

N

B
i -

 L
S

T
M

C
N

N
 -

 L
S

T
M

M
A

E

Models Comparison on Generalization Evaluation

Figure 4.50: Overall Comparison between the various ML & AI Model based on the Gener­

alization MAE from the non­augmented data.

with MAE values over 1. Then, it starts getting more interesting as the MAE drops fast under

the 1, with the Support Vector Regressor (SVR) to achieve aMAE of 0.73 and the Polynomial

Regression a MAE of 0.53. Subsequently, the tree­based models and the neural networks

achieve the best results having MAE values from 0.449 with skicit­learn GBM down to just

0.148 with CNN­LSTM neural network.

Understandably, every method that achieved a generalization MAE under 0.4 is well­

suited for our data. Nevertheless, the training time also plays an essential role in extending

the framework to support an online­training scheme since we need fast model training. For

this reason, in figure 4.51, we gather and compare the training times of the best models (under

0.4 MAE), excluding the non­trainable methods like the k­NN. The results indicate that one

of the fastest models is the CNN ­ LSTM since it outcompetes the other neural networks and

converges really fast with 350 seconds (under 6 mins) training time.

Thus, we choose the CNN­LSTM to incorporate in our framework in order to build an

ML & AI unit for real­time scheduling of the DUs. The following section presents our ex­

perimentation utilizing the CNN­LSTM under a real Testbed.

72 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

B
i -

 L
S

T
M

G
R

U

C
N

N

L
S

T
M

F
N

N

X
G

B
o
o
st

B
a
g
g
in

g
 s

kl
e
a
rn

R
a
n
d
o
m

 F
o
re

st

C
N

N
 -

 L
S

T
M

C
a
tB

o
o
st

L
ig

h
tG

B
M

D
e
ci

si
o
n
 T

re
e

T
ra

in
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

Models Comparison on Training Time

Figure 4.51: Overall Comparison between the various ML & AI Model based on the training

time on the augmented data.

4.5 Experiments

The experiments assist in validating and evaluating the proposed framework in realistic

circumstances. Specifically, we use the NITOS Testbed for our experimental topology, em­

ulating car traffic by deploying the basic non­augmented car route scenario. Subsequently,

we monitor the network performance in terms of bandwidth, jitter, and lost packets for two

deployments; one with the default behavior without our ML & AI unit and one incorporating

it. Then we compare the results to validate that our algorithm works as planned and evaluate

its ability in enhancing the UE’s QoE.

4.5.1 Experimental Setup

Figure 4.52 depicts the experimental topology in Nitos Testbed with all the necessary

components. We have already seen and discussed it in the previous chapter. To begin, in

machine one, the core network is deployed, including the HSS, MME, S­GW, and P­GW

components. In machine two, we run the CU and LTE DU processes utilizing a USRP B210

for the Air communication through the Uu interface between the LTE DU and the UE’s LTE

interface (Huawei LTE USB Dongle on machine five). The programmable attenuators are

installed on the output of the SDR (USRP) to handle its attenuation based on the basic non­

4.5 Experiments 73

Figure 4.52: Experimental Topology utilizing six machines on NITOS Testbed

augmented car route scenario emulating, this way, a moving UE node (car route). Moreover,

theWiFi DU segment exists on a separate node (machine three) communicating with the UE’s

WiFi interface on machine four utilizing an ad­hoc WiFi link through Qualcomm Atheros

AR9380 chipsets on both sides.

Finally, we employ the Flexran controller with the ML & AI unit on machine six that

incorporates the CNN­LSTM neural network for the live predictions. Based on the model’s

forecastings, the unit sends new, more appropriate slices in near­real­time (under 0.25 sec­

onds) to the Flexran Controller. Subsequently, the controller communicates with the agent

hosted on the LTE DU, and then the agent sends the slice to the CU based on the developed

approach described in the previous chapter adjusting the DU scheduling.

4.5.2 Experimental Scenario

The experimental evaluation scenario is constructed to demonstrate the optimization of

the network traffic as also the enhanced QoE on the UE side with the incorporation of our ML

& AI unit on top of the default network configuration. We run the experiment in two phases,

one with the default network behavior without the ML & AI unit and another one utilizing it

to handle the real­time slicing allocation.

Generally, when we run the first phase without the ML & AI unit, we assume that there

is no monitoring and predicting mechanism, and thus the traffic flows only through the LTE

DU.

74 Chapter 4. AI­Driven Real­time Scheduling between Heterogeneous DUs

On the contrary, the ML & AI unit continuously monitors and reconfigures the slicing

in the second phase. Specifically, we assume that there is always an optimal WiFi channel

quality and that our primary goal is to send the whole traffic through the LTE link when there

are good link conditions. In this way, the ML & AI unit will use the WiFi link only when the

LTE CQI is predicted to be very low in order to prevent a poor network connection. Precisely,

it will redirect the traffic from the LTE to the WiFi link when the forecasted CQI is under the

value of 9 (16 QAMmodulation). Understandably, the unit will forward the downlink traffic

back to only the LTE link when the predicted CQI is equal to or more than 9.

Moreover, for network monitoring and traffic generation, we operate the iperf tool. On

every phase, we send 14.5Mbps downlink traffic from the core network to the UE and collect

the monitoring statistics, including the bandwidth, the jitter, and the lost packets. Finally, we

compare the results from both phases and evaluate our framework’s performance.

4.5.3 Experimental Results

The experimental results show that the ML & AI Unit handles the slicing allocation pro­

cedure appropriately, enhancing the overall network performance and the Quality of Expe­

rience (QoE) of the UE. In Figure 4.53, we illustrate the results of both the experiment with

the default slicing behavior (left figures) and the one with the employment of the ML & AI

Unit (right figures). Precisely, on the default network configuration, the UE experiences on

average 7.4 Mbps throughput, 1.7 ms jitter, and 41% packet loss. On the other hand, with

the ML & AI integration, the UE experiences 13.3 Mbps throughput, 0.8 ms jitter, and 7%

packet loss.

The significant point to observe is that the ML & AI unit predicts the first CQI drop at

approximately 175 seconds. Then it reconfigures the slice in order to redirect all the downlink

traffic only through theWiFi DU, which has optimal channel quality. Subsequently, it predicts

at about 530 seconds that the CQI will be raised at higher values, meaning that the LTE

channel quality will be improved. As a result, it reconfigures the slicing allocation in order

to redirect all the traffic back to only the LTE DU.

In conclusion, theML&AI unit is able to monitor and predict the CQI values in near­real­

time with great precision. In addition, it reconfigures the DU scheduling based on a slicing

allocation algorithm enhancing the network performance and the UE’s QoE.

4.5 Experiments 75

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

Default QoE on Basic Traffic Scenario

Default

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

AI-Driven QoE on Basic Traffic Scenario

AI-Driven

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700

J
it
te

r
(m

s
)

Time (s)

Default QoE on Basic Traffic Scenario

Default

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700

J
it
te

r
(m

s
)

Time (s)

AI-Driven QoE on Basic Traffic Scenario

AI-Driven

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

L
o

s
t

P
a

c
k
e

ts
 (

%
)

Time (s)

Default QoE on Basic Traffic Scenario

Default

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

L
o

s
t

P
a

c
k
e

ts
 (

%
)

Time (s)

AI-Driven QoE on Basic Traffic Scenario

AI-Driven

Figure 4.53: UE Experienced Bandwidth, Jitter and Packet Loss without and with the incor­

poration of the ML & AI Unit

Chapter 5

Conclusion

In this section, we summarize our work presenting the milestones, the conclusions, and

the thesis contribution. Finally, we share our thoughts on extending this work in the future.

5.1 Summary and Conclusions

In this thesis, we studied the evolution of the cellular telecommunication networks from

the very beginning with the 1G to future networks beyond 5G. Specifically, we learned about

the urgent need for more powerful systems to handle the tremendous users’ data demand that

camewith the evolution of the internet andmobile devices.Many architectures were analyzed

to understand our experiments and their significance, including LTE and 5G disaggregated

architecture. Moreover, we explored the nature of machine learning and artificial intelligence

as also their role in the future of telecommunication networks.

Understandably, this thesis contributes to the research for the upcoming generations of

cellular networks to create more flexible and adaptive AI/Data­driven systems by integrating

intelligence. Precisely, we begin by developing a scheduling scheme with the CU acting as a

coordinator utilizing the FlexRAN’s slicing technique. On top of that, we insert an ML & AI

unit on the controller’s side after analyzing deeply various machine learning algorithms. This

unit continuously monitors, predicts, and posts appropriate slices in real­time to optimally

manage the available resources, resulting in enhanced network throughput and user’s QoE.

In our analysis, we concluded that the optimal deep learning model for LTE CQI forecast­

ing is a CNN­LSTM with extremely low MAE and training time. Subsequently, we utilized

it in an emulated car mobility scenario for managing the scheduling of the downlink traffic

77

78 Chapter 5. Conclusion

among theWiFi and LTEDUs. The results indicate enormous efficiency resulting in enhanced

user experience and network performance. Nevertheless, all deep learning and tree­based al­

gorithms show sufficiently high precision and could be integrated into the ML & AI unit for

excellent performance.

In the future, we could extend this framework by collecting more data and creating an

online­training approach to update the model constantly in order to be consistent and flex­

ible with new network patterns to come. Moreover, WiFi channel quality monitoring will

be added. This way, the CU will better understand the overall network conditions and apply

more sophisticated scheduling decisions by utilizing all the available slicing percentages. For

instance, it will not redirect the traffic only to one DU, but it will split it through both DUs

to enhance network performance even more.

Bibliography

[1] Peltonen E., Bennis M., Capobianco M., Debbah M., Ding A., Gil­Castiñeira F., Jurmu

M., Karvonen T., Kelanti M., Kliks A., Leppänen T., Lovén L., Mikkonen T., Rao A.,

Samarakoon S., Seppänen K., Sroka P., Tarkoma S., and Yang T. 6G WHITE PAPER

ON EDGE INTELLIGENCE [white paper]. (6g research visions, no. 8). In http://urn.fi/

urn:isbn:9789526226774, University of Oulu, 2020.

[2] Taleb T., Aguiar R. L., Yahia I. G. B., Chatras B., Christensen G., Chunduri U.,

Clemm A., Costa X., Dong L., Elmirghani J., Yosuf B., Foukas X., Galis A., Gior­

dani M., Gurtov A., Hecker A., Huang C.­W., Jacquenet C., Kellerer W., and … Zorzi

M. White Paper on 6G Networking [white paper]. (6g research visions, no. 6). In

http://urn.fi/urn:isbn:9789526226842, University of Oulu, 2020.

[3] Ali S., Saad W., and Steinbach D. (Eds.). . White Paper on Machine Learning in

6G Wireless Communication Networks [white paper]. (6g research visions, no. 7). In

http://urn.fi/ urn:isbn:9789526226736, University of Oulu, 2020.

[4] Nikos Makris, Christos Zarafetas, Pavlos Basaras, Thanasis Korakis, Navid Nikaein,

and Leandros Tassiulas. Cloud­based convergence of heterogeneous rans in 5g disag­

gregated architectures. In 2018 IEEE International Conference on Communications

(ICC), pages 1–6, 2018.

[5] Opeoluwa Tosin Eluwole, Nsima Udoh, Mike Ojo, Chibuzo Okoro, and Akintayo John­

sonAkinyoade. From 1g to 5g, what next? In IAENG International Journal of Computer

Science, 45:3, IJCS_45_3_06, Aug. 2018.

[6] Christopher Cox. An Introduction to LTE: LTE, LTE­Advanced, SAE, VoLTE and 4G

Mobile Communications. John Wiley & Sons, Ltd, second edition, 2014.

79

http://urn.fi/ urn:isbn:9789526226774
http://urn.fi/ urn:isbn:9789526226774
http://urn.fi/urn:isbn:9789526226842
http://urn.fi/ urn:isbn:9789526226736

80 Bibliography

[7] 3GPP ­ A Global Initiative. The mobile broadband standard. [Online]. https://

www.3gpp.org/. Access Date: 30­Jan­2022.

[8] Per Beming, Lars Frid, Göran Hall, Peter Malm, Thomas Noren, Magnus Olsson, and

Göran Rune. Lte­sae architecture and performance. In Ericsson Review No. 3, 2007.

[9] Ghassan A. Abed, Mahamod Ismail, and Kasmiran Jumari. The evolution to 4g cellular

systems: Architecture and key features of lte­advanced networks. In IRACST – Interna­

tional Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN:

2250­3501 Vol. 2, No. 1, 43600 UKM Bangi, Selangor, Malaysia, 2012.

[10] Tutorialspoing ­ Learn LTE, [Online]. https://www.tutorialspoint.com/

lte/lte_network_architecture.htm. Access Date: 30­Jan­2022.

[11] Ersan Kabalci and Yasin Kabalci. Smart Grids and Their Communication Systems.

Springer Nature Singapore Pte Ltd, 2019.

[12] Line Maria Pyndt Larsen, Aleksandra Checko, and Henrik Lehrmann Christiansen. A

survey of the functional splits proposed for 5g mobile crosshaul networks. I E E E

Communications Surveys and Tutorials, 21(1):146 – 172, 2018.

[13] Nikos Makris, Christos Zarafetas, Spyros Kechagias, Thanasis Korakis, Ivan Seskar,

and Leandros Tassiulas. Enabling open access to lte network components; the nitos

testbed paradigm. In Proceedings of the 2015 1st IEEE Conference on Network Soft­

warization (NetSoft), pages 1–6, 2015.

[14] NITOS ­ Network Implementation Testbed using Open Source platforms. [Online].

https://nitlab.inf.uth.gr/NITlab/. Access Date: 27­Jan­2022.

[15] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond

Knopp, and Christian Bonnet. Openairinterface: A flexible platform for 5g research.

SIGCOMM Comput. Commun. Rev., 44(5):33–38, oct 2014.

[16] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis. Flexran:

A flexible and programmable platform for software­defined radio access networks. In

Proceedings of the 12th ACM CoNEXT, ACM, 2016.

https://www.3gpp.org/
https://www.3gpp.org/
https://www.tutorialspoint.com/lte/lte_network_architecture.htm
https://www.tutorialspoint.com/lte/lte_network_architecture.htm
https://nitlab.inf.uth.gr/NITlab/

Bibliography 81

[17] Tsaug ­ Python Package for Time Series Augmentation, [Online]. https://tsaug.

readthedocs.io/en/stable/. Access Date: 28­Jan­2022.

[18] Mark Schmidt. Least squares optimization with l1norm regularization. 01 2005.

[19] The sklearn LinearRegression, [Online]. https://scikit­learn.

org/stable/modules/generated/sklearn.linear_model.

LinearRegression.html. Access Date: 30­Jan­2022.

[20] The sklearn Ridge, [Online]. https://scikit­learn.org/stable/

modules/generated/sklearn.linear_model.Ridge.html. Access

Date: 30­Jan­2022.

[21] The sklearn Lasso, [Online]. https://scikit­learn.org/stable/

modules/generated/sklearn.linear_model.Lasso.html. Access

Date: 30­Jan­2022.

[22] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301–

320, 2005.

[23] The sklearn ElasticNet, [Online]. https://scikit­learn.org/stable/

modules/generated/sklearn.linear_model.ElasticNet.html. Ac­

cess Date: 30­Jan­2022.

[24] Ijomah Maxwell Azubuike. Second order regression with two predictor variables cen­

tered on mean in an ill conditioned model. International Journal of Statistics and Ap­

plications, 9(4):101–110, 2019.

[25] Priyanka Sinha. Multivariate polynomial regression in data mining: Methodology,

problems and solutions. International Journal of Scientific and Engineering Research,

4, 12 2013.

[26] The statsmodels SARIMAX, [Online]. https://www.statsmodels.org/

dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.

html. Access Date: 30­Jan­2022.

https://tsaug.readthedocs.io/en/stable/
https://tsaug.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html

82 Bibliography

[27] The statsmodels ARIMA, [Online]. https://www.statsmodels.org/dev/

generated/statsmodels.tsa.arima.model.ARIMA.html. Access Date:

30­Jan­2022.

[28] Mariette Awad and Rahul Khanna. Efficient Learning Machines Theories, Concepts,

and Applications for Engineers and System Designers. Apress, Berkeley, CA, 1 edition,

2015.

[29] The sklearn SVR, [Online]. https://scikit­learn.org/stable/

modules/generated/sklearn.svm.SVR.html. Access Date: 30­Jan­

2022.

[30] The sklearn KNeighbors Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsRegressor.html. Access Date: 30­Jan­2022.

[31] Lior Rokach and Oded Maimon. Data Mining with Decision Trees Theory and Appli­

cations. World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224,

2nd edition, 2014.

[32] The sklearn DecisionTree Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeRegressor.html. Access Date: 30­Jan­2022.

[33] The sklearn Random Forest Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html. Access Date: 30­Jan­2022.

[34] The sklearn Bagging Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.ensemble.

BaggingRegressor.html. Access Date: 30­Jan­2022.

[35] Jason Brownlee. Gradient Boosting Trees With XGBoost and scikit­learn. Self­

published, https://machinelearningmastery.com/xgboost­with­

python/, 1.1 edition, 2018.

[36] XGBoost Documentation, [Online]. https://xgboost.readthedocs.io/

en/stable/. Access Date: 30­Jan­2022.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMA.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://machinelearningmastery.com/xgboost-with-python/
https://machinelearningmastery.com/xgboost-with-python/
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/

Bibliography 83

[37] LightGBM Documentation, [Online]. https://lightgbm.readthedocs.io/

en/latest/. Access Date: 30­Jan­2022.

[38] The sklearn GradientBoosting Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingRegressor.html. Access Date: 30­Jan­2022.

[39] CatBoost is a high­performance open source library for gradient boosting on decision

trees, [Online]. https://catboost.ai/. Access Date: 30­Jan­2022.

[40] The sklearn AdaBoost Regressor, [Online]. https://scikit­

learn.org/stable/modules/generated/sklearn.ensemble.

AdaBoostRegressor.html. Access Date: 30­Jan­2022.

[41] Jason Brownlee. Deep Learning for Time Series Forecasting: Predict the

Future with MLPs, CNNs and LSTMs in python. Self­published, https:

//machinelearningmastery.com/deep­learning­for­time­

series­forecasting/, 1.4 edition, 2018.

[42] Keras ­ A deep learning API written in Python, running on top of the machine learning

platform TensorFlow. [Online]. https://keras.io/about/. Access Date: 30­

Jan­2022.

[43] Jason Brownlee. Long Short­Term Memory Networks With Python Develop Deep

Learning Models for your Sequence Prediction Problems. Self­published, https://

machinelearningmastery.com/lstms­with­python/, 1.0 edition, 2017.

https://lightgbm.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://catboost.ai/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/
https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/
https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/
https://keras.io/about/
https://machinelearningmastery.com/lstms-with-python/
https://machinelearningmastery.com/lstms-with-python/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation and Problem Statement
	Contribution

	Thesis Synopsis

	Background
	Introduction to Mobile Telecommunication Systems
	4G Mobile Networks
	Introduction
	Key Technologies
	LTE Architecture
	LTE Protocol Stack

	5G Mobile Networks
	Introduction
	Key Technologies
	Functional Split Architecture

	Future Networks Beyond 5G
	Introduction
	Application of ML/AI in 6G Networks

	AI & Machine Learning
	Introduction
	Supervised Learning
	Machine Learning Steps

	Experimental Tools and Methods
	NITOS Testbed
	The OpenAirInterface Platform
	The FlexRAN Platform

	Framework for Scheduling among Heterogeneous DUs
	Introduction
	Framework
	Initial Topology
	Proposed Approach

	Experiments
	Experimental Setup
	Experimental Scenario
	Experimental Results

	AI-Driven Real-time Scheduling between Heterogeneous DUs
	Introduction
	System Architecture
	Data
	Attenuation Data
	Designing Basic Attenuation Scenario
	Attenuation Data Augmentation
	CQI Data Collection
	CQI Data Pre-processing

	Searching and Evaluation of ML & AI Algorithms
	Linear Regression
	Ridge Regression
	Lasso Regression
	Elastic Net Regression
	Polynomial Regression
	ARIMA
	Support Vector Regression
	k-Nearest Neighbors
	Decision Tree
	Random Forest
	Bagging Scikit-learn
	XGBoost
	LightGBM
	GBM Scikit-learn
	CatBoost
	AdaBoost
	Feedforward Neural Network
	Long short-term memory (LSTM)
	Bidirectional LSTM
	Gated Recurrent Unit (GRU)
	Convolutional Neural Network (CNN)
	CNN-LSTM Neural Network
	Models Comparison

	Experiments
	Experimental Setup
	Experimental Scenario
	Experimental Results

	Conclusion
	Summary and Conclusions

	Bibliography

