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1 PLANT PROTECTION PRODUCTS 

1.1 DEFINITIONS, HISTORICAL BACKGROUND AND CONSUMPTION 
Pesticides constitute a specific group of chemical or biological compounds that exert a 
preventive, controlling or inhibitory effect on the growth of harmful organisms or regulate 
plant growth (Food and Agriculture Organization of the United Nations (FAO) and World 
Health Organization (WHO), 2014). According to Directive 2009/128/EC the term pesticide 
includes (i) “plant protection products” (PPPs) that are used to improve yield and quality of 
agricultural production (Regulation (EC) No 1107/2009) and (ii) “biocides” that are used to 
control harmful organisms in non-agricultural practices (Directive 98/8/EC). Hereafter, with 
the term “pesticide” we are going to refer to PPPs, and both these terms are going to be 
used interchangeably.  

Pesticide use is dated back to agriculture itself. Since ancient times, farmers have 
been employing numerous practices to enhance and preserve crop production like co-
cultivation of venomous and nutritious plants at the same place for insect elimination by the 
toxic plants and usage of elemental sulfur, mercury or other substances for the prevention 
of fungal diseases (Tudi et al., 2021; Abubakar et al., 2020; Thrupp, 2000). The use of various 
natural compounds for pest control continued until 1870s, when inorganic synthetic 
materials became widely used like the Bordeaux mixture (copper sulfate and lime), arsenic 
(calcium arsenate and lead arsenate) and hydrogen cyanide. All of these compounds were 
highly toxic and relatively ineffective (Tano, 2011). The period after 1945 marked the era of 
synthetic pesticides with the discovery and use of Dichlorodiphenyltrichloroethane (DDT), 
captan, parathion and β-Hexachlorocyclohexane (BHC) in a wide range of pests (Unsworth, 
2010). Their low cost enabled the widespread use of these compounds and, as a result, a 
raise in food production and decline of insect-bore diseases was observed, despite their 
disadvantages such as lack of selectivity, high rates of application and high toxicity. The 
decades of ‘70s and ‘80s were highlighted by the introduction of more selective pesticides 
such as the herbicide glyphosate and other commonly used organophosphate insecticides 
and fungicide families such as triazoles, imidazoles, pyrimidines and dicarboxamides 
(Andreazza and Scola, 2015; Unsworth, 2010). In the ‘90s, more selective compounds were 
developed which had better environmental and toxicological profiles and required lesser 
amounts per usage. Research into pesticides has continued until today to supply the global 
market with compounds characterized by improved selectivity, better resistance 
management and safer towards the user and environment. 

In modern days, PPPs are routinely used against a wide range of pests, including 
plant pathogenic fungi, insects and weeds, so as to enhance crop production and preserve 
plant products during storage (Damalas and Eleftherohorinos, 2011). Intensification of 
agriculture, in order to meet the ever-growing consumer demands, has led to an increasing 
use of PPPs, both in the field and at postharvest level (Schreinemachers and Tipraqsa, 2012). 
PPP usage around the world has been on the incline in the last 29 years for Eastern Asia and 
South America reaching a plateau of 1,515,777.2 ± 338,625.7 and 478,835.6 ± 233,343.4 tn 
per year in 2010, whereas it has remained fairly stable for Europe, North America and Africa 
at 466,038.5 ± 23,184.4, 458,258.8 ± 26,749.5 and 76,403.6 ± 18,036.6 tn of PPP 
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consumption per year respectively (Figure 1.1, (FAO - Food and Agriculture Organization of 
the United Nations).  

 

 

Figure 1.1. Total PPP quantities (tonnes) used in or sold to the agricultural sector for crops and seeds the past 29 
years. Data source: (FAO - Food and Agriculture Organization of the United Nations) 

 

Fungicides and bactericides usage in Europe has not changed a lot in the past 29 
years, with an average of 190,508.8 ± 12,689 tn used in or sold to the agricultural sector for 
crops and seeds which correspond to 40.92 % of the total PPP consumption (Figure 1.2 and 
1.3). Herbicides use follows covering 38.62% of the total PPP consumption (Figure 1.2). 
Herbicide use has shown an increase in Europe in the past decade with a maximum 
consumption of 218,010 tn recorded in 2012 (Figure 1.3). Insecticides constitute the third 
largest category of PPPs used in Europe with an average consumption of 54,857.1 ± 8,604 t, 
which corresponds to 11.78 % of the whole pesticide market (Figure 1.2 and 1.3). The 
remaining PPPs that were consumed in Europe the past 29 years correspond to 8.6 % of the 
total amount and include rodenticides, plant growth regulators, mineral oils, and other 
pesticides (Figure 1.2). 
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Figure 1.2. Percentages of PPPs used in or sold to the agricultural sector for crops and seeds, broken down by 
target organism and type category. Data source: (FAO - Food and Agriculture Organization of the United Nations) 

 

 

Figure 1.3. PPP quantities (tonnes) used in or sold to the agricultural sector for crops and seeds, broken down by 
target organism and type category. Data source: FAO - Food and Agriculture Organization of the United Nations 
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1.2 CLASSIFICATION 
PPPs include a wide variety of chemical compounds that differ in target-organism, chemical 
identity, physicochemical properties and mode of action (Leong et al., 2020). Chemical 
identity and properties are valuable in determining the application approach, rate and the 
safety precautions implementation. Among the most common classification methods are the 
ones that rely on target-organism and chemical identity (Table 1.1).  

Table 1.1 Indicative classification of PPPs according to target-organism and chemical identity 

Target Organism Chemical Identity Example Compound 
Fungicides Anilides 

Benzimidazoles 
 
Carbamates 
Chloronitriles 
Dicarboxamide 
Imidazoles 
Phenylamides  
Phenylpyrrole 
Phthalimides 
Pyridine carboxamides 
Strobilurins 
Triazoles 

Carboxin, Acetaminophen 
Thiophanate-methyl, 
Thiabandazole, Carbendazim 
Mancozeb 
Chlorothalonil 
Iprodione 
Imazalil, Prochloraz 
Metalaxyl, Mefenoxam 
Fludioxonil, Fenpiclonil 
Captan 
Fluxapyroxad, Penthiopyrad 
Azoxystrobin 
Propiconazole 

Herbicides Carbamates 
Chloroacetamides 
Organophosphates 
Triazines 

Carboxazole 
Metolachlor, Acetochlor 
Glyphosate 
Atrazine 

Insecticides Carbamates 
 
Organochlorides 
Organophosphates 
 
 
Neonicotinoids 
Pyrethroids 

Carbofuran, Carbaryl, Oxamyl, 
Thiram 
DDT, Lindane 
Chlorpyrifos, Parathion, 
Diazinon, Malathion, 
Dimethoate 
Imidacloprid, Thiamethoxam 
Permethrin, Deltamethrin, 
Cypermethrin 
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1.3 BENEFITS AND RISKS 
The use of PPPs is considered an integral part of agricultural practices as it contributes to the 
increase in crop yields through (i) drastic reduction of weeds, which compete with crops for 
nutrients, (ii) suppression of diseases, which are mainly caused by plant pathogenic fungi 
and bacteria, and (iii) repression of insect pests that, together with pathogens, can result in 
huge economic losses by decreasing the amount of harvestable agricultural crops or stored 
produce (Abubakar et al., 2020). Increasing the agricultural yield is essential for meeting the 
demands of the ever-rising world population. Population numbers have risen dramatically in 
one century, from 1.5 billion in 1900 to about 6.1 billion in 2000, which equals to a 3 times 
greater increase than during the entire human history (Carvalho, 2017). The rapid 
population growth could not have been possible without a simultaneous growth in food 
production. PPP use results in enhancement of the production and availability of healthy 
foods like fruits and vegetables. Thus, PPPs are a significant contributor to alleviating hunger 
and providing an abundant supply of high quality food (Tudi et al., 2021). Improving nutrition 
has in the long term provided humans with better quality of life. PPPs application also helps 
in the preservation of wood and other useful materials from destruction by insects. 
Concerning human health, pesticides have been used for the control of mosquitoes that 
transmit Plasmodium, the causal agent of malaria, and flies that carry Trypanosoma, the 
causal agent of trypanosomiasis (also known as Sleeping Sickness). It is therefore apparent 
that the use of pesticides has significantly contributed to the well-being of mankind. 

That being said, PPP use is usually accompanied with deleterious environmental and 
public health issues. Widespread application of PPPs in agricultural practices has led up to 
the generation of the serious issue of pesticide residues in environmental substrates and 
food, especially fresh produce (Farahy et al., 2021; Van Boxstael et al., 2013). PPPs are major 
environmental pollutants, seeing that their innate physicochemical characteristics allow 
their uncontrollable dispersion in the terrestrial and aquatic ecosystems (Carvalho, 2017). 
Continual utilization of PPPs contributes significantly to environmental pollution of the 
rhizosphere and bulk soil affecting soil structure, porosity, physicochemical properties and 
water retention capacity, eventually leading to high levels of soil impoverishment and 
erosion (Abubakar et al., 2020).  Furthermore, introduction of pesticides in the environment 
inevitably leads to leakage into the water bodies and accumulation in groundwater or 
drinking water. 

Many studies have demonstrated the potential of PPPs to non-target organisms (Liu 
et al., 2022; Zaller et al., 2021; Zhang et al., 2021; Adetunji et al., 2018; Katagi and Tanaka, 
2016; Zhang et al., 2016). Non-target organisms are species that are unintentionally affected 
by pesticide application, being beyond the group of target organisms, and include plants, 
algae, birds, fish, beneficial insects, aquatic and soil microorganisms. The impact of PPPs on 
the activity of soil microorganisms results in negative effects in the decomposition of the 
organic matter, soil aeration and proper functioning of important geochemical cycles 
(nitrogen, carbon, phosphorus). In addition, pesticide consumption can lead to accumulation 
in the members of an ecosystem. Bioaccumulation refers to the presence of high 
concentrations of a compound in an organism, as a result of high intake to lower removal 
rates. Accumulation of pesticides in organisms of various trophic levels usually occurs via 
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direct uptake from water and though food, from the consumption of plant tissue, sediment 
and other members of the food chain. 

Resistance development is another side effect of the continuous usage of PPPs. 
Evolution of resistant strains has already affected the efficiency of herbicides (Powles and 
Yu, 2010), fungicides (Lucas et al., 2015) and insecticides (Bass et al., 2015). It is estimated 
that about 10 billion US dollars are lost annually due to herbicide resistance (Palumbi, 2001). 
Moreover, models have shown that if insecticide resistance becomes widespread it could 
lead to 40% more malaria cases (Briët et al., 2013). Current evidence suggests that evolution 
of pesticide resistant organisms could surpass our ability to develop new and efficient 
pesticides (Gould et al., 2018).  

PPPs also pose paramount threat to human health. Acute and chronic poisoning, 
neurobehavioral, carcinogenic, immunological, developmental and reproductive effects are 
amongst the most common consequences of exposure to PPPs. In order to get approval of 
use in the market, several criteria need to be taken into account including that no harm to 
human health or the environment is going to be caused through their use. Potential toxicity 
to humans is assessed through experiments using mainly mice and rats, and less often dogs 
and rabbits (Matthews, 2015). Studies of acute toxicity describe the effect of a single dose of 
the compound after oral, dermal and inhalation exposure in animals and determine the 
lethal dose 50 (LD50) and lethal concentration 50 (LC50), i.e. the dosage or inhaled 
concentration of a compound that is going to kill 50% of the dosed population (Gad, 2014).  
Acute toxicity in humans refers to the effect of a single exposure or repeated exposure over 
a short time (e.g. an accident during mixing or applying pesticides) and symptoms range 
from headache, fatigue and diarrhea to slowed heartbeat, seizures or unconsciousness (Ogg 
et al., 2018). Displayed on Table 1.2 are acute toxicity hazard categories as described by the 
World Health Organization (WHO). 

Table 1.2. Acute toxicity hazard categories according to WHO (World Health Organization and Safety, 2010) 

WHO Class 
LD50 for the rat (mg/Kg 

body weight) No of 
pesticides Oral Dermal 

Ia – Extremely hazardous < 5 < 50 29 
Ib – Highly hazardous 5 - 50 50 - 200 58 
II – Moderately hazardous 50 - 2000 200 - 2000 250 
III – Slightly hazardous Over 2000 145 
U – Unlikely to present acute hazard 5000 or higher 195 

 

Chronic toxicity refers to the effect of long-term exposure to low doses of an active 
compound. Studies of chronic toxicity on rats usually last for 2 years (Matthews, 2015). 
Chronic exposure in humans takes years for the development of symptoms and possible 
adverse effects include cancer, nerve damage, endocrine system irregularities and 
reproductive disorders. PPPs exposure has commonly been associated with cancer 
development (Lerro et al., 2021; Matich et al., 2021; Alavanja, 2009; Greenburg et al., 2008; 
Samanic et al., 2008), with several compounds being classified in Groups 1 – “Carcinogenic 
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to humans”, 2A – “Probably Carcinogenic to humans” and 2B – “Possibly Carcinogenic to 
humans” by the International Agency for Research on Cancer (IARC) (“List of Classifications – 
IARC Monographs on the Identification of Carcinogenic Hazards to Humans”). Prolonged 
exposure to pesticides can also cause changes in the function of the central, peripheral and 
autonomous nervous system resulting in neuropsychiatric disorders (depression, anxiety and 
mood disorders) and suicidal behavior to workers or farmers that are in contact with them 
on a daily basis (Freire and Koifman, 2013). The relationship between pesticide exposure and 
reproductive issues has been extensively studied because of the profound effect and life-
long impact on human health (Wang et al., 2016; Frazier, 2008). PPPs belonging to 
organochlorines, organophosphates, carbamates, pyrethroids and various herbicides and 
fungicides have been associated with adverse reproductive effects like reduced fertility, 
spontaneous abortion, birth defects and fetal growth retardation (Mnif et al., 2011; Frazier, 
2008). Several PPPs also possess strong affinity to steroid hormone receptors, specifically 
androgens and estrogens, acting as agonists and antagonists and disrupting the action and 
concentration of the natural hormones (Leong et al., 2020). Thus, these endocrine disruptor 
compounds can negatively affect reproductive and sexual development, especially on 
fetuses, infants and children (Sharpe, 2006).  

 

1.4 ENVIRONMENTAL FATE AND POLLUTION 
PPPs fate in environmental substrates is strongly associated with (I) their physicochemical 
properties according to which we can determine whether a compound is likely to be 
transferred in the soil (octanol-water partition coefficient, LogPow), water (water  solubility, 
mg/L) or the air (vapor pressure, mPa), (II) the properties of the site including climate, soil 
type and structure, depth and structure of the groundwater and vegetation (Saha et al., 
2019; Gjettermann et al., 2009; Gregoire et al., 2009) and (III) the agricultural practices 
which involve among others application techniques, quantities and frequency of application, 
irrigation and crop rotation regimes (Romanazzi et al., 2020; Andreazza and Scola, 2015; 
Balderacchi et al., 2013; Fait et al., 2010). 

PPPs enter the environment through point and non-point (or diffuse) sources of 
pollution (Balderacchi et al., 2013; Neumann et al., 2002). Diffuse sources of pollution refer 
to movement of PPPs in soil, surface and ground water systems after being applied in the 
field (Harrison et al., 2019), while point sources concern on-farm activities like accidental 
spills during spray mixture preparation (tank filling, faulty equipment, waste disposal) 
(Sharma et al., 2020; Fait et al., 2007) and agro-food processing industry’s effluents that 
make use of PPPs (Ccanccapa et al., 2016; Belenguer et al., 2014; Masiá et al., 2013) 

Upon entering the environment, PPPs follow two paths, migration (movement), or 
degradation. Migration refers to transfer from its initial point of introduction and involves 
processes like volatilization, spray drift, surface runoff, leaching and adsorption (Fait et al., 
2007).  
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1.4.1 MIGRATION (Volatilization, Leaching and Surface runoff) 
Volatilization is the conversion from solid or liquid to gas form. Factors that affect 

significantly the volatilization of a PPP include its evaporation potential (vapor pressure), the 
weather conditions of the site e.g. temperature, humidity and air movement, and, if the 
pollutant is in a soil matrix, the soil properties such as texture, organic matter content and 
moisture level (Tudi et al., 2021). Airborne PPPs have a very high dispersion potential as they 
can be carried on air currents for very long distances (Gavrilescu, 2005). Spray drift is 
another form of airborne movement from the application site via spray droplets. Zhang et 
al., have shown that flight speed and altitude of unmanned aerial vehicle (drone) 
applications have a significant effect in pesticide droplet dispersion (Zhang et al., 2020). 
Surface runoff and leaching refer to the transportation of PPPs to surface water and 
groundwater systems over a slopping surface and vertically through the soil profile 
respectively. Runoff is often observed when the PPPs fail to be adsorbed on the soil colloids 
due to the high water volumes which could not be effectively infiltrated by the surface soil. 
Runoff is promoted by over-irrigation, high soil moisture content, slope of the point of 
introduction and amount and timing of rainfall (Tudi et al., 2021). Leaching is the vertical 
movement of pesticides and is highly influenced by soil properties and 
adsorption/desorption processes (Peña et al., 2020). 

 

1.4.2 ADSORPTION/DESORPTION 
Adsorption/desorption is the leading process that determines the distribution of PPPs in soil 
and controls their availability for other transportation or transformation processes. 
Essentially, adsorption is a phenomenon where pesticides bind to soil particles (Peña et al., 
2020). Due to its importance, adsorption of plentiful PPPs has been extensively studied 
(Qisse et al., 2020; Smalling et al., 2018; Álvarez-Martín et al., 2016; Gulkowska et al., 2016; 
Papadopoulou et al., 2016). Soil properties that greatly affect the adsorption potential of a 
soil include pH, salinity, moisture and organic matter content. The latter is of paramount 
importance for pesticide adsorption, as it is the main adsorption surface of non-polar 
compounds and it has also been found to be interacting with polar compounds. (De Wilde et 
al., 2009; Wauchope et al., 2002). Practices that modify these factors to some extent may 
impact the adsorption/desorption process and, consequently, the PPPs polluting potential 
and effectiveness against pests (Peña et al., 2020). Pesticide properties define the 
adsorption outcome as well, with hydrophobicity and water solubility being the most 
important factors. It has been demonstrated that hydrophobic compounds strongly adsorb 
on the soil colloids and organic matter (Delgado-Moreno et al., 2017). Another type of 
adsorption is uptake by the plant tissue were PPPs compounds are transferred to the plant, 
usually through their root system (Romero et al., 2019).  

 

1.4.3 DEGRADATION 
Degradation is the most significant process of pesticide removal from environmental 
matrices and it can be quantified (its rates) through the concept of half-life, i.e. the time 
needed for the degradation of half of the applied amount of a pesticide compound from the 
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treated environment. Degradation refers to the breakdown or modification of the chemical 
structure of PPP compounds by abiotic or biotic pathways. The complete breakdown of 
compounds into inorganic components is termed mineralization. The degradation of 
pollutants is strongly influenced by adsorption which decides the fraction of the pollutant 
that is available in the soil solution and prone to degradation by biotic or abiotic means.  

 

1.4.3.1 ABIOTIC DEGRDATION 
Abiotic degradation includes photo-degradation, the breakdown of pesticides by 

sunlight radiation, and chemical degradation, which involves chemical reactions that happen 
spontaneously in environmental matrices. Photo-degradation can only occur on the surface 
of soil and water systems, the air or the foliage of the treated plants as it is heavily 
depended on light intensity (Gavrilescu, 2005). Nevertheless, its remediation potential has 
been studied for plenty PPPs (Huang et al., 2021; Zhou et al., 2021; Mahapatra et al., 2017; 
Remucal, 2014). Chemical degradation includes different reactions such as ionization, 
hydrolysis and oxidation-reduction and is usually dependent on the pH of the environmental 
system. Other factors that influence the efficiency of chemical degradation processes 
include temperature, oxygen and moisture levels.  

Chemical reactions, coupled or not with photo-degradation processes, have been 
studied extensively for the depuration of wastewaters or remediation of pesticide 
contaminated sites. Studies mainly focus on advanced oxidation techniques like (photo-) 
Fenton  processes (Fakhri et al., 2020; García-Estrada et al., 2020; Santiago et al., 2018b; Gar 
Alalm et al., 2015) and Ti-O2 based photocatalysis (Molla et al., 2020; Sraw et al., 2018; Cruz 
et al., 2017; Xing et al., 2014; Jiménez et al., 2013). Ozone treatment has also been studied 
(Bisaria et al., 2021; Genena et al., 2011). The main drawback of recruiting abiotic reactions 
is the production of transformation products that sometimes are equally or more toxic than 
the parent compounds (Huang et al., 2021; Santiago et al., 2018a, 2013; Sirtori et al., 2014). 
Other setbacks in the implementation of abiotic processes for the removal of pesticides is 
the high energy requirements, high operational costs and the possible use of additional 
reagents, like electrolytes (Titchou et al., 2021; Sirés et al., 2014) or rapid replacement of 
installed equipment e.g. the electrode whose efficiency and half-life are reduced due to 
deposition of organic material on its surface. 

 

1.4.3.2 BIOTIC DEGRDATION 
Biotic or microbial degradation is the most important process that defines the 

persistence of PPPs in environmental matrices. Microbial degradation is attributed to the 
adaptation of microorganisms in soils with extensive exposure to pesticides, due to their 
genetic plasticity and quick generation times (Upadhyay et al., 2019) through which they 
develop pesticide.-catabolic genes and pathways (Bouteh et al., 2021; Russell et al., 2021; 
Zhu et al., 2020; Jaiswal et al., 2019; Jeffries et al., 2018; Widada et al., 2002) or through 
horizontal gene transfer, by acquiring mobile genetic elements like plasmids or transposons 
that carry relevant catabolic genes (French et al., 2020; Rios Miguel et al., 2020; Storck et al., 
2020; Dealtry et al., 2014). Factors influencing microbial degradation include the structure of 
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the microbial community, salinity, carbon and nitrogen sources, presence of oxygen, 
temperature, soil moisture content and pH (Bhatt et al., 2019; Cycoń et al., 2017; Megharaj 
and Naidu, 2017; Wu et al., 2014). Biodegradation has been extensively studied for the 
bioremediation of pesticide-polluted sites (Mishra et al., 2021, 2020; Cycoń et al., 2017) and 
many organisms with pesticide degrading abilities have been isolated and characterized 
(Pandey and Choudhury, 2021; Zhou et al., 2021; Ambreen et al., 2020; Perruchon et al., 
2017, 2016; Sharma et al., 2016; Perruchon et al., 2015; Karpouzas et al., 2000). 

 

1.5 PESTICIDE REGULATORY FRAMEWORK 
Pesticides are important environmental pollutants, as their innate physicochemical 
properties enable their dispersion in various environmental matrices (Carvalho, 2017). 
European Union (EU) recognized the polluting potential of pesticides and included many of 
them in the list of priority hazardous substances in the field of water policy (2455/2001/EC). 
The substances that are included in the list are aimed to be used progressively less until 
complete cessation or phasing out of discharges, emissions and losses in the water systems 
(2455/2001/EC). Recently, many pesticides were added in the “Persistent Organic 
Pollutants” list through REGULATION 2019/1021 which means that they are prohibited, 
should be withdrawn as soon as possible and their manufacturing, placing in the market and 
use is restricted (2019/1021). 

EU addressed PPPs introduction in the market and use in Directive 2009/128/EC on 
establishing a framework for sustainable use of pesticides and in Regulation 1107/2009 
concerning the placing of plant protection products in the market. The main aim of Directive 
2009/128/EC is to achieve a sustainable use of PPPs by reducing the risks and impacts of 
their use in human health and the environment, and reduce dependency on the use of PPPs 
by promoting the use of integrated pest management and of alternative approaches or crop 
protection techniques. Regarding the latter, certain measures that should be put in place 
include monitoring the use of PPPs, training of professional users, distributors and advisors, 
informing the general public and raising awareness on the risks of PPP use in human health, 
non-target organisms and the environment.  

Application of pesticides involves both the active and inert ingredients, which may 
not have pesticidal activity, but facilitate the efficiency of the active compound by enhancing 
the penetration into the target organism and its toxic action (Andreazza and Scola, 2015). 
Addressing that, EU adopted Regulation 1107/2009 that concerns authorization and placing 
in the market of PPPs in their commercial formulation, which contains the active substances, 
safeners, synergists, adjuvants and co-formulants.  

Moreover, EU is constantly reviewing the approval of usage and is re-evaluating the 
active substances in order to make sure that they continue to fulfill the approval criteria 
(Regulation (EU) 2020/1740). As of now, 454 active substances, safeners and synergists are 
approved, 66 are pending, 927 are not approved and 17 have not been assessed at EU level 
yet (“EU Pesticides Database (v.2.2) Search Active substances, safeners and synergists,” 
Accessed 2021-11-15). 
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Certainly, precautionary measures for proper pesticide use have not been 
undertaken only by the EU. Since 1975 the WHO has been publishing guidelines for 
classification of pesticides by hazard with regular revisions every few years, in order to 
support the effort for appropriate management of pesticides (World Health Organization, 
2020). The hazard referred to by the guideline concerns the acute oral and dermal risk to 
health of the compound and its formulations. The list currently consists of 29 compounds in 
the Class Ia, 58 compounds in Class Ib, 250 compounds in Class II, 145 compounds in Class III, 
195 compounds in Class U and 253 compounds believed to be obsolete or discontinued for 
use (Table 2, World Health Organization, 2020). Moreover, Environmental Protection Agency 
(EPA) of the United States is responsible for regulating PPPs and ensuring that they do not 
pose risks to human and animal health and to the environment by evaluating them and 
making sure they meet current scientific and regulatory standards through registration and 
reviews of registration processes. 

2 AGRO-FOOD PROCESSING INDUSTRIES 
The use of PPPs in the post-harvest treatment of plant products is of paramount importance 
as it ensures product quality during storage and minimizes losses due to pathogens. 
Postharvest handling is the connecting link between the farmers and the consumers and is 
associated with the implementation of handling technologies to minimize losses between 
harvest and consumption and to maintain quality characteristics, such as nutritional value, 
appearance, texture and flavor (Shree and Kumari, 2019). Fresh fruits and vegetables are 
prone to microbial spoilage due to their high moisture content and wide range of organic 
substrates. Therefore, their postharvest treatment with pesticides by agro-food processing 
industries is of paramount importance. Moreover, other plant propagating materials like 
seeds and bulbs also require pesticide treatment to control diseases and pests affecting 
seeds and seedlings. Further down, a few examples of agro-food processing units are 
described along with examples of fungicides that are commonly used by them. 

 

2.1 SEED PRODUCING INDUSTRIES 
Agriculture relies on pesticides, not only in terms of protecting the plant and plant products 
but the seed as well. Seed treatment constitutes a major economic market sector worldwide 
since the 1960s when large-scale commercial utilization of seed coating for field-scale 
precision agriculture began (Ma, 2019; Pedrini et al., 2017). Seed treatment involves 
technologies to (I) improve germination or seedling growth, (II) facilitate planting through 
enhancing seed appearance and handling characteristics, (III) deliver materials required at 
the time of planting like PPPs, micro-nutrients, plant growth regulators and growth 
stimulants and (IV) remove weak or dead seeds (Halmer, 2008). Coating is the placing of an 
artificial outer layer of fungicide or insecticide formulations in order to protect the seed and 
seedling by controlling or repelling harmful organisms (Halmer, 2008). The coating 
technology used to apply colorants and PPPs onto seeds is termed “film coating”, and it 
includes spraying large amounts of the coating liquid and subsequent or concurrent drying. 
Commonly, batches of seed are treated multiple times to build up an even film layer or a 
multi-layer in the case where a different component is used in each successive coating. 
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Multi-layer coats are usually applied to separate one component from another, to protect 
the seeds or those who handle the seeds or to control the release of an active ingredient 
after planting (Halmer, 2008). Hence, the wastewaters produced by seed producing 
industries generate effluents, loaded with high amounts of fungicidal components. 

 

2.1.1 FUNGICIDES USED IN SEED PRODUCING INDUSTRIES 

2.1.1.1 CARBOXIN 
5,6-dihydro-2-methyl-1,4-oxathiine-3-carboxanilide or carboxin (CBX) is a carboxanilide 
fungicide that is commonly used for seed coating in cereals and crops (Ayesha et al., 2021; 
Lamichhane et al., 2020; Srinivas et al., 2017). 

 

Figure 1.4 Chemical structure of CBX. The 1,4-oxathiin and anilide groups are colored green and red respectively 

CBX was the first succinate dehydrogenase inhibitor that was introduced in the 
market in 1969 and is still in use (S. Li et al., 2021; Shively and Mathre, 1971). It is a systemic 
fungicide that is recommended for use in small grain cereals (wheat, soybean, barley, oat) 
against stem rot, whose causal agent is Sclerotium rolfsii (Rakholiya, 2015; Akgül et al., 2011; 
United States, Environmental Protection Agency, 2004), rust which is caused by 
basidiomycetes  and rhizoctonia diseases (Yanase et al., 2007). CBX was first registered in 
the USA in 1968 and its authorization has been re-approved constantly until today. In EU, 
the approval period of CBX is in force until 31 May 2023 (“REGULATION 2019/324).  

According to WHO classification of pesticides by hazard, CBX is placed in Group III of 
slightly hazardous compounds (World Health Organization, 2020). Conclusion on peer review 
of CBX risk assessment performed by EFSA, illustrated that CBX is accountable for 
sensitization by skin contact, low acute toxicity through oral, dermal and inhalation routes, 
and no skin or eye irritation (EFSA, 2010a). Regarding its ecotoxicity, CBX poses low risk to 
non-target arthropods, soil microorganisms and plants (EFSA, 2010a). 

CBX is slightly hydrophobic with log octanol-water partition coefficient (Log Pow) of 
2.3 and solubility in water of 134 mg/L at 20oC, pH = 7 (Table 1.3). So it is expected to be 
moderately mobile in a range of soils. Indeed, Kf and KFoc values in a variety of soils range 
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from 1.56 – 2.71 to 123 – 213 ml/g respectively (Table 1.3). It is also not expected to move 
to the air as it is not a volatile compound (vapor pressure 0.02 mPa at 20oC) (Table 1.3). CBX 
is not persistent in soil with half-lives of 0.06 – 1.68 days in lab studies and 0.3-11 days in 
field studies and it is prone to photo-degradation (0.1 days) (Table 1.3). 

Table 1.3. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized or not for 
organic carbon) of the fungicide CBX (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 134 Moderate 
Vapor pressure (mPa) 0.02 Non-Volatile 
Log Pow 2.3 Low 
Kf (ml/gr) 1.56 – 2.71 Mobile 
Kfoc (ml/gr) 123 – 213 Mobile 
DT50 lab (days) 0.07 – 1.68 Non-persistent 
DT50 field  (days) 0.23 – 3.49 Non-persistent 
DT50 photolysis (days) 0.1 Non-persistent 
 

The main transformation products of CBX include carboxin sulfoxide, which is its 
main transformation product, and oxycarboxin. Similar to its parent compound, oxycarboxin 
possesses fungicidal activity (Dębska et al., 1979; Mathre, 1970) and similar physicochemical 
properties and environmental fate, albeit higher persistence with mean DT50 values of 21.2 
and 42.3 days in lab and field studies respectively. Carboxin sulfoxide possesses low 
fungicidal activity, it is rather stable in water, mobile (KFoc = 96 ml/g) and persistent (DT50 Lab = 
39.5 days) in soil (DellaGreca et al., 2004; PPDB - Pesticide Properties Database. Accessed on 
2021-11-15). The risk to soil-dwelling organisms for both transformation products is 
considered as low, but they are harmful to aquatic organisms (EFSA, 2010a). 

 

2.1.1.2 METALAXYL-M 
Methyl N-(methoxyacetyl)-N-(2,6-xylyl)-D-alaninate or metalaxyl-M (MET-M) or Mefenoxam 
is the R-enantiomer of the chiral compound metalaxyl. MET-M is a systemic acylalanin 
fungicide that is commonly used as soybean seed treatment against oomycetes like 
Globisporangium sp. (Molin et al., 2022) or as a disease suppressor of Phytophthora 
nicotianae, which is the causal agent of foliar diseases on herbaceous annual plants (Hu et 
al., 2008), and of Phytophthora infestans that causes late blight in potato (Randall et al., 
2014). More than 23000, 59000, and 54000 m3 of metalaxyl-M were used in Australia, EU, 
and USA respectively, in 2017 (Lamichhane et al., 2020). MET-M mode of action involves 
disruption of fungal nucleic acid synthesis by inhibiting uridine incorporation by RNA 
polymerase I system (Randall et al., 2014; Fisher and Hayes, 1982). MET-M was first 
registered in USA at 1996 (United States, Environmental Protection Agency, 1996) although 
its racemic mixture had already been in the market for 17 years (United States, 
Environmental Protection Agency, 1994).  
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Figure 1.5 Chemical structure of MET-M. The acylaniline group is colored red  

MET-M causes low to moderate acute toxicity when administered orally, dermally or 
by inhalation, and it does not provoke skin sensitization or irritation. No potential 
accumulation has been observed as well (EFSA, 2015). According to EPA, it is classified as a 
low and very low toxicity compound, but it is a moderate irritant in rabbits' eyes (United 
States, Environmental Protection Agency, 1994). MET-M poses low risk to non-target soil-
dwelling and aquatic organisms (EFSA, 2015) 

MET-M is a hydrophilic compound (Log Pow = 1.61) and remarkably soluble in water 
(26000 mg/L) (Table 1.4). It is not expected to be found in the air as its vapor pressure is low 
(3.3 mPa) (Table 1.4). MET-M is mobile in soil with Kf and Kfoc values ranging between 0.07 – 
8.01 and 20 – 284 ml/g respectively (Table 1.4). Moreover, MET-M is not prone to photo-
degradation and it is moderately persistent in the environment with mean DT50 values of 6.5 
and 14.1 days in lab and field studies respectively (Table 1.4).  

Table 1.4. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide MET-M (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 26000 High 
Vapor pressure (mPa) 3.3 Non-Volatile 
Log Pow 1.61 Low 
Kf (ml/gr) 0.07 – 8.01 Moderately Mobile 
Kfoc (ml/gr) 20 - 284 Moderately Mobile 
DT50 lab (days) 1.38 – 73.1 Moderately persistent 
DT50 field  (days) 9.3 – 30.9 Moderately persistent 
DT50 photolysis (days) - Stable 

 

Under dark aerobic conditions, MET-M undergoes demethylation of the ester group 
and transforms to R-demethylmetalaxyl (Masbou et al., 2018) which exhibits low to high 
persistence (4.1 – 200 days) (EFSA, 2015) and to a lesser degree to the transformation 
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products CGA67868 and SYN546520 which exhibit low  (1.6 – 4.9 days) and moderate to high 
(42-288 days) persistence respectively (EFSA, 2015). 

 

2.1.1.3 FLUXAPYROXAD 
3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)pyrazole-4-carboxamide or 
fluxapyroxad (FLX) is a carboxamide fungicide commonly used for coating of soybean seeds 
(Marburger et al., 2017; Gaspar et al., 2014), barley (McLean et al., 2019), sugarcane 
(Wayment et al., 2021), canola (Fraser et al., 2020), cotton (Copeland et al., 2016) and other 
cereals. Its broad-spectrum efficiency made it a top seller fungicide in 2018, with 470$ 
million dollar sales (S. Li et al., 2021). 

 

 

Figure 1.6. Chemical structure of FLX. The pyrazolium ring and the carboxamide group are colored red and green 
respectively 

Its mode of action involves inhibition of the succinate dehydrogenase in complex II 
of the mitochondrial respiratory chain, afflicting cell respiration and energy production (S. Li 
et al., 2021). FLX is a newfound fungicidal compound with less than 10 years in the market as 
it was authorized for use in 2012 in both USA and EU (EFSA, 2012; United States, 
Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, 2012) 

It is portrayed as slightly hazardous by WHO (World Health Organization, 2020). It 
causes low acute toxicity when administered orally, dermally or by inhalation but it does not 
induce any eye or skin irritation (EFSA, 2012). FLX is classified as “Not likely to be 
Carcinogenic to Humans” according to EPA’s Final Guidelines for Carcinogen Risk Assessment 
(United States, Environmental Protection Agency, Office of Chemical Safety and Pollution 
Prevention, 2012). Concerning its ecotoxicity, FLX risk for non-target organisms was 
described as low (EFSA, 2012). 
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FLX is a hydrophobic compound (Log Pow = 3.13) with particularly low water 
solubility at 3.44 mg/L (Table 1.5). Due to its hydrophobic nature, FLX tends to bind strongly 
to soil colloids and organic matter, which renders it immobile with mean Kf and Kfoc values of 
8.3 and 728 ml/gr respectively (Table 1.5). FLX is also persistent in soil with mean DT50 values 
of 183 and 181.5 days in lab and field studies respectively. It is not expected to be 
transferred into the air as it is not a volatile compound (2.7 x 10-6 mPa) (Table 1.5).  

Table 1.5. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide FLX (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 3.44 Very low 
Vapor pressure (mPa) 2.7 x 10-6 Non-Volatile 
Log Pow 3.13 High 
Kf (ml/gr) 2.5 – 17.9 Slightly Mobile 
Kfoc (ml/gr) 320 – 1101 Non-Mobile 
DT50 lab (days) 53.0 – 424 Persistent 
DT50 field  (days) 38.9 – 370 Persistent 
DT50 photolysis (days) - Stable 
 

Two soil transformation products of FLX, M700F001 and M700F002, were detected in 
soil studies performed with 14C-labelled FLX in the pyrazole ring. M700F002 showed high 
persistence, equivalent to FLX, with DT50 values in soil ranging between 131 – 197 days 
under aerobic conditions in lab studies. In contrast, M700F001 is not persistent with DT50 
values ranging between 2.3 - 10 days. All transformation products pose low toxicity risk to 
non-target organisms (EFSA, 2012).  

 

2.2 FRUIT PACKAGING PLANTS 
Fresh fruit and vegetables are important quality foods that have high nutritional and sensory 
(flavor, texture, appearance) value. Given the fact that these harvested commodities should 
remain fresh during storage, they are susceptible to spoilage and reduction of the 
physiological appearance (browning). According to FAO, it is estimated that approximately 
14% of the food produced in the world in 2016 was lost in the supply chain after harvest and 
before the retail level (United Nations Environment Programme, 2021). 

The intensity of the production systems and the high demand for quality food has 
driven members of the supply chain (growers, storage operators and processors) to employ 
a variety of practices to ensure a high level of effective pest control such as appropriate pre-
harvest treatments, proper harvest and handling practices, effective sanitation of fruit and 
storage facilities, appropriate post-harvest antifungal treatments and adequate precautions 
during fruit storage and transportation (Schirra et al., 2011; Palou et al., 2009). Common 
high-incidence postharvest diseases in fruits include gray mold (caused by Botrytis cinerea), 
blue mold (caused by Penicillium expansum), sour rot (caused by Geotrichum candidum) and 
rhizopus rot (caused by Rhizopus stolonifer). 
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2.2.1 FUNGICIDES USED IN FRUIT PACKAGING PLANTS 

2.2.1.1 FLUDIOXONIL 
4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile or fludioxonil (FLD) is a broad-
spectrum non-systemic phenylpyrrole fungicide that is commonly used for post-harvest 
treatment of citrus (D’Aquino et al., 2013, 2007) and drupe fruits (Förster et al., 2007) to 
control gray mold (caused by Botrytis cinerea). FLD is also used in bulb  vegetable handling 
for the control of various fungal pathogens like Botrytis narcissicola which is the causal agent 
of neck rot (Chastagner and DeBauw, 2011) and Fusarium sp. that cause Fusarium basal rot 
in Allium species (Le et al., 2021). 

 

 

Figure 1.7. Chemical structure of FLD. The phenyl and pyrrole rings are colored red and green respectively 

 

FLD is a synthetic analog of the natural antifungal compound pyrrolnitrin that was 
introduced to the market in 1990s (Kilani and Fillinger, 2016), for the control of Botrytis 
cinerea. Soon it was found to be a valuable tool for the control of most main postharvest 
diseases on a wide range of fruits (Schirra et al., 2011; Rosslenbroich and Stuebler, 2000). In 
EU it has been approved for use since 2008. Its mode of action includes inhibition of class III 
hybrid histidine kinase which controls the HOG (High Osmolarity Glycerol) response 
pathway, resulting in overproduction of glycerol and cell death by increased intercellular 
hydrostatic pressure (Brandhorst and Klein, 2019; Lawry et al., 2017; Lew, 2010).  
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FLD is classified as “Unlikely to Present Acute Hazard in Normal Use” by WHO (World 
Health Organization, 2020). It is characterized by negligible acute toxicity via oral, dermal or 
inhalation route and causes no skin and eye irritation (EFSA, 2007). Moreover the risk to 
insects, arthropods, earthworms and overall non-target soil organisms is considered low 
(EFSA, 2007). 

FLD is hydrophobic (Log Pow = 4.12) with water solubility as low as 1.8 mg/L (Table 
1.6). It is not expected to be transferred into the air as it has very low vapor pressure (3.9 x 
10-4 mPa) (Table 1.6). Similar it is considered rather immobile in soil with mean Kf and Kfoc 
values of 3312 and 132100 ml/g respectively (Table 1.6).  FLD is also a highly persistent 
fungicide in environmental matrices, with mean DT50 values in soil lab and field studies at 
164 and 16 days respectively while it is resistant to aqueous hydrolysis (Table 1.6). The 
relatively lower DT50 of FLD in field studies is attributed to its high photo-degradation 
capacity, with a DT50 of 10 days (Table 1.6). 

Table 1.6. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide FLD. (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 1.8 Very Low 
Vapor pressure (mPa) 3.9 x 10-4 Low Volatility 
Log Pow 4.12 High 
Kf (ml/gr) 290 – 7300 Non-Mobile 
Kfoc (ml/gr) 7500 – 210,000 Non-Mobile 
DT50 lab (days) 119-365 Persistent 
DT50 field  (days) 8 – 43 Non-Persistent 
DT50 photolysis (days) 10 Moderately fast 
 

During photo-degradation processes FLD is mainly transformed to three products, 
CGA 192155, CGA265378 and CGA 339833, which all result from oxidation of the pyrrole ring 
(EFSA, 2007). Transformation products of FLD show low to moderate persistence in soil with 
DT50 values ranging from 9 to 24 days for all three compounds. The transformation products 
of FLD are highly mobile in soil matrices, although further research is required about their 
environmental fate (EFSA, 2007). Finally, all three transformation products pose low toxicity 
to aquatic organisms (EFSA, 2007). 

 

2.2.1.2 IMAZALIL 
(RS)-1-(β-allyloxy-2,4-dichlorophenylethyl)imidazole or imazalil (IMZ) or enilconazole is a 
systemic imidazole fungicide that is commonly employed to control a wide range of fungal 
diseases in fruits (Schirra et al., 2011). It is a racemic mixture of enantiomers which recent 
studies have shown to have moderately different bioactivity (Li et al., 2019). 
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Figure 1.8. Chemical structure of IMZ. The imidazole ring is colored red and the chiral carbon is colored blue 

IMZ is one of the most commonly used fungicides in post-harvest treatment of citrus 
for the preservation of the fruits during storage, shipping and marketing. It is especially 
effective against Penicillium digitatum that causes green mold to citrus fruits (Kellerman et 
al., 2016; Erasmus et al., 2013; Schirra et al., 2011), but it has also been found to control a 
variety of fungal pathogens in post-harvest treatment of horticultural crops (Schirra et al., 
2011). IMZ disrupts fungal membrane function by inhibition of the demethylation step in the 
biosynthesis of ergosterol (Rozhon et al., 2019; Siegel and Ragsdale, 1978). 

It was first introduced at 1983 and has been continuously approved for use in USA 
since then. In EU, it was first approved for use in 1997 and has also been continuously re-
approved until 2024. EFSA proposed particular safety measures to be taken in order to 
ensure prevention of the exposure of the environment to IMZ. As a result EFSA proposed 
that its authorization is done under the clause that “management measures tailored to local 
practice and legislation should be undertaken…to control the waste disposal of spent 
application solution and prevent accidental spillage or equipment wash water entering 
sewers or surface water drains” (EFSA, 2010b) 

IMZ is a moderately hazardous compound according to WHO (World Health 
Organization, 2020). It is toxic by oral and inhalation routes (rat LC50 227 mg/kgbw and 1.84 
mg/L respectively), while it has a low dermal toxicity. It is also a severe eye irritant (EFSA, 
2010b). Studies suggest that IMZ is not genotoxic or teratogenic and does not have a toxic 
effect to mammals reproduction (EFSA, 2010b). However, liver and thyroid carcinomas have 
been demonstrated in mice and rats exposed to IMZ, respectively (United States, 
Environmental Protection Agency, 2005). 

IMZ is a relatively hydrophobic compound with Log Pow = 2.56 and water solubility of 
184 mg/L at 20oC (Table 1.7). It is has low volatility (0.158 mPa) and is not expected to be 
mobile in soil with mean Kf and Kfoc values of 126.9 and 4753 ml/g respectively (Table 1.7). 
IMZ is a moderately persistent compound with mean DT50 in soil of 76.3 and 6.4 days in lab 
and field studies respectively (Table 1.7). Its low persistence in field studies could be 
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attributed to its fast photo-degradation, with a half-life of 6.1 days after continuous 
irradiation (Table 1.7). 

Table 1.7. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide IMZ. (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 184 Moderate 
Vapor pressure (mPa) 0.158 Low 
Log Pow 2.56 Low 
Kf (ml/gr) 38.2 – 195.3 Non-Mobile 
Kfoc (ml/gr) 2,080 – 8,150 Non-Mobile 
DT50 lab (days) 43.9 – 128 Moderately persistent 
DT50 field  (days) 5.7 – 7.1 Non-persistent 
DT50 photolysis (days) 6.1 Moderately fast 
 

The main transformation product of IMZ is R14821 or imazalil-M, with almost 10% 
formation under aerobic conditions in the dark (R. Li et al., 2021; Matsumoto, 2001). IMZ-M 
is toxic to water flee (Daphnia magna), green algae (Pseudokirchneriella subcapitata) and 
zebrafish (Danio rerio) (Li et al., 2019) 

 

2.3 BULB HANDLING INDUSTRIES 
Postharvest application of fungicides for the control of fungal diseases is employed for 
several major bulb vegetables, the most significant of which are onions and garlic bulbs 
(Shree and Kumari, 2019; Patón et al., 2017; Sintayehu et al., 2011). Bulb vegetables are 
characterized by underground growth, vertical shoots and modified leaves which are used as 
food storage organs by the dormant plants (Shree and Kumari, 2019). Onions, garlic, chives, 
leeks and shallots are a few important bulb vegetables. Fungicides are often used in bulb dip 
treatments prior to planting to reduce infestation of emerging shoots and bulb (Chastagner 
and DeBauw, 2011), and postharvest to ensure quality preservation during storage 
(Sintayehu et al., 2011; Naik et al., 2007). Major postharvest diseases of onion include black 
mold, blue mold  and gray mold caused by Aspergillus niger, Penicillium sp. and Botrytis sp. 
respectively (Ji et al., 2018; Prajapati, 2015; Shanmugam, 2006). 

 

2.3.1 FUNGICIDES USED IN BULB HANDLING INDUSTRIES 

2.3.1.1 CHLOROTHALONIL 
Tetrachloroisophthalonitrile or chlorothalonil (CHT) is a non-systemic, broad spectrum, 
organochlorine fungicide used for the control of fungal disease in bulbs, including onion 
downy mildew caused by Peronospora destructor (Araújo et al., 2017) 
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Figure 1.9. Chemical structure of CHT. 

CHT mode of action involves prevention of spore germination and zoospore activity, 
but the exact mechanism remains unknown. Generally, CHT’s antifungal properties are 
attributed to inactivation of cell sulfydryl enzymes, which are important in cellular 
respiration (Sherrard et al., 2003). Tillman et al. proposed that CHT mode of action includes 
formation of glutathione-CHT derivatives which result in inhibition of thiol-dependent 
enzymes (Tillman et al., 1973). Gallagher et al, demonstrated that CHT induction of 
glutathione involves increased cysteine uptake and increased gamma-glutamylcysteine 
synthetase activity (Gallagher et al., 1992). Therefore, CHT has been described as having 
multiple sites of action, which makes it an effective tool in disease management as it is 
complicated for target-organisms to develop resistance.  

CHT was introduced in 1965 and first registered in the USA in 1966 for use on 
turfgrass and later in potato and other vegetable and orchard crops (United States, 
Environmental Protection Agency, 1999). CHT comes in the market as a standalone or as a 
mixture with other pesticide compounds in a great number of PPPs. In the EU, CHT was 
approved for use in 2005 in the context of Directive 91/414 /EEC (EUROPEAN COMMISSION, 
2006) but its approval was not renewed in 2019, due to increasing concerns regarding tis 
genotoxicity and carcinogenicity effect and its risk to non-target organisms especially 
amphibians and fish (EUROPEAN COMMISSION, 2019). In addition, concerns were identified 
with regards to the transformation products of CHT, which pose a high risk for groundwater 
pollution (EUROPEAN COMMISSION, 2019).  

According to WHO, CHT is classified as “Unlikely to Present Acute Hazard in Normal Use” 
(World Health Organization, 2020) based on the International Programme on Chemical 
Safety (International Programme on Chemical Safety, 1996). Peer review of pesticide risk 
assessment conducted by EFSA in 2018 concluded that CHT presents low acute toxicity via 
oral or dermal routes but it is very toxic when administered through inhalation and irritates 
the respiratory tract (EFSA, 2018). Moreover, it may cause serious eye damage and allergic 
skin reaction but it is not a skin irritant (EFSA, 2018). CHT is classified in carcinogenicity 
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category 1B - “May cause cancer” and it is unlikely to present neural and immune system 
toxicity, genotoxicity and endocrine disruption of androgen, estrogen and thyroid hormones. 
(EFSA, 2018). 

CHT is a relatively hydrophobic compound with Log Pow of 2.94 (Table 1.8). Its water 
solubility is as low as 0.81 mg/L, rendering it basically non soluble to aqueous solutions. It is 
not expected to be detected in the air, with a vapor pressure of 0.076 mPa (Table 1.8). 
Because of its very low water solubility, the affinity of CHT for soil adsorption is high with Kf 

and Kfoc values being 3 – 74.1 and 330 – 7000 respectively (Table 1.8). Despite its strong 
adsorbance in soil, it is a non-persistent compound with mean DT50 values of 3.53 and 17.9 
days in lab and field studies respectively. It is also prone to photo-degradation with a half-
life of 0.72 days (Table 1.8).  

Table 1.8. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide CHT. (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 0.81 Very Low 
Vapor pressure (mPa) 0.076 Low 
Log Pow 2.94 Moderate 
Kf (ml/gr) 3 -74.1 Slightly Mobile 
Kfoc (ml/gr) 330 – 7000 Slightly Mobile 
DT50 lab (days) 0.256 – 19 Non-Persistent 
DT50 field  (days) 7.44 – 28.4 Non-Persistent 
DT50 photolysis (days) 0.72 Fast 
 

CHT has been shown to transform into various products with different toxicological and 
environmental profiles. Transformation product R182281 (or 4-hydroxy-2,5,6-
trichloroisophthalonitrile or 4-hydroxychlorothalonil) is worth noting as it seems to be the 
predominant metabolite in crops (Wu et al., 2014). Wu et al. have shown that repeated CHT 
application in greenhouse soil may lead to accumulation of both CHT and 4-hydroxy-
chlorothalonil (Wu et al., 2014). It has been shown to cause acute toxicity after oral 
administration. Further studies showed that 4-hydroxychlorothalonil exhibits moderate to 
very high persistence in soil, with DT50 values ranging from 38 days to 609, and medium to 
high mobility in soil with mean KFoc value of 484 ml/g (EFSA, 2018).  

  

45 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



2.3.1.2 THIABENDAZOLE 
2-(thiazol-4-yl)benzimidazole or thiabendazole (TBZ) is a popular systemic benzimidazole 
fungicide. 

 

Figure 1.10. Chemical structure of TBZ. The thiazole and imidazole ring are colored red and green respectively. 

TBZ is used for the control of neck rot, caused by Botrytis narcissicola (Chastagner 
and DeBauw, 2011), and narcissus basal rot, caused by Fusarium oxysporum f.sp. narcissi 
(Hanks, 1996) in commercial daffodil. TBZ contributes to complete inhibition of fungal cell 
mitosis by interfering with β-tubulin and, therefore, with microtubule assembly (Ishii, 1992; 
Davidse and Flach, 1978). 

TBZ was first introduced by Merc Chemical Co. as an anthelminthic drug for human 
and livestock roundworm infestation. However, it was widely used a fungicide for the 
control of plant pathogenic fungi, especially during storage. It was first authorized as a 
fungicide in the USA in 1969 by Merck and Company, Inc. Currently 62 PPPs are registered in 
the USA whose active ingredient is TBZ (United States, Environmental Protection Agency, 
2002). TBZ has been authorized for use in EU until 2032 (EUROPEAN COMMISSION, 2016) 
with the condition that postharvest industries will adequately collect and treat wastewater 
that contain TBZ residues.  

TBZ is classified as slightly hazardous of acute risk to health by the WHO (World 
Health Organization, 2020). It shows low acute toxicity when administered orally, dermally 
and via inhalation, and no irritation to skin and eyes. TBZ does not have genotoxic potential 
neither it poses risk to reproduction or development (EFSA, 2014).  

TBZ is a hydrophobic compound with Log Pow = 2.39 and water solubility of 30 mg/L 
(Table 1.9). It is non-volatile with a vapor pressure of 5.3 x 10-4 mPa vapor pressure (Table 
1.9). TBZ is slightly mobile in soils with Kf and Kfoc values ranging between 13 – 100 and 580 – 
3921 ml/gr respectively (Table 1.9). The adsorption of TBZ in soil has been positively 
correlated with organic matter content. TBZ is a major environmental pollutant on account 
of its high persistence in the environment with more than a year and 1000 days half-life in 
lab and field studies respectively (Table 1.9). 
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Table 1.9. The physicochemical properties (water solubility, vapor pressure, octanol-water partition coefficient 
log) and the environmental fate parameters (DT50, Freundlich adsorption coefficient normalized Kfoc or not Kf for 
organic carbon) of the fungicide TBZ. (PPDB - Pesticide Properties Database. Accessed on 2021-11-15). 

Property-Fate Value Interpretation 
Water solubility (mg/L) 30 Low 
Vapor pressure (mPa) 5.3 x 10-4 Low 
Log Pow 2.39 Low 
Kf (ml/gr) 13 – 100 Slightly Mobile 
Kfoc (ml/gr) 580 – 3,921 Slightly Mobile 
DT50 lab (days) >365 Highly Persistent 
DT50 field  (days) >1,000 Highly Persistent 
DT50 photolysis (days) 1.2 Moderately Fast 
 

3 TREATMENT OF WASTEWATERS FROM AGRO-FOOD PROCESSING 
INDUSTRIES 

Agro-food processing industries often use fungicides to preserve produce quality during 
storage and minimize losses due to pathogens. Post-harvest treatment of fruits, bulb 
vegetables and seeds results in the production of fungicide-contaminated effluents. The 
uncontrolled environmental release of these effluents will result in deterioration of natural 
resources, will impose toxicity to aquatic fauna and flora, and will eventually threat human 
health. As a matter of fact many studies have linked the detection of pesticides in surface 
water, sediments, groundwater and biota with the presence of intensive agro-industrial 
activities like citrus fruit packaging plants (Ccanccapa et al., 2016; Masiá et al., 2013). 
Improper handling of agro-industrial effluents, including direct discarding in agricultural land 
(land-spreading) and natural water bodies may cause severe environmental pollution with 
potentially persistent and toxic compounds (Papadopoulou et al., 2018). Moreover, 
discharge in municipal wastewater treatment systems can result in accumulation of 
fungicides as the generic microbial community of these systems is not able to efficiently 
remove persistent fungicides like IMZ and TBZ contained in the above agro-industrial 
effluents (Campo et al., 2013). 

Thus, depuration of these effluents before environmental release should be a priority 
of industries that make use of pesticides. Nevertheless, an efficient and affordable method 
for pesticide depuration has not been introduced so far. Various methods have been studied 
for the depuration of these wastewaters that are mainly categorized to abiotic and biotic 
methodologies. 

 

3.1 ABIOTIC WASTEWATER TREATMENT METHODOLOGIES 
A plethora of abiotic processes have been studied for their efficiency in the depuration of 
pesticide contaminated wastewaters, including adsorption, evaporation, photocatalytic 
degradation and advanced oxidation processes.  
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Adsorption is a promising technique due to its low cost and operational simplicity 
which involves flexibility of usage, easy regeneration, sludge-free operation and no 
involvement of toxic intermediates (Yadav et al., 2021; Ahmad et al., 2010). However, most 
of the relevant research has been focused on removal of a single compound which is not 
applicable to real-world practices which mostly require the removal of diverse contaminants 
(N’Diaye et al., 2019; Ali, 2018; Njoku et al., 2014). Moreover, most of these studies concern 
aquatic solutions of pesticides and not actual wastewaters. High organic matter content, 
COD and inorganic salts that generally characterize effluents from agro-food industries, 
compete with pesticides for adsorption sites and tamper with the adsorption material 
(Wang and Wang, 2016). 

Evaporation ponds have also been studied on account of their simplicity and cost-
effectiveness especially for implementation in regions with high solar radiation levels 
(Amoatey et al., 2021). However, their application is hindered by environmental concerns 
arousing from overflow of wastewater, leakages via liners and evaporation of toxic 
compounds which may have an impact in flora and fauna including humans (Amoatey et al., 
2021). 

Advanced oxidation processes (AOP) have been thoroughly studied as useful 
pesticide-contaminated wastewater treatment technologies due to their ability to degrade a 
wide variety of organic compounds. Chemical oxidation refers to the use of oxidizing agents, 
such as the highly active hydroxyl radicals (OH·), that cause the decomposition of pesticide 
pollutants into biodegradable compounds, harmless products or CO2, water and inorganics 
(mineralization) (Morillo and Villaverde, 2017; Quiroz et al., 2011). Other oxidizing agents 
that are commonly used are ozone, hydrogen peroxide (H2O2) and chlorine chemical 
compounds like hypochlorites, chlorine and chlorine dioxide (Pavel and Gavrilescu, 2008). 
AOP is the combination of these oxidants with iron salts, semiconductors and/or ultraviolet-
visible irradiation in order to increase their depuration efficiency (Morillo and Villaverde, 
2017). (Photo-)Fenton processes and titanium dioxide (TiO2) photocatalysis are the most 
typical AOP techniques.  

The Fenton process has been commonly recalled for the depuration of pesticide 
contaminated effluents (Lopez-Loveira et al., 2019; Gar Alalm et al., 2015). Santiago et al. 
studied the efficiency of Fenton-based processes for the mineralization of IMZ contained in 
deionized water, simulated wastewater and effluents from the postharvest treatment of 
banana fruit. They concluded that the Fenton reactions coupled with UV irradiation (photo-
Fenton) were the most suitable approaches for the treatment of IMZ-contaminated 
wastewaters due to the high mineralization rates observed and the lower iron (Fe(II)) and 
H2O2  requirements compared to the Fenton procedure (Santiago et al., 2016). In a follow up 
study, Santiago et al. studied the factors that influence the efficiency of Fenton process and 
found that the most significant factor that determined the process was Fe(II) (Santiago et al., 
2018a). Moreover, they verified higher mineralization with photo-Fenton processes and they 
estimated an operational cost of 2.06 €/m3 for the treatment of 10 m3 IMZ-contaminated 
wastewater (Santiago et al., 2018a). García-Estrada et al, demonstrated the potential of 
metallurgical copper slag in the depuration of TBZ through heterogeneous photo-Fenton-like 
reaction (García-Estrada et al., 2020). López-Loveira et al., showed the potential of photo-
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Fenton processes when coupled with biological processes for the mineralization of IMZ in 
artificial wastewater (López-Loveira et al., 2017). Despite their high removal efficiency, 
(photo-) Fenton processes are characterized by several drawbacks including (i) high costs, (ii) 
risks related to H2O2 provision, storage and transport, (iii) accumulation of iron sludge, (iv) 
wasting reactions that reduce mineralization efficiency and (v) the potential formation of 
toxic intermediate compounds (Sirés et al., 2014). 

TiO2-based photocatalysis is a better studied AOP technique (Santiago et al., 2018b; Cruz 
et al., 2017; Xing et al., 2014; Lhomme et al., 2008).  TiO2 is a low cost, non-toxic and efficient 
catalyst for the depuration of pesticides from wastewaters (Bano et al., 2021). During TiO2-based 
photocatalysis, H2O2 molecules are separated into two hydroxyl radicals, which in turn interact 
with pesticide compounds. Molla et al. demonstrated the potential of TiO2-based 
photocatalysis against a water solution of the insecticide diazinon, with complete mineralization 
after 30 hrs of irradiation (Molla et al., 2020), whereas Sraw et al. tested the removal efficiency 
of TiO2 coated clay beads for the insecticide monocrotophos and noted 74% mineralization (Sraw 
et al., 2018). Jiménez-Tototzintle et al. showed the potential of biotreatment in combination with 
TiO2/H2O2 solar photocatalysis in the depuration of effluents from a citrus industry that 
contained the fungicides IMZ, TBZ and acetamiprid (Jiménez-Tototzintle et al., 2015). The main 
drawbacks of this methodology include (i) the high costs of the system construction and the high 
electrical energy requirements, (ii) the gradual reduction of the removal efficiency associated 
with the deposition of organic material on electrode’s surface that shortens its lifetime, (iii) the 
possible need for use of additional reagents, like electrolytes or H2O2 and (iv) the formation of 
slurry or toxic and reactive pesticide transformation products that need further treatment 
(Titchou et al., 2021; Sirés et al., 2014; Santiago et al., 2013).  

Another concern regarding the efficiency of AOP treatment methods is that they have 
been tested mostly against wastewaters containing very low pesticide concentrations (μg/L) 
which is orders of magnitude below those found in agro-industrial effluents (Jiménez et al., 
2013). Also, the majority of these studies were performed with distilled water instead of actual 
wastewaters which contain high organic matter and inorganic salts, that tend to interact with 
free radicals, reducing the mineralization of pesticide compounds (Bisaria et al., 2021; Brame et 
al., 2015). In fact, the few studies on real effluents are limited to fruit-packaging activities 
(García-Estrada et al., 2020; López-Loveira et al., 2017; Santiago et al., 2016; Jiménez-Tototzintle 
et al., 2015; Jiménez et al., 2013; Santiago et al., 2013) and a single study to seed coating 
effluents (Wen et al., 2018). Finally, for most industries the implementation of advanced 
treatment technologies for the depuration of pesticide contaminated effluents is practically 
impossible due to their high operational and capital cost expenses.  

 

3.2 BIOTIC WASTEWATER TREATMENT METHODOLOGIES 
The use of macro- and microorganisms in wastewater depuration has been proposed as an 
ecofriendly, low-cost alternative to chemical methodologies. 

Phytoremediation is a biotic approach used for the depuration of pesticide-
contaminated sites and it has been studied in regard to its efficiency and cost-effectiveness 
(Tarla et al., 2020). Plants can remove pesticides from wastewater by (i) root uptake and 
accumulation, (ii) vapor uptake from the surrounding atmosphere, (iii) diffusion through 
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plant surfaces, especially in floating leaf or free-floating plants and (iv) releasing enzymes 
and exudates for the direct degradation of pesticides or the enhancement of the 
degradation potential of the rhizosphere microbial community (Negrete-Bolagay et al., 
2021).  

Among the plants that have been tested for their depuration potential is industrial 
hemp (Cannabis sativa) which can effectively remove contaminants due to its porous and 
hydrophilic surface structure and tolerance to pesticides (Wu et al., 2021). Lv et al. 
demonstrated the removal of IMZ and tebuconazole in saturated constructed wetland 
mesocosms planted with 5 wetland plant species. The authors proposed two possible 
transformation pathways, either inside the wetland plants after uptake or in the mesocosm 
bed substrate by plant-stimulated microbial community (Lv et al., 2016). Hwang et al 
demonstrated the complete removal of atrazine in a wetland planted with Canna flaccida 
(Hwang et al., 2020). Even though phytoremediation is a sustainable method for the removal 
of pesticides from environmental matrices, it does not come without problems. The rather 
low transformation rates of most pesticides in plants, the potential phytotoxicity of several 
pesticides and need for addition of extra C and N sources are amongst the major limitations 
of this method (Ibañez et al., 2016).  

Biopurification systems (BPS) offer a simple, low cost and efficient solution for the 
depuration of pesticide-contaminated effluents. BPS can remove pesticide through 
adsorption and biodegradation processes (Vandermaesen et al., 2016). Several types of 
Biopurification systems have been developed like the biofilter, the Phyotbac ® and the 
biobed (De Wilde et al., 2007). The first reported biobed was used in Sweden for the 
handling of spillages during filling or washing of sprayers (Torstensson, 2000). Since then, 
many studies have explored the potential of biobeds for the treatment of pesticide-
contaminated wastewaters (Lescano et al., 2022; Kumari et al., 2021; Vischetti et al., 2020; 
Karas et al., 2015; Vischetti et al., 2012; Karanasios et al., 2010a).  

A shared feature of all BPS types and the key to their success is the organic packing 
material, the biomixture, a biologically active substrate that serves as pesticide adsorbent 
and as a source of an active microbial community able to effectively degrade a wide 
pesticide range (Domínguez-Rodríguez et al., 2021; Bergsveinson et al., 2018; Fogg et al., 
2003). The biomixture typically consists of soil, a lignocellulosic material and a humified 
organic substrate which reflects locally available material (De Wilde et al., 2007).  

Soil provides the microbial community and adsorption sites and should be rich in 
humus but low in clay content so as to allow high bioavailability of pesticides. Sniegowski 
and Springael studied the possibility of using pesticide-primed soil that is expected to carry 
pesticide-degrading microbes and showed improved degradation capacity of both parent 
compound and transformation products (Sniegowski and Springael, 2015).  

Lignocellulosic materials act as a carbon (C) and nitrogen (N) source for the 
microorganisms and stimulate the degradation of pesticides by promoting the production of 
broad-spectrum lignin-degrading enzymes (Karas et al., 2011). The most popular 
lignocellulosic material is straw, but depending on locally cultivated crops other materials 
have been tested as well like branches and stalks from grape pruning, olive leaves, corn 
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cobs, citrus peels and sunflower residues (Romero et al., 2019; Karanasios et al., 2010b; 
Vischetti et al., 2008) 

The humified material contributes an additional C and N source and numerous sites 
for pesticide sorption. Moreover, it helps maintaining aerobic conditions and regulates the 
pH and water holding capacity.  Peat was the humified material of choice for the original 
biomixture (Torstensson, 2000) but other materials like composts and spent mushroom 
substrate (SMS) have gained popularity as well. Various composted materials have been 
employed as biomixture components that mirror local agricultural practices like olive leaf 
and tree pruning, vine pruning, grape marc, cotton residue and seed, sheep manure or spent 
coffee grounds  (Omirou et al., 2012; Fenoll et al., 2011; Karanasios et al., 2010a; Monaci et 
al., 2009). Lately, SMS has been has been examined in many studies for pesticide depuration 
purposes (Alves et al., 2022; Álvarez-Martín et al., 2016; Rodríguez-Cruz et al., 2012). SMS is 
the readily available, complex organic residue that remains after mushroom harvest (Marín-
Benito et al., 2016; Herrero-Hernández et al., 2011). It is generated in large quantities by 
mushroom farms and its utilization in the frame of circular economy will contribute to tackle 
pesticide pollution in a sustainable way. Many studies have demonstrated the potential of 
SMS as a component of the biobed packing material (Karas et al., 2016b; Gao et al., 2015; 
Marín-Benito et al., 2012; Karanasios et al., 2010a) 

Often, full-scale biobed systems are covered with a layer of grass which helps in 
regulating the moisture of the biobed system by creating an upward transport of water. 
Furthermore, it acts as an adsorption site of pesticide molecules and it produces root 
exudates which may contribute to metabolic processes (Romero et al., 2019; Castillo et al., 
2008). 

Generally, biobeds consist of a meter deep pit, with is filled with the organic packing 
material. The bottom of the biobed can be sealed (lined biobed system) or not (inlined 
biobed system). An immediate asset of the lined system is the prevention of pesticide 
leaching to the bulk soil and potentially to groundwater. However sealing the bottom of the 
biobed system could result in imbalances in the biomixture moisture status, with drier 
surface layer (0-10 cm) and saturated deep layers which in turn will result in decreased 
microbial biomass (De Wilde et al., 2007). 

The microbiome of the biobed packing material is crucial for its efficiency, as it is 
responsible for the removal of pesticides.  Several methods have been previously employed 
to elucidate the role of microbial communities in the depurating capacity of biobed systems, 
such as measurement of microbial biomass carbon and microbial respiration (Marinozzi et 
al., 2013; Omirou et al., 2012; Karanasios et al., 2010b; Vischetti et al., 2008), estimation of 
the activity of a plethora of enzymes shown to be associated with pesticide transformation 
(Romero et al., 2019; Karas et al., 2016a; Marín-Benito et al., 2012; Karanasios et al., 2010b) 
and assessment of the abundance of phylogenetically distinct microbial taxa or genes via 
qPCR (Karas et al., 2016b). Despite the amount of literature, the structure and dynamics of 
the biobed microbiome remain hugely underexplored, and only recently has the microbial 
community composition of biobed systems been determined by amplicon sequencing 
approaches (Bergsveinson et al., 2018; Holmsgaard et al., 2017) and metagenomics and 
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metatranscriptomic analyses (Russell et al., 2021). Holmsgaard et al. in their study in an 
operational biopurification system, showed via pyrosequencing of 16S rRNA gene fragment 
that the microbial community  was dominated by Proteobacteria, Firmicutes, Actinobacteria 
and Bacteroidetes and diverse response were observed on account of wastewater 
application. (Holmsgaard et al., 2017). Bergsveinson et al. studied four biobeds systems with 
different design and variable applied pesticides. They found, through Illumina sequencing of 
16S rRNA gene fragment (bacteria) and ITS2 genomic region (fungi), that all biobed systems 
shared a core microbiome, which included the majority of most abundant bacterial phyla, 
such as Proteobacteria, Actinobacteria, Bacteroidota and Chloroflexi, and the fungal orders, 
like Hypocreales, Sordariales and Pleosporales (Bergsveinson et al., 2018). Lastly, Russell et 
al. in their study of microbial communities of two biobed systems by metagenomics analysis 
also demonstrated dominance of Proteobacteria (Russell et al., 2021). 

Beyond the phylogenetic composition of the biobed microbiome, the occurrence, 
distribution and activity of genes responsible of pesticide biodegradation have also been 
addressed. Biopurification systems are considered a hot spot of mobile genetic element and 
horizontal gene transfer. Previous studies have shown that biobeds that treat pesticide-
contaminated effluents are enriched in mobile genetic elements. Dealtry et al. studied the 
dynamics of MGEs in a biopurification system and reported high abundance of plasmids 
belonging to IncP-1, IncP-7, IncP-9, IncQ and IncW groups (Dealtry et al., 2014) while Stork et 
al, in their study of isoproturon degradation genes pdmAB also concluded that pesticide 
application induces high transposition of pesticide-catabolic traits between the members of 
the bacterial community (Storck et al., 2020). Dunon et al. demonstrated high abundance of 
IncP-1 and IS1071 due to pesticide treatment in an on-farm biopurification system (Dunon et 
al., 2013) and, in a later study, they demonstrated via metagenomics analysis, the role of 
IS1071 as a carrier of catabolic genes and a contributor of the shift of the microbial 
community towards pesticide biodegradation (Dunon et al., 2018).  

 The depuration potential of biobed systems can be greatly enhanced by inoculating 
with pesticide-degrading microorganisms. Karas et al. demonstrated increased performance 
in pilot biobed systems bioaugmented with bacteria able to rapidly degrade ortho-phenyl 
phenol, diphenylamine and TBZ (Karas et al., 2016b). Campos et al, showed accelerated 
biodegradation of iprodione (IPR) by an IPR-degrading Arthrobacter with or without the 
assistance of rhizosphere bacteria. Madrigal-Zúñiga et al showed increased performance of a 
biomixture bioaugmented with a white-rot fungus, Trametes versicolor, against the 
insecticide/nematicide carbofuran (Madrigal-Zúñiga et al., 2016). 

4 AIMS OF THE THESIS 
Agro-food processing industries use large amounts of fungicides in order to preserve 
produce quality during storage and transport (Omirou et al., 2012). The uncontrollable 
release of these effluents presents serious pesticide point-source pollution and poses a great 
environmental threat due to the high persistence and toxicity of the pesticides contained in 
those effluents on non-target organisms (Carvalho, 2017).  
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Through the years, many depuration methodologies have been studied but most of 
them have been limited to effluents from fruit packaging activities, while only one reported 
on the treatment of effluents from seed coating activities (Wen et al., 2018). Even though, 
abiotic methodologies have been studied for the removal of pesticides from agro-industrial 
effluents, their full implementation has not been accomplished due to their high operational 
costs and technological requirements, the formation of toxic by-products and poor results 
concerning mineralization (Sirés et al., 2014). In the absence of affordable and efficient 
alternative solutions, agro-food processing industries rely on certified companies for the ex 
situ treatment of their wastewaters as toxic effluents at a particularly high cost (0.7 – 3 € per 
L). Alternatively they discharge their effluents to municipal wastewater treatment facilities, 
which have limited pesticide removal capacity (Campo et al., 2013) or in adjacent 
agricultural land (land-spreading) and water systems compromising environmental quality 
(Papadopoulou et al., 2018). All of the above manifest the need for development and 
application of low-cost and appropriate methodologies for the decontamination of 
pesticide-contaminated agro-food wastewaters. 

Biological treatment systems like biobeds constitute a sustainable, economically 
viable and efficient solution. Based on the above, numerous studies have been conducted in 
Mediterranean countries for the depuration of effluents from fruit packaging industries by 
biobed systems (Delgado-Moreno et al., 2017; Omirou et al., 2012; Vischetti et al., 2012). 
Likewise, the laboratory of Plant and Environmental Biotechnology has been studying the 
utilization of biobed systems for the depuration of pesticide-contaminated effluents 
generated by local fruit packaging plants in lab assays (Campos et al., 2017; Karas et al., 
2016a, 2015) and full scale pilot biobed systems (Karas et al., 2016b). Despite the amount of 
literature, little is known about the removal potential of biobeds against recently introduced 
fungicides like FLD. Moreover, since the majority of research has been focused to fruit 
packaging industry effluents, nothing is known about the efficiency of biobeds against 
effluents produced by seed coating and bulb dipping activities which are characterized by 
low COD values and high concentrations of fungicides. 

The high depuration efficiency of biobeds is attributed to the microbes of the biobed 
packing material. Nevertheless, the microbial communities that develop in the biobed while 
it treats pesticide-contaminated effluents are yet unexplored. Up to date, the majority of 
research has been focused in evaluating microbial activity and biomass, without pointing out 
any connections between specific microbial groups and pesticide degradation (Romero et 
al., 2019; Diez et al., 2017; Marinozzi et al., 2013; Coppola et al., 2011). Considering the 
importance of microbes to the removal of pesticides, bioaugmentation of biobed packing 
material with pesticide degrading microorganisms is a promising practice that ensures high 
efficiency of the depuration process (Karas et al., 2016b). The laboratory of Plant and 
Environmental Biotechnology already contains a collection of bacteria that degrade 
fungicides commonly used by fruit packaging plants like the microbial consortium that 
degrades TBZ (Perruchon et al., 2017), Pseudomonas putida that can rapidly degrade 
diphenylamine (Perruchon et al., 2015), Sphingomonas haloaromaticamans that can 
metabolize ortho-phenylphenol and Arthrobacter and Paenarthrobacter sp that can degrade 
iprodione (Katsoula et al., 2020; Campos et al., 2015). 
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Considering all the above, the main aims of this thesis were: 

• to assess the capacity of biobeds for the depuration of pesticide contaminated 
effluents from seed producing, bulb handling and fruit packaging industries ,  

• to explore the composition of the microbiome of biobed systems and its response 
to continuous pesticide exposure,  

• to isolate microorganisms with the ability to degrade recalcitrant fungicides 
contained in those effluents  

This main aim was achieved through a series of studies involving microcosm, leaching 
column studies and enrichment cultures. Hence we first determined in lab microcosm 
studies the dissipation and adsorption of fungicides contained in the different agro-industrial 
effluents in an SMS-based biomixture (Chapter 2). Secondly, we employed a column leaching 
study to determine the capacity of the SMS-based biomixture to retain the pesticides 
contained in the different agro-industrial effluents and we explored the composition and 
response of the biobed microbiome under realistic pesticide loading conditions using 
advanced amplicon sequencing approaches (Chapter 3). Finally, we isolated a fungal strain 
with the ability to degrade IMZ, the first microorganism able to degrade this recalcitrant 
fungicide, and characterized its degrading capacity under different laboratory and 
bioengineering conditions (Chapter 4). This thesis offers the necessary background research 
needed for an extension of the use of biobeds for the treatment of pesticide-contaminated 
effluents from various agro-food industries and provides an efficient IMZ-degrading 
microorganism which could be exploited as an inoculum in biobeds, for optimization of their 
performance towards IMZ-contaminated effluents, or in biological wastewater treatment 
units treating higher wastewater volumes than biobeds. 
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Chapter 2 
 
Expanding the use of biobeds: 
Degradation and adsorption of 
pesticides contained in effluents 
from seed-coating, bulb 
disinfestation and fruit-packaging 
activities 
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Degradation and adsorption of pesticides contained in effluents from seed-coating, bulb 
disinfestation and fruit-packaging activities. Journal of Environmental Management 248, 
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1 INTRODUCTION 
Pesticides constitute one of the most important group of environmental pollutants with 
several of them listed as priority pollutants of natural water resources (European Union, 
2016). The pollution of surface water and groundwater systems by pesticides occurs by 
nonpoint and point sources. The later are major contributors of water pollution and occur 
during the implementation of poor agricultural practices while mixing and loading of 
pesticide solutions or when washing the sprayers (Cooper et al., 2016; Helweg et al., 2002; 
Müller et al., 2002). Recent studies suggested that agro-food industries that use pesticides 
act as point sources for the contamination of surface water systems (Ccanccapa et al., 2016; 
Masiá et al., 2013). Such industries include (a) fruit packaging plants that use fungicides like 
thiabendazole (TBZ) and fludioxonil (FLD) to protect fruits from fungal infestations during 
storage (Cerioni et al., 2017; D’Aquino et al., 2013), (b) seed producing industries which coat 
seeds with fungicides like carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), and FLD 
(Rothrock et al., 2012) and (c) bulb handling industries which employ bulb dipping in dense 
solutions of chlorothalonil (CHT), TBZ, and FLD to prevent fungal infestations (Cooper et al., 
2016; Clarkson and Hanks, 2012; Chastagner and DeBauw, 2011). The environmental peril by 
the uncontrolled release of the pesticide-contaminated wastewaters produced by those 
agro-industries has been acknowledged by the European Commission, which enforced the 
implementation of relevant wastewater treatment strategies (European Union, 2004). 
Despite that, little progress has been made on the treatment of such effluents. The few 
studies available have been limited to the treatment of wastewaters from fruit-packaging 
plants (Santiago et al., 2018a, 2018b; López-Loveira et al., 2017; Jiménez et al., 2013), while 
a single study recently reported on the treatment of wastewaters from seed-coating 
activities (Wen et al., 2018). Abiotic processes (i.e. Fenton, photo-Fenton processes, TiO2 
catalysis) combined or not with biological processes could eliminate pesticides contained in 
effluents from fruit-packaging plants. However the efficiency of these treatment methods 
was assessed at μg L−1 pesticide concentration levels, which are orders of magnitude below 
those commonly found in the aforementioned wastewaters (Jiménez et al., 2013). In 
addition, there are concerns about the production of oxidized intermediates with higher 
toxicity than the parent compounds (Santiago et al., 2018a; Sirtori et al., 2014). On top of 
that, nothing is known about the treatment of the effluents produced by seed-coating and 
bulb-dipping activities or the efficiency of such treatments on the removal of pesticides 
recently introduced in fruit-packaging plants like FLD. 

Biopurification systems like biobeds were initially proposed by Omirou et al. (2012) 
as a cost-effective and efficient solution for the depuration of wastewaters from the fruit-
packaging industry. They are simple biological systems initially introduced for the depuration 
of wastewaters produced by on-farm activities (Castillo et al., 2008). In their simplest form, 
biobeds constitute a pit on the ground lined with an impermeable layer and a drainage at 
the bottom, which is filled with an organic substrate (named “biomixture”) composed of soil, 
straw and a humified material (i.e. compost or peat) (De Wilde et al., 2007). The biomixture, 
the core of those systems, supports a highly diverse and catabolically versatile microbial 
community (Bergsveinson et al., 2018; Holmsgaard et al., 2017) and has high retention 
capacity for pesticides that are not biodegradable (Castillo and Torstensson, 2007).  
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The main aim of this study was to evaluate the degradation and adsorption of pesticides 
contained in effluents from seed coating, bulb dipping, and fruit-packing activities on a 
biomixture and comparatively on the soil used for the preparation of the biomixture. The 
choice of the tested biomixture, composed of soil, straw, and spent mushroom substrate 
(SMS), was based on previous studies which had shown its high degradation capacity for 
TBZ, imazalil, diphenylamine, and ortho-phenylphenol used in fruit-packaging plants (Karas 
et al., 2015). This constitutes the first evaluation step towards the implementation of 
biobeds for the treatment of such effluents (Chapter 3). 

 

2 MATERIALS AND METHODS 

2.1 PESTICIDES 
Analytical standards of CBX (99.9% Pestanal ®), MET-M (98.4%, Pestanal ®), FLD (99.9% 
Pestanal ®), TBZ (99% Pestanal ®) and CHT (99.7% Pestanal ®) were purchased from Sigma-
Aldrich, while FLX (99.9%, BAS 700 F) was provided by BASF Hellas. The chemical structures 
and the physicochemical properties of the studied pesticides are given in Table 2.1. Pesticide 
stock solutions (1000 mg L−1) in methanol (for CBX, MET-M, FLD and TBZ) or acetonitrile (for 
FLX and CHT) were prepared and used for the preparation of serial dilutions with 
concentrations ranging from 0.1 to 10 mg L−1, which were used for analytical purposes. The 
commercial formulations VITAVAX® 20/20 FS (CBX), APRON® 350 ES (MET-M), CELEST® 2,5 
FS (FLD), SYSTIVA® 33.3 FS (FLX), TECTO® 50 SC (TBZ) and DACONIL® 500 SC (CHT) were used 
in the degradation study.  

Table 2.1 The physicochemical properties (water solubility, vapor pressure, Log octanol-water partition 
coefficient (Log Pow)) and environmental fate parameters (Degradation Time 50% (DT50), freundlich adsorption 
coefficient normalized for organic carbon content (Kfoc)) of the pesticides used in the current study (adapted by 
the (“PPDB - Pesticide Properties Database. Accessed on 2021-11-15”). 

Pesticide Chemical 
structure 

Water 
Solubility 
(mg L−1) 

Vapor Pressure 
(mPa) 

Log 
Pow 

DT50 
(days) 

Kfoc  
(mL g−1) 

Carboxin 

 

134 0.02 2.3 0.07–1.68 123–213 

Metalaxyl-M 

 

26000 3.3 1.71 1.38–73.1 20–284 

Fluxapyroxad 

 

3.44 2.70Ε-06 3.13 53–424 320–1101 

Thiabendazole 

 

30 5.30Ε-04 2.39 558-1000a 580–3921 
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Chlorothalonil 

 

0.81 7.60Ε-02 2.94 0.44–31.6 330–7000 

Fludioxonil 

 

1.8 3.90Ε-04 4.12 119–365 7500–
210000 

aData from field studies 

 

2.2 SUBSTRATES PREPARATION 
The soil used in the current study was collected from the top 20 cm of a field site of the 
Hellenic Agricultural Organization-DEMETER in Larisa, Greece (39°63′27''N, 22°36′74''E). The 
soil was sieved (2mm mesh) to homogenize and stored at 4 °C until used. Wheat straw was 
acquired from a local farm in Larissa, Greece and SMS was obtained from a Pleurotus 
ostreatus edible mushroom production unit (Mpoulogeorgos, Trikala, Greece). Straw and 
SMS were chopped to small pieces (ca. 1-2 cm) and they were then mixed with soil at 
volumetric ratios of 25% straw, 50% SMS and 25% soil. Upon its preparation, the biomixture 
was left to mature at room temperature for a month. During this time, it was regularly 
mixed and hydrated. The physicochemical properties of the individual components and the 
final biomixture were determined as described in Karas et al., (2015) (Table 2.2). 

Table 2.2 The physicochemical properties of the individual components and the biobed packing material used in 
the current study 

Materials  pH Organic Carbon (%) Total N (%) C/N 
Soil 7.56 1.05 0.13 8.1 
Straw 7.15 79.2 0.80 99 
Spent Mushroom Substrate 6.83 71.0 1.20 59.2 
Biobed packing material 7.10 29.3 0.30 97.7 

 

2.3 PESTICIDES DEGRADATION IN BIOMIXTURE AND SOIL 

2.3.1 EXPERIMENTAL SETUP 
A bulk load (6.6 kg) of biomixture and soil were prepared and separated into 11 samples 
(600 g). The first five samples from each matrix (soil and biomixture) were individually 
treated with aqueous solutions of CBX, MET-M, FLX, TBZ, and CHT aiming to final 
concentrations of 52, 28, 34, 20 and 50 mg of the active substance kg−1 of solid matrix (dry 
weight) respectively. The next three samples from each matrix were treated with pesticides 
mixtures, in accordance with their industrial use: (a) CBX + MET-M (cotton seed-coating) (b) 
CBX+MET-M+FLX+FLD (cotton and wheat seed-coating) and (c) TBZ+CHT+FLD (bulb-dipping). 
The nominal concentrations of CBX, MET-M, FLX, TBZ and CHT in the matrices treated with 
pesticide mixtures were as given above (individually applied in the studied matrices), while 
for FLD the nominal concentrations of 10 and 20 mg kg−1 were used representing its 
concentration in effluents obtained from seed-coating and bulb-dipping activities, 
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respectively. The three final samples from each matrix were treated with aqueous solutions 
of FLD aiming to concentrations of 10, 20 and 150 mg FLD kg−1 matrix d.w. reflecting a direct 
disposal scenario of FLD-containing wastewaters produced by seed-coating, bulb-dipping, 
and fruit-packaging activities, respectively.  

The nominal concentration levels used in the degradation study were calculated 
based on a realistic loading scenario of a 30 m3 biobed, which receives in total 2, 3 and 10 m3 
of wastewaters from seed-coating, bulb-dipping and fruit-packing activities respectively. 
Regarding seed-coating the recommended dose rates of FLD, MET-M, FLX and CBX, are 200, 
40, 50 and 150 mL of the formulation (see above) in 500 mL water per 100 kg of seeds, 
respectively. Based on previous measurements of our laboratory in wastewaters produced 
by a local seed-coating industry, approximately 1% of the applied pesticides ends up in the 
wastewaters. For the bulb dipping activities the recommended concentration levels of the 
studied pesticides in the treatment solutions were 275 mg L−1 for CHT, 110 mg L−1 for TBZ 
and 90 mg L−1 for FLD. Finally, the recommended concentration level of FLD in the treatment 
solution used in fruit packing plants is 3000 mg L−1 of which ca. 10% ends up in the 
wastewater (in accordance with our laboratory measurements in relevant wastewaters) 
considering loss of the fungicide due to solution recirculation and retention on the surface of 
the treated fruits.  

Upon pesticides application the treated matrices were mixed by hand to 
homogenize and the moisture content was adjusted to 40% of the water holding capacity. 
All treated samples were then further separated into 27 sub-samples (20 g each placed in 
aerated plastic bags) which were incubated in the dark at 25 °C for 100 days. The moisture 
content of the treated matrices was maintained by regular additions of deionised water. 
Immediately after pesticide application and at fixed intervals thereafter, triplicate sub-
samples from each treatment were removed and stored at −20 °C until analyzed for 
pesticide residues. 

2.3.2 PESTICIDES DEGRADATION KINETICS 
The four kinetic models proposed by the FOCUS workgroup on pesticide degradation kinetics 
(FOCUS, 2006) were used for calculating degradation kinetics. The single first order (SFO) 
kinetic model and the biphasic models hockey-stick (HS), first order multi-compartment 
(FOMC) and double first order in parallel (DFOP) model were used. Details on the 
mathematical formulas used by each model are given in Supplementary Table 2.S1. The χ2 
test as well as visual inspection and the distribution of the residuals were used as criteria to 
assess the agreement between calculated and observed data for a given fit. In all cases, the 
kinetic model selected to describe the degradation data was the one with the lower χ2 value 
and the best fitted residuals to the calculated curve. The analysis was carried out in the R (R 
Core Team, 2018) Studio version 3.4.4, utilizing the package mkin (Ranke, 2019) version 
0.9.47.1.  
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2.4 PESTICIDES ADSORPTION IN BIOMIXTURE AND SOIL 

2.4.1 EXPERIMENTAL SETUP 
The adsorption of the studied pesticides in biomixture and soil was determined with the 
standard batch equilibrium method according to the OECD guideline 106 (OECD, 2000). Soil 
and biomixture were air-dried and stored at room temperature until used. Stock solutions of 
each pesticide (10000 μg mL−1) in acetone or methanol (only TBZ) were prepared using 
analytical standards. Preliminary kinetic studies at a single concentration level (6 mg L−1 for 
CBX, MET-M, FLX and TBZ; 0.6 and 0.4 mg L−1 for FLD and CHT, respectively) were employed 
to determine the most appropriate substrate:solution ratios and equilibration times for each 
pesticide (results given in Supplementary Table  2.S2. For the determination of the 
adsorption parameters appropriate amounts of the pesticide stock solutions were dissolved 
in 0.01M CaCl2 for the preparation of a series of solutions with pesticide concentrations of 2, 
4, 6, 8, and 10 mg L−1. Sole exceptions were CHT and FLD for which the concentration levels 
ranged from 0.1 to 0.8 and 0.2 to 1.0 mg L−1, respectively, to account for their low water 
solubility. In all cases the amount of organic solvent in the solution phase never exceeded 
0.1%. For each pesticide 15 samples of soil or biomixture (1-2 g d.w.) were placed in glass 
flasks and mixed in triplicates with appropriate volumes of the different pesticide solutions 
to achieve the selected solid:solution ratios (listed in Supplementary Table  2.S2). Blank 
samples containing only pesticide solution and no soil or biomixture were also included to 
assess pesticides' stability and the absence of potential pesticide adsorption on the glass 
surfaces. All samples were shaken in an orbital shaker (200 rpm) at room temperature until 
equilibrium was reached (8-12 h, see Supplementary Table  2.S2), centrifuged at 7500 rpm 
for 5 min and the supernatant collected was used for the determination of pesticide levels. 

2.4.2 ADSORPTION DATA ANALYSIS 
The linear form of the Freundlich equation (Eqn 1) was used to describe the adsorption of 
pesticides on soil and biomixture: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝐾𝐾𝑠𝑠 (𝑒𝑒𝑒𝑒) =  𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝐾𝐾𝐹𝐹 + 1/𝑛𝑛 ∗  𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝑎𝑎                    (Eqn 1) 

where adsCs (eq)  is the amount of the test substance absorbed (μg g−1) in equilibrium,  

adsCaq (eq) is the adsorbate equilibrium concentration (μg g−1),  

adsKF is the Freundlich adsorption coefficient and  

1/n is the freundlich equation exponent (OECD, 2000; Tran et al., 2017)  

 

2.5 PESTICIDE RESIDUE ANALYSIS 

2.5.1 PESTICIDES EXTRACTION FROM AQUEOUS SAMPLES 
A liquid-liquid extraction method was used for the extraction of pesticides from the aqueous 
samples obtained from the adsorption study. For CBX, MET-M, and FLD extraction, 2 mL of 
the aqueous samples were mixed with 4 mL of methanol, while for TBZ 2 mL of the aqueous 
samples was mixed with 6 mL of methanol. FLX and CHT were extracted as described above 

79 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



with the only exception that 4 mL of acetonitrile instead of methanol were used. The 
mixtures obtained were shaken vigorously for 30 s and the extract was passed through a 
0.45 μm syringe filter (PTFE Syringe Filter). The filtrate was collected and stored at 20 °C until 
analyzed.  

2.5.2 PESTICIDES EXTRACTION FROM SOIL AND BIOMIXTURE 
CBX, FLD, and MET-M were extracted from 5 g of biomixture and soil with 20 mL of 
methanol. The mixture was agitated for 1 h in an orbital shaker at 300 rpm and then 
centrifuged at 7500 rpm for 5 min. The supernatant was collected and stored at −20 °C. For 
the extraction of FLX and CHT the same procedure was followed with the sole difference 
that acetonitrile instead of methanol was used. TBZ extraction was performed as described 
by Karas et al. (2015). In all cases, the final extracts were passed through a syringe filter 0.45 
μm (PTFE Syringe Filter) and analyzed by HPLC. 

2.5.3 VALIDATION OF THE PESTICIDES EXTRACTION METHODS 
Analyses of 0.01M CaCl2 samples fortified with each of the studied pesticides at three 
concentration levels (10, 1 and 0.1 mg L−1) assessed the efficiency of the extraction method 
used. In accordance, analyses of soil and biomixture samples fortified at three concentration 
levels (10, 1 and 0.1 mg kg−1) evaluated the efficiency of the respective extraction methods. 
Triplicates for each compound and concentration level were extracted as described above 
and the pesticide levels were determined by HPLC. The mean percentage recoveries for CBX, 
MET-M, FLX, FLD and CHT in soil samples were 91.7%, 91.4%, 105.2%, 110.0% and 89.7%, 
respectively (CV≤12.4%), while the corresponding values in biomixture samples were 89.2%, 
87.5%, 95.7%, 81.9% and 101.3% (CV≤14.1%) respectively. Similarly, the mean percentage 
recoveries for CBX, MET-M, FLX, FLD, and CHT in the aqueous samples were 80%, 92.1%, 
105.0%, 98.2% and 89.3% respectively (CV≤18.1%).  

2.5.4 HPLC ANALYSIS 
All extracts were analyzed in a Shimatzu HPLC-DAD system equipped with a Grace Smart RP 
C18 (150mm×4.6 mm). CBX and FLD were detected at 207 nm using a mobile phase of 
methanol/water with different strengths (60/40 and 70/30 v/v respectively) and retention 
times of 5.6 and 5.8 min respectively. MET-M was detected at 202 nm using a mobile phase 
of 65/35 methanol/water solution (by volume) with a retention time of 5.5 min. FLX and CHT 
were detected at 230 nm using a mobile phase of 70/30 acetonitrile/water (plus 0.1% 
phosphoric acid for CHT) and showed retention times of 3.8 and 3.5 min respectively. TBZ 
was detected at 254 nm using a mobile phase of 39/60.5/0.5 acetonitrile/water/25% NH3 
solution (by volume) and had a retention time of 3.6 min. In all cases a flow rate of 1 mL 
min−1 was used, except for CHT for which the flow rate was adjusted to 1.4 mL min−1. 

 

2.6 STATISTICAL ANALYSIS 
Significant differences (level of significance 5%) in pesticides degradation rates (kdeg and k1) 
in biomixture vs soil were determined with student's t-test. The confidence intervals of the 
degradation rates obtained by fitting the kinetic models to the degradation data were 
converted to standard deviations using the Eqn 2: 
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𝑆𝑆𝑆𝑆 =  √𝑁𝑁 × (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)/3.92        (Eqn 2) 

where N=sample size and 3.92 is the standard error for a 95% confidence interval. 
Correlations between adsorption (kf) and degradation parameters (DT50) and between 
adsorption (kf) and pesticide properties (water solubility, Log Pow) were determined by 
Pearson's and Spearman's correlation tests using the R Studio version 3.5.0 (R Core Team, 
2018). 

 

3 RESULTS 

3.1 PESTICIDE DEGRADATION 

3.1.1 DEGRADATION OF PESTICIDES USED IN SEED-COATING ACTIVITIES 
The degradation patterns of the different pesticides used in seed-coating activities are 
presented in Figure 2.1. The SFO model in most cases provided adequate fit to the 
degradation data with the exceptions of MET-M and CBX, where the HS model provided a 
better fit to their degradation pattern (Table 2.3). CBX was the least persistent compound 
with DT50 values ranging from 2.7 days in biomixture, to 12.6 days in soil. MET-M (DT50 = 31.3 
– 74.8 days) and FLD (42.4 – 152.2 (extrapolated) days) showed moderate persistence. FLX 
was the most persistent compound with extrapolated DT50 values ranging from 142.9 days in 
biomixture to 784 days in soil.  

Pesticides degradation was faster in the biomixture compared to soil. This was clear 
for CBX and FLD at both individual (p < 0.05) and combined application schemes (p < 0.05 for 
CBX when co-applied with MET-M). For example, FLD showed DT50 values of 42.4–52.9 days 
in the biomixture and 92.9–152.2 days in soil (Table 3). MET-M showed significantly higher 
DT50 (p < 0.05) in soil compared to the biomixture only when co-applied with the other seed-
coating pesticides. This is nicely illustrated for MET-M with DT50 values of 35.3 and 47.5 days 
in the biomixture when applied with the other seed-coating pesticides (quadruple mixture) 
or just with CBX (double mixture) respectively, compared to its corresponding soil DT50 
values of 74.8 and 57.7 days (Table 2.3).  

In most cases, the application of seed-coating pesticides in double or quadruple 
mixtures resulted in higher DT50 values. In particular FLX (p < 0.001) and FLD (p < 0.05), 
showed significantly higher DT50 values in soil treated with the pesticides mixtures (DT50 > 
365 and 54.9 – 152.2 days) compared to their individual applications (DT50 = 142.9 – 150.4 
and 42.4 – 92.9 days). An exception to this was CBX whose degradation was either not 
significantly affected (biomixture, p=0.521) or significantly accelerated (soil, p < 0.05) when 
applied in quadruple pesticide mixtures (DT50 3.0 and 8.2 days, respectively) (Table 2.3). 
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Figure 2.1 The degradation of carboxin in biomixture (A) and soil (B), metalaxyl-M in biomixture (C) and soil (D), 
fluxapyroxad (E) and fludioxonil (F), all used in seed-coating activities. Degradation of pesticides in biomixture 
(BMX) is designated with open symbols and solid lines and in soil with closed symbols and dashed lines. 
Pesticides where applied individually (Ind) (○,●) or co-applied in double (Dmix, carboxin + metalaxyl-M, △, ▲) or 
quadruple mixtures (Qmix, carboxin + metalaxyl-M + fluxapyroxad + fludioxonil, □, ■) Symbols represent data 
and lines the theoretical degradation kinetics. 
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3.1.2 DEGRADATION OF PESTICIDES ISED IN BULB-DIPPING ACTIVITIES 
The degradation patterns of the different pesticides used in bulb-dipping activities are 
presented in Figure 2.2. The SFO provided the best fit to the degradation data of FLD (Table 
2.3). The degradation of CHT was best described by the SFO (individual application) or the HS 
model (combined application scheme). Regarding TBZ, its degradation in the biomixture and 
soil was best described by the SFO and the HS model respectively. CHT was the least 
persistent compound both in biomixture (DT50 = 2.3 – 2.6 days) and soil (DT50 = 11.8 – 16.7 
days). TBZ showed intermediate persistence (DT50 = 43.3 – 199.3 days), and FLD, this time 
applied at a nominal dose of 20 mg kg−1, was the most persistent pesticide of the bulb-
disinfestation industry (DT50 = 85.7 – 254.7 days) (Table 2.3).  

All pesticides used in bulb-dipping activities showed shorter DT50 values in 
biomixture compared to soil (p < 0.05) regardless of the application scheme employed 
(individual or mixtures). For example the DT50 values of CHT in the biomixture, for individual 
and mixed application schemes, were 2.6 and 2.3 days respectively, compared to their 
corresponding DT50 values of 16.7 and 11.8 days (p < 0.01) in soil. Co-application of TBZ and 
FLD with CHT increased the persistence of the first two compounds in both tested matrices. 
Hence the DT50 of TBZ increased significantly from 45.2 and 43.3 days, when applied 
individually in the biomixture (p < 0.05) and in the soil (p < 0.01) respectively, to 119 and 
199.3 days when applied as a mixture with the other two fungicides. On the contrary the 
persistence of CHT was not significantly affected (p > 0.05) by its co-application with TBZ and 
FLD (Table 2.3).  

 

Figure 2.2 The degradation of chlorothalonil (A), thiabendazole (B) and fludioxonil (C) used in bulb-dipping 
activities in biomixture (BMX) (open symbols, solid line) and soil (S) (closed symbols, dashed line) when applied 
individually (Ind) (○,●) or in mixture (Mix) (chlorothalonil +thiabendazole + fludioxonil, □, ■). Symbols represent 
data and lines the theoretical degradation kinetics. 

83 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



3.1.3 THE DEGRADATION OF FLD IN SOIL AND BIOMIXTURE 
The degradation of FLD when applied at 150 mg kg−1, simulating the disposal of effluents 
from the fruit-packaging industry was best described by the SFO model (Figure 2.3, Table 
2.3). At this high application rate FLD showed a significantly higher (p < 0.05) DT50 in the 
biomixture (107.6 d) compared to its individual application in the same material at lower 
rates (10 and 20 mg kg−1) as seed-coating (42.4 days) or bulb-dipping fungicide (85.7 days). 
The same dose-dependent degradation pattern was also evident in soil with significantly 
lower DT50 values (p < 0.01) observed at the lowest dose rates (10 and 20 mg kg−1). The DT50 
of FLD was over-doubled in soil (276.2 days) compared to the biomixture (107.6 days). 

 

Figure 2.3 The degradation of fludioxonil when applied at 150 mg kg−1 in biomixture (○) and soil (●). 
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Table 2.3 The degradation kinetic parameters (DT50, kdeg or k1/k2 and χ2) of carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), chlorothalonil (CHT), thiabendazole (TBZ) and 
fludioxonil (FLD) in biomixture and soil, applied singly (Individual) or in mixtures (Double or Quadruple) as calculated by fitting the most appropriate kinetic model. The type of agro-industrial 
activities associated with each pesticide treatment is also provided. 

Activities   Application Biomixture Soil 

Model χ2 (%) Kdeg (d
-1) k1 (d

-1) k2 (d-1) DT50 (days) Model χ2 (%) Kdeg (d
-1) k1 (d

-1) k2 (d-1) DT50 (days) 

Se
ed

 C
oa

tin
g 

CBX Individual SFO 23.1 0.262 - - 2.65 HS 5.12 - 0.054 0.2639 12.6 
CBX Double SFO 5.85 0.156 - - 4.44 SFO 13.7 0.104 - - 6.67 
CBX Quadruple SFO 5.67 0.229 - - 3.03 SFO 8.16 0.085 - - 8.18 

MET-M Individual SFO  10.76  0.022 - - 31.3  HS  3.16 - 0.014 0.056 31.9 
MET-M Double HS  4.15 - 0.014 0.035 47.5  SFO  11.93 0.012 - - 57.7 
MET-M Quadruple SFO  6.85 0.02 - - 35.3  SFO  8.78 0.009 - - 74.8 

FLX Individual SFO  5.05 0.005 - - 142.9  SFO  1.71 0.001 - - 150.4  
FLX Quadruple SFO  6.06  0.001 - - 576.5  SFO  1.08 0.0009 - - 784.1  

FLD Individual SFO  7.88  0.016 - - 42.4  SFO  4.61  0.007 - - 92.9 
FLD Quadruple SFO  4.96  0.013 - - 54.9  SFO  4.92 0.005 - - 152.2  

Bu
lb

 D
ip

pi
ng

 

CHT Individual SFO  10.03  0.264 - - 2.63 SFO  4.27  0.042 - - 16.7 
CHT Mixed HS  10.05  - 0.296 0.046 2.34  HS  5.48 - 0.103 0.034 11.8 

TBZ Individual SFO  11.53  0.015 - - 45.2 HS  2.35 - 0.16 0.003 43.3 
TBZ Mixed SFO  3.37  0.006 - - 119.0  HS  2.84 - 0.096 0.002 199.3  

FLD Individual SFO  7.89 0.008 - - 85.73  SFO  3.41  0.006 - - 120  
FLD Mixed SFO  5.45 0.007 - - 98.37  SFO  2.86  0.003 - - 254.7  

Fr
ui

t 
Pa

ck
ag

in
g 

FLD Individual SFO  8.34 0.006 - - 107.6  SFO  1.80  0.003 - - 276.2  
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3.2 PESTICIDES ADSORPTION 
Pesticide adsorption in all cases was adequately described by the Freundlich equation (r2 > 
0.90) (Figure 2.4). MET-M was the least adsorbed compound with Kf values of 1.15 and 3.2 
mL g−1 in soil and biomixture, respectively (Table 2.4). CBX and FLX showed intermediate 
adsorption affinity with Kf values of 12.4 and 7.5 mL g−1 in soil respectively, compared to 
22.97 and 41.8 mL g−1 in biomixture (Table 2.4). CHT showed moderate to high adsorption 
affinity with Kf values of 14.76 and 94.9 mL g−1 in soil and biomixture, respectively. TBZ and 
FLD showed the strongest adsorption with Kf values of 26.6 and 31.2 mL g−1 in soil and 104.6 
and 123.3 mL g−1 in the biomixture (Table 2.4). All pesticides showed multiple folds higher 
adsorption affinity in the biomixture (Kf = 3.23 – 123.3 mL g−1) vs soil (Kf = 1.15 – 31.2 mL g−1).  

Correlation tests identified significant positive correlations between the logPow of 
the studied pesticides and their Kf values in both biomixture (0.740, p < 0.05) and soil (0.780, 
p < 0.05), and a significant negative correlation between the water solubility of the studied 
compounds and their Kf values in biomixture (-0.886, p < 0.01) and soil (-0.771, p < 0.05). 

 

 

Figure 2.4 Adsorption isotherms of carboxin (A), metalaxyl-M (B), fluxapyroxad (C), chlorothalonil (D), 
thiabendazole (E) and fludioxonil (F) in soil (●) and biomixture (○). Each point is the mean of three replicates ± 
the standard deviation. Symbols represent data and lines the theoretical degradation kinetics. 
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Table 2.4 The adsorption parameters (Kf, n) calculated by using the Freundlich equation to describe the 
adsorption of carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), chlorothalonil (CHT), thiabendazole 
(TBZ) and fludioxonil (FLD) in biomixture and soil. 

Pesticides Biomixture Soil 

r2 KF (mL g-1) KFoc (mL g-1) n r2 KF (mL g-1) KFoc (mL g-1) n 

CBX 0.982 22.97 78.4 1.416 0.961 12.9 1183.34 2.011 
MET-M 0.998 3.23 11.03 1.595 0.993 1.15 109.30 2.260 
FLX 0.999 41.76 142.5 1.582 0.960 7.53 716.76 1.994 
CHT 0.933 94.94 324 1.595 0.970 14.76 1406.00 1.199 
TBZ 0.987 104.60 357.1 1.011 0.935 26.60 2532.86 0.839 
FLD 0.969 123.30 420.7 2.183 0.995 31.20 2972.00 2.100 

 

4 DISCUSSION 

4.1 PESTICIDE DEGRADATION IN BIOMIXTURE AND SOIL 
The lack of established, efficient, and economically viable methods for the treatment of 
pesticide-contaminated agro-industrial wastewaters renders the development of systems 
for their detoxification a necessity. Bio-based treatment systems like biobeds appear as a 
possible and sustainable solution. In this context we tested the degradation and adsorption 
of pesticides contained in such agro-industrial effluents in a biomixture, known to be 
effective in the degradation of pesticides used in fruit-packaging industry (Karas et al., 2016), 
and comparatively in soil, a matrix considered as the natural buffer for pesticides released in 
the environment.  

The four fungicides used in seed-coating activities showed the same order of 
persistence in biomixture and soil. CBX was the least persistent, followed by MET-M, while 
FLD and FLX were the most persistent compounds. Our findings are in agreement with 
previous degradation studies in soil, while literature data for their degradation in 
biomixtures are available only for MET-M and FLD. Regarding CBX, previous studies reported 
a rapid degradation in soil within 10 – 14 days, although, DT50 values were not calculated 
(Balasubramanya and Patil, 1980; Chin et al., 1970), while recent regulatory studies reported 
soil DT50 at 20 °C of 0.6 – 1.68 days (EFSA, 2010). Regarding MET-M, Karanasios et al., 
(2010b) tested its degradation in a biomixture composed of soil, straw and SMS from 
Agaricus bisporus when applied in a mixture with 7 other pesticides and reported a DT50 of 
34.7 days, which is similar to the DT50 (35.4 days) observed in the current study when MET-
M was applied in quadruple mixture (Table 2.3). The degradation of FLX in biomixtures has 
not been studied before. However, previous degradation studies of FLX in soil are in line 
with our findings with a DT50 = 157.6 days (Li et al., 2015). Similarly, Wu et al., (2015) studied 
the soil degradation of FLX at different application rates (0.75 and 7.5 mg kg-) and reported 
DT50 values of 158 and 385 days, respectively. 

Similarly to the seed-coating pesticides, the fungicides used in bulb-dipping activities 
showed the same order of persistence in both studied matrices. CHT was the least 
persistent, while TBZ and FLD showed moderate to high persistence. Concerning CHT the 
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DT50 values observed are within the range reported in the literature. For example, DT50 
values ranged from<1 day to 13.1 days in soil (Regitano et al., 2001; Souza et al., 2017) and 
from 2 to 12.2 days in biomixtures (Fogg et al., 2003a, 2003b) (Fogg et al., 2003a, 2003b). 
Similarly, the DT50 values of TBZ observed in our study (45.2 and 43.3 days in soil and 
biomixture, respectively) are in agreement with previous studies. In particular Karas et al., 
(2015) studied the degradation of TBZ in a biomixture, with the same composition as in our 
study, and in soil and reported DT50 values of 28.3 and 31.7 days respectively.  

FLD was the sole pesticide that is used in all agro-industrial activities, although, at 
different application rates. In this frame we tested its degradation at various application 
rates which represent its use in seed coating, bulb-dipping and fruit-packaging activities, 
respectively. The degradation of FLD in both matrices followed a dose-dependent pattern 
with increasing DT50 values at increasing dose rates. A series of degradation studies by the 
same group reported DT50 values of 50 and 115.5 days for FLD in a biomixture treated at 
rates of 20 (Coppola et al., 2011) and 50 mg kg−1 (Marinozzi et al., 2013) respectively. Several 
previous studies in soil and biomixtures have reported similar dose-dependent degradation 
patterns for CHT, isoproturon, iprodione and terbuthylazine (Fogg et al., 2003b; Karanasios 
et al., 2012). This has been attributed to a potential inhibitory effect of pesticides (Vischetti 
et al., 2008) or their transformation products (Fogg et al., 2003b) to the microbial 
community resulting in reduced biodegradation rates. 

A faster degradation of CBX, FLD, TBZ and CHT in biomixture compared to soil was 
evident when pesticides were applied individually. The superior degradation capacity of the 
biomixture over soil extended to all studied pesticides when the application of pesticide 
mixtures was considered. Our findings come to support several previous studies which have 
documented the higher degradation capacity of biomixtures over soil for a wide range of 
pesticides (Lescano et al., 2018; Karanasios et al., 2010a, 2010b; Fogg et al., 2003a, 2003b) 
(Fogg et al., 2003a, 2003b; Karanasios et al., 2010a, 2010b; Lescano et al., 2018). 

Another interesting aspect was the degradation behavior of the different pesticides 
when applied individually or in mixtures, the latter representing a scenario more relevant to 
the practices followed by the different agro-industries. In line with previous studies, the 
application of pesticides in mixtures delayed the degradation of the individual compounds in 
most cases (Fogg et al., 2004, 2003a). Exceptions to this were CBX and CHT which showed 
similar degradation rates when applied individually or in mixtures with the other pesticides. 
The decrease in the degradation of TBZ and FLD when co-applied with CHT, but not of CHT 
itself when co-applied with these fungicides, suggest an inhibitory effect of the latter to the 
degradation of TBZ and FLD. Previous studies have reported an inhibitory effect of CHT to 
the degradation of other co-applied pesticides in biomixtures (Fogg et al., 2003b) and in soil 
(Singh et al., 2002; Chen et al., 2001). This has been attributed to the production of hydroxy-
CHT, the main soil derivative of CHT, which is known to have adverse effects on soil 
microorganisms (Zhang et al., 2016; Wu et al., 2014). Another deviation from the general 
trend was the degradation of MET-M which was hindered by the co-presence of the other 
pesticides used in seed-coating activities (ie. CBX, FXD, FLX) only in soil and not in the 
biomixture. In line with this Fogg et al., (2003b) observed that the inhibitory effect of CHT to 
isoproturon degradation was evident only in soil but it was buffered in the biomixture. 
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4.2 PESTICIDE ASDORPTION IN BIOMIXTURE AND SOIL 
The adsorption of the pesticides contained in effluents from different agro-food industries in 
a biomixture and in soil was also determined. In line with several previous studies, all tested 
pesticides, regardless of their physicochemical properties, showed weaker adsorption 
affinity in soil compared to the biomixture (Karanasios et al., 2010a, 2010b; Kravvariti et al., 
2010; Henriksen et al., 2003). The higher adsorption capacity of the biomixture compared to 
soil has been attributed to its higher organic carbon content which provides more 
adsorption sites for the non-polar pesticides (De Wilde et al., 2009). Soil organic matter 
constitutes the main adsorption surface for non-polar pesticides, although polar pesticides 
also interact with the soil organic matter surfaces to a lower extent (Wauchope et al., 2002).  

With the exception of MET-M and TBZ no data are available regarding the 
adsorption of the studied pesticides on biomixtures. In line with previous benchmarking 
research (Wauchope et al., 2002, Weber et al., 2004), the adsorption affinity in both studied 
matrices increased with the lipophilicity of the studied compounds as it was illustrated by 
the significant positive correlation between Kf and Log Pow and conversely the negative 
correlation betwenn Kf with water solubility. METM, which was the most hydrophilic 
compound (Table 2.1), showed the lowest adsorption affinity with its Kf values for the 
biomixture being at the lower part of the range (4.8–16 mL g−1) reported previously in other 
biomixture (Karanasios et al., 2010a, 2010b). CBX, which was the next more hydrophilic 
compound, was moderately to weakly adsorbed with its Kf values being higher than soil Kf 

values (1.61–2.71 mL g−1) reported previously (EFSA, 2010). FLX showed moderate 
adsorption with its soil Kf values being within the range reported in regulatory studies 
performed in a range of soils (2.5–15.2 mL g−1) (EFSA, 2012), and in line with previous 
studies, which reported organic carbon-depended adsorption of FLX (Gulkowska et al., 
2016). CHT showed high adsorption affinity in both tested matrices with soil Kf values, which 
were at the lower part of the range reported in other studies (17.7–1357 mL g−1) 
(Piwowarczyk and Holden, 2012; Patakioutas and Albanis, 2002). TBZ and FLD were two 
most strongly adsorbed compounds. Previously Karas et al. (2015) verified the stronger 
adsorption of TBZ in biomixtures over soil and reported Kf values which were in agreement 
with the current study. Regarding FLD, its soil Kf values were at the lower part of the range 
reported in the literature (62 - 213 mL g−1).  

Pearson's and Spearman's correlation tests between adsorption (Kf) and DT50 values for 
the different pesticides provided correlation coefficient of 0.063 (p=0.906) and 0.143 
(p=0.803), respectively, suggesting no significant interplay between adsorption and 
degradation. Previous studies have also reported limited interactions between adsorption 
and degradation of pesticides in soil (Beulke et al., 2005) and biomixtures (Karanasios et al., 
2010b) and suggested that the influence of adsorption on pesticides degradation largely 
depends on the physicochemical properties of the pesticide and the processes dominating 
the degradation of the pesticide in the environment (Kravvariti et al., 2010; Kah et al., 2007). 
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5 CONCLUSIONS 
In the present study, we investigated the degradation and adsorption potential of a 
biomixture against pesticides which are used in various agro-industries and hence they have 
high potential of being present in the respective agro-industrial effluents. All pesticides 
exhibited higher adsorption affinity in the biomixture compared to soil. This did not 
negatively affect the degradation of pesticides which appear to be significantly faster, for 
most pesticides, in the biomixture compared to soil, regardless of the mode of application 
(individually or in mixtures). Co-application of pesticides in double, triple or quadruple 
mixtures, relevant to their practical use, resulted in a delay in the degradation of most 
pesticides. This was more prominent in soil compared to biomixture, while CHT had the 
most pronounced inhibitory effect on the degradation of other compounds (TBZ and FLD). 
Overall, our findings provide initial evidence for the potential of the tested biomixture to 
retain and degrade pesticides used in seed-coating, bulb-dipping and fruit-packaging 
activities. Follow up experiments at full-scale biobed systems packed with the studied 
biomixture are expected to unravel the full potential of these systems to depurate pesticide-
contaminated effluents produced by those agro-food industries. 
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Chapter 3 
 
Using biobeds for the treatment of 
fungicide-contaminated effluents 
from various agro-food processing 
industries: microbiome responses 
and mobile genetic element 
dynamics 
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1 INTRODUCTION 
Pesticides constitute major environmental pollutants, as their innate physicochemical 

characteristics and mode of application facilitate their dispersion, resulting in soil, surface 
water and groundwater pollution (Carvalho, 2017). The high polluting potential of pesticides 
was acknowledged early by the European Commission, as demonstrated by the inclusion of 
several pesticide active ingredients in the list of priority pollutants of water resources 
(2455/2001/EC).  

Agro-food processing industries that use plant protection products (PPPs) constitute a 
serious point-source for the contamination of the natural water resources (Masiá et al., 
2013; Ccanccapa et al., 2016; Bao et al., 2021). These include seed-producing industries 
(SPI), which treat seeds with systemic fungicides like carboxin (CBX), metalaxyl-M (MET-M) 
and fluxapyroxad (FLX) (Lamichhane et al., 2020; Ayesha et al., 2021), bulb handling 
industries (BHI) which immerse bulbs into dense solutions of fungicides like chlorothalonil 
(CHT), thiabendazole (TBZ) and fludioxonil (FLD) (Chastagner and DeBauw, 2011; Araújo et 
al., 2017; Bansal et al., 2018) and fruit-packaging industries (FPI) that make use of fungicides 
like imazalil (IMZ) and fludioxonil (FLD) for the control of fungal infections of fruits during 
storage (Cerioni et al., 2017; Matrose et al., 2021). Taking into consideration the 
environmental risk stemming from the improper management of the pesticide-
contaminated effluents produced by these industries, the European Commission enforced 
the implementation of appropriate wastewater management practices (Regulation 
2019/1021). 

Different treatment processes have been tested to date for the depuration of these 
wastewaters with variable results. A few studies have tested the efficiency of abiotic 
transformation processes, such as advanced oxidation techniques like TiO2-based 
photocatalysis (Jiménez et al., 2013; Xing et al., 2014; Cruz et al., 2017; Sraw et al., 2018; 
Molla et al., 2020) and photo-Fenton processes (Gar Alalm et al., 2015; Santiago et al., 2018; 
Fakhri et al., 2020; García-Estrada et al., 2020) for the removal of pesticides from these agro-
food effluents. Others have used combinations of abiotic and biological processes (Sánchez 
Peréz et al., 2014; Jiménez-Tototzintle et al., 2015; Lopez-Loveira et al., 2019; Bernardelli et 
al., 2021). Despite the promising results of some of these methods their full implementation 
has not been accomplished due to several reasons including (i) high costs of installation and 
operation, (ii) high chemical addition requirements, (iii) possible sludge formation and (iv) 
production of toxic pesticide transformation products which might require further treatment 
(Santiago et al., 2013; Sirés et al., 2014; Bisaria et al., 2021; Ganiyu et al., 2022). Moreover, 
with the exception of a few recent studies (e.g. Rezende et al., 2021), the vast majority of all 
these studies were performed with distilled water artificially contaminated with pesticides 
instead of real agroindustrial effluents. The organic matter and inorganic salts that are 
present in the industrial effluents act as “radical scavengers” reducing the depuration 
efficiency of systems based on advanced oxidation and photo-oxidation techniques (Brame 
et al., 2015; Bisaria et al., 2021). 

Biological treatment could provide a solution to the depuration of pesticide - 
contaminated effluents (De Wilde et al., 2007). Previous studies have demonstrated the 
potential of biobeds to treat pesticide-contaminated effluents, produced (i) at agro-
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industrial level in FPIs (Omirou et al., 2012; Karas et al., 2016b; Carniel et al., 2020; Dias et 
al., 2021) and agrochemical producing industries (Lescano et al., 2022) and (ii) at on-farm 
level by pesticide handling activities in vineyards (Romero et al., 2019) and olive orchards 
(Delgado-Moreno et al., 2017). The depuration efficiency of biobeds largely relies on their 
packing material, a biological active substrate that act as pesticide adsorbant and as a source 
of an active microbiota able to effectively degrade the pesticides contained in the effluents 
(Vandermaesen et al., 2016; Holmsgaard et al., 2017; Bergsveinson et al., 2018). Typically, 
the packing material consists of soil, lignocellulosic material e.g. straw, and a humified 
organic substrate like peat or compost. Spent mushroom substrate (SMS) has been studied 
lately for its effect in the environmental fate of pesticides and its use in biobeds (Herrero-
Hernández et al., 2011; Rodríguez-Cruz et al., 2012; Álvarez-Martín et al., 2016; Marín-
Benito et al., 2016; Alves et al., 2022). Karas et al. demonstrated the high depuration 
capacity of SMS-based biobed packing material so, in the present study, a biomixture 
composed of SMS, straw and soil was used (Karas et al., 2015). 

The role and contribution of microbial communities colonizing biobed systems in the 
removal of pesticides has been monitored using various measurements like microbial 
biomass carbon (Vischetti et al., 2008; Marinozzi et al., 2013), microbial respiration 
(Karanasios et al., 2010b; Omirou et al., 2012; Marinozzi et al., 2013), total hydrolytic activity 
(Karanasios et al., 2010b; Romero et al., 2019), activity of manganese peroxidase (MnP) 
(Karanasios et al., 2010b; Karas et al., 2016a), laccase (Karanasios et al., 2010b; Karas et al., 
2016a), lignin peroxidase (Karanasios et al., 2010b), dehydrogenase (Marín-Benito et al., 
2012; Romero et al., 2019), β-glucosidase (Romero et al., 2019), acid phosphatase (Romero 
et al., 2019), urease (Romero et al., 2019), ortho-diphenol oxidase (Romero et al., 2019), and 
the abundance of phylogenetically distinct microbial taxa or genes involved in the 
degradation of aromatic compounds via qPCR (Karas et al., 2016b). However, it was only 
recently that the composition of the biobed microbiome was determined using amplicon 
sequencing approaches (Holmsgaard et al., 2017; Bergsveinson et al., 2018). Metagenomic 
and meta-transcriptomic analysis of biobed systems suggested an enrichment of biobeds in 
genes encoding for enzymes known to be involved in the degradation of pesticides like 
peroxidases, monooxygenases and hydroxylases (Russell et al., 2021). Similar previous 
studies also reported the enrichment of biobeds with genes involved in the degradation of 
substituted phenylurea herbicides like pdmA (Storck et al., 2020), libA and hylA (Horemans 
et al., 2016). Beyond the phylogenetic composition of the biobed microbiome, recent studies 
have showed that biobeds are evolutionary hotspots of novel pesticide transformation 
pathways (Storck et al., 2020) with mobile genetic elements (MGE), collectively called the 
mobilome, playing a significant role in this evolutionary process (Dealtry et al., 2014; Dunon 
et al., 2018).  

The main aims of our study were (i) to evaluate the capacity of biobed systems to 
decontaminate effluents from various agro-food processing industries in a realistic biobed 
loading context, (ii) to investigate the effect of the continuous pesticide load on microbial 
succession in biobed systems and (iii) to explore the presence and dynamics of different 
parts of the mobilome during the operation of biobed systems. We hypothesized that the 
continuous discharge of pesticides will have a strong effect on microbial succession and will 
stimulate MGE abundance and dynamics in biobed systems. To explore the objectives and 
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hypotheses set out we employed an experiment on pilot biobed systems subjected to 
regular treatment with pesticide-contaminated effluents originated from fruit-packaging 
plants, seed-producing and bulb-handling industries. The efficiency of biobeds was 
monitored through regular analysis of pesticides in the collected effluents, while the 
processes involved in pesticide dissipation were determined through measurement of 
pesticide levels on the different biobed layers at the end of the study, enabling mass balance 
analysis. Microbial succession and the dynamics of MGE during biobed operation were 
monitored through amplicon sequencing and q-PCR respectively. The application of relevant 
statistical tools enabled the identification of microorganisms responsive to pesticide 
addition and provided hints about biobed operational conditions.  

2 MATERIALS AND METHODS  

2.1 CHEMICALS AND WASTEWATERS  
Analytical standards of CBX (99.9% Pestanal®), MET-M (98.4% Pestanal®), TBZ (99% Pestanal 
®), CHT (99.7% Pestanal), FLD (99.9% Pestanal®) and IMZ (99.3% Pestanal) were purchased 
from Sigma-Aldrich (Merck), while FLX (99.9% BAS 700 F) was provided by BASF Hellas. 
Fungicide stock solutions (1000 mg L−1) in MeOH (CBX, MET-M, TBZ, FLD and IMZ) and 
acetonitrile (CHT and FLX) were prepared from the analytical standards and further used for 
analytical purposes. Commercial pesticide formulations of TBZ (TECTO® 50 SC), CHT 
(DACONIL® 500 SC), FLD (SCHOLAR® 230 SC) and IMZ (FUNGAZIL® 500 EC) were used for the 
preparation of aqueous pesticide solutions applied as wastewaters of BHI and FPI. The 
concentrations of TBZ, CHT and FLD in the BHI artificial wastewaters were 2.3, 8.1 and 3.2 
mg L−1 respectively. Similarly, the concentrations of FLD and IMZ in the corresponding FPI 
wastewaters were 46 and 75 mg L−1 respectively. SPI effluents were kindly provided by the 
seed producing industry ΒIOS Agrosystems SA and they were diluted before application in 
the biobed systems to achieve pesticide concentrations of 5.14, 9.5 and 8.7 mg L−1 for CBX, 
MET-M and FLX respectively. These nominal concentrations of the fungicides in the artificial 
wastewaters and the diluted SPI wastewater, as applied in the biobed systems, were 
calculated to simulate a realistic loading scenario of a 30-m3 biobed filled with the studied 
packing material having a bulk density of 0.6 t m−3. The main physicochemical characteristics 
of the studied pesticides are given in Tables 2.1 and 1.7. 

2.2 BIOBED PACKING MATERIAL PREPARATION 
Soil, without any recent pesticide use, was collected from the top 20 cm of the field site of 
the Hellenic Agricultural Organization – DEMETER in Larisa, Greece (39°38′01.2″N 
22°22′26.2″E), sieved (2 mm) to remove rock and plant material, and stored at room 
temperature until use. The soil was characterized as clay loam (37% sand, 31% clay and 32% 
slit). Wheat straw was acquired from a local farm in Larissa, chopped to small pieces (ca. 1–2 
cm) with a blender homogenizer and stored at room temperature. Pleurotus ostreatus SMS 
was provided by the mushroom farm “Mpoulogeorgos” (Trikala, Greece) after two harvest 
cycles. SMS was chopped to small pieces (ca. 1–2 cm) and mixed with straw and soil at 
volumetric ratios of 50% SMS, 25% straw and 25% soil. Upon being thoroughly mixed, the 
biobed packing material was left to mature at room temperature for a month, during which 
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it was regularly hydrated and further mixed. Physicochemical properties of the individual 
components and the final biobed packing material are listed in Table 2.2. The pH of the 
packing material was stable throughout the experimental period at 7.59±0.25. The absence 
of residues of the studied pesticides in the starting material was verified by HPLC analysis as 
is described below. 

2.3 EXPERIMENTAL SETUP OF COLUMN BIOBED SYSTEMS 
The potential of biobeds to remove fungicides from effluents of three different agro-food 
processing industries was explored in column biobed systems. In particular, 12 PVC columns 
of 90 cm length and 12.5 cm internal diameter, were packed, from bottom to top, with a 7 
cm layer of thoroughly washed gravel, 80 cm layer of packing material and a 3 cm layer 
washed gravel at the top to ensure uniform distribution of the wastewaters at the surface of 
the column and to avoid disturbance of the packing material surface. A metal sieve was 
placed at the bottom of each column to prevent passage of the packing material in the 
leachate. Plastic funnels and 5 L collection bottles were placed below the columns to collect 
the leachates. Sampling points of 2 cm diameter were opened along the column length at 
20, 50, and 80 cm (top-down), to collect packing material for microbial community and MGE 
analysis during column operation. Sampling points were sealed with corks afterwards (Figure 
3.1). 

 

Figure 3.1 A photo and schematic representation of the setup of the column biobed used in our study.  
Wastewaters were stored in a plastic tank agitated continuously with a magnetic stirrer (A), the wastewater was 
transferred to the columns through peristaltic pumps (B). Each PCV column was packed (from top to bottom) 
with 3 cm of gravel, 80 cm of biobed packing material and 7 cm of gravel (C). The leachates from each biobed 
were collected in bottles placed underneath the column biobeds (D). Sampling points along the columns for the 
collection of packing material were sealed with corks (E). 
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Wastewaters from agro-industries were transferred into 15 L tanks and applied 
through peristaltic pumps at the top of each column for 5 min/6 times per day, to achieve 
simultaneous application of 500 mL day-1. For each wastewater type we had devoted 
triplicate columns, while the final three columns received the same volume of pesticide-free 
water to serve as control for microbiome and MGE analysis. The tanks were refilled weekly 
with fresh wastewater and fungicide concentrations were monitored before and after filling 
to determine the true amount of fungicide applied in each column. The volume of leachate 
collected from each column was measured at 3-day intervals and a 200 mL sample was 
removed and stored at −20 °C for analysis of pesticide residues. At 21 and 60 days after the 
start of the wastewater application, samples of packing material from the inner part of the 
columns were collected with sterile tweezers from the designated sampling points along the 
column length and stored at −20 °C before analyzed. 

The column operation was continued for a total of 103 days. At the end of the 
treatment period, the columns were left to drain for 6 days (until day 109). They were then 
dismantled, and the packing material was sectioned into 3 segments corresponding to the 
0–20, 20–50, and 50–80 cm horizons from the top. Samples from each layer were stored 
at−20 °C for pesticide residue analysis and DNA extraction. The amounts of fungicides that 
was detected (i) in the leachates collected throughout the study (from day 4 to day 109), and 
(ii) in the packing material at the end of the study (day 109) were used for calculating the 
efficiency of biobeds and for mass balance analysis. The amount of pesticide dissipated 
(degraded and/or not being extractable with organic solvents) was determined by mass 
balance analysis after deducting from the total amount of pesticide applied in the column 
throughout the study (from day 0 to day 104), the total amount of pesticide found in the 
leachate (leached) throughout the study (from day 4 to day 109) and the total amount of 
pesticide recovered from the packing material at the end of the study (day 109) (retained). 

2.4 FUNGICIDE RESIDUE ANALYSIS 

2.4.1 FUNGICIDE EXTRACTION FROM AQUEOUS SOLUTIONS  
A liquid-liquid extraction method was employed for the recovery of fungicide residues from 
the wastewater and leachate samples. CBX, MET-M and FLX, were extracted by mixing 2 mL 
of the aqueous samples with 2 mL of MeOH. TBZ, CHT and FLD were recovered using the 
same extraction method with the sole difference of adding H3PO4 2% v/v in the mixture. For 
the extraction of FLD and IMZ, 5 mL of aqueous sample were thoroughly mixed with 20 mL 
of chloroform (CHCl3) in a separatory funnel for 20 min. The organic phase was collected and 
the aqueous phase was re-extracted with additional 20 mL CHCl3. The organic phases from 
the two extraction steps were combined and evaporated to dryness in a rotary evaporator. 
The extract was resuspended in 2 mL MeOH, passed through a syringe filter (PTFE 0.45 μm, 
Whatman) and stored at−20 °C until analysis. 

The methods used for the analysis of the pesticide residues in water samples were 
validated as follows. Leachates collected from columns receiving pesticide-free water were 
fortified at three concentration levels (2, 0.5 and 0.05 mg L−1) with mixtures of the studied 
fungicides relevant to their industrial use, i.e. SPI mixture (CBX, MET-M and FLX), BHI 
mixture (TBZ, CHT and FLD) and FPI mixture (FLD, IMZ). The recoveries of all the studied 
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pesticides at the three concentration levels were between 90.1 and 112.2% and the 
precision of the extraction methods as determined by the relative standard deviation (RSD) 
was ≤20%. Specifically, mean percentage recoveries for CBX,MET-M, FLX, TBZ, CHT, IMZ and 
FLD when applied with the BHI and FPI mixture were 99.99 ± 5.59%, 95.32 ± 13.04%, 90.11 ± 
10.82%, 112.18 ± 5.40%, 99.40 ± 11.38%, 102.62 ± 22.17%, 93.57 ± 11.12% and 105.82 ± 
19.69% respectively and the corresponding RSDs were 5.59, 13.68, 12.01, 4.81, 11.45, 19.61, 
11.88 and 18.41. 

2.4.2 FUNGICIDE EXRACTION FROM BIOBED PACKING MATERIAL  
Fungicide residues were extracted from the biobed packing material as described previously 
by Papazlatani et al. (2019). Briefly, CBX, MET-M and FLD were extracted from 5 g of packing 
material with 20 mL of MeOH and shaking in an orbital shaker at 200 rpm for 2 h for CBX and 
MET-M and 1 h for FLD. FLX and CHT were recovered by mixing 5 g of packing material with 
20 mL of acetonitrile (ACN) and agitation for 1 h. In both protocols, the extract was 
subsequently centrifuged for 5 min at 8500 rpm and the clear supernatant was collected, 
filtered through a PTFE syringe filter (0.45 μm) and stored at −20 °C. TBZ and IMZ were 
extracted according to Karas et al. (2015). 

2.4.3 HPLC ANALYSIS 
Fungicide extracts were analyzed in a Shimadzu HPLC-DAD system equipped with an Athena 
C18 column (150 mm×4.6 mm) (ANPEL Laboratory Technologies) at a flow rate of 1 mL 
min−1. Fungicides CBX, MET-M and FLX contained in the effluents from the SPI were detected 
in one run at 207, 202 and 230 nm respectively, using a mobile phase of MeOH/H2O 55/ 45 
v/v, with retention times of 5.5, 18.1 and 24.5 min respectively. Fungicides FLD and IMZ, 
contained in the effluents from FPI, were detected at 207 and 204 nm respectively with 
retention times of 8.1 and 19.5 min using a mobile phase of MeOH/H2O 65/35 v/v. 
Fungicides TBZ, FLD and CHT, contained in the BHI effluents, were detected at 210, 210 and 
230 nm respectively using a gradient elution with solvents A=acetonitrile and B=H2O+0.1% 
H3PO4. The mobile phase was initially composed of 30% of A (0–5 min). It was then linearly 
increased to 70% of A from 5 to 15 min, kept constant for 1 min, and then returned to the 
initial condition in 2 min where it was maintained for 7 min. Under these conditions, the 
retention times of TBZ, FLD and CHT were 5.5, 18.2 and 24.5 min respectively. 

External calibration curves were constructed by the injection of matrix matched standard 
solutions of each of the studied pesticides (concentration levels ranging from 0.05 to 10 mg 
L−1) and they were used for pesticide quantification. Matrix-matched standard solutions 
were prepared by diluting the methanolic or acetonitrile working solutions of each of the 
studied compounds in leachates collected from biobeds drained with pesticide-free water 
and negligible matrix effects were evident (<10%). All pesticides showed high linearity (r2 > 
0.99) in the concentration range tested. 

2.5 DNA EXTRACTION FROM THE BIOBED PACKING MATERIAL  
DNA was extracted from the biobed packing material using the DNeasy PowerSoil™ Pro DNA 
kit (Qiagen, Germany) following the manufacturers' instructions. DNA quality was assessed 
via electrophoresis on 0.8% agarose gels. DNA concentration was evaluated via fluorometer 
measurement with Qubit v.2. 
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2.6 MICROBIAL COMMUNITY COMPOSITION AND DYNAMICS  
The composition of the bacterial and fungal communitywas determined via multiplex 
amplicon sequencing with Illumina HiSeq technology (Admira health, New Jersey) that 
generated 250 bp paired-end reads. Primer sets 515f (GTGYCAGCMGCCGCGGTAA) – 806r 
(GGACTACNVGGGTWTCTAAT) (Walters et al., 2016) and fITS7 (GTGARTCATCGAATCTTTG) – 
ITS4 (TCCTCCGCTTATTGATATGC) (Ihrmark et al., 2012) were used for the amplification of the 
V4 region of the 16S rRNA gene of bacteria and the ITS2 genomic region of fungi, 
respectively. Thermal cycling conditions are given in Table 3.1, whereas indexing sequences 
of primers 515f and ITS4 can be found in Supplementary Table 3.S1. In total, two indexed 
amplicon libraries were prepared. 

Table 3.1 The primers, sequences and thermocycling conditions used for amplicon sequencing analysis of the 
bacterial and fungal communities 
 

a The sample index (consecutive Ns) and linker (bold letters) prior to the extension bases in the forward or 
reverse primer are indicated. Indexed sequences are listed in Supplementary Table 2 
b The first number in parentheses indicates the number of cycles performed in the first PCR where the unindexed 
primers were used, while the second number indicates the additional cycles performed in the sample indexing 
PCR. 

Sequence pre-analysis consisted of de-multiplexing with Flexbar version 3.0.3 (Dodt et 
al., 2012). Sequencing quality screening, chimera removal, alignment to reference databases 
and generation of the Amplicon Sequence Variant (ASV) matrices were performed with the 
dada2 package (Callahan et al., 2016a) of the R version 4.0.5 (R Core Team, 2020) as 
previously suggested (Callahan et al., 2016b). Silva SSU taxonomic dataset version 138 
(McLaren, 2020) formatted for dada2, and UNITE general fasta release version 8.2 
(Abarenkov et al., 2020) were used for the classification of the V4 16S rRNA and ITS2 
amplicons respectively. The coverage of the microbial diversity was assessed through 
rarefaction curves prepared with the vegan package (Oksanen et al., 2019). The microbiome 
package (Lahti and Shetty, 2012) was used to calculate measures of α-diversity like Shannon 
(Spellerberg and Fedor, 2003) and inverse Simpson (Hill, 1973), the observed richness (S) 
and the Pielou's evenness (Pielou, 1966). The parametric ANOVA or non-parametric Kruskal-
Wallis analyses of variance followed by Tukey's or Fisher's least-significant-difference post 
hoc test respectively, were used to assess the differences of α-diversity indices and the ASVs 
differential abundance between time points, along the column length and between 
industrial wastewater treatments. Analysis of variance was performed with the agricolae 
package v.1.3.3 (de Mendiburu, 2020). β-Diversity was evaluated via canonical 
correspondence analysis (CCA, ter Braak and Verdonschot, 1995) and redundancy analysis 
(RDA, Israels, 1984), depending on the first axis of detrended correspondence analysis (Lepš 
and Šmilauer, 2003). Permutational analysis of variance (Anderson, 2017) that accompanied 

Primer Thermocycling Conditions Sequence (5’ – 3’) Target Referenc
e 

515f  
806r 

98°C for 10 s, 50°C for 30 s, 
72°C for 30 s (25 + 7 cycles) b; 
72oC for 10 min 

NNNNNNNNNGTGTGYCAGCMGCCGCGGTAAa 
GGACTACNVGGGTWTCTAAT 

Bacterial V4 region of 
the 16S rRNA gene 

Walters 
et al., 
(2016) 

fITS7  
ITS4 

98°C for 10 s, 55°C for 30 s, 
72°C for 30 s (25 + 7 cycles) b; 
72oC for 10 min 

GTGARTCATCGAATCTTTG 
NNNNNNNNNGATCCTCCGCTTATTGATATGCa 

Fungal ITS2 genomic 
region 

Ihrmark 
et al., 
(2012) 

103 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



aforementioned β-diversity analyses, was performed with pairwise Adonis package, version 
0.0.1 (Arbizu, 2020). Spearman's correlation analysis (Hollander and Wolfe, 1973) between 
ASV abundance at the end of column operation and pesticide residues that were retained in 
the different biobed horizons were performed with the R stats package (R Core Team, 2020). 
Demultiplexed, unassembled sequence data are publicly available in the National Centre for 
Biotechnology Information (NCBI) under Bioproject accession number PRJNA787598. 

2.7 ANALYSIS OF THE DYNAMICS OF MGE IN BIOBEDS  
Beyond amplicon sequencing analysis, we determined, via q-PCR, the dynamics of MGE 
known to be involved in the transmission of pesticide degrading genes like (i) the integrase 
gene of Class-1 integrons (intl1 gene) commonly associated with antibiotic resistance genes 
(Stalder et al., 2014) and IncP-1 plasmids carrying pollutant degrading genes (Martinez et al., 
2001; Dealtry et al., 2014); intl1 has been proposed as a general marker of environment 
human disturbance (Gillings et al., 2015), (ii) the IS1071 insertion sequence (tnpA gene) 
(Dunon et al., 2018) (iii) plasmids incP-1ε (trfA gene) and incP-1 (korB gene) (Dealtry et al., 
2014). 

The abundance of intl1 and of total bacteria was determined via q-PCR using primers 
HS463aF/HS464R and Eub338/Eub518 respectively. This allowed the normalization of intl1 
copies to the copies of the 16S rRNA gene. Both genes were quantified using a CFX96 
connect detection system (Bio-Rad, Germany) in a reaction volume of 10 μL containing 1× 
KAPA SYBR FAST qPCR master Mix (2×) Universal (KAPA Biosystems, USA), 400 nM of each 
primer for intl1 gene or 200 nM of each primer for the 16S rRNA gene, 0.4 ng/μL BSA, 5 ng of 
template DNA (for both target genes) and MilliQ ddH2O up to the final volume. Briefly, the 
qPCR thermocycling program involved an initial denaturation at 95 °C for 3min followed by 
35 cycles of 95 °C for 30 s, 62 °C for 30 s and 72 °C for 60 s (the extension step was excluded 
in the case of the 16S rRNA gene) with detection of the fluorescence signal after each cycle.  

The abundance of tnpA (IS1071), korB (IncP-1), trfA (IncP-1ε) were determined using a 
TaqMan q-PCR assay. Assays were run in 10 μL reaction using the KAPA Taq DNA polymerase 
(KAPA Biosystems, USA) on an Applied Biosystem Quant Studio 5 real-time thermal cycler 
(ThermoFisher Scientific, USA). The reaction contained 1 U of KapaTaq polymerase, 400 nM 
of each dNTP, 1×Buffer for KapaTaq with MnCl2, appropriate volume of each primer/probe, 
0.4 ng/μL BSA and MilliQ ddH2O up to the final volume. The thermal program of the 
Multiplex TaqMan qPCR starts with an initial denaturation step at 95 °C for 5min followed by 
40 cycles of 95 °C for 15 s, 54 °C for 15 s and 60 °C for 60 s with detection of the fluorescence 
signal of each fluorophore probe at the end of each cycle. The 16S rRNA gene was also 
quantified in the Multiplex TaqMAn qPCR assays (primer set BACT1369F/PROK1492R) to 
normalize abundance data to the copy numbers of the 16S rRNA gene. All qPCR data were 
transformed to copies per g of dry weight packing material and then normalized by dividing 
with the copies of the 16S rRNA gene per g of dry weight biobed packing material. Primers 
and thermal cycling conditions are given in Table 3.2. 
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 Table 3.2 The primers and TaqMan probes used for the determination of the abundance of mobile genetic elements (MGE) via qPCR using either Sybr and Multiplex Taqman protocols as 
indicated below 

 

Primer/probe 
name Sequence (5’ – 3’) Target gene/MGE Amplicon 

size (bp) 

TaqMan Probe 
5’ Fluorophore / 

3’ Quencher 

Final qPCR 
Concentrations 

(nM) 
References 

Sybr protocol 
HS463aF CTGGATTTCGATCACGGCACG 

intl1  473 
 400 

Hardwick et al., (2008) 
HS464R ACATGCGTGTAAATCATCGTCG  400 
Eub338f ACT CCT ACG GGA GGC AGC AG 16S rRNA 180  400 Fierer et al., (2005) Eub518r ATT ACC GCG GCT GCT GG  400 

Taqman protocol  
korB-F TCATCGACAACGACTACAACG 

korB / IncP-1 118 

 400 

Jechalke et al., (2013) 

korB-Fz TCGTGGATAACGACTACAACG  200 
korB-R TTCTTCTTGCCCTTCGCCAG  400 
korB-Rge TTYTTCYTGCCCTTGGCCAG  200 
korB-Rd TTCTTGACTCCCTTCGCCAG  200 
korB-Pr TCAGYTCRTTGCGYTGCAGGTTCTCVAT 5’ FAM, 3’ TAMRA 300 
korB-Pgz TSAGGTCGTTGCGTTGCAGGTTYTCAAT 5’ FAM, 3’ TAMRA 300 
IS-F GCTTGGTCACTTCTGGGTCTTC 

tripA / IS1071 180 
 400 

Dunon et al., (2013); 
Providenti et al., (2006) IS-R CTATGCCCGTCTATCGTTACCC  400 

tp_tripA TCTTGAAGCCTTTGCTGG CCAGAGTA 5’ HEX, 3’ Eclipse 200 
trfAε941f ACGAAGAAATGGTTGTCCTGTTC 

trfA / IncP-1ε 74 
 400 

Heuer et al., (2012) trfAε1014r CGTCAGCTTGCGGTACTTCTC  400 
trfAε965tp CCGGCGACCATTACAGCAAGTTCATTT 5’ ROX, 3’ BHQ1 400 
BACT1369F CGGTGAATACGTTCYCGG 

16S rRNA 127 
 400 

Suzuki et al., (2000) PROK1492R GGWTACCTTGTTACGACTT  300 
TM1389F CTTGTACACACCGCCCGTC 5’ Cy5, 3’ BHQ3 200 
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3 RESULTS 

3.1 LEACHING OF FUNGICIDES 
MET-M showed the highest leaching potential, among the fungicides contained in the 
effluents from the SPI, with its total amount recovered in the effluent corresponding to 
6.83% ± 4.77 of the total applied amount. MET-M was detected in the leachate at day 11 
with its levels remaining stable until day 68 when an increase in its amounts in the leachates 
(>2 mg) until the end of the study was observed (Figure 3.2A). FLX was first detected in the 
leachates at day 76 and it was continuously detected until the end of the study. Its total 
amount detected in the leachate throughout the study was 3.86% ± 4.13 of the total amount 
applied. Carboxin (CBX) on the other hand was detected sporadically and in low amounts, 
overly accounting for 1.65% ± 0.71 of the total amount applied (Figure 3.2A). 

FLD, TBZ and CHL, contained in effluents produced by the BHI, showed low leaching 
potential (Figure 3.2B). FLD showed the lowest leaching potential with only 0.03%±0.03 of 
the total amount applied being detected in the leachates. TBZ and CHT were detected in the 
leachates at low amounts with their total amount leached being 2.35% ± 0.45 and 1.17% ± 
0.25 respectively. Interestingly, TBZ and CHT showed a different leaching pattern compared 
to the fungicides contained in the effluents from the other two agro-industries, with their 
residues being detected in the leachates mostly during the first 80 days. 

IMZ and FLD, contained in the effluents from FPI, showed a low leaching potential. 
The former was detected in the leachates in miniscule amounts, accounting for 0.02% ± 0.01 
of the total amount applied, while the latter was mainly detected in the leachates collected 
at the final 10 days, summing to 0.32% ±0.31 of the total amount applied (Figure 3.2C). 
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Figure 3.2 Pesticide amounts detected in the leachates of the column biobeds receiving wastewaters from (A) 
seed-producing industries, (B) bulb-handing industries (C) fruit-packaging industries. Each value is the mean of 
three measurements obtained from three replicate columns. Error bars represent the standard deviation of the 
mean. The % of the total applied amount of each pesticide that was detected in the leachates is shown as an 
inserted table in each graph 

 

3.2 MASS BALANCE ANALYSIS OF FUNGICIDES 
Mass balance analysis was employed to identify the primary environmental fate processes 
that are operative in the biobed systems: dissipation vs retention by the biobed packing 
material. 

3.2.1 SEED PRODUCING EFFLUENTS 
Regular monitoring of the fungicide levels in the SPI wastewaters applied on the biobeds 
allowed us to calculate with accuracy the total amount of CBX, MET-M and FLX applied in 
the columns during the whole experimental period which summed to 161.1, 708.1 and 567.8 
mg respectively. The total amounts of CBX, MET-M and FLX detected in the leachates for the 
whole experimental duration were 2.7 ± 1.1, 48.4 ± 33.7 and 21.9 ± 23.5 mg respectively, 
while the total amount of CBX, MET-M and FLX retained by the biobed and it was recovered 
at day 109 was 19.0 ± 9.6, 3.7 ± 1.7 and 503.6 ± 19.7 mg respectively. Based on mass balance 
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analysis we showed that the total amount of CBX, MET-M and FLX dissipated during the 
study was 139.4 ± 10.6, 656 ± 32.2 and 42.2 ± 3.8 mg respectively. 

CBX and MET-M showed significantly higher dissipation levels (86.53% ± 6.59 and 
92.64% ± 4.55 respectively) compared to FLX which was mostly retained by the biobed 
packing material (88.7% ± 3.47 vs 11.82% ± 5.98 and 0.53% ± 0.235 for CBX and MET-M 
respectively) (Figure 3.3). When looking at the distribution of pesticide residues inside the 
column, FLX was mostly retained at the top 20 cm (65.38% ± 0.47), while the remaining 
29.8% ± 7.3 and 4.8% ± 7.37 were detected in the 20–50 and 50–80 cm horizons respectively 
(Figure 3.4). CBX and MET-M showed a higher mobility with 33.9% ± 5.24 and 26.14% ± 
11.47 respectively being detected in the surface horizon (0–20 cm) and 34.27% ± 11.72 and 
46.91% ± 1.61 respectively being detected in the deeper horizon (50–80 cm) (Figure 3.3). 

3.2.2 BULB HANDLING INDUSTRY EFFLUENTS  
The total amount of FLD, TBZ and CHT loaded in the biobed columns during the whole study 
duration, as determined by regular analysis of the levels of pesticides in the wastewaters 
applied in the columns, was 149.3, 126.6 and 242.5 mg respectively. The total amount of 
FLD, TBZ and CHT leached during the whole experimental duration was 0.049 ± 0.05, 3.0 ± 
0.6 and 2.8 ± 0.6 mg, whereas the total amount of FLD, TBZ and CHT retained in the packing 
material and recovered at day 109 was 65.8±28.5, 30.1±19.1 and 24.7±16.6 mg respectively. 
Mass balance analysis showed that the total amount of FLD, TBZ and CHT dissipated during 
the study equals to 83.5 ± 28.5, 93.5 ± 19.7 and 215.0 ± 17.2 mg respectively. 

The three fungicides showed not statistically significant differences in their levels of 
dissipation which varied from 55.9% ± 19.1 for FLD to 73.9% ± 15.56 and 88.7% ± 7.11 for 
TBZ and CHT respectively (Figure 3.3). Conversely, FLD showed significantly higher retention 
in the biobed packing material (44.1% ± 19.1) compared to TBZ (23.8 ± 15.1%) and CHT 
(10.2%±6.9). All fungicides contained in these wastewaters showed limited mobility in the 
columns (Figure 3.3). Hence, from the total amount retained in the biobeds 84.5% ± 5.1, 
96.4% ± 0.87 and 92% ± 3.7 of FLD, CHT and TBZ respectively were retained in the top 20 cm 
(Figure 3.4). The latter is in line with the low amounts of these pesticides recovered in the 
leachates; 0.03% ± 0.03 for FLD, 1.17% ± 0.25 for CHT and 2.35% ± 0.45 for TBZ. 

3.2.3 FRUIT PACKAGING INDUSTRY EFFLUENTS 
The total amount of FLD and IMZ loaded in the biobeds during the whole study duration was 
884.5 and 2554.5 mg respectively. The total amount of FLD and IMZ found in the leachate 
throughout the study was 3.5 ± 3.6 and 0.6 ± 0.3 mg respectively, and the total amount that 
was retained in the packing material and recovered at day 109 was 732.1 ± 86.4 and 1573.6 
± 404.3 mg respectively. Mass balance analysis showed that the total amount of FLD and 
IMZ dissipated during the experimental duration was 148.8 ± 89.9, and 908.3 ± 404.7 mg 
respectively.  

FLD and IMZ showed low dissipation in the biobeds with only 16.8%± 10.17 and 
38.4% ± 15.8 being dissipated respectively (Figure 3.3). The two fungicides were mostly 
retained by the biobed packing material (82.8% ± 9.8 for FLD and 61.60% ± 15.8 for IMZ) but 
showed different mobility patterns. FLD showed a more uniform distribution with 64.9%± 
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6.88, 25.44% ± 11.46 and 9.7% ± 7.3 detected in the top, middle and lower horizons 
respectively (Figure 3.4). Whereas 95% ± 3.45 of the amount of IMZ retained in the biobeds 
was detected at the topmost horizon. In line with all the above, FLD and IMZ exhibited low 
leaching potential, with only 0.4%±0.4 and 0.02%±0.01 of the total applied amounts 
respectively being detected in the leachates (Figure 3.3). 

 

Figure 3.3 Mass balance analysis in the column biobed systems of the pesticides contained in effluents from the 
(a) seed producing industry (carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX); (b) bulb handling industry 
(thiabendazole (TBZ), fludioxonil (FLD), chlorothalonil (CHT); (c) fruit-packaging industry (fludioxonil (FLD) and 
imazalil (IMZ)). Error bars represent the standard deviation of the mean of measurements obtained from three 
replicate columns per treatment. Lower case letters indicate statistically significant differences between 
pesticides contained in the same wastewater for the same process (leached, retained or dissipated). 
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Figure 3.4 The distribution of pesticide residues that were detected in the biobed packing material at the end of 
the study in the three column horizons (0-20, 20-50 and 50-80 cm from the top). Lower case letters indicate 
statistically significant differences between pesticides contained in the same wastewater for each column 
horizon, while upper case letters indicate statistically significant differences between column horizon for each 
analyzed pesticide. 
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3.3 MICROBIAL COMMUNITY COMPOSITION AND DYNAMICS 
Total bacteria and fungi sequencing effort provided on average of 56,709 ± 45,674 and 
30,639 ± 12,032 sequences respectively. After quality control analysis, 1832–161,203 and 
3627–35,890 high quality sequences per sample were obtained, for bacteria and fungi 
respectively. Rarefaction curves reached a plateau in all samples indicating that the 
sequencing effort provided adequate coverage of the microbial diversity (Figure 3.5).  

 

Figure 3.5 Scatterplots of the observed and rarefied number of ASVs (left panels) and rarefaction curves of the 
diversity coverage of our sequencing effort (right panels) for bacteria (top) and fungi (bottom). 

Bacterial communities were dominated by Proteobacteria, Bacteroidota and 
Actinobacteriota with an average relative abundance of 38.22%±6.16, 17.40%±4.97 and 
14.29%±8.70 respectively (Figure 3.6). Acidobacteriota relative abundance showed a 
temporal increase ranging from 0.38% ± 0.29 to 11.13% ± 2.75 in all treatments (Figure 3.6). 
Fungal communities were dominated by Sordariomycetes (71.94%±8.65) (Figure 3.7). Other 
fungal classes that were present in appreciable numbers were Agaricomycetes (7.58% ± 
5.56), Aphelidiomycetes (4.16% ± 3.52), and Pezzizomycetes (3.97% ± 6.35) (Figure 3.7). 
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Figure 3.6 The composition of the bacterial community in the different horizons (0-20, 20-50 and 50-80 cm) of pilot biobed systems receiving either pesticide-free water (A) or pesticide-
contaminated effluents from (B) Seed producing Industries (SPIs), (C) Bulb-handling industries (BHIs) or (D) Fruit packaging Industries (FPIs) at different time intervals along the 109 
experimental days. 
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Figure 3.7 The composition of the fungal community in the different horizons (0-20, 20-50 and 50-80 cm) of pilot biobed systems receiving either pesticide-free water (A) or pesticide-
contaminated effluents from (B) Seed producing Industries (SPIs) (C) Bulb-handling industries (BHI) or (D) Fruit packaging Industries (FPIs) at different time intervals along the 109 
experimental days. 
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3.3.1 FACTORS AFFECTING THE α-DIVERSITY OF THE BACTERIAL AND FUNGAL 
COMMUNITIES  
Biobeds supported a rich and diverse bacterial community with a mean observed 

ASV number per sample of 1134±659, and mean Shannon's and inverse Simpson diversity 
index values of 6.51 ± 0.52 and 545.4 ± 264 respectively (Table 3.3). Finally, Pielou's index 
averaged at 0.95±0.01 suggesting highly even bacterial communities. Statistical analysis 
revealed no significant effects of wastewater treatment and depth on the different α-
diversity indices. Whereas time, as a main factor had a significant effect on the α-diversity 
indices.  

Fungal communities showed low species richness, ranging from 93 to 223 observed 
ASVs per sample (Table 3.3). Regardless of wastewater treatment and column depth the 
values of both diversity indices showed significant temporal decrease from 3.71 ± 0.16 to 
3.21 ± 0.27 (Shannon's) and from 17.24 ± 3.36 to 9.76 ± 2.87 (inverse Simpson's) on days 21 
and 109 respectively. Pielou's evenness values ranged from 0.63 ± 0.04 to 0.73 ± 0.02 
suggesting moderately uneven communities characterized by dominant species. Community 
evenness showed significant temporal changes as well, with higher values observed at 21 
days. As with bacterial communities, wastewater composition did not significantly affect the 
α-diversity of the fungal community. 

Table 3.3 The α-diversity indices of the bacterial and fungal community in biobed samples collected at different 
time points and biobed horizons. Each value is the mean of 12 samples ± standard deviation. Values followed by 
the same letters are not statistically different at 5% level. 

COMMUNITY DAY HORIZON OBSERVED RICHNESS SHANNON 
DIVERSITY 

INVERSE SIMPSON 
DIVERSITY 

PIELOU'S 
EVENESS 

BACTERIA 21 0-20 899.5 ± 429.23 bcd 6.31 ± 0.63 bc 495.29 ± 231.07 ab 0.95 ± 0.01 a 

  
20-50 925.83 ± 362.93 bcd 6.37 ± 0.6 bc 510.49 ± 192.27 ab 0.95 ± 0.01 a 

  
50-80 871.83 ± 297.4 cd 6.36 ± 0.42 bc 485.19 ± 165.82 ab 0.95 ± 0.01 a 

 
60 20-50 961.42 ± 348.52 abcd 6.44 ± 0.44 abc 506.29 ± 163.27 ab 0.95 ± 0.01 a 

  
50-80 820.67 ± 234.82 d 6.32 ± 0.3 c 454.04 ± 136.19 b 0.95 ± 0.01 a 

 
109 0-20 1681 ± 1015.16 abc 6.86 ± 0.63 ab 755.68 ± 379.21 a 0.95 ± 0.01 a 

  
20-50 1604 ± 1001.76 ab 6.83 ± 0.57 ab 711.19 ± 349.4 a 0.95 ± 0.01 a 

    50-80 1665.83 ± 899.41 a 6.88 ± 0.62 a 757.14 ± 356.08 a 0.95 ± 0.01 a 
FUNGI 21 0-20 168.58 ± 26.68 abc 3.58 ± 0.19 b 14.88 ± 3.9 b 0.7 ± 0.03 b 

  
20-50 178.92 ± 19.88 a 3.79 ± 0.1 a 18.63 ± 2.79 a 0.73 ± 0.02 a 

  
50-80 177.67 ± 29.02 a 3.76 ± 0.08 a 18.21 ± 1.94 ab 0.73 ± 0.02 a 

 
60 20-50 165.92 ± 14.54 abc 3.5 ± 0.18 b 15.23 ± 3.14 ab 0.68 ± 0.03 bc 

  
50-80 176.25 ± 16.13 ab 3.55 ± 0.14 b 14.63 ± 3.02 bc 0.69 ± 0.02 bc 

 
109 20 152.42 ± 16.98 abc 3.21 ± 0.29 c 8.53 ± 2.32 d 0.64 ± 0.05 de 

  
20-50 144 ± 25.86 c 3.29 ± 0.26 c 11.11 ± 3.09 cd 0.66 ± 0.05 cd 

  
50-80 150.17 ± 19.52 bc 3.14 ± 0.25 c 9.63 ± 2.75 d 0.63 ± 0.04 e 
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3.3.2 FACTORS AFFECTING THE β-DIVERSITY OF THE BACTERIAL AND FUNGAL 
COMMUNITIES  

The factors affecting the β-diversity of the microbial communities in biobed systems were 
further examined. Time, column horizon and wastewater origin exerted weak but significant 
effects on the β-diversity of the bacterial and fungal community (p = 0.01) (Fig. 3). CCA 
revealed that time and column horizon accounted for 8.8%of the total variance in bacterial 
communities (Figure 3.8A), unlike wastewater origin which explained only 3.2% of the 
variance (Supplementary Figure 3.S1). Pairwise comparison of the bacterial community 
composition between the different column horizons showed no statistically significant 
differences at 21 days (Figure 3.8A). However significant differences in the bacterial 
community between different horizons emerged at later sampling days. At 60 days, 
significant differences in the bacterial community between the 20–50 and the 50–80 cm 
horizons were observed, while at day 109 strong differences were evident between the top 
(0–20 cm) and the bottom (50–80 cm) horizon (p < 0.05).  

Similar to bacteria, the fungal community was strongly affected by the factors time 
and column horizon (Figure 3.8Β), whereas the wastewater origin showed no significant 
effects (p = 0.188) (Supplementary Figure 3.S1). RDA showed that time and column horizon 
together accounted for 30.4% of the total variance (p=0.01) (Figure 3.8Β). Significant 
differences in the composition of the fungal communities between the top (0–20 cm) and 
the deeper horizons (20–50 cm and 50–80 cm) were recorded at 21 days, which were still 
visible at 109 days (p < 0.05). In the absence of samples from the top horizon at 60 days, a 
significant difference in the composition of the fungal community in the two other horizons 
(20–50 cm vs 50–80 cm) was observed. 

 

Figure 3.8 Canonical Correspondence Analysis (CCA) and redundancy analysis (RDA) of the bacterial (A) and 
fungal (B) communities colonizing the different horizons of the biobed systems. Samples were ordinated 
according to sampling time and horizon. Inserted tables display pairwise comparisons of the microbial 
communities in the different horizons at each time point. 
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3.3.3 TIME- AND HORIZON SPECIFIC DIFFERENTIAL ABUNDANCE OF ASVS 
Based on the strong effects of time and column horizon on the composition of the microbial 
communities in biobed packing material, the bacterial and fungal communities were 
screened for ASVs that showed a consistent and significant response to these two factors. In 
total, 128 bacterial and 120 fungal ASVs were identified, whose abundance was significantly 
changed along time and column horizons. 

Some clear and consistent taxon level temporal patterns in bacterial abundance 
were evident. Seven ASVs belonging to Promicomonospora, which were among the most 
abundant ones, three ASVs belonging to Microscillaceae, and two ASVs affiliated to 
Confluentibacter showed a significant decrease in their relative abundance with time 
regardless of the treatment and the column depth (Figure 3.9A; Supplementary Figure 
3.S2). Conversely, nine ASVs belonging to Myxococcota, which were among the most 
dominant ASVs, three ASVs belonging to Acidibacter, three ASVs belonging to Terrimonas, 
four ASVs belonging to Arenimonas, six ASVs belonging to Proteobacteria SWB02, and eight 
ASVs affiliated to Anaerolinae/Chloroflexi showed a significant increase in their relative 
abundance with time (Figure 3.9A; Supplementary Figure 3.S2). 

Regarding fungi, ASV0001 affiliated to Stachybotrys chartarum dominated the fungal 
community with a mean relative abundance of 18% in all samples, and its relative 
abundance significantly increased with time (Figure 3.9Β; Supplementary Figure 3.S3). A 
similar temporal pattern was evident for other dominant ASVs like Immersiella and 
Aphelidiomycota. On the other hand, ASVs belonging to Schizothecium (9), 
Lasiosphaeriaceae (6), Sarocladium (3) Microascaceae (5) and different Basidiomycota (5) 
genera, Pleurotus, Coprinus and Efibulobasidium showed a clear decrease in their relative 
abundance with time (Figure 3.9B; Supplementary Figure 3.S3). 
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Figure 3.9 Heatmaps showing bacterial (A) and fungal (B) ASVs that showed significant differential abundance in 
the different biobed horizons along the different time points. It should be noted that the most dominant fungal 
ASV Stachybotrys chartarum was not displayed to avoid masking other differentially abundant ASVs. 

 

3.3.4 ASV ABUNDANCE AND PESTICIDE RESIDUE CORRELATION 
The amplicon sequencing dataset was further explored for significant correlations between 
ASV abundance and pesticide residues that were detected in the different horizons of the 
biobed packing material at the end of the study period. Several ASVs showing increasing 
relative abundance with increasing pesticide residues (positive correlations) or decreasing 
relative abundance with increasing pesticide residues (negative correlations) were detected. 
CBX residues did not show any significant correlations with the relative abundance of 
bacterial ASVs. MET-M was positively correlated with Cellulosimicrobium, Proteobacteria-
R7C24 and Bacteroidota, while negative correlations were observed with Saprospiraceae, 
Myxococcota-Blrii41, Rhodocyclaceae, Arenimonas, Azospira and Bryobacter (Figure 3.10A; 
Supplementary Figure 3.S4). FLX was positively correlated with Chloroflexi-A4b, 
Blastocatellaceae, Steroidobacter and Candidatus_Solibacter, but negatively correlated with 
Gammaproteobacteria-R7C24, Myxococcota-Blrii41, Planococcaceae, Paludibacteraceae, 
Cellulomonadaceae, Terrimonas, Muricauda and Luteitalea, (Figure 3.10A; Supplementary 
Figure 3.S4). Regarding fungicides used in ΒΗΙ, CHT and FLD residues showed a significant 
negative correlation with an ASV belonging to Microscillaceae (Figure 3.10A; Supplementary 
Figure 3.S5). Both fungicides used in FPI were negatively correlated with ASVs belonging to 
Pseudoflavitalea and Chryseolinea and positively correlated with ASVs belonging to 
Pseudomonadaceae, Tahibacter, Ferrovibrio (2) Methylibium (3), Ralstonia and Sphingopyxis 
(Figure 3.10A; Supplementary Figure 3.S6). 

Concerning fungi, CBX and MET-M residues showed significant positive correlations 
with ASVs belonging to Rozellomycota and Ascomycota respectively (Figure 3.10B; 
Supplementary Figure 3.S7), while FLX residues were negatively correlated with ASVs 
belonging to Basidiomycota (Coprinellus, Sordariomycetes, Pezizales and Podospora) and 
positively correlated with ASVs of Rozellomycota, Phialophora, Chaetomium, Aspergillus and 
Arthrographis (Figure 3.10B; Supplementary Figure 3.S7). TBZ, FLD and CHT, all contained in 
the effluents from bulb handling industries, showed positive correlations with 
Rozellomycota, Aspergillus, Cyphellophora, Trichoderma and Schwanniomyces (Figure 3.10B; 
Supplementary Figure 3.S8). FLD and IMZ, contained in effluents from FPI, showed 
significant positive correlations with Rozellomycota, Cyphellophora, Dactylella, 
Cephalotrichum and Exophiala. Whereas an Immersiella ASV showed significant negative 
correlation with FLD and IMZ (Figure 3.10B; Supplementary Figure 3.S9).  
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Figure 3.10 Heatmaps showing significant positive or negative correlations (Spearman’s rho correlation 
coefficient is shown on the side) between the abundance of bacterial (A) and fungal (B) ASVs and fungicide 
residues as determined at the end of the study in the biobed packing material. 

 

3.4 ANALYSIS OF THE DYNAMICS OF MGE IN BIOBEDS 
Before wastewater application intl1 and IS1071 were the only MGEs that were detected in 
the biobed packing material at 0.05 ± 0.01 and 0.131 × 10−2 ± 0.05 × 10−2 relative copies 
respectively. Wastewater treatment and column depth did not show a significant effect, as 
main factors, on the relative abundance of any of the MGEs studied, whereas significant 
temporal changes were evident for intl1, IS1071 and trfA (Figure 3.11; Supplementary 
Figure 3.S10). More specifically the relative abundance of intl1 significantly increased with 
time from 2.32 × 10−3 ± 1.22× 10−3 copies per g at 21 days to 4.39 × 10−3 ± 3.09×10−3 copies 
per g at 109 days (Supplementary Figure 3.S10). Regarding IS1071 and trfA, a temporal 
increase was observed with average copies ranging from0.17±0.28 on day 21 to 3680.52 ± 
20,350.93 on day 109 for IS1071 and 0.835 × 10−4 ± 3.54 × 10−4 on day 21 to 891 ± 4650 
relative copies on day 109 for trfA (Supplementary Figure 3.S10). The most dramatic 
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increase for both MGEs was evident in the columns receiving effluents from BHI, 
corresponding to a raise in the relative abundance of IS1071 from0.06 ± 0.06 at day 21 to 
13,685.4±40,611.2 at day 109 and of trfA from2.57 × 10−3± 6.99×10−3 at day 21 to 
3140±9230 at day 109 (Figure 3.11). No significant changes in the abundance of korB were 
observed during the study. 

 

Figure 3.11 The relative abundance of (A) intl1, (B) IS1071, (C) korB and (D) trfA (expressed as copy numbers per 
gram of biobed packing material (dry weight) normalized to the copy numbers of the 16S rRNA gene) in biobeds 
receiving effluents from seed-producing industries (SPIs), bulb handling industries (BHIs), fruit packaging 
industries (FPIs) and in biobeds treated with no pesticide containing effluents (control). Each bar represents the 
mean of 9 samples (6 in the case of 60 days) ± standard error. Bars designated by the same lower case letters are 
not significantly different at the 5% level. 
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4 DISCUSSION 

4.1 THE PERFORMANCE OF BIOBED SYSTEMS  
The capacity of biobeds to treat effluents from different agro-food processing industries that 
make use of fungicides was assessed in a biobed column study. The capacity of biobeds to 
remove CBX, MET-M and FLX from wastewaters produced by SPIs was initially examined. FLX 
was the sole fungicide that was mostly retained in the biobed packing material in line with 
its high sorption affinity onto organic matter (Gulkowska et al., 2016; Ou and Latin, 2018). 
On the other hand, MET-M and CBX were mostly dissipated by the biobeds in line with the 
rapid degradation of these two chemicals in soil (Balasubramanya and Patil, 1980; EFSA, 
2010, 2015) and variable biobed packing materials (Karanasios et al., 2010a; Papazlatani et 
al., 2019). The high leaching potential of MET-M, the highest among the fungicides tested, is 
in accord with its high hydrophilic character, the highest among the tested fungicides (Table 
2.1), which suggest low adsorption affinity. Indeed previous studies in biobed packing 
material of various compositions reported MET-M Kfoc values ranging from 7.81 to 213 L kg−1 
(Karanasios et al., 2010a,b; Vischetti et al., 2020). The high mobility of MET-M has been also 
demonstrated in a BiomassBed system receiving washates from a sprayer-tank for two 
years, where it was the least retained fungicide (Vischetti et al., 2012). The late leaching 
pattern of all SPI fungicides might be associated with the high adsorption affinity of FLX 
which could have saturated the sorption sites of the biobed packing material during the first 
70 days of the experiment and hence favored the leaching of the surplus of pesticides 
applied on the columns.  

Regarding pesticides contained in effluents from BHI, CHT, TBZ and FLD were mainly 
dissipated or retained by the biobed packing material, with the former being the most 
important process. The three fungicides showed limited mobility as it is suggested by their 
low leached amount and the concentration of their residues at the top 20 cm of the biobeds 
(over 90% of the total amount retained). Our findings are in accord with previous studies by 
Karas et al. (2016b) who reported nearly 87% dissipation of TBZ in pilot biobeds packed with 
a bioorganic material identical to the one used in present study. Similarly Gao et al. (2015) 
and Fogg et al. (2004a) studied the dissipation of CHT in biobeds packed with different 
packing materials, and reported high degradation percentages and limited mobility.  

Regarding FLD and IMZ contained in effluents from FPI, biobeds effectively removed 
both fungicides from the effluents with more than 99.8% of the total applied amounts 
retained or dissipated with the former being the dominant process. Omirou et al. (2012) and 
Karas et al. (2016a) studied the capacity of biobeds to retain and dissipate fungicides 
contained in effluents from FPIs. In line with our study, they observed a negligible leaching 
of IMZ (0.09–0.22% of total applied amount), with the amount of IMZ retained by the biobed 
packing material being detected at the top 20 cm of the biobed system. Similarly to IMZ, 
previous studies have also demonstrated the high adsorption affinity and low mobility of FLD 
in soil and biobed packing material, which is in line with our findings (Fenoll et al., 2011; 
Vischetti et al., 2012). 
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4.2 THE COMPOSITION OF BIOBEDS MICROBIOME  
We further determined the composition of the bacterial and fungal communities in biobed 
systems, followed microbial succession during their operation and identified how microbial 
communities colonizing the biobed packing material respond to continuous exposure to 
agro-industrial effluents of variable pesticide composition.  

The bacterial community of biobeds was dominated by Proteobacteria, 
Actinobacteria and Bacteroidota in line with previous studies (Holmsgaard et al., 2017; 
Bergsveinson et al., 2018). Russell et al. (2021) in their metagenomic analysis of microbial 
communities in two operating biobed systems also demonstrated dominance of 
Proteobacteria. The fungal community was dominated by Sordariomycetes of the orders 
Hypocreales and Sordariales which is in accord with previous studies by Bergsveinson et al. 
(2018).  

Interestingly wastewater treatment did not have a significant influence on the 
diversity of the bacterial and fungal communities which showed a remarkable resilience. 
Previous studies by Bergsveinson et al. (2018) also suggested that the microbiome of 
biobeds was resilient and was not affected by biobed design or operation parameters. The 
composition of the bacterial community in the pilot biobeds showed clear temporal patters 
and further varied at the different biobed horizons. Hence, bacterial communities showed 
limited variation with depth at start (21 d), but they largely differentiated from the top to 
the bottom horizon at the end of the study (109 days). Similar temporal patterns were 
evident also for the fungal community although this time the differences in the composition 
of the fungal community along depth were evident from the first sampling day and persisted 
for the whole experimental duration. The earlier differentiation of the fungal community 
along the biobed depth could not be attributed to the nature of the pesticides applied 
(fungicides) since the same pattern was also evident in the non-treated columns. This 
differentiation is probably driven by the early establishment of microaerophilic conditions in 
the deeper layers of the biobed system which are expected to affect mostly the fungal 
rather than the bacterial community which is more easily adapted to low oxygen conditions 
(Reith et al., 2002). Earlier column studies by Fogg et al. (2004b) reported that high water 
loadings could result in saturation and the establishment of microaerophilic conditions at 
the deeper layers and a slowdown of pesticide degradation. 

Considering that the pesticide composition of the wastewater did not significantly 
affect the bacterial and fungal communities, we attempted to identify the bacterial and 
fungal taxa whose abundance showed consistent temporal patterns. Bacteria belonging to 
Myxococcota, Acidibacter, Terrimonas, Arenimonas and Chloroflexi showed a consistent 
increase with time. The Myxococcota ASVs identified in our study were affiliated to the 
Myxoccota Blrii41 family which have been identified as dominant member of the bacterial 
community in aerobic green waste composts (Cai et al., 2018). Members of this phylum are 
notorious predators in soil swarming their prey (Waite et al., 2020). However recent 
metagenomic analysis of uncultured Myxococcota, like members of the Blrii41 family 
(Petters et al., 2021), from non-soil environments appeared to be strict anaerobes with lack 
of predation capacities (Murphy et al., 2021). This along with the significant increase in the 
abundance of Anaerolinae/Chloroflexi and Acidibacter ASVs with time provides further 
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support to our earlier suggestion about the establishment of microaerophilic conditions in 
the biobed which favored facultative or strict anaerobes like Chloroflexi/Anaerolinae (Sun et 
al., 2015; Gschwend et al., 2020), Acidibacter (Falagán and Johnson, 2014) and Myxococcota.  

Regarding fungi, consistent temporal decreases in the relative abundance of 
Schizothecium and to several basidiomycetes belonging to Pleurotus, Coprinus and 
Efibulobasidium were noted. Members of the genus Schizothecium are coprophilus fungi 
that predominate in organic-rich substrates like the biobed packing material (Zheng et al., 
2021). The time – dependent reduction in the relative abundance of Basiodiomycetes might 
be associated with the prevalence of conditions in the biobed systems which disfavor their 
proliferation. In a similar column study with the same packing material Karas et al. (2016a) 
showed that the high water loading of biobeds with fungicide-containing effluents have 
detrimental effects on the survival and activity of Pleurotus ostreatus colonizing the spent 
mushroom substrate at the onset of the experiment. On the other hand, dominant fungi in 
the biobed packing material appear to increase in abundance with time. These included 
Stachybotrys chartarum, previously isolated from soil and artificial cellulose-containing 
materials (Elanskii et al., 2004; Jie et al., 2013), Immersiella and Scutellinia, both being 
saprotrophic fungi. The latter has been previously shown to increase in abundance under 
soil compaction, where air permeability and gas diffusion are reduced (Longepierre et al., 
2021), conditions which are expected to prevail at the latter stages of our biobed leaching 
column study.  

Finally, positive and negative correlations between the relative abundance of 
members of the bacterial and fungal community and pesticide residues in the biobed 
packing material were identified. Positive correlations between pesticide residues and 
microbial abundance were hypothesized to signify microorganisms that are either involved 
in the degradation of the pesticide or not affected by the studied pesticide and they increase 
to fill voids left by microorganisms sensitive to pesticides. In contrast, negative correlations 
reflect the response of microorganisms that are sensitive to pesticides. FLD and IMZ residues 
were positively correlated with bacterial taxa that are known to possess pesticide degrading 
members, like Pseudomonadaceae, Comamonadaceae, Tahibacter, Sphingomonas, 
Sphingopyxis and Ferrovibrio (Boon et al., 2001; Lu and Lu, 2018; Bai et al., 2020; Kumar et 
al., 2021). CHT was positively correlated only with a member of the genus Longimicrobium, 
shown to have a positive correlation with iprodione residues in previous studies (Katsoula et 
al., 2020).MET-M resulted in enrichment of the packing material with Cellulosimicrobium 
and Terrimonas, previously reported as degraders of 2,4,5-trichloro-phenoxyacetic acid 
(Korobov et al., 2018) and FLD (Mavriou et al., 2021), respectively. MET-M was negatively 
correlated with Saprospiraceae, in line with previous studies which showed that members of 
the family were also sensitive to exposure to fungicides like carbendazim and tricyclazole 
(Shi et al., 2019).  

Regarding fungi, significant positive correlations between Rozellomycota, 
Aspergillus, Cyphellophora and many applied fungicides were evident. Rozellomycota are 
commonly detected in anoxic habitats (Grossart et al., 2016) and possess the enzymatic 
toolbox for lignin degradation (Song et al., 2019). Cyphellophora europaea is known to be 
involved in the degradation of nicotinic acid (vitamin B3) and hydrocarbons (Bokor et al., 
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2021; Radwan and Ruiz, 2021), while Aspergillus has been reported as degrader of 
carbendazim, mancozeb and metolachlor (Sanyal and Kulshrestha, 2004; Ahlawat et al., 
2010). Other taxa that are positively correlated with fungicides contained in the effluents of 
FPI include strains able for lignocellulose degradation i.e. Cephalotrichum (Zanellati et al., 
2020) and opportunistic black yeasts that thrive in hydrocarbon-rich environments, i.e. 
Exophiala xenobiotica (De Hoog et al., 2006; Isola et al., 2013) All three pesticides used in 
bulb dipping activities were positively correlated with Trichoderma genus, whose 
degradation potential has already been demonstrated against various antibiotics (Manasfi et 
al., 2020) and pesticides (Katayama and Matsumura, 1993; Tripathi et al., 2013; Sharma et 
al., 2016; Manasfi et al., 2020). It should be clarified that correlations between the 
abundance of phylogenetically distinct microbial units and pesticide residues do not 
constitute absolute proof of the involvement of the specific microorganisms in associated 
functions (e.g. pesticide degradation), and this should be verified via culture-dependent or 
shotgun metagenomic and meta-transcriptomic approaches. 

4.3 THE DYNAMICS OF MGES IN BIOBEDS  
Finally, the dynamics of MGEs known to be involved in the transmission of pesticide 
degrading genes were determined. It was hypothesized that treatment of biobeds with high 
pesticide loads will stimulate genetic exchanges between members of the bacterial 
community towards the evolution and dissemination of novel pesticide degradation 
pathways (Dealtry et al., 2014). In contrast to our hypothesis, no significant differences in 
the relative abundance of Intl1, IS1071 and IncP-1 and IncP-1ε, all known to be associated 
with the horizontal gene transfer of pesticide-degrading genes (Popowska and Krawczyk-
Balska, 2013; Dunon et al., 2018) were observed. Instead, a temporal increase in the 
abundance of most MGEs tested was evident, regardless of the treatment employed in the 
different columns. This might be associated with the establishment with time of abiotic and 
biotic conditions in biobed systems, beyond pesticide-imposed selection pressure, that 
stimulated genetic exchange between members of the microbial community (Aminov, 2011). 
Such conditions could be associated with the gradual decomposition of the high organic 
matter content of the biobed packing material with time that might release nutrients and 
easily assimilable carbon sources supporting the active metabolic state of bacteria required 
for horizontal gene transfer (van Elsas and Bailey, 2002; Heuer and Smalla, 2012). Still the 
exact etiology for the temporal increase in MGE abundance in our biobed systems warrants 
further research. 

5 CONCLUSIONS 
Our study showed that biobed systems could effectively remove pesticides from effluents 
produced by SPIs, BHIs and FPPs, by employing different processes depending on the 
polarity and biodegradability of the chemicals contained in the effluents. More lipophilic 
substances were mostly retained by the biobed packing materials while the more polar and 
biodegradable pesticides were dissipated. Biobeds supported a microbial community whose 
composition was not affected by pesticide exposure and the pesticide composition of the 
different agro-industrial effluents used. Instead the microbial community showed clear 
temporal patterns along the different biobed horizons, an effect most probably driven by 

124 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



the establishment of microaerophilic conditions upon water saturation of biobeds, 
facilitating the establishment of anaerobic and facultative anaerobic bacteria. 
Measurements of selected MGE dynamics in the biobed systems did not concur with our 
hypothesis for their increasing abundance in biobeds receiving pesticide contaminated 
effluents comparing to control. Further studies using shotgun metagenomics targeting both 
genomic and plasmid DNA will provide insights into the role of horizontal gene transfer and 
MGEs in the evolution of pesticide catabolic pathways.   
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1 INTRODUCTION 
Imazalil ((RS)-1-(β-allyloxy-2,4-dichlorophenethyl)imidazole, IMZ) is a systemic imidazole 
fungicide used mainly for the post-harvest treatment of pome and citrus fruits. It is also 
registered for use in protecting tomatoes grown in artificial substrates and as seed 
treatment on cereals (EFSA, 2010). Its mode of action involves the disruption of the cell 
membrane function of pathogenic fungi, by inhibiting the demethylation step in the 
biosynthesis of ergosterol (Khan et al., 2001; Siegel and Ragsdale, 1978). IMZ is persistent in 
soil and in riverine water/sediment systems with DT50 values of 41-135 days and 161-165 
days, respectively (EFSA, 2011). It is strongly adsorbed in soil organic matter (KFoc = 4753 – 
7942.9 ml g-1) (Karas et al., 2015; EFSA, 2010), which deems it immobile in soil with low risk 
for groundwater contamination (Karas et al., 2016a; Omirou et al., 2012; EFSA, 2011). 
Regarding toxicity, IMZ has been listed by the US Environmental Protection Agency as “likely 
to be carcinogenic to humans” (EPA, 1999), while recent studies in mice suggested that IMZ 
can act as an endocrine disruptor (Jin et al., 2019) and a hepatotoxic factor (Jin et al., 2018). 
IMZ is moderately toxic to off-target aquatic organisms, like invertebrates and fish (EFSA, 
2011), although other studies have reported considerable toxicity to aquatic micro-
invertebrates (Castillo et al., 2006) and zebrafish (Jin et al., 2016). IMZ is not toxic to soil 
microorganisms (Papadopoulou et al., 2016), but it was toxic to the earthworm Eisenia 
andrei (Pereira et al., 2020).  

Postharvest application of IMZ results in the formation of large wastewater volumes of 
high fungicide concentrations (10 – 50 mg L-1) (Santiago et al., 2018a, 2016). Acknowledging 
the environmental risk from the release of these wastewaters, the European Commission 
granted authorization to IMZ under the clause that appropriate waste management 
treatment processes would be put into place by the users to ensure minimum exposure of 
natural water resources to IMZ (EFSA, 2010). Pilot systems using advanced oxidation 
processes, like photo-Fenton (Santiago et al., 2018a, 2016), TiO2-based photocatalysis 
(Santiago et al., 2018b, 2013; Jiménez et al., 2013)  or ozone treatment (Genena et al., 2011) 
were evaluated for the removal of IMZ and other fungicides from agro-industrial effluents 
and showed high efficiency. However, several reasons have hampered the full-scale 
implementation of these systems including (i) the  reduction of the efficiency and shortening 
of the electrode half-life, due to deposition of organic material on its surface, (ii) the high 
electric energy requirements and cost of systems construction (iii) the possible use of 
additional reagents, like electrolytes (Titchou et al., 2021; Sirés et al., 2014) and (iv) the 
possible production of oxidized pesticide transformation products that are equally or more 
toxic than the parent compounds (Santiago et al., 2013).  

In the absence of treatment systems, fruit-packaging plants (FPPs) discharge their 
effluents in municipal wastewater treatment systems. However, the generic microbial 
community of these systems fails to remove IMZ and other persistent fungicides contained 
in the above agro-industrial wastewaters (Campo et al., 2013). Based on all these, IMZ is 
now considered a major contaminant of surface water systems in fruit-producing regions of 
Europe (Fonseca et al., 2019; Ccanccapa et al., 2016; Masiá et al., 2013) and beyond (Castillo 
et al., 2006). Biobased processes have also been tested for the treatment of these effluents. 
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Constructed wetlands were studied as a possible method for the removal of IMZ from 
wastewaters and showed promising results (Lv et al., 2016), although their efficiency was 
tested at μg L-1, which are far lower than the IMZ levels encountered in wastewaters from 
FPPs. Omirou et al., (2012) and Karas et al., (2016b) used on-farm biopurification systems for 
the treatment of these effluents and showed high removal efficiencies, despite the fact that 
IMZ was not degraded, but it was adsorbed in the packing material of these systems. 
Considering all the above, it is anticipated that biological treatment systems, based on 
tailored-made microbial inocula with advanced degradation capacities against the target 
fungicides, might be an optimum solution for the depuration of these effluents (Perruchon 
et al., 2017).  

Although microbes for the rapid degradation of fungicides contained in effluents from 
FPPs, like thiabendazole (TBZ), ortho-phenylphenol (OPP) and iprodione (IPR), have been 
previously isolated (Perruchon et al., 2017, 2016; Campos et al., 2015), no microorganisms 
with the capacity to effectively degrade IMZ have been reported yet. López-Loveira et al., 
(2017) first isolated an IMZ-tolerant bacterial consortium from the sludge of a system 
receiving effluents from a FPP. The consortium was able to degrade up to 50% of 500 mg L-1 
IMZ in the presence of extra carbon sources. Karas et al., (2011) showed that the white-rot 
fungus Trametes versicolor was able to degrade 10 mg L-1 of IMZ, but failed to degrade a 5-
fold higher concentration of the fungicide.  

In this frame, we aimed (1) to isolate and identify microorganisms with the capacity to 
effectively dissipate IMZ, (2) to characterize their degradation capacity against IMZ under 
variable conditions relevant to their potential application in the treatment of agro-industrial 
effluents, (3) to assess its efficiency to establish and effectively remove IMZ from 
wastewaters when used as inoculum in an immobilized cell bioreactor. Considering that the 
isolated IMZ-degrading microorganism belonged to the genus Cladosporium (teleomorph: 
Mycosphaerella), that encompass both pathogenic and saprotrophic members (Crous, 2009), 
and its potential practical use as starting inoculum in bioreactors established in FPPs, we 
tested its pathogenicity in citrus and pome fruits. 

2 MATERIALS AND METHODS   

2.1 CHEMICALS 
Analytical standards of IMZ (99.3% Pestanal ®), fludioxonil (FLD) (99.9% Pestanal ®), TBZ 
(99.3% Pestanal ®), OPP (99.6% Pestanal ®), IPR (99% Pestanal®) and its main derivative 3,5 
dichloro-aniline (3,5-DCA) (≥99.7%) were purchased from Fluka/Sigma-Aldrich. Analytical 
standards were used for the preparation of pesticide stock solutions (1000 mg L-1) in 
methanol that were utilized for pesticide quantification as described below. Commercial 
formulations of the pesticides including FUNGAZIL® 500 EC (IMZ), SCHOLAR 230 SC (FLD), 
TECTO 50% ® SC (TBZ), FOAMER® 20 EC (OPP) and ROVRAL 50 SC (IPR) were used for the 
preparation of aqueous solutions of the pesticides, which were further used in liquid culture 
studies. The antimicrobial agents, chloramphenicol and nystatin, were purchased by Sigma-
Aldrich. Working solutions of chloramphenicol (25 g L-1) and nystatin (30 g L-1) were prepared 
in ethanol and DMSO, respectively. 
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2.2 GROWTH MEDIA  
The isolation and routine cultivation of IMZ-degrading microorganisms was performed in (i) 
a minimal salt medium supplemented with nitrogen, casein hydrolysate (0.15 gr L-1), glucose 
(0.5% w/v) (MSMN) and (ii) potato dextrose broth (PDB). Both media were amended with 
IMZ, added as a filter sterilized aqueous solution prepared with the use of the commercial 
formulation. MSMN was prepared as described in Karpouzas and Walker, (2000a). Solid 
versions of these media were prepared by adding 15 gr L-1 agar. Unless otherwise stated, all 
liquid cultures were incubated in the dark at 25°C in an orbital shaker at 200 rpm.  

 

2.3 ISOLATION OF IMZ-DEGRADING MICROORGANISMS 
A range of substrates, all characterized by heavy exposure to IMZ, were tested as sources for 
the isolation of IMZ-degrading microorganisms through enrichment cultures. These 
substrates included (a) a soil from a disposal site receiving effluents from a FPP in Cyprus 
(IMZ level at sampling was 15.7 μg g-1), (b) sediment from the pipes discharging the 
wastewater of a FPP in Arta, Greece to a nearby field site (IMZ level at sampling was 10.3 μg 
g-1), (c) sediment from the drencher of a FPP in Larissa, Greece (IMZ level at sampling was 
0.105 μg g-1), (d) soil collected from a disposal site of a FPP in Agia, Larissa, Greece (IMZ 
levels ranging from 0.6 to 6.4 μg g-1), (e) sludge from municipal aerobic sewage sludge 
systems in the regions of Tyrnavos and Agia known to receive effluents from FPP. However, 
it should be noted that at the time of sampling no residues of IMZ were detected in the 
sludge. Enrichment cultures inoculated with the above matrices did not result in an 
appreciable degradation of IMZ with the sole exception of soil (a), which was further used 
for the isolation of IMZ-degrading microorganisms.   

To stimulate its IMZ-degrading microbiota, soil (a) was treated with a fresh addition of IMZ 
(5 μg g-1 dry soil) and incubated under aerobic conditions in the dark at 25°C. When more 
than 50% degradation of IMZ was observed in the soil, 1 g of soil was used for the 
inoculation of enrichment cultures of MSMN supplemented with 10 mg L-1 IMZ as described 
by Karpouzas et al., (2000b). In total, four enrichment cycles were undertaken. At the point 
where more than 50% degradation of IMZ in the fourth enrichment cycle had occurred, 150 
μl were spread on IMZ-amended (20 mg L-1) MSMN and PDA plates. The latter was included 
based on preliminary microscopy observations of the prolific growth of fungi in the 
enrichment cultures. All plates were incubated at 25oC in the dark, for 4 days. Ten and 
twelve morphologically distinct colonies were picked from MSMN and PDA plates 
respectively and were inoculated in fresh MSMN and PDB liquid media supplemented with 
20 mg L-1 IMZ. Duplicate samples per medium were not inoculated to serve as abiotic 
controls. All cultures were incubated as described above, and the degradation of IMZ was 
determined at day 7 by HPLC. 
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2.4  MOLECULAR IDENTIFICATION OF THE IMZ-DEGRADING 
MICROORGANISM  

DNA was extracted from fresh cultures of the isolated fungus in PDB using the CTAB method 
(Doyle and Doyle, 1987). DNA quality was assessed via electrophoresis and its concentration 
was determined via Qubit 2.0 fluorometer (Thermo Scientific). DNA from pure cultures was 
used for the amplification of the ITS genomic region using primers ITS1F and ITS4 
(Supplementary Table  4.S1) and KAPA Taq polymerase (KapaBiosystems, Wilmington, 
Massachusetts). The amplification product was subsequently purified (Nucleospin II clean-up 
kit, Macherey-Nagel, Germany), cloned into the pGEM-T® Easy plasmid vector system 
(Promega, Madison, USA) and transformed into Escherichia coli DH5a competent cells, 
following standard procedures (Sambrook and Green, 2012). White colonies of the 
transformed bacteria were selected for plasmid extraction with the NucleoSpin Plasmid kit 
(Macherey-Nagel, Germany) and were sequenced via the Sanger method in Cemia S.A., 
Larissa, Greece. Sequences were aligned in UNITE database, version 8.0 (Nilsson et al., 
2019), with mothur v.1.42.3 (Schloss et al., 2009). Moreover, obtained sequences were 
aligned against selected fungal phyla with MUSCLE (Edgar, 2004) and the alignment was 
further edited by Gblocks  (Castresana, 2000) before phylogenetic analysis. A phylogenetic 
tree was prepared with phyML, version 3.1 (Guindon et al., 2010), using the General Time 
Reversible (GTR) model with 100 bootstrap analysis. 

 

2.5  VERIFICATION OF THE ROLE OF THE FUNGUS IN THE DEGRADATION OF 
IMZ  

To confirm the key role of the fungal isolate on the degradation of IMZ, we assessed the 
degradation capacity of the isolated fungus in the presence of the antifungal agent nystatin 
and the antibacterial agent chloramphenicol. For this purpose, 15 liquid cultures of the IMZ-
degrading microorganism were prepared in PDB and they were amended with aqueous 
solutions of IMZ, aiming to a nominal fungicide concentration of 50 mg L-1. Triplicate cultures 
were amended with DMSO and ethanol solutions of nystatin and chloramphenicol 
respectively, aiming to nominal concentrations of 50 and 100 mg L-1, or remained untreated. 
In addition, duplicate cultures received the same amount of DMSO or ethanol without 
antimicrobial agents to consider possible negative effects of the solvents in the degradation 
capacity of the isolate. The media were inoculated with 2 x 103 conidia mL-1 collected from a 
fresh fungal culture. Abiotic controls without fungal addition were prepared for all tested 
treatments. IMZ concentration in liquid cultures was determined regularly via HPLC-PDA. 

 

2.6 TESTING THE PATHOGENICITY OF THE IMZ-DEGRADIND FUNGUS ON 
FRUITS   

A prerequisite for any further practical application of the IMZ-degrading fungus in the 
depuration of agro-industrial effluents is the verification that it carries no potential 
pathogenicity against fruits treated by fruit-packaging plants. Hence, we examined the 
potential of the isolated fungal strain to infect and cause disease in apple (cv. ‘Fuji’), pear 
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(cv. ‘Crystalli’) and orange (cv ‘Arta’) fruits. In total, 24 apple, 24 orange and 19 pear fruits 
were surface-sterilized by immersing for 2 min in a 70% EtOH solution. All fruits were further 
rinsed with sterile distilled water, placed in plastic containers, lined with wet paper towels. 
Fungal conidia were collected from an active culture of the fungus on PDA using a sterile 
cotton swab and suspended in 2 ml sterile distilled water solution containing 0.1% (v/v) 
Tween 80 (PanReac Applichem, Germany). Spore suspension's density was adjusted to 2 x 
106 conidia mL-1, using a hemocytometer (Neubauer, Hamburg, Germany). Each fruit was 
subjected to two inoculation methods, with and without wounding. Wounds (3 mm in 
depth) were created on the surface of half of the fruits from each category, using a sterile 
needle. Fifty (50) μL of conidial suspension were transferred on the wound or unscathed 
surface. The containers with the fruits were covered with lids, to ensure high relative 
humidity (RH>90%) and incubated at 22oC for 7 days. At the end of the incubation period, 
disease incidence (%) was measured by counting the number of infected fruits. 
Pathogenicity was confirmed by re-culturing on PDA plates. 

 

2.7 CHARACTERIZATION OF THE DEGRADATION POTENTIAL OF THE IMZ-
DEGRADING FUNGUS  

2.7.1 INOCULUM PREPARATION  
All liquid culture experiments described below were inoculated with conidia, harvested from 
growing fungal cultures on solidified or liquid media. Briefly, agar plates were inoculated 
with 700 μL of a fresh growing liquid culture of the fungus. The plates were then incubated 
at 25oC, in the dark for 2-3 weeks. Conidia were collected from plates with sterile 0.85% 
NaCl, pelleted by centrifugation at 8,000 rpm, 16oC for 30 min, counted using a 
hemocytometer and their concentration was adjusted to the desired levels with addition of 
sterile 0.85% NaCl (Skiada et al., 2019). 

2.7.2 ASSESSMENT OF THE GROWTH AND DEGRADATION CAPACITY OF THE 
FUNGAL ISOLATE AT INCREASING IMZ CONCENTRATIONS  

The ability of the fungal isolate to grow and degrade IMZ was evaluated under increasing 
concentrations of the fungicide in both PDB (nutrient rich) and MSMN (minimal) growth 
media. Liquid cultures were amended with appropriate volumes of aqueous solutions of IMZ 
prepared from its commercial formulation, in order to achieve final concentrations of 0, 20, 
50 and 100 mg L-1. For each tested concentration, 12 liquid cultures were prepared, by 
inoculation with approximately 2 x 103 conidia mL-1. Duplicate non-inoculated controls per 
medium were also included to determine the abiotic degradation of IMZ. All cultures were 
incubated at 25oC and 160 rpm in the dark. At four different time points after the onset of 
the experiment (Table 4.1), three flasks were removed from incubation and used for (i) the 
determination of IMZ concentration by HPLC-PDA and (ii) the measurement of fungal growth 
by determination of the dry weight of the fungal biomass. 
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Table 4.1 Time after inoculation when determination of IMZ concentration and fungal growth took place. 

Growth medium IMZ concentration (mg L-1) Days after inoculation 
MSMN 0  3, 7, 10, 14 
 20 3, 5, 7, 10 
 50 3, 7, 10, 14 
 100 7, 14, 21, 28 
PDB 0 3, 7, 10, 14 
 20 3, 4, 5, 7 
 50 3, 7, 10, 14 
 100 7, 14, 21, 28 

 

2.7.3 ASSESSMENT OF THE CAPACITY OF THE FUNGUS TO DEGRADE OTHER 
FUNGICIDES  

We further tested the capacity of the isolated fungus to degrade the fungicides FLD, TBZ, 
OPP, IPR and its persistent transformation product 3,5-DCA. These compounds are used 
along with IMZ in the post-harvest treatment of fruits and they are expected to co-occur 
with IMZ in the wastewaters of the fruit-packaging plants. The biodegradation of the 
abovementioned fungicides was monitored in MSMN amended with appropriate volumes of 
aqueous solutions of the fungicides, aiming at final concentrations of 50 mg L-1. For each 
pesticide, three cultures were inoculated with ca. 106 conidia mL-1, while two further 
cultures were not inoculated to serve as abiotic controls. All cultures were incubated in the 
dark at 25oC, 160 rpm. The degradation of the tested fungicides was determined by regular 
measurement of their concentration in the liquid cultures. 

2.7.4 DEGRADATION DATA ANALYSIS  
The degradation rates of IMZ were calculated with the single first order (SFO) kinetic model 
and the biphasic Hockey-Stick (HS) model based on the recommendations of the FOCUS 
workgroup on pesticide degradation kinetics (FOCUS, 2006). The model showing the best fit 
to the degradation data was selected based on the χ2 test (χ2 value < 15) and visual 
inspection of the distribution of the residuals compared to the observed data. The analysis 
was carried out in the R Studio version 4.0.0 (R Core Team, 2020), utilizing the package mkin 
version 0.9.50.2 (Ranke, 2019). 

2.7.5 FUNGAL GROWTH MEASUREMENTS AND KINETICS  
The fungal biomass collected at various time points by filtration through cheesecloth, was air 
dried at 70oC for approximately 16 h and the dry weight was determined. The exponential 
growth rate was deduced from the growth curve and was described by the equation: 

𝜇𝜇𝜇𝜇 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

2.7.6 STATISTICAL ANALYSIS  
Pairwise comparison analysis between the different degradation coefficients and growth 
rates, were carried out with Welch’s t-test, which assumes the variances to be unequal. The 
linear correlation among the concentration of IMZ and fungal biomass for every 
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experimental treatment was assessed through estimation of Pearson’s correlation 
coefficient. 

 

2.8 PERFORMANCE OF THE IMZ-DEGRADING FUNGUS IN A BIOREACTOR 
SYSTEM  

2.8.1 BIOREACTOR SETUP  
We eventually evaluated the capacity of the isolate to effectively decontaminate agro-
industrial effluents that contained IMZ under bioreactor conditions. An immobilized cell 
bioreactor of 550 mL volume was set up, containing a 150 ml column of porous glass beads. 
Adequate oxygen supply, i.e. 4 mg L-1, was provided to the immobilized biomass by inserting 
an air diffuser on the upper part of the bioreactor and recirculating the effluent in an upflow 
manner (Mavriou et al., 2021). The bioreactor was inoculated with 50 mL of 4.8 x 104 conidia 
mL-1 of the fungal strain and operated under a constant hydraulic retention time (HRT) of 10 
days. The biosystem was fed with synthetic wastewater containing 200 mg L-1 IMZ and a salt 
and trace elements solution (Mavriou et al., 2021) for an operating period of 105 days.  

2.8.2 MEASURMENT OF THE PHYSICOCHEMICAL PROPERTIES OF THE 
BIOREACTOR SYSTEM  

During bioreactor operation, influent and effluent physicochemical characteristics were 
determined at various time-points. Electrical conductivity (EC) and pH were determined with 
a Crison CM35 probe and a HANNA HI 98191 meter, respectively. Chemical oxygen demand 
(COD) concentrations were measured based on the “Standard Methods for the Examination 
of Water and Wastewater” (Clesceri et al., 1998). Total Kjeldahl nitrogen (TKN) was 
estimated after acid digestion, ammonia distillation and titration of ammonium nitrogen 
(NH4

+-N) content (Clesceri et al., 1998). A column containing Cd-copperized granules was 
used to achieve nitrates reduction to nitrites, which were further measured 
spectrophotometrically at 453 nm using sulfanilamide/(1-naphthyl)ethylenediamine-
dihydrochloride as indicator (Clesceri et al., 1998). The concentration of IMZ in the influent 
and effluent were determined in a HPLC-PDA system (ECOM, Czech Republic) equipped with 
a 5 UniverSil C18 250 × 4.6 mm column (Fortis, UK). IMZ was eluted isocratically with a 
mobile phase of 75/25, v/v acetonitrile/H2O at flow rate of 0.8 mL min-1.  

2.8.3 DETERMINATION OF MICROBIAL COMPOSITION AND DYNAMICS IN THE 
BIOREACTOR  

Beyond physicochemical traits, we determined the succession of the microbial community 
colonizing the bioreactor system and further investigated the capacity of the fungal 
inoculum to colonize and establish itself in the immobilized cell bioreactor. The abundance 
of total bacteria and fungi along the bioreactor operation was determined via q-PCR. For the 
total fungal abundance, the 18S rRNA gene was amplified with the primer set FF390-FR1 
using a SYBR Green protocol (Supplementary Table  4.S1). For the total bacterial abundance, 
the 16S rRNA gene was amplified with the primers Eub338 and Eub518, following a SYBR 
Green protocol (Supplementary Table  4.S1).  
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The composition of the microbial community was determined at samples collected 
at 3, 24, 46 and 68 days after inoculation. These time points were selected in order to 
examine the start-up period needed for the adaption of the microbial biomass in the 
bioreactor which was achieved with three to five HRTs. After this time the bioreactor was 
operating under steady state conditions. DNA extraction from Siran beads was performed 
after freezing and pestling to dust, using the NucleoSpin Tissue kit (Macherey-Nagel, 
Germany), following the manufacturer’s protocol. A lyticase step was included, where 100 U 
lyticase were added in each treated sample. The fungal community composition was 
determined via sequencing of the ITS genomic region with the primer set P-ITS1- P-ITS4 with 
a HotStarTaq Plus Master Mix kit (Qiagen) (Supplementary Table  4.S1) and amplicon 
sequencing was performed in Miseq Illumina 2x300bp paired-end platform at “Mr DNA” 
(USA). The bacterial community composition was determined via amplification of the V4 
region of the 16S rRNA gene with the primers 515f and 806r with Q5 High Fidelity DNA 
polymerase (New England Biolabs) (Supplementary Table  4.S1), where the PCR reaction 
was performed for 28 cycles, followed by a second PCR for 7 cycles with barcoded primers 
for multiplexing the amplicons, and sequences were obtained via HiSeq Illumina Rapid Mode 
2x250bp paired-end reads (Admira health, New Jersey). More details about our amplicon 
sequencing analysis are provided in Vasileiadis et al. (2018). 

2.8.4 DATA ANALYSIS  
Sequence pre-analysis consisted of de-multiplexing with Flexbar, version 3.0.3 (Dodt et al., 
2012). Consequently, the dada2 version 1.18.0 (Callahan et al., 2016a) package of the R 
software (R Core Team, 2020) was used for quality control, sequencing errors, PCR 
introduced chimeras, and the generation of the final ASV matrices as previously suggested 
(Callahan et al., 2016b). UNITE general fasta release version 8.2 (Abarenkov et al., 2020) and 
Silva SSU taxonomic dataset version 138 (McLaren, 2020) formatted for dada2 were used for 
classification of the ITS and 16S rRNA amplicons, respectively. 

The microbiome package v1.12.0 (Lahti and Shetty, 2012) of the R software was used 
to calculate measures of α-diversity, like the Shannon diversity index (Spellerberg and Fedor, 
2003), the inversed Simpson index (Hill, 1973), the observed richness (S) and the Pielou’s 
evenness index (Pielou, 1966).  

 

2.9  FUNGICIDE RESIDUE ANALYSIS  

2.9.1 FUNGICIDE EXTRACTION FROM LIQUID CULTURES  
Fungicides were extracted from growth media with a liquid-liquid extraction method. Briefly, 
for IMZ and FLD, 200 μL of the liquid culture were mixed with 800 μL methanol. The mixture 
was vortexed for 10 sec and centrifuged for 5 min, at 13,300 rpm at room temperature and 
the supernatant was used for HPLC analysis. For TBZ and OPP, we followed the protocols 
described by Perruchon et al., (2017) and Perruchon et al., (2016), respectively, whereas for 
IPR and 3.5-DCA, the protocol described by Campos et al., (2017) was followed. 
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2.9.2  HPLC ANALYSIS 
All extracts were analyzed in a Shimatzu HPLC-DAD system equipped with an Athena C18 
column (150mm × 4.6 mm) (ANPEL Laboratory Technologies) with a flow rate of 1 mL min-1. 
ΙΜΖ was detected at 204 nm, with a retention time of 5.1 min, using a mobile phase of 
methanol : water at 80 : 20 v/v with 0.25% ammonia solution. FLD, IPR and 3.5 DCA were 
detected at 207, 220 and 220 nm respectively, with a retention time at 5.6, 4.3 and 3.7 min 
respectively, using mobile phases of 70:30 v:v  methanol:water for  FLD and 70:30 v:v  
acetonitrole:water  for IPR and 3,5 DCA. TBZ and OPP were detected at 210 and 245 nm, 
using a mobile phase of acetonitrile:water:25% NH3 solution at volumetric ratios of 25:74:1 
for TBZ and 60:39.5:0.5 for OPP. Under these chromatographic conditions, the retention 
times were 7.4 and 4.6 min, respectively. 
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3 RESULTS 

3.1 ISOLATION AND IDENTIFICATION OF THE IMZ-DEGRADING FUNGUS  
Enrichment cultures showed a rapid degradation of IMZ in both media. Selected colonies 
tested in the corresponding IMZ amended media revealed that only one of the selected 
strains, a fungal strain forming velvety, olivaceous green colonies, was able to degrade IMZ 
within 7 days. Pure cultures in PDB verified the rapid degradation and growth of the fungal 
isolate. Sequencing of the ITS region showed that the isolated strain clustered within the 
genus Cladosporium showing highest homology to Cladosporium herbarum, and its 
teleomorph Mycosphaerella tassiana (bootstrap value: 84) (Figure 4.1).  

 

Figure 4.1 Phylogenetic relationships of the fungus isolated in the current study with other closely related 
species, after performing muscle alignment (Edgar, 2004), and estimating maximum likelihood phylogenies with 
phyML (Guindon et al., 2005). 
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3.2 VERIFICATION OF THE DIRECT INVOLVEMENT OF THE FUNGAL ISOALTE 
IN THE DEGRADATION OF IMZ  

We further checked the hypothesis that the fungal isolate was the sole degrader of IMZ or if 
there was involvement of bacterial strains that were not removed during the various 
purification steps. To test this, we determined the degradation of the fungicide by C. 
herbarum in liquid cultures in the presence of nystatin (fungicide) or chloramphenicol 
(bactericide). In the presence of nystatin, a total inhibition of IMZ degradation was observed 
(Kdeg = 2e-12 mg IMZ d-1) (Figure 4.2), compared to chloramphenicol, whose presence did not 
significantly alter the biodegradation rate of IMZ (Kdeg = 0.14 mg IMZ d-1) compared to the 
control, which was not amended with any biocide (Kdeg = 0.16 mg IMZ d-1) (Figure 4.2). These 
results verified that the main degrader of IMZ was C. herbarum and negated the role of 
potential bacterial contaminants.  

 

Figure 4.2 The degradation of imazalil (IMZ) by Cladosporium herbarum (solid lines) and in the abiotic control 
(dashed lines) in MSMN supplemented with nystatin (fungicide, red), chloramphenicol (bactericide, green) or in 
the absence of any biocide (no biocide, blue). Each value is the mean of three replicates with error bars 
representing the standard deviation of the mean. The degradation rates of IMZ in the different treatments, as 
calculated by fitting the data to the single first order kinetic model, are also shown. 
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3.3 PATHOGENICITY TESTS  
Species of the genus Cladosporium and its teleomorph Mycosphaerella have adopted various 
lifestyles from saprotrophic to plant pathogenic (Crous, 2009). With this in mind and based 
on our intention to utilize this fungus as microbial inoculum in fruit-packaging plants (FPPs) 
wastewater treatment systems, we assessed the pathogenicity of our fungal isolate against 
fruits commonly processed by fruit-packaging plants, i.e. apples, pears and oranges. 
Artificially inoculated apples and orange fruit showed no disease symptoms (Figure 4.3). 
Regarding pears, artificial inoculations resulted in rot symptoms appearance at an incidence 
of 10% and 55% when the surface was unscathed or wounded, respectively. Lesion diameter 
on symptomatic fruit ranged from 1 to 1.7 cm. However, in all the above cases, the fungus 
that was recovered from the lesions after cultivation in PDA plates was identified as 
Penicillium sp.   

 

Figure 4.3 Artificially inoculated apple (cv. Fuji), orange (cv Arta) and pear (cv Crystallia) fruit with the fungus 
Cladosporium herbarum, 10 days after inoculation. Panels A, B and C show fruits that were wounded prior to 
inoculation, whereas panels D, E and F show fruits that were not wounded prior to inoculation.   
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3.4 CHARACTERIZATION OF THE BIODEGRADATION POTENTIAL OF THE 
IMZ-DEGRADING FUNGUS  

3.4.1  ASSESSMENT OF THE GROWTH AND DEGRADATION CAPACITY OF THE 
ISOLATE AT INCREASING IMZ CONCENTRATIONS  

The degradation of IMZ was best described by the SFO kinetic model in all tested conditions. 
The degradation rate of IMZ showed a dose – dependent pattern that was decreasing with 
increasing IMZ concentration and ranged from 0.032 to 0.153 mg IMZ d-1 in MSMN and from 
0.074 to 0.145 mg IMZ d-1 in PDB (Table 4.2, Figure 4.4). This dose-dependent pattern in the 
degradation rates of IMZ was statistically significant only in MSMN.  

In accordance with the decreasing degradation rates at higher concentration levels, 
we observed a clear dose-dependent decrease in fungal growth, as determined by the fungal 
biomass produced, with increasing concentrations of IMZ (Figure 4.4). In MSMN, we 
observed a significant (p<0.05) decrease in the growth rates of the fungus from 0.012 g d-1 
when cultured in absence of IMZ to 0.007 and 0.003 g d-1 when cultured in the presence of 
50 and 100 mg L-1 IMZ, respectively Whereas a significant rise in fungal growth rates were 
observed (0.016 g d-1) when cultured in the presence of 20 mg L-1 of IMZ (Table 4.2). In PDB, 
this effect was still evident with the growth rates of the fungus being reduced from 2.37 g d-1 
in the absence of IMZ to 0.203 (p<0.05), 0.134 (p<0.05) and 0.035 (p<0.05) g d-1 when the 
fungus was grown in the presence of 20, 50 and 100 mg L-1 of IMZ, respectively (Table 4.2). 
Correlation analysis showed a strong negative correlation between IMZ concentration and 
fungal biomass in MSMN (r = -0.93, p<0.05) and a weaker, but still significant effect in PDB (r 
= -0.42, p<0.05). 

   

Table 4.2 The degradation rates of imazalil IMZ and the growth rates of Cladosporium herbarum in MSMN and 
PDB at increasing concentrations of the fungicide. 

IMZ treatment Degradation rate (mg IMZ d-1) Growth rate (g d-1) 
MSMN 

0 mg L-1  0.012 ± 0.001 
20 mg L-1 0.153 0.016 ± 0.001 
50 mg L-1 0.092 0.007 ± 0.001 
100 mg L-1 0.032 0.003 ± 0.000 

PDB 
0 mg L-1  2.370 ± 0.350 
20 mg L-1 0.100 0.203 ± 0.024 
50 mg L-1 0.145 0.134 ± 0.083 
100 mg L-1 0.074 0.035 ± 0.000 
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Figure 4.4 The degradation of increasing concentrations of imazalil (IMZ) (A and C) and estimation of fungal 
growth by measuring the dry weight of mycelial biomass produced (B and D) in MSΜN (A and B) and PDB (C and 
D). The graph in panel (D) shows the growth of the fungus in PDB in the absence of IMZ. 
 

3.4.2 ASSESSMENT OF THE CAPACITY OF THE ISOLATE TO DEGRADE OTHER 
FUNGICIDES 

We determined the capacity of the fungal strain to degrade other fungicides used in FPPs 
that are, hence, expected to co-occur with IMZ in the relevant wastewaters. The fungus 
failed to degrade OPP (Figure 4.5), whereas it degraded partially or fully the other fungicides 
tested. C. herbarum was able to partially degrade FLD and TBZ, with degradation rates of 
0.0062 mg d-1 (SFO model) and 0.33 mg d-1/0.0067 mg d-1 (HS model) respectively (Table 
4.3). The degradation of FLD and TBZ in the abiotic controls was negligible. Regarding 
iprodione (IPR), we observed similar degradation rates in the inoculated samples (Kdeg = 
0.109 mg d-1) and the abiotic control samples (Kdeg = 0.134 mg d-1), suggesting that the 
degradation of IPR under the conditions employed was mostly abiotic (Table 4.3). In parallel, 
we followed the formation and degradation of 3,5 DCA, the major transformation product of 
IPR, in liquid cultures. Interestingly, we observed a significantly higher degradation rate of 
3,5-DCA (kdeg = 0.687 mg d-1) in the inoculated cultures compared to non-inoculated controls 
(kdeg = 0.079 mg d-1).  
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Table 4.3 The degradation rates of the various fungicides treated with Cladosporium herbarum in MSMN, as 
calculated by fitting the single first order (SFO) or the Hockey Stick (HS) model. 

Fungicides Model fitted Degradation rates (mg d-1) 
Imazalil (IMZ) SFO 0.106 
Fludioxonil (FLD) SFO 0.0062 
Thiabendazole (TBZ)  HS 0.330/0.0067a 

Ortho-phenylphenol (OPP) SFO 0.00057 
Iprodione (IPR) SFO 0.109 
3,5-Dichloroaniline (3,5-DCA) SFO 0.687 
a k1 = 0.330 mg d-1 and k2 = 0.0067 mg d-1 

 

 
Figure 4.5 The degradation of imazalil (IMZ), fludioxonil (FLD), thiabendazole (TBZ), ortho-phenylphenol (OPP), 
iprodione (IPR) and 3,5-dichloraniline (3,5-DCA) in MSMN either inoculated (solid line, black square) or not 
inoculated (dashed line and empty squares) with the IMZ-degrading fungus Cladosporium herbarum. Each value 
is the mean of triplicates with error bars representing the standard deviation. 
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3.5 PERFORMANCE OF THE IMZ-DEGRADING FUNGUS IN A BIOREACTOR 
SYSTEM  

3.5.1 BIOREACTOR PERFORMANCE – PHYSICOCHEMICAL MEASUREMENTS  
The concentration of IMZ decreased during the operation of the immobilized cell bioreactor, 
from 200 mg L-1 in the influent to 8.19 ± 0.79 mg L-1 in the effluent, with an average removal 
efficiency above 96% (Figure 4.6A). pH was increased during the process from 6.94 ± 0.03 in 
the inflow to 7.37 ± 0.03 in the outflow (Figure 4.6B). Influent COD was 657 ± 53 mg L-1 
(Figure 4.6C), while effluent total and soluble COD (tCOD and sCOD) averaged at 116 ± 3 and 
103 ± 3 mg L-1, respectively, representing a tCOD removal efficiency of 81.7 ± 0.6%. EC in the 
influent was 3.09 ± 0.01 mS cm-1 compared to the effluent, where it gradually rose to 3.69 ± 
0.03 mS cm-1 during the startup stage and stabilized to this value thereafter (Figure 4.6D). 
TKN in the influent was  18.13 ± 0.26 mg L-1, while the average TKN in the effluent reached to 
3.00 ± 0.30 mg L-1 (Figure 4.6E), corresponding to TKN removal efficiency of 83.60 ± 1.50%. 
Negligible concentrations of NH4

+-N and NO3
--N, i.e. 0.25 ± 0.06 and 0.12 ± 0.02 mg L-1 

respectively, were determined in the effluent, whereas no NO2
--N was detected (Figure 4.6E) 

 
Figure 4.6 The performance of the immobilized cell bioreactor inoculated with the imazalil (IMZ)-degrading 
fungal strain Cladosporium herbarum. (A) the concentration of IMZ in the influent and the effluent and the 
removal efficiency of the biosystem, (B) the pH in the influent and the effluent, (C) the total and soluble COD 
(tCOD, sCOD) concentrations in the influent and the effluent, (D) the Electrical Conductivity (EC) in the influent 
and the effluent and (E) the levels of TKN in the influent and the effluent, and the concentrations of NH4+-N, 
NO2--N and NO3--N in the effluent. 
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3.5.2 MICROBIAL COMMUNITY ANALYSIS IN THE BIOREACTOR 
We first followed the dynamics of fungi and bacteria in the bioreactor via q-PCR. Fungal and 
bacterial numbers showed an initial peak at the onset of the process (3 days) reaching to 1.2 
x 105 and 1.2 x 106 gene copies per ng DNA and declined thereafter to 2.1 x 104 and 3 x105 
respectively (Figure 4.7a). We further looked at the relevant contribution of bacteria and 
fungi in the microbial community and we noted a dominance of bacteria throughout the 
process with the ratio of 18S rRNA to 16S rRNA copies being less than 0.2 at all-time points 
(Figure A3b). The ratio displayed a significant increase (p < 0.05) until day 46 and return to 
the initial levels by day 68.  

 

Figure 4.7 (a) The dynamics of fungi and bacteria in the immobilized cell bioreactor inoculated with the IMZ-
degrading strain Cladosporium herbarum as determined by q-PCR analysis of the 18S rRNA and 16S rRNA gene, 
respectively. Within each microbial group, bars designated by the same letter are not significantly different at the 
5% level, (b) The ratio of the copy numbers of the fungal 18S rRNA and bacterial 16S rRNA genes is also 
presented. Bars designated by the same letter are not significantly different at the 5% level. 
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We subsequently monitored microbial succession in the bioreactor using amplicon 
sequencing. The mean values of α-diversity indices like Shannon and inverse Simpson for the 
fungal community were 0.656 and 1.314 respectively (Table 4.4), suggesting the 
establishment of a fungal community with limited diversity. Comparison of the α-diversity 
values for the fungal community at the different time points suggested no statistically 
significant differences between the various time points examined. Pielou’s evenness values 
varied from 0.175 ± 0.0167 to 0.216 ± 0.0185 suggesting the establishment of a greatly 
uneven fungal microbial community composed of dominant or rare species. Further 
investigation of the relative abundance of the most dominant ASV in each sample showed 
values of 85.5 to 88.8 % that did not significantly differ between time points (Table 4.4). 
Analysis of the composition of the fungal microbial community revealed that the most 
dominant species, showing relative abundance of 98.1 to 99.9%, belonged to Cladosporium 
herbarum (Figure 4.8Α).  

In contrast to fungi, the values of the α-diversity indices like Shannon’s (5.02 ± 0.07 
to 4.81 ± 0.04) and inverse Simpson (146.2 ± 10.2 to 66.15 ± 2.8) for bacteria (Table 4.4) 
suggested the establishment of a diverse bacterial community. Both indices showed a 
significant decline along the operation of the bioreactor. Pielou’s evenness index of all 
samples averaged at 0.853, indicating a rather even bacterial community. At phylum level, 
the bacterial community was dominated by Proteobacteria (88.14 ± 6.44), throughout the 
operation of the bioreactor, equally composed of Alphaproteobacteria (orders Rhizobiales, 
Sphingomonadales), Betaproteobacteria (orders Caulobacterales, Burkholderiales) and 
Gammaproteobacteria (orders Pseudomonadales, Xanthomonadales) (Figure 4.8B and C).  

Table 4.4 The α-diversity indices of the fungal and bacterial community in the immobilized cell bioreactor 
treating IMZ-contaminated effluents 

FUNGI 

TIME OBSERVED SHANNON INVERSE SIMPSON PIELOU’S EVENNESS DOMINANT RELATIVE 
ABUNDANCE 

3 35 ± 9.07 a 0.608 ± 0.0697 a 1.268 ± 0.0485 a 0.175 ± 0.0167 a 0.888 ± 0.0176 a 
24 27 ± 2.08 a 0.601 ± 0.105 a 1.298 ± 0.0637 a 0.183 ± 0.0336 a 0.877 ± 0.0211 a 
46 22 ± 1.15 a 0.668 ± 0.0615 a 1.328 ± 0.0429 a 0.216 ± 0.0185 a 0.866 ± 0.0143 a 
68 34.667 ± 2.85 a 0.746 ± 0.00825 a 1.361 ± 0.0114 a 0.211 ± 0.00367 a 0.855 ± 0.00392 a 

BACTERIA 
TIME OBSERVED SHANNON INVERSE_SIMPSON PIELOU’S EVENNESS   
3 472.333 ± 29 a 5.42 ± 0.0648 a 146.235 ± 10.2 a 0.881 ± 0.002 a  
24 355.333 ± 21.1 b 5.022 ± 0.0666 b 89.062 ± 5.45 b 0.856 ± 0.00287 ab  
46 312.333 ± 15.1 b 4.851 ± 0.0179 c 66.146 ± 2.79 c 0.845 ± 0.00894 b  
68 332.333 ± 11.8 b 4.81 ± 0.0388 c 73.519 ± 4.98 bc 0.829 ± 0.0112 b  

154 
 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:42:14 EEST - 18.217.11.160



 

Figure 4.8 The composition of the fungal (at genus level) (A) and bacterial (at phylum level) (B) community in a 
bioreactor inoculated with the IMZ-degrading fungus Cladosporium herbarum along the 105-day operation 
period. The composition of the phylum Proteobacteria, which dominated the bacterial community is further 
displayed at the order level (C). 
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4 DISCUSSION 
IMZ is considered a major environmental threat as a result of (i) its widespread use in fruit-
packaging plants (FPPs), (ii) the lack of processes for the on-site treatment of the IMZ-
contaminated agro-industrial effluents, (iii) the limited capacity of the municipal wastewater 
treatment systems to remove it from the effluents and (iv) its demonstrated environmental 
persistence and toxicity. In this frame, we aimed to isolate microorganisms able to degrade 
IMZ and tested their potential for use as tailored-made inocula in biological wastewater 
treatment systems.  

Enrichment cultures from a soil with demonstrated exposure to IMZ resulted in the 
isolation of a fungal strain, phylogenetically assigned to C. herbarum that was able to 
effectively dissipate IMZ in the presence of extra C and N sources. To our knowledge, this is 
the first report of a microorganism able to effectively degrade IMZ. López-Loveira et al., 
(2017) isolated from sewage sludge previously exposed to IMZ, a bacterial consortium, 
consisting of Chryseobacterium, Staphylococcus, Burkholderia and Burkholderia cepacia 
strains, that was able to partially degrade high concentrations of IMZ (500 mg L-1). However, 
the role of the individual members of the consortium on the degradation of the fungicide 
was not clarified.  

Previous studies have identified bacteria that were able to degrade fungicides used 
in fruit-packaging plants like TBZ (Perruchon et al., 2017), OPP (Perruchon et al., 2016) and 
IPR (Campos et al., 2015), whereas it is the first time that a fungal strain able to dissipate a 
persistent fungicide, like IMZ, is reported. Several fungal strains that possess the ability to 
degrade herbicides (Dao et al., 2019; Koroleva et al., 2015; Ellegaard-Jensen et al., 2014, 
2013; Pinto et al., 2012) and insecticides (Bhatt et al., 2020; Oliveira et al., 2015; Kamei et 
al., 2011; Sagar and Singh, 2011) have been previously isolated, whereas the corresponding 
list when regards fungicides is certainly shorter. Bending et al., (2002) showed that the 
white-rot fungus Stereum hirsutum degraded by 64.6% the fungicide metalaxyl in liquid 
cultures. Pinto et al., (2012) demonstrated the biodegradation potential of Fusarium 
oxysporum, Aspergillus oryzae, Lentinula edodes, Lecanicillium saksenae and Penicillium 
brevicompactum against difenoconazole, with the latter showing the best performance. 
(Karas et al., 2011) showed that the white-rot fungus Trametes versicolor was effective in 
degrading phenolic compounds, like diphenylamine and OPP, used in FPPs, but achieved 
only partial degradation of TBZ and IMZ.  

Members of the genus Cladosporium have been previously reported to degrade 
recalcitrant organic pollutants including pesticides. Strains of C. cladosprioides and C. 
oxysporum were identified as main degraders of chlorpyrifos (Chen et al., 2012) and 
endosulfan (Mukherjee and Mittal, 2005) respectively, while Chen et al., (2011) reported the 
isolation of a Cladosporium strain, which was able to degrade various pyrethroids and their 
transformation products. C. herbarum is considered a saprotroph, which under stress 
conditions could exhibit pathogenesis in various fruit crops (Barbosa et al., 2001), whereas 
its teleomorph M. tassiana is a putative pathogen of Cruciferaceae (Petrie and Vanterpool, 
1978) and date palm (Commitee on Standardization of Common Names for Plant Diseases, 
1988). Based on the above and considering the practical implications of the use of C. 
hebarum in FPP, we assayed the pathogenicity of our isolate against fruits. We noted that C. 
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hebarum did not exhibit pathogenicity to apples, oranges and pears, suggesting that it could 
be safe to use it as inoculum in biological wastewater treatment units implemented in FPPs.  

We further explored the impact of parameters expected to affect the dissipation 
performance of the fungus under practical conditions, like IMZ concentrations, and its 
capacity to degrade other fungicides commonly used along with IMZ in FPPs. The fungus was 
able to degrade IMZ in both culture media at concentration levels up to 100 mg L-1, which 
are over-double (20-50 mg L-1) those often encountered in effluents from fruit-packaging 
plants (Santiago et al., 2018a, 2013). The fungus showed a dose-dependent decrease in its 
growth rates, which was reflected in a reciprocal reduction in the degradation rates of IMZ. 
These results suggest that C. herbarum is effectively degrading IMZ, but not in a growth-
linked manner. Instead, it seems to be adversely affected by the fungicide at higher 
concentration levels, still degrading IMZ at a slower rate. IMZ is a broad-spectrum fungicide 
used for the control of fungi belonging to Helotiales (Botrytis cinerea, Gloeosporium sp.) 
(Vorstermans and Creemers, 2007), Eurotiales (Penicillium sp.) (Erasmus et al., 2015), 
Pleosporales (Alternaria sp.) and Botryosphaeriales (Diplodia sp.) (Ben-Yehoshua et al., 
1987), all being Ascomycetes like C. herbarum. Our findings suggest that the dissipation of 
IMZ by C. herbarum is a detoxification rather than a growth-linked process. On-going 
transcriptomic analysis will shed light into the genetic mechanism driving the response of 
the fungus to IMZ exposure.  

We further evaluated the capacity of the fungus to degrade other fungicides used 
along with IMZ in FPPs, hence are expected to co-occur with IMZ in the agro-industrial 
effluents. C. hebarum showed a remarkable capacity to partially degrade FLD and TBZ, 
considered resistant to biodegradation (EFSA, 2014, 2007), unlike OPP, which although it is 
generally more amenable to biodegradation (Karas et al., 2015; Körner et al., 2000), it was 
not degraded by the fungus. OPP is used as a broad-spectrum disinfectant in agriculture and 
in cosmetic products (SCCS (Scientific Committee on Consumer Safety), 2015), hence its 
toxicity on C. herbarum is not surprising. Regarding IPR, its dissipation in the abiotic control 
did not allow us to verify the degrading capacity of C. herbarum against this fungicide. IPR, 
like all dicarboxamide fungicides, is prone to abiotic hydrolysis in neutral to alkaline pH 
conditions (Campos et al., 2015; Szeto et al., 1989), like the pH of our growth media (pH 6.7). 
Still, C. herbarum showed a remarkable capacity to degrade 3,5-DCA, the main 
transformation production of IPR (Campos et al., 2017). This capacity of C. herbarum is 
particularly interesting considering that 3,5-DCA is the most recalcitrant DCA isomer (Yao et 
al., 2011) and all IPR-degrading bacteria isolated to date do not have the capacity to degrade 
3,5-DCA (Yang et al., 2018; Campos et al., 2017; Athiel et al., 1995).  Further studies using 
mixed microbial community approaches, by combining C. herbarum and Paenarthrobacter, 
an IPR-degrading bacterium of our group (Katsoula et al., 2020), will be explored for the 
effective removal of iprodione and its derivatives. Overall, our findings suggest that C. 
herbarum could be used as a starting inoculum for the biological treatment of effluents from 
FPPs containing most fungicides, but not OPP, which is not compatible with this fungus.  

Eventually, we directly assessed the capacity of the fungus to remove IMZ from 
wastewaters under bioengineering conditions by using an immobilized cell bioreactor. The 
inoculated bioreactor showed high removal efficiency (>96%) compared to other biological 
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treatment systems, like biobeds, whose dissipation efficiency varied from 72 to 95.7% (Karas 
et al., 2016a). The removal efficiency observed is expected to minimize the risk for 
environmental dispersal of IMZ and hence limit its adverse effects on aquatic organisms. In 
addition to its depuration performance, we followed the establishment and survival of C. 
herbarum and the overall microbial succession in the bioreactor. The fungus was able to 
establish successfully, and dominate the fungal community in the bioreactor, comprising 
>98% of the overall fungal propagules detected in the bioreactor throughout the study. Still, 
the established microbial community was dominated by bacteria, which comprised of 
approximately > 80% of the microbial population. Proteobacteria prevailed in the bacterial 
community of the bioreactor and particularly representatives of Sphingomonadales, 
Burkholderiales and Pseudomonadales orders. Bacteria belonging to these orders are known 
for their capacity to degrade pesticides in general, and fungicides used in FPPs in particular. 
For example, a Sphingomonas haloaromaticamans strain (Perruchon et al., 2016) and a 
Sphingomonas-based bacterial consortium (Sotirios et al., 2020) were able to degrade OPP 
and TBZ respectively, while Pseudomonas and Burkholderia spp. were previously reported as 
diphenylamine degraders (Campos et al., 2015; Shin and Spain, 2009). Moreover, two 
constituents of the bacterial consortium that was identified by López-Loveira et al. (2017) to 
tolerate and slowly degrade IMZ belonged to Burkholderia.  
 

5 CONCLUSIONS 
We report the first isolation of a fungal strain, identified as C. herbarum, able to degrade 
IMZ. The degrading capacity of the fungus was impaired at high concentration levels, 
suggesting that the degradation of IMZ is a detoxification instead of  a growth-linked 
process. Still, the fungus was able to degrade IMZ at concentration levels higher than those 
expected to occur in agro-industrial effluents. The fungal isolate achieved appreciable 
degradation of other fungicides expected to co-occur with IMZ in agro-industrial effluents, 
except OPP, and exhibited successful establishment and high removal efficiency of IMZ when 
used as a starting inoculum in an immobilized cell bioreactor receiving IMZ-contaminated 
effluents. All our findings suggest that C. herbarum has high potential for use as a tailored-
made inoculum in biological treatment systems for the removal of IMZ from agro-industrial 
effluents, whose treatment constitute a menace for FPPs. Further genomic, transcriptomic 
and metabolomic analysis will shed light into the degradation mechanism of IMZ by C. 
herbarum and facilitate the further optimization of the relevant bioprocesses. 
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General Discussion, Conclusions 
and Future Perspectives 
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1 GENERAL DISCUSSION 
Agro-food processing industries often resort to the use of immense amounts of fungicides in 
order to ensure high quality and minimize losses of fresh plant products during storage and 
transport (Damalas and Eleftherohorinos, 2011). This practice results in the production of 
large volumes of pesticide-contaminated wastewaters which constitute serious 
environmental concern on account of the high environmental persistence and toxicity of the 
pesticides contained in those effluents (Carvalho, 2017). Authorities have posed 
precautionary measures to prevent the uncontrollable release of agro-industrial effluents by 
enacting restrictions in their use under the clause of proper wastewater management (EFSA, 
2010; EUROPEAN COMMISSION, 2016). Even though agro-food processing industries should 
implement measures for the depuration of their effluents, the lack of efficient and cost-
effective treatment methods, has forced them to follow improper and environmentally 
harmful disposal practices (Campo et al., 2013; Papadopoulou et al., 2018). Biological 
treatment systems like biobeds constitute an affordable, effective and sustainable solution 
for the treatment of agro-industrial effluents. Numerous studies have shown the potential of 
biobeds to treat wastewaters from fruit packaging industries (FPI), yet the use of biobeds for 
the depuration of effluents from other agro-food processing industries, like seed producing 
(SPI) and bulb handling (BHI) industries is still unexplored. Biobeds owe their depuration 
capacity to the microbial communities of the packing material although the microbial 
composition of these systems and the dynamics of the mobile genetic element (MGE) that 
are expected to be involved in the selection of novel catabolic traits against pesticides are 
not yet adequately explored. Optimization of the performance of biobed systems against 
persistent and particularly mobile chemicals could be implemented with bioaugmentation of 
biobeds with tailored-made microbial inocula specialized in the degradation of the target 
pesticides (Karanasios et al., 2012; Karas et al., 2016). Within this frame, in the present 
thesis we aimed to (i) explore the potential of biobed systems to treat pesticide-
contaminated effluents produced by agro-food industries beyond FPI including BHIs and 
SPIs, (ii) determine the microbial composition of the biobeds microbiota and identify the 
factors driving microbial succession in biobed systems during their operation (iii) monitor 
the dynamics of MGE, known to play a role in the dispersal of pesticide catabolic traits, in 
biobed systems during their operation and (iv) isolate microorganisms able to degrade one 
of the most persistent fungicide contained in these agro-industrial effluents, IMZ, with the 
potential to be used as inoculum in following biological treatment systems like biobeds 
and dedicated bioreactors. 

To determine the potential of biobeds to treat these agro-industrial effluents we 
followed a step-by-step experimental approach which first involved lab microcosm 
experiments to determine the potential of biobed packing materials to degrade or adsorb 
the pesticide contained in those effluents. So, in Chapter 2 we determined the degradation 
and adsorption of fungicides used in SPI (carboxin (CBX), metalaxyl-M (MET-M), 
fluxapyroxad (FLX), fludioxonil (FLD)), BHI (chlorothalonil (CHT), thiabendazole (TBZ), FLD) 
and FPI (FLD) in a biobed packing material composed of 25% soil, 25% straw and 50% SMS 
and comparatively in soil with no previous pesticide application. Pesticides were applied in 
the different substrates in mixtures and individually to simulate realistic exposure 
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conditions. A first and important observation was the significantly higher degradation rates 
of pesticides in the biobed packing material compared to soil. Application in double, triple 
and quadruple mixtures delayed the dissipation of fungicides in both matrices, with this 
effect being more noticeable in soil rather than in the packing material. Adsorption study 
showed that all tested fungicides exhibited higher adsorption affinity in the biobed packing 
material in comparison to soil. Overall these findings suggested a superior degradation and 
adsorption potential of biobed packing material compared to soil for the fungicides 
contained in the various agro-food industrial effluents.  

In Chapter 3 we employed a column biobed experiment, using the same biobed 
packing material as in Chapter 2, in order to assess depuration efficiency of biobed systems 
for the treatment of wastewaters from different agro-food processing industries in a realistic 
loading scenario. We noted that biobed systems could effectively depurate effluents 
produced by SPI, BHI and FPI, with different processes being responsible for fungicide 
removal depending on polarity and biodegradability of the compounds; lipophilic substances 
like FLX were mostly retained in the biobed packing material, whereas polar ones like CBX 
were mostly degraded. In addition, we noted that most polar chemicals like MET-M were 
leached to a greater extend compared to the other compounds contained in the effluents.  

In the same experimental set up, we envisaged to follow microbial succession and 
MGE dynamics in the biobed systems using amplicon sequencing and q-PCR approaches. We 
tested the hypothesis that the continuous exposure of the biobeds microbiome to high 
pesticide loads will affect the microbial community and will promote the dissemination and 
dynamics of MGE. We found that the biobed packing material sustained a rather resilient 
bacterial and fungal community composed mostly of Proteobacteria and Sordariomycetes 
respectively that were not affected by applied wastewater treatments. Instead the microbial 
community of biobeds showed clear temporal patterns along the different biobed horizons. 
This was probably induced by microaerophilic conditions upon water saturation of the 
packing material, as we noticed significant increase in the abundance of facultative or strict 
anaerobic bacteria like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Regarding 
MGEs like Intl1, IS1071 and IncP-1 and IncP-1ε, our hypothesis was not verified since we did 
not observe significant increases in the relative abundance of the above mentioned MGEs in 
response to continuous exposure to pesticides. Instead, we observed a temporal increase in 
the abundance of most MGEs tested, which presumably is related with the establishment of 
biotic or abiotic conditions, beyond pesticide-related pressure that facilitate this temporal 
pattern. Overall, biobed systems supported a resilient microbial community which did not 
appear to respond to pesticide exposure but instead is changing in response to abiotic and 
biotic conditions established gradually in the biobed systems with time.  

Finally in Chapter 4 we aimed to isolate microorganisms that could degrade IMZ, one 
of the most persistent fungicide contained in those effluents, with the prospect of using this 
microorganism as inoculum in wastewater biological treatment systems. Bioaugmentation of 
the packing material with specialized degrading inocula could result in further enhancement 
of the efficiency of biobed systems. The laboratory of Plant and Environmental 
Biotechnology already contains a collection of bacteria that degrade fungicides commonly 
used by fruit packaging plants but no single microorganism has ever been isolated able to 
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degrade the widely used and persistent fungicide imazalil (IMZ). In this scope, enrichment 
cultures from soil receiving IMZ-contaminated effluents from FPIs led to the isolation of a 
Cladosporium herbarum strain which showed degradation of IMZ in both nutrient rich and 
selective media. C. herbarum posed no infection potential on fruit commonly processed by 
FPIs, an important trait for its exploitation in on-site treatment of FPI effluents. C. herbarum 
was able to degrade IMZ in nutrient rich and selective media at concentration levels up to 
100 mg/L, which are higher than those expected to occur in agro-industrial effluents, but its 
growth and degrading capacity were reduced at increasing IMZ concentrations, implying that 
the degradation of IMZ is a detoxification mechanism instead of a growth-linked process.  
Study of the adaptation of the isolate to the presence of other fungicides that are commonly 
used by FPIs and are, thus, expected to co-occur with IMZ in the effluents showed partial 
dissipation of FLD, TBZ and 3,5 dichloroaniline (3,5DCA), a toxic transformation product of 
iprodione degradation (IPR), unlike ortho-phenylphenol (OPP) in the presence of which C. 
herbarum showed inadequate growth and, therefore, degradation capacity. Lastly, the 
ability of C. herbarum to depurate IMZ-contaminated effluents was assessed in a benchtop 
bioreactor study where high removal efficiency (>96%) was observed. Amplicon sequencing 
analysis showed that C. herbarum was able to successfully establish and dominate the fungal 
community throughout the study. All of the above support the high potential of C. herbarum 
for the removal of IMZ, which could be employed for the bioaugmentation of biobed 
systems and further enhancement of their performance against IMZ-contaminated effluents, 
or in biological wastewater treatment units that treat very high wastewater volumes. 

 

2 CONCLUSIONS 
Overall, our findings lead to several important conclusions for the potential use of biobeds in 
the depuration of agro-industrial effluents: 

• Biobeds are efficient in the removal of fungicides contained in effluents from agro-
food industries and could be used in the treatment of these effluents 

• Biobeds support a resilient microbial community whose composition showed 
temporal patterns most probably driven by the establishment of conditions that 
favour the proliferation of microaerophilic microorganisms after 100 days of 
operation 

• The first IMZ-degrading microorganism, a fungal strain of C. herbarum, was isolated 
and showed high capacity to remove IMZ from effluents under both laboratory and 
bioreactor conditions where it became established during the wastewater treatment 
process  
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3 FUTURE PERSPECTIVES 
The current thesis contributed strong evidence for the efficiency of biobed systems for the 
treatment of pesticide-contaminated effluents from various agro-food industries and 
provided a fungal strain capable of IMZ-degradation Meanwhile, new research challenges 
have risen, which are to be addressed in the future, regarding: 

I. Identification of the genetic arsenal of C. herbarum involved in the dissipation of   
IMZ. This will be achieved through the following steps which are under way: 

a. Genomic analysis of C. herbarum, already been performed in the platforms 
of Illumina (short reads, high accuracy) and MinION (long reads, high error 
rate), and genome assembly and functional annotation is on-going.  

b. A transcriptomic analysis of the fungal isolate in the presence/absence of 
IMZ has been undertaken and the analysis of the transcriptome of C. 
herbarum is expected to shed light into the genetic pathways activated 
during dissipation of IMZ.  

c. A shotgun LC-MS/MS of the fungal culture during degradation of IMZ 
(inoculated and non-inoculated with C. herbarum) has been performed in 
collaboration with the Analytical Chemistry Laboratory in National 
Kapodistrian University of Athens by the group of Prof. N. Thomaidis and 
preliminary evidence identified three transformation products whose 
confirmation and quantification is under way and is going to be confirmed. 

II. Application of C. herbarum in biobed systems or in biological wastewater treatment 
units for the depuration of IMZ-contaminated effluents. The application of C. 
herbarum in biobed systems has been already performed and the analysis of the 
data are under way. Regarding the application of C. herbarum in biological 
wastewater treatment systems, the fungal strain has been have already applied as a 
tailored-made inoculum in a full scale bioreactor system established in the premises 
of Poulis S.A. in Larissa, Greece receiving IMZ-contaminated effluents from this FPI, 
and its removal efficiency is under way.  

III. The utilization of C. herbarum in combination with iprodione-degrading bacteria of 
the genus Paenarthrobacter, available in the Laboratory of Plant and Environmental 
Biotechnology, for the construction of synthetic microbial consortium for 
optimization of the degradation of the fungicide iprodione. This combination will 
facilitate the mineralization of iprodione which is currently transformed by bacteria 
to 3,5-dichloroaniline, a rather toxic compound and the most persistent 
dichloroaniline isomer which is effectively transformed by C. herbarum. First tests 
with this synthetic microbial consortium have provided promising results while 
further optimization is required to maximize degradation performance.  

IV. The application of shotgun metagenomic and plasmidomic approaches in biobed 
systems towards a better understanding of the functional and evolutionary potential 
of the biobed microbial community.  
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EXTENDED SUMMARY 
Agro-food processing industries use large amounts of fungicides to ensure availability of 
fresh plant products during storage and transport. These include seed-producing industries 
(SPI), which treat seeds with systemic fungicides like carboxin (CBX), metalaxyl-M (MET-M) 
and fluxapyroxad (FLX), bulb handling industries (BHI) which immerse bulbs into dense 
solutions of fungicides such as chlorothalonil (CHT), thiabendazole (TBZ) and fludioxonil 
(FLD), and fruit-packaging industries (FPI) that make use of fungicides like imazalil (IMZ) and 
fludioxonil (FLD) for the control of fungal infections of fruits during storage. As a result, they 
generate large amounts of pesticide-contaminated effluents which constitute serious 
environmental threats due to the high environmental persistence and toxicity of the 
pesticides contained in them. Despite relevant regulation, the lack of efficient and cost-
effective treatment methods has pushed agro-food industries into improper and 
environmentally harmful disposal practices. 

Through the years, many depuration methodologies have been studied, but their full 
implementation has not been achieved due to poor results concerning mineralization, high 
operational costs and formation of toxic by-products. Biological treatment systems like 
biobeds could provide an efficient and sustainable solution to the depuration of pesticide-
contaminated effluents. Some recent studies have demonstrated the efficient 
decontamination of FPI effluents in biobeds, while the use of biobed systems for the 
treatment of SPI and BHI effluents is still not explored. The high depuration capacity of 
biobeds is attributed to the microbiome of the packing material, but the composition and 
succession of the microbial communities and the dynamics of mobile genetic elements 
(MGE) involved in the dispersion of pesticide-catabolic genes in the bacterial community of 
the packing material during biobed operation, are not yet adequately explored. The 
performance of biobed systems against persistent and particularly mobile pesticides can be 
greatly enhanced by bioaugmentation of the packing material with tailored-made microbial 
inocula specialized in the degradation of target compounds. With these in mind, we aimed 
(i) to provide evidence for the capacity of biobed systems to depurate pesticide-
contaminated effluents from SPI, BHI and FPI, (ii) to shed some light on the composition of 
biobed microbiome and identify factors that drive microbial succession during biobed 
operation, (iii) to provide insight on the occurrence and distribution of MGEs in biobed 
systems during operation and (iv) to isolate microorganisms able to degrade IMZ, a highly 
persistent fungicide that is widely used by agro-food processing industries, especially FPI,  
with the potential to be used in future biological treatment systems such as biobeds and  
bioreactor units. 

In Chapter 2 we studied the degradation and adsorption, two major processes 
controlling the environmental fate of pesticides in biobed packing material composed of 
25% soil, 25% straw and 50% spent mushroom substrate and comparatively in soil with no 
previous pesticide exposure. The degradation of CBX, MET-M, FLX, FLD, TBZ and CHT, was 
studied under individual and in-mixture application relevant to their industrial use, to 
simulate realistic exposure conditions, while FLD was also tested at different concentrations 
(10, 20, and 150 mg/kg) representing the dose rates used by the different industries. The 
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majority of fungicides, regardless of the mode of application, resulted in higher dissipation in 
the biobed packing material (DT50 = 2.34 – 142.9 days) than in soil (DT50 = 6.67 – 784.1 days). 
In most cases application in mixtures retarded fungicides’ degradation, with CHT having the 
most pronounced inhibitory effect in the degradation of TBZ and FLD. FLD degradation 
showed a dose-dependent pattern with its DT50 increasing from 42.4 days at 10 mg/kg to 
107.6 days (at 150 mg/kg). In addition, all pesticides showed higher adsorption affinity in the 
biomixture (Kf = 3.23 - 123.3 g mL-1) compared to soil (Kf = 1.15-31.2 g mL-1). The findings of 
Chapter 2 provided initial evidence of the depuration potential of biobeds against fungicides 
contained in effluents generated by SPI, BHI and FPI which allowed us to proceed with our 
research of biobed systems treating agro-industrial effluents. 

Consequently in Chapter 3, we employed a biobed column experiment using the 
same packing material as in Chapter 2, in order to assess the efficiency of biobed systems to 
depurate agro-industrial effluents containing mixtures of fungicides in a realistic loading 
scenario. We demonstrated that the biobed columns could effectively retain and dissipate 
the fungicides contained in agro-industrial effluents with 93.1 - 99.98 % removal efficiency in 
all cases. Lipophilic substances like FLX were mostly retained in the biobed while more polar 
substances were mostly dissipated like CBX or showed higher leaching potential like MET-M. 
The effect of continuous effluent application in the packing material’s microbiome was also 
explored in the same experimental setup through amplicon sequencing analysis. Contrary to 
our expectation, biobed column supported resilient bacterial and fungal communities, which 
were not affected by fungicide application but showed temporal patterns along the different 
horizons. Facultative or strict anaerobic bacteria like Chloroflexi/Anaerolinae, Acidibacter 
and Myxococcota showed significant increase in the abundance supporting the hypothesis 
that the temporal patterns were driven by microaerophilic conditions upon water saturation 
of the packing material. Lastly, we investigated the dynamics of MGE, namely Intl1, IS1071 
and IncP-1 and IncP-1ε, expecting the continuous exposure to high pesticide loads will 
promote their dissemination. However, our hypothesis was not confirmed, as continuous 
wastewater application did not affect the dynamics of MGE in biobeds. Instead, we observed 
temporal increase in the abundance of most MGE tested, suggesting the influence of biotic 
or abiotic factors, beyond pesticide-related pressure.  All in all, the findings of Chapter 3 
reinforce the high potential of biobed systems for the depuration of agro-industrial effluents 
and showed that the packing material contains a resilient microbiome that is not affected by 
pesticide exposure, but responds to abiotic and biotic conditions that gradually develop in 
the biobed system. 

Chapter 4 was dedicated in the isolation and characterization of a microorganism 
able to degrade the widely used and persistent fungicide IMZ, and in the investigation of its 
potential use as inoculum in biotic wastewater treatment systems. A Cladosporium 
herbarum strain capable of degrading IMZ was isolated via enrichment cultures from a soil 
that was receiving regular discharges of FPI’s IMZ-contaminated effluents. The C. herbarum 
strain did not show any pathogenicity on fruits commonly processed by FPIs, a trait essential 
for its biotechnological exploitation in the treatment of FPI effluents. The isolate was able to 
degrade up to 100 mg/L of IMZ but its degrading capacity and growth was reduced at 
increasing IMZ concentrations in a dose-dependent manner, indicating that the degradation 
of IMZ is a detoxification mechanism instead of a growth-linked process. The isolated strain 
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was able to tolerate the presence other fungicides, which are commonly used by FPIs and 
are, thus, expected to co-occur with IMZ in their effluents, and showed partial dissipation of 
FLD, TBZ and 3,5 dichloroaniline (3,5DCA), a toxic transformation product of iprodione (IPR) 
degradation. On the contrary ortho-phenylphenol (OPP) inhibited the growth and, therefore, 
degradation capacity of the isolate. The ability of C. herbarum to depurate IMZ-
contaminated effluents was assessed in a benchtop bioreactor fed with artificial IMZ-
contaminated wastewater (200 mg L-1). Amplicon sequencing analysis showed that C. 
herbarum was able to successfully establish and dominate the fungal community of the 
bioreactor throughout the study and successfully removed >96% of IMZ. Overall, the findings 
of Chapter 4 demonstrate the high potential of C. herbarum to remove IMZ under lab and 
bioengineering conditions. 

As a whole our study demonstrated the high potential of the use biobed systems for the 
depuration of fungicide-contaminated effluents from seed-producing, bulb-dipping and fruit 
packing industries. We also showed that the biobeds support a resilient microbiome, whose 
composition was most probably affected by microaerophilic conditions that gradually 
developed in the packing material. Lastly we reported the isolation of a C. herbarum strain 
with the capacity to degrade IMZ and examined its potential for the depuration of FPI 
effluents that contain IMZ. 

ΠΕΡΙΛΗΨΗ 
Οι μονάδες μεταποίησης αγροτικών προϊόντων χρησιμοποιούν μεγάλες ποσότητες 
μυκητοκτόνων ούτως ώστε να διασφαλίσουν την διαθεσιμότητα των φρέσκων αγροτικών 
προϊόντων κατά την αποθήκευση και μεταφορά. Τέτοιες μονάδες αποτελούν 
σποροπαραγωγικές μονάδες που επικαλύπτουν σπόρους με μυκητοκτόνα όπως τα carboxin 
(CBX), metalaxyl-M (MET-M) και fluxapyroxad (FLX), βιομηχανίες διαχείρισης βολβών οι 
οποίες εμβαπτίζουν βολβούς σε πυκνά διαλύματα μυκητοκτόνων όπως chlorothalonil 
(CHT), thiabendazole (TBZ) και fludioxonil (FLD), και τα συσκευαστήρια φρούτων που 
χρησιμοποιούν μυκητοκτόνα όπως τα imazalil (IMZ) και fludioxonil (FLD) για τον έλεγχο 
μυκητολογικών προσβολών των φρούτων κατά την αποθήκευση. Αποτέλεσμα αυτών των 
εφαρμογών, είναι η παραγωγή μεγάλου όγκου υγρών αποβλήτων επιβαρυμένων με 
γεωργικά φάρμακα τα οποία αποτελούν σημαντικό περιβαλλοντικό κίνδυνο λόγω της 
υπολειμματικότητας και της τοξικότητας των μυκητοκτόνων που περιέχονται σε αυτά. Παρά 
τους σχετικούς κανονισμούς, η έλλειψη αποτελεσματικών και οικονομικά εφαρμόσιμων 
μεθόδων για την διαχείριση των συγκεκριμένων αποβλήτων, έχει οδηγήσει τις αγρο-
βιομηχανίες στην εφαρμογή ακατάλληλων και περιβαλλοντικά επιβλαβών πρακτικών 
απόρριψης των συγκεκριμένων υγρών αποβλήτων. 

Διάφορες μέθοδοι απορρύπανσης έχουν μελετηθεί με τα χρόνια, αλλά η πλήρης 
εφαρμογή τους δεν έχει επιτευχθεί εξαιτίας χαμηλής αποτελεσματικότητας, δαπανηρής 
λειτουργίας και τον σχηματισμό τοξικών παραπροϊόντων κατά την διαχείριση των 
αποβλήτων. Τα βιολογικά συστήματα διαχείρισης των αποβλήτων, όπως οι βιοκλίνες, 
παρέχουν μια αποτελεσματική και αειφόρο λύση στην απορρύπανση αποβλήτων που 
περιέχουν γεωργικά φάρμακα. Η συντριπτική πλειοψηφία των διαθέσιμων μελετών 
αποδεικνύουν την αποτελεσματική απορρύπανση αποβλήτων από συσκευαστήρια 
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φρούτων, ενώ η χρήση βιοκλινών για την επεξεργασία αποβλήτων σποροπαραγωγικών 
μονάδων και μονάδων διαχείρισης βολβών δεν έχει διερευνηθεί. Η υψηλή ικανότητα των 
βιοκλινών να απομακρύνουν γεωργικά φάρμακα από υγρά απόβλητα αποδίδεται στο 
μικροβίωμα που αποικίζει το πληρωτικό υλικό των βιοκλινών. Παρόλα αυτά η σύνθεση και 
διαδοχή των μικροβιακών κοινοτήτων καθώς και η ποικιλότητα και η δυναμική μεταθετών 
στοιχείων που συμβάλλουν στην διασπορά γονιδίων καταβολισμού των γεωργικών 
φαρμάκων στην βακτηριακή κοινότητα κατά την λειτουργία της βιοκλίνης, δεν έχουν 
μελετηθεί επαρκώς. Η απόδοση των συστημάτων βιοκλινών έναντι υπολειμματικών ή 
εξαιρετικά κινητικών γεωργικών φαρμάκων μπορεί να αυξηθεί ιδιαίτερα μέσω 
βιοενίσχυσης του πληρωτικού υλικού με μικροβιακά εμβόλια, εξειδικευμένα στην 
διάσπαση των ενώσεων-στόχων.  Σύμφωνα με τα παραπάνω, η παρούσα διδακτορική 
διατριβή είχε ως στόχο (i) την αξιολόγηση της ικανότητας των συστημάτων βιοκλινών να 
απορρυπαίνουν απόβλητα επιβαρυμμένα με γεωργικά φάρμακα που παράγονται από 
σποροπαραγωγικές μονάδες, βιομηχανιών διαχείρισης βολβών και συσκευαστηρίων 
φρούτων, (ii) την διερεύνηση της σύστασης του μικροβιώματος των βιοκλινών και της 
ταυτοποίησης παραγόντων που επηρεάζουν την μικροβιακή διαδοχή κατά την λειτουργία 
της βιοκλίνης, (iii) την μελέτη της εμφάνισης και κατανομής των μεταθετών στοιχείων στα 
συστήματα βιοκλινών κατά την λειτουργία τους και (iv) την απομόνωση μικροοργανισμών 
με την ικανότητα να διασπά το ΙΜΖ, ένα ιδιαίτερα υπολειμματικό μυκητοκτόνο το οποίο 
χρησιμοποιείται ευρέως από τα συσκευαστήρια φρούτων, στοχεύοντας στην πιθανή χρήση 
του σε συστήματα διαχείρισης υγρών αποβλήτων όπως βιοκλίνες και βιοαντιδραστήρες. 

Στο Κεφάλαιο 2 μελετήσαμε την αποδόμηση και προσρόφηση, δύο κύριες 
διεργασίες που ελέγχουν την περιβαλλοντική τύχη των γεωργικών φαρμάκων, σε 
πληρωτικό υλικό βιοκλινών που αποτελείται από 25% έδαφος, 25% άχυρο και 50% 
εξαντλημένο υπόστρωμα καλλιέργειας μανιταριών, και σε έδαφος χωρίς πρότερη έκθεση 
σε γεωργικά φάρμακα. Η αποδόμηση των CBX, MET-M, FLX, FLD, TBZ και CHT μελετήθηκε 
μετά από εφαρμογή μεμονωμένα και σε μίγματα σύμφωνα με την χρήση τους από τις 
εκάστοτε αγρο-βιομηχανίες, ούτως ώστε να προσομοιωθούν ρεαλιστικές συνθήκες 
εφαρμογής, ενώ το FLD μελετήθηκε σε διάφορες συγκεντρώσεις (10, 20, και 150 mg/kg) 
αναπαριστώντας τις δόσεις που χρησιμοποιούνται από την κάθε αγρο-βιομηχανία. Η 
πλειοψηφία των μυκητοκτόνων, ανεξαρτήτου τρόπου εφαρμογής, αποδομήθηκαν ταχύτερα 
στο πληρωτικό υλικό των βιοκλινών (DT50 = 2.34 – 142.9 ημέρες)  σε σύγκριση με το έδαφος 
(DT50 = 6.67 – 784.1 ημέρες). Στις περισσότερες περιπτώσεις η εφαρμογή των γεωργικών 
φαρμάκων σε μίγματα καθυστέρησε την αποδόμηση των μυκητοκτόνων, με το CHT να έχει 
την πιο αισθητή ανασταλτική επίδραση στην αποδόμηση των TBZ και FLD. Η αποδόμηση 
του FLD έδειξε ένα δοσο-εξαρτώμενο πρότυπο με τον χρόνο ημιζωής του να αυξάνεται από 
τις 42.4 ημέρες, όταν εφαρμόστηκε σε 10 mg/kg, σε 107.6 ημέρες όταν εφαρμόστηκε σε 
150 mg/Kg. Επιπροσθέτως, όλα τα γεωργικά φάρμακα έδειξαν υψηλότερη προσρόφηση στο 
βιομίγμα (Kf = 3.23 - 123.3 g mL-1) σε σύγκριση με το έδαφος (Kf = 1.15-31.2 g mL-1). Τα 
ευρήματα του Κεφαλαίου 2 παρέχουν πρώτα στοιχεία για την δυνατότητα των βιοκλινών να 
απομακρύνουν μυκητοκτόνα που βρίσκονται στα απόβλητα σποροπαραγωγικών μονάδων, 
βιομηχανιών διαχείρισης βολβών και συσκευαστηρίων φρούτων, κάτι που μας επιτρέπει να 
προχωρήσουμε με τη περαιτέρω αξιολόγηση των συστημάτων βιοκλινών σε πιο ρεαλιστικά 
συστήματα φόρτισης. 
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Έτσι στο Κεφάλαιο 3, πραγματοποιήσαμε πείραμα στηλών έκπλυσης, πιλοτικές 
βιοκλίνες, που πληρώθηκαν με το ίδιο πληρωτικό υλικό όπως στο Κεφάλαιο 2, ούτως ώστε 
να αξιολογήσουμε την απόδοση των συστημάτων βιοκλινών στην απορρύπανση 
αποβλήτων αγρο-βιομηχανιών που περιέχουν μίγματα μυκητοκτόνων, σε ρεαλιστικές 
συνθήκες φόρτισης. Παρατηρήσαμε ότι οι βιοκλίνης μπόρεσαν να κατακρατήσουν και να 
διασπάσουν τα μυκητοκτόνα που περιέχονταν στα απόβλητα σε ποσοστό 93.1 - 99.98 %. 
Λιπόφιλες ενώσεις όπως το FLX κυρίως κατακρατήθηκαν στο πληρωτικό υλικό, ενώ πιο 
πολικές ενώσεις κυρίως αποδομήθηκαν όπως το CBX ή εκπλύθηκαν όπως το MET-M. Η 
επίδραση της συνεχούς εφαρμογής αποβλήτου στο μικροβίωμα του πληρωτικού υλικού 
διερευνήθηκε στην ίδια πειραματική εγκατάσταση μέσω ανάλυσης της αλληλουχίας 
προϊόντων ενίσχυσης DNA. Αντίθετα με την αρχική μας υπόθεση, οι βιοκλίνες υποστήριζαν 
ιδιαίτερα ανθεκτικές βακτηριακές και μυκητιακές κοινότητες, η σύσταση των οποίων δεν 
επηρεάστηκε από την εφαρμογή των μυκητοκτόνων, αλλά εμφάνισε ξεκάθαρα χρονικά 
μοτίβα μεταβολών στα διάφορα βάθη των στηλών έκπλυσης. Προαιρετικά ή υποχρεωτικά 
αναερόβια βακτήρια όπως τα Chloroflexi/Anaerolinae, Acidibacter and Myxococcota έδειξαν 
σημαντική αύξηση της αφθονίας τους ενισχύοντας την υπόθεση ότι οι χρονικές αυτές 
μεταβολές στην σύσταση της μικροβιακής κοινότητας των βιοκλινών οφείλονταν στην 
επικράτηση μικροαερόφιλων συνθηκών εντός των βιοκλινών λόγω κορεσμού του 
πληρωτικού υλικού με το υγρό απόβλητο. Τέλος, μελετήσαμε την αφθονία μεταθετών 
στοιχείων, όπως Intl1, IS1071, IncP-1 and IncP-1ε, στηριζόμενοι στην υπόθεση ότι η  διαρκής 
έκθεση των βιοκλινών σε υψηλές συγκεντρώσεις γεωργικών φαρμάκων θα ενισχύσει την 
αφθονία τους και δη την διασπορά γονιδίων αποδόμησης των γεωργικών φαρμάκων στην 
βακτηριακή κοινότητα. Παρόλα αυτά η υπόθεσή μας  δεν επαληθεύτηκε καθώς η συνεχής 
εφαρμογή του αποβλήτου δεν επηρέασε την αφθονία των μεταθετών στοιχείων. Αντίθετα 
παρατηρήσαμε αύξηση της αφθονίας των περισσότερων υπό μελέτη μεταθετών στοιχείων 
με τον χρόνο, υποδηλώνοντας την επικράτηση βιοτικών ή αβιοτικών παραγόντων που 
ενισχύσουν την διασπορά μεταθετών στοιχείων και γενικότερα τις γενετικές ανταλλαγές 
μεταξύ μικροοργανισμών. Εν κατακλείδι, όλα τα ευρήματα του Κεφαλαίου 3, ενισχύουν την 
άποψη ότι οι βιοκλίνες μπορούν να χρησιμοποιηθούν αποτελεσματικά για την 
απορρύπανση αποβλήτων αγρο-βιομηχανιών και έδειξαν ότι τα πληρωτικό υλικό συντηρεί 
ένα ιδιαίτερα ανθετικό μικροβίωμα το οποίο δεν επηρεάζεται από την έκθεση σε γεωργικά 
φάρμακα αλλά φαίνεται να αποκρίνεται σε βιοτικές και αβιοτικές συνθήκες που σταδιακά 
επικρατούν στη βιοκλίνη. 

Το Κεφάλαιο 4 εστίασε στην απομόνωση και χαρακτηρισμό μικροοργανισμών με 
την ικανότητα να αποδομούν το ευρέως χρησιμοποιούμενο και υπολειμματικό 
μυκητοκτόνο ΙΜΖ, και στην διερεύνηση της δυνατότητας χρήσης του ως εμβόλιο σε 
βιολογικά συστήματα διαχείρισης αποβλήτων. Ένα στέλεχος του είδους Cladosporium 
herbarum με την ικανότητα να αποδομεί το ΙΜΖ απομονώθηκε μέσω καλλιεργειών 
εμπλουτισμού από έδαφος που δέχονταν απόβλητα συσκευαστηρίου φρούτων που 
περιείχαν ΙΜΖ. Το C. herbarum δεν έδειξε φυτοπαθογόνο δράση έναντι φρούτων που 
μεταχειρίζονται συχνά από συσκευαστήρια φρούτων, ένα αναγκαίο χαρακτηριστικό για την 
μετέπειτα χρήση του για την επεξεργασία αποβλήτων συσκευαστηρίων φρούτων. Το 
στέλεχος κατάφερε να αποδομήσει έως και 100 mg/L IMZ αλλά η αποδομητική του 
ικανότητα και η ανάπτυξή του μειώθηκαν με την αύξηση της συγκέντρωσης του ΙΜΖ με ένα 
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δοσο-εξαρτώμενο πρότυπο υποδεικνύοντας ότι η αποδόμηση του ΙΜΖ είναι ένας 
μηχανισμός αποτοξικοποίησης παρά συνδέεται με την παραγωγή ενέργειας. Το C. 
herbarum έδειξε αντοχή στην παρουσία και άλλων μυκητοκτόνων που χρησιμοποιούνται 
ευρέως από τα συσκευαστήρια φρούτων και αναμένεται να συνυπάρχουν στα απόβλητα 
μαζί με το ΙΜΖ, και αποδόμησε μερικώς ή πλήρως τα FLD, TBZ και 3,5 dichloroaniline (3,5-
DCA), ένα τοξικό προϊόν της αποδόμησης του μυκητοκτόνου iprodione (IPR). Αντίθετα το 
ortho-phenylphenol (OPP) ανέστελλε πλήρως την ανάπτυξη του μικροοργανισμού και, κατά 
συνέπεια, την αποδομητική του ικανότητα. Η ικανότητα του C. herbarum να απορρυπαίνει 
απόβλητα που περιέχουν ΙΜΖ αξιολογήθηκε σε έναν βιοαντιδραστήρα εργαστηρίου στον 
οποίο παρέχονταν υγρά απόβλητα που περιείχαν 200 mg/L ΙΜΖ. Μεταταξινομική ανάλυση 
της κοινότητας των μυκήτων έδειξε ότι το στέλεχος C. herbarum κατάφερε να εδραιωθεί και 
να επικρατήσει της μυκητιακής κοινότητας του βιοαντιδραστήρα και να απομακρύνει 
επιτυχώς >96% του ΙΜΖ. Συνολικά, τα ευρήματα του Κεφαλαίου 4 επιδεικνύουν την 
δυνατότητα του C. herbarum να απομακρύνει το ΙΜΖ σε εργαστηριακές και βιομηχανικές 
συνθήκες. 

Συγκεντρωτικά η παρούσα διατριβή απόδειξε την υψηλή προοπτική των βιοκλινών 
για την απορρύπανση αποβλήτων επιβαρυμένων με μυκητοκτόνα που παράγονται από 
διάφορες αγροτικές μεταποιητικές βιομηχανίες. Παράλληλα αποδείχτηκε ότι οι βιοκλίνες 
υποστηρίζουν ένα ιδιαίτερα ανθετικό μικροβίωμα, του οποίου η σύσταση και δομή 
φαίνεται ότι επηρεάζεται από την επικράτηση μικροαερόφιλων συνθηκών οι οποίες 
επικράτησαν σταδιακά στο πληρωτικό υλικό. Τέλος, αναφέρουμε για πρώτη φορά την 
απομόνωση ενός μικροοργανισμού με την ικανότητα να αποδομεί το ΙΜΖ, που 
ταυτοποιήθηκε ως C. herbarum και διερευνήσαμε την δυνατότητα χρήσης του για την 
απορρύπανση αποβλήτων που περιέχουν ΙΜΖ.  
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ANNEX I - SUPPLEMENTARY DATA OF CHAPTER 2 
Supplementary Table 2.S1 The parameters and equations used by each of the four kinetic models used for the 
calculation of the dissipation kinetic parameters of the studied pesticides 

Model Equation Parameters 
SFO M = M0e-kt M0 : Initial concentration 

K : Rate constant 
Hockey - Stick M = M0e-kt for t ≤ tb 

M = M0e-k1tbe-k2(t-tb) for t > tb 
M0 : Initial concentration 
K1,K2 : Rate constants 
t : Breaking point (time at 
which the rate constant 
changes) 

FOMC M = M0 / (t/β + 1)a M0 : Initial consentration 
α, β : Shape and location 
parameters 

DFOP M = M1e-k1t + M2e-k2t M1, M2 : Amount of chemical 
applied to each 
compartment 
K1, K2 : Rate constant for 
each compartment  

 

Supplementary Table  2.S2 The substrate:solution ratios and equilibration times used  to assess the adsorption of 
each pesticide 

Pesticide 
  Biomixture   Soil 
  Substrate:Solution Equilibration Time   Substrate:Solution Equilibration Time 

CBX   1:20 24   1:10 12 
MET-M   1:5 8   1:5 8 
FLX   1:20 8   1:5 12 
TBZ   1:50 8   1:50 8 
CHT   1:200 12   1:50 12 
FLD   1:200 8   1:25 8 
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ANNEX II - SUPPLEMENTARY DATA OF CHAPTER 2 
Supplementary Table 3.S1 . Amplicon library number, the sample code name and the forward (f) or reverse (r) primer index sequences (5’ - 3’) associated with them 

Library Sample ID 515f primer index ITS4r primer 
index Sample ID 515f primer index ITS4r primer index 

1st
 L

ib
ra

ry
 

T0 BMX A TTCTTCTTCGT TTATTACCGGA T60 C1 50 TTCAATCGTGT TTAGTACGTGA 
T0 BMX B TTCTCAATGGT TTATTAGGCGA T60 C1 80 TTCAGGTATGT TTAGATCCTGA 
T21 C1 20 TTGTCAGGTGT TTATTGCGAGA T60 C2 50 TTGTATCGAGT TTAGATGAGGA 
T21 C1 50 TTGAAGTTCGT TTATACTGGGA T60 C2 80 TTGTGGTGTGT TTAGACTACGA 
T21 C1 80 TTGCAACAAGT TTATACCTCGA T60 C3 50 TTGAGTCATGT TTAGACATGGA 
T21 C2 20 TTGGACGACGT TTATACGCAGA T60 C3 80 TTGGTTGTCGT TTAGAGTCAGA 
T21 C2 50 TTCTTCAAGGT TTATAGACCGA T60 B1 50 TATAAGCCAGT TTAGCAGATGA 
T21 C2 80 TTCTCAGAAGT TTATGTTCGGA T60 B1 80 TTCTATGCAGT TTAGCCTGTGA 
T21 C3 20 TTCAGTAAGGT TTATGTGACGA T60 B2 50 TTCAATGACGT TTAGGTACAGA 
T21 C3 50 TTCGACAATGT TTATGAAGGGA T60 B2 80 TTCGTTCTAGT TTAGGCGCCGA 
T21 C3 80 TTGTCGATAGT TTATGAGCTGA T60 B3 50 TTGTAATGGGT TTCTTATGGGA 
T21 B1 20 TTGAAGGAAGT TTATGCCATGA T60 B3 80 TTGATAGCAGT TTCTTACTCGA 
T21 B1 50 TTGCAGTATGT TTATGGTGTGA T60 S1 50 TTGAGAGTGGT TTCTTAGCAGA 
T21 B1 80 TATATCAGGGT TTAATTCGCGA T60 S1 80 TTGGTATGAGT TTCTTCAGTGA 
T21 B2 20 TTCTTGTCAGT TTAATCCAGGA T60 S2 50 TATAGTCTCGT TTCTTCGACGA 
T21 B2 50 TTCATATGGGT TTAATCGGTGA T60 S2 80 TTCTAACAGGT TTCTTGAAGGA 
T21 B2 80 TTCAGACTTGT TTAATGTGGGA T60 S3 50 TTCAACTAGGT TTCTTGGTTGA 
T21 B3 20 TTCGAGCACGT TTAATGCCTGA T60 S3 80 TTCGTTGGTGT TTCTATTCCGA 
T21 B3 50 TTGTGTATCGT TTAATGGACGA T60 F1 50 TTGTAAGTCGT TTCTATAGGGA 
T21 B3 80 TTGACTATGGT TTAACTTCCGA T60 F1 80 TTGATCTTGGT TTCTAACAGGA 
T21 S1 20 TTGCCTAGTGT TTAACTAGGGA T60 F2 50 TTGAGCCTCGT TTCTACCGAGA 
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T21 S1 50 TATATCGTCGT TTAACAGTCGA T60 F2 80 TTGGTCTATGT TTCTAGTTGGA 
T21 S1 80 TTCTTGAGTGT TTAACCTTGGA T60 F3 50 TATAGACAGGT TTCTAGCCTGA 
T21 S2 20 TTCATAGTCGT TTAACCGAAGA T60 F3 80 TTCTAGTTGGT TTCTAGGAAGA 
T21 S2 50 TTCAGAGGAGT TTAACGACAGA T109 C1 20 TTCGTGATCGT TTCTGACGTGA 
T21 S2 80 TTGTTCAGAGT TTACTTACGGA T109 C1 50 TTGTCTTCAGT TTCTGCTCAGA 
T21 S3 20 TTGTGTGAAGT TTACTTGTCGA T109 C1 80 TTGATGAGGGT TTCATTGTGGA 
T21 S3 50 TTGACGTGAGT TTACTAGAGGA T109 C2 20 TTGCATAAGGT TTCATCTTCGA 
T21 S3 80 TTGCCTCACGT TTACTCTGAGA T109 C2 50 TTGGAACTTGT TTCATGTCAGA 
T21 F1 20 TATATGCACGT TTACTCCTTGA T109 C2 80 TATAGCAACGT TTCAGTTACGA 
T21 F1 50 TTCTTGGACGT TTACTGGCAGA T109 C3 20 TTCTCTAACGT TTCAGTCCTGA 
T21 F1 80 TTCATCACAGT TTACATTGCGA T109 C3 50 TTCAAGGTTGT TTCAGATTGGA 
T21 F2 20 TTCAGCAGTGT TTACAGTAGGA T109 C3 80 TTCGATGTGGT TTCAGAAGAGA 
T21 F2 50 TTGTTCGTTGT TTACAGGTTGA T109 Β1 20 TTGTCTCTTGT TTCAGCTGTGA 
T21 F2 80 TTGTGACTAGT TTACCTAACGA T109 Β1 50 TTGAACTCAGT TTCAGGCTAGA 
T21 F3 20 TTGACGAATGT TTACCTCTAGA T109 Β1 80 TTGCATGTTGT TTCCTTCATGA 
T21 F3 50 TTGCCAATCGT TTACCTGGTGA NTC 1st A TTGGACATAGT TTCCTAATGGA 
T21 F3 80 TATAACGAGGT TTACCATCGGA NTC 1st B TATAGGATGGT TTCCTACGAGA 

2n
d 

L
ib

ra
ry

 

T109 B2 20 TTCTTCTTCGT TTATTACCGGA T109 S3 80 TTGCAGTATGT TTATGGTGTGA 
T109 B2 50 TTCTCAATGGT TTATTAGGCGA T109 F1 20 TATATCAGGGT TTAATTCGCGA 
T109 B2 80 TTCAGTTCAGT TTATTCTCCGA T109 F1 50 TTCTTGTCAGT TTAATCCAGGA 
T109 B3 20 TTCGAATCAGT TTATTCGTGGA T109 F1 80 TTCATATGGGT TTAATCGGTGA 
T109 B3 50 TTGTCAGGTGT TTATTGCGAGA T109 F2 20 TTCAGACTTGT TTAATGTGGGA 
T109 B3 80 TTGAAGTTCGT TTATACTGGGA T109 F2 50 TTCGAGCACGT TTAATGCCTGA 
T109 S1 20 TTGCAACAAGT TTATACCTCGA T109 F2 80 TTGTGTATCGT TTAATGGACGA 
T109 S1 50 TTGGACGACGT TTATACGCAGA T109 F3 20 TTGACTATGGT TTAACTTCCGA 
T109 S1 80 TTCTTCAAGGT TTATAGACCGA T109 F3 50 TTGCCTAGTGT TTAACTAGGGA 
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T109 S2 20 TTCTCAGAAGT TTATGTTCGGA T109 F3 80 TATATCGTCGT TTAACAGTCGA 
T109 S2 50 TTCAGTAAGGT TTATGTGACGA NTC 2nd A TTCATCACAGT TTACATTGCGA 
T109 S2 80 TTCGACAATGT TTATGAAGGGA NTC 2nd B TTCAGCAGTGT TTACAGTAGGA 
T109 S3 20 TTGTCGATAGT TTATGAGCTGA T109 F1 20 TATATCAGGGT TTAATTCGCGA 
T109 S3 50 TTGAAGGAAGT TTATGCCATGA T109 F1 50 TTCTTGTCAGT TTAATCCAGGA 
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Supplementary Figure 3.S1 Canonical Correspondence Analysis (CCA) and redundancy analysis (RDA) of the bacterial (A) and fungal (B) communities colonizing the different horizons of the 
biobed systems treated with water (control), wastewater from seed producing industries (seed), wastewater from bulb handling industries (bulb) or wastewaters from fruit packaging 
industries. Samples were ordinated according to origin of the wastewater treatment. Inserted tables display pairwise comparisons of the microbial communities in the different treatments 
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Supplementary Figure 3.S2 Barplots of bacterial ASVs that exhibit significant temporal patterns in their relative 
abundance. Each bar is the mean of 12 replicates ± standard error. Bars designated by the same letter indicate 
significant differences at the 5% level. 
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Supplementary Figure 3.S3 Barplots of fungal ASVs that exhibit significant temporal patterns in their relative 
abundance. Each bar is the mean of three replicates ± standard error. Bars designated by the same letter indicate 
significant differences at the 5% level 
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Supplementary Figure 3.S4 Scatterplots of bacterial ASVs whose relative abundance showed significant positive 
or negative correlation with the residues of metalaxyl M (MET-M) and fluxapyroxad (FLX) in columns receiving 
wastewaters from the seed producing industry (SPI). 
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Supplementary Figure 3.S5 Scatterplots of bacterial ASVs whose relative abundance showed significant positive 
or negative correlation with the residues of Chlorothalonil (CHT) and fludioxonil FLD in columns receiving 
wastewaters from the bulb handling industry (BHI). 
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Supplementary Figure 3.S6 Scatterplots of bacterial ASVs whose relative abundance showed significant positive 
or negative correlation with the residues of fludioxonil (FLD) and imazalil (IMZ) in columns receiving wastewaters 
from the fruit packaging industry (FPI) 
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Supplementary Figure 3.S7 Scatterplots of fungal ASVs whose relative abundance showed significant positive or 
negative correlation with the residues of carboxin (CBX), metalaxyl M (MET-M) and fluxapyroxad (FLX) in columns 
receiving wastewaters from the seed producing industry (SPI) 
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Supplementary Figure 3.S8 Scatterplots of fungal ASVs whose relative abundance showed significant positive or 
negative correlation with the residues of thiabendazole (TBZ), fludioxonil (FLD)  and chlorothalonil (CHT) in 
columns receiving wastewaters from the bulb handling industry (BHI). 
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Supplementary Figure 3.S9 Scatterplots of fungal ASVs whose relative abundance showed significant positive or 
negative correlation with the residues of imazalil (IMZ) and fludioxonil (FLD) in columns receiving wastewaters 
from the fruit packaging industry 
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Supplementary Figure 3.S10 The temporal changes in the relative abundance of (A) intl1, (B) IS1071, (C) korB and 
(D) trfA (expressed as copy numbers per gram of biobed packing material (dry weight) normalized to the copy 
numbers of the 16S rRNA gene) in biobeds, regardless of wastewater treatment and biobed horizon. Each bar 
represents the mean of 36 samples ± standard error. Bars designated by the same lower case letters are not 
significantly different at the 5% level. 
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Annex III - SUPPLEMENTARY DATA OF CHAPTER 4 
Supplementary Table  4.S1 The primers, sequences and thermocycling conditions used in the current study 

Primer Thermocycling Conditions Sequence (5’ – 3’) Use Reference 
ITS1F 
ITS4 

95oC for 5 min; 95°C for 30 sec, 
55oC for 30sec,  72oC for 1 min 
(35 cycles); 72oC for 10 min 

TCC GTA GGT GAA CCT GCG G 
TCC TCC GCT TAT TGA TAT GC 

Molecular 
identification of fungal 
isolate 

(White et al., 1990) 

FF390 
FR1 

 
95oC for 3 min; 95°C for 15 sec, 
50oC for 35sec,  72oC for 10 sec 
(40 cycles); 
Melting curve: 65-95oC, 
increments of 0.1oC sec-1 

 
CGA TAA CGA ACG AGA CCT 
AIC CAT TCA ATC GGT AIT 

q-PCR fungal 
community in 
bioreactor 

(Prévost-Bouré et al., 2011) 

Eub338 
Eub518 

95oC for 3 min; 95°C for 15 sec, 
60oC for 20sec (35 cycles);   
Melting curve: 65-95oC, 
increments of 0.1oC sec-1 

ACT CCT ACG GGA GGC AGC AG 
ATT ACC GCG GCT GCT GG 

q-PCR bacterial 
community in the 
bioreactor 

(Fierer et al., 2005) 

P-ITS1 
P-ITS4 

94oC for 3min; 94°C for 30 sec, 
53oC for 40sec,  72oC for 1 min 
(30 cycles); 72oC for 10 min 

 
TCC GTA GGT GAA CCT GCG G 
TCC TCC GCT TAT TGA TAT GC 

Amplicon sequencing 
analysis fungal 
community 

(White et al., 1990) 

515f 
806r 

98°C for 10 s, 50°C for 30 s,  
72°C for 30 s (25 + 7 cycles) b; 
72oC for 5 min 

 
NNNNNNNNNGTGTGYCAGCMGCCGCGGTAAa 

GGACTACNVGGGTWTCTAAT 
Amplicon sequencing 
analysis bacterial 
community 

(Walters et al., 2016) 

a The sample index (consecutive Ns) and linker (bold letters) prior to the extension bases in the forward or reverse primer are indicated. 
b The first number in parentheses indicates the number of cycles performed in the first PCR where the unindexed primers were used, while the second number indicates the additional cycles 
performed in the sample indexing PCR. 
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