
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Study and implementation of a distributed control system

for software defined wireless networks

Diploma Thesis

Ippokratis­Vasileios Koukoulis

Supervisor: Athanasios Korakis

Volos 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Study and implementation of a distributed control system

for software defined wireless networks

Diploma Thesis

Ippokratis­Vasileios Koukoulis

Supervisor: Athanasios Korakis

Volos 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μελέτη και υλοποίηση κατανεμημένου συστήματος ελέγχου

ασύρματου δικτύου καθορισμένου από λογισμικό

Διπλωματική Εργασία

Ιπποκράτης Βασίλειος Κουκούλης

Επιβλέπων: Αθανάσιος Κοράκης

Βόλος 2022

v

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Associate Professor, Department of Electrical and Computer Engi­

neering, University of Thessaly

Member Christos Antonopoulos

Associate Professor, Department of Electrical and Computer Engi­

neering, University of Thessaly

Member Antonios Argyriou

Associate Professor, Department of Electrical and Computer Engi­

neering, University of Thessaly

vii

Acknowledgements

First and foremost, I would like to thank Prof. Thanasis Korakis for trustingme and giving

me the chance to work on this project. I would also like to extend my deepest gratitude to

Kostas Choumas and Ilias Syrigos for their collaboration and continuous support throughout

this thesis. They were always available to discuss any issues or questions I had regarding

this project and their input was invaluable for the completion of this thesis and furthering my

knowledge around the subjects presented in this thesis.

Finally I would like to thank my family for their unconditional love and unwavering

support they have provided me throughout these years believing in me.Without them I would

have never been able to reach this milestone.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con­

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib­

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin­

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Ippokratis­Vasileios Koukoulis

xi

Abstract

Mobile Ad Hoc Networks and Wireless Mesh Networks are used in a variety of applica­

tions where network infrastructure cannot be built in time to meet certain demands, or envi­

ronmental conditions are extreme. Current routing solutions for these networks cannot make

globally optimal decisions due to their decentralized nature. Software defined networking can

assist routing in wireless networks by offering centralized control of the network , and mak­

ing globally optimal routing policies easy to implement on top of a MANET. In this thesis an

SDN architecture for wireless networks is proposed and a distributed SDN controller for this

architecture is developed. This SDN architecture provides fault tolerance and availability in

the face of network partitions by having multiple controllers replicating their state, and as­

signing control of each network element to a new controller when the old one is partitioned

or fails. This architecture is also self­organizing allowing controllers in the network to dis­

cover each other and form a cluster. A simple routing policy based around wireless medium

contention is implemented to assess the functionality of our controller and the performance

benefits of this SDN architecture.

xiii

Περίληψη

Τα αδόμητα δίκτυα ασύρματων κινητών συσκευών (MANET) έχουν πληθώρα εφαρμο­

γών σε τοποθεσίες όπου επικρατούν δυσχερείς συνθήκες ή όπου δεν μπορούν να χτιστούν

δικτυακές υποδομές σε μικρό χρονικό διάστημα. Οι υπάρχουσες λύσεις για δρομολόγηση κυ­

κλοφορίας (routing) σε αυτά τα δικτύα δεν μπορούν να πάρουν βέλτιστες αποφάσεις λόγω

της αποκεντρωμένης φύσης τους. Η αρχιτεκτονική της δικτύωσης καθορισμένης απο λογι­

σμικό (SDN) προσφέρει την δυνατότητα για κεντρικοποιημένο έλεγχο του δικτύου, διευ­

κολύνοντας την υλοποίηση βέλτιστων πολιτικών δρομολόγησης σε MANETs. Σε αυτή την

εργασία παρουσιάζεται μια SDN αρχιτεκτονική για ασύρματα δίκτυα και υλοποιείται ένας

κατανεμημένος SDN ελεγχτής (controller). Η προτεινόμενη SDN αρχιτεκτονική προσφέρει

ανοχή σε σφάλματα και υψηλή διαθεσιμότητα σε περίπτωση διαχωρισμού ενός controller

από το υπόλοιπο δίκτυο, χρησιμοποιώντας πολλούς controllers οι οποίοι αντιγράφουν την

κάτασταση τους, έτσι ώστε σε περίπτωση που χωριστεί κάποιος controller από το δίκτυο ,

να ανατεθεί ο έλεγχος του δικτύου σε κάποιον από τους υπόλοιπους διαθέσιμους controllers.

Επιπλέον σε αυτή την αρχιτεκτονική ο κάθε controller ανακαλύπτει τους υπόλοιπους μέσα

στο δίκτυο και σχηματίζουν μια ομάδα (cluster). Για την αξιολόγηση της λειτουργικότητας

αλλά και για να δείξουμε τα οφέλη αυτής της υλοποίησης, o controller εκτελεί μια απλή πολι­

τική routing που στοχεύει στην μείωση του ανταγωνισμού για μετάδοση μεταξύ ασύρματων

κόμβων.

xv

Table of contents

Acknowledgements ix

Abstract xiii

Περίληψη xv

Table of contents xvii

List of figures xxi

Abbreviations xxv

1 Introduction 1

1.1 Context . 1

1.2 Contribution . 1

1.3 Thesis structure . 2

2 Background 3

2.1 Routing in MANETs . 3

2.1.1 OLSR . 3

2.1.2 BATMAN . 4

2.1.3 Babel . 4

2.2 Software Defined Networking . 5

2.3 Etcd and consensus with Raft . 6

2.3.1 Raft Basics . 7

2.3.2 Leader election . 7

2.3.3 Log replication . 8

xvii

xviii Table of contents

2.3.4 Safety . 9

2.4 Related work . 9

3 Architecture 11

3.1 Controller and cluster architecture . 11

3.1.1 Node configuration . 12

3.1.2 Thread/Process architecture . 14

3.1.3 Cluster monitor thread . 15

3.1.4 Producer thread . 17

3.1.5 Callback thread . 18

3.1.6 Topology discovery . 19

3.1.7 Packet­in handler . 21

3.1.8 Local flow monitoring . 22

3.2 Link Quality Metrics . 23

3.2.1 Link quality metrics in literature 23

3.2.2 A contention metric/routing policy 23

3.3 Etcd Traffic Optimizations . 24

3.3.1 Blocking peer traffic . 24

3.3.2 Removing diagnostics/statistics 25

3.3.3 Merging message streams . 25

3.3.4 Adjusting tuning parameters . 25

4 Simulation 27

4.1 Wmediumd . 27

4.1.1 Contention simulation . 27

4.1.2 Interference simulation . 31

4.1.3 MAC layer acknowledgements . 31

4.1.4 QoS priorities . 32

5 Evaluation and results 33

5.1 Setup and topology . 33

5.2 Results . 34

6 Conclusions and Future Work 37

Table of contents xix

Bibliography 39

List of figures

2.1 SDN architecture . 6

2.2 Replicated state machine [1] . 7

2.3 Raft server state [1] . 8

3.1 Controller­Switch network architecture . 12

3.2 Network configuration . 13

3.3 Eventlet threading architecture . 14

3.4 Application internal architecture . 18

3.5 Neighborhood discovery . 21

3.6 Topology stores during master phase . 22

4.1 The wmediumd and mac_hwsim pipeline [2] 28

5.1 Experiment topology . 34

5.2 Average throughput . 36

xxi

List of Algorithms

1 Status Monitor algorithm . 15

2 Contention algorithm . 29

xxiii

Abbreviations

MANET Mobile Ad Hoc Network

SDN Software Defined Networking

OLSR Optimized Link State Routing Protocol

ETX Expected Transmission Count

BATMAN Better Approach to Mobile Ad­hoc Networking

RPC Remote Procedure Call

SSID Service Set Identifier

GRE Generic Routing Encapsulation

ARP Address Resolution Protocol

STP Spanning Tree Protocol

BFD Bidirectional Forwarding Detection

LLDP Link Layer Discovery Protocol

SNR Signal to Noise Ratio

CCA Clear Channel Assessment

MSS Maximum Segment Size

MTU Maximum Transmission Unit

MAC Medium Access Control

QoS Quality of Service

xxv

Chapter 1

Introduction

1.1 Context

Mobile Ad Hoc Networks and Wireless Mesh Networks have existed for decades, as an

infrastructureless and agile architecture to build a network consisting of mobile nodes with

wireless capabilities. MANETs are suitable for a variety of applications where normal net­

work infrastructure cannot be built in time, or cannot withstand extreme environmental con­

ditions, like army tactical operations, disaster rescue scenarios, data collection from sensors

and more. However the routing protocols running on these networks, may not always achieve

critical performance targets due to their decentralized nature and lack of global optimization.

Software Defined Networking can be the necessary orchestration tool for MANETs allowing

us to implement several globally optimized routing policies, improving the performance of

MANETs in various key performance metrics [3] [4].

1.2 Contribution

This thesis introduces a self­organizing distributed SDN architecture which can be de­

ployed in MANETs. Specifically in this thesis we develop an SDN controller optimized for

wireless networking conditions, providing fault tolerance using multiple controllers that can

be elected as masters to replace failing or partitioned controllers. The controller works as part

of a cluster with multiple controllers in the network which share their state and control net­

work devices as a logically centralized controller using the Etcd distributed key value store

to reach consensus, providing routing applications with a consistent view of the network and

1

2 Chapter 1. Introduction

the ability to operate the network under a centralized point of view. In this approach the

controllers do not use any existing routing protocols to connect to each other, instead they

they dynamically discover each other by exploiting the connectivity and topology discovery

mechanisms already implemented in the OpenFlow protocol. The controller follows a pure

in­band approach where the control plane and the data plane use the same physical and virtual

network interfaces to deliver messages.

An additional contribution of this thesis is the extension of the Wmediumd simulation

used by Mininet­Wifi to support fine grained scheduling of packets according to the signal

received by each node. The modifications to wmediumd lead to more realistic throughput

and delay results when multiple nodes in a mesh network transmit simultaneously.

1.3 Thesis structure

The rest of the thesis is structured as follows:

• Chapter 2 introduces the background surrounding this thesis by giving a brief expla­

nation of popular existing routing MANET protocols, the SDN architecture paradigm,

and the inner workings of the consensus protocol used by the distributed database that

we use as base to build our distributed controller. Furthermore the related work on the

integration of SDN onMANETs and the main differences between our implementation

is discussed here to make even clearer what is the contribution of this thesis.

• Chapter 3 presents details about the architecture and implementation of the SDN con­

troller and additionally provides information on the optimizations and modifications

that were made to Ryu and Etcd to make the operation of this controller feasible in

wireless networks. A simple routing policy is also implemented to operate the SDN

controller.

• Chapter 4 presents the simulation environment used for the experiments and discusses

the extension to the contention algorithm.

• Chapter 5 presents the experimental results for the implemented routing policy using

our distributed SDN controller.

• Chapter 6 provides a conclusion to this thesis and discusses future directions.

Chapter 2

Background

2.1 Routing in MANETs

Various routing protocols have been devised for MANETs each one taking a different

to approach on how to distribute network information, do route selection and link quality

metrics. Here we present some of these protocols that were used in experiments in the context

of this thesis.

2.1.1 OLSR

Optimized Link State Routing Protocol (OLSR) [5] is a proactive link state routing proto­

col. Link state protocols is a class of protocols where each node shares its view of the network

(the network graph including all links between nodes) with its neighbors and each node con­

structs a global view of the network. Each node uses this information to create a routing

table towards all nodes in the network. OLSR specifically uses Topology Control messages

to propagate topology information to its neighbors, and Hello messages to make its existence

known to its neighbors. Although the original standard for OLSR used a shortest hop path

metric to decide routes, the olsrd daemon uses by default the Expected Transmission Count

(ETX) [6] metric. The disadvantage to this routing approach is that every node in the network

has to exchange a lot of information about the topology, and each node also has to calculate

a route using the global network topology which can become computationally expensive in

large topologies.

3

4 Chapter 2. Background

2.1.2 BATMAN

Better Approach to Mobile Ad­hoc Networking (BATMAN) [7] is a protocol which was

made as an improvement over OLSR, following an approach where the knowledge about the

best end­to­end paths between nodes is divided among all nodes in the network. Each node

perceives and maintains only the information about the best next hop towards all other nodes,

following an approach similar to distance vector protocols. Specifically in BATMAN each

node uses broadcast messages called Originator messages (OGMs) to inform its neighbors

for its existence. Then the neighboring nodes use special rules to re­broadcast OGMs to other

nodes and this process goes on until all nodes receive the OGM. The quality of links is as­

sessed through OGMs. To decide which neighbor is the most suitable to route packets through

a destination, nodes choose neighbors from which they received OGMs of this destination

faster and in more quantity.

BATMAN has 2 additional iterations apart from the default one BATMAN III(batmand).

BATMAN IV (batman­adv) differentiates from batmand in 2 main ways. Firstly, BATMAN

IV operates in Layer 2 of the OSI stack with the use of a Linux kernel module essentially

operating as a virtual switch where each node is like a switch port, in contrast to BATMAN

III which operates on Layer 3. All traffic is encapsulated with a new header which is used

to forward this packet to other nodes, instead of overwriting the destination MAC for the

next hop. Secondly, BATMAN IV uses an improved link quality algorithm which considers

the impact of asymmetric links. Finally BATMAN V differentiates from its predecessors

by employing a throughput based link quality metric which determines the throughput of

links through either WiFi driver information or by running periodic throughput tests between

nodes.

2.1.3 Babel

Babel[8] is a loop avoiding distance vector routing protocol. It uses the distributedBellman­

Ford algorithm along with some additional conditions to prevent loop formation like the

counting to infinity problem, or resolve routing loops that may happen in a timely manner.

Each node periodically sends its routing table information to its neighbors, and each node

decides the best route based on the distance/routing metric of each path. Each node can also

reject the update based on a feasibility condition which assesses if the routing update (based

on the routing metric) will lead to a routing loop. Babel by default also uses a variant of the

2.2 Software Defined Networking 5

ETX[6] link quality metric.

2.2 Software Defined Networking

Software Defined Networking (SDN) is a network architecture paradigm that enables the

centralized control of network elements. An overview of the SDN architecture paradigm is

shown in figure 2.1. The SDN architecture consists of three main components:

• Datapath

Datapath is a network device/element (alternatively called switch or router) that can

process and forward traffic according to some specific rules (alternatively called flows).

Datapaths expose a southbound interface that allows SDN controllers to set rules for

routing/network management on the controllers. The most popular southbound inter­

face is the OpenFlow protocol [9].

• SDN controller

An SDN controller is the centralized entity which controls and sets the rules for packet

forwarding and processing to the datapaths.There can bemultiple controllers in an SDN

architecture, where in this case these controllers communicate through an East/West­

Bound interface in order to synchronize their view of the network state and provide

a logically centralized view and control of the network. It is important to note here

that East/West­Bound interfaces are not usually defined by any open standards, in­

stead many commercial controllers implement their own interfaces to support multiple

controller architectures.

• SDN application

SDN application is the component which defines the routing/network management

logic that the controller will enforce on the datapaths. Typically an SDN application

gathers network status information and issues through the controller flow table updates

on the switches to implement routing policies.

In SDN, routing and network management logic is decoupled from the forwarding func­

tions of networking devices into the control plane consisting of the controller and the data

plane consisting of packet forwarding devices. SDN offers the ability to programmatically

6 Chapter 2. Background

configure network devices and define custom routing and traffic management policies ac­

cording to specific requirements in a rapid fashion without the need to know anything about

specific proprietary programming interfaces. SDN enables easier development of routing ap­

plications since global knowledge of the network state is available at the controller, achieving

better performance in target metrics like throughput and delay in certain situations compared

to classic distributed routing approaches.

Figure 2.1: SDN architecture 1

2.3 Etcd and consensus with Raft

To build a distributed controller, we need an East/West Bound interface that the con­

trollers can use to communicate with each other and reach consensus on leadership over

switches and other relevant network state information like links and flow tables. For our

architecture, communication between controllers is implemented using Etcd. Etcd[10] is a

strongly consistent, distributed key­value store that provides a reliable way to store data that

needs to be accessed by a distributed system or cluster of nodes.

Etcd uses the Raft[1] algorithm in order to reach consensus on the state of the data store

and replicate it to all nodes, even in the face of node failures or network failures between

nodes. Raft achieves consensus in the context of replicated state machines as shown in Figure

2.2. Each replicated state machine is implemented as a log, which consists of a series of

1https://opennetworking.org/wp­content/uploads/2013/02/SDN­architecture­overview­1.0.pdf

2.3 Etcd and consensus with Raft 7

commands that need to be executed in a specific sequence to get the same output from the

state machine. Raft is the consensus module which guarantees that all state machines have

the same log and will execute the exact same sequence of commands. Raft decomposes the

consensus problem into 3 subproblems: leader election, log replication and safety. The next

subsections summarize the basic functionality of Raft how it solves these problems.

Figure 2.2: Replicated state machine [1]

2.3.1 Raft Basics

Raft works by electing a leader among the server processes in a cluster. For a server to

be elected it must gather votes by the majority of the servers in the cluster. A server can

be only in one of the 3 following states at any given time: leader, follower or candidate. In

the follower state a server only responds to requests from leaders and candidates and in the

candidate state a server campaigns for leadership. In Raft time is divided into terms, where

each term is numbered with an integer which increases monotonically, serving as a logical

clock for the cluster. At the beginning of each term, a new election begins where candidates

can become leaders. Figure 2.3 shows the transitions between these states.

2.3.2 Leader election

The leader periodically sends heartbeat messages to all followers to maintain its author­

ity. When a follower does not receive heartbeats (or any communication at all) for a period of

time, it assumes that there is no leader and begins a new election becoming a candidate. This

period of time is called the election timeout. At the beginning of an election the server incre­

ments its term count, votes for itself, and sends RequestVote messages to all other servers.

8 Chapter 2. Background

Figure 2.3: Raft server state [1]

The candidate repeats this process until it either wins an election or another server becomes

the leader (by sending heartbats), or nobody wins the elections for this term due to split votes.

The election timeout is defined by the user, but in order to avoid perpetual split votes Raft

uses randomized election timeouts (in the etcd implementation the election timeout is equal

to a the user defined election timeout plus a random number from 0 to user defined election

timeout).

2.3.3 Log replication

In Raft the leader is responsible for serving requests each containing a command to be

executed and replicating log entries to all servers. Each log entry consists of:

• A command to be executed by the state machine.

• An index number to identify the position of the entry in the log.

• The term number.

When the leader receives a request it appends the entry to its log and replicates it in parallel

to its followers. This entry becomes committed once it is replicated to the majority of the

servers. All preceding entries are also considered committed. After an entry is committed

it is applied to the local state machine. The leader attaches the latest committed index to its

AppendEntries RPCs to update its followers so they can too apply the entry to their local state

machines. Raft maintains coherency between logs by guaranteeing the following properties:

If two entries in different logs have the same index and term then:

• These two entries have the same command

• All preceding entries are identical

2.4 Related work 9

To guarantee these properties the index and term of the previous entry in the log are also

attached to an AppendEntry RPC by the leader. Each follower can verify an append request

and reject it if the previous entry does not match its own. To handle any inconsistencies

caused by crashes, the leader also forces follower logs to match its own.When a leader comes

to power, subsequent consistency checks are made to find the point which the leader’s log

agrees with the follower’s log (when the consistency check succeeds) and delete any entries

that do not match its own from the follower.

2.3.4 Safety

To ensure that a leader will contain all entries committed in previous terms Raft imposes

restrictions on which candidate can become leader. Specifically when a candidate requests

votes from other servers they will only vote for this candidate if its log is at least as up to

date as their own. The index and term of the last log entry is compared, and a server can

reject voting for a candidate. Thus only candidates with the most up­to­date log can become

leaders. Additionally, an entry is considered committed only if it originates from the current

term and has been replicated to the majority.

2.4 Related work

SDN architectures have been implemented and deployed in MANETs and wireless mesh

networks to facilitate various needs that arise from the dynamic nature of such networks.

The following works [11] [12] propose and implement a simple SDN architecture con­

sisting of a single controller .The first one explores the applicability of SDN in client mobility

scenarios, while the second one implements a simple round robin policy to route flows to­

wards gateways, proposing the use of SDN to deploy custom traffic engineering in wireless

mesh networks. The control plane traffic in these works is routed through secondary virtual

interfaces separated from the data plane virtual interface using different SSIDs. The controller

to switch traffic is handled by OLSR using the kernel routing tables to install forwarding rules

in switches. Packet forwarding in data plane is done by overwriting the mac destination of

data packets. Alternatively [13] GRE tunnels can also be used to forward packets. This [12]

work is further complemented by [14] and [15] where a multiple controller architecture and a

master selection scheme is proposed to enhance the fault of tolerance of the SDN architecture

10 Chapter 2. Background

in network partition scenarios, where each switch can poll through a list of controllers and

select a master.

Additionally, master selection schemes considering specific metrics like controller ca­

pacity assessed by hardware characteristics have been proposed [16] using an in­band con­

trol plane and the Babel routing protocol for topology discovery. Master election schemes

migrating the state of the master to another controller in case of failure/network partition

have also been proposed [17] [18]. Other SDN architectures [19], [20] consider a single con­

troller which communicates directly via a secondary network interface with all switches in

the network in an out­of­bandmanner , using essentially different channels for the control and

data plane. Especially in [20] the performance of SDN shortest hop path routing is compared

against other MANET routing protocols. Some architectures [21] do not use either MANET

routing protocols or out­of­band communication for the control plane, and instead modify

the Openflow protocol to automatically configure the connection between the switches and

the controller. Completely proprietary solutions that do not use the Openflow protocol have

also been suggested [22].

Related work towards the east/west bound communication of multiple controllers in wire­

less networks has also been done [23] using existing commercial controllers to assess the

performance of state synchronization between controllers.

Chapter 3

Architecture

3.1 Controller and cluster architecture

In this SDN architecture each node hosts an application which acts as a switch and as a

controller for all switches in the network. This application consists of three components:

• An OpenVswitch[24] virtual switch

• A Ryu [25] controller

• An Etcd[10] instance

As it can be seen in figure 3.1 each node hosts these 3 components where each etcd instance

connects to all other etcd instances, and each OVS switch connects to all Ryu controllers

in the network. Etcd can be seen as the West/East bound interface where controllers can

share information between themselves, since controllers do not have a direct connection to

other controllers. Etcd is used to elect a master among all controllers which will have the

responsibility of routing data flows for the entire network and collecting statistics. Etcd is

also used to share network state information (such as topology state). To communicate with

the etcd instance from the Ryu controller the Kragniz [26] python etcd client library was used.

Although in this cluster architecture all controllers have full knowledge of the network

topology (since all switches connect to all controllers, and excluding possible host devices

connecting to switches), in a hierarchical architecture this may not be true (switches may con­

nect to a specific set of controllers) and thus there has to be a channel for controllers to share

information with other controllers, or even assign multiple masters for different parts of the

network. Etcd serves this role as a strongly consistent database allowing multiple controllers

11

12 Chapter 3. Architecture

to function as one, share an identical view of the network state, and consent for leadership

over switches.

Figure 3.1: Controller­Switch network architecture

3.1.1 Node configuration

The application components are initialized by a configuration script. This script makes

the following configurations:

• Initializing the list of the controllers/etcd peers IPs that the switch/etcd instance

will connect to. This list is generated by the number of nodes in the network.

• Creating GRE tunnels necessary for the switch to communicate with its one­hop

neighbors. These tunnels route packets from the OpenVswitch bridge (the 192.168.1.x

subnet) to the wireless interface which operates on the 10.0.0.x subnet.

• Setting the switch to standalone mode so it does not route traffic on its own.

• Setting arp static entries for the the 192.168.1.x subnet.

• Disabling STP since we want all paths to be available for the controller routing algo­

rithm.

3.1 Controller and cluster architecture 13

• Disabling hidden flows. Hidden flows normally process openflow traffic between the

switches and the controller. However these flows output by default to theOFPP_NORMAL

port which processes packets with normal L2/L3 switching and since STP is disabled

and no L3 protocol is running on our nodes, these flows cannot actually process traffic.

Openflow traffic is handled by having controllers set flows for control traffic them­

selves, essentially working like a very simple autonomous routing daemon for open­

flow traffic. Control traffic consists of Openflow and Etcd traffic using ports 6633 and

2380 respectively.

• Setting tuning parameters for Etcd. These parameters include the election timeout

and heartbeat interval which the Ryu controller will use to initialize Etcd.

• Setting up the OpenVswitch process and the Ryu controller

Figure 3.2 shows the network configuration of a cluster with 3 nodes. Each node con­

figures tunnels to communicate with all other nodes. When a tunnel connection becomes

active the node can forward packets through this tunnel directly to a node. Tunnels across

non­neighboring (like s1­s3) nodes are inactive. The implementation of tunnel liveness mon­

itoring is discussed in the topology section. Each packet sent by any application (Ryu, Etcd or

any other application from user space) to its local switch interface is encapsulated in a GRE

header and is sent through the GRE tunnel to the corresponding IP address of the 10.0.0.x

subnet using the wireless interface of the node.

Figure 3.2: Network configuration

14 Chapter 3. Architecture

3.1.2 Thread/Process architecture

The architecture of the controller consists of 2 processes:

• The main process of the Ryu controller

• The Etcd instance process, which is forked by the Ryu controller during its initializa­

tion.

The Ryu controller process consists of 3 native python threads:

• The main thread, which runs the event handling and various functions of the Ryu

controller. Ryu makes use of Eventlet [27], a concurrent networking threading library

to process events. Eventlet uses the concept of coroutines/green threads in its threading

architecture and their main difference between python threads is that each green thread

cooperatively yields control to another green thread (via a yield function) instead of

being preemptively scheduled by the operating system. Many green threads can exist

in a single python/native thread. Figure 3.3 demonstrates how exactly coroutines/green

threads co­exist with normal python threads.

• The producer thread, a thread responsible for committing data to the etcd.

• The callback thread, a thread created by the etcd client library which notifies the

controller when a new write/delete is made in etcd by any node in the cluster.

Figure 3.4 shows the internal application architecture of the controller and how various

components/threads interact with each other. In the following subsections the utility of each

component is described in detail.

Figure 3.3: Eventlet threading architecture 1

1https://eventlet.net/doc/threading.html

3.1 Controller and cluster architecture 15

3.1.3 Cluster monitor thread

Additionally to the existing green threads that Ryu uses for event handling, a new green

thread was created for Ryu called the cluster monitor thread. Algorithm 1 is the main routine

executed by the cluster monitor thread. The cluster monitor thread also performs several

functions related to monitoring the status of the Etcd cluster. The main functions of the cluster

monitor thread are:

Algorithm 1 Status Monitor algorithm
1: self.master, self.term← get_cluster_status()

2: if self.master = self.etcd_url then

3: role←MASTER

4: else if self.master ̸= None then

5: role← SLAV E

6: else

7: role← EQUAL

8: end if

9: self.master_datapaths← get_master_datapaths()

10: if self.term ̸= self.prev_term then

11: init_local_switch(role)

12: end if

13: self.prev_term← self.term

14: for dpid in self.etcd_terms do

15: if self.master ̸= None and dpid not in self.master_datapaths then

16: if self.etcd_terms[dpid]! = 0 then

17: self.etcd_terms[dpid]← 0

18: role_request(dpid, EQUAL, 0)

19: end if

20: else if self.term ̸= self.etcd_terms[dpid] then

21: self.etcd_terms[dpid]← self.term

22: role_request(dpid, role, self.term)

23: end if

24: end for

16 Chapter 3. Architecture

• Monitoring the status of the local etcd member instance

The monitor thread is scheduled to poll periodically the etcd instance for the status

of the cluster. The status response contains 2 key values, the Etcd term and the id

of the leader. We compare the id of the leader with our own to determine whether

this controller will be the master or if it will be a slave. This is shown in lines 1­9 of

Algorithm 1.

• Requesting flow and port statistics from switches

Each controller periodically polls their local switch for flow statistics to monitor the

liveness of the installed flows for control traffic. Since these flows can be installed by

any controller when all controllers are in equal mode, these flows can become invalid

while connection is lost with the controller that installed them, thus we need to mon­

itor whether the connection to the destination of these flows is still live. The master

controller additionally periodically polls switches for statistics information.

• Role requesting to switches

Openflow 1.3 supports role assignment to switches using Role request messages. The

master/slave controllers send a role request to each switch (except the local switch

which is always considered as equal) including a generation id (as referred by Open­

flow) which is the current etcd term of the etcd cluster, to declare its mastership to

the switches for this specific term, as it can be seen lines 14­22. The controller keeps

record of the last term that a role request was sent on the self.etcd_term variable. If a

switch is not yet connected to the master all other switches in the cluster will request

to be equals for this switch.

When a switch sets a controller to the master role, the controller has read­write access

to the flow table of this switch and receives packet­ins from this switch. In the slave

role, the controller has only read access to the flow table of the switch and does not

receive any packet­ins. In the equal role the same is true as for the master role with the

difference between these two roles being that at most only one master can exist for a

switch. The previous master is always set to be a slave by the switch upon receiving a

master role request with a higher generation/term number than the previous one.

For the equal role in our implementation, in order to allow for some semi­autonomous

routing for control traffic flows, when a master has been elected, all the controllers

3.1 Controller and cluster architecture 17

set their local switch as equal and modify their openflow session controller_id to their

configured datapath id using the OpenVswitch Nicira extensions.

By default when OpenVswitch initiates a connection with a controller it sets the con­

troller_id of this session to 0. Also by default the packet­miss flowwhich is responsible

for sending packet­ins to controllers when a packet’s header fails to match any other

flow rules, outputs to the OFPP_NORMAL port which sends a packet as packet­in to all

non­slave controllers with controller_id = 0. Thus by changing the controller id of the

session the local controller does not receive packet­ins from its local switch and instead

packet­ins are only forwarded to the master, while also letting the controller keep its

write access to its collocated switch. This also allows us to forward received LLDP

messages from other switches, only towards the local controller and reduce redundant

LLDP traffic as it will be explained in the topology section.

• Monitoring the ids of controllers connected to the etcd cluster. This is done in order

to correctly assign roles to switches and monitor links committed from controllers in

the cluster. Controllers request to be slaves to a switch once the node hosting this switch

has connected with the master and joined the cluster.

• Monitoring the liveness of links committed to etcd. Each node is responsible for

committing topology information about its neighborhood to etcd and updating this in­

formation when a new link is found or deleted. The neighborhood/domain can be de­

fined depending on the cluster architecture and the hierarchical structure, but in our

case it is simply all 1­hop neighboring nodes.

3.1.4 Producer thread

The producer (python) thread is responsible for sending requests to the etcd cluster using

the etcd client library. When a green thread/event handler wants to put/delete a key to/from

etcd it puts the request in a queue to be sent to the cluster by this thread. If an operation fails

the prev_term of the controller is set to None, the queue is cleared and the controller retries

to initialize its local switch and commit all known links to etcd.

It is important to note here that the eventlet library offers the option to ”patch” (other­

wise called the monkey patch) blocking functions like socket.recv and various libraries and

modules like the threading library, the os module etc, to make them behave like green threads

18 Chapter 3. Architecture

and yield control to other green threads when a green thread blocks. The etcd client library

though does not work well with this patch probably because it does not use the default python

sockets for its networking operations, thus we opt to not use it. This leads to a few issues.

While the operation could be done from a green thread (inside the link event handler,the

monitor thread,the packet­in handler etc.) the green thread has to block until the operation

from the etcd client library is finished. Blocking inside an event handler/green thread with a

function that is not patched will cause the Ryu controller to be unable to process any incoming

messages for the time we are blocked.

We opt to offload the blocking to a different python thread to complete these operations

asynchronously in relation to the event handling of the controller, so the controller is free to

continue while the producer thread is blocked waiting for etcd client operations to complete.

Figure 3.4: Application internal architecture

3.1.5 Callback thread

The callback thread is created by the etcd client library internally, and executes a callback

function passed by the user when an event on etcd happens. The callback thread makes use

of the etcd Watch API. The Watch API provides an event­based interface for asynchronously

monitoring changes to keys. During the initialization of the controller as a slave or master, the

controller sends a watch request for the topology keyrange to its local etcd server, to receive

3.1 Controller and cluster architecture 19

updates on topology events from other cluster members and passes a function to the callback

thread, which updates the topology according to these events. After the watch request is sent,

we also do a get() operation on the topology keyrange to make sure that updates were not lost

during the initialization. Ryu by default also patches the threading library, however since the

etcd client library cannot work with the monkey patch we disable patching specifically for

the threading library.

3.1.6 Topology discovery

Topology discovery uses three main mechanisms to discover new links and switches in

the network:

• The BFD protocol

BFD is a low overhead protocol which is usually used to detect link faults between

two switches/routers. BFD establishes a session between two endpoints over a par­

ticular link. The session is established with a three­way handshake, and is torn down

the same way. In our configuration script when GRE tunnels are initialized for each

switch to communicate with other in the network we enable BFD (OpenVswitch im­

plements BFD) for all GRE tunnels which allows the switch to monitor the liveness of

the tunnels/ports.

To detect the liveness of tunnels we make use of OpenFlow Group Actions and specif­

ically we use fast failover groups (defined by Openflow) as the output action set for

each control or data flow. Fast failover group actions monitor the liveness of a link

through BFD. If the link of the output port is not active the packet is forwarded to a

”failover” destination which in our case is the OFPP_CONTROLLER port to send a

packet­in to our local controller. For rules that drop packets the failover destination is

empty.

• ARP announcements

ARP announcements, which are used by each node to detect the presence of a neigh­

boring node. While the controller itself does not check the ARP table of its host node to

detect new incoming links, when the switch attempts to initialize a BFD session it has

to know beforehand the MAC address of the other end of the tunnel and thus checks

20 Chapter 3. Architecture

the ARP table. Traditional ARP request­reply function for the wireless link interface is

suspended and instead the arping daemon is used to generate ARP announcements to

populate the ARP tables of neighbors. This can be seen as a simple HELLO message

which announces the existence of a node to its neighbors so that they can initiate a BFD

session with the node.

• LLDP messages

LLDPmessages which are generated by the controllers in order to detect links between

switches. Ryu has an inbuilt module for topology discovery which we use in our appli­

cation. This module was modified to send LLDP messages only to switches set to the

equal role to avoid redundant LLDP messages to be sent by all controllers. Links can

only be discovered towards/from switches that are already connected to a controller.

The process of topology discovery differs during the equal phase and themaster phase. During

the equal phase each controller connects to its 1­hop neighboring switches when the status of

the port connecting the two of them is live as detected byBFD. The 1­hop neighbor controllers

of a switch install flows on the switch so it can connect to its 2­hop neighboring switches,

and thus each controller progressively connects with each switch in the network. Themessage

exchanges showing this procedure are presented in Figure 3.5.

In the equal phase all controllers are set as equal by all switches. In the master phase all

controllers are set to the slave role by all switches except from the elected master controller.

The collocated controller of a switch is set to the equal role by this switch.Thus in the master

phase each controller monitors only its own local links and reports them to the master through

etcd. More specifically in our implementation each controller monitors the incoming links to

its local switch, and outgoing links to any neighboring switch that is not part of the cluster

(not connected to the master controller yet). Figure 3.6 shows the links contained in the local

store (implemented by the Ryu controller) and the etcd store containing the committed links

from all nodes.

In the master phase when a controller discovers a link with a neighbor, it commits this link

to the etcd topology store, and installs the flow rules necessary in the neighboring switch to

communicate with the master. The master installs the necessary flows on the switches along

the path to connect itself with the new node, and the new node joins the cluster. After the

node is connected to the master, the master installs the necessary flows on all other switches

3.1 Controller and cluster architecture 21

Figure 3.5: Neighborhood discovery

on demand, to connect them to the controller of this node.

3.1.7 Packet­in handler

The packet­in handler is responsible for setting up the control and data flows according

to the topology information. When a packet is received from a datapath a controller finds the

shortest path using the Djikstra algorithm on the network graph to find the shortest hop path,

and installs flows along this path to direct the traffic to the destination of the packet.

All control and data flows are initialized in reaction to an incoming packet. The switch and

etcd instance of a node are configured to connect to a set of other controllers/etcd instances in

the network. An etcd instance generates packets destined for the configured connections and

these packets go through the packet­in handler of each controller connected to this switch,

where the handler installs flows in response to these packet­ins. This way the necessary flows

for connectivity between etcd instances and controller­switches are set.

Note that openflow traffic is excluded and filtered out via special flow rules during the

initialization phase of a switch, as getting packet­ins from the openflow protocol itself leads

to the openflow packets getting looped in the node itself. When etcd traffic rules are set

we also set openflow rules side by side, essentially piggybacking the openflow traffic flow

22 Chapter 3. Architecture

Figure 3.6: Topology stores during master phase

initialization to the etcd traffic flow initialization.

Data traffic is handled in the same way but the weights of the shortest path are calculated

differently depending on whether the cluster of controllers has elected a master or not. More

about the calculation of weights for the master phase on 3.2.

3.1.8 Local flow monitoring

Each controller sends periodically an OFPP_PORT_STATUSmessage to its local switch

to monitor the installed flows. This is only done for control flows. If a control flow has been

installed on a switch with destination a datapath that the collocated controller is not yet con­

nected to, the flow is set to expire after 10 seconds when the controller will have to delete

it. Since the OpenVswitch maximum backoff time for establishing a connection with a con­

troller is 8 seconds we need a higher expiration time value in order to not prematurely delete

flows. If the controller connects to the datapath during this period then the expiration time

of the flow is deleted. The liveness of the TCP connection between a controller and a switch

is periodically checked by sending OFPP_ECHO_REQUEST messages. When a switch dis­

connects from the controller, the controller erases all flows from its collocated switch with

destination to the datapath of this switch.

This handler also optimizes current flows to be up to date with the current shortest paths.

When the topology changes instead of erasing flows each controller attempts to change its

local flows, to be up to date with the shortest paths. This is only done for control flows, since

the shortest path policy for data flows uses different link quality metrics.

3.2 Link Quality Metrics 23

3.2 Link Quality Metrics

3.2.1 Link quality metrics in literature

Most routing algorithms for MANETs do not use the shortest hops path as the link quality

metric, instead they often measure some characteristics of a link to determine its quality.

OLSR for example makes use of ETX (Expected Transmission Count) [6] , which is the

number of expected transmissions of a packet necessary for it to be received without error at

its destination. This metric generally does a good job on assessing link loss or interference,

and is in one way or another used by most MANET routing protocols.

For our controller routing policy though we chose to focus more on the side of traffic en­

gineering, where we gather statistics about existing traffic and make routing decisions based

upon them. Thus a simple link quality metric which calculates contention was implemented,

which effectively attempts to balance the traffic load between links. Similar attempts have

been made in literature to create such link quality metrics incorporating load balancing [28]

[29] [30] albeit they were implemented to work with classic MANET routing protocols, and

not with centralized architectures like SDN.

3.2.2 A contention metric/routing policy

The link metric used in our routing algorithm attempts to predict the local medium con­

tention of a node by collecting statistics for the amount of traffic that each node. The master is

responsible for collecting statistics.When a new data flow needs to be routed, themaster finds

the least contended path using the Djikstra algorithm (shortestPath() function from the

NetworkX [31] library), and installs the appropriate flows on the nodes of the path to route

the traffic. A data flow has an idle timeout of 3 seconds after which the flow is considered to

be inactive, and thus gets deleted by each switch. By having a single entity coordinating the

traffic in the network traffic flows can be routed to the least congested path easily, in contrast

to the distributed approach where the view of the network in each node must converge for all

of them to agree on an optimal path regardless of what metric they may use.

For a node n with S being the set of its neighbors (including n) and Tx(x) being the

amount of traffic transmitted by a node x ∈ S, the weight Wx→n of the edge x→ n in the

24 Chapter 3. Architecture

graph is calculated as:

Wx→n =
∑
x∈S

Tx(x)

The value of Tx for a node is calculated by the master, by querying periodically each node

with an OFPPortStats request which returns the amount of traffic transmitted in bytes to

each port corresponding to each GRE tunnel.

3.3 Etcd Traffic Optimizations

Etcd was not designed for use in hosts that are connected by wireless links. Therefore

while etcd may not generate a lot of traffic for wired networks or datacenter standards on its

own, it does for wireless links. This section describes the optimizations that were made to

lower the overhead of etcd messages.

3.3.1 Blocking peer traffic

When a master is elected, according to the Raft[1] protocol each node needs to commu­

nicate only with the master to commit entries in the log and the master replicates the entries

to all other nodes. Additionally the master has to send heartbeats to all followers tin order to

preserve its leadership status otherwise a node can start new elections.

When a cluster is configured in etcd, each node establishes a connection to all other nodes

and keeps this connection alive with link heartbeat messages. When a master is elected the

connections towards every node except the master are not used and remain idle. Unless we

want to use some additional features of etcd which are outside the scope of Raft like leader­

ship transfer, each other operation (get(),put(),status_request()) does not make use of these

redundant connections.

Therefore to lower the overhead of etcd idle connections when a node recognizes that a

master has been elected it blocks incoming and outgoing etcd traffic to all nodes except the

master by installing appropriate flows. The node who recognizes itself as the master keeps

all of its connections alive with other etcd instances so it can serve the cluster. When a node

returns to being an equal it erases these flows to allow itself to connect with all etcd instances

again to elect a new master. When a switch gets disconnected from a controller, the controller

deletes from its local switch the flows blocking the outgoing etcd traffic to this switch, since

we need etcd traffic to re­establish new flows for the openflow traffic towards this switch.

3.3 Etcd Traffic Optimizations 25

This approach dramatically reduces the overhead of etcd traffic with minimal tradeoffs.

Even in the case of new elections nodes generally quickly establish new connections and

elect a master.

3.3.2 Removing diagnostics/statistics

Etcd by default sends special probe messages to all peers to provide debugging diagnos­

tics for connections to the user and measure statistics like latency and clock drift between

nodes. These messages were removed since they are not useful to our application in any way,

reducing significantly the overhead of etcd traffic.

3.3.3 Merging message streams

Etcd uses 2 kinds of tcp connections to communicate with peers. Streams which are long

lived connections between peers and pipelines which are short­lived connections created in

demand, or before streams are established. Etcd uses 2 types of streams, one general stream

to carry all messages, and an optimized stream which is used by the leader to send MsgApp

messages which are the log entries to replicate.

An optimized stream is used, as MsgApp are the main bulk of messages and making the

delivery of these messages parallel to the delivery of other control messages improves the

performance of writes in etcd and provides lower latency for control messages. However

in our use case etcd is not making a significant amount of writes to justify the overhead

of preserving this stream with link heartbeat messages, thus we merge the general and the

optimized stream into 1 stream.

3.3.4 Adjusting tuning parameters

The election timeout and heartbeat interval that were chosen for etcd are 5 and 1 seconds

respectively. Etcd recommends that the election timeout is at least 5 times the heartbeat in­

terval and this was the most acceptable combination to achieve low heartbeat overhead and

relatively acceptable recovery time for leader loss. The read and write timeout of etcd TCP

connections was also modified from 5 to 10 seconds to reduce the amount of link heartbeat

messages sent, which now are sent each 5 seconds (half the read/write timeout) to be inline

with the election timeout.

Chapter 4

Simulation

4.1 Wmediumd

To test the SDN controller implementation the Mininet­Wifi [32] network emulator was

used.Wmediumd [33] is the simulation tool thatMininet­Wifi uses to simulate frame delivery

delay and packet loss. In conjunction with the Mac_hwsim kernel module which simulates

radio interfaces for Linux, these two components form a pipeline which simulates packet

transmission between virtual interfaces.

Figure 4.1 presents the pipeline that a message from user space follows until it reaches

wmediumd and gets delivered to its destined virtual interface.When a packet is received from

user space, mac_hwsim notifies and forwards this packet to wmediumd using netlink sockets.

When wmediumd receives a message it schedules the delivery time of this packet to a time

slot by setting a timer. This time slot is chosen by an algorithm which calculates contention

and interference on the channel and finds the appropriate time slot to transmit a packet. When

the timer is up the frame is delivered to each destination (if the packet has beenmarked as suc­

cessfully delivered by the contention and interference algorithm) and sent to the mac_hwsim

module which finally delivers it to the user space receiver interface.

In the following sections we describe the issues encountered with the wmediumd simu­

lation and the changes that were made to make the simulation more realistic.

4.1.1 Contention simulation

Wmediumd makes the simplifying assumption that during the transmission of a packet

from any interface inside the simulation , no other interface can freely transmit since it would

27

28 Chapter 4. Simulation

Figure 4.1: The wmediumd and mac_hwsim pipeline [2]

contend and collide with the other transmission.While this simple contentionmodel can work

really well for traditional wireless networks where multiple stations associate with a single

Access Point, it becomes very limiting and unrealistic once applied to mesh networks.

This became apparent in experiments with 2 pairs of stations, where one station in each

pair sent traffic, separated by a long distance (long enough for them to receive virtually no

signal from the other pair), could not output the same throughput they did when transmitting

on their own and instead their throughput was always halved. To make the simulation more

realistic Algorithm 2 was implemented in place of the contention algorithm.

This algorithm calculates the target which is the time that the next transmission from

a station should begin. The main difference of this algorithm with the previous approach is

4.1 Wmediumd 29

Algorithm 2 Contention algorithm
1: in_range← {dst ∈ stations | get_link_snr(station, dst) > 0}

2: target← now

3: snr_station_dst← 0

4: if deststa is unicast then

5: target← max(target, station.last_tx)

6: snr_station_dst← get_link_snr(station, deststa)

7: if snr_station_dest > 0 then

8: target← max(target, deststa.last_tx)

9: end if

10: for tmpsta in in_range do

11: target← max(target, tmpsta.prev_exp)

12: end for

13: else

14: for tmpsta in in_range do

15: target← max(target, tmpsta.last_tx)

16: end for

17: end if

18: target← target+ send_time

19: station.prev_exp← target

20: if deststa is unicast and snr_station_dst > 0 then

21: deststa.prev_exp← target

22: else if deststa is broadcast then

23: for tmpsta in in_range do

24: tmpsta.prev_exp← target

25: end for

26: end if

27: for tmpsta in in_range do

28: tmpsta.last_tx← max(target, tmpsta.last_tx)

29: end for

30 Chapter 4. Simulation

that when a packet is scheduled, we always consider the SNR of the signal that a station

receives from a transmission. This is a less restricted approach which allows simultaneous

transmissions to occur inside the simulation provided that the stations transmitting do not

directly contend with each other. While some stations can still receive a weak signal with

SNR ≤ 0, under normal circumstances they would consider this signal as nothing more

than noise as it would be below the CCA threshold and therefore would not back off. Each

station has 2 values:

• last_tx is the deadline for the last transmission that a station has listened to.

• prev_exp is the deadline for the last packet transmission from or to this station.

The difference between these two values is that last_tx accounts for any transmission

that a station has listened to, even if the message is not destined for this station (or sent

by itself), while prev_exp only accounts for transmissions destined towards this specific

station (or sent by itself). For broadcasts all nodes with receiving SNR > 0 are considered as

destinations of this transmission. Obviously for these 2 values the following relation always

holds: last_tx ≥ prev_exp.

Initially the target is set as the time when a new packet has been received by the simula­

tion. When a station queues a packet transmission , the algorithm first checks the last_tx

of this station (in line 5), as in order to transmit no other ”neighboring” station must be trans­

mitting during this time and thus target is set as the max value between its current value

and last_tx. The same procedure also follows for the destination (provided that the SNR

received by the destination is greater than zero), where the algorithm checks (in line 8) the

last_tx of the destination as the destination must not be in the process of sending or lis­

tening to any other transmission during our transmission.

Finally we also check the prev_exp of all other stations (in line 11) to make sure that

our transmission will not interfere with any other neighboring station which is in the process

of sending or receiving a packet.

For broadcasts (in lines 13­17) we just check the last_tx of all stations that will receive

this message (including our last_tx), as these stations must not be listening to any other

transmission during this time.

The max of all these values is set as the target time to begin transmission for the next

packet. send_time is added to the target and now target denotes the time that the simulation

4.1 Wmediumd 31

will actually deliver the packet the packet to destination interface. This time is set as the

prev_exp of the transmitter and receiver (or receivers in the case of broadcast) and the

last_tx of all stations that receive the signal with SNR > 0 (including the transmitter).

This algorithm still makes many simplifying assumptions, as it assumes a perfect syn­

chronization among all stations to keep the medium busy at all times. Delivery times and

whether a packet will be delivered successfully once computed/decided cannot be changed

from later transmissions in real time, although this assumption was also made in the previous

algorithm as well. An alternative implementation which improves on many aspects like the

handling of events, simulation performance with multiple threads and adds support for mul­

tiple medium simulation is proposed in this thesis [2], however we could not use this code

for wmediumd since there were changes on the interface with Mininet­Wifi.

4.1.2 Interference simulation

While signals above the CCA threshold are handled by the contention algorithm, stations

also receive weak signals. These signals are considered by wmediumd as interference. The

interference algorithm of wmediumd accumulates the durations of such signals and assumes

(accumulated duration / time slot) is the probability of occurrence of interference. When

interference occurs, the model reduces the signal strength.

Fixes were also made to the interference model since it wrongly added the same interfer­

ence caused at the destination of the packet, to all other stations. The interference caused at

each station is different depending on the SNR of the received signal. This did not cause any

meaningful changes in any metrics during simulations though.

4.1.3 MAC layer acknowledgements

For successful transmissions the acknowledgement time (for MAC layer acknowledge­

ments) was also added to the total send_time as suggested by [2] , as it was wrongly omitted

from the calculation when a packet was successfully delivered, which affects unicast mes­

sages and reduced the throughput stations can achieve significantly.

32 Chapter 4. Simulation

4.1.4 QoS priorities

Finally, the priority of a frame according to its QoS type is not taken into consideration in

the contention algorithm. The previous algorithm took QoS priority into consideration how­

ever the implementation was problematic, since it allowed for simultaneous transmissions

from a station if a higher priority frame arrived for processing after a lower priority frame

was already queued for delivery. To implement this we would realistically need to process

transmissions in real time rather than precalculating delivery times since frame priorities work

with AIFS (Arbritrary Inter Frame Spacing) which is the time period a station will wait until

it attempts to transmit a frame giving room for higher priority frames (with lower AIFS) to

transmit first. Such an implementation would significantly diverge from the original one and

thus QoS priority is not accounted for in the contention algorithm.

Chapter 5

Evaluation and results

5.1 Setup and topology

To test our distributed SDN controller implementation and evaluate the effectiveness of

the routing policy enforced by the controller, a simple scenario was devised which showcases

the weakness of other MANET protocols to respond to situations where medium contention

occurs between nodes. The topology that was used can be seen in Figure 5.1. The experiment

that was conducted consisted of two TCP transmissions between s1­s5 and s3­s6 using iperf

[34]. The transmissions take place in the following order: at t = 0s s3 initiates a TCP transmis­

sion towards s6, and at t = 25s s1 initiates a TCP transmission towards s5. Each transmission

lasts for 250 seconds, meaning that from t = 25s through t = 250s s1 and s3 transmit concur­

rently and from t = 250s through t = 275s s1 transmits on its own. During this scenario s1 has

2 choices: to route traffic through s2 or s4.

The most optimal route for this scenario is the s1­s4­s5 route since the traffic transmitted

from s3 towards s6, contends the medium for all nodes that are inside the transmission range

of s3 including s2. Therefore if s1 decides to transmit through s2 then its transmission may

collide with s3 transmitting towards s6 resulting in packet loss. This is a typical case of the

hidden node phenomenon in wireless networks, where a node (s1) transmitting data towards

another node (s2), is unaware of the existence of a third node (s3) which also transmits data

either to s2 directly or to another neighbor, resulting in interference between s1 and s3. Even

if s2 receives the packet, it still has to transmit towards s5, meaning that it will have to backoff

until any transmission from s3 is over, and the same is also true for s3 in the case s2 is already

transmitting. Transmission through s2 will result in significant packet loss and throughput

33

34 Chapter 5. Evaluation and results

Figure 5.1: Experiment topology

loss for both TCP connections.

Our link quality metrics can predict such scenarios and direct traffic through the least

congested path, by measuring the amount of data each node sends and the interference it

causes for its neighbors as it is explained in 3.2. The fact that our approach is also centralized

in contrast to the distributed nature of other routing protocols, allows us to implement this

algorithm in a stable manner, since one node (the master) decides the path of a particular flow

based on the metrics it has received until this moment and can keep track of this flow and its

impact on the network until the transmission is over. If multiple nodes were to execute this

algorithm, they would need to converge to an optimal solution and even then they would have

to cooperate to keep the route of this flow stable and not oscillate between different routes

(due to each node having a different view of the network state and traffic between paths).

5.2 Results

Figure 5.2 shows the average throughput among 12 measurements in the described sce­

nario, achieved by all conventional routing protocols and by the SDN controller for the s3­s6

and s1­s5 TCP connections. SDN achieves the best performance using the routing policy/link

5.2 Results 35

quality metrics described in 3.2 to detect path congestion. Olsr achieves the lowest throughput

because it always chooses the ”wrong” path. This does not change during the transmissions

despite the link quality metrics of Olsr being enabled. The reason Olsr chooses this path is

due to the ordering of nodes. S2 has the 10.0.0.2 ip address while s4 has the 10.0.0.4 ip ad­

dress and thus Olsr breaks the ”tie” between the two paths by choosing lowest ip address. The

nodes were intentionally placed this way to showcase the inability of Olsr to distinguish be­

tween congested paths, if s2 changed place with s4 the results would be completely different,

and Olsr would outperform the SDN results due to the lower overhead of Olsr messages.

Batman achieves slightly better results but it still shows reduced throughput, as it is highly

unstable in choosing a path thus resulting inmuch lower throughput due to routing oscillations

during the two transmissions.

Batman IV achieves better results from its original version, due to implementing link

quality metrics in a much better way, resulting in less path oscillations. Batman V performs

the closest to SDN due to its vastly different way of calculating link quality metrics in relation

to other protocols, in fact the way batman V does this resembles the way (or at least targets)

our solution estimates link quality by estimating the throughput that can be achieved through

a link, instead of using a packet loss related metric like the other routing protocols. This

allows Batman V to stay more regularly on the right path compared to other protocols.

It is important here to note that for Batman IV andBatmanV a lowerMSSwas used during

the TCP transmission of 1436 bytes in order to avoid packet fragmentation and achieve the

best performance possible. All routing protocols run with an MTU of 1500 bytes to make the

comparison fair.

In general these protocols do not distinguish between congested and not congested paths.

Packet loss is correlated to congestion but it does not specifically detect when a specific area

of a wireless network has become a hot spot. That is why most protocols oscillate between

these two routes as when a path becomes congested it is more likely to experience packet loss,

provided that packets are sent at a high enough rate to observe that a path is congested through

packet loss. Our approach is more static since once a path is decided for a flow it cannot

change unless a link breaks or the flow transmission ends. This limits our options for more

dynamic scenarios, where other protocols can change their routes. However even with the 25

second initial transmission all competing MANET protocols failed to detect the congested

pathmore than oncewhen the second transmission from s1 began, while our routing algorithm

36 Chapter 5. Evaluation and results

running on the SDN controller never failed to make the right choice. The initial choice of the

route is done on equal terms for all protocols.

This metric and the routing policy that was used to route flows is not meant to be really

optimal but rather to showcase that even with a very simple policy we can get better results in

certain scenarios compared to decentralized routing solutions. More sophisticated algorithms

for traffic engineering using SDN have been proposed that are fully dynamic and attempt to

approximate the optimal routing of flows to maximize network utilization [35]. For SDN in

MANETs there have also been proposals for routing policies [36] that attempt to maximize

network utilization.

Olsr Batman Batman IV Babel Batman V Sdn

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

3.55 3.57

4.24
4.46

4.97

6.45

1.88

2.2

1.86

2.17 2.25 2.27

Av
g.
Th
ro
ug
hp
ut
(M

bi
t/s
)

s3­s6 s1­s5

Figure 5.2: Average throughput

Chapter 6

Conclusions and Future Work

In this thesis a distributed SDN controller for wireless networks was presented that en­

ables self­organizing deployment of SDN in MANETs. The controller has been tested and its

effectiveness on certain scenarios has been showcased through a simple experiment where

global traffic optimization is necessary to avoid inefficient routing paths in wireless networks.

While this work builds a strong basis for the integration of SDN in MANETs there are

stil several problems concerning the tight integration of these two technologies. Scalability

concerns are among the most serious issues that need to be tackled in order to make SDN

architecture viable in MANETs. To this end it is necessary to impose a hierarchical structure

on our SDN architecture (similar solutions have been proposed [37]) where each controller

with some replicas are responsible for specific domains of the network instead of the entire

network in order to reduce controller to switch latency and reduce the overhead of Openflow

and etcd messages alike.

Additionally our current implementation can be expanded to synchronize flow table view

and operations between controllers using the backend already in place. The election of a

master can also be done according to specific metrics instead of letting it happen randomly,

using the membership transfer function of etcd.

Finally it is necessary to study and implement more sophisticated traffic engineering al­

gorithms that allow for more dynamic control and fine grained routing of flows taking into

account the special nature of wireless transmissions.

37

Bibliography

[1] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo­

rithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages

305–319, 2014.

[2] Miguel Jose Meireles Moreira. yawmd: multiple medium support and performance

improvements for wmediumd. Master’s thesis, 2020.

[3] Dimitrios Kafetzis, Spyridon Vassilaras, Georgios Vardoulias, and Iordanis Koutsopou­

los. Software­defined networking meets software­defined radio in mobile ad hoc net­

works: State of the art and future directions. IEEE Access, 10:9989–10014, 2022.

[4] Konstantinos Poularakis, George Iosifidis, and Leandros Tassiulas. Sdn­enabled tactical

ad hoc networks: Extending programmable control to the edge. IEEE Communications

Magazine, 56(7):132–138, 2018.

[5] Olsr. https://datatracker.ietf.org/doc/html/rfc3626.

[6] Douglas SJ De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high­

throughput path metric for multi­hop wireless routing. In Proceedings of the 9th annual

international conference on Mobile computing and networking, pages 134–146, 2003.

[7] Batman documentation. https://www.open­mesh.org/projects/

batman­adv/wiki.

[8] Babel. https://datatracker.ietf.org/doc/html/rfc896.

[9] Openflow switch specification. https://opennetworking.org/wp­

content/uploads/2014/10/openflow­spec­v1.3.0.pdf.

[10] Etcd. https://etcd.io/.

39

https://datatracker.ietf.org/doc/html/rfc3626
https://www.open-mesh.org/projects/batman-adv/wiki
https://www.open-mesh.org/projects/batman-adv/wiki
https://datatracker.ietf.org/doc/html/rfc896
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://etcd.io/

40 Bibliography

[11] Peter Dely, Andreas Kassler, and Nico Bayer. Openflow for wireless mesh networks.

In 2011 proceedings of 20th international conference on computer communications and

networks (ICCCN), pages 1–6. IEEE, 2011.

[12] Andrea Detti, Claudio Pisa, Stefano Salsano, and Nicola Blefari­Melazzi. Wireless

mesh software defined networks (wmsdn). In 2013 IEEE 9th International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob), pages

89–95, 2013.

[13] Sachin Sharma, Avishek Nag, Paul Stynes, and Maziar Nekovee. Automatic configura­

tion of openflow in wireless mobile ad hoc networks. In 2019 International Conference

on High Performance Computing & Simulation (HPCS), pages 367–373. IEEE, 2019.

[14] Stefano Salsano, Giuseppe Siracusano, Andrea Detti, Claudio Pisa, Pier Luigi Ventre,

and Nicola Blefari­Melazzi. Controller selection in a wireless mesh SDN under network

partitioning and merging scenarios. CoRR, abs/1406.2470, 2014.

[15] Serge Fdida, Thanasis Korakis, Harris Niavis, Stefano Salsano, and Giuseppe Siracu­

sano. The express sdn experiment in the openlab large scale shared experimental fa­

cility. In 2014 International Science and Technology Conference (Modern Networking

Technologies)(MoNeTeC), pages 1–7. IEEE, 2014.

[16] Mohamed Labraoui, Michael Boc, and Anne Fladenmuller. Self­configuration mecha­

nisms for sdn deployment in wireless mesh networks. In 2017 IEEE 18th International

Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),

pages 1–4. IEEE, 2017.

[17] Iulisloi Zacarias, Luciano P Gaspary, Andersonn Kohl, Ricardo QA Fernandes, Jor­

gito M Stocchero, and Edison P de Freitas. Combining software­defined and delay­

tolerant approaches in last­mile tactical edge networking. IEEE Communications Mag­

azine, 55(10):22–29, 2017.

[18] Fei Xiong, Aijing Li, Hai Wang, and Lijuan Tang. An sdn­mqtt based communica­

tion system for battlefield uav swarms. IEEE Communications Magazine, 57(8):41–47,

2019.

Bibliography 41

[19] C Yu Hans, Giorgio Quer, and Ramesh R Rao. Wireless sdn mobile ad hoc network:

From theory to practice. In 2017 IEEE International Conference on Communications

(ICC), pages 1–7. IEEE, 2017.

[20] Mohamed Labraoui, Michael Mathias Boc, and Anne Fladenmuller. Software defined

networking­assisted routing in wireless mesh networks. In 2016 International Wireless

Communications and Mobile Computing Conference (IWCMC), pages 377–382. IEEE,

2016.

[21] Syed Sherjeel A Gilani, Amir Qayyum, Rao Naveed Bin Rais, and Mukhtiar Bano.

Sdnmesh: an sdn based routing architecture for wireless mesh networks. IEEE Access,

8:136769–136781, 2020.

[22] Paolo Bellavista, Alessandro Dolci, and Carlo Giannelli. Manet­oriented sdn: motiva­

tions, challenges, and a solution prototype. In 2018 IEEE 19th International Symposium

on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM), pages 14–22.

IEEE, 2018.

[23] Ziyao Zhang, Qiaofeng Qin, M Liang, Konstantinos Poularakis, Franck Le, K Leung,

Sastry Kompella, and Leandros Tassiulas. Routing performance in distributed sdn under

synchronization constraint. DAIS­ITA Project, New York, NY, USA, Tech. Rep, 2485,

2018.

[24] Open vswitch. https://www.openvswitch.org/.

[25] Ryu docs. https://ryu.readthedocs.io/en/latest/index.html.

[26] python­etcd3. https://python­etcd3.readthedocs.io/en/latest/

usage.html.

[27] Eventlet. https://eventlet.net/.

[28] Devu Manikantan Shila and Tricha Anjali. Load­aware traffic engineering for mesh

networks. In 2007 16th International Conference on Computer Communications and

Networks, pages 1040–1045. IEEE, 2007.

[29] Sonia Waharte, Brent Ishibashi, Raouf Boutaba, and D Meddour. Interference­aware

routing metric for improved load balancing in wireless mesh networks. In 2008 IEEE

International Conference on Communications, pages 2979–2983. IEEE, 2008.

https://www.openvswitch.org/
https://ryu.readthedocs.io/en/latest/index.html
https://python-etcd3.readthedocs.io/en/latest/usage.html
https://python-etcd3.readthedocs.io/en/latest/usage.html
https://eventlet.net/

42 Bibliography

[30] Liang Ma and Mieso K Denko. A routing metric for load­balancing in wireless mesh

networks. In 21st international conference on advanced information networking and

applications workshops (AINAW’07), volume 2, pages 409–414. IEEE, 2007.

[31] Networkx. https://networkx.org.

[32] Mininet­wifi. https://mininet­wifi.github.io/.

[33] Wmediumd. https://github.com/ramonfontes/wmediumd.

[34] Iperf docs. https://iperf.fr/.

[35] Sugam Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineering in software

defined networks. In 2013 Proceedings IEEE INFOCOM, pages 2211–2219. IEEE,

2013.

[36] Klement Streit, Nils Rodday, Florian Steuber, Corinna Schmitt, andGabi Dreo Rodosek.

Wireless sdn for highly utilized manets. In 2019 International Conference on Wireless

and Mobile Computing, Networking and Communications (WiMob), pages 226–234.

IEEE, 2019.

[37] James Nguyen and Wei Yu. An sdn­based approach to support dynamic operations

of multi­domain heterogeneous manets. In 2018 19th IEEE/ACIS International Con­

ference on Software Engineering, Artificial Intelligence, Networking and Parallel/Dis­

tributed Computing (SNPD), pages 21–26. IEEE, 2018.

https://networkx.org
https://mininet-wifi.github.io/
https://github.com/ramonfontes/wmediumd
https://iperf.fr/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	Abbreviations
	Introduction
	Context
	Contribution
	Thesis structure

	Background
	Routing in MANETs
	OLSR
	BATMAN
	Babel

	Software Defined Networking
	Etcd and consensus with Raft
	Raft Basics
	Leader election
	Log replication
	Safety

	Related work

	Architecture
	Controller and cluster architecture
	Node configuration
	Thread/Process architecture
	Cluster monitor thread
	Producer thread
	Callback thread
	Topology discovery
	Packet-in handler
	Local flow monitoring

	Link Quality Metrics
	Link quality metrics in literature
	A contention metric/routing policy

	Etcd Traffic Optimizations
	Blocking peer traffic
	Removing diagnostics/statistics
	Merging message streams
	Adjusting tuning parameters

	Simulation
	Wmediumd
	Contention simulation
	Interference simulation
	MAC layer acknowledgements
	QoS priorities

	Evaluation and results
	Setup and topology
	Results

	Conclusions and Future Work
	Bibliography

