
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Study and implementation of machine learning algorithms

for facial expression analysis

Diploma Thesis

Ioannis Athanasiadis

Supervisor: Panagiota Tsompanopoulou

February 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Study and implementation of machine learning algorithms

for facial expression analysis

Diploma Thesis

Ioannis Athanasiadis

Supervisor: Panagiota Tsompanopoulou

February 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μελέτη και εφαρμογή αλγορίθμων μηχανικής μάθησης για

ανάλυση συναισθημάτων προσώπου

Διπλωματική Εργασία

Ιωάννης Αθανασιάδης

Επιβλέπουσα: Παναγιώτα Τσομπανοπούλου

Φεβρουάριος 2022

v

Approved by the Examination Committee:

Supervisor Panagiota Tsompanopoulou

Associate Professor, Department of Electrical and Computer Engi­

neering, University of Thessaly

Member Lefteris Tsoukalas

Professor, Department of Electrical and Computer Engineering, Uni­

versity of Thessaly

Member Dimitrios Bargiotas

Associate Professor, Department of Electrical and Computer Engi­

neering, University of Thessaly

vii

Acknowledgements

First of all, I would like to express my gratitude to my Prof. Panagiota Tsompanopoulou

for providing guidance and feedback throughout this subject, but also for the opportunity

of selecting this thesis. Additionaly, special thanks to Sofia Stylianou, assistant researcher

of Department of Informatics and Telecommunications, whose support as part of her PhD

allowed my studies to go the extra mile. Furthermore, I would like to thank Vangelis Nea­

monitis, for the thoughtful comments and recommendations on this dissertation. Finally, I

would like to acknowledge my family and friends for the unwavering support throughout the

writing of this dissertation.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Ioannis Athanasiadis

20­2­2022

xi

xii Abstract

Diploma Thesis

Study and implementation of machine learning algorithms for facial

expression analysis

Ioannis Athanasiadis

Abstract

Both computer vision and machine learning have flourished as a result of ongoing improve­

ments in computer hardware and the growing amount of information on image and video

data. Therefore, a study research that overlaps pattern recognition and computer vision should

always be beneficial. Our goal is to classify human emotions from video recordings in a va­

riety of challenging situations. To do so, we are using ML methods, such as preprocessing

techniques for video data, as well as a deep learning neural network architecture for emo­

tion classification. More specifically, we utilize the obtained data by transforming them into

appropriate input for pretrained neural network architectures. The next step is to adjust the

parameters of some convolutional neural network architectures, increasing the effectiveness

of emotion classification. Lastly, we evaluate the various implementations and analyse the

results.

Περίληψη xiii

Διπλωματική Εργασία

Μελέτη και εφαρμογή αλγορίθμων μηχανικής μάθησης για ανάλυση

συναισθημάτων προσώπου

Ιωάννης Αθανασιάδης

Περίληψη

Η υπολογιστική όραση και η μηχανική μάθηση έχουν ακμάσει πρόσφατα λόγω των συνεχών

βελτιώσεων στο πεδίο του υλικού των υπολογιστών, καθώς και εξαιτίας του τεράστιου όγ­

κου πληροφορίας στον τομέα της εικόνας και του ήχου. Συνεπώς, ένα ερευνητικό πεδίο που

επικαλύπτει την υπολογιστική όραση και την αναγνώριση προτύπων είναι ιδιαίτερα επωφε­

λές. Στόχος μας είναι η ταξινόμηση ανθρωπίνων συναισθημάτων από βιντεοσκοπήσεις, σε

μια ποικιλία απαιτητικών περιπτώσεων. Για να το καταφέρουμε αυτό, χρησιμοποιούμε μεθό­

δους μηχανικής μάθησης, όπως τεχνικές προεπεξεργασίας για δεδομένα από βίντεο, καθώς

και αρχιτεκτονικές νευρωνικών δικτύων βαθιάς μάθησης, με στόχο την ταξινόμηση συναι­

σθημάτων.Πιο συγκεκριμένα, χρησιμοποιούμε τα ληφθέντα δεδομένα μετατρέποντάς τα σε

κατάλληλη είσοδο για αρχιτεκτονικές προεκπαιδευμένων νευρωνικών δικτύων. Το επόμενο

βήμα είναι η προσαρμογή των παραμέτρων κάποιων αρχιτεκτονικών συνελικτικών νευρω­

νικών δικτύων, αυξάνοντας έτσι την αποτελεσματικότητα της ταξινόμησης συναισθημάτων.

Ώς τελικό βήμα, αξιολογούμε τις διάφορες υλοποιήσεις και αναλύουμε τα αποτελέσματα.

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Pattern Recognition . 1

1.2 AI . 1

1.2.1 Learning Methodologies . 1

1.2.2 Emotions . 2

1.3 Related Work . 3

1.3.1 Traditional FER Methodologies 3

1.3.2 FER Methodologies Based on Deep Learning 4

1.4 Outline and Contribution . 5

1.5 Chapter Organization . 6

2 Neural Networks 7

2.1 Introduction . 7

2.2 Neural Network Basics . 8

xv

xvi Table of contents

2.3 Activation function . 9

2.4 Backpropagation . 12

2.5 Optimization Algorithms . 14

2.6 Convolutional Neural Networks . 18

2.6.1 Layers: FC . 19

2.6.2 Layers: Convolutional . 19

2.6.3 Layers: Pooling . 20

2.6.4 CNN Architectures . 21

2.7 Overfitting . 24

2.8 CNN Transfer Learning . 26

3 Databases and Preproccessing 27

3.1 Introduction . 27

3.2 Classification of Databases . 27

3.2.1 Types of Databases . 28

3.2.2 Methods of Elicitation . 28

3.3 FER Databases . 29

3.4 Dataset . 31

3.5 Pre­Processing . 32

3.5.1 Frame Selection . 33

3.5.2 Face Detection . 33

3.5.3 Histogram Equalizations . 34

3.5.4 Linear Scaling and Resizing . 36

3.5.5 RGB Conversion . 36

4 Methodologies 37

4.1 Methods of Testing . 37

4.2 VGG16 . 38

4.2.1 Optimisation of VGG16 . 39

4.2.2 HyperParameters . 39

4.3 First Implementation . 41

4.4 Second Implementation . 44

4.5 Third Implementation . 46

Table of contents xvii

4.6 Fourth Implementation . 49

5 Synopsis 53

Bibliography 55

APPENDICES 61

List of figures

2.1 Artificial Neuron [1] . 7

2.2 NN with 3 layers [1] . 8

2.3 Sigmoid Activation Function [2] . 10

2.4 ReLU Activation Function (Compared to Sigmoid) [2] 11

2.5 Tanh Activation Function (Compared to Sigmoid) [2] 12

2.6 Gradient Descent [3] . 15

2.7 Convolutional Neural Network [4] . 18

2.8 Convolutional Layer [4] . 20

2.9 Pooling Layer [4] . 21

2.10 AlexNet [5] . 22

2.11 GoogleNet architecture [6] . 22

2.12 VGG16 architecture [7] . 23

2.13 Overfitting [8] . 25

3.1 CK+ database [9] . 29

3.2 Before and After: Cropping with Viola­James [10] 33

3.3 Haar­like features [10] . 34

3.4 Histogram Equalization (Before And After) [10] 35

4.1 VGG16 example (last FC layer is changed to 6) [11] 40

4.2 Preprocessing steps . 42

4.3 Loss throughout Epochs . 43

4.4 Model accuracy (training and validation sets) 43

4.5 Confusion matrices: (a)Average accuracy of 75.02 using the majority voting

algorithm (b)Average accuracy of 80.49 using mean scores 44

4.6 Loss throughout Epochs . 45

xix

xx List of figures

4.7 Model accuracy (training and validation sets) 45

4.8 Confusion matrices: (a)Average accuracy of 79.12 using the majority voting

algorithm (b)Average accuracy of 83.32 using mean scores 46

4.9 Loss throughout Epochs . 48

4.10 Model accuracy (training and validation sets) 48

4.11 Confusion matrices: (a)Average accuracy of 79.05 using the majority voting

algorithm (b)Average accuracy of 81.12 using mean scores 49

4.12 Loss throughout Epochs . 49

4.13 Model accuracy (training and validation sets) 50

4.14 Confusion matrices: (a)Average accuracy of 81.12 using the majority voting

algorithm (b)Average accuracy of 85.81 using mean scores 50

List of tables

3.1 Databases In Short . 32

3.2 Construction of Dataset . 32

4.1 HyperParameters . 41

4.2 Frames for each class (training set) . 47

xxi

Abbreviations

ML Machine Learning

NN Neural Networks

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

DNN Deep Neural Networks

FER Facial Emotion Recognition

HCI Human Computer Interaction

BP BackPropagation

FC Fully­Connected

RMS Root Mean Squared

CDF Cumulative Distributed Function

LSTM Long Short Term Memory

ADAM Adaptive Moment Estimation

ReLU Rectified Linear Unit

AAM Active Appearance Model

SVM Supported Vector Machine

xxiii

Chapter 1

Introduction

1.1 Pattern Recognition
Pattern recognition is defined as the automated process of recognizing patterns, char­

acteristics, and consistencies in data that offer information about a dataset or system[2]. A

pattern is a repeated sequence of data across time that can be used to anticipate things such

as trends, recurrent features in pictures, and even commonalities in human speech and hand­

writing. A current approach to artificial intelligence includes pattern recognition, and vice ­

versa. Pattern recognition can be divided into two types: a) machine learning based and b)

rule / heuristics based.

1.2 AI
Machine learning [2] as well as all ­related­ applications is one rapidly expanding field of

AI with a wide range of capabilities and uses, not just in research and scientific systems, but

also in everyday practical scenarios utilized by a huge number of people. An extensive range

of algorithms commonly referred to as machine learning is responsible for the great major­

ity of AI discoveries and breakthroughs. These algorithms use mathematical and statistical

models to find patterns and trends in massive volumes of data.

1.2.1 Learning Methodologies

Machine learning algorithms are classed according to how they handle data and make an

effort to learn from them. As a result, three distinct learning methodologies are frequently

explored:

­ Supervised learning[2]: In the current situation, the input data is referred to as ”training

1

2 Chapter 1. Introduction

data” and has a predetermined label. A training process is used to build and tune a model,

which involves creating predictions about already known data, and adjusting the parameters

once they are incorrect. This process is rehashed until our model achieves the target ”accu­

racy” on the training data. Thereafter, to evaluate it, we take into account another unused

piece of data commonly referred to as ”testing data”. Classification (categorizating items)

and regression (estimating variable relationships), are two common issues that supervised

learning can tackle.

­ Unsupervised Learning[2]: The input data in this category are not categorized and have

no known outcome. The process of creating a model begins with the discovery of underly­

ing structures in the input data. This way, general ”rules” could be extracted, whether via

a mathematical process in order to remove redundancy, or via arranging data by relevance.

Unsupervised learning methods (for example, the k­means classifier) can address problems

including clustering and dimensionality reduction.

­ Semi­Supervised Learning[2]: Perhaps there is a mix of labeled and unlabeled samples

in the input data. Semi­supervised algorithms often train using a rather small amount of la­

beled data and a big amount of unlabeled data. Semi­supervised techniques are expansions to

previous flexible approaches that are making assumptions about how to model the unlabeled

data, and can be used to tackle issues like regression and classification[2]. Self­training and

generative models are examples of such methods.

1.2.2 Emotions

In social interaction, perception, and human intelligence, emotions are truly important[12].

Fundamentally, an emotion can be expressed through quite a lot of social behaviors, such as

facial expressions, gestures, text, speech, etc. Understanding emotions becomes important for

humans in daily life because emotional awareness and expertise are necessary for effective

social communication.

Since emotional intelligence is a vital part of artificial intelligence, computer­assisted

emotion recognition has recently become a difficult task for academics and industry. Emotion­

aware systems have already revolutionized computer vision research, and they significantly

enhanced human­computer interaction (HCI) [13] [14][15]. Monitoring driver state (– for

example­ fatigue state), assessing a person’s emotional response during a game, identifying

depression in adults, even diagnosing abnormalities in youngster development by monitoring

their facial expressions, are only a few of the applications for such systems. Emotion­sensitive

1.3 Related Work 3

machines can also help boost automated tutoring by showing whether the examples are dis­

tracting or dull to the user [16].

Encouraged by the recent deep learning successes, the tasks of emotion analysis have ad­

vanced with the use of deep learning algorithms. Some examples would be convolutional, re­

current neural networks , and hybrid approaches that incorporate bothmethodologies [14][15].

Moreover, various modalities such as video, physiological measures, audio and their combi­

nations have been used to resolve automated emotion recognition[17][18].

Among the nonverbal components of interpersonal communication, visual information

is the most important. Gestures of the face, in particular, account for a significant portion

of nonverbal communication. As a result, we concentrate on the data’s visual modality in

this paper, obtain information from faces through recordings (spatio­temporal), and focus on

emotion detection using fine­tuned pretrained CNN models.

While we, as humans, experience a wide range of emotions during our lives, in order to

simplify machine learning problems, it is important to declare a collection of distinct emo­

tional groups for automatic recognition. In the early 70s, Ekman stated that people of all cul­

tures interpret such essential emotions in facial expressions in the same way [19]. Humans

share six basic emotions, according to his research: sadness, happiness, surprise, anger, fear,

disgust. This hypothesis from Ekman has been generally acknowledged, and it has sparked

the interest of many researchers. As a result, for this thesis project, we will concentrate on

those six emotional categories.

1.3 Related Work
Through the technological advance of artificial intelligence, attention in automatic facial

emotion recognition (FER) has grown in recent decades, and various alternative approaches

to FER have been developed.

1.3.1 Traditional FER Methodologies

Face or facial part identification, feature extraction, and emotion classification are the

three primary processes in the FER pipeline in classic FER approaches. After extracting a

face image from a source image, facial components (e.g., eyes and nose) and landmarks are

detected. Then, from these elements, a variety of temporal and spatial features are detected.

Then, using the extracted features, classification algorithms support vector machines, and

random forests produce recognition results[20] [21].

4 Chapter 1. Introduction

Pietikäinen [22] used local binary patterns to extract features and SVM to classify dif­

ferent facial expressions from static images. An active appearance model(AAM) is used by

other image approaches to extract facial features points, and build a classifier by combining

useful local shape features[23]. The AAM’s role is to correlate a statistical model, to a unique

undetected picture created throughout the training process.

Numerous systems were utilized [22] in video FER in order to calculate the geometri­

cal displacement of facial landmarks (as temporal features) between the current frame and

previous frames.

The main distinction between Facial Emotion Recognition for video sequences and the

one for static images, would be that the former’s landmarks are monitored frame by frame,

and the system produces new, dynamic features through displacement (between current and

previous frames) [24].By separating face regions and creating 3D­Gradients orientation his­

tograms from each region’s motion, Pfister et al. [24] introduced facial microexpressions

recognition in video sequences.

1.3.2 FER Methodologies Based on Deep Learning

Deep learning evolved into being a more overall approach to Machine Learning(ML),

providing innovative outcomes in a variety of computer vision research projects with the

accessibility of big data, in comparison to conventional approaches using handcrafted fea­

tures.By learning directly from the input images, such emotion recognition methods greatly

reduce dependency on models which are face­physics­based [25]. However, as these algo­

rithms need massive sets of data to produce the most advanced and latest results, the volume

of data with labeled training does have a significant effect on the performance of deep NN

models. This would be their main drawback.

CNN and RNN deep learning algorithms were utilized to extract features and catego­

rize emotions. Käding et al. utilized two CNNs in 2016: one extracted temporal appearance

features from image sequences, and the other extracted temporal geometry features from

temporal facial landmark points[25]. To improve the performance of facial expression recog­

nition, both models were integrated by using a novel integration approach. Bargal et al. [26]

suggested an algorithm based on deep learning, in the 2015 Emotion Recognition in the Wild

Challenge. Deep CNN’s like ResNet and VGGwere also used, with their main purpose being

the role of feature extractors.

For emotion detection, a variety of methods are directly using a CNN. However, since

1.4 Outline and Contribution 5

methods based onCNNcannot account for ”temporal fluctuations among facial components”,

several hybrid approaches have been developed, that combine a CNN for spatial features of

individual frames and a long short­term memory (LSTM) for temporal features of consecu­

tive frames. The LSTM is a form of RNN capable of learning long­term data dependencies.

Kahou et al. [27] suggested a hybrid CNN­RNN architecture that uses a continuously evalu­

ated hidden­layer representation to propagate information over a sequence. According to the

authors [27] ”a hybrid CNN­RNN architecture for facial expression analysis would outper­

form a CNN approach using temporal averaging for aggregation” in their paper, which was

submitted for the Wild Competition’ Emotion Recognition in 2015.

Deep 3­dimensional CNNs is another newly suggested architecture which has achieved

significant progress in dealing with diverse tasks in video analysis. 2­dimensional CNNs

have a significant drawback in that they can only accommodate one dimension. Although

ignoring essential temporal video information, spatial information is omitted. C3D, on the

other hand, is able tomodel both appearance as well asmotion data at the same time. Khan and

Reeshad [1] tried to combine C3D and CNN­LSTMmodels in their study. A RNN [1] ”takes

appearance features extracted by a CNN over individual video frames as input and encodes

motion later, while a C3D models both appearance and motion of video simultaneously”,

according to the proposed system. Consequently, the hybrid network outcomes provided are

competitive (regarding emotion classification).

1.4 Outline and Contribution

Facial expressions are extremely significant in human social contact. It’s no surprise,

then, that automatic FER has been the focus of a lot of recent studies. In this study, we are

presenting a cutting edge approach for classifying facial expressions. This approach is based

on deep CNNs’ successful performance in a variety of recognition problems.

Deep architectures, despite their effectiveness, necessitate a substantial quantity of data

for their training, which has yet to be recorded in the emotion recognition literature (especially

in the case of video data). An additional problem relating to these limitations from data, is the

fact that pose expressions, which were recorded in closed lab environments, are often found

in existing databases. As a consequence, when evaluated on real­world data, a model trained

using these data performs poorly. Regarding this experiment, we utilize transfer learning

techniques with pre­trained CNN architectures to solve the aforementioned limitations of

6 Chapter 1. Introduction

other FER approaches. To obtain final classification models[25], the pre­trained model is

fine­tuned with limited emotion labeled training data.

Fine tuning would be useful in our case because the network has gained basic under­

standing of edges, shapes or curves from a vast dataset and therefore can correlate them in

a smaller dataset. Furthermore, we merged three separate databases to create our emotion

database, one of which included some spontaneous facial expressions.

1.5 Chapter Organization
The chapters are organized as:

­ Chapter 2. The theory of Neural Networks is examined in depth here (NNs).Then we

describe CNNs as a special type of NN that has been effective in a variety of recognition

tasks.

­ Chapter 3. This is where we covers every aspect of emotion detection databases, in­

cluding a wide range of categories.

­ Chapter 4. The experimental findings and the four distinct iterations of the proposed

solution are presented in this chapter.

­ Chapter 5. As a final step, we draw some conclusions from the experiments in the last

chapter.

Chapter 2

Neural Networks

2.1 Introduction

The aim of NNs was originally to model biological neural networks, but the area has

separated, evolving into an engineering topic, thus achieving decent accuracy in ML applica­

tions. The brain’s most basic component is the neuron. The human nervous system is made

up of over 86 billion neurons connected by approximately 1014 − 1015 synapses. A dendrite

is where each neuron collects input, in order to generate output along its single axon.

This axon connects the output of one neuron to the dendrites of other neurons through

synapses.

Figure 2.1: Artificial Neuron [1]

7

8 Chapter 2. Neural Networks

Moving on to the computational model describing an artificial neuron, each signal that

moves along the (xi) axons interacts multiplicatively (wi ∗xi) with the dendrites of the other

neuron, depending on the synaptic strength at that synapse (wi). Every neuron generates a

weighted sum S in the basic model, with b being the neuron’s bias value. The concept behind

NN technology is that synaptic strengths (or weights w and biases b) can be learned and

used to alter the amount of impact that one neuron has on another. Then, the neuron will fire

(sending a spike along its axon) if the final sum is greater than a certain limit. An assumption

can be made, that the exact timings of the spikes are irrelevant in the computational model,

and just the firing frequency sends information. As a resut, there is a need to use an activation

function for the modeling of the neuron’s firing rate, which describes the spike’s frequency.

Every single neuron, referred to as a node henceforth, creates a dot product with the input

and its weights, then adds the bias and applies the activation function.

2.2 Neural Network Basics
Neural networks are commonly in layer format. Layers consist of a series of nodes which

are interconnected, that have a non­linearity activation function. Through the input layer,

patterns are introduced to the network. This layer interacts with at least one hidden layer,

which conducts the processing through a system of weighted connections. The output layer

nodes, unlike all other layers in a NN, rarely include some activation feature. The reasoning

behind this is that the final layer in classification problems normally reflects the class scores,

which are random numbers with real values, or a sort of real­valued target.

Figure 2.2: NN with 3 layers [1]

There are two ways in which data flows through a NN. The input nodes feed information

2.3 Activation function 9

patterns into the network, that activate the hidden nodes layers, which then arrive at the output

layer, when [1] the network is learning (training phase) or operating normally (testing phase).

A feedforward network is commonly designed in this way. Not every node fires all of the time.

When traveling through the network, [1] each node receives inputs from the nodes to its left,

and the inputs are multiplied by the weights of the connections. In this manner, each node

combines all of the inputs it collects, and if the number exceeds a certain threshold value (in

the simplest type of network), the node fires, triggering the units to its right.

Feedback is required for a NN to learn, much as youngsters do when they hear what is

done correctly or incorrectly. We, as humans, compare the desired result to what actually

truly happened, determine the difference, and use that information to alter our behavior in

the future. NNs learn in the same way as humans do, usually through a feedback loop. This

loop is backpropagation (BP). It entails the comparison of the network’s output, to the one it

was supposed to produce, then adjusting the weights of the connections between the nodes in

the network based on the difference. We accomplish this by working in the opposite direction

(from the output to the input nodes) passing through the hidden nodes. The network can learn

over time, narrowing the gap of real and desired output.

The entire training set is transmitted across the network back and forth repeatedly during

the training phase. An epoch would be complete pass over the whole training set. We split the

information data in much smaller partitions, due to the high memory costs of back and forth

propagation of the whole dataset. It’s worth noting that the training process ends beyond a

certain number of epochs.

When the network [1] has been trained with enough learning examples, we can provide

new sets of inputs and observe its reaction. This is the testing phase. Considering the training

of the network, it will try to classify new, unlabeled samples into one of the classes, general­

izing from its previous experience.

2.3 Activation function
Each activation function starts with a single integer, then applies a certain mathematical

operation to it. Tanh, ReLU, and sigmoid activation functions are three of the most widely

used:

1. (sigmoid)Mathematical form of the sigmoid activation function:

(x) =
1

1 + ex
(2.1)

10 Chapter 2. Neural Networks

The function squashes a real­valued number into 0­1 range. As this function can be

a simple analogy of the firing rate of a neuron, the sigmoid feature has seen a lot of

use: from firing at a fully saturated maximum frequency (1) to not firing at all (0).

The sigmoid has gradually lost practical application and it is seldom used, due to two

significant drawbacks.

Figure 2.3: Sigmoid Activation Function [2]

The first drawback of the sigmoid neuron is that when its activation reaches a saturating

point at either the 0 or 1 tail, the gradient in these areas is nearly zero. Since this local

gradient will be multiplied by the gradient of this gate’s output during BP, if the local

gradient is very small, the gradient will be effectively killed, and almost no signal will

flow through the neuron to its weights, and recursively to its data. Consequently, during

the weights initialization of sigmoid neurons, extra caution must be exercised to avoid

saturation.

Sigmoid outputs do not have zero­centering either. This is also a downside since neu­

rons in the NN’s later processing layers would receive data which are not zero­centered.

This has consequences for gradient descent dynamics, as data entering a neuron will be

positive, then the gradient on the weights w will become either all positive or all nega­

tive during BP. It’s worth noting, however, that the data is supplied in smaller portions

2.3 Activation function 11

in the network. The last weight update may have a variety of signs when the gradients

sum up over a data batch, which helps to mitigate this problem. As a result, although

this is inconvenient, this will have fewer negative implications than the aforementioned

saturated activation problem.

2. (ReLU) Over the last years, the Rectified Linear Unit (ReLU) has gained a lot of

momentum. The activation is actually thresholded at zero, since the function f(x) =

max(0, x) is computed. In comparison to sigmoid and tanh functions, ReLU was found

to significantly accelerate convergence in the training phase. This is thought to be due

to its linear, non­saturating form. The main disadvantage of ReLU is that units and die

Figure 2.4: ReLU Activation Function (Compared to Sigmoid) [2]

during training as they are more fragile. In this case, the gradient flowing through the

same neuron will be zero for the rest of the time. A large gradient flowing through

a ReLU neuron, for example, could trigger the weights to update to the point where

there is no further activation of the neuron. If this occurs, from then on the unit gradient

flowing will become null.

3. (tanh) The tanh non­linearity squashes a real valued number to the range [­1, 1]. Its

activations saturate like the sigmoid neurons, but its performance is zero­centered. As

a result, the tanh non­linearity is often favoured over the sigmoid non­linearity in prac­

tice. It’s also worth noting that the tanh neuron is nothing more than a scaled sigmoid

neuron [1], as shown: (tanh(x) = 2(2x)− 1).

12 Chapter 2. Neural Networks

Figure 2.5: Tanh Activation Function (Compared to Sigmoid) [2]

2.4 Backpropagation
Different research communities have used this numerical method in various contexts.

Seppo Linnainmaa first published the BP algorithm in 1970, though important concepts were

already perceived quite sooner. David Rumelhart demonstrated in 1987 that by using a pro­

cess as this, meaningful internal representations of data can be produced inNNs hidden layers.

This algorithm began to fade during the 2000s, but it resurfaced in the 2010s, thanks to the

advancement of low­cost, high­performance computing systems. Since then, it has indeed

remained among the most researched NN learning algorithms.[28] The BP algorithm can be

broken down into four stages, each of which is briefly listed below:

1. Feed­Forward Computation

2. Backpropagation to output layer

3. Backpropagation to hidden layer

4. Weight update

When the error function reaches a suitably low value in the output layer, the process ends.

The BP algorithm is described in depth below.

Any number of hidden units can be added to a feed­forward network with n input and m

output units, allowing to exhibit any desired feed­forward connection pattern. A training set

2.4 Backpropagation 13

(x1, t, 1)...(xp, tp) containing p ordered pairs of n and m dimensional vectors, which are the

input and output patterns, is also given. When this network is given the input pattern xi from

the training set, it generates an output oi that is different from the target ti in general. Using

a learning algorithm, the aim is to make oi and ti identical for i = 1, ..., p. More specifically,

we want to reduce the network’s error function, which is defined as:

E =
1

2

p∑
i=1

||oi − ti||2 (2.2)

In order to identify the weight values combination which minimize the error function,

we combine the BP algorithm with an optimizer. The network is set up with weights that are

selected at random. In addition, the error function’s gradient is calculated and utilized for the

adjustment of initial weights. We have to recursively calculate this gradient.

A first phase in the minimization procedure is to expand the network in order to automat­

ically calculate the error function. Each of the network’s j output units is connected to a node

that evaluates the function E = 1
2

∑p
i=1 ||oi − ti||2, with oij and tij denoting the jth part of

the output vector oi and the target ti, respectively. Each pattern ti requires the development

of the same network extension. All of the quadratic errors are gathered by a computing unit,

which then outputs the sum E1 + ...+Ep. The error function E is the output of this extended

network. As a result, for a particular training set, the network will calculate the overall error.

The only parameters left that may be changed in order to lower the quadratic error E are the

weights of the network. Since E is computed exclusively through the composition of node

functions by the extended network, it will be a continuous, differentiable function of the l

weights w1, w2, ..., wl in the network. Consequently, we are able to minimize E. This can

happen by utilizing an iterative gradient descent process, for which we must first calculate

the gradient:

∇E = (
∂E

∂w1

,
∂E

∂w2

, ...,
∂E

∂wl

) (2.3)

The increment is used to change each weight:

△wi = − ∂E

∂wi

, fori = 1, ..., l (2.4)

where l is the learning rate, a proportionality parameter that determines the step length each

iteration in the negative gradient direction takes.

The entire learning problem is now reduced to measuring the gradient of a network func­

tionwith respect to its weights, due to this extension of the original network.We can iteratively

14 Chapter 2. Neural Networks

adjust the network weights after calculating the gradient. We expect to find a minimum of

the error function in this manner, with ∇E = 0. Undoubtedly, [3] any method for the mod­

ification of the network’s weights can be used, in order to minimize the total error function

that we defined earlier.

2.5 Optimization Algorithms
The error function E(x), also known as the ’objective function,’ is minimized (or maxi­

mized) using optimization algorithms. The output values are calculated using the NN’s inter­

nal learnable parameters, weights w and bias b, which are learned and modified in the direc­

tion of the optimum route. Internal model parameters are critical in swiftly and successfully

training a model and producing high accuracy outcomes. And that is why, utilizing various

optimization approaches, we compute acceptable values for these kind of model parameters.

The optimization algorithm we chose has a significant impact on the learning process and

outputs of our model. Some popular optimization algorithms are listed here:

1. Gradient Descent

The most significant method and the cornerstone of NN optimization is gradient de­

scent. Gradient descent is an optimization algorithm based on curved function which

modifies its parameters iteratively to minimize a given function to its local minimum.

Gradient Descent repeatedly reduces a function by moving it in the opposite direction

direction from that of the steep ascent. It depends on its derivatives function loss to

find minimums. Using the data of the whole training set to calculate the cost with the

parameters requires a large amount of memory and thus slows down the procedure.

The parameter updates have the following formula:

θ = θ − γ∇J(θ) (2.5)

where γ denotes the learning rate and ∇J(θ) denotes the gradient of the loss function

J(θ) with respect to θ [3][10].

There are some disadvantages in the gradient descent algorithm. We must take a closer

look at the amount of calculations we make for each iteration of the algorithm. Assum­

ing we have 10,000 data points and 10 attributes. The sum of error squares consists of

as many terms as data points, so we have 10000 terms in our case. We have to calculate

2.5 Optimization Algorithms 15

the derivative of this function in relation to each of the characteristics, so we will ac­

tually do 10000 * 10 = 100,000 calculations per iteration. It is customary to take 1000

iterations, so in we actually have 100,000 * 1000 = 100000000 calculations to complete

the algorithm. This is almost an insufficient cost therefore the gradient descent is slow

in huge data. The weight updates process of the gradient is depicted in Fig. 2.6. The

Figure 2.6: Gradient Descent [3]

gradient slope is represented by the U­shaped curve. As can be shown, depending on

the weight values, the inaccuracies can grow substantially. As a result,[3] the updates

should not be too big or too small, allowing us to decline in the opposite direction of the

gradient until we hit a local minima. Several variations of gradient descent algorithm

emerged later on, in addition to the simple version. Some of them include minibatch

gradient descent, stochastic gradient descent (SGD) and Nesterov accelerated gradient.

2. AdamADAM[29] stands for adaptivemoment estimation, which translates to adaptive

momentum approach. It is an algorithm for efficient stochastic optimization, which

only needs first­order gradients. Particularly, focuses on optimizing high­dimensional

stochastic goals parametric spaces (something we would encounter in the training of

deep neural networks) where higher order methods would not be convenient, due to

the larger their computational costs The algorithm itself calculates individual learning

rates for different parameters of the model, from approaches it makes to the first and

16 Chapter 2. Neural Networks

second order moments of gradients, and are determined as follows:

mt = β1mt−1 + (1− β1)gt (2.6)

ut = β2ut−1 + (1− β2)g
2
t (2.7)

, with m being the mean and u the uncentered variance. The authors of Adam noticed

that the algorithm is biased towards zero since mt and ut are initialized as vectors

of zeros, particularly during the initial time steps and when the decay rates are small

(β1 and (β2 are close to one). By calculating bias­corrected first and second moment

estimates, they were able to overcome these biases:

m̂t =
mt

1− βt
1

(2.8)

ût =
ut

1− βt
2

(2.9)

Then, they are utilized in the same way as Adadelta, for the parameter update, resulting

in the Adam update rule:

θt+1 = θt −
γ√

ût + e
(2.10)

In summary, some of the general advantages of ADAM are the following: There is little

need for memory, the size of the update parameters is independent of gradient values,

the practical steps of the algorithm are blocked by initial step given by the user, it does

not need a fixed target, and it works when the slopes are sparse.

3. Adagrad

The Adagrad [30] [10] optimizer adjusts the learning rate according to the parameters.

In reality, large updates are applied to infrequent parameters and small updates are

applied to frequent parameters. As a result, it is an excellent optimizer for dealing with

sparse data.

According to Adagrad[30], for each parameter θ at each time step, a different learning

rate is being used based on the previous gradients computed for that parameter. Since

every parameter θi used the same learning rate in gradient descent, all parameters were

updated at the same time, while Adagrad used a different learning rate for each param­

eter θt,i on every time step t[30]. The Adagrad formula for parameter updates is:

θt+1,i = θt,i −
γ√
Gt,i+e

gt,i (2.11)

2.5 Optimization Algorithms 17

where gt,i is the gradient of the loss function with respect to the parameter θi at time

step t, and γ represents the learning rate.Gt is a diagonal table in which every diagonal

element at the (i, i) position, is equal to the sum of the squared gradients with respect

to θi until time step t, and e is a smooth term in order to avoid division with zero.

Possibly the most significant advantage of Adagrad would be that it removes the need

tomanually adjust the learning rate.Most implementations use 0.01 as the default value

and leave it there. The accumulation of squared gradients in the denominator, however,

is its key flaw. Since each additional term adds to the total, the total grows during

training. As a result, the learning rate decreases and gradually becomes insignificant,

and our algorithm can not learn any new information. To fix this flaw, the algorithm

that follows is designed.

4. Adadelta

An extension­improvement of Adagrad is Adadelta. We know that Adagrad has as a

disadvantage due to the accumulation of its sums which reduce the learning rate over

the course of repetitions. [31]. Adadelta, on the other hand, does not hold all the sums

but only one part of them. The sum of the slopes depends on their mean previous

inclinations. At time step t, the running average E(g2)t is solely determined by the

previous average and the current gradient.

E(g2)t = aE(g2)t−1 + (1− a)g2t (2.12)

Around 0.9 is a standard value for a. The parameter update vector(PUV) is used to

express the gradient descent update.

∆θt = −γgt,i (2.13)

θt+1 = θt +∆θt (2.14)

As a result, the Adagrad PUV which we previously calculated:

∆θt =
γ√

Gt + e
⊗ gt (2.15)

Where ⊗ the symbol of the symmetric product[32]. We can now easily substitute Gt

with E(g2)t, which is the decaying average of past squared gradients.

∆θt =
γ√

E(g2)t + e
gt (2.16)

18 Chapter 2. Neural Networks

2.6 Convolutional Neural Networks

Convolutional Neural Networks are common to NNs at the point that they aim at self­

improvement through learning. The peculiarity of CNNs in relation to the traditional NN, is

that the former are mainly used in pattern recognition in images. Only the last layer in the

CNN is fully connected. In this way, its architecture parameters can be reduced to make learn­

ing a data type more targeted.[4]. At the end of a CNN, there are typically several ordinary

fully connected (FC) layers. On the last FC layer, they still have a loss function. The key dis­

tinction is that instead of learning unstructured weights, CNN architectures use convolution

to apply filters whose internal values are the weights to be learned. The explicit assumption

that the inputs are images is made in the case of 2D convolutional filters, allowing us the

encoding of those properties, into the architecture

Figure 2.7: Convolutional Neural Network [4]

A key feature of a CNN is that it is made up of neurons that are organized in three di­

mensions. Height, width and depth. By depth, we mean the third dimension of the activation

volume. Instead of the all to all neuron connection in a FC layer, the neurons in a convo­

lutional layer are only linked to a small region of the layer before it. Furthermore, the full

picture is condensed to a single vector of class scores ordered along the depth axis by the end

of a CNN architecture.

CNNs are made up of three types of levels. These are convolutional layers, pooling layers

and FC layers. When these levels stacked, CNN architecture is shaped. The network output

can be a class or a probability of classes describing an image.

2.6 Convolutional Neural Networks 19

2.6.1 Layers: FC

As in normal NNs, the fully connected layer contains neurons that connect directly to the

neurons of the two adjacent layers, without being connected to either layer inside them. It is

the most basic type of layer, and is typically found at the bottom of CNN architectures, with

the purpose of carrying out the required classification or regression task[4].

2.6.2 Layers: Convolutional

This is the central component of CNNs and is responsible for the majority of the compu­

tational work. The parameters of this layer are centered around the usage of learnable filters

(or kernels). These filters are usually small in spatial layout, but extend to the entire width of

the input. When the data enter the convolutional layer, the layer converges (slides) each filter

in the spatial layout of the input, in order to produce a two­dimensional activation map.

To calculate the vectors of each layer, we first take the input values and apply vector

multiplication by level. The result of the multiplication of this vector, is calculated for each

of its neuron values with the step activation function. Out of this value, the network will find

out which neurons are activated when a particular feature is detected from a specific input

location. These values are also known as activations.

A simple example is by inserting an image with dimensions 64x64x3, that is, a three­

channel RGB image with dimensions: 64 length and 64 width, with the receptive size set to

6x6, the result would be 108 weights for each neuron of the convolutional network. Unlike in

NN we would have 12228 weights per neuron. Convolutional levels reduce the complexity

of the model.

Three hyperparameters must be defined in order to control the number of nodes in a

convolutional layer’s output volume: stride, depth, and zero­padding.

Firstly, the number of filters­to­use corresponds to the depth of the output volume, with

each of the filters learning to search for something unique from the input data. For example,

if the raw image is fed into the first convolutional layer as input, different neurons along the

depth dimension can fire in response to various oriented edges or color blobs. A depth column

is from now on a set of neurons that all look at the same region of the input.

Secondly, the stride must be defined. When the stride is 1, we shift the filters one pixel at

a time during convolution[4]. When we slide around with a stride of 2 (or rarely 3 or more),

the filters jump 2 pixels at a time. In terms of production volume, larger strides yield smaller

20 Chapter 2. Neural Networks

Figure 2.8: Convolutional Layer [4]

output volumes.

In certain cases, padding the input volume with zeros around the border is useful[4].

This zero­padding’s size is a hyper­parameter. The aim of applying zero padding is to better

manage the output volume’s spatial size. We can precisely maintain the spatial size of the

input volume in this way, ensuring that the input and output width and height are identical.

The spatial size of the output volume (O) can be calculated as a function of the input

volume size (W), the convolutional layer neurons’ receptive field size (F), the stride in which

they are applied (S), and the amount of zero padding used on the border (P)[4].

O =
W − F + 2P

S
+ 1 (2.17)

2.6.3 Layers: Pooling

Apooling layer aims to gradually reduce the dimensions that representing the network and

further reducing the number of parameters and the computational complexity of the model,

thus regulating overfitting. The pooling layer operates in the input of each activation map,

and scales its dimension using the ”MAX” function. In most CNNs, these maps come in the

form of concentrated pooling layers with filters of 2×2 dimensions and with stride 2 along

the spatial dimensions of the input. This reduces the size of the activation map by up to 25

percent of the original size, while maintaining the volume of the depth at its normal size. In

this case below, each MAX operation will take a maximum of four numbers (little 2x2 region

2.6 Convolutional Neural Networks 21

in some depth slice). The depth dimension stays the same.

Figure 2.9: Pooling Layer [4]

The pooling units may perform other functions besides max pooling (eg. L2­norm). The

most popular method is max­pooling.

2.6.4 CNN Architectures

Various CNN architectures have been established in recent decades and have achieved ex­

cellent outcomes on recognition tasks, especially for ImageNet. ImageNet project is declared

as a 1.4 million­image visual repository intended for use in visual object recognition research.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competi­

tion run by this project[5]. Some of the most prominent architectures used by ILSVRC’s top

finalists, are the following:

• AlexNet: AlexNet, created by Alex Krizhevsky, Geoff Hinton and Ilya Sutskever, was

the first work to popularize CNNs in the field of Computer Vision [5]. AlexNet was

introduced to the 2012 ILSVRC challenge, and far outperformed the second runner­up

(top 5 error of 16 percent vs. 26 percent for the runner­up) [5]. The network’s architec­

ture shared similar components with LeNet’s [33], but was much larger, deeper, with

more width, and had stacks of convolutional layers on top of each other. Convolutional

filters 11x11, 5x5, and 3x3 were used, as well as max pooling, dropout and SGD with

momentum citeKrizhevsky. ReLU activations were introduced following each convo­

22 Chapter 2. Neural Networks

lutional layer and each FC layer.

Figure 2.10: AlexNet [5]

• GoogleNet: The winner of the 2014 ILSVRC was a Google architecture proposed by

Szegedy et al. [6]. When compared to AlexNet, it made a significant contribution by

developing a 22­layer model that lowered the number of parameters from 60 million

to 4 million. Furthermore, instead of using FC layers at the top of the CNN, this study

utilized average pooling, which eliminated a large number of parameters that did not

have great importance. The GoogLeNet has spawned numerous iterations, the most

recent of which is Inception­v4 [34].

Figure 2.11: GoogleNet architecture [6]

• VGGNet: The VGGNet, a network created by Andrew Zisserman and Karen Simonyan

[7], came in second place at 2014 ILSVRC. Its key contribution was to demonstrate

that network depth is an important factor in achieving good performance. They cre­

ated a range of VGGNet versions with varying depth sizes. The important thing in this

2.6 Convolutional Neural Networks 23

Figure 2.12: VGG16 architecture [7]

model is that in addition to its ability to detect objects in images, the model weights

are available for free and can be used at models and applications for detecting objects

in images. Their best network includes 16 convolutional FC layers, and displays an

extremely homogeneuous architecture. This network performs 3x3 convolutions and

2x2 pooling throughout the whole process. The VGG16 model is also used in the ex­

periments of this thesis. The VGGNet has the disadvantage of being more expensive

to assess and evaluate, while also requiring 140 million parameters and a large amount

of memory.

• ResNet: The winner of 2015 ILSVRC was created by Kaiming He et al, namely Resid­

ual Network (ResNet). They implemented a new architecture that used ’skip connec­

tions’ and batch normalization extensively. These skip connections are very resemblant

to RNN elements. The architecture also lacks FC layers at the network’s end. They

were able to train a NN with 152 layers (while maintaining a lower complexity than

VGGNet) using this technique.

• ZFNet: The winner of the 2013 ILSVRC was the ZFNet [35], a CNN architecture cre­

ated by Rob Fergus andMatthewZeiler. By tweaking the architecture hyperparameters,

ZFNet was an improvement of AlexNet,by raising the volume of the middle convolu­

tional layers, and reducing the stride and filter size on the first layer [35].

24 Chapter 2. Neural Networks

2.7 Overfitting
In machine learning problems, generalization is critical. A strongmachine learningmodel

should be able to generalize well from training data to any unknown data from the problem

domain[8].

One of the key problems of ML algorithms is that there is no minimization of the desired

error, i.e. the error which the network generates each time new entries are introduced into it.

Therefore, the most important quality of a multilevel network is its ability to generalize in

any new situations it comes against. In order to reach its maximum generalization capacity,

a network is necessary to choose carefully on the characteristics of the data set: the size as

well as the number of weights in the set. In fact, every network is trained to reduce the error

in training data, which is not the same as reducing its gradient error. The issue that is created

is the problem of overfitting/overlearning.

Essentially, the concept of overfitting is the phenomenon according to which, the network

is highly trained in training data (input­output), with resulting in the network error being too

small, but becoming too large for data in which the network has not been trained.

The difference between training and validation accuracy shows how much overfitting

has occurred, as can be shown in Fig. 2.13. The blue validation error curve indicates that

validation accuracy is very low relative to training accuracy, meaning that there is a lot of

overfitting. It’s worth noting that the validation accuracy will start to deteriorate after some

point. The following are the key measures for minimizing overfitting:

• Data Augmentation: Of course, the first move is to gather more data. In certain in­

stances, however, it is not feasible. As a next step, the use of data augmentation should

be performed, which is always advocated. Data augmentation involves techniques such

as random image rotation, flipping, cropping and applying some color filter, among

others. These methods are solely used on training data; they are not used on either

validation nor testing sets.

• Regularization or Dropout: Depending on each problem, the capacity and learning abil­

ity of a network can be in some cases either huge or minimal. In an effort to adapt the

network capacity to each problem, the solution is given by adding and subtracting hid­

den layers and its neurons. These procedures are usually avoided and therefore the reg­

ularization process is preferred. In addition, in most of the neural network challenges

2.7 Overfitting 25

Figure 2.13: Overfitting [8]

there is an infinity of solutions, which is not desirable. For this reason, in order to im­

pose small values and smoothness in weights, the method of regularization is used.[8].

Dropout is a popular regularization technique. During each training epoch, it ’ignores’

(eliminates) a random sample of the activations. The procedure prevents any neuron

from relying excessively on the output of any other neuron by dropping out neurons at

random, forcing it to rely on the population behavior of its inputs instead.[8]. Since it

reduces interdependent learning among neurons, this technique helps the model gen­

eralize better to unknown data and prevents overfitting.

• Reduce complexity of architecture: The third[8] alternative is to decrease the complex­

ity of the network by reducing the number of parameters. The way to accomplish this

is by reducing either the number of layers or the size of the layers. When a small size of

training data is combined with a large number of parameters, the model may be forced

to map undesired data qualities, such as noise. In contrast, if the model has a small

number of parameters, it will be unable to recreate complicated problems. In reality,

the more parameters you have, the more data you’ll need to train properly. As a result,

when data is limited, reducing the number of parameters improves the model’s ability

to learn and the generalization to unknown data.

26 Chapter 2. Neural Networks

2.8 CNN Transfer Learning
In reality, training an entire CNN from the start (with randomweights initialization) would

be uncommon due to the rarity of a sufficiently large dataset[36]. Instead, it’s popular to

pretrain a CNN on a broad dataset (such as ImageNet) and then use it as an initialization or

a fixed feature extractor for the task at hand. The following are the two main scenarios for

transfer learning:

• Fixed feature extractor CNN

Feature extraction is the method that, using the representations learned by the pre­

trained network, extracts characteristics from the new examples[36][10]. These char­

acteristics are then passed through a pretrained classifier suitable for our case. Feature

extraction consists of taking the convolutional base from a pre­trained network, pass

the the data through the network, and train a classifier on top of the CNN, a layer above

the output of the convolutional base.[10]

[36].

• CNN fine tuning

This second technique is to continue the backpropagation and not only substitute and

retrain the classifier on top of the CNN on the new dataset, but also to fine­tune the

weights of the pre­trained network[36][10]. It is possible to train the last levels of the

CNN after the classifier has been trained. This is done because if the changes in the

weights of fully connected levels are too drastic, they will destroy the representations

that have been learned by the CNN layers.

The size of the new dataset, the resemblance to the original, as well as the complexity of

the problem are the most important factors in determining the type of transfer learning to use.

Chapter 3

Databases and Preproccessing

3.1 Introduction

Due to the fact that DNNs need a significant training data amount to prevent overfitting,

gathering sufficient data is critical before constructing a deep learning emotion classifier.

However, there is not enough annotated video data in current facial expression databases to

train well­known NNs with deep architectures that have shown promise in other recognition

tasks, such as object recognition [37].

A database can definitely provide a dependable platform for testing and evaluating clas­

sification algorithms. Typically, the algorithms are tested against specific video or image

databases. Such databases are made up of samples and the ground truths that go along with

them. Due to uncontrollable and varying circumstances, there may be some variations in the

content of images, such as different topics, age, lighting, gender, ethnicities, and textures

[37].

Using a single FER database to construct a classifier, however, is rarely enough to model

real­world data variability [37]. To ensure objectivity, we will have to use a combination of

several databases or calculate the developed framework’s cross­dataset efficiency.

3.2 Classification of Databases

Even though we have a variety of databases that meet many distinct requirements, it

should be important to remember that the database’s content is influenced by a variety of

factors [38]. The participants’ selection, elicitation process, and data format all have a signif­

icant impact on the final model’s performance. Participants’ cultural and social backgrounds,

27

28 Chapter 3. Databases and Preproccessing

even their moods at the time of the experiment, may influence the database’s output to target

a section of the population [39].

3.2.1 Types of Databases

Depending on how the data was obtained, databases will take several different types.

There are two types of facial expression databases currently available: a) static databases,

which contain static face images and their respective labels b) video databases, which consist

of video sequences that allow temporal information to be considered via video frames.

The most popular and oldest database form is static databases. These databases usually

include a large amount of people and, additionally, a large sample size. Although it should

be relatively simple to find one database that is appropriate for our task, emotional cate­

gories are severely restricted, because static databases can only detect six primary emotions

or smiles/neutral.The majority of earlier facial expression databases include only frontal por­

trait photographs captured with basic RGB cameras. By using various angles and occlusion

(e.g glasses, hats), some modern databases attempt to construct collection methods which

integrate more realistic data.The Multi­PIE [40] and MMI [3] databases, which were among

the first ones to use different view angles, are prime examples.

Regarding the case of video databases, scientists have attempted to recognize emotions

using gestures, vocal context, head movement, and generally any other form of feature that

describes body language[38]. Furthermore, several video databases attempted to collect sub­

tle emotional changes (also known as micro­expressions), which are not easily detected in

still images. Video is also by far the most practical medium for recording both induced and

spontaneous emotions[38] This can be due to the absence of distinct beginning and ending

points for non­posed emotions. That being said, video databases usually have a limited num­

ber of participants, which presents a challenge when training the DNN models.

3.2.2 Methods of Elicitation

How to elicit various emotions from participants is a significant decision to make when

collecting data for emotion recognition databases. The three main categories of audiovisual

databases listed in the literature are:

1. posed

2. induced

3.3 FER Databases 29

3. spontaneous (during an interaction)

Participants in the posed datasets are normally real actors. They are instructed to accurately

depict each emotion [38]. Since posed facial expressions are the easiest to collect, most fa­

cial emotion databases, particularly the early ones, are entirely made up of them. CK+ and

MMI are two well­known posed databases [9] [3]. However, since forced emotions are often

exaggerated, this type of database is actually the least reflective in comparison to realistic

emotions. As a consequence, when evaluated with real­world data, human expression analy­

sis models, generated using posed databases, often produce poor results.

In terms of induced databases, films, stories, music, or some combination of them, are of­

ten used to elicit emotional responses in subjects. Since the participants are normally exposed

to audiovisual stimulations in order to evoke and depict real emotions, this form of elicita­

tion reveals more genuine emotions [41].Due to the limitations of posed databases, induced

emotion databases have become more popular. Since the models are more realistic and not

hindered by over­emphasised and artificial gestures, their performance in real life is greatly

improved. Nonetheless, the participants are filmed in a well­organized lab setting, similar to

how they are filmed in posed databases.

Spontaneous emotion datasets are thought to be the most accurate representations of real­

life situations.The key disadvantage of this form of elicitation is that audiovisual data consist­

ing of impulsive emotions is quite hard to obtain and label. The reason for this disadvantage is

that emotion expressions are uncommon and frequently connected with a complex contextual

structure [42].

3.3 FER Databases
The following are a couple of the most famous, publicly accessible FER databases:

Figure 3.1: CK+ database [9]

30 Chapter 3. Databases and Preproccessing

1. CK+: This is an extension of the original version Cohn­Kanade Dataset (CK +)[9][10]

first published in 2000. It is one of the most renowned databases for the development of

facial expression analysis algorithms. This database is available for research purposes

in 2 main editions, and a third edition is currently in preparation. The first edition

includes 486 arrays of images that contain facial expressions in posed format from 97

subjects. The second edition is extended to 593 arrays of images, also containing facial

expressions in posed format, among 123 subjects. Each expression includes images that

start from a neutral shot and end at the peak of the expression of emotion, through a

series of images. The third edition is scheduled to be released soon. Its current form

includes images with subjects posing aligned with the camera. The updated version

also includes footage with subjects having an inclination of 30 degrees in the video.

2. MUG: The MUG Facial Expression Database is made up of images of 85 people mak­

ing various facial expressions. There are 34 Caucasian women and 50 Caucasian men

in the database, all between the ages of 20 and 35. The participants took a seat in front

of a single 19­frame­per­second camera. Each image had a resolution of 896 x 896 pix­

els and was saved in jpeg format. The MUG database is divided into two parts. As the

participants were asked to portray the six basic emotions, the first phase contains posed

facial expressions. Each sequence comprises 50 to 160 frames and begins and ends at

the neutral state.The aim was for the subjects to correctly mimic the basic expressions,

and in order to do so, they were given a brief lesson on the basic emotions prior to

the recordings. The sequences that accurately imitated the expressions were chosen for

inclusion in the database. As a consequence, there are 1462 sequences available in the

first phase.The subjects were filmed while watching a video that was created to elicit

emotions in the second phase. The participants were conscious that they were being

recorded on video. In contrast to posed expressions, the purpose of this phase of the

MUG database was to basically elicit genuine expressions, located in the laboratory

setting. Apart from the six basic emotions, the subjects show a variety of emotions and

emotional attitudes. These image sequences, however, have yet to be labeled.

3. ISED: The Indian Spontaneous Expression Database for Emotion Recognition (ISED)

contains both male and female Indian participants’ spontaneous expressions. There are

427 video clips, segmented, from 48 participants in the database. The video clips range

in length from 2 to 11 seconds. Passive elicitation was used to evoke the emotions

3.4 Dataset 31

by viewing emotion­inducing videos. A hidden camera captured the subjects’ facial

expressions as they were left alone in the experimental room. The participants weren’t

told the actual intent of this experiment ahead of time, but were able to watch the

videos to evoke natural emotions, alone in the experimental room. Subjects were often

permitted towatch at their leisurewithout further conditions in order to avoid suspicion.

Finally, four trained decoding machines annotated all of the videos, tagging the six

basic emotional expressions as well as the corresponding emotional intensity on a six­

point scale for each video (from 0 to 5).

4. MMI: The MMI database was created with a goal of evaluating algoriths related to

facial expression recognition, and consequently evaluating the contribution to the op­

tical media community of a large volume of optical data[10]. The MMI database has

been further developed as a direct web application available to specific members with

the corresponding authorization. It can be directly manipulated in a way that allows

for quick access and searching of the available images. This database contains 2900

high quality videos, which are then converted to quality images from 79 subjects. The

MMI database approaches the issue of recognizing emotions not only through catego­

rizing them into 7 fundamental categories, but includes additional information on the

activation of specific facial muscle groups and other descriptive markers.

The database contains 19 male and female subjects ranging in age from 19 to 62 years

old and of European, South American or Asian ethnicity. The participants were asked to

show 79 different expression sequences, including the sixmost common emotions.[10].

This database has static images as well as arrays of images with the faces in anfas and

profiles. All video sequences were captured at a 24 frames per second frame rate. The

sequences vary in length, lasting anywhere from 40 to 520 frames [3].

3.4 Dataset
The CK+ and MUG databases were combined for this thesis in order to establish a good

amount of training, testing, and validation sets. Both databases have samples in the training,

testing, and validation sets. Therefore, in order to prevent prejudice, the same participant does

not appear in any two of them. Every single one of the videos was edited to have the following

format: each video sequence begins with a neutral expression but then is ending with the most

32 Chapter 3. Databases and Preproccessing

Databases Elicitation EmotionClass Participants Format

CK+ posed 6 basic emotions(BE) + contempt 123 video

MUG posed,induced 6 basic emotions 86 video

MMI posed 6 basic emotions 19 static,video

ISED spontaneous 4 basic emotions 50 video

Table 3.1: Databases In Short

intense ­in terms of emotion­ frame. Since the CK+ database only contains grayscale data,

they were also converted into grayscale images. The dataset’s structure is defined in Table

2.2.

By observing table 3.2 below, the samples of certain groups far outnumber those of others

(eg. fear vs happiness). This is referred to as the class imbalance problem, and it occurs

regularly in practice.

Number of videos Anger Disgust Fear Happiness Sadness Surprise Total

Training set 80 112 70 152 84 133 631

Testing set 25 31 25 58 28 35 202

Validation 4 3 3 3 3 5 21

Table 3.2: Construction of Dataset

3.5 Pre­Processing
The function and significance of data pre­processing, particularly regarding NN data,

could be explained in a variety of ways.While pre­processing data is not needed inmany cases

from amathematical standpoint, it actually has amajor impact on theNNmodels performance

because it greatly improves training of the network. Furthermore, the type of pre­processing

used on data is critical in assessing the performance of a practical application based on NNs.

As a result, selecting the appropriate pre­processing steps is a crucial factor for the network’s

ability to distinguish the relationship between inputs and outputs [10][43].

For this thesis, the developed FER framework is focused on CNN architectures that have

been pre­trained. Our database was used in particular to fine­tune them and allow them to

3.5 Pre­Processing 33

classify emotions [10]. In order to comply with the database’s pre­training requirements,

pre­trained architectures are necessary to follow a particular data format. This is why some

of the pre­processing steps below, such as resizing, normalization, and RGB conversion, are

essential.

3.5.1 Frame Selection

As previously mentioned, each video in the database follows a particular format. Accord­

ing to this specific format, the most extreme, in terms of emotion, facial expression appears

in the last frame whereas neutral expressions are appearing within the opening frame of each

video. As a result, not all frames are appropriate for the training process.

3.5.2 Face Detection

Figure 3.2: Before and After: Cropping with Viola­James [10]

As a preliminary preprocessing step before presenting an image sequence to a FER sys­

tem, it is important to identify the regions of the face[10]. The aim is to retain just the pixels

that make up the face while discarding any pixels in the background. We can minimize the

dimensionality of the input data by removing irrelevant information from the frames while

retaining the important information for the training phase.

There aremany approaches that can be used to accomplish this goal. TheViola–Jones face

detector is one of the most common which was also used in this thesis. The image integral,

classifier learning with AdaBoost, and the attentional cascade structure are the three main

steps in the algorithm[44].

34 Chapter 3. Databases and Preproccessing

The Viola­Jones face detection algorithm starts by converting the input image into an

integral one[10]. The integral image (also known as a summed area table) is a method of

computing the sum of values in a rectangle subset of a pixel grid, in a quick and efficient

way[10].

By utilizing four values out of integral images, the pixel sum of any image area can be

calculated. The next step is to use Haar­like featuresin order to extract features (Fig. 2.3).

The pixel sum of the darker rectangle minus the pixel sum of the lighter rectangle yields a

Haar­like feature value.

Figure 3.3: Haar­like features [10]

An ML approach can be used to learn a classification function, given a feature set and a

training set of positive and negative images. To pick a limited collection of features and train

the classifier, the Viola Jones employs a derivative of AdaBoost. Each weak classifier is a

threshold on a single Haar­like rectangular feature, and an AdaBoost classifier is made up of

a weighted sum of several weak classifiers[10].

Lastly, the cascaded classifier is made up of stages, and each one of them contains an Ad­

aBoost strong classifier. Every stage’s goal then is to decide whether a particular sub­window

(SW) can be described as certainly not­a­face or maybe­a­face. A SW is automatically re­

moved when it is labeled as a non­face by a given stage. A SW labeled as a­maybe­face, on

the other hand, is moved on to the next stage in the cascade. As a result, the more stages a

SW goes through, the more likely it is to include a face[10].

3.5.3 Histogram Equalizations

By converting the intensity values in an image, the Histogram Equalization algorithm im­

proves the image contrast. The intensities on the histogram can be distributed in a better way,

with this correction. This enables regions with low local contrast to achieve an increase in

contrast. This is accomplished by histogram equalization, which is essentially a technique that

3.5 Pre­Processing 35

adjusts the pixel volume of an image. The initial histogram is redistributed accross the whole

scale of the target image’s discrete values (intensity values), with the purpose of spreading

out these discrete values and enhancing the contrast.

Figure 3.4: Histogram Equalization (Before And After) [10]

The Histogram Equalization algorithm is implemented in the following steps.

1. For the image, render a histogram. Let ni be the number of occurrences of gray level

i in a discrete grayscale image x. The probability of a pixel of level i appearing in the

picture is

px(i) =
numberofpixels(intensityi)

totalpixels
=

ni

n
, 0 <= i < S (3.1)

where px(i) is the image histogram for pixel value i normalized to [0, 1], with S being

the number of gray levels in the image (usually 256), and n being the total number of

pixels in the image.

2. Calculate the CDF histogram (cumulative distribution function). The definition of CDF

corresponding to px(i) is :

cdfx(i) =
i∑

j=0

px(j) (3.2)

,which is also the image’s accumulated normalized histogram.

3. The cdf of the new image y has to be calculated. To generate the new image with a

flat histogram, we’d like to construct a transformation of the form y = T (x). For any

constant K, such an image would have a linearized cdf across the value range, i.e.

cdfy(i) = iK. The properties of the cdf allow us to perform a transformation like this:

cdfy(y) = cdfy(T (k)) = cdfx(k) (3.3)

36 Chapter 3. Databases and Preproccessing

, where K is between [0, S]

4. For each gray value in the picture, assign a new value. As we utilized a histogram

normalization of x, T maps the levels between [0,1]. To get the final image version y′,

apply the following simple transformation to the result:

y′ = y(maxx−minx) +minx (3.4)

This transformation is aiming to depict the values back into their previous span.

3.5.4 Linear Scaling and Resizing

The pre­trained model used here has a fixed input size of 224x224 features due to its ar­

chitecture. As a result, all frames were resized to 224x224 pixels after face cropping. Further­

more, grayscale image pixels are usually integers ranging from 0 to 255, with 0 representing

black and 255 representing white[10]. That being said, data must be scaled in NN architec­

tures to suit the range of input neurons. This usually falls between ­1 and 1 or 0 and 1. As a

result, the frames’ pixels were converted into a range of 0 to 1 using simple linear scaling.

3.5.5 RGB Conversion

3­channel RGB images are needed by the CNN architecture. As a result, after performing

all of the previous pre­processing steps on grayscale video frames, they must be converted to

3­channel RGB format. Since that is clearly not feasible, the sole easy option was to transfer

each pixel’s value into through the rest of the channels to produce ’false’ RGB images[10].

Furthermore, the data should be normalized similarly to the data used for the pre­training

of the network. The mean and standard deviation are used to normalize each image channel,

as stated below:

input(channel) =
input(channel)−mean(channel)

std(channel)
(3.5)

,with std = [0.228, 0.223, 0.224], mean = [0.484, 0.455, 0.405]

Chapter 4

Methodologies

This is where we are going to present the framework for our automatic­FER. The basis of

the suggested framework is the application of transfer learning ­fine tuning­ to a pretrained

CNN and the combination of per­frame­predictions for classifying the prevailing emotion in

a video sequence[10]. Each video frame’s facial expression receives information determined

by the fine­tuned model. The per­frame information from all frames is then combined during

the testing process to produce a final prediction for the entire video. In the following pages,

several different framework implementations are discussed and compared.

For the implementation of this framework, PyTorch, an open source deep learning plat­

form, was used. The training phase took about 2 days on a machine with an NVIDIAGeForce

GT 1080 GPU, depending on the architecture. It important to highlight the usage of the

VGG16 architecture as the pretrained CNN. VGG16 was chosen due to its straightforward

architecture and the fact that its pretrained version is accessible publicly.

A combination of CK+, ISED, and MUG databases created the dataset used for training,

validation, and testing sets[10]. Chapter 3 contains more detail about the dataset and the

preprocessing steps.

4.1 Methods of Testing

To eliminate bias, the participants in the testing films are not the same as those that were

used to train the model. As with every video in our dataset, every testing video has a neutral

expression frame at the beginning and the most intense one at the end. As a result, we will

engage with the frames which display facial expressions and not ones with neutral faces

frames, when we’re evaluating our model. Per­frame class scores are calculated using the

37

38 Chapter 4. Methodologies

fine­tuned model:

s =



s1

s2

.

.

s6


(4.1)

Then, using two separate methodologies, per­video predictions are produced.

1. Majority Vote: Initially, for every frame, a prediction is formed by picking the emotion

with the highest score at the softmax layer’s output s1, s2, ..., s6. We apply majority

voting to p(n/2), ..., pn to identify which emotion has more occurrences provided the

frame predictions p1, p2..., pn, where n represents the number of frames. Because in

each video sequence, only the second half contains facial expressions, we just use these

frames.

2. Mean Scores: The video prediction is found using the class scores of each frame in

the second method. The mean of the emotion scores throughout the video’s later half

frames(p/2 to p) is calculated, specifically:

meanscores =



mean(s1)

mean(s2)

.

.

mean(s6)


(4.2)

Then, for each video, we choose the emotion class having the highest mean value in

order to determine the final prediction for the emotion.

4.2 VGG16
The VGG16 architecture is primarily made up of convolutional, max pooling, as well as

FC layers, and it was being trained to classify objects into 1000 separate classes. Three FC

layers follow a stack of convolutional layers: the first two each have 4096 nodes, while the

third conducts 1000­way classification and hence has 1000 nodes. The soft­max layer is the

final layer, and it calculates the probability of every class being predicted. Its image, then,

4.2 VGG16 39

is routed through a convolutional layer stack with small receptive field filters (3x3)[11]. The

stride is set to 1 pixel and the spatial padding of each convolutional layer input is set to 1 px,

preserving spatial resolution after 3x3 convolutional filters are applied. Maxpooling is done

with a stride of 2 over a (2x2) pixel area. The ReLU non­linearity is present in all hidden

layers.

4.2.1 Optimisation of VGG16

The model was first trained using ImageNet, a massive public image repository. This

database was intended to help people solve object recognition problems. It consists of 1000­

classes images divided into three groups: The first one is the training set with approx. 1.2

million images, then testing is consisted of approx. 100 thousand, and lastly validations set

has 50 thousand. As a result, instead of utilizing randomly initialized weights, we base our

training model on the pre­trained model. This is definitely a better arrangement than random

weights as this enables us to reuse the network’s low­level visual data, which were acquired

in the initial input. The fundamental idea is once the model has been fine­tuned, it should

then be in a position to accurately categorize emotions from facial expressions[10].

Once the pre­trained model is loaded, the next step is to reduce the last FC layer size

from 1000 to 6, as our problem has six emotion classes (Fig. 4.1). Random weights are then

applied to the final FC layer. It’s worth noting that the optimisation process isn’t extended

to the entirety of the network. Overall, the starting layers of CNNs learn primarily about

edges and sharp corners, whilst the subsequent ones merge these edges to build and learn

somewhatmore complicated forms. Since the starting layers are in the proccess of learning the

whole dataset of ImageNet, these layers provide the most detail about the most fundamental

objects[10].

As the starting layers store knowledge regarding specific shapes which might be relevant

towards identifying emotions, just the last three FC layers are modified during the fine­tuning

epochs in our simulations. Furthermore, as we are not training all the layers when the fine­

tuning occurs, the computational cost is significantly reduced.

4.2.2 HyperParameters

In ML problems, setting the hyperparameters before training starts is critical. The vari­

ables that decide the network structure, as well as the ones which determine the training of

the network, are known as hyperparameters. The developers of VGG16 have predefined the

40 Chapter 4. Methodologies

Figure 4.1: VGG16 example (last FC layer is changed to 6) [11]

4.3 First Implementation 41

learning rate 0.005

batch size 20

optimizer Adam

Table 4.1: HyperParameters

variables relevant to the network structure in our situation (e.g. activation function: ReLU).

The values of the main network hyperparameters are shown in Table 4.1. After experimenting

with various combinations of learning rate, batch size, and optimization method, the follow­

ing combination proved to be the most successful:

The rate with which the parameters of a network are adjusted and updated is called learn­

ing rate. A low learning rate delays the learning process but allows it to converge smoothly,

whereas a higher learning rate accelerates learning but may not allow it to converge[10]. The

initial recommended learning rate for the Adam optimizer is 10−3, which is the number we

utilize for our training.

Furthermore, passing the entire dataset into the CNN at once would be impractical, so

we break the frames into batches of 30. This corresponds to how many samples the network

receives before any parameter update. The entirety of data pre­processing steps are described

in depth in Section 3.4, and can be seen in Fig. 4.2.

Additionally, selection the loss function is critical in achieving optimal and rapid out­

comes. The loss function is a metric for determining how well a prediction model performs

in terms of predicting the expected outcome. The cross­entropy loss function was used to

measure the performance of the classification model (during the training epochs) for our ex­

periment.

The main implementations of our methodology are presented in the following sections.

Scikit Learn [45], an open source software tool, was used to create the confusion matrices on

the following pages.

4.3 First Implementation

Using the hyperparameters given above, the first implementation attempted to optimize

the three final fully­connected layers of our VGG16 model [10]. The average loss of all

batches is calculated at the completion of each epoch, in order to check convergence. During

42 Chapter 4. Methodologies

Figure 4.2: Preprocessing steps

the first epochs, the loss appears to reduce dramatically, and then it appears to converge.

The model was assessed on the training and validation sets at the conclusion of each

epoch to see if over­fitting occurred during training, as can be seen in Fig. 4.3. At this level,

the evaluation of the training and validation sets is happening by frame classification rather

than video. The goal is to end the training process as fast as possible. We need to stop at

a point when our model displays high precision on the validation set’s unknown data, but

before any overfitting happens during training, as seen in the decline of validation accuracy

and a rise of training accuracy [10]. As a result, right after the 170th epoch, we terminated

training in order to evaluate the model on the testing set.

Fig. 4.5 depicts the outcomes of both evaluation methods. As can be observed, when

compared to the majority voting method, the second method by using mean scores achieves

better accuracy in the results.

Some classes appear to have much higher accuracy than others. When compared to Fear,

all other emotions perform better (Happiness, Surprise, and Disgust). This discovery can be

explained by the presumption that a few emotions are more distinct, while the other emotions

have facial expressions that are similar [10].

4.3 First Implementation 43

Figure 4.3: Loss throughout Epochs

Figure 4.4: Model accuracy (training and validation sets)

44 Chapter 4. Methodologies

Figure 4.5: Confusion matrices: (a)Average accuracy of 75.02 using the majority voting al­

gorithm (b)Average accuracy of 80.49 using mean scores

4.4 Second Implementation

Just as discussed earlier, having a small capacity training data and a large amount of

parameters can encourage the model to map unwanted data properties (eg. noise). As a result,

in the second implementation, we modify the VGG16 architecture. In the second FC layer, by

reducing the number of parameters we can reduce network complexity. Parameter reduction

should aid the model’s generalization on unknown data while avoiding overfitting.

The model’s last three FC layers are fine­tuned, but all hyperparameters remain the same

as in the first implementation. The loss convergence can be seen in Fig. 4.6 once more. The

model was assessed on the validation and training sets at the conclusion of each epoch to

check for over­fitting during training, which can be seen in Fig. 4.7. The vertical gap between

the two graphs, as can be observed, increases dramatically after the 200th epoch. As a result,

the training phase ends early after the 170th epoch, allowing the model’s evaluation upon the

testing set.

Using both assessment methods previously mentioned, we can check how the model per­

forms on the testing set data after the evaluation process.

We can easily observe that the reduction of parameters drastically improves the results,

in contrast with the initial (first implementation) VGG16 architecture. It is also clear that

some classes are more accurate compared to others. When compared to Fear and Sadness,

Happiness and Surprise both score higher. As previously said, this finding is logical since

4.4 Second Implementation 45

Figure 4.6: Loss throughout Epochs

Figure 4.7: Model accuracy (training and validation sets)

46 Chapter 4. Methodologies

Figure 4.8: Confusion matrices: (a)Average accuracy of 79.12 using the majority voting al­

gorithm (b)Average accuracy of 83.32 using mean scores

certain emotions are more distinct. Fear, in particular, has a poor hit rate, which can be based

on the fact that it is a subtle emotion, and can be confused, often, with Surprise.

Further justification for the low accuracy of some classes could be provided. When we

look at the training set’s structure, we are able to observe that classes εnd up sharing different

amounts of samples, which results in lower presicion for the so­called ”weaker” classes[10].

We will endeavor to resolve this issue in the future implementations.

4.5 Third Implementation
In reality, the majority of actual classification issues have some degree of imbalance.

When the instances of a class in the training set outweigh the instances of the other classes,

this is known as class imbalance. Datasets which are unbalanced hinder the performance

of machine learning approaches since the accuracy level and decision­making are skewed

toward the majority classes, resulting in misclassification of the weaker classes samples or,

worse, interpreting them as noise.

To combat the implications of class imbalance, several schemes have been developed,

involving oversampling instances of the minority class, undersampling instances of the ma­

jority class, as well as cost­sensitive learning [10].We concentrated on cost­sensitive learning

after trying all of these approaches, as it was the most effective.

In case some training samples correspond to weaker classes, cost­sensitive learning algo­

rithms account for the cost of misclassification by assigning a larger cost of misclassification.

4.5 Third Implementation 47

All misclassifications are handled similarly in normal learning, however this poses difficulty

in the imbalanced classification situations, because it seems to add no additional benefit for

correctly recognizing the minority class over the majority. This is changed by cost­sensitive

learning, which employs a function C(x) which determines the cost for incorrectly classifying

an instance of class x. Thus, we can punish minority­class misclassifications more severely

than majority­class misclassifications, with a goal of improving the accuracy rate. This mod­

ification is made on our network’s loss function [46].

As we can observe in table 4.2, there are plentiful Happiness samples in comparison to

other emotions. The ”weakest” classes are Anger and Fear, followed by Disgust.

x Anger Disgust Fear Happiness Sadness Surprise Total

Number of frames 1246 1495 1165 2875 1904 1960 10645

Table 4.2: Frames for each class (training set)

Thus, during training phase, we can utilize the weighted version of the cross entropy loss

function to determine the loss value for the same network design, as performed in the first

implementation.

As a result, the lower the class’s size becomes, the higher the cost rises, leading to in­

creased weights for decreased classes. The average loss of every batch is computed by the

conclusion of each epoch in order to measure convergence. The model was also assessed on

the training and validation sets for a number of epochs, with the training process ending after

the 260th epoch.

Looking at the first implementation’s confusion matrices, we observe that the emotion

accuracy rate of Fear is the lowest: 47.12 percent for (a) and 52.03 percent for (b). At the

same instance, Anger has a poor accuracy rate of 52.15 percent for (a) and 63.28 percent for

(b). Regardless of the issue that it is considered a minority class, Disgust has a high accuracy

rate of 97.75 percent. The accuracy of the model (testing set) as a result of cost­sensitive

learning is shown in Fig. 4.11.

While the accuracy of Fear does not rise and is still heavily misclassified as Surprise in

both (a) and (b) confusion matrices of Fig. 4.11, Anger accuracy improves to 77.82 percent.

Furthermore, the accuracy of Disgust continues its high level performance. In addition, as

compared to the first implementation, the system’s average accuracy is improved.

48 Chapter 4. Methodologies

Figure 4.9: Loss throughout Epochs

Figure 4.10: Model accuracy (training and validation sets)

4.6 Fourth Implementation 49

Figure 4.11: Confusion matrices: (a)Average accuracy of 79.05 using the majority voting

algorithm (b)Average accuracy of 81.12 using mean scores

4.6 Fourth Implementation
Following the same direction, we use cost­sensitive learning techniques for the training

of the VGG16 architecture (second implementation), in this fourth and final iteration. In

following Fig. 4.12, the loss convergence after a number of epochs can be observed. Fig.

4.13 shows that during the first 200 epochs, the validation set accuracy is consistently above

75 percent. This shows that we do not have much of an overfitting effect.

Figure 4.12: Loss throughout Epochs

50 Chapter 4. Methodologies

Figure 4.13: Model accuracy (training and validation sets)

Ultimately, at epoch 180, the training process came to an end, and the outcomes of the

evaluation are shown in confusion matrices of Fig. 4.14.

Figure 4.14: Confusion matrices: (a)Average accuracy of 81.12 using the majority voting

algorithm (b)Average accuracy of 85.81 using mean scores

As a reference, we can observe from Fig. 4.8 of the second implementation, that Fear,

the weakest class considering the training samples, had 40.15 and 48.74 percent accuracy

on the testing set, for both evaluation methods. Moreover, the Anger class (88.80 percent in

both of the matrices) along with Disgust (88.23 percent and 91.16 percent for the respective

confusion matrices) had a high accuracy.

When comparing those findings to those in Fig. 4.14, it’s clear that Fear, the one that

4.6 Fourth Implementation 51

would have the lowest accuracy, sees vast improvement, with the new version’s accuracy

equaling 59.15 percent in both confusion matrices. The accuracy of Disgust rises to 96.95

percent. However, we can observe that the accuracy of Anger declines, and the emotion as

a whole does not improve. The network average accuracy is higher than it was in the sec­

ond implementation, which did not apply cost­sensitive learning, as well as in all preceding

implementations. Finally, in the testing procedure, a reduction of parameters in combination

with the usage of a weighted loss function, yielded the best outcomes.

Chapter 5

Synopsis

In this thesis we presented a novel approach which aims to recognize human emotions

in videos. Due to its significant impact to a large variety of human­computer­interaction ap­

plications, facial expression analysis and recognition is becoming a popular study area in

recent times. Our approach was based on an FER system with VGG16 architecture, where

we applied various transfer learning methods (fine­tuning).

Deep CNN’s depend upon a significant quantity of training data in order to get optimal

outcomes, which is widely regarded as their fundamental drawback. At the moment, how­

ever, there isn’t enough data (with labels) for video emotion recognition. In order to resolve

this obstacle, we loaded the model’s pre­trained weights, which in turn were generated after

training the model on ImageNet (1.2 million object recognition images). Although our own

training dataset (around 11 thousand frames) is not so massive, it was considered sufficient

for optimizing the model while also enabling it to identify emotions.

Overfitting is reducedwhen the number of network parameters is minimized, and the clas­

sifier’s accuracy increases. Nevertheless, a significant disparity can still be noticed through­

out the classes’ individual accuracies. Overall, Surprise and Happiness outperform the other

classes, while Fear has the lowest accuracy. As a result, we utilize cost sensitive learning

for the training, since the issue occured because of the class imbalance in the training set.

We also introduce a weighted cost function, which adversely affects classifications errors of

samples from ”weaker” classes. Both of the initial and reduced architectures were subjected

to the cost­sensitive technique. There was a challenge in concluding the efficiency of this

technique, as it may appear to be boosting model accuracy in some circumstances, though

decreasing in some other cases. Particularly, the misclassification of the Fear emotion as

53

54 Chapter 5. Synopsis

Surprise continues to be common. We can infer this from the similar facial expressions of

these emotions, as Surprise is frequently standing out (we could also observe that Surprise

is rarely classified as Fear). Finally, cost­sensitive learning aids the model’s performance in

the presence of data limits posed by psychological issues.

Furthermore, we investigate two testing approaches for deriving video estimates from

frame estimates: majority voting and score averaging. In all confusion matrices, our tests

indicate that the score averaging method performs better than majority voting.

In conclusion, we consider the outcome of this thesis as successful, since our expecta­

tions were met. Using knowledge from the domains of machine learning and signal process­

ing, we were able to offer a novel methodology for human emotion recognition that yielded

concrete results. Following our initial experimental results, we were also able to improve our

approach. Our final modified model can be used in a variety of real­world scenarios. During

our research, we identified a number of different results as well as issues with human emotion

perception.

Bibliography

[1] Omar Sharif Reeshad Khan. A literature review on emotion recognition using various

methods. Global Journal of Computer Science and Technology, 17:1–F, Apr. 2017.

[2] A. Papadakis. Human motion recognition: A geometric approach using deep learning

regression. Διπλωματική εργασία, ΕΚΠΑ, 2019.

[3] T. Kanade, J.F. Cohn, and Yingli Tian. Comprehensive database for facial expression

analysis. In Proceedings Fourth IEEE International Conference on Automatic Face

and Gesture Recognition (Cat. No. PR00580), pages 46–53, 2000.

[4] Saad Albawi, Tareq Abed Mohammed, and Saad Al­Zawi. Understanding of a convo­

lutional neural network. In 2017 International Conference on Engineering and Tech­

nology (ICET), pages 1–6, 2017.

[5] I. Sutskever A. Krizhevsky and G. E. Hinton. Imagenet classification with deep con­

volutional neural networks. In Advances in Neural Information Processing Systems 25,

page 1105–1113, 2012.

[6] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2015.

[7] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large­

scale image recognition, 2015.

[8] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM Comput.

Surv., 27(3):326–327, September 1995.

55

56 Bibliography

[9] Haibin Yan, Marcelo H. Ang, and Aun Neow Poo. Cross­dataset facial expression

recognition. In 2011 IEEE International Conference on Robotics and Automation, pages

5985–5990, 2011.

[10] E. Kamenou. Deep learning for human emotion recognition from video. Διπλωματική

εργασία, Πανεπιστήμιο Θεσσαλίας, March. 2019.

[11] Hussam Qassim, Abhishek Verma, and David Feinzimer. Compressed residual­vgg16

cnn model for big data places image recognition. In 2018 IEEE 8th Annual Computing

and Communication Workshop and Conference (CCWC), pages 169–175, 2018.

[12] Jonathan Matthew Gratch Rafael A. Calvo, Sidney D’Mello. The Oxford Handbook of

Affective Computing. Oxford University Press, 2015.

[13] Lucy Nwosu. Deep Convolutional Neural Network for Facial Expression. University

of Houston­Clear Lake, 2017.

[14] Furkan Gürpınar Albert AliSalah Heysem Kaya. Video­based emotion recognition in

the wild using deep transfer learning and score fusion. IEEE Image Vision and Com­

puting, 65:66–75, Sept. 2017.

[15] Raghavendra Pappagari et al. Jaejin Cho. Deep neural networks for emotion recognition

combining audio and transcripts. Electrical Engineering and Systems Science: Audio

and Speech Processing, pages 2–4, Nov. 2019.

[16] Michael Glodek Günther Palm. Towards emotion recognition in human computer in­

teraction. Neural Nets and Surroundings, pages 323–336, May 2013.

[17] Hiranmayi Ranganathan, Shayok Chakraborty, and Sethuraman Panchanathan. Mul­

timodal emotion recognition using deep learning architectures. In 2016 IEEE Winter

Conference on Applications of Computer Vision (WACV), pages 1–9, 2016.

[18] Panagiotis Tzirakis, Jiehao Zhang, and Bjorn W. Schuller. End­to­end speech emotion

recognition using deep neural networks. In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 5089–5093, 2018.

[19] O’Sullivan et. Al Ekman P, Friesen W. V. Universals and cultural differences in the

judgments of facial expressions of emotion. In Journal of Personality and Social Psy­

chology, volume 53, page 712–717, 1987.

Bibliography 57

[20] Elsaeed E. AbdElrazek Hend Ab. ELLaban, A. A. Ewees. A real­time system for facial

expression recognition using support vector machines and k­nearest neighbor classifier.

International Journal of Computer Applications, 159:23–26, Feb. 2017.

[21] Seyed Mehdi Lajevardi and Margaret Lech. Facial expression recognition from image

sequences using optimized feature selection. In 2008 23rd International Conference

Image and Vision Computing New Zealand, pages 1–6, 2008.

[22] Matti Pietikäinen. Image analysis with local binary patterns. In Scandinavian Confer­

ence on Image Analysis, pages 115–118, 2005.

[23] Yeongjae Cheon and Daijin Kim. A natural facial expression recognition using

differential­aam and k­nns. In 2008 Tenth IEEE International Symposium on Multi­

media, pages 220–227, 2008.

[24] Tomas Pfister, Xiaobai Li, Guoying Zhao, and Matti Pietikäinen. Recognising sponta­

neous facial micro­expressions. In 2011 International Conference on Computer Vision,

pages 1449–1456, 2011.

[25] Alexander Freytag Christoph Käding, Erik Rodner and Joachim Denzler. Fine­tuning

deep neural networks in continuous learning scenarios. In Asian Conference on Com­

puter Vision, pages 588–605, 2016.

[26] C. Canton­Ferrer S. A. Bargal, E. Barsoum and C. Zhang. Emotion recognition in the

wild from videos using images. In ICMI ’16: Proceedings of the 18th ACM International

Conference on Multimodal Interaction, page 433–436, 2016.

[27] V. Michalski K. R. Konda R. Memisevic S. E. Kahou and C. J. Pal. Recurrent neural

networks for emotion recognition in video. In ICMI ’15: Proceedings of the 2015 ACM

on International Conference on Multimodal Interaction, page 467–474, 2015.

[28] E.D. Karnin. A simple procedure for pruning back­propagation trained neural networks.

IEEE Transactions on Neural Networks, 1(2):239–242, 1990.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[30] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016.

58 Bibliography

[31] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,

abs/1212.5701, 2012.

[32] AO Remizov IR Shafarevich. Linear algebra and geometry. Russian Academy of

Sciences, 2012.

[33] L. Bottou Y. LeCun, P. Haffner and Y. Bengio. Object recognition with gradient­based

learning. In Shape, Contour and Grouping in Computer Vision, volume 1681, pages

319–345, 1999.

[34] Vincent Vanhoucke Christian Szegedy, Sergey Ioffe and Alexander A. Alemi.

Inception­v4, inception­resnet and the impact of residual connections on learning. In

Proceedings of the Thirty­First AAAI Conference on Artificial Intelligence (AAAI­17),

2016.

[35] Wei Yu, Kuiyuan Yang, Yalong Bai, Hongxun Yao, and Yong Rui. Visualizing and

comparing convolutional neural networks. CoRR, abs/1412.6631, 2014.

[36] Hoo­Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,

Jianhua Yao, Daniel Mollura, and Ronald M. Summers. Deep convolutional neural

networks for computer­aided detection: Cnn architectures, dataset characteristics and

transfer learning. IEEE Transactions on Medical Imaging, 35(5):1285–1298, 2016.

[37] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian­Lee

Tan. Database meets deep learning: Challenges and opportunities. SIGMOD Rec.,

45(2):17–22, September 2016.

[38] Chung­Hsien Wu, Jen­Chun Lin, and Wen­Li Wei. Survey on audiovisual emotion

recognition: databases, features, and data fusion strategies. APSIPA Transactions on

Signal and Information Processing, 3:e12, 2014.

[39] Jeffrey Cohn PanticMaja, Nicu Sebe and ThomasHuang. Affectivemultimodal human­

computer interaction. MULTIMEDIA ’05: Proceedings of the 13th annual ACM inter­

national conference on Multimedia, pages 669–676, 2005.

[40] Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi, Dusik Park, and Junmo Kim.

Rotating your face using multi­task deep neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

Bibliography 59

[41] Abir Fathallah, Lotfi Abdi, and Ali Douik. Facial expression recognition via deep learn­

ing. In 2017 IEEE/ACS 14th International Conference on Computer Systems and Ap­

plications (AICCSA), pages 745–750, 2017.

[42] Nazil Perveen, Debaditya Roy, and Chalavadi KrishnaMohan. Spontaneous expression

recognition using universal attribute model. IEEE Transactions on Image Processing,

27(11):5575–5584, 2018.

[43] A. Famili,Wei­Min Shen, RichardWeber, and Evangelos Simoudis. Data preprocessing

and intelligent data analysis, Jan 1997.

[44] R. Lienhart and J. Maydt. An extended set of haar­like features for rapid object detec­

tion. In Proceedings. International Conference on Image Processing, volume 1, pages

I–I, 2002.

[45] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller. Scikit­

learn: Machine learning without learning the machinery. GetMobile: Mobile Comp. and

Comm., 19(1):29–33, June 2015.

[46] Chong Zhang, Kay Chen Tan, and Ruoxu Ren. Training cost­sensitive deep belief net­

works on imbalance data problems. In 2016 International Joint Conference on Neural

Networks (IJCNN), pages 4362–4367, 2016.

VIDEO TO FRAME:

61

APPENDICES
Here is a part of my code responsible for: video to frame reduction, and face detection.

Code available at: https://github.com/gathanasiadis/EmotionRecognition

62 Bibliography

import subprocess

import os

import threading

import pdb

import copy

VIDEO_EXTENSIONS = [’mp4’, ’webm’, ’avi’]

def main(video_dir, frame_dir, n_thread):

print(’Starting: convert videos into frames\nvideo_dir:

 {:}\tframe_dir: {:}’.format(video_dir, frame_dir))

threads = []

for root, dirs, files in os.walk(video_dir):

for file_name in files:

if is_video_file(file_name):

video_name = os.path.join(root, file_name)

frame_output_path = os.path.splitext

(video_name.replace(video_dir, frame_dir))[0]

makefile(frame_output_path)

threads.append(threadFun(video2frame,

(video_name, frame_output_path)))

run_threads(threads, n_thread)

print(’all threads is finished’)

def is_video_file(filename):

return any(filename.endswith(extension)

for extension in VIDEO_EXTENSIONS)

def makefile(file_dir):

if not os.path.exists(file_dir):

os.makedirs(file_dir)

Bibliography 63

def run_threads(threads, n_thread):

used_thread = []

for num, new_thread in enumerate(threads):

print(’thread index: {:}’.format(num), end=’ \t’)

new_thread.start()

used_thread.append(new_thread)

if num % n_thread == 0:

for old_thread in used_thread:

old_thread.join()

used_thread = []

def video2frame(video_input, frame_output):

linux_commod = ’ffmpeg ­i {:} ­f image2

 {:}/%07d.jpg’.format(video_input, frame_output)

print(’{:}’.format(video_input))

subprocess.getstatusoutput(linux_commod)

class threadFun(threading.Thread):

def __init__(self, func, args):

super(threadFun, self).__init__()

self.fun = func

self.args = args

def run(self):

self.fun(*self.args)

if __name__ == ’__main__’:

video_dir_train =’../video/train_afew/’

frame_dir_train = ’../frame/train_afew/’

video_dir_val =’../video/val_afew/’

frame_dir_val = ’../frame/val_afew/’

64 Bibliography

main(video_dir_train, frame_dir_train, n_thread =20)

main(video_dir_val, frame_dir_val, n_thread = 20)

FER TRAINTEST:

import os

import argparse

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.backends.cudnn as cudnn

from basic_code import load, util, networks

DEVICE = torch.device(”cuda:0” if torch.cuda.is_available

↪→ () else ”cpu”)

def main():

parser = argparse.ArgumentParser

(description=’PyTorch Frame Attention Network Training’

↪→)

parser.add_argument(’­­at_type’, ’­­attention’, default

↪→ =1, type=int, metavar=’N’,

help= ’0 is self­attention; 1 is self +

↪→ relation­attention’)

parser.add_argument(’­­epochs’, default=180, type=int,

↪→ metavar=’N’,

help=’number of total epochs to run’)

parser.add_argument(’­­lr’, ’­­learning­rate’, default

↪→ =4e­3, type=float,

metavar=’LR’, help=’initial learning

↪→ rate’)

parser.add_argument(’­e’, ’­­evaluate’, default=False,

↪→ dest=’evaluate’, action=’store_true’,

help=’evaluate model on validation set’)

args = parser.parse_args()

Bibliography 65

best_acc = 0

at_type = [’self­attention’, ’self_relation­attention’

↪→][args.at_type]

logger = util.Logger(’./log/’,’fan_afew’)

logger.print(’The attention method is {:}, learning

↪→ rate: {:}’.format(at_type, args.lr))

’’’ Load data ’’’

root_train = ’./data/face/train_afew’

list_train = ’./data/txt/afew_train.txt’

batchsize_train= 48

root_eval = ’./data/face/val_afew’

list_eval = ’./data/txt/afew_eval.txt’

batchsize_eval= 64

train_loader, val_loader = load.afew_faces_fan(

↪→ root_train, list_train, batchsize_train,

↪→ root_eval, list_eval, batchsize_eval)

’’’ Load model ’’’

_structure = networks.resnet18_at(at_type=at_type)

_parameterDir = ’./pretrain_model/Resnet18_FER+_pytorch

↪→ .pth.tar’

model = load.model_parameters(_structure, _parameterDir

↪→)

’’’ Loss & Optimizer ’’’

optimizer = torch.optim.SGD(filter(lambda p: p.

↪→ requires_grad, model.parameters()), args.lr,

↪→ momentum=0.9, weight_decay=1e­4)

lr_scheduler = torch.optim.lr_scheduler.StepLR(

↪→ optimizer, step_size=60, gamma=0.2)

cudnn.benchmark = True

’’’ Train & Eval ’’’

if args.evaluate == True:

66 Bibliography

logger.print(’args.evaluate: {:}’, args.evaluate)

val(val_loader, model, logger)

return

logger.print(’frame attention network (fan) afew

↪→ dataset, learning rate: {:}’.format(args.lr))

for epoch in range(args.epochs):

train(train_loader, model, optimizer, epoch)

acc_epoch = val(val_loader, model, at_type)

is_best = acc_epoch > best_acc

if is_best:

logger.print(’better model!’)

best_acc = max(acc_epoch, best_acc)

util.save_checkpoint({

’epoch’: epoch + 1,

’state_dict’: model.state_dict(),

’accuracy’: acc_epoch,

}, at_type=at_type)

lr_scheduler.step()

logger.print(”epoch: {:} learning rate:{:}”.format(

↪→ epoch+1, optimizer.param_groups[0][’lr’]))

def train(train_loader, model, optimizer, epoch):

losses = util.AverageMeter()

topframe = util.AverageMeter()

topVideo = util.AverageMeter()

switch to train mode

output_store_fc = []

target_store = []

index_vector = []

Bibliography 67

model.train()

for i, (input_first, input_second, input_third,

↪→ target_first, index) in enumerate(train_loader):

target_var = target_first.to(DEVICE)

input_var = torch.stack([input_first, input_second ,

↪→ input_third], dim=4).to(DEVICE)

compute output

’’’ model & full_model’’’

pred_score = model(input_var)

loss = F.cross_entropy(pred_score, target_var)

loss = loss.sum()

#

output_store_fc.append(pred_score)

target_store.append(target_var)

index_vector.append(index)

measure accuracy and record loss

acc_iter = util.accuracy(pred_score.data, target_var

↪→ , topk=(1,))

losses.update(loss.item(), input_var.size(0))

topframe.update(acc_iter[0], input_var.size(0))

compute gradient and do SGD step

optimizer.zero_grad()

loss.backward()

optimizer.step()

if i % 200 == 0:

logger.print(’Epoch: [{:3d}][{:3d}/{:3d}]\t’

’Loss {loss.val:.4f} ({loss.avg:.4f})\t’

’Acc@1 {topframe.val:.3f} ({topframe.avg:.3f

↪→ })\t’

.format(

68 Bibliography

epoch, i, len(train_loader), loss=losses,

↪→ topframe=topframe))

index_vector = torch.cat(index_vector, dim=0) # [256]

↪→ ... [256] ­­­> [21570]

index_matrix = []

for i in range(int(max(index_vector)) + 1):

index_matrix.append(index_vector == i)

index_matrix = torch.stack(index_matrix, dim=0).to(

↪→ DEVICE).float() # [21570] ­­­> [380, 21570]

output_store_fc = torch.cat(output_store_fc, dim=0) #

↪→ [256,7] ... [256,7] ­­­> [21570, 7]

target_store = torch.cat(target_store, dim=0).float() #

↪→ [256] ... [256] ­­­> [21570]

pred_matrix_fc = index_matrix.mm(output_store_fc) #

↪→ [380,21570] * [21570, 7] = [380,7]

target_vector = index_matrix.mm(target_store.unsqueeze

↪→ (1)).squeeze(1).div(

index_matrix.sum(1)).long() # [380,21570] *

↪→ [21570,1] ­> [380,1] / sum([21570,1]) ­> [380]

acc_video = util.accuracy(pred_matrix_fc.cpu(),

↪→ target_vector.cpu(), topk=(1,))

topVideo.update(acc_video[0], i + 1)

logger.print(’ *Acc@Video {topVideo.avg:.3f} *

↪→ Acc@Frame {topframe.avg:.3f} ’.format(topVideo=

↪→ topVideo, topframe=topframe))

def val(val_loader, model, at_type):

topVideo = util.AverageMeter()

switch to evaluate mode

Bibliography 69

model.eval()

output_store_fc = []

output_alpha = []

target_store = []

index_vector = []

with torch.no_grad():

for i, (input_var, target, index) in enumerate(

↪→ val_loader):

compute output

target = target.to(DEVICE)

input_var = input_var.to(DEVICE)

’’’ model & full_model’’’

f, alphas = model(input_var, phrase = ’eval’)

output_store_fc.append(f)

output_alpha.append(alphas)

target_store.append(target)

index_vector.append(index)

index_vector = torch.cat(index_vector, dim=0) #

↪→ [256] ... [256] ­­­> [21570]

index_matrix = []

for i in range(int(max(index_vector)) + 1):

index_matrix.append(index_vector == i)

index_matrix = torch.stack(index_matrix, dim=0).to(

↪→ DEVICE).float() # [21570] ­­­> [380, 21570]

output_store_fc = torch.cat(output_store_fc, dim=0)

↪→ # [256,7] ... [256,7] ­­­> [21570, 7]

output_alpha = torch.cat(output_alpha, dim=0) #

↪→ [256,1] ... [256,1] ­­­> [21570, 1]

target_store = torch.cat(target_store, dim=0).float

70 Bibliography

↪→ () # [256] ... [256] ­­­> [21570]

’’’ keywords: mean_fc ; weight_sourcefc; sum_alpha;

↪→ weightmean_sourcefc ’’’

weight_sourcefc = output_store_fc.mul(output_alpha)

↪→ #[21570,512] * [21570,1] ­­­>[21570,512]

sum_alpha = index_matrix.mm(output_alpha) #

↪→ [380,21570] * [21570,1] ­> [380,1]

weightmean_sourcefc = index_matrix.mm(

↪→ weight_sourcefc).div(sum_alpha)

target_vector = index_matrix.mm(target_store.

↪→ unsqueeze(1)).squeeze(1).div(

index_matrix.sum(1)).long() # [380,21570] *

↪→ [21570,1] ­> [380,1] / sum([21570,1]) ­>

↪→ [380]

if at_type == ’self­attention’:

pred_score = model(vm=weightmean_sourcefc, phrase

↪→ =’eval’, AT_level=’pred’)

if at_type == ’self_relation­attention’:

pred_score = model(vectors=output_store_fc, vm=

↪→ weightmean_sourcefc, alphas_from1=

↪→ output_alpha, index_matrix=index_matrix,

↪→ phrase=’eval’, AT_level=’second_level’)

acc_video = util.accuracy(pred_score.cpu(),

↪→ target_vector.cpu(), topk=(1,))

topVideo.update(acc_video[0], i + 1)

logger.print(’ *Acc@Video {topVideo.avg:.3f} ’.

↪→ format(topVideo=topVideo))

return topVideo.avg

if __name__ == ’__main__’:

main()

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Pattern Recognition
	AI
	Learning Methodologies
	Emotions

	Related Work
	Traditional FER Methodologies
	FER Methodologies Based on Deep Learning

	Outline and Contribution
	Chapter Organization

	Neural Networks
	Introduction
	Neural Network Basics
	Activation function
	Backpropagation
	Optimization Algorithms
	Convolutional Neural Networks
	Layers: FC
	Layers: Convolutional
	Layers: Pooling
	CNN Architectures

	Overfitting
	CNN Transfer Learning

	Databases and Preproccessing
	Introduction
	Classification of Databases
	Types of Databases
	Methods of Elicitation

	FER Databases
	Dataset
	Pre-Processing
	Frame Selection
	Face Detection
	Histogram Equalizations
	Linear Scaling and Resizing
	RGB Conversion

	Methodologies
	Methods of Testing
	VGG16
	Optimisation of VGG16
	HyperParameters

	First Implementation
	Second Implementation
	Third Implementation
	Fourth Implementation

	Synopsis
	Bibliography
	APPENDICES

