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Abstract

Towards enabling innovative and enormous scale applications such as 4K video stream-
ing, Augmented Reality (AR), Virtual Reality (VR), eHealth, Holographic Telepresence, and
many more, the urgent need for more powerful telecommunication network architectures
is vital. Specifically, the user’s data demand is growing more and more daily, leading to
the research of more robust cellular network designs beyond 5G. Several approaches for the
next generation systems propose integrating machine learning and artificial intelligence tech-
niques through the whole network stack as a critical step towards creating self-organized net-
works adaptive to the fluctuations and the network conditions at every time. In this work, we
design, develop, and evaluate an Al-Driven framework for real-time scheduling of wireless
clients between heterogeneous technologies, such as WiFi, 5G, LTE, on a 5G disaggregated
RAN architecture.

Building this framework requires two steps-milestones. First, we develop and evaluate
a scheduling scheme for the different technologies on a disaggregated architecture based on
LTE RAN slicing. Then, we extend this work by incorporating an ML & Al unit to moni-
tor and predict the LTE channel’s quality and make scheduling decisions for the technology
to use. This way, it ensures enhanced network performance and optimized user Quality of
Service (QoS) and Quality of Experience (QoE). To validate and evaluate our work in a real
environment, we utilize the NITOS Testbed in Volos, Greece. Precisely, we implement a com-
plete 5G disaggregated architecture utilizing the OpenAirlnterface and FlexRAN platforms
for the network infrastructure and commercial LTE USB Dongles for the User Equipment
(UE). Moreover, we emulate a realistic car route inside the testbed using software-defined
radios (SDR) and programmable attenuators. This way, we reproduce LTE channel quality
fluctuation data collected from real commercial networks in Volos city. Finally, we compare
the experimental results of the network performance when employing the ML & Al unit and

when using the default network configuration to determine the efficiency of our framework.

xi






Iepiinyn

['o v vAomoinon Kovotdpmy epapproymv tepacTtiag KApakag, 6mmg 1 por| Bivteo 4K,
n Ermovénuévn Tpaypotucomta (AR), n Ewovikn [paypatikdétmra (VR), n niextpovikn
vyeio, 1 OAOYPAPIKN TNAETAPOVGIN Kot TOALN GAAQ, 1] ETEIYOVOA OVAYKT Y10 LIGYVPOTEPES OP-
YLTEKTOVIKEG TNAETIKOIVOVIOK®V SIKTV®V givan (oTikng onpaciog. Xvykekpyéva, n {ntnon
JedOUEVAOV TOV XPNOTOV avEaveTon Kadnuepva OA0 Kol TEPIGCOTEPO, YEYOVOS TTOL 00N YEL
oTNV £PEVLVA Y10 O LOYVPE GYES0L KOYEAOEWDMDV JIKTVWV TTEPAY TOV SG. APKETEC TPOCEY-
YIGELS Y10 TOL GUOTHHOTA EMOUEVTG YEVIAG TPOTEIVOLV TNV EVOOUATMON TEXVIKOV UNYOVIKNG
pdOnong Kot TexvNTNG VO HosivIG o€ 0OAOKAN P TN 6Toifa TOV SIKTHOL WG Eva KPIGIHo Py
TPOG T SNULOVPYIO CLTOOPYOVOUEVOV SIKTV®V TOV TPOGAPUOLOVTOL OTIC SIUKVIAVGELS Kol
T1G GLVONKEG TOL SIKTVOV AVA TAGO. GTUYLT. TNV TOPOVGA EPYOTia, oYEIALOVLE, OVATTOG-
covpe Kat aEloAoyovpe Eva TAOIG10 BOGIGUEVO GTNV TEXVITH VONLOCUVT Y10 TOV TPOYPOLLL-
HOTIGUO GE TPAYUATIKO YPOVO TOV ACVUPUOTOV TEAATOV UETOED ETEPOYEVMOV TEXVOLOYIDV,

onwg WiFi, 5G, LTE, o¢ pia 5G dwuyopropévn apyrtektovikn RAN.

H dnovpyia avtod tov mhaiciov arattel Vo fpata-opoonua. Ipdtov, avantoccovpe
Kot a&loAOYOVUE VO GYNLLOL YPOVOTPOYPOLLLOTIGILOD Y10 TIG SLUPOPETIKES TEXVOAOYIEG GE [l
Swywpopévn apyrtektovikn tov PaciCetor oto LTE RAN slicing. Xt cvvéyeto, emextei-
VOVUE QT TNV £PYaCia e TNV EVomudTmon pog povadoac ML & Al yio tnv mapakoiovOnon
Kot TpoPAeyn g modtntag tov kavaiov LTE kot t Afym amoedscewmv ypovompoypopt-
LOTIOHOV Y10 TNV TeYVoAoYia mov Oa ypnoyomrondel. Me avtdv tov Tpdmo, eacpaliletan
EVIOYLUEVT aTOO0CT| OIKTVOV Kol BeAtioTomomuévn motdtnta vanpeciog (QoS) Kot mo1o-
mra epnepiag (QoE) twv ypnotov. [Na va emkvupdoovpe kat va aEloOAOYNGOLLE TV EPYO-
ola pog o mpaypatikd mepiBdarov, ypnoiponotovpe to NITOS Testbed oto Boro, EALGSa.
2VYKEKPIUEVO, VAOTOIOVLE L0 TAT P SLOY@PIoUEVT] OPYLTEKTOVIKT] SG YPNOLUOTOIDOVTOG TIG
mhateopueg OpeanAirInterface kot FlexRAN yo tnv vodopr| diktdov kon gumopikd LTE
USB Dongles ywa tov eéondiopd ypnot (UE). Emumiéov, mpocopoudvovpe o peaAoTikng

xiil



Xiv Hepiinyn

Sldpoun AVTOKIVITOV HECH GTO JOKLUAOTIKO TEPPAALOV LE TN YPTON POOIOGLYVOTHTOV
kabopiopévov and Loyioukd (SDR) kot mpoypappatilopevov eEacbevntov. Me avtdv tov
TPOTO, OVATTOPEYOLLLE TO SESOUEVA SLOKDLOVOTG TS TOLOTNTOG TOV KavaAlov LTE mov G-
Aéyovton amd mpaypatikd epmopikd diktva otnv moAn tov Borov. Téhog, cuykpivovpe ta
TEPOLOTIKA ATOTEAEGLLATO TNG OTOO0GNG TOL SIKTVOL OTOV YPNGLOTOLOVHE TN povado ML
& Al kot 0Tov pMGIUOTOIOVUE TV TPOETIAEYUEVT SLOUOPP®GT TOL SIKTVOL Y10 VO TPOG-

OLOPICOVIE TNV OTOTEAEGLATIKOTITO TOV TAALGION [LOG.
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Chapter 1

Introduction

Telecommunication systems have been evolved tremendously over the past few years to
fill the users’ needs. Specifically, the rise of the internet and the evolution of mobile devices
bring a tremendous need for data that prior cellular architectures could not support. For this
reason, the telecommunication systems structure is continuously growing, starting from the
first generation systems (1G) to currently the fifth generation (5G).

Nevertheless, the digitization and rising of numerous industries results in a massive in-
crease in the data flow now more than ever. Precisely, new applications are coming, including
Augmented Reality (AR), Virtual Reality (VR), eHealth, holographic telepresence, among
many others. Thus, the need for more robust and powerful systems is growing, leading us to
research the next generation of cellular networks beyond 5G.

Many works [[1]], [2], [3] study the necessary steps towards enabling next-generation sys-
tems, highlighting the importance of machine learning and artificial intelligence. In detail,
the wide network softwarization creates opportunities for innovations in every component
of the network stack. With the integration of ML & Al techniques, the network could be-
come self-organizing to overcome fluctuations and adapt to the various network conditions

resulting in enhanced network management, QoS and QoE.

1.1 Motivation and Problem Statement

In this thesis, we design, develop, and evaluate an Al-Driven framework for the real-
time scheduling of wireless clients. Precisely, we build on top of the disaggregated RAN

architecture that exists in 5G networks [4] by implementing a scheduling technique between

1



2 Chapter 1. Introduction

the heterogeneous wireless network technologies, such as LTE, 5G, WiFi, and more. In real-
time, we utilize machine learning methods to predict future network conditions and make
scheduling decisions to improve network performance and QoE.

We complete this work on two milestones. First, we develop the scheduling scheme
among the heterogeneous technologies, utilizing the OpenAirInterface and the FlexRAN plat-
forms. Then, we extend this work by inserting ML & Al methods to handle the scheduling by
real-time monitoring the channel quality. To achieve it, we emulate channel quality patterns
based on real car routes in Volos city.

Finally, we validate and evaluate this work by testing it in a real environment. Specifi-
cally, we deploy a complete cellular disaggregated network in NITOS Testbed with the help
of the OpenAirInterface and FlexRAN platforms utilizing real devices. Moreover, we emu-
late a realistic car route in the testbed by employing SDRs and programmable attenuators.
Finally, we deploy and evaluate our ML & Al unit in real-time, making conclusions about its

contribution in enhancing the network performance and user’s QoS and QoE.

1.1.1 Contribution

The overall thesis contributions are summarized as follows:

* To develop an efficient manner of scheduling the network downlink traffic among het-

erogeneous technologies.

* To develop a robust ML & Al unit that monitors and predicts the LTE channel quality
and also makes efficient scheduling decisions that ensure enhanced network perfor-

mance.

 To investigate and evaluate numerous machine learning techniques for finding the most

appropriate models for real-time LTE channel quality forecasting.

 To evaluate the developed framework in a testbed environment, using real devices in

real-time.

1.2 Thesis Synopsis

In chapter P, we provide the essential background knowledge needed to understand the

contribution of our work. Precisely, we present the evolution of the telecommunication sys-
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tems, the structure of the functional split disaggregated architecture, the research direction
for future networks beyond 5G, and the machine learning methodologies. Finally, we refer
to the experimental environment used for the evaluation of our work. In chapter [J, we de-
sign, develop, and evaluate the framework for scheduling between heterogeneous wireless
technologies. Chapter §f extends this work by designing, developing, and evaluating the ML
& Al unit that monitors and predicts the channel quality and makes scheduling decisions in
real-time. To achieve this, we study and evaluate a large number of machine learning algo-
rithms. Finally, chapter [J| summarizes our work and provides the conclusion and the thoughts

for future work.






Chapter 2

Background

2.1 Introduction to Mobile Telecommunication Systems

In the early 1980s, mobile telecommunication systems were initially launched [5]. The
first fully functional systems (1QG) relied on analog techniques, being, in this way, unable
to utilize the available spectrum. Due to their big size and high cost, mobile devices were

exclusively available for corporate usage.

The breakthrough moment was the introduction of 2G systems in the early 1990s [6]. They
provide digitization and a more efficient bandwidth/spectrum allocation, applying multiple
access schemes, such as FDMA, TDMA, and CDMA. Thus, they improved the voice qual-
ity significantly and originated the first data services. Moreover, they brought a semi-global

roaming system to advance connectivity internationally.

The third generation (3G) systems were introduced in the years after 2000, supporting
broadband and multimedia services. Some of their key features are the IP network technology,

the enhancement in voice quality and data rate, global roaming and Quality of Service (QoS).

In the beginning, voice calls dominated the traffic in cellular networks. Nevertheless,
the years to come brought an enormous growth of mobile data and massive demand for low

latency, mobility, and enhanced QoS. As aresult, it was critical to build more robust networks.

5
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2.2 4G Mobile Networks

2.2.1 Introduction

The 3GPP [[7] established the fourth-generation systems as the result of research into the
long-term evolution of UMTS. They are referred to as 3GPP Long-Term Evolution (LTE)
systems and are widely known as LTE.

LTE appeared to be a promising technology for meeting users’ demands for reduced la-
tency and high data rates [6] [8] [9]. It was required to deliver a downlink peak data rate of
100 Mbps and an uplink peak data rate of 50 Mbps. The final system surpassed these criteria,
with peak data speeds of 300 Mbps and 75 Mbps, respectively. However, these performances
are only possible under idealistic circumstances and are entirely unattainable in any actual
scenario. Thus, the spectral efficiency, which reflects the typical capacity of one cell per unit
bandwidth, is a better metric. In the downlink, LTE has to enable a spectral efficiency three to
four times higher than Release 6 WCDMA (3G) and two to three times greater in the uplink.

Another significant issue is latency, which is highly essential for time-sensitive appli-
cations like speech and interactive games. There are two aspects to consider. Firstly, the
standards specify that data should move between a mobile phone and a fixed network in less
than 5 milliseconds if the air interface is not congested. Secondly, there are two operation
modes in mobile phones: an active mode in which they are connecting with the network and
a low-power idle one. The standards stipulate that a phone shall go from idle to active status
in fewer than 100 milliseconds following a user intervention.

Finally, there are also coverage and mobility specifications. LTE is enhanced for cell
ranges up to 5 kilometers, operates with decreased performance up to 30 kilometers, and can
support cell sizes up to 100 kilometers. It’s also suited for mobile velocities of up to 15 km/h,
has valuable performance up to 120 km/h, and can handle speeds up to 350 km/h. Finally,
LTE offers a wide range of bandwidths, spanning from 1.4 MHz to a maximum of 20 MHz.

2.2.2 Key Technologies

LTE incorporates numerous essential technologies that allow it to deliver all the features

mentioned. Some of the most important are worth mentioning.

* Orthogonal Frequency Division Multiple Access (OFDMA): LTE utilizes OFDM
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for the downlink to transmit data over several narrowband carriers instead of distribut-
ing one signal over the entire carrier bandwidth. The OFDM symbols are organized into
resource blocks, and every user allocates a number of them in the time-frequency grid.
The ability of OFDM to cope with extreme channel circumstances without the need for
sophisticated equalization filters is its dominant benefit. Furthermore, because of the

low symbol rate, inter-symbol interference (ISI) may be avoided.

* Multiple-Input and Multiple-Output (MIMQO): MIMO is a technique for increasing
the capacity of a radio link by employing multiple transmission and receiving anten-
nas and thus utilizing multipath propagation. MIMO antennas benefit mobile radio
systems, with more dependable operation in low signal situations, enhanced spectral
efficiency, and higher data rates for individual users. The LTE standard enables several
MIMO operation modes and allows dynamic mode switching adapting to various radio

situations.

* Link Adaptation: LTE optimizes air interface efficiency by selecting the appropriate
modulation and channel coding rate based on several essential metrics. Channel Quality
Indicator (CQI) is a primary metric that indicates the received SINR and thus the chan-
nel quality as experienced by the UE. Moreover, Physical Downlink Control Channel
(PDCCH) provides scheduling information to individual UEs when Block Error Rate
(BLER) defines the in-sync or out-of-sync indication during radio link monitoring. Fi-
nally, Sounding Reference Signal (SRS) gives a more precise estimation of the user’s

uplink channel.

* Hybrid Automatic Repeat Request (HARQ) LTE adopts an enhanced version of
Automatic Repeat Request (ARQ) called HARQ. When a block of data fails the Cyclic
Redundancy Check (CRC) in the simple ARQ, the receiver discards it. On the other
hand, HARQ keeps any meaningful data in a buffer and continues to the phase of error
detection/correction. If the CRC fails, the data is sent again by the transmitter. Now,
however, the receiver analyzes the data from the buffer along with the re-transmissions.

In this way, the signal energy rises at the receiver, leading to improved performance.
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Figure 2.1: LTE High-level Architecture

2.2.3 LTE Architecture

The high-level architecture of the Evolved Packet System (EPS), widely known as LTE,
consists of three main components as shown in Figure [L0]. The User Equipment (UE),
the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and the Evolved Packet
Core (EPC).

User Equipment (UE)

Any device used by an end-user to communicate is called User Equipment (UE). It could

be a smartphone, a laptop computer with a mobile broadband adaptor, or any other gadget.

Evolved UMTS Terrestrial Radio Access Network (E-UTRAN)

E-UTRAN responsibility is to handle the radio communication between UE and EPC. It
consists of several base stations known as evolved Nodes B (eNB). Each eNB uses the Uu
interface to manage a UE in one or many cells specified as its serving eNB. The S1 interface
connects to the EPC, while the X2 interface, which employs signaling and packet forwarding
during handover, may also connect to adjacent base stations.

An eNB handles UE’s downlink/uplink traffic by routing user plane data to S-GW. On
the controlling side, it implements radio resource management, for instance, radio bearer
control, radio admission/connection mobility control, and dynamic scheduling. Furthermore,

it manages low-level operations such as handovers. Finally, ciphering, packet dependable
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delivery, and header compression are all eNodeB functionalities.

Evolved Packet Core (EPC)

The EPC is the LTE network’s core element. It consists of several nodes, the most im-
portant of which are MME, SGW, PGW, and HSS. They provide various services, including
mobility management, authentication, session management, bearer setup, and the application

of various Quality of Service levels.

* Home Subscriber Server (HSS): HSS is a central database that collects data on all of
the subscribers of a network provider. It is one of the few LTE features that has been
carried over from previous generation systems. It also has mobility management, call

and session creation, user authentication, and access authorization features.

* Packet Data Network Gateway (P-GW): The EPC’s point of interaction with the out-
side world is the packet data network gateway (P-GW). Each PDN gateway commu-
nicates with many external devices or packet data networks through the SGi interface,
such as the network provider’s servers, the internet, or the IP multimedia subsystem.
An access point name (APN) corresponds to each packet data network. Usually, the
network provider utilizes various APNs, one for the internet, one for the IP multime-

dia subsystem, and more.

* Serving Gateway (S-GW): The serving gateway (S-GW) is a high-level router that
connects the base station to the PDN gateway. A typical network could include several
serving gateways, each responsible for the mobiles in a specific geographic area. Every
mobile belongs to a single serving gateway; however, if the mobile goes far enough,

the serving gateway may be changed.

* Mobility Management Entity (MME): MME manages the mobile’s high-level func-
tioning by transmitting messages about concerns like security and data stream man-
agement unrelated to radio communications. A typical network may comprise several
MMEs, each responsible for a particular geographical area, similar to the serving gate-
way. Each mobile corresponds to a single MME, known as the serving MME; however,
this could change if the mobile travels a long distance. The MME also has control over

the other network parts through internal EPC signaling messages.
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Figure 2.2: High-level Protocol Architecture

* Policy Control and Charging Rules Function (PCRF): The Policy Control and Charg-
ing Rules Function (PCRF) is not visible in Figure R.1. However, it is responsible for
policy control decision-making and directing the flow-based charging features in the

Policy Control Enforcement Function (PCEF), placed in the P-GW.

* Other components: There are also components not shown in Figure but worth
mentioning. The Earthquake and Tsunami Warning System (ETWS) is one of them, and
it exploits the Cell Broadcast Centre (CBC), which UMTS previously used. Another
one is the Equipment Identity Registry (EIR), which contains the details of lost or stolen

mobile phones, was inherited from UMTS too.

2.2.4 LTE Protocol Stack

There are two planes in the protocol stack as shown in Figure 2.2. The user plane pro-
tocols deal with data relevant to the user, such as data routing within a network. In contrast,
the control plane protocols manage signaling messages that are primarily of interest to the
network elements, such as signaling communication between two devices. Finally, data and
signaling messages are sent from one place to another via the underlying transport protocols.

In LTE, there are two specific types of protocol structures: the air interface and the fixed
network protocols, as demonstrated in Figure 2.3. Between the mobile and the eNB is the
air interface, also known as the Uu interface. The physical layer comprises the digital and
analog signal processing operations that the mobile and eNB employ to exchange data. The
data connection layer, or layer 2 of the OSI model, comprises the following three protocols.
The medium access control (MAC) protocol manages the physical layer at a basic level,
scheduling data transactions between the mobile and the eNB. The radio link control (RLC)

protocol keeps the data connection between the two devices running smoothly, for example,
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Figure 2.3: Protocols used on the air interface and by the fixed network.

by assuring dependable delivery of data streams that must arrive on time. Last but not least,
the packet data convergence protocol (PDCP) performs high-level transport services such as

header compression and security.

The fixed network utilizes the OSI layers to transfer information between components
of the eNB and EPC. The transport network can use any appropriate protocol for the bottom
two layers, for instance, the Ethernet. Then assigns an IP address to each network unit, and
the internet protocol (IP) routes data from one network element to the next. A transport layer
protocol exists above IP with three different protocols in use. The user datagram protocol
(UDP) distributes data packets from one network device to another, whereas the transmission
control protocol (TCP) re-sends packets that arrive improperly. TCP is the foundation of the
stream control transmission protocol (SCTP), which has additional capabilities making it
ideal for signaling message delivery. The user plane always utilizes UDP as its transport

protocol for faster data delivery.

The majority of user plane interfaces use the GPRS tunneling protocol user part (GTP-
U), which employs tunneling, a mechanism to forward packets from one network node to

another.

LTE supports a diverse set of signaling methods. The base station regulates a mobile’s
radio communications via the air interface using signaling messages specified in the radio
resource control (RRC) protocol. An MME uses the S1 application protocol (S1-AP) to gov-
ern the base stations within its pool area in a radio access network. Furthermore, the X2

Application Protocol (X2-AP) bridges the communication between two eNBs.
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Figure 2.4: C-plane Protocol Stack
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Figure 2.5: U-plane Protocol Stack

The MME uses two protocols at the non-access stratum of the air interface to manage a
UE’s high-level operation. These protocols are the EPS session management (ESM), which
manages internal accounting inside the EPC, and the EPS mobility management (EMM),
which regulates the data streams through which a mobile connects with the outside world.

The HSS and MME use the Diameter protocol to interact within the EPC for authentica-
tion, authorization, and accounting. Diameter is based on the Remote Authentication Dial In
User Service (RADIUS) protocol, an earlier standard.

The majority of the other EPC interfaces employ the GPRS tunneling protocol control
portion (GTP-C). This protocol specifies protocols for peer-to-peer communication between
the EPC’s various components and the management of the GTP-U tunnels mentioned earlier.

Figures 2.4 and 2.3 depict the protocol stack’s flows for the communications between
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UE/MME and between UE/S-GW accordingly.

2.3 5G Mobile Networks

2.3.1 Introduction

5@ is the next significant step in mobile telecommunication systems due to the increasing
demand for higher data rates and reduced latency. Data-hungry mobile devices and the grow-
ing demand for sophisticated multimedia applications such as UltraHigh Definition (UHD),
3D video, augmented reality, and immersive experience prompted the need for more resilient
networks [[11].

Many industry efforts have outlined eight primary needs that 5G technology must meet,

and these objectives may be summarized as follows.

* 99.999% availability

* Full coverage (100%)

* 90% less energy consumption

* 1000 times more bandwidth per unit area

* 1-10 Gbps data rate for all nodes of the network
» Up to ten years battery life for low-power mode

* Supporting 10-100 times more connected devices

* 1 ms end-to-end (E2E) loop delay in the network (latency).

The ITU Radiocommunication Sector is one of the three parts of the International
Telecommunication Union (ITU) and has stipulated the International Mobile Telecommu-
nications 2020 (IMT-2020) as mobile systems in Resolution ITU-R 56-2. The IMT-2020,
according to the ITU-R, will be more advanced than the IMT-2000 and IMT-Advanced. It
opens up new avenues for 5G’s expanded capabilities, including Enhanced Mobile Broad-
band (eMBB), Ultra-Reliable and Low-Latency Communications (URLLC), and substantial
Machine-Type Communications (mMTC).

* Enhanced Mobile Broadband (eMBB): Consumers would enjoy improved speed and

reliable service in future mobile networks compared to existing systems based on this
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use model. The eMBB comprises many scenarios, including wide-area coverage and
hotspot scenarios. When considering the wide-area situation, anticipate full coverage,
increased mobility, and increased data speeds. The expected data speeds will be in the
gigabit per second range. On the contrary, considering the hotspot scenario, high user
density and traffic capacity are needed. Still, the mobility requirements in this scenario

are just for foot-traveler velocities.

* Ultra-reliable and low-latency communications (URLLC): For URLLC, there are
various essential requirements in terms of dependability, availability, and latency; for
instance, E2E latency should be less than five milliseconds. Smart grids, remote mon-
itoring and control, vehicle-to-everything (V2X), intelligent transport systems, tactile
internet applications, and other fields are among the most common URLLC application

domains.

* Massive machine-type communications (mMTC): The mMTC framework can ac-
commodate many devices with latency-insensitive designs, cheap costs, and extended

battery life; for example, it will use millions of low-power sensors and actuators.

ITU-R defines the minimum performance requirements for 5G mobile communication
networks. This report includes some key performance indicator (KPI) metrics presented in

Table . 1| for various use scenarios.

2.3.2 Key Technologies

5G networks combine several critical technologies to give all of the above characteristics
while overcoming the limitations of previous-generation systems. It is worth discussing a few

of the most essential.

* Massive Multiple-Input Multiple-Output (Massive MIMO) Technology: Massive
MIMO is a variant of the MIMO idea that advocates for the employment of larger
and more antennas in each base station (100 or more). Massive MIMO’s primary goal
is to expand the MIMO concept to larger scales, upgrading technologies to help 5G
mobile networks achieve more stability, security, and efficiency in terms of energy and
spectrum. It has a more considerable power gain resulting in a significant increase in
the strength of the received signal. They also improve system throughput when base

stations with massive antenna arrays serve more users.
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Table 2.1: Minimum 5G technical performance requirements (ITU-R)

KPI ‘ Model Values

Peak data rate eMBB DL: 20 Gbps, UL: 10 Gbps

Peak spectral efficiency eMBB DL: 30 bps/Hz, UL: 15 bps/Hz

User experienced data rate | eMBB DL: 100 Mbps, UL: 50 Mbps (for Dense Urban case)

5% user spectral efficiency | eMBB DL: 0.3 bps/Hz, UL: 0.21 bps/Hz (for Indoor Hotspot)
DL: 0.225 bps/Hz, UL: 0.15 bps/Hz (for Dense Urban)
DL: 0.12 bps/Hz, UL: 0.045 bps/Hz (for Rural)

Average spectral effi- | eMBB DL: 9 bps/Hz/TRxP, UL: 6.75 bps/Hz/TRxP (for In-

ciency door Hotspot)
DL: 7.8 bps/Hz/TRxP, UL: 5.4 bps/Hz/TRxP (for
Dense Urban)
DL: 3.3 bps/Hz/TRxP, UL: 1.6 bps/Hz/TRxP (for Ru-
ral)

Area traffic capacity ¢eMBB DL: 10 Mbps/m2 (for Indoor Hotspot)

User plane latency eMBB, URLLC 4 ms for eMBB and 1 ms for URLLC

Control plane latency eMBB, URLLC 20 ms

Connection density mMTC 1,000,000 devices per km2

Energy efficiency ¢eMBB Supporting low energy consumption capability when
there is no data

Reliability URLLC 1-107? success probability of transmitting a layer 2
protocol data unit of 32 bytes within 1 ms in channel
quality of coverage edge

Mobility ¢eMBB Up to 500 km/h for high-speed vehicular

Mobility interruption time | eMBB, URLLC 0 ms

Bandwidth ¢eMBB Minimum 100 MHz, up to 1 GHz for higher frequency

band operation
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* Millimeter Wave (mmWave) Systems and mmWave Massive MIMO: The extremely
high frequency (EHF) band, commonly known as the mmWave band, includes the fre-
quency range of 30 to 300 GHz. The super-high frequency (SHF) band covers the
frequency range of 3 to 30 GHz. Because the radio waves in these bands have the same
propagation characteristics, the frequency range between 3 and 300 GHz s collectively

referred to as mmWave bands with 1 to 100 mm wavelengths.

The fact that mmWave frequencies have such a broad range is an advantage. The spec-
trum of today’s cellular networks below 3 GHz is both rich and constrained. Because of
the strong attenuation impact of open space in mmWave communications, they might
also reuse the same frequency more often. Furthermore, the antennas in the mmWave
frequency have modest physical dimensions, and the mmWave band offers a more se-
cure and private communication medium owing to its restricted transmission space and

beam widths.

* Beamforming Techniques for SG Mobile Communication Systems: In mmWave
networks, beamforming is a critical strategy for reducing interference and compen-
sating for high channel attenuation. The base stations can use multiplexing to increase
data rate and spatial diversity to improve durability by applying beamforming methods.
There are numerous communication modes to choose from when setting up a wireless
connection, including completely directional, omnidirectional, and semi-directional.
Firstly, the base station and user equipment both have a directional structure in a fully
directional setup. Additionally, in omnidirectional mode, both the base station and the
user equipment have an omnidirectional structure. However, in semi-directional mode,
one base station or user equipment has omnidirectional and the other has directional
mode. Finally, analog, digital, and hybrid beamforming methods are the three types of

beamforming techniques.

2.3.3 Functional Split Architecture

The third-generation systems introduced splitting the base station into two parts; the Re-
mote Radio Head (RRH) utilizing all radio capabilities and the Baseband Unit (BBU) em-
ploying baseband processing functions. These parts build the so-called fronthaul network.

Later, 4G networks originated the idea of Cloud-RAN, where BBUs exist in a central area,
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the BBU-pool, as shown in Figure .6. This way, it splits the computational processing by
shifting some of it to Cloud-based virtual machines.

Cloud-RAN is now a critical part of 5G mobile networks. However, the fronthaul net-
work’s capacity requirement is massively high, leaving the opportunity for more advance-
ments. Thus, the research focuses on finding the optimal functional splits. In other words, to
indicate how many functions should remain locally at RRH and how many should exist in
the cloud. Finally, several proposals [12] reached up to eight functional splits, as illustrated
in Figure 2.7.

Many of these proposals, based on much research [4], are not proved beneficial. Thus,
studies on real-world experimentation environments, such as Testbeds, focus primarily on
PDCP/RLC and MAC/PHY split. They found that the PDCP/RLC split has the most neg-
ligible overhead and offers compatibility with various technologies, allowing for increased
network capacity.

The PDCP/RLC split architecture consists of two units as shown in Figure P.8:
* Central Unit (CU): It incorporates the processes of the PDCP layer and upwards.
* Distributed Unit (DU): It supports the processing of the RLC layer and downwards.

A single CU may manage numerous DUs, forming a one-to-many connection, but each
DU has only one CU (one-to-one connection). The DUs implement numerous heterogeneous
wireless network technologies including 5G, LTE, WiFi, and more. The F1AP protocol con-
trols the communication over the new F1 interface between the CU and DU. Like the S1-U
interface, data traffic is carried through the F1-U interface, wrapped with GTP headers over
UDP/IP. Moreover, similar to the S1-C interface, the control plane employs the F1-C inter-

face, which runs via SCTP/IP. Because the separation of base station functions occurs at a
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higher layer, it enables the incorporation of lower layer splits, resulting in a multi-tier disag-

gregated design. As such, this interface is known as the midhaul interface.

2.4 Future Networks Beyond 5G

2.4.1 Introduction

As 5G networks are being deployed, new challenges will emerge. Numerous industries
are continuously digitizing, resulting in a massive increase in the data flow. For example, we
foresee holographic telepresence, eHealth applications, industry 4.0 with enormous robotics,
widespread 3D mobility, augmented reality (AR), and virtual reality (VR) in the future,
among other things. Thus, ultra-broadband and ultra-low-latency connection, as well as more
efficient wireless communication technologies, are more critical than ever.

Recently, 6G Flagship, an exceptional research program funded by the Academy of Fin-
land, introduced the first 6G White Papers [1]], [2], [3]. The research indicates that one of the
primary vital missing elements in 5G networks is Machine Learning and Al. Consequently,
machine learning and artificial intelligence approaches will probably be critical enablers of

future 6G systems.
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Figure 2.9: Machine Learning Applications in 6G Networks

2.4.2 Application of ML/AI in 6G Networks

The applications of ML/AI in the future 6G Networks will be vast, spanning the entire

protocol stack, as illustrated in Figure P.9.

 Physical Layer At the physical layer, channel coding combined with deep learning ap-
proaches could address various complicated problems. Moreover, auto-encoders promise
to optimize performance in synchronization while ML techniques could solve non-line-
of-sight (NLOS) multipaths restrictions in positioning. Finally, at channel estimation,

online training neural networks could help estimate the channel’s conditions accurately.

* MAC Layer At the MAC layer, determining users’ orientations and mobility is accom-
plished by deploying a federated echo state network (ESN) prediction algorithm. Fur-
thermore, predictive resource allocation will decrease the latency, enhancing machine-
type communications (MTC) performance. In addition, predicting traffic could in-
crease adaptive power-saving, and ML solutions could help alleviate the side effects

of asymmetric traffic accommodation.

* Network Layer Adopting ML/AI algorithms will optimize the Quality of Service at
the Network Layer. Also, centralized Deep Neural Networks could boost handover
efficiency while various ML methods could assist in developing advanced Multi-hop

cellular networks.

* App & Transport Layer Numerous innovative applications will come from integrat-

ing ML/AI at the Application and Transport layers, including network performance
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management automation, ML-aided UAV control, opportunistic data transfer in vehic-
ular networks, ML-as-a-service, Client-centric networking, intelligent IoT, and many

more.

Along with the fascinating applications that 5G and beyond technologies enable, new
security issues arise. Consequently, ML/AI methods will aid in network security from an
end-to-end viewpoint. To begin, it might validate the authenticity of connected peers, re-
sulting in secure information sharing. Moreover, both defensive and attacking mechanisms
should be adopted in wireless communications due to wireless medium vulnerability in in-
terference. For instance, defending methods involve cryptography, while attack techniques
require the proactive execution of an attack, such as jamming or eavesdropping, to safeguard
future communications.

Edge Intelligence (EI) using ML/AI methods is another vital component of enabling 6G
networks to support their efficiency, new functionalities, and new services. The devices that
produce and use data are frequently positioned at the network’s edge, close to the users,
and monitored, surveilled, or controlled systems, producing zettabytes of data. The plethora
of such resources (high density of base stations and devices in big cities) require big data
handling with ML/AI approaches. These resources form a foundation for edge and cloud
computing.

Edge computing (EC) is a subset of cloud computing. A portion of the data processing and
storage is moved from the cloud to edge network nodes located geographically and logically
close to data suppliers and end-users. In this way, it will result in performance gains, traffic

enhancement, and new ultra-low latency services.

2.5 Al & Machine Learning

2.5.1 Introduction

Artificial Intelligence is a method for developing systems that replicate human reasoning,
decision-making, problem-solving, and perceiving. Thousands of applications are utilizing it
in industry and academics to handle unique challenges. Al is a fast-growing multipurpose
technology with seemingly great potential for the future.

Machine Learning is a subfield of Al that uses data to solve problems. These algorithms
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are trained models based on probability theory and linear algebra. ML algorithms utilize our
data to learn and complete prediction tasks automatically.

As shown in Figure 2.10, deep learning is a subdomain of machine learning that refers
to algorithms that evaluate data the way the human brain does. Specifically, DL applications
use a layered structure of algorithms known as artificial neural networks (ANNs). ANNs
implement a group of so-called artificial neurons inspired by the biological neural network
of the human mind.

There are three fundamental branches of Machine Learning; supervised, unsupervised,
and reinforcement learning. Supervised learning involves learning a function that translates
input to an output based on examples labeled training data. The validation of the algorithm
comes from the generalization error. On the other hand, unsupervised learning algorithms do
not need labels and seek patterns on their own. Moreover, reinforcement learning is the ML
branch associated with intelligent agents taking actions in an environment. It does not require
labeled data since the agents obtain knowledge through exploration and maximizing a reward
function. Finally, these branches also have combinations, such as semi-supervised learning

and partially reinforcement learning algorithms.

2.5.2 Supervised Learning

As previously stated, supervised learning is concerned with acquiring knowledge via the
use of labeled data. It consists of two types; regression and classification. The regression
objective is to approximate a mapping function between continuous input variables and a
continuous output variable (a continuous quantity). On the contrary, classification is the task
of predicting a discrete output variable (discrete class label).

Our primary focus in this study is on supervised regression approaches. Numerous so-
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Figure 2.11: Machine Learning Pipeline from data collection to prediction

phisticated algorithms are in use, each of which stands on a different design. Linear models,
such as Linear Regression, assume a linear relationship between the independent variables.
There are also models supporting non-linear relationships; for instance, Support Vector Ma-
chines rely on high dimensional feature space, the hyperplane. Furthermore, as Decision Tree,
tree-based models are very robust, utilizing thresholds-driven decisions. Finally, ensemble
techniques, for example, XGBoost, employ multiple learning models leading to enhanced
performance.

Deep learning algorithms, on the other hand, have a great deal to contribute. Multilayer
perceptron (MLP) is an Artificial Neural Network utilizing multiple layers of neurons and
non-linear activation functions. Another significant model that critically impacts Time Series
Forecasting problems is the long short-term memory (LSTM) recurrent neural network. Its
huge advantage is processing entire time sequences of data by employing a cell, an input gate,
an output gate, and a forget gate. Moreover, Convolutional Neural Networks (CNNs) have
dominated computer vision due to their various building ingredients, including convolutional
layers, pooling layers, and fully connected layers. Of course, hybrid models such as CNN-
LSTMs dominate today, providing the best of both worlds.

2.5.3 Machine Learning Steps

Numerous distinct steps exist in order to construct an effective prediction algorithm. As
illustrated in Figure R.11], the whole procedure consists of data collection, data preprocess-
ing, model selection, model training, model evaluation, hyperparameter tuning, and finally,

predictions. It is worth delving a little more into each of them.

» Data Collection: Data collection is the technique of collecting and analyzing data on

selected variables. This data rely on the corresponding predicting problem, and they
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are, at this point, in a raw format.

* Data Preprocessing: Preprocessing data is a critical step that involves converting raw
data to a comprehensible format before use, improving efficiency. This step may in-
clude cleaning missing or noisy data, normalization, standardization, dimensionality

reduction, and more.

* Model Selection: This step determines the most relevant model for the problem at
hand. As discussed earlier, there is a wide variety of machine learning techniques.

However, appropriate model selection plays an essential role in performance.

* Model Training: Here the model is trained on a specific subset of the available data,
called the training set. The model adapts to the data by modifying its internal state with
various techniques, such as minimizing a cost function, using the Gradient Descent

approach.

* Model Evaluation: Model evaluation is an essential process in concluding whether
the model performs well or not. It relies on data splitting techniques such as train-
ing/test/validation split or, a more sophisticated one, k-Fold Cross-Validation. More-
over, validating a regression model includes studying many error metrics such as Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error
(MAE).

* Hyperparameter Tuning Every model accepts a set of pre-defined arguments, called
hyperparameters. Hyperparameter tuning is the method of searching and carefully con-

figuring the appropriate model hyperparameters to enhance overall performance.

* Predictions Finally, after all the steps mentioned above, the model is ready to be ap-

plied and make predictions.

2.6 Experimental Tools and Methods

This section analyzes all the resources and tools used for the experiments. It consists
of the NITOS wireless testbed [[13] [[14], located at the University of Thessaly, Greece, the
OpenAirInterface platform [[15] used to develop real cellular network components, and the

FlexRAN platform [|16] utilized to implement scheduling of clients.
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Figure 2.12: Overall NITOS Architecture

2.6.1 NITOS Testbed

Since 2007, the NITLAB unit at the University of Thessaly has run the Network Imple-

mentation Testbed utilizing Open Source platforms (NITOS), evaluating cutting-edge net-

working research. The NITOS testbed is one of the most extensive open experimental de-

partments in Europe, allowing users globally to access highly programmable and remotely

accessible equipment using the cOntrol and Management Framework (OMF) open-source

software, as shown in Figure R.12. The testbed is integrated into more prominent resource

federations, such as OneLab and Fed4FIRE, supporting more heterogeneous resource test-

ings. It consists of three separate deployments: the Indoor RF Isolated Testbed, the Outdoor
Testbed, and the Office Testbed, as illustrated in Figures 2.13, 2.14 and 2.13.

Numerous critical and cutting-edge components comprise the NITOS testbed:

* The wireless experimentation testbed incorporates 100 well-equipped nodes, fea-

turing multiple wireless interfaces and allowing experimentation with heterogeneous

wireless technologies, such as Wi-Fi, WIMAX, LTE, Bluetooth.

* The Cloud infrastructure comprises seven HP blade servers and two rack-mounted

servers with a combined volume of 272 CPU cores, 800 GB of RAM, and 22 TB of

storage. The network is connected using an HP 5400 series modular Openflow switch,
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Figure 2.13: Indoor RF Isolated Testbed Figure 2.14: Outdoor Testbed

Figure 2.15: Office Testbed

supporting 10Gb Ethernet communication between cluster modules and 1Gb between

the cluster and GEANT.

* The wireless sensor network testbed consists of three components: a manageable
testbed installed in UTH’s buildings, a city-scale sensor network installed in Volos,
and city-scale mobility sensing infrastructure based on volunteer users’ bicycles. All
sensor platforms are unique and built by UTH; they run on Arduino firmware and

communicate via various wireless methods (ZigBee, Wi-Fi, LTE, Bluetooth, IR).

* The Software Defined Radio (SDR) testbed is made up of Universal Software Radio
Peripheral (USRP) devices connected to the NITOS wireless nodes via USB. USRPs
enable the researcher to program numerous physical layer characteristics (for example,

modulation), enabling devoted PHY layer or cross-layer study.

* The Software-Defined Networking (SDN) testbed comprises numerous switches at-
tached with OpenFlow technology to the NITOS nodes, allowing for experimenta-
tion with switching and routing networking protocols. Experiments utilizing OpenFlow
technology can be integrated with wireless networking technologies, allowing for more

diverse experimental scenarios.
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2.6.2 The OpenAirlnterface Platform

The OpenAirInterface (OAI) wireless technology platform is the first open-source software-
based implementation of the LTE system, including the whole protocol stack defined by 3GPP
specs. It incorporates developments to the Evolved Packet Core and E-UTRAN. Thus, re-
searchers implement base stations and core networks and attach real UEs, building a complete
4G and beyond infrastructure. It is ideal for cutting-edge experimentation on novel 4G/5G
and beyond configurations validating theoretical models and algorithms.

OALI is written in standard C and is distributed as free software under the GNU General
Public License provisions(GPLv3). OAI provides a thorough development environment with
built-in tools, including realistic emulation, soft monitoring/debugging instruments, protocol
analyzer, performance profiler, and a configurable logging system for all layers and channels.

This thesis implements a realistic experimentation environment on the NITOS Testbed
using OAI. Additionally, we contribute to the development of OAI’s code by incorporating
unique methods and methodologies on wireless clients’ scheduling described in the following

sections.

2.6.3 The FlexRAN Platform

FlexRAN is a resilient and programmable open-source implementation of a Software-
Defined Radio Access Networks. It comprises two primary components: the FlexRAN Ser-
vice and Control Plane and the FlexRAN Application Plane.

The FlexRAN service and control plane is hierarchical, consisting of a Real-time Con-
troller (RTC) coupled to several underlying RAN runtimes, one for each RAN module; for
instance, one for monolithic 4G eNB, or multiple for a disaggregated 4G and 5G.The RAN
runtime environment is an abstraction layer between the RAN module and the RTC and con-
trol applications, separating the control and data planes.

FlexRAN protocol enables the communication between the real-time controller and the
runtime environment’s RAN agent. RAN control applications may exist on top of the RAN
runtime or the RTC SDK, enabling the monitoring, control, and coordination of RAN infras-
tructure. These applications can range from simple real-time monitoring to more complex
distributed apps that affect the status of the RAN in real-time, such as a MAC scheduler.

We utilize FlexRAN for the efficient scheduling of wireless clients. Specifically, FlexRAN

enables the slicing of base station resources between the clients (UEs). We exploit this tech-
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nique to schedule clients among different wireless technologies, such as LTE, WiFi, 5G, and

more. A FlexRAN slice could include various parameters such as:

dl: A list of configuration items for downlink slices.
* id: The slice’s unique identifier.

» percentage: The number of resource blocks that this slice may utilize, as a percentage

of the total bandwidth

* maxmes: The maximum MCS that this slice is permitted to employ.






Chapter 3

Framework for Scheduling among

Heterogeneous DUs

3.1 Introduction

In 5G and beyond networks, efficient scheduling between different wireless technologies
is critical. Thus, in the functional split architecture described in section 2.3.3, the CU unit
should act as a coordinator by balancing the traffic load among the various DUs. This chapter

constructs and evaluates this advanced architecture under realistic experimental situations.

Currently, there are many experimental disaggregated architectures for heterogeneous
RANSs. Especially, a work [4] has proposed one equipped with both LTE and WiFi DUs un-
der the guidance of a single CU. They build the experimental environment using NITOS
Testbed described in section 2.6.1], incorporating the OpenAirInterface for the cellular topol-
ogy implementation detailed in section 2.6.2.

Our target is to build on top of this work, providing a novel scheduling scheme that utilizes
the Flexran Platform illustrated in section 2.6.3. In the following sections of this chapter, we

describe, validate and evaluate the framework under the same experimental circumstances.

29
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Figure 3.1: Heterogeneous and Disaggregated RAN Architecture incorporating FlexRAN
3.2 Framework

3.2.1 Initial Topology

First of all, the fundamental topology used is illustrated in Figure B.1. Several compo-
nents are essential, beginning from the core network (EPC) that connects the RAN architec-
ture with the outer world. Moreover, following the functional split architecture, a single CU
unit is connected with one LTE DU and one WiFi DU providing heterogeneous connectivity
to a single UE. Last but not least, the FlexRAN controller is an essential instrument commu-
nicating with the FlexRAN Agent located in the LTE DU to provide LTE traffic slicing. In
this way, the slicing control of the LTE interface is handled with a single slice post to the
FlexRAN controller, as shown in Figure B.1| with the red arrows. For instance, a slice with a
percentage value equal to 50 percent will force the LTE DU to provide half of the resource
blocks (RBs) available to the specific UE. Consequently, if all RBs were used before the slice
post, the link’s capacity and bandwidth will now drop to half. An example of a FlexRAN slice
is illustrated in Figure B.2.

3.2.2 Proposed Approach

The proposed approach is heavily based on FlexRAN slicing implementation. The pri-

mary goal is the usage of the slice by the CU to schedule traffic based on its percentage value.
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message slice inform{
optional uint32 slice id =1;

optional float percentage =2;

Figure 3.3: The Message Format with the

Figure 3.2: A Downlink FlexRAN Slicing Values to be sent via F1 Interface.
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Figure 3.4: Proposed Approach for Scheduling between WiFi and LTE DUs

For this reason, when the slice arrives at the FlexRAN agent, it should be sent directly to the

CU, as shown in Figure B.4.

The full implementation of this communication flow resides on a struct data structure.
When the posted slice arrives at the FlexRAN Agent from the Controller, we retrieve it at the
MAC layer and save the percentage and id values in a struct. Then, as illustrated in Figure .3,

we compose a message utilizing these values and forward it to the CU via the F1 interface.

The PDCP layer receives the message on the CU side and stores the values in its struct.
Now, the percentage item assists in implementing a scheduling scheme between the DUs in
a Round-robin fashion. Precisely, there are one hundred slots available for every round, each

one representing one percent. Every DU exploits a slot to transmit a packet to UE. The LTE
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Figure 3.6: Experimental Setup with NITOS Testbed.

DU assigns its slots first, followed by the WiFi DU; for example, if the posted percentage in
slice equals 90 percent, the LTE DU will allocate the first 90 slots, while the WiFi DU will

employ the remaining 10, as shown in Figure B.3.

3.3 Experiments

3.3.1 Experimental Setup

The experiments assist in validating and evaluating the proposed approach in realistic cir-
cumstances. Specifically, we use the NITOS Testbed for our experimental topology, depicted
in Figure [3.6.

The system architecture employs six NITOS machine nodes. First, one node deploys the
core network, including the HSS, MME, and SPGW components. Secondly, a node equipped
with a USRP B210 device sets up both CU and LTE DU. We use the LTE implementation
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of the OpenAirInterface platform, due to its stability and efficiency, compared to the SGNR
implementation at the time of writing. Nevertheless, the solution can be directly projected
to the 5G implementation by interchanging the core network components with the 5G ones
(HSS/UDM, MME/AMF, SPGW-U/UPF, SPGW-C/SMF) and the disaggregated eNB with
a disaggregated gNB. Moreover, there is a WIFI DU node and two nodes implementing the
UE; one for the WiFi interface equipped with a Qualcomm Atheros AR9380 chipset and one
for the LTE supplied with a Huawei LTE USB Dongle. Finally, we utilize a node for hosting
the FlexRAN Controller.

3.3.2 Experimental Scenario

The testing scenario is constructed to demonstrate the efficient scheduling between the
DUs in real-time. Specifically, we operate the iperf tool for traffic injection and live network
performance monitoring. The goal is to send a 10 Mbps downlink traffic from the core net-
work to the UE and observe the differences when posting new slices in FlexRAN Controller.

Initially, the percentage value in the slice is 70 percent, meaning that 70% of the traffic
will be scheduled to the LTE UE and the other 30% to the WiFi. At 10 seconds approximately,
we post another slice with a percentage value of 25 percent, replacing the previous one. We
want to observe the traffic at the LTE interface dropping from 70% to 25% and at WiFi

increasing from 30% to 75%.

3.3.3 Experimental Results

The experimental results come to validate the framework giving the expected outcome.
In the beginning, as illustrated in the iperf server (UE) logs in Figures 3.7 and 3.8, the total 10
Mbps traffic is scheduled as expected based on the first slice (with the 70 percent value); that
is 7 Mbps (70%) LTE and 3 Mbps (30%) WiFi traffic. At 10 seconds, the red horizontal line
represents the post of the new slice with a percentage value of 25 percent. Then, after this time
threshold, the LTE bandwidth is dropped to 2.5 Mbps (25%) while the WiFi one increases to
7.5 Mbps (75%), as desired. Figure B.9 depicts more clearly this scheduling transition.
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Figure 3.9: LTE/WiFi Bandwidth Monitoring with FlexRAN Slice Reconfiguration



Chapter 4

Al-Driven Real-time Scheduling between

Heterogeneous DUs

4.1 Introduction

Future generation networks set the urgent need for ML and Al applications and methods
in every network stack component, as described in section [1] [2] [3]. As a result, the
whole infrastructure will become more flexible, robust, and efficient in handling the massive
traffic data while providing minimum latency.

This chapter proposes, validates, and evaluates an Al-Driven framework for scheduling
between heterogeneous DUs in 5G disaggregated RAN architectures. We build upon the work
of the previous chapter by implementing ML and Al techniques for scheduling the DUs based
on the LTE channel quality. Specifically, after continuous LTE link monitoring, the proposed
scheme makes scheduling decisions to ensure optimal network conditions and QoE.

The monitoring focuses on the Channel Quality Indicator (CQI). In LTE systems, the
CQI is a metric that provides the channel quality to the base station showing the level of
modulation and coding the UE could function. Especially, it ranges from 0 to 15 in values.
That means from no to 64QAM modulation, from zero to 0.93 code rate, from zero to 5.6
bits per symbol, from less than -1.25 to 20.31 SINR (dB), and from zero to 3840 TBS bits.

The following sections utilize CQI data of car routes from real commercial networks and
reproduce them under a controllable and realistic experimental environment. Additionally,
we build an ML & AI unit by analyzing the data and evaluating various machine and deep

learning models. This unit monitors and forecasts the LTE CQI values continuously in real-
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Figure 4.1: Overall System Architecture incorporating Real-time Scheduling with the ML &
Al Unit

time. Subsequently, it posts the appropriate slices to the FlexRAN controller based on a slice
allocation algorithm to enhance resource management and provide optimal network perfor-
mance and user experience. In the end, we validate and evaluate the whole framework under

the NITOS Testbed in terms of efficiency, QoS, and QoE.

4.2 System Architecture

The overall baseline system architecture is depicted in figure 4.1|, presenting the incor-
poration of the ML & AI unit in the RAN disaggregated network of the previous chapter.
The main idea is to employ a monitoring scheme on the side of the Flexran controller to sniff
the UE’s CQI values continuously. Then, machine learning techniques analyze the patterns
in the data predicting future CQI values in real-time. This way, the ML & Al unit sends new
and more appropriate scheduling configurations (slices) to the FlexRAN controller. Subse-
quently, the slices arrive at the CU utilizing our communication implementation between the
FlexRAN agent and the CU discussed in the previous chapter. Then, the CU continuously
reconfigures the DU scheduling among the heterogeneous DUs based on the slice that came

from the ML & Al unit, enhancing the overall network performance resulting in a better QoS
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Figure 4.2: Attenuation Data Available from Real Commercial Networks

and QoE.

4.3 Data

In this section, we describe the methodology followed from acquiring the data to prepar-
ing them for the models. Precisely, we begin by describing the attenuation data used to simu-
late the car routes. Then, we present the data augmentation step where we enrich the attenua-
tion data to obtain many different car route patterns. Finally, we detail the CQI data collection

and pre-processing steps.

4.3.1 Attenuation Data

The goal of this work is to study CQI data of real car routes in city Volos. The CQI values
vary across different geographical areas of the city as the car is moving. Specifically, it is
high in areas with good link conditions, while it drops in regions with poor LTE coverage.

In order to emulate the car routes inside our experimental environment, we need to give
the illusion of a moving machine node. To achieve this, we install programmable attenua-
tors on the USRP’s outputs. Thus, we control the experienced CQI by modifying the USRP
attenuation, giving the sense of motion. In this way, we adjust the CQI values based on our
collected data from real car routes in commercial networks.

We possess some attenuation data from real vehicle pathways in Volos, Thessaly, Greece,

where our university and testbed are. Figure depicts data from a long pathway with ap-
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proximately one thousand attenuation values. In the beginning, the attenuation values are
sufficiently low, corresponding to high CQI, and after the 400th time unit, the attenuation

rises to 120, giving low CQI.

4.3.2 Designing Basic Attenuation Scenario

This section constructs a basic attenuation scenario based on the available data. It will
represent an actual car route, and we will use it in our analysis from now on. Our goal is
to demonstrate the ability of our framework to adapt to extreme CQI transitions. In detail,
we need a case where the CQI drops from high to low values and also an opposite situation
where it rises from low to high values.

As already has been stated, our available attenuation data include the first case where the
CQI is initially high and later drops to low values. Now, in order to create a larger scenario
that also contains the second case, we use a copy of the available attenuation data. Precisely,
we obtain a copy of them, reverse it and append it at the end. This way, we simulate a car turn-
around at the end of the pathway to traverse it in the opposite direction. Since the geographical
area is the same and the direction is the opposite, we expect the attenuation data for this part
to be the same or very similar values as the first part but in a reversed sequence.

Now that we built a larger scenario with both cases, we need to ensure that our model
has enough time to prepare and start predicting before the first CQI transition phase in our
experiment. Specifically, this phase is approximately at the 400th time unit, and at this point,
we could not be sure whether this window is large enough for our models. Thus, it is a good
idea to extend it.

We could achieve that by inserting a car-stop at a red traffic light any time inside this
window. A regular traffic light cycle is 120 seconds, meaning that the longest waiting time at
ared light is 90-120 seconds. So, we assume that the car waits for approximately two minutes
at the red light before it continues. To illustrate this with attenuation values, we insert 120
constant values. Understandably, when the car is immovable, it stays in the same geographical
area, and as a result, it has a constant attenuation and CQI value.

Finally, after experimentation with these attenuation data in the testbed, we conclude that
it is necessary to rescale the values in the range 0-15. Thus, Figure .3 illustrates the basic
attenuation scenario used to develop the framework in the following sections. In detail, we

observe the car waiting at the red light at time values 130-250, the first transition from low to
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Figure 4.3: Basic Attenuation Data Scenario including car turn-around and red traffic light.

high attenuation at 500 seconds, the turn-around at 1050 seconds, and the second transition

from high to low attenuation at 1600 seconds.

4.3.3 Attenuation Data Augmentation

This section describes the process for augmenting our data in order to obtain more slightly
altered attenuation scenarios based on the basic one. In this way, we simulate many different
cars that traverse through the same city pathway. Understandably, only one car route scenario
is not enough to build a robust model that generalizes well adapting to new unseen car routes.
This procedure is called data augmentation in the literature.

There are many data augmentation techniques for time series data, including adding
noise, cropping, scaling, and time-warping, among many others. Also, advanced augmen-
tation methods are Adversarial Training, Neural Style Transfer, and Generative Adversarial
Networks (GANs) based augmentation. This thesis utilizes Tsaug [[17], a python library for
time series augmentation that offers a set of augmentation schemes for time series forecasting
that could be stacked in a pipeline of multiple connected augmenters.

After experimentation with the possible augmenters, we conclude to employ a Tsaug
pipeline of time-warping, noise, and cropping. As a result, we create multiple scenarios
slightly altered from the basic one, representing many different cars. Specifically, this ap-
proach simulates the continuous monitoring of a specific city pathway that many vehicles
traverse with various velocities and different driving methods. Nevertheless, the same atten-
uation pattern exists in all the car routes since they drive through the same geographical area.

There are only some minor differences - fluctuations based on the driving style and the noise.
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Figure 4.4: Attenuation Data Augmentation: Simulating the continuous monitoring of a spe-
cific city pathway. Every augmented scenario corresponds to a car that traverses the pathway

with a unique driving style.

Figure 4.4 shows five indicative augmented scenarios representing five different cars driving

through the city pathway.

4.3.4 CQI Data Collection

This section describes the procedure for collecting CQI data based on the augmented
attenuation scenarios mentioned in the previous section. Precisely, we reproduce the car be-
haviors captured from the city pathway monitoring under a complete infrastructure in the
NITOS Testbed. The experimental architecture is similar to that described in the preceding
chapter, as seen in Figure #.3. The only difference is that we do not need the UE’s WiFi
interface for now since only the LTE CQI data are required.

The FlexRAN Controler plays a vital role in the data collection process. First, we deploy
the complete topology of Figure .5 and start the experiment. We obtain a random attenuation
scenario (a car route) from the augmented data available and start configuring the USRP’s
attenuation accordingly. Meanwhile, we continuously parse the UE’s CQI values with the
ML & Al unit hosted on the FlexRAN Controller’s node. To achieve this, we periodically
send a GET request to the Controller inquiring about the based station’s statistics. Then we

extract the CQI value from the returned JSON and store it in a CSV. This process continues
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Figure 4.5: Nitos Testbed Data Collection Architecture
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Figure 4.6: Collected CQI data.

until the attenuation scenario is completed (about 2500 CQI values). In this way, we get the

CQI data for one scenario corresponding to one car that passes the city pathway.

Repeating this methodology many times, we collect approximately 70 scenarios corre-

sponding to 70 different cars passing the specific road. Finally, we build 70 univariate time-

series sequences with a total of 182.000 CQI values. Figure §.6 depicts five of them, showing

slight differences from car to car. Additionally, focusing on the first sequence of the figure,

we can spot the first transition when the CQI drops (entering an area with poor coverage)

at about 600 seconds and the second phase when the CQI rises (leaving the area with poor

coverage) at about 2100 seconds. In this way, we build the final data that represent realistic

car behaviors on a specific city road.
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Figure 4.7: CQI Data Pre-processing: Sequence Flattening & Sliding Window Techniques

4.3.5 CQI Data Pre-processing

To begin the data pre-processing, we normalize the sequence. Generally, the large inputs
in the unscaled data restrain the network’s learning and convergence and, in certain situations,
prevent it from learning correctly. Our data range is not so large since it is from 0 to 15.
Nevertheless, we rescale them to the range [0,1] to boost model training and efficiency.

As anext step, we shrink the data sequences’ lengths (/V), assisting in better data handling
by the model. Precisely, we flatten the time sequences by continuously collecting the means
for windows with length m, as shown in Figure @ In our case, m’s optimal value is 4,
resulting in flattened sequences with N/4 length.

Then, we form the flattened sequences in such a way to feed them appropriately in a
model. Specifically, we utilize a sliding window technique transforming the time-series fore-
casting problem to a supervised one, as illustrated in Figure #.7. More accurately, we obtain
one flattened sequence and split it into several sub-sequences based on a sliding window with
length 100. Hence, the model’s input is a univariate time-series window with a length 100
corresponding to 400 non-flattened sequence values. At the same time, the output is a single
continuous value, representing the predicted CQI as a mean of the following 15 flattened

CQI values corresponding to 60 non-flattened values. To summarize, we practically obtain
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Figure 4.8: Time Series Cross-Validation Technique: Every square represents one Fold. This
figure shows five iterations where we increase the training set by one Fold and use the fol-

lowing one for validation. In the end, we obtain the mean of all validation errors.

400 non-flattened values and predict the mean of the next 60 continuously by flattening and

feeding them into the model.

4.4 Searching and Evaluation of ML & AI Algorithms

This section investigates numerous machine and deep learning techniques to find the best
model for fitting the data. Beginning from simple linear algorithms like Linear Regression,
we reach to employing complicated neural network architectures such as LSTMs utilizing the
Tensorflow-Keras API. We use all the augmented traffic scenarios available as training data
while employing the basic non-augmented scenario only for validation. In general, we grid-
search and tune the hyperparameters for every algorithm to find its best version and follow a
2-step evaluation technique.

Every tested model has its subsection where we implement and evaluate it. As first-step
evaluation, we implement a time-series cross-validation technique based on K-fold cross-
validation but designed to keep the time sequence, as shown in Figure §.8. Specifically, we
split the augmented sequences (training data) equally in folds and create two sets, the training,
and the validation set. Then, on every iteration, we increase the training set by appending one
following Fold, and we use its next one for validation. Finally, we obtain the mean of all
validation errors, calculating the final model validation value. From now on, we refer to this
step as cross-evaluation.

As a second evaluation step, we utilize the obtained CQI values from the basic non-
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augmented car route scenario, which was excluded from the training set. We will use these
data for the final experiment on the Testbed, validating the model’s generalization to unseen
data. From now on, we refer to this step as generalization evaluation.

Both these steps are highly essential for the overall model evaluation. The generalization
one allows us to measure how well the model finds the pattern in unseen and unaugmented
data since it is only trained on the augmented scenarios. It also indicates the model’s perfor-
mance on the data used for the experiment. Finally, the cross-evaluation shows us the model’s
ability to find the pattern in the augmented data adapting to new unseen fluctuations.

Every model is trained and evaluated utilizing the Google Colab Notebooks using a non-
premium subscription with a TPU backend for faster model analysis. We also measure its
training time as another important metric for finding the faster one. Thus, we need to keep

this configuration in mind when studying the evaluation results for every algorithm.

4.4.1 Linear Regression

Linear Regression is a basic algorithm used for regression problems in machine learning
assuming a linear relationship between the predictors [|18]. The mathematical formula for the

simple univariate linear regression with one explanatory variable is:
Ui = wo + wy x z; + €, 4.1)

where g; is the dependent variable, x; is the explanatory variable, wy is the intercept, w; is
the slope and ¢; is the random noise for instance i. We generally consider the input a dataset
with n instances-rows described by p explanatory variables. When p > 1, the multiple linear

regression formula is:

Ui = Wo + Wy * Ty + Wa * Tyg + ... + Wy, * Tip + € (4.2)
p

gi=wo + Y _(wj*mi5) + € (4.3)
j=1

The w, can be interpreted as the average effect on g; of a one-unit increase in x;1, holding all
other predictors fixed.

The model fits the data by calculating all the appropriate w; and wy coefficients that min-
imize a cost function. Specifically, the most common fitting technique is the Least Squares
that minimizes the residual sum of squared errors (RSS).

n p 2
RSS = Z(yZ — ) = Z (yz — ij * Tij — wo) ) 4.4
i—1 =1

n
i=1
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tion Evaluation Evaluation of Linear Regression Model.

where y; are the real expected values and the 3; are the predictions.

In our case, the model’s input window forms a multivariate vector with a length of 100,
as mentioned in section §.3.5. Thus, we employ the scikit-learn multiple linear regression
implementation for data fitting [19]. Figure §.9 illustrates the results for the generalization
evaluation on the basic non-augmented traffic scenario. The calculated MAE is 1.24, while
the MSE is 2.72.

Figure shows the cross-evaluation results on the augmented scenarios. Specifically,
we implement a 20-Fold time-series evaluation with Folds of 500 values. We repeat it for 10
iterations to acquire enough confidence for the validity of the results. Finally, the distributions
of the MAE and MSE are shown in Figure #.10, with the median cross-evaluation MAE being
1.19, while the MSE is 2.39. Understandably, the model does not fit the data optimally.

On the timing side, the measurements show that the model fits the data quickly. Precisely,
the cross-evaluation duration is 70 seconds, while the training-data fitting duration is 0.4

seconds.

4.4.2 Ridge Regression

Ridge Regression or L2 Regularization is a regularization technique for Linear Regres-
sion. The main drawback of Linear Regression is instability in minimizing the RSS when
highly correlated variables exist. Precisely, it can lead to growing large positive w; coeffi-
cient values on some variables and large negative on others, creating a high variance or an
overfitting model.

L2 Regularization inserts a penalty term proportional to the squared values of w; (ex-
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cluded wy) in the cost function to address this problem:

n p 2 p
RSSLQZZ (yi—inj*wj—w()) +/\ZU)]2, (45)
1 j=1 j=1

This way, it controls the size of the coefficients providing numerical stability and increasing
predictive performance.

We implement Ridge Regression utilizing the scikit-learn library [20]. Moreover, we ap-
ply a 25-Fold time series cross-evaluation with Folds of 200 values. For finding the optimal
regularization hyperparameter A (alpha in scikit-learn documentation), we grid-search mul-
tiple values from 0 to 900, as shown in Figure #.11. However, there are no significant MAE
changes for almost all tested values except the last large ones, where the MAE rises. Thus,
we randomly choose one of the first values and precisely the value 3.

We evaluate the model by calculating the median cross-evaluation MAE to be 1.18, while

the MSE is 2.45. Additionally, Figure illustrates the results for the generalization eval-
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Figure 4.13: Lasso Regression Grid-Searching of Hyperparameter alpha.

uation on the basic non-augmented traffic scenario. The calculated MAE is 1.24, while the
MSE is 2.72. As a result, the model does not fit the data efficiently.

On the timing side, the measurements show that the model fits the data fast. Precisely,
the cross-evaluation duration is 86 seconds, while the training-data fitting duration with the

final hyperparameter is 0.1 seconds.

4.4.3 Lasso Regression

Lasso Regression or L1 Regularization is also a regularization technique for Linear Re-
gression that overcomes the disadvantages of L2 Regularization. Precisely, despite the latter’s
benefits, the L2-norm does not encourage sparsity, resulting in non-zero and ofter similar
coefficient values. On the other hand, L1 Regularization provides a regularized feature se-
lection approach by minimizing the irrelevant features resulting, this way, on a low variance
non-overfitting model. By replacing the L2 norm with the L1 one in equation }.3, the Lasso

Regression’s cost function becomes:

n p 2 p
RSSL1:Z<yl—Zl‘”*U)J—U)0) +)\Z|wj|, (46)
7j=1 j=1

i=1

We implement Lasso Regression utilizing the scikit-learn library [21] and use a 25-Fold
time series cross-evaluation with Folds of 200 values. For finding the optimal regularization
hyperparameter A (alpha in scikit-learn documentation), we grid-search multiple values from
0.1 to 900, as shown in Figure #.13. However, all tested values give huge MAE values. Thus,

we randomly choose the value 0.1.
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Figure 4.14: Lasso Regression Generalization Evaluation with alpha = 0.1

We calculate the median cross-evaluation MAE equal to 2.4, while the MSE is 6.7. Ad-
ditionally, Figure illustrates the results for the generalization evaluation on the basic
non-augmented traffic scenario with the alpha to be 0.1. The calculated MAE is 2.55, while
the MSE is 7.77. We conclude that the model completely fails to fit the data.

On the timing side, the measurements show that the model fits the data fast. Precisely,
the cross-evaluation duration is 66 seconds, while the training-data fitting duration with the

final hyperparameter is 0.08 seconds.

4.4.4 Flastic Net Regression

Elastic Net Regularization is also a regularization technique for Linear Regression pro-
posed to solve Lasso Regression’s restrictions [22]. Specifically, one drawback of Lasso is
that its feature selection may be unstable since it is too dependent on data. Also, it is unable
to perform grouped selection since it only picks a single variable from a group of similar
features.

The solution is combining L2 and L1 Regularization to obtain the benefits of both worlds.

Thus, Elastic Net’s cost function is:

2
Dict (yi - Z?:l Lij * Wy — wO) l—a -
RSSElasticNet = m + )‘( 2 Z w]2 +a Z ’wJD (47)
j=1 j=1

Here, there are two tunable hyperparameters, the A and the . The A is the regularization
strength as in Ridge and Lasso Regression, while the « is the mixing parameter between L2

(a=0) and L1 (a=1) Regularizations. With the appropriate tuning of the hyperparameters,
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we could utilize L1 to generate a sparse model and the quadratic part (L2) to encourage the
grouping effect and the L1 feature selection stability.

We implement Elastic Net Regularization utilizing the scikit-learn library [23] and use
a 25-Fold time series cross-evaluation with Folds of 200 values. The hyperparameter A is
the alpha in the sklearn documentation, and the « is the // ratio. For finding the optimal
regularization hyperparameters, we grid-search multiple combinations for a and //_ratio, as
shown in Figure §.15. The best one is the first with o and [/ ratio equal to 0.01.

Using these values, we find that the median cross-evaluation MAE equals 1.2, while the
MSE is 2.47. Additionally, Figure illustrates the results for the generalization evaluation
on the basic non-augmented traffic scenario. The calculated MAE is 1.27, while the MSE is
2.78. In conclusion, the model is not able to fit the data optimally.

On the timing side, the measurements show that the model fits the data fast. Precisely,
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the cross-evaluation duration is 106 seconds, while the training-data fitting duration with the

final hyperparameters is 0.09 seconds.

4.4.5 Polynomial Regression

Polynomial Regression is a technique to fit non-linear data by utilizing polynomial equa-
tions [24] [25]. Nevertheless, it is a linear estimation since the coefficients come from a linear
regression function F(y|x). Thus, it is considered a special case of Linear Regression. The

mathematical formula for a simple univariate polynomial regression is:

i = Wo + Wy * Tj + Wwo * T2+ ws £ +... + wy, * 2T, (4.8)
Ji = wo+ Yy _wy * (4.9)
k=1

where n is the order of the polynomial.
Polynomial Regression can also be applied to multiple regression variables, called mul-
tivariate polynomial regression. The mathematical formula for a second-order polynomial

regression with two regression variables is:
A 2 2
Ui = Wo + Wy * Tjp + Wa * Tio + W11 * Tj; + Waa * Tjn + Wi * Tip * Tig + €, (4.10)

where the wy + wy * 241 + wo * T4 is the linear component, the wy; * 2% + wao * 12 is the
quadratic component and the w15 * ;1 * ;o is the cross product or interaction component.
We implement Polynomial Regression by utilizing the scikit-learn library and the Linear

Regression. We use a 5-Fold time series cross-evaluation with Folds of 1000 values since



4.4 Searching and Evaluation of ML & Al Algorithms 51

the polynomial training is more time-demanding from the previous implementations. To find
the optimal regularization hyperparameter degree, we grid-search two values (1°* and 279
degrees) as shown in Figure #.1§. We avoid testing higher-order polynomials because they
demand prohibitively huge memory capacity and training time that do not scale.

The results indicate that the optimal polynomial order is 2. We calculate the median cross-
evaluation MAE equal to 0.47, while the MSE is 0.39. Additionally, Figure illustrates
the results for the generalization evaluation on the basic non-augmented traffic scenario. The
calculated MAE is 0.53, while the MSE is 0.47. We conclude that the model fits the data with
high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data sufficiently fast.
Precisely, the cross-evaluation duration is 989 seconds (16.5 mins), while the training-data

fitting duration with the final hyperparameter is 214 seconds (3.5 mins).

4.4.6 ARIMA

ARIMA stands for Autoregressive Integrated Moving Average and is one of the most
widely used forecasting models for univariate time series data forecasting. It is a generaliza-
tion of the simpler AutoRegressive Moving Average incorporating the concept of integration.

Its key characteristics are:

* Autoregression (AR): An algorithm utilizing the dependent relationship between the
observation and several lagged observations. The lag order is specified as the p param-

eter.

* Integrated (I): A method to make the time series stationary by employing the differ-
encing of the observations, for instance, subtracting an observation from another one

at a preceding time slot. The degree of differencing is specified as the d parameter.

* Moving Average (MA): An algorithm exploiting the relationship between an obser-
vation and the residual error of a moving-average algorithm applied to lagged obser-

vations. The order of moving average is specified as the g parameter.

ARIMA models are very robust when dealing with the trend in a time series, but they
do not support seasonality handling. Thus, there is an extension of the ARIMA supporting
seasonality modeling called the SARIMA model.
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Seasonal Autoregressive Integrated Moving Average (SARIMA) or Seasonal ARIMA
incorporates three new additional hyperparameters (P, D, () for the seasonal part, related
to the autoregression (AR), the differencing (I), and the moving average (MA). Moreover, it
specifies another hyperparameter m for the seasonality interval.

In our implementation, we employ both Seasonal [26] and simple ARIMA [27] to find
which fits our data in the best way. To do that, we need to merge all the time series available,
creating a large univariate sequence. Then, we flatten it following the same procedure as
described in the pre-processing section(#.3.5). After analyzing the autocorrelation plot, we
grid-search various combinations both for the ARIMA’s (p,d,q) values and for the SARIMA’s
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Figure 4.21: ARIMA (p=2, d=1, q=2) Generalization Evaluation.
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(p,d,q) and (P, D, (), m) values, as shown in Figures and }#.20, to find the optimal
hyperparameters by using a 5-Fold time series cross-evaluation with Folds of 100 values.

The results show that the ARIMA outperforms the SARIMA model in terms of the Mean
Absolute Error. Thus, we choose ARIMA’s best combination of parameters for fitting the data,
including p equals 2, d equals 1, and ¢ equals 2. The calculated median cross-evaluation MAE
equals 1.05. Additionally, Figure illustrates the results for the generalization evaluation
on the basic non-augmented traffic scenario. The calculated MAE is 1.07, while the MSE is
2.64. We conclude that the model does not fit the data optimally.

On the timing side, the measurements show that the model does not fit the data fast.
Precisely, the training-data fitting duration is 192 seconds, with the model fitted only in 20%
of the training data. That means that the model’s fitting could last up to 1000 seconds (16.5
mins) for the complete training set. Moreover, a considerable drawback of ARIMA models
for our framework is the need for repeated data fitting before every prediction. This need

dramatically slows the prediction process, making it difficult for real-time applications.

4.4.7 Support Vector Regression

Support Vector Regression (SVR) is an efficient regression method based on the Support
Vector Machines (SVMs) used for classification [28§]. It is a generalization of the latter, pro-
ducing a continuous output value. The univariate one-dimensional approximation function is

shown in Figure §.22, and the mathematical formula is given below:

M
y:ijxj+b, (4.11)
j=1
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with C' = 10 Regularization Hyperparameter C

where ,b € R and z,w € RM. For the multivariate equation, to simplify the formula,

include b in the w and increase x by one.

where 7, w € RM+1,
It is an optimization problem trying to find the narrowest tube centered around the surface
while minimizing the prediction error, in other words, the distance between the predictions

and the real values. Thus, the optimization function is:
1 2
M | w || (4.12)

Implementing a soft-margin approach similar to SVMs, slack variables £,£* are employed to

specify the number of the tolerated outliers. This way, the optimization function becomes:

N
min, || w | +C§a+fi, (4.13)
subject to
yi—wlaz <et+ &L i=1,..,N (4.14)
wie, —y; <e+&i=1,..,N (4.15)
&,6>0i=1,..,N (4.16)

The C' is the regularization parameter giving more weight in minimizing the error.
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We implement Support Vector Regression by utilizing the scikit-learn library [29] using
a 4-Fold time series cross-evaluation with Folds of 200 values. To find the optimal regular-
ization hyperparameter C', we grid-search four values (1, 10, 100, 1000), as shown in Figure
#.24, while employing an RBF kernel.

The results indicate that a good choice is C' equals 10. We calculate the median cross-
evaluation MAE equal to 0.69, while the MSE is 0.59. Additionally, Figure illustrates
the results for the generalization evaluation on the basic non-augmented traffic scenario. The
calculated MAE is 0.73, while the MSE is 0.80. We conclude that the model fits the data with
high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data fast. Precisely, the
cross-evaluation duration is 2887 seconds (48 mins), while the training-data fitting duration

with the final hyperparameter is 139.1 seconds (2.5 mins).

4.4.8 k-Nearest Neighbors

k-Nearest Neighbors or kNN is a simple algorithm used for classification but could also
be applied to regression problems when the data labels are continuous rather than discrete
variables. The kNN regression model stores all the training data and make predictions by
calculating the average value from the input’s k nearest neighbors in the training set. The
number of the nearest neighbors (k) used is a hyperparameter and needs to be configured

appropriately. kNN calculates the k nearest neighbors utilizing a distance function such as:

* Euclidean Distance:

Z(% —yi)?

=1

* Manhattan Distance:

n
Z |z — yil
=1

n 1/p
(Z |z — yilp)
i=1

We implement kNN by utilizing the scikit-learn library [30] using a 10-Fold time series cross-

* Minkowski Distance:

evaluation with Folds of 500 values. We grid-search several values to find the optimal hy-

perparameter &, as shown in Figure §.26.
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The results indicate that the optimal choice is k equals 23. We calculate the median cross-
evaluation MAE equal to 0.19, while the MSE is 0.18. Additionally, Figure illustrates
the results for the generalization evaluation on the basic non-augmented traffic scenario. The
calculated MAE is 0.175, while the MSE is 0.054. We conclude that the model fits the data
with extremely high accuracy, making it an excellent choice.

On the timing side, the measurements show that the model fits the data fast. Precisely,
the cross-evaluation duration is 0.47 seconds, while the training-data fitting duration with
the final hyperparameter is 0.007 seconds. Nevertheless, these values are misleading since
the kNN is a non-parametric algorithm that does not calculate coefficients or weights. On
the contrary, it just stores the training data and calculates the distances only at the prediction
time. This technique is a considerable drawback when used on real-time applications since
the prediction time could be dramatically slowed down depending on the amount of training

data.

4.4.9 Decision Tree

Decision Tree is one of the most widely used machine learning techniques deployed in
classification and regression analysis [31]]. A decision tree is a specific type of flowchart
structure consisting of several decision-making nodes leading to a final prediction value based
on decision thresholds rules.

Regression Decision Tree’s target is to predict a continuous variable by combining de-
cision trees and linear regression. Precisely, they receive input features and apply decision

and splitting rules based on an efficient recursive partitioning algorithm utilizing a least-
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squares criterion. There are various decision tree algorithms for regression, such as CART
and CHAID, that assign a constant mean leaf value. Moreover, RETIS and M5 algorithms

utilize linear regression models at the leaves.

We implement Decision Tree Regression by utilizing the scikit-learn library [32]. We use
a 10-Fold time series cross-evaluation with Folds of 500 values. To find the optimal regular-
ization hyperparameters, we grid-search various combinations of max_depth, max_features,
min_samples_leaf, and max_leaf nodes, as shown in Figure §.27.

The results indicate that the optimal tuning is with max_features equals 10, and with
min_samples leaf equals 1, configuring all the others to their default value. We calculate
the median cross-evaluation MAE equal to 0.26, while the MSE is 0.39. Additionally, Figure
illustrates the results for the generalization evaluation on the basic non-augmented traffic
scenario. We see some prediction fluctuations-bursts at some points, but the overall accuracy

seems high. The calculated MAE is 0.378, while the MSE is 0.48. We conclude that the model
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fits the data with high accuracy, making it a very good choice.
On the timing side, the measurements show that the model fits the data very fast. Pre-
cisely, the cross-evaluation duration is 200 seconds (3.5 mins), while the training-data fitting

duration with the final hyperparameters is 0.36 seconds.

4.4.10 Random Forest

Random Forests are an ensemble technique utilized for both classification and regression
tasks. They are widely used and considered a very robust algorithm since they outperform
many other approaches, including Decision Trees. The main principle of Random Forests is
using multiple Decision Trees (a forest) at training time. The regression output is the average
of all these trees’ predictions resulting, this way, in higher precision avoiding the overfitting.

Random Forests utilize the bagging ensemble approach, also called Bootstrap Aggrega-
tion, commonly used to reduce the variance in a noisy dataset. Precisely, many subsamples of
a training set are chosen with replacement (some data points more than once) forming several
training subsets. Subsequently, week learners are trained on them, and finally, the results are
aggregated to construct the average output for the regression problems, resulting in better
performance.

We implement Random Forest Regression by utilizing the scikit-learn library [33]. We
use a 4-Fold time series cross-evaluation with Folds of 500 values. To find the optimal hyper-
parameter n_estimators, we grid-search three values (10, 100, and 200), as shown in Figure
4.30).

The results indicate that the optimal value is 200. We calculate the median cross-evaluation
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MAE equal 0.20, while the MSE is 0.13. Additionally, Figure illustrates the results for
the generalization evaluation on the basic non-augmented traffic scenario. We see some pre-
diction fluctuations-bursts at some points, but the overall accuracy seems high. The calcu-
lated MAE is 0.34, while the MSE is 0.275. We conclude that the model fits the data with
high accuracy, making it a good choice.

On the timing side, the measurements show that the model fits the data sufficiently fast.
Precisely, the cross-evaluation duration is 2816 seconds (30.5 mins), while the training-data
fitting duration with the final hyperparameter is 469 seconds (7.8 mins). Both training and
prediction times are significantly affected by the number of estimators. Thus, if necessary,

we could also choose lower estimator values since we need a real-time implementation.

4.4.11 Bagging Scikit-learn

Scikit-learn library provides its own implementation for the Bootstrap Aggregation scheme
[34]. We will deploy it for comparison with the other methods in order to find the best ap-
proach for fitting our data. We use a 4-Fold time series cross-evaluation with Folds of 500
values. To find the optimal hyperparameter n_estimators, we grid-search three values (10,
100, and 200), as shown in Figure §.32.

The results indicate that the optimal value is 200. We calculate the median cross-evaluation
MAE equal 0.20, while the MSE is 0.13. Additionally, Figure illustrates the results for
the generalization evaluation on the basic non-augmented traffic scenario. The calculated

MAE is 0.315, while the MSE is 0.24. We conclude that the model fits the data with high
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accuracy, making it a good choice.
On the timing side, the measurements show that the model fits the data fast. Precisely, the
cross-evaluation duration is 3019 seconds (50.5 mins), while the training data fitting duration

is 481 seconds (8 mins).

4.4.12 XGBoost

XGBoost or Extreme Gradient Boosting is one of the top algorithms in terms of perfor-
mance and precision [35]. It is an open-source library that implements the gradient boosting
algorithm in an efficient manner.

Gradient Boosting is an ensemble approach applied to classification and regression tasks.
The main principle is boosting, where an ensemble model is constructed based on decision
trees, and new ones are continuously fitted to correct the current prediction error. It also
utilizes various differentiable loss functions and gradient descent optimization methods.

We implement XGBoost Regression by utilizing the xgboost library [36]. We use a 4-Fold
time series cross-evaluation with Folds of 500 values. To find the optimal hyperparameter
n_estimators, we grid-search four values (10, 100, 1000, and 10000), as shown in Figure
4.34,

The results indicate that the optimal value is 10000. We calculate the median cross-
evaluation MAE equal 0.33, while the MSE is 0.20. Additionally, Figure illustrates
the results for the generalization evaluation on the basic non-augmented traffic scenario. The
calculated MAE is 0.384, while the MSE is 0.40. We conclude that the model fits the data

with high accuracy, making it a good choice.
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On the timing side, the measurements show that the model does not fit the data sufficiently
fast. Precisely, the cross-evaluation duration is 4228 seconds (1 hour and 10 mins), while the
training-data fitting duration with the final hyperparameter is 954.5 seconds (15.9 mins).

Finally, the prediction time is very fast despite the large number of estimators.

4.4.13 LightGBM

LightGBM is another popular implementation of the gradient boosting approach [37].
Precisely, it is a tree-based algorithm developed for distributed and faster performance. By
incorporating automatic feature selection and also focusing on samples with larger gradients,
LightGBM is able to speed up the training and enhance the prediction accuracy.

We implement LightGBM Regression by utilizing the lightgbm library. We use a 4-Fold
time series cross-evaluation with Folds of 500 values. To find the optimal hyperparameter
n_estimators, we grid-search four values (10, 100, 1000, and 10000), as shown in Figure
4.36.

The results indicate that the optimal value is 1000. We calculate the median cross-evaluation
MAE equal 0.24, while the MSE is 0.13. Additionally, Figure illustrates the results for
the generalization evaluation on the basic non-augmented traffic scenario. The calculated
MAE is 0.319, while the MSE is 0.20. We conclude that the model fits the data with high
accuracy, making it a very good choice.

On the timing side, the measurements show that the model fits the data extremely fast.

Precisely, the cross-evaluation duration is 654 seconds (11 mins), while the training-data

fitting duration is 17 seconds.
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4.4.14 GBM Scikit-learn

Scikit-learn library provides its own implementation for the Gradient Boosting scheme
[38]. We will deploy it for comparison with the other methods in order to find the best ap-
proach for fitting our data. We use a 4-Fold time series cross-evaluation with Folds of 500
values. To find the optimal hyperparameter n_estimators, we grid-search three values (10,
100, 1000), as shown in Figure #.38.

The results indicate that the optimal value is 1000. We calculate the median cross-evaluation
MAE equal 0.43, while the MSE is 0.35. Additionally, Figure illustrates the results for
the generalization evaluation on the basic non-augmented traffic scenario. The calculated
MAE is 0.449, while the MSE is 0.37. We conclude that the model fits the data with high
accuracy, making it a good choice.

On the timing side, the measurements show that the model does not fit the data fast.
Precisely, the cross-evaluation duration is 2463 seconds (41 mins), while the training-data

fitting duration is 572 seconds (9.5 mins).

4.4.15 CatBoost

CatBoost is another open-source implementation of the gradient boosting approach on
decision trees [39]. Its main benefits are great performance without the need for excessive
hyperparameter tuning, improved categorical feature handling, scalable GPU support, among
many others. We implement CatBoost Regression by utilizing the catboost library. We use a

4-Fold time series cross-evaluation with Folds of 500 values. To find the optimal hyperpa-
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rameter n_estimators, we grid-search four values (10, 100, 1000, and 10000), as shown in
Figure #.40.

The results indicate that the optimal value is 10000. We calculate the median cross-
evaluation MAE equal 0.23, while the MSE is 0.11. Additionally, Figure illustrates the
results for the generalization evaluation on the basic non-augmented traffic scenario. The cal-
culated MAE is 0.286, while the MSE is 0.14. We conclude that the model fits the data with
high accuracy, making it an excellent choice.

On the timing side, the measurements show that the model fits the data fast. Precisely, the
cross-evaluation duration is 1234 seconds (20.5 mins), while the training-data fitting duration

is 278 seconds (4.5 mins).

4.4.16 AdaBoost

AdaBoost or Adaptive Boosting is one of the first algorithms developed following the
Boosting scheme. Precisely, in order to build an ensemble model, it utilizes numerous Deci-
sion Stumps; small decision trees with only one split (root and two leaves).

We implement AdaBoost Regression by utilizing the scikit-learn library [40]. We use a
4-Fold time series cross-evaluation with a prediction window-fold of 500 values. To find the
optimal hyperparameter n_estimators, we grid-search three values (10, 100, and 1000), as
shown in Figure #.42.

We choose 10 estimators since the results indicate that the model’s error increases as we
add more of them. We calculate the median cross-evaluation MAE equal 1.29, while the MSE
is 2.25. Additionally, Figure illustrates the results for the generalization evaluation on
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Figure 4.43: Feedforward Neural Network Structure

the basic non-augmented traffic scenario. The calculated MAE is 1.30, while the MSE is 2.29.
We conclude that the model fails to fits the data optimally.

On the timing side, the measurements show that the model fits the data fast. Precisely, the
cross-evaluation duration is 2144 seconds (36 mins), while the training-data fitting duration

1s 6 seconds.

4.4.17 Feedforward Neural Network

From now on, we apply deep learning techniques to extract the most information possible
from our data [41]. Feedforward Neural Networks (FNN) are the first simple Artificial Neural
Networks (ANN) that do not form node cycle connections and move forward from one layer
to the next.

Figure illustrates the structure of NN, which consists of the input, several hidden, and

the output layers. In addition, every layer contains numerous neuron nodes that connect with
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nodes in prior and following layers with weighted edges. Every neuron calculates its weighted
input sum, and whether it is above or below a threshold value based on an activation function,

it produces the appropriate output to the next layer.

Feedforward Neural Networks utilize the backpropagation approach to reduce their pre-
diction error. Specifically, the model’s output is compared with the actual values, and the
error is fed back to the network. It traverses the opposite-backward direction, adjusting the
weights utilizing the gradient descent approach. This way, it finds the appropriate weights,

enhancing the model’s predictive performance.

We implement a Feedforward Neural Network utilizing the Tensorflow-Keras API [42].
After trying various hyperparameter combinations to find the optimal model structure, we
pick the values presented in Table §.1|. Since neural networks take a long time for training,
we do not implement a time-series cross-evaluation scheme but follow a training-validation

evaluation approach.

The calculated training MAE on the augmentation data is 0.02, while the MSE is 0.0011
indicating low bias. On the validation data from the basic non-augmented scenario, the mea-
sured MAE is 0.199, while the MSE is 0.069 showing low variance. Figure shows the
model predictions on the validation data. In conclusion, there is a balance in the bias-variance
tradeoff leading to a successful model generalization to unseen data without under-/over-
fitting. On the timing side, we see that the model’s training is completed sufficiently fast.
Precisely, we train the model for 640 epochs, and the training finishes after 1141 seconds (19

mins).
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4.4.18 Long short-term memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specific type of Recurrent Neural
Networks (RNN) widely used for Time Series Forecasting and sequence prediction problems
[43]. They are very robust and often outperform other algorithms such as simple Feedforward
NNs by employing memory components or conventional RNNs by dealing with the vanishing
gradient problem.

The key enabler of their success is their unique design. An LSTM layer comprises nu-
merous memory blocks which contain one or more recurrent memory cells and three units;
the input, output, and forget gates. These gates continuously provide write, read, and reset
methods to the cell based on the associated weights calculated during the training. This way,
the model is able to adapt appropriately to the problem at hand by memorizing values over
arbitrary time intervals.

We implement an LSTM Neural Network utilizing the Tensorflow-Keras API. After try-
ing various hyperparameter combinations to find the optimal model structure, we pick the
values presented in Table §.2.

For the model evaluation, we follow a training-validation evaluation approach. The cal-
culated training MAE on the augmentation data is 0.023, while the MSE is 0.0014 indicating
low bias. On the validation data from the basic non-augmented scenario, the measured MAE
is 0.328, while the MSE is 0.228 showing low variance. Figure shows the model predic-
tions on these data. In conclusion, there is a balance in the bias-variance tradeoff leading to
a successful model generalization to unseen data without under-/over-fitting. On the timing

side, we see that the model’s training is completed sufficiently fast. Precisely, we train the
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model for 20 epochs, and the training finishes after 1340 seconds (22 mins).

4.4.19 Bidirectional LSTM

Bi-directional LSTMs extend the simple LSTMs providing an additional reversed se-
quence learning. Precisely, the main idea is incorporating two recurrent layers side-by-side,
where the first one handles the original sequence as it is, while the second uses it in the oppo-
site direction. This way, the model could acquire information both from the past and future
simultaneously. This technique is utilized in various applications and often enables enhanced

predictive performance.

We implement a Bi-directional LSTM Neural Network utilizing the Tensorflow-Keras
API. After trying various hyperparameter combinations to find the optimal model structure,

we pick the values presented in Table 4.3.

For the model evaluation, we follow a training-validation evaluation approach. The cal-
culated training MAE on the augmentation data is 0.016, while the MSE is 0.0007 indicating
low bias. On the validation data from the basic non-augmented scenario, the measured MAE
is 0.157, while the MSE is 0.041 showing low variance. Figure shows the model predic-
tions on these data. In conclusion, there is a balance in the bias-variance tradeoff leading to
a successful model generalization to unseen data without under-/over-fitting. On the timing
side, we observe that the model needs much time for training. Precisely, we train the model

for 55 epochs, and the training finishes after 3600 seconds (1 hour).
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4.4.20 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is another popular type of Recurrent Neural Network sim-
ilar to LSTM. It utilizes a gated mechanism to form both long- and short-term memory by
incorporating two gates, including the reset and the update gate. Thus, its difference from
LSTM is that it does not use an output gate employing, this way, less trainable parameters.
This approach often results in a similar performance to the LSTM but with faster training.

We implement a GRU Neural Network utilizing the Tensorflow-Keras API. After trying
various hyperparameter combinations to find the optimal model structure, we pick the values
presented in Table §.4.

For the model evaluation, we follow a training-validation evaluation approach. The cal-
culated training MAE on the augmentation data is 0.019, while the MSE is 0.0010 indicating
low bias. On the validation data from the basic non-augmented scenario, the measured MAE
is 0.256, while the MSE is 0.117 showing low variance. Figure shows the model predic-
tions on these data. In conclusion, there is a balance in the bias-variance tradeoff leading to
a successful model generalization to unseen data without under-/over-fitting. On the timing
side, we observe that the model needs much time for training. Precisely, we train the model

for 50 epochs, and the training finishes after 3315 seconds (55 mins).

4.4.21 Convolutional Neural Network (CNN)

Convolutional Neural Networks are a specific deep learning technique widely used in the

field of computer vision. One of their primary characteristics is the use of kernel filters to
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Figure 4.48: CNN Generalization Evaluation Table 4.5: CNN Configuration
extract low-level features from the input data by constructing a feature map. Moreover, they
utilize pooling layers to extract dominant features, deal with the noise and perform dimen-
sionality reduction resulting, this way, in a more efficient and faster model training. Finally,
they also utilize fully connected layers and feed them with the information gathered from
prior layers to learn a suitable non-linear function.

We implement a CNN Neural Network utilizing the Tensorflow-Keras API. After trying
various hyperparameter combinations to find the optimal model structure, we pick the values
presented in Table §.3.

For the model evaluation, we follow a training-validation evaluation approach. The cal-
culated training MAE on the augmentation data is 0.016, while the MSE is 0.0007 indicating
low bias. On the validation data from the basic non-augmented scenario, the measured MAE
is 0.210, while the MSE is 0.081 showing low variance. Figure shows the model predic-
tions on these data. In conclusion, there is a balance in the bias-variance tradeoff leading to
a successful model generalization to unseen data without under-/over-fitting. On the timing
side, we observe that the model needs much time for training. Precisely, we train the model

for 490 epochs, and the training finishes after 1718 seconds (29 mins).

4.4.22 CNN-LSTM Neural Network

A hybrid approach consisting of both CNN and LSTM could result in a more robust
and enhanced model. This technique is widely used in many research fields, such as activity
recognition, image, and video description. The primary idea is to construct a type of encoder-
decoder model architecture. Precisely, the CNN handles the feature extraction procedure,

while the LSTM uses the features and analyzes their time sequence to make forecasting.



70 Chapter 4. AI-Driven Real-time Scheduling between Heterogeneous DUs

yhat y — Pre-processing Configuration
CNN-LSTM Basic Scenario Model Evaluation Input time-steps (non-flattened) 400
Prediction time-steps (non-flattened) 60
14 ¢ Flattening window time-steps (1) 4
12| Hyper-parameter Configuration
Layers Conv1D, MaxPooling1D, Flatten, RepeatVector,
10 | | LSTM_1, LSTM_2, Dense
g Input Shape (10,10)
8 r T ConviD filters=64, kernel_size=3, activation=ReLU
MaxPooling1D Layer pool_size=2
61 RepeatVector Layer 1
4l LSTM_1 & LSTM_2 Layers 25 Neurons, activation=ReLU
L L L L L L Dense Layer 1 Neuron (output)
0 100 200 300 400 500 Optimizer Adam
Time (flattened unit) Compile loss Mean Squared Error
Epochs 70
Batch_size 26

Figure 4.49: CNN-LSTM Generalization
Evaluation Table 4.6: CNN-LSTM Configuration

We implement a CNN-LSTM Neural Network utilizing the Tensorflow-Keras API. After
trying various hyperparameter combinations to find the optimal model structure, we pick the
values presented in Table }.6.

For the model evaluation, we follow a training-validation evaluation approach. The cal-
culated training MAE on the augmentation data is 0.017, while the MSE is 0.0010 indicating
low bias. On the validation data from the basic non-augmented scenario, the measured MAE
is 0.148, while the MSE is 0.038 showing low variance. Figure shows the model predic-
tions on these data. In conclusion, there is a balance in the bias-variance tradeoff leading to
a successful model generalization to unseen data without under-/over-fitting. On the timing
side, we observe that the model completes the training extremely fast. Precisely, we train the

model for 70 epochs, and the training finishes after 350 seconds (6 mins).

4.4.23 Models Comparison

Towards finding the optimal ML & Al model for our data, we have investigated numerous
algorithms with different designs and have seen both bad and excellent results. To better
understand the overall evaluation, we gather all the MAE values from the generalization
evaluation of every model in Figure #.50. The values are sorted in a descending order based
on their validation MAE on the non-augmented generalization data (basic car route scenario
that was excluded from the training set).

To begin, the Lasso Regression model has completely failed to fit the data with a MAE
value of 2.55. Moreover, some models find a way to fit the data but not optimally, including

the AdaBoost, the Elastic Net, the Ridge Regression, the Linear Regression, and the ARIMA
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Figure 4.50: Overall Comparison between the various ML & Al Model based on the Gener-

alization MAE from the non-augmented data.

with MAE values over 1. Then, it starts getting more interesting as the MAE drops fast under
the 1, with the Support Vector Regressor (SVR) to achieve a MAE of 0.73 and the Polynomial
Regression a MAE of 0.53. Subsequently, the tree-based models and the neural networks
achieve the best results having MAE values from 0.449 with skicit-learn GBM down to just
0.148 with CNN-LSTM neural network.

Understandably, every method that achieved a generalization MAE under 0.4 is well-
suited for our data. Nevertheless, the training time also plays an essential role in extending
the framework to support an online-training scheme since we need fast model training. For
this reason, in figure .51, we gather and compare the training times of the best models (under
0.4 MAE), excluding the non-trainable methods like the k-NN. The results indicate that one
of the fastest models is the CNN - LSTM since it outcompetes the other neural networks and

converges really fast with 350 seconds (under 6 mins) training time.

Thus, we choose the CNN-LSTM to incorporate in our framework in order to build an
ML & AI unit for real-time scheduling of the DUs. The following section presents our ex-

perimentation utilizing the CNN-LSTM under a real Testbed.
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Figure 4.51: Overall Comparison between the various ML & Al Model based on the training

time on the augmented data.

4.5 Experiments

The experiments assist in validating and evaluating the proposed framework in realistic
circumstances. Specifically, we use the NITOS Testbed for our experimental topology, em-
ulating car traffic by deploying the basic non-augmented car route scenario. Subsequently,
we monitor the network performance in terms of bandwidth, jitter, and lost packets for two
deployments; one with the default behavior without our ML & Al unit and one incorporating
it. Then we compare the results to validate that our algorithm works as planned and evaluate

its ability in enhancing the UE’s QoE.

4.5.1 Experimental Setup

Figure depicts the experimental topology in Nitos Testbed with all the necessary
components. We have already seen and discussed it in the previous chapter. To begin, in
machine one, the core network is deployed, including the HSS, MME, S-GW, and P-GW
components. In machine two, we run the CU and LTE DU processes utilizing a USRP B210
for the Air communication through the Uu interface between the LTE DU and the UE’s LTE
interface (Huawei LTE USB Dongle on machine five). The programmable attenuators are

installed on the output of the SDR (USRP) to handle its attenuation based on the basic non-
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Figure 4.52: Experimental Topology utilizing six machines on NITOS Testbed

augmented car route scenario emulating, this way, a moving UE node (car route). Moreover,
the WiFi DU segment exists on a separate node (machine three) communicating with the UE’s
WiFi interface on machine four utilizing an ad-hoc WiFi link through Qualcomm Atheros
AR9380 chipsets on both sides.

Finally, we employ the Flexran controller with the ML & AI unit on machine six that
incorporates the CNN-LSTM neural network for the live predictions. Based on the model’s
forecastings, the unit sends new, more appropriate slices in near-real-time (under 0.25 sec-
onds) to the Flexran Controller. Subsequently, the controller communicates with the agent
hosted on the LTE DU, and then the agent sends the slice to the CU based on the developed

approach described in the previous chapter adjusting the DU scheduling.

4.5.2 Experimental Scenario

The experimental evaluation scenario is constructed to demonstrate the optimization of
the network traffic as also the enhanced QoE on the UE side with the incorporation of our ML
& Al unit on top of the default network configuration. We run the experiment in two phases,
one with the default network behavior without the ML & Al unit and another one utilizing it
to handle the real-time slicing allocation.

Generally, when we run the first phase without the ML & Al unit, we assume that there
is no monitoring and predicting mechanism, and thus the traffic flows only through the LTE

DU.
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On the contrary, the ML & Al unit continuously monitors and reconfigures the slicing
in the second phase. Specifically, we assume that there is always an optimal WiFi channel
quality and that our primary goal is to send the whole traffic through the LTE link when there
are good link conditions. In this way, the ML & Al unit will use the WiFi link only when the
LTE CQI is predicted to be very low in order to prevent a poor network connection. Precisely,
it will redirect the traffic from the LTE to the WiFi link when the forecasted CQI is under the
value of 9 (16 QAM modulation). Understandably, the unit will forward the downlink traffic
back to only the LTE link when the predicted CQI is equal to or more than 9.

Moreover, for network monitoring and traffic generation, we operate the iperf tool. On
every phase, we send 14.5 Mbps downlink traffic from the core network to the UE and collect
the monitoring statistics, including the bandwidth, the jitter, and the lost packets. Finally, we

compare the results from both phases and evaluate our framework’s performance.

4.5.3 Experimental Results

The experimental results show that the ML & Al Unit handles the slicing allocation pro-
cedure appropriately, enhancing the overall network performance and the Quality of Expe-
rience (QoE) of the UE. In Figure }.53, we illustrate the results of both the experiment with
the default slicing behavior (left figures) and the one with the employment of the ML & Al
Unit (right figures). Precisely, on the default network configuration, the UE experiences on
average 7.4 Mbps throughput, 1.7 ms jitter, and 41% packet loss. On the other hand, with
the ML & Al integration, the UE experiences 13.3 Mbps throughput, 0.8 ms jitter, and 7%
packet loss.

The significant point to observe is that the ML & Al unit predicts the first CQI drop at
approximately 175 seconds. Then it reconfigures the slice in order to redirect all the downlink
traffic only through the WiFi DU, which has optimal channel quality. Subsequently, it predicts
at about 530 seconds that the CQI will be raised at higher values, meaning that the LTE
channel quality will be improved. As a result, it reconfigures the slicing allocation in order
to redirect all the traffic back to only the LTE DU.

In conclusion, the ML & Al unit is able to monitor and predict the CQI values in near-real-
time with great precision. In addition, it reconfigures the DU scheduling based on a slicing

allocation algorithm enhancing the network performance and the UE’s QoE.
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Chapter 5

Conclusion

In this section, we summarize our work presenting the milestones, the conclusions, and

the thesis contribution. Finally, we share our thoughts on extending this work in the future.

5.1 Summary and Conclusions

In this thesis, we studied the evolution of the cellular telecommunication networks from
the very beginning with the 1G to future networks beyond 5G. Specifically, we learned about
the urgent need for more powerful systems to handle the tremendous users’ data demand that
came with the evolution of the internet and mobile devices. Many architectures were analyzed
to understand our experiments and their significance, including LTE and 5G disaggregated
architecture. Moreover, we explored the nature of machine learning and artificial intelligence
as also their role in the future of telecommunication networks.

Understandably, this thesis contributes to the research for the upcoming generations of
cellular networks to create more flexible and adaptive Al/Data-driven systems by integrating
intelligence. Precisely, we begin by developing a scheduling scheme with the CU acting as a
coordinator utilizing the FlexRAN’s slicing technique. On top of that, we insert an ML & Al
unit on the controller’s side after analyzing deeply various machine learning algorithms. This
unit continuously monitors, predicts, and posts appropriate slices in real-time to optimally
manage the available resources, resulting in enhanced network throughput and user’s QoE.

In our analysis, we concluded that the optimal deep learning model for LTE CQI forecast-
ing is a CNN-LSTM with extremely low MAE and training time. Subsequently, we utilized

it in an emulated car mobility scenario for managing the scheduling of the downlink traffic

77
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among the WiFiand LTE DUs. The results indicate enormous efficiency resulting in enhanced
user experience and network performance. Nevertheless, all deep learning and tree-based al-
gorithms show sufficiently high precision and could be integrated into the ML & Al unit for
excellent performance.

In the future, we could extend this framework by collecting more data and creating an
online-training approach to update the model constantly in order to be consistent and flex-
ible with new network patterns to come. Moreover, WiFi channel quality monitoring will
be added. This way, the CU will better understand the overall network conditions and apply
more sophisticated scheduling decisions by utilizing all the available slicing percentages. For
instance, it will not redirect the traffic only to one DU, but it will split it through both DUs

to enhance network performance even more.
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