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Abstract

In submicron VLSI circuits, interconnect delay dominates logic gate delay by a big

factor. The former is proportional to its length which depends significantly on the

placement step, where the locations of the logic and memory elements of the chip

are determined. Originally the placement problem only satisfies layout constraints

but recently modern placers also incorporate timing constraints and they are called

timing-driven placers. In this master thesis, we present an approach for a Timing-

Driven Global Placer which prioritizes the minimization of critical connections, by

placing the corresponding components closer together. Criticality for a connection is

determined by making use of slack information derived from Static Timing Analysis

and comparing this value to the average of the slack distribution. The deviation from

the average determines the amount of prioritization this connection gets and thus

the amount of effort the placement algorithm gives, into placing the components

corresponding to this connection, closer. Our approach shows promising results

by reducing the total negative slack (TNS) and the worst negative slack (WNS) for a

variety of designs relative to a conventional non timing-driven placement.



Περίληψη

Σε τεχνολογίες της τάξης των υποµικρόµετρων η καθυστέρηση της διασύνδεσης κυ-

ϱιαρχεί έναντι της καθυστέρησης πύλης. Η πρώτη έιναι ανάλογη του µήκους καλωδίου

της διασύνδεσης. Το τελευταίο εξαρτάται σε µεγάλο ϐαθµό απο το ϐήµα Τοποθέτησης

στο οποίο η λογική και τα στοιχεία µνήµης τοποθετούνται στο τσίπ. Παραδοσιακά το

πρόβληµα τοποθέτησης ικανοποιεί µόνο χωροταξικούς περιορισµόυς (πχ. εξουδετέρω-

ση επικάληψης) αλλά τελευταία σύγχρονοι αλγόριθµοι τοποθέτησης λαµβάνουν υπόψιν

τους και χρονικόυς περιορισµούς πέρνοντας το όνοµα χρονικά-καθοδηγούµενοι τοπο-

ϑετητές. Σε αυτήν την πτυχιακή παρουσιάζουµε µια προσέγγιση κατά την οποία δίνεται

υψηλότερη προτεραιότητα σε κρίσιµες συνδέσεις µε σκοπό να γίνουν µικρότερες µε-

τακινόντας τα αντίστοιχα λογικά στοιχεία πιο κοντά µεταξύ τους. Η κρισιµότητα µιας

σύνδεσης ορίζεται κάνοντας χρήση της slack πληροφορίας και συγκρινοντάς την µε την

µέση τιµή της συνολικής slack κατανοµής. Το ποσο της προτεραιοτητας που δινεται

σε µια συνδεση, εξαρταται απο το ποσο αποκλισης της, απο την µεση κατανοµη. Η

προσέγγιση µας δίνει καλά υποσχόµενα αποτελέσµατα µειόνοντας το συνολικό αρνητι-

κό slack και το χειρότερο αρνητικό slack για ένα έυρος δεσιγν, σε σχεση µε εναν µη

χρονικα καθοδηγουµενο τοποθετητη.
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Chapter 1

Introduction

Αs integrated circuit technology advances, circuit performance becomes heavily

dependent on interconnect wire delays. In submicron VLSI circuits, the wiring delay

dominates the logic gate delay by a big factor. Wire delay is proportional to wire

length and the latter depends significantly on the placement step which decides

where the logic and memory elements of the chip are located.

In high-speed interconnect dominated designs, placement also has a significant

impact on design functions such as buffering, gate resizing, logic synthesis and logic

design which all help to meet timing requirements.

Originally the placement problem satisfies two main constraints which are the

minimization of the wirelength between components and the neutralization of over-

lap. Recent modern placers also incorporate timing constraints with the aim of

producing a layout of improved timing metrics, which will also help subsequent

steps in the design flow, to reach timing closure easier.

In this integrated master thesis, we present an approach, to improve our already

existed Global Placement algorithm, of our Electronic Design Automation (EDA) tool

to be timing driven.

Our placement algorithm is analytic and force directed which means it models

the minimization of the wirelength and neutralization of overlap as forces. The former

is modeled as a spring force which increases with the increase of wirelength between

two components. This force is called, net force. The latter is called move force and

its purpose is to move components to overlap free areas. Both of these forces work

in conjunction iteratively and converge to a final placement solution.

Every connection has a cost which represents the spring coefficient. Our method

works by increasing the coefficients of critical connections to increase their net force.

This is done by a net-weight assignment process which maps slack values to timing

weights which are then multiplied to the spring coefficients.

Timing weights are generated from mapping functions and their value depends

on the deviation of slack values from the average of the slack distribution. Slacks

with values less than the average get increased weights and are considered criti-

cal, while slack with values greater than the average get reduced weights and are

considered non-critical.
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Our method shows promising results by substantially reducing the total negative

slack (TNS) and the worst negative slack (WNS) for a variety of designs, relative to a

conventional placement.
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Chapter 2

Theoretical Background

2.1 Introduction to EDA

The integrated circuit revolutionized the electronics industry and paved the way

for the development of all the world’s technological marvels. It is without a doubt

one of the most complex engineering products ever built. Since its invention, the

number of transistors per integrated circuit has doubled every two years, following

the now-famous Moore’s Law. This exponential growth made ICs smaller and more

powerful and transformed all areas of modern society with amazing inventions fitting

in the palm of a hand.

Figure 2.1: Moore’s Law from 1970 till 2020

In the early years of semiconductor technology, the task of laying out gates and

interconnect wires was carried out manually by hand. However as the semiconduc-

tor scaling began to drop this became from an increasing tedious task to a practically

humanly impossible one. The use of automation to address the resulting problem

of scale became of extreme importance. Automation was facilitated by the improve-

ment in the speed of computers that would be used to create the next generation of

computer chips resulting in their own replacement!

This gave birth to the development of Electronic Design Automation Software

(EDA). The earliest and most fundamental problem these tools solved was physical

design automation, that is the computation of the best physical layout of millions

8



to billions of circuit components on a tiny silicon surface. However modern EDA

tools do way more than that and they almost touch every aspect of the IC design

flow, from high-level system design to fabrication. In today’s nanometer process

technologies interconnects play an ever increasing role in determining the overall

circuit performance, power, area and cost. Also other phenomena like crosstalk and

power grid noise began to rise as wire cross-sections became “taller and thinner” from

one technology generation to the next. The physical arrangement of the components

controls the quantity and quality of these interconnects directly and thus the circuit

optimisation and peϱformance.

2.2 Placement

Placement is one of the most fundamental steps of the Physical Design flow.

Its objective is to determine the locations and orientations of all circuit elements

within a layout, given solution constraints and optimization goals. Placement goals

are modeled and measured through the appropriate cost functions which need to be

optimized. It is beneficial to use smooth cost functions which can be easily adopted

in placement algorithms. The most common ones are: [1]

• Total Wirelength: This is the primary objec-

tive of most of the existing placers. That’s

because wirelength directly affects all of

the other cost functions, especially in mod-

ern VLSI designs where wire delays are the

dominating factor.

• Delay: Frequency of a chip is determined

by the delay of its longest path known as

the critical path. Given design constraints

a placement algorithm must ensure that no

such paths exist.

• Congestion: This is an important cost func-

tion for measuring routability which is the

step that follows placement. A congested

region might lead to excessive routing de-

tours, or make it impossible to complete all

routes.

• Power: Power minimization typically in-

volves distributing the locations of cell

components so as to reduce the overall power consumption,

Modern Placers are fairly complex and can combine different cost functions si-

multaneously. Also there is a strong interaction between them, for example delay

depends on the total wirelength and power can depend on congestion. In figure

Fig. 2.2 an example is shown between a bad placement and a good placement con-

sidering Total Wirelength as the cost function.
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Figure 2.2: A comparison between a bad (left) and a good (right) placement, consid-

ering Total Wirelength.

The placement process is divided into three subsequent steps. These are the

Global Placement, the Legalization and the Detailed Placement. In the following we

explain each one of them.

Figure 2.3: Placement Flow Steps

2.2.1 Global Placement

Global placement is the first step of the placement process. It focuses on finding

an initial placement of the logic cells. Global placement often ignores cell specific

shapes and sizes and does not attempt to align their location with valid gridrows and

columns. It is mainly concerned with “rough” locations of the gates and allows an

amount of overlap between them. This overlap is then removed in the Legalization

step. Performance optimisations like timing improvement can also take place in this

stage.

There are various techniques for circuit placement and can be summarized as fol-

lows. [1]

• Partitioning Based Algorithms: The netlist and the layout are divided into

smaller sub-netlists and sub-regions, respectively, according to cut-based cost

functions. This process is repeated until each sub-netlist and sub-region is

small enough to be handled optimally. Each of these sub-regions must have

the smallest dependence possible with other sub-regions i.e. small number of

connections. An example of this approach is min-cut placement, which tries

to minimize the "cut" of connections between partitions (sub-regions).

• Analytic Techniques: Model the placement problem using an objective cost

function, which can be maximized or minimized via mathematical optimiza-

tion methods. The objective can be quadratic or otherwise non-convex. The
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most common objective is quadratic and aims at the minimization of the to-

tal wirelength. Quadratic forms used in global placement are convex and can

me minimized by calculating their gradient to zero. This produces a series of

linear equations and their solution define the module positions with the global

minimum cost function value. A lot of placers model this gradient as a spring

force and they are called, force-directed. Quadratic methods are relatively easy

to implement and appear to be more scalable in terms of runtime, in large

designs. The global placer described in this thesis is force-directed, based on

an algorithm called Kraftwerk2.

• Stochastic Algorithms: Randomized moves are used to optimize the cost func-

tion. An example of this approach is simulated annealing. Simulated annealing

is a metaheuristic to approximate global optimization in a large search space.

The name of the algorithm comes from annealing in metallurgy. At each step,

the simulated annealing heuristic considers some neighboring state s* of the

current state s, and probabilistically decides between moving to the next state

or not. The probability of movement is defined as temperature. In this algo-

rithm the temperature progressively decreases from an initial positive value to

zero to accept less and less worse solutions at each step. The acceptance of

worse solutions is essential for the placement algorithm to be able to escape

from local minimums of the cost function and aproximate the global minimum

solution.

Figure 2.4: Most common Placement tecniques.

2.2.2 Legalization

Legalization seeks to move cells in their legal positions, that is positions with no

overlap and with total alignment with the power grid, the rows and the columns of

the chip layout. It tries to achieve that while simultaneously seeking to minimise

displacement from global placement to have the minimum impact possible on wire-

length and circuit delay. It’s efficiency strongly depends on the quality of the global

placement result. Legalization is not necessary only after global placement but also

after incremental changes, such as resizing and buffering.

2.2.3 Detailed Placement

Detailed Placement aims to improve the solution further concerning given objec-

tives. It incrementally improves the location of each cell by local operations, such as

swapping neighbouring cells to reduce total wire length, or shifting several cells in a

row to create room for another object when white space is available.
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2.3 Global Placement

In this chapter we will give an extensive overview regarding the mathematical

formulation of the global placement problem. The purpose of this thesis is the devel-

opment of a Timing Driven Global Placer so the knowledge described, is fundamental

for the understanding of subsequent chapters.

2.3.1 Analytic Problem Formulation

Analytic placement minimizes a given objective, such as wirelength or circuit de-

lay, using mathematical optimization techniques. The given objective takes the form

of a cost function and must be minimized. Such techniques often require certain

assumptions, such as the differentiability of the objective function or the treatment

of placeable cells as dimensionless points. The most common cost function used

is quadratic. That is because quadratic minimization facilitates the calculation of

partial derivatives (gradient), rather than using a linear objective. Another benefit

is that it emphasizes more on the minimization of longer connections. The general

form of a quadratic cost function is given below. It’s goal is to minimize the squared

euclidean distance between the components [2].

Γ(x, y) =
1

2

n∑
i=1

n∑
j=1

c(i, j)
(
(xi − xj)2 + (yi − yj)2

)
(2.1)

Where x = (x1, x2, ..., xn)T
, y = (y1, y2, ..., yn)T

are the cell positions in the horizon-

tal (x) and vertical (y) direction respectively, n is the total number of cells and c(i,j)
is the connection cost between cells i and j. If two cells are unconnected then c(i,j)
= 0. Terms (xi − xj)2

and (yi − yj)2
correspond to the squared horizontal and vertical

euclidean distances between cells i and j. Components are considered dimensionless

and x, and y vectors, normally represent their center.

The term c(i,j) is very important for the timing driven placers and it is explained

in the following chapter. Timing driven global placers multiply the connection cost

c(i,j), by some weights that they generate based on certain design metrics, to increase

the priority of critical nets. For example nets with negative slack, get increased

connection costs to guide the minimization objective into keeping them shorter.

2.3.2 Vector Notation and Connectivity Matrix

Next we will show how the cost function Γ (2.1) can be represented in a vector-

matrix form notation [3]. This is an essential step because this form, utilizes the

solving capabilities of computer software, specific on solving multi variable linear

equations, represented by high order sparse matrices. The cost function Γ (2.1) can

be separated in the x and y direction and each part can be minimized independently.

It is important to note that xi and xj must be different at all times because two

components cannot point to the same place. Also this constraint ensures that the

trivial solution of x = 0⃗ is avoided.

By working on the x direction we obtain the following:

12



Γx(x) =
1

2

∑
i

∑
j

cij(xi − xj)2
(2.2a)

=
1

2

∑
i

∑
j

cij(x2

i − 2xixj + x2

j ) (2.2b)

=
1

2

(∑
i

ciix
2

i − 2

∑
i

∑
j,i

cijxixj +
∑

j

cjjx
2

j

)
(2.2c)

=
1

2

(∑
i

ciix
2

i − 2

∑
i

∑
j,i

cijxixj +
∑

i

ciix
2

i

)
(2.2d)

=
1

2

(
2

∑
i

cix
2

i − 2

∑
i

∑
j,i

cijxixj

)
(2.2e)

=
∑

i

cix
2

i −
∑

i

∑
j,i

cijxixj (2.2f)

= xTDx − xTCx (2.2g)

= xT(D − C)x (2.2h)

Γx(x) = xTLx (2.2i)

(2.2j)

The above transformation is based on the following equality:

Given any quadratic form with n variables, its coefficients can be arranged into a

n × n symmetric matrix A, where:∑
i

∑
j

aijxixj = xTAx

Using the former, we can easily jump from equation (2.2e) to equation (2.2f),

where C and D are called the connection matrix and diagonal matrix respectively.

Also for an ease of notation we represent cii as ci and cjj as cj.

The connection matrix C, is a symmetric matrix that stores information about every

connection between the components of the design. More specifically between two

components i, j it stores their connection costs cij and cji, at matrix positions C(i, j)
and C(j, i) and has zero in the diagonal positions.

The diagonal matrix D, at entry D(i, i) stores the summation of every connection cost

between component i and the components it connects to, i.e. every connection cost

cij updates both the D(i, i) and D(j, j) entries.

The laplacian matrix L, is formed by subtracting the connectivity matrix by the

diagonal matrix and constructs the final form of the vector-matrix notation of the

quadratic cost function.

In equation (2.2b) and below, the constraint i , j is specifically used.

At equation (2.2d),
∑

i ciix2

i =
∑

i cjjx2

j because although xi , xj their summations over

the whole domain, are.

In a real chip, not all points are movable. Ports (I/Os) and some specific cells (e.g

memory elements) stay fixed throughout the placement procedure. If we also take
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these points into consideration then the cost function transforms into the equation

(2.3) which has the addition of a linear and a constant term. The connection between

a movable cell xi and a fixed point xf is evaluated as:

cif (xi − xf )2 = cif x
2

i − 2cif xixf + cif x
2

f = cix
2

i − 2cif xixf + cf x
2

f

The first term contributes to the diagonal matrix D, by adding on row i all the con-

nection coefficients between the movable node i and the fixed point f, cif . The second

linear term contributes to the vector bT
, by adding on its row i all the connection

coefficients between the movable node i and the fixed point f, cif multiplied by the

fixed point x-position xf . That is for every line of the bT
vector, bi = −

∑
f cif xf . The

third term is constant and contributes to the const part.

Γx(x) = xTLx + bTx + const (2.3)

The coefficients cif are normally stored into a pin connection matrix P, which keeps

information on every connection between the movable and fixed points.

Now we will show an example for a sample circuit, and derive the aforementioned

matrices. The circuit in figure 2.5 consists of four inputs i1, i2, i3, i4, seven logic

gates and four outputs o1, o2, o3, o4.

Figure 2.5: Sample Circuit

There are seven gates in total so the connectivity matrix is 7x7. It stores every

connection between the movable gates. Inputs and outputs are considered fixed

points.

C =



0 0 0 cad 0 0 0

0 0 0 cbd cbe 0 0

0 0 0 0 0 0 ccg

cda cdb 0 0 0 cdf 0

0 ceb 0 0 0 cef ceg

0 0 0 cfd cfe 0 0

0 0 cgc 0 cge 0 0


The diagonal matrix for a cell at point i, stores the summation of its connections

between both the movable cells and the fixed points. For example gate a connects

with gate d and with the inputs i1, i2.
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D =



da 0 0 0 0 0 0

0 db 0 0 0 0 0

0 0 dc 0 0 0 0

0 0 0 dd 0 0 0

0 0 0 0 de 0 0

0 0 0 0 0 df 0

0 0 0 0 0 0 dg



da = ci1a + ci2a + cad

db = ci2b + ci3b + cbd + cbe

dc = ci3c + ci4c + ccg

dd = cda + cdb + cdo1 + cdf

de = cda + cdb + cdo1 + cdf

df = cfd + cfe + cfo2 + cbe + cfo1

dg = cge + cgc + cgo3

The Laplacian matrix is the subtraction between the diagonal matrix minus the

connection matrix.

L =



da 0 0 −cad 0 0 0

0 db 0 −cbd −cbe 0 0

0 0 dc 0 0 0 −ccg

−cda −cdb 0 dd 0 −cdf 0

0 −ceb 0 0 de −cef −ceg

0 0 0 −cfd −cfe df 0

0 0 −cgc 0 −cge 0 dg


Finally the b vector is defined using bi = −

∑
f cif xf as:

b =



ba

bb

bc

bd

be

bf

bg


=



−
∑

f caf xf

−
∑

f cbf xf

−
∑

f ccf xf

−
∑

f cdf xf

−
∑

f cef xf

−
∑

f cff xf

−
∑

f cgf xf


=



cai1xi1 + cai2xi2

cbi2xi2 + cbi3xi3

cci3xi3 + cci4xi4

cdo1xo1

0

cfo2xo2

cgo3xo3


2.3.3 Cost function minimization

The (2.3) cost function can be minimized by using mathematical optimisation

techniques. The laplacian matrix L is symmetric and for the majority of the designs,

it has high sparsity. If no fixed points exist, L is positive semi-definite, i.e.

• xTLx ≥ 0 for every vector x = (x1, ..., xn)T

and if fixed modules exist then the laplacian matrix is positive definite, i.e.

• xTLx > 0 for every vector x = (x1, ..., xn)T

A quadratic form is definite if it is zero, only when all of its variables are zero simul-

taneously.

Due to the above the The (2.3) cost function is convex, and its minimum is obtained

by calculating the points which set its gradient to zero. In vector calculus, the gra-

dient of a scalar field f in the space Rn
is the transpose of the derivative of a scalar

by a vector.

∇f =


∂f

∂x1

...
∂f

∂xn

 =
(
∂f

∂x

)T
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So minimum will be obtained by solving the following equation:

∇Γx = 0⃗⇒

(
∂Γx

∂x

)T

= 0⃗ (2.4)

The first step for deriving the gradient of the cost function, is to calculate its partial

derivative. For this purpose, we make use of the following identity on vector-by-

vector partial derivatives, obtained by the matrix calculus math theory.

∂(u · Av)
∂x

=
∂uT · Av

∂x
= uTA

∂v
∂x
+ vTAT ∂u

∂x

Based on the former, we calculate the partial derivative of the quadratic term of the

cost function by setting u = v = x and A = L.

∂(xT · Lx)
∂x

=xTL
∂x
∂x
+ xTLT ∂x

∂x
(2.5a)

=xTLI + xTLTI (2.5b)

=xTL + xTLT
(2.5c)

=xT(L + LT)
(2.5d)

Finally we proceed to the calculation of the gradient:

∇Γx =∇(xT · Lx + bTx + const) (2.6a)

=
(
xT(L + LT) + bT + 0

)T
(2.6b)

=(L + LT )x + b (2.6c)

=2Lx + b (2.6d)

In the calculations of 2.6a and 2.5d we make use of the matrix identities,

(A + B)T = AT + BT
and (AB)T = BT AT

. Additionaly because as aforementioned,the

laplacian matrix L is symmetric, L = LT
. That’s why eq: 2.6d follows eq: 2.6c.

Finally equation (2.4) becomes:

∇Γx =2Lx + b = 0⃗ (2.7a)

⇒ 2Lx = − b (2.7b)

From 2.7b we obtain a n x n system of linear equations which can be easily

solved by linear solvers like the intel MKL.

Often in the literature the cost function 2.3 is re-written as:

Γx(x) =
1

2
xTLx + bTx + const

which is the general form of the quadratic cost function to eliminate the two in 2.7b

and produce:

Lx = −b
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2.3.4 Net Modeling

After the completion of the placement stage, the routing stage follows. During

the routing stage, all the different component connections are routed using horizon-

tal and vertical metal wires. One fundamental question that arises in the placement

stage, is how the wirelength is going to be measured and minimized, when in reality

wire does not exist. One solution would be to route the design after each place-

ment iteration and measure the real wirelength, but that is totally futile, due to the

enormous CPU time to complete the task. For this purpose it is essential to use

wire estimations before routing and with that, drive the placement stage accord-

ingly.

Those estimations are called net models. Before net models are described, first

we are going to describe, what is a net in the first place. A net is simply a connection

between components or more specifically a connection between an output pin of

a component and the input pins of the components it connects to. During the

placement stage, it is known from the design netlist which components connect to

which i.e. the connectivity information of the circuit.

In fig 2.6 a circuit is shown with connections between three AND gates and two

OR gates. Yellow dots are the output pins of the gates driving the nets. Blue dots

are the input pins of the sinks i.e. the components connecting to the drivers. Net

a and net c are two-pin nets and net c is a three-pin net. A net can connect with

an indefinite number of pins, however modern designs consist of two and three-pin

connections at more than 70%.

Figure 2.6: Net Definition

Another term used in the literature is called edge. Edge is denoted as a con-

nection between two pins. For example net b contains two edges which are the

connections between the upper and lower OR gate and nets a, c contain one edge

each. Cost functions, like (2.1) attempt to minimize the euclidean distance of the

edges of every net.

To summarize, every output pin of a component defines a net, every net con-

sists of edges which are two-pin connections, and edges are minimized by the cost

function.
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The circuit netlist is represented as an undirected hyper-graph G = (V,N),
where V are the vertices i.e. the circuit elements of the design and N are hyper-

edges i.e. nets that connect them. The vertex set N consists of two disjoint subsets,

MV and FV which are the set of movable and fixed circuit elements respectively.

Each net ni ∈ N is represented as a hyper-edge which defines a subset of circuit

elements, that are electrically connected to each other, i.e.

ni = {vi1, vi2, ..., vim},∀ vij ∈ V. Fig 2.7 shows the hyper-graph definition. Hyper-edges

include multiple vertices (cells) and represent nets that are shown with different

colors. The number of pins of the net (same as number of cells), is denoted by its

cardinality |n|.

Figure 2.7: Hyper-Graph Definition

Some class of global placement algorithms, such as partitioning-based or simu-

lated annealing, are effective in directly handling hyper-edge nets. However analyt-

ical placement algorithms, require the transformation of the hyper-edge to a set of

two pin edges.

In the case of quadratic placement, each net n ∈ N , is represented by a set of

two-pin edges e ∈ En, which connect the pins of the net. One edge is defined as

e = (p, q) and connects pins p and q. During quadratic placement, components are

considered dimensionless and their positions in space can be represented by a single

point (pin) which lies in their geometric center. Then the quadratic form 2.1 can be

re-written as:

Γ(x, y) =
1

2

∑
n∈N

∑
e∈En

c(p, q)
(
(xp − xq)2 + (yp − yq)2

)
(2.8)

Net models simply specify the set En, i.e. which edges represent the net N . Nets

are extracted based on the netlist, which specifies the connectivity information of the

design. Net models are essential first and foremost for the approximation of the real

wirelength of the design, i.e. the wirelength after the completion of the routing stage

and secondly for the creation of symmetric and sparse Laplacian matrices which

lead to the proper minimization of the objective function.

Theoretically the best net model would be the direct calculation of the wirelength

after finalized routing. However this is totally futile, because placement is done

iteratively, and the addition of the CPU time to route on each iteration would be

enormous.
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Considering the approximation of the routed wirelength, the most commonly

used net model is the Half Perimeter Wire Length model (HPWL) because it is com-

putationally fast and efficient. It is very accurate for nets with cardinality of two and

three which constitute more than 80% of the total nets of the design. In fig 2.8 the

HPWL definition is given. A net is defined between the output gatepin (yellow dot)

of the gate on the left and the input gatepins (blue dots) of the gates it connects to.

The dotted line corresponds to edges of the net which electrically connect the compo-

nents. For the calculation of the HPWL, a bounding box is drawn which is the small-

est rectangle enclosing all the pins of the net. As the name implies the HPWL is equal

to the half perimeter of the bounding box, i.e. HPWL = xmax − xmin + ymax − ymin.

Figure 2.8: HPWL net model

Based on the previous, equation 2.8, becomes:

Γ(x, y) =
1

2

∑
n∈N

(xmax
n − xmin

n ) + (ymax
n − ymin

n ) (2.9)

Although HPWL is a very good estimation of the routed wirelength, it can not

be used explicitly in the cost function, because it is not quadratic and cannot be

represented in the matrix-vector notation form of 2.2, which leads to the inability of

following the previous matematical analytical minimization techniques.

The most straightforward net model, which agrees with the quadratic mathe-

matical formulation, is called point to point (P2P). This is derived directly based on

the connectivity information of the net. Figure 2.9 shows a net with three edges

(dotted lines) included in the En set. The euclidean distances which are calculated

in the cost function are represented as solid arrowed lines.
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Figure 2.9: P2P net model

The extension of P2P, is the clique net model which includes all the possible

edges of a net to create the En set. Both P2P and clique net models work well

with quadratic placers because they create symmetric positive definite linear system

equations which aid the solving efficiency of the global placer solvers. The advantage

of the clique net model is the fact that it creates more dense matrices than the P2P

model due to the increased number of edges and facilitates more on the minimization

of the cost function. Figure 2.10 shows the clique net model. Red lines are the clique

edges. These edges do not exist in the design netlist and they are simply an invention

to keep the cells of a net, closer together. If the clique model is used the cost function

2.1 takes the form of:

Γ(x, y) =
1

2

|n|∑
p=1

|n|∑
q=p+1

c(p, q)
(
(xp − xq)2 + (yp − yq)2

)

Figure 2.10: Clique net model represented with component dimensions

Because the clique net model creates complete graphs with far more edges than

necessary to connect the net, it creates dense matrices. The latter, hinders the
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solving efficiency of the matrix solvers. A model that works well with large nets

(|n| > 5) is the star net model shown in fig 2.11. In this, an extra pin called star

is created, located at the center of mass of the net. Then every pin of the net is

connected to the star pin. In the cost function calculation, only the star edges (red

lines) are included. Star pins are useful because they entail only a linear number of

graph edges.

Figure 2.11: Star net model

Some placers combine different net models together in the so called hybrid mod-

els. For example the clique net model works well for small nets and star net model

for bigger nets. By using both of them, maximum efficiency is achieved. Also clique

and star net models can become equivalent if proper connection costs are defined.

For example if cij is scaled with 1/|n|, where |n| is the cardinality of the net, then the

clique net model is equivalent to the star net model [4].

Other more complex net models also exist, for special nets with high fanout like

a clock tree. A minimum spanning tree (MST) net model, calculates a minimum

tree length, which connects all pins of a net. A steiner tree (ST) net model, works

similar to MST but it also makes use of arbitrary points used to branch off other

tree segments and reduce the length even more. These models optimize for better

routability for some difficult nets but are rarely used because of the scarcity of their

occurrence.

2.4 Timing

Satisfying geometric requirements such as non-overlapping cells and routability,

is not enough to produce a working integrated circuit. Meeting timing constraints

is essential and the optimization process to achieve that is called timing closure.

Timing closure uses specific methods like transistor resizing and buffering that alters

the physical synthesis of the chip. However in modern EDA tools timing closure is

integrated in every aspect of the design flow like Timing-Driven Placement which is

the main topic of this thesis. Since now days wire delay is the main contributor

to circuit delay, placement has a huge impact on wire length, routability and thus

timing closure.
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2.4.1 Propagation Delay

Ideally a logic gate responds immediately to a change at its input. However in the

real world that’s of course not the case due to the various parasitic capacitances seen

at the output of the gate. The operational speed of a digital system is determined by

the propagation delay of the logic gates used for its construction. The inverter is the

fundamental logic gate of any integrated circuit and for that, its propagation delay

is crucial for determining the speed of a given technology.

The Complementary Metal Oxide Semiconductor (CMOS) inverter consists of a

PMOS and NMOS transistors which act as voltage controlled switches which con-

nect the output to either VDD or GND. Figure 2.12 depicts a CMOS inverter with

a parasitic capacitance Cload, seen at the output pin. This capacitance consists of

the output parasitic capacitance of the inverter itself, the interconnect capacitance

of the net the output pin defines and the input capacitance of the gates it connects

to. The speed of the inverter is determined by how fast the capacitor is charged to

VDD or discharged to GND [5].

Figure 2.12: CMOS inverter structure

Propagation delay is normally measured as the time it takes for the output pulse

to pass through the half-point of its excursion. Because the input pulse is not ideal

itself, the measurement is made as the difference between the 50% point of the input

pulse and the 50% point of the output pulse. There is also a distinction between two

different propagation delays, the fall delay and the rise delay, corresponding to the

output pulse. Propagation delay definition is illustrated figure 2.13.
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Figure 2.13: Propagation delay definition

2.4.2 Synchronous Digital Circuit

A synchronous integrated circuit is structured based on two distinct entities.

The sequential logic and the combinational logic. The former consists of storage

elements which store the bit information and change state based on the clock cycles.

For example flip flops change state at every positive edge of the clock.

At every clock period, bits move from one storage element to other through

the combinational logic. These two entities combined implement the working syn-

chronous principle of the integrated circuit.

The two points of interest are the output of a launching memory element and the

input of capture memory element separated by the combinational logic. In a circuit

combinational logic is what induces the propagation delay on a signal. Figure 2.14

depicts what’s described so far. A flip flop launches data at the positive edge of the

clock and at the next clock edge the other flip flop captures the data.

Figure 2.14: Synchronous digital circuit
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2.4.3 Timing Constraints

To make sure data is launched and captured properly in a synchronous digital

circuit, certain timing constraints must be met. These are:

• Setup constraint: Specifies the amount of time a data input should be stable

before the clock edge of a storage element (flip flop or latch).

• Hold-time constraint: Specifies the amount of time a data input signal should

stay stable after the clock edge at a storage element (flip flop or latch).

In Fig. 2.15 a representation of these constraints can be seen. With tsu and thd we

represent the setup and hold constraints respectively, C is the clock and D is the

input data into the storage element.

Figure 2.15: Setup and hold violations

Setup constraints ensure data launched from a launch flip flop at the the pre-

vious clock cycle, arrives early enough to be captured by a capture flip flop at the

current clock cycle. Because the signal needs to arrive fast, setup constraints are

checked on the longest paths of the design i.e. paths with biggest delay.

Hold constraints ensure that data launched by the current clock cycle arrive

late enough so they do not overwrite the data at the same current clock cycle of the

capture flip flop i.e. the capture flip flop has enough time to propagate the value of

the previous clock cycle. Because the signal needs to arrive late, hold constraints

are checked on the shortest paths of the design i.e. paths with smallest delay.

2.4.4 Timing Closure

The process of satisfying the above timing constraints is called timing closure.

This is accomplished through layout optimizations and netlist modifications. These

can be: [1]

• Transistor Resizing: Altering the width to length ratio of transistors to increase

the drive strength of gates or decrease their delay and meet setup constraints

• Buffer insertion: Inserts buffers into nets to increase their delay and meet hold

constraints

• Critical path restructure: Restructures the circuit along its critical paths (e.g

decrease the depth of a tree to reduce delay).
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To check if setup constraints are met, requires the estimation of the time it

takes for a signal to propagate from one storage element to the next. This depends

upon gate delays and wire delays. In older technologies where gate delays where the

dominating factor, the number of gates on a timing path provided a good estimate.

However in today’s technologies that is totally inaccurate due to the high importance

of wire delays. This adds up to the complexity of the delay calculation. This delay

estimation is based on static timing analysis (STA).

Two very important metrics in timing closure are the Required Arrival Time

(RAT) and the Actual Arrival Time (AAT). The former is the time by which the latest

transition at a given point must occur in order for the circuit to operate correctly

within a given clock cycle. The latter is the actual time the signal arrives. Based

on these two, a new key metric is derived called slack = RAT - AAT. A positive slack

means that a signal arrives before its required and so timing is met. On the other

hand a negative slack means that a signal arrives late, after its required time and so

timing is violated.Figure 2.16 illustrates the slack definition for a setup constraint

which is met.

In hold checks, a positive slack means the exact inverse which means that the

signal arrives later than required. From now on, we are exclusively going to discuss

setup constraints.

Figure 2.16: An example with the slack definition.

2.4.5 Static Timing Analysis

Estimation of these values is based on an efficient, linear-time verification pro-

cess called Static Timing Analysis (STA). STA is used to propagate actual arrival

times (AATs) and required arrival times (RATs) through every gate of a path to cal-

culate their slack. It identifies timing violations, and diagnoses them by tracing out

critical paths that are responsible for these timing failures. Because it’s computa-

tionally impossible to identify which paths are sensitized (cause a transition) or not,

STA only picks the longest paths (i.e paths with longest delay) so it is pessimistic in

nature. That is also the reason which is called static, because it does not depend on

the current input. The extent to which a design satisfies timing constraints is given

by two very important timing metrics. The first is the Worst Negative Slack (WNS)

metric which as the name implies is the slack with the most negative value in the

design. The second metric is called Total Negative Slack (TNS) and is the summation

of every slack with a negative value.

25



As aforementioned in the previous chapter, any combinational circuit can be

represented as an undirected hyper-graph G = (V,N), where setV = {v1, v2, . . . , vn}

are the vertices i.e. the circuit components of the design and set N = {n1, n2, . . . , nn}

are hyper-edges i.e. nets that connect them. The primary inputs to the circuit are

treated as the outputs of of dummy components in V. Let n(v) denote the output

net of component v.

A mapping is defined as:

π(v, n) =


−1 if n is an input to v
1 if n is an output to v
0 otherwise (n not connected to V )

Fan in of component v ∈ V is:

π−(v) =
{
v′

∣∣∣π(v, n(v′)) = −1

}
Fan out of component v ∈ V is:

π+(v) =
{
v′

∣∣∣π(v′, n(v)) = −1

}
Actual Arrival Time (AAT) t each input of component v is calculated as:

tAAT (v) = max
z∈π−(v)

tAAT (z) + d(v) (2.10)

Required Arrival Time (RAT) at each output of component v is calculated as:

tRAT (v) = min
z∈π+(v)

tRAT (z) − d(z) (2.11)

Finally slack is defined as:

s(v) = tRAT (v) − tAAT (v)

In STA the hyper-graph G = (V,N) is transformed into a directed acyclic graph

(DAG) G = (V,E) where every net n ∈ N is represented by edges

e ∈ E
∣∣∣ ni = {e1, e2, . . . , en}. Every edge represents an electrical connection between

the output driver gatepin of a component, and the input pins it connects to. The

latter also defines the direction of the graph.

Each component v, is associated with a delay d(v), which represents the time

required for a change in signal at one of its inputs to result in a change at the inputs

to components in π+(v).

This delay consists of two parts. The first is the delay due to the parasitics of

the component v it self, called base delay d0(v), the second is the delay due to the

interconnection between v and π+(v), symbolized as δ(v), i.e. d(v) = d0(v)+δ(v).

Figure 2.17 illustrates a circuit with three inputs a, b, c, four combinational

logic gates x, y, z, w and one output f. Numbers inside the brackets represent

the interconnection delays δ(v) and numbers inside the parentheses the base delays
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d0(v). The inputs are annotated with times in the form: input_name < value > which

represent the signal transition times relative to the start of the clock cycle.

Figure 2.17: Circuit STA example

Figure 2.18 corresponds to the directed acyclic graph, which has one node for

each logic gate, as well as one note for each input and output. As mentioned before,

inputs can be thought as outputs of dummy cells and nodes a, b, c represent just

that. Also for convenience, another dummy cell is introduced, which represents a

source node.

At first, a forward traversal of the graph is made to propagate the Actual Arrival

Time (AAT) values to each node, based on equation 2.10. At each node v we check

the fan-in and pick the AAT with the maximum value. Then we add this value to the

delay d(v), i.e. the interconnection delay plus the base delay of the node.

Next, we do a backward traversal of the graph to propagate the Required Arrival

Time (RAT) values to each node, based on equation 2.11. At each node v we check

the fan-out and pick the RAT with the minimum value. Then we subtract the delay

d(v) from it.
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Figure 2.18: Circuit STA example

After the AAT and RAT times are calculated, we proceed to the calculation of

the slack at each node which is simply the substraction between the two values.

With green we represent slack that meet the timing requirements and with red, the

opposite. Red edges illustrate the critical path, i.e. the path which produces the

negative slack value at the output f.

Figure 2.19: Circuit STA example
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Chapter 3

Existing Work

3.1 Introduction

In the last decades the area of Timing-Driven Placement has been studied exten-

sively and a variety of methods and techniques exist in the literature. These can be

distinguished into two main categories, the net-based and path-based. The former

approach handles nets by giving higher priority to critical ones, either by the form

of net-weights or net-constrains and formulates the problem as the minimization

of the total weighted wirelength to give direction to the placer for shortening criti-

cal nets. The latter handles all or a subset of paths directly and attempts to meet

their timing requirements simultaneously. The majority of the path based methods,

formulate this problem using mathematical optimization like linear programming.

Both of these approaches have their pros and cons. Net-approaches have low com-

putational complexity and run time, high flexibility, are easier to implement and

they have good scalability to large designs. However due to the fact that they deal

with the timing problem indirectly, there is an ambiguity regarding the selection of

the weights. Their impact is often unpredictable and varies from design to design.

That leads to the need of extensive parameter tuning to adapt on specific design

styles. Good weight generation is difficult and a bad one can lead to overconstrained

designs with a lot of increase to their total wirelength. Path based approaches cope

with the timing problem explicitly so they are more accurate but they suffer from

the very high complexity of modeling timing in an exponential growing number of

paths and thus scale really bad as designs get larger. Another possibility is the use

of a hybrid approach which combines both of these methods and shows promising

results. [6]

3.2 Net Based Approaches

Most placement algorithms converge to a proper placement solution by minimiz-

ing the total wirelength for all the different nets of the design. Net based approaches

add the modification of assigning weights or constraints to nets. We first start by

describing the net weighting techniques.
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3.2.1 Net Weighting Techniques

Net weighting techniques, assigns weights to nets, considering their criticality.

The more critical a net is, the higher its weight. Criticality for a net can be determined

from a number of factors e.g. the slack value. Then the placement objective changes

to the minimization of the weighted total wirelength for the purpose of directing

the placement engine to keep critical connections shorter. The advantage of net

weighting is that it can be easily integrated into almost all placement algorithms.

For example quadratic placement, optimizes the weighted quadratic wirelength and

partitioning based placement, optimizes the weighted cutsize.

There are two main methods of net weighting techniques, the empirical net

weighting and the sensitivity net weighting. The former computes weights based

on certain criticality factors, such as slack, cycle time and fanout. The latter com-

putes weights based on a type of analysis which tries to estimate the impact of net

weights on some key design factors such as WNS and TNS. In other words it esti-

mates how sensitive they are to the weights change. Sensitivity based approach is

considered more accurate because it includes a form of look-ahead mechanism that

leads to better weight generation and tries to counteract the unpredictability of the

net weighting process. However that comes to the expense of being more complex

and computationally demanding.

All of these methods can be applied statically or dynamically. Static net-weighting

calculates weights once, based on timing information that is available pre-placement

and does not update the weights during the placement iterations. Dynamic net-

weighting obtain new timing information after a number of placement iterations

and weights are adjusted accordingly. It is of course more accurate than static

net-weighting, but it needs to be handled more carefully due to some issues like

component oscillation. It also adds up significant run time due to the algorithms

run to derive the timing information. The most common algorithm to run is Static

Timing Analysis (STA) although other methods have also been developed to mitigate

the run time penalty.

Empirical Net Weighting

Empirical net weighting generates weights based on the criticality of a net. Crit-

icality is more often measured by slack but other metrics can also be used. After the

metric is defined, then a mathematical relationship between it and the weight must

be established. This takes the form of a function with the metric as its input and

the generated weight as its output. The function maps every value inside the metric

domain into a weight. If we chose slack as the metric, the most straightforward

approach is to define a linear function in the form of:

W (slack) = a ∗ slack + b

where a, b constants which are parametrized based on design information. Constant

a must be negative so that the slope of W gives higher weights as slack becomes

more negative. Fig. 3.1 shows the graph of that function.

Another option is to define a segmented function that gives even more priority to
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critical nets in the following way:

W (slack) =
{

w1(slack) slack ≤ 0

w2(slack) slack ≥ 0

The w1, w2 are linear functions with different gradients separated by the zero point.

Zero is what distinguishes between critical (upper segment) and non-critical (lower

segment) nets, where w1 > w2 at all times. Fig. 3.2 represents the W function.

Figure 3.1: Linear mapping Figure 3.2: Segmented mapping

Two other metrics that can be used are the net path depth and net driver

strength. Net path depth is defined as the longest path that can be discovered

starting from the beginning of that net. A design with more depth and thus lots of

stages is more likely to have more delay and more wirelength. Also a net with a weak

driver will have a longer delay as it would take more time to charge the various par-

asitic capacitances. By combining these two, weight is proportional to the longest

path depth and inversely proportional to driver strength of a net (proportional to

driver resistance):

W ≈ Dl × Rd

Another approach found in the literature derives a metric called path sharing.

Inherently, a net which is present on many critical paths should be assigned a

higher weight because reducing the length of such a net can reduce the delay on

many critical paths. In [7] an algorithm is developed called Path Counting Based

Weighting Algorithm (PATH) which calculates the total number of critical paths that

pass a net (path_sharing). Then a weight is extracted as:

W ≈ slack × path_sharing

Following is a method [8] that extracts weights without using placement infor-

mation i.e pre-placement. Before placement, the locations of modules are unknown.

The only available information includes a cell library and the design’s netlist. Then

weights are extracted in the following way:

W ≈
fanout

netdelaybound
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Fanout can be a good estimation of wirelength and delay. Delay bound is a metric

that estimates the allowable wire delay, any delay above this bound will result in a

negative slack. It is computed by and algorithm called IMP which utilises the timing

requirements of the circuit and the switching delays of cells [9]. Pre-placement

weight extraction has the advantage of having negligible increase of runtime because

of the lack of dynamic methods to obtain timing information during the placement

iteration steps.

Sensitivity Net Weighting

Although net-weighting might improve timing on critical paths, it can have neg-

ative impact on the total wirelength of the design. An aggressive high weight assign-

ment reduces the connections between critical components by moving them closer

together but at the same time increases other connections which are common to

these components. Net-weighting timing driven placers have a trade-off between an

improvement in timing, and an increase in total wirelength with small exceptions in

some specific designs.

Sensitivity based weighting seeks to find those connections that if they get short-

ened, will have the maximum impact on timing. On the other hand connections that

don’t improve timing significantly, get smaller weights to minimize the penalty of the

increased wirelength. Specifically it tries to solve the following problem: If we in-

crease the weight of a net i by a certain amount, how much improvement net i will get

fot its worst negative slack (WNS) and its total negative slack (TNS)? In other words,

how sensitive WNS and TNS are to the net weight change? After answering the above

question the weight of a net can be determined by the following formula: [10]

W (i) =
{

Winit(i) Slk(i) ≥ Slkt

Winit(i) + ∆W ∗(i) Slk(i) ≤ Slkt
(3.1)

where

Winit(i): The initial weight of net i

∆W ∗(i) = α[Slkt − Slk(i)]SSlk
W (i) + �STNS

W (i)

and

• SSlk
W (i) : Sensitivity of slack to weight, thus how sensitive the slack is to the

weight change.

• STNS
W (i) : Sensitivity of TNS to weight, thus how sensitive the TNS is to the

weight change.

• α, � are constants that define the weight upper and lower bound values and

control the balance between WNS and TNS reduction.

For non-critical nets the weight remains the same. For critical nets the weight

increase depends on how much that weight is able to reduce the WNS and TNS

metrics. If the sensitivity is low then there is no need to increase the weight too

much, because it will have negative impact by increasing the overall wirelength. On

the other hand if the sensitivity is high, then larger weight values can be utilized to

have the maximum impact possible on the negative slack reduction.
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From a bottom up perspective to estimate SSlk
W (i) and STNS

W (i) first we need to

estimate the impact of weight change to wirelength, i.e SL
W (i), then the impact of

wirelength on delay, i.e ST
L (i) and finally obtain:

SSlk
W (i) = −ST

L (i)SL
W (i) (3.2)

and

STNS
W (i) = −K(i)SSlk

W (i) (3.3)

where K(i) = ∆TNS
∆T (i) , which means how sensitive total negative slack (TNS) is to a

change, if the delay of a net i changes. This is proven to be equal to the negative of

the number of critical timing endpoints whose slacks are influenced by net i. It can

be computed by a specific algorithm which is omitted as its explanation is beyond

the scope of this thesis.

The estimation of the weight to wirelength sensitivity for a net i is defined as

follows:

SL
W (i) =

∆L(i)
∆W (i)

= −L(i) ·
Wsrc(i) +Wsink(i) − 2W (i)

Wsrc(i)Wsink(i)
(3.4)

where

• L(i) is the current wirelength of net i

• W(i) is the current weight of net i

• Wsrc(i) is the summation of all the net weights that intersect with the driver

(source) of the net

• Wsink(i) is the summation of all the net weights that intersect with the receiver

(sink) of the net.

All these are defined for the sample circuit shown in Fig. 3.3 which shows a net

defined between two components i, j, nets defined between the driver i and other

components and nets defined between the receiver j and other components. For the

sake of simplicity net (i, j) is denoted as net i.

Figure 3.3: Sample circuit for wirelength to net weight sensitivity.

Equation 3.4 implies that if the weight of a net changes by a certain amount, then

the impact it has on the wirelength of the net, is relative to the current wirelength
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of the net L(i). If a net has big wirelength it is more sensitive to the weight change.

On the other hand if a net has small wirelength then weight won’t affect it much.

Furthermore if the current weight of a net W(i) is big, then increasing it more won’t

have much impact. Inversely a net with small weight, is expected to have big impact

on the wirelength if it is increased.

Next the definition of the wirelength to delay sensitivity is given as:

ST
L (i) =

∆T (i)
∆L(i)

= rcL(i) + cRd + rCl (3.5)

where

• r and c are the unit length wire resistance and capacitance, respectively

• Rd is the output resistance of the net driver (i)

• Cl is the output capacitance of the net receiver (j)

Equation 3.5 implies that for a given technology (fixed r and c), the longer the

net, the weaker the driver (larger Rd) and the larger the load seen by the net is, then

the more the delay increases for a certain amount of wirelength change.

With equations 3.4 and 3.5 defined, then SSlk
W (i) and STNS

W (i) can be easily calcu-

lated from the equations 3.2, 3.3.

Incremental Net Weighting

Dynamic net-weighting although more accurate than the static one, it might

cause convergence issues if it is not handled carefully. The following scenario can

occur: Critical nets are assigned high weights. In the next placement iteration

these nets reduce their length but simultaneously non-critical nets increase theirs.

Timing analysis runs again and the non-critical nets can now become critical due

to the length increase. This situation where a net alternates between being critical

and non-critical can remain and cause oscillations. To mitigate this issue and make

timing-driven placement more stable an approach called incremental net weighting

can be used.

Incremental net weighting keeps a history database for every net of the design

containing information which tells if a net was critical or not in previous placement

iterations. If a net was critical before there is a high change that it will become

critical again if its weight is reduced. So to avoid this scenario, this method reduces

the weights of non-critical nets with a critical history more smoothly.

Below a method [11] is shown of calculating a weight of a net i, on placement

iteration k, by keeping a two iteration history of a metric called criticality, ck
i :

wk
i =


wk−1

i +W if ck
i = 1

1 if ck
i = 0 ∧ ck−1

i = 0 ∧ ck−2

i = 0

⌈wk−1

i /2⌉ if ck
i = 0 ∧ ck−1

i = 0 ∧ ck−2

i = 1

wk−1

i if ck
i = 0 ∧ ck−1

i = 1

(3.6)

Criticality is either 1 or 0 to define if the net is critical or non-critical respectively.

In this method, if a net is critical in the current iteration, then its weight is increased
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by a factor W. If a net is non-critical in the current iteration and was also non-critical

in the two previous iterations then weight is assigned the neutral value of 1. If a net

is non-critical in the current iteration, but it was critical two iterations before, then

weight is divided by two. If a net is non-critical in this iteration but it was critical

just on the previous iteration, then the weight stays the same.

3.2.2 Net Constraint Techniques

Zero Slack Algorithm

As already mentioned, net weights suffer from the ambiguity regarding their

selection due to the fact that they do not have an immediate connection with the

timing space. Net constraint methods on the other hand, are more natural choice,

because there is a direct and computable correspondence between a net length and

the delay of that net.

Another problem which appears frequently in net-weighting methods is that, in

attempting to minimize the length of all nets along a critical path, the problem is often

overconstrained to the point where nets which were not critical become excessively

long. This can be avoided by using net constraint methods.

Net constraint techniques relay on timing information to extract the constraints.

The most commonly used timing information, is the delay bound which corresponds

to the maximum allowable delay a net can have until it violates its setup require-

ments. A popular method for calculating delay bounds on each net, is the Zero Slack

Algorithm (ZSA) [12] and this section starts with its description.

The Zero Slack Algorithm , generates upper bound delays on each net of a

combinational circuit having specified timing requirements at its input and output

terminals.

Each component x, is associated with a delay d(x), which represents the time

required for a change in signal at one of its inputs to result in a change at the inputs

to components in π+(x).

This delay consists of two parts. The first is the delay due to the parasitics of

the component x it self, called base delay d0(x), the second is the delay due to the

interconnection between x and π+(x), symbolized as δ(x). The difference,

δ(x) = d(x) − d0(x)

is the contribution to delay due to the net e(x).

The Zero Slack Algorithm seeks to decrease positive slacks of all nodes to zero

by determining a proper set ∆(X) = {δ(x1), δ(x2), . . . , δ(xn)}. The former is called

the timing budget set and represents the maximum allowable net delays before the

slack of the circuit turns to negative. These timing budgets can then be transformed

into wirelength budgets (constraints) and drive the placement algorithms appropri-

ately.

Algorithm 1 presents the pseudocode implementation of ZSA. The algorithm can

be divided into three major steps repeating until the slack of the output components

is equal to zero.
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1. The initial slacks of all the circuit’s components represented by graph G, are

determined. This can be accomplished with Static Timing Analysis. Also in

that same step, the minimum positive slack smin of the graph is calculated.

2. A path is determined that starts from the component with the minimum slack

xmin. This path includes all the components that both their RAT and their

AAT is calculated based on xmin by exploring the predecessor and successor

directions. This means that all the components of path, will have the same

slack equal to smin.

3. Delay bound is increased uniformly to every component of the path and it

is proven that each of their slack gets equal to zero. Uniform distribution is

important to avoid situations where the delay bound is lumped with only one

component leaving the other components of the path unconstrained. The goal

is to constrain as much nets as possible to aid the efficiency of the global

placement algorithms.

After the completion of the above steps, slacks are recalculated with Static Timing

Analysis and the procedure repeats.

In figure 3.5 an example demonstrates how the algorithm works. Every com-

ponent is represented as shown in figure 3.5. At the circuit shown, output G2 is

critical in a sense that no delay bound can be specified without producing a negative

slack. Output G1 has a positive slack = 4, and delay bounds can be specified to

drop it to zero. First the component with the minimum positive slack of the design

is specified. That is component 3. Then path is specified which includes all the

components with that same slack, by traversing in both the predecessor and suc-

cessor directions. After that, component 5 is found and path = {3, 5}. Then slack is

distributed between components 3, 5 as, s = smin/|path | = 2/2 = 1 and delay bounds

are δ(3) = δ(4) = 0 + s = 1. Then timing information is updated again, by running

STA and the algorithm keeps iterating until slack of output G1 is equal to zero. The

output result of the algorithm is ∆(X) = {2, 0, 1, 0, 1, 0, 2, 0}.

Figure 3.4: ZSA metrics representation

The key takeaways of the above procedure are:

• Delays are distributed along components that have the minimum slack value

(members of path).

• The sum of incremental delays introduced on these components is exactly

equal to that minimum slack.

• The slack on each of these components is exactly equal to zero.

• The circuit remains safe at the end of each iteration i.e. no negative slack is

produces at the output gatepins.
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Figure 3.5: ZSA first iteration

Figure 3.6: ZSA second iteration

Figure 3.7: ZSA third iteration

Figure 3.8: ZSA finalized result
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Algorithm 1: Zero Slack Algorithm

input : G = (X,N)
output: ∆(X) = {δ(x1), δ(x2), . . . , δ(xn)}

1 repeat

// Compute slacks using STA
2 (AAT, RAT, slack) = STA(G);

// Compute minimum positive slack
3 smin = ∞ ;

4 foreach xi ∈ X do

5 if s[xi] < smin and s[xi] > 0 then

6 smin = s[xi];
7 xmin = xi

8 end

9 if smin , ∞ then

// Find forward path segment
10 u = min;

11 path[u] = xu;

12 while x ∈ π+(xu)
∣∣∣ tRAT (x) = tRAT (xu) + d(x) and

tAAT (x) = tAAT (xu) + d(x) do

13 u + + // go forward;

14 path[u] = x;

15 end

// Find backward path segment
16 u = min;

17 path[u] = xu;

18 while x ∈ π−(xu)
∣∣∣ tRAT (x) = tRAT (xu) − d(u) and

tAAT (x) = tAAT (xu) − d(u) do

19 u − − // go backward;

20 path[u] = x;

21 end

// Distribute slacks
22 s = smin/|path |;
23 for i = u to |path | do

24 δ(i) = δ(i) + s // increase net delay;

25 end

26 end

27 end

28 until slackmin , ∞;
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Physical Net Constraints on Timing Driven Force Directed Placement

Here we present a method [13] which sets half perimeter wirelength constraints

on critical nets. It builds on the work of the Kraftwerk [2] force directed algorithm.

It adds a new net model which changes the contribution of constrained nets in the

quadratic cost function at each placement iteration.

Figure 3.9 depicts how this process works. When a net surpasses the constraint

value c a weight is generated corresponding to that net. This weight can be dis-

tributed to all the edges of a net or more sophisticated methods can be used [13].

The weight increases linearly with the increase of the HPWL until it reaches an upper

bound value. This value is used to avoid over-constraining the design. Very critical

nets won’t necessarily improve with further increasing the weights and new critical

nets might appear.

Figure 3.9: Additional net weight w derived based on the amount of the HPWL of the

net exceeding the net constraint c

When a weight is assigned to a net, it is maintained even if the net is no longer

violating the constraint. This means that weight can only increase through subse-

quent placement iterations. This is done to avoid the scenario where this net, due

to the relaxed net-force, becomes a violator again.

Net constraints are only specified for critical nets, and these nets are identified

based on heuristic methods and considering criticality factors such as slack and

driver strength as discussed in the previous chapter.

Constraints can be generated using the delay bounds extracted from the ZSA

algorithm or different timing metrics, or they can be totally heuristic.
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3.3 Path Based Approaches

Path based approaches refer to the algorithms which directly model the timing

constraints during placement. Their advantage is the fact that they handle the tim-

ing problem directly because they are not based on heuristics such as net weights.

Their disadvantage is the very large number of paths which makes the their timing

modeling unfeasible. For this reason most of the timing driven work in the litera-

ture is net based. Here we give the general problem formulation of the path based

approaches.

A technique solves the high number of paths problem by formulating it into a

Linear Programming (LP) optimization problem [14]. It embeds a timing graph into

the Timing Driven Placement formulation, based on a simplified version of Static

Timing Analysis. The flow begins with a given placement and iteratively extracts

timing-critical sub-circuits and creates objective functions to optimize. These can

be the HPWL minimization of critical nets or the maximization of the TNS (or WNS)

value. This approach however is notorious for producing a lot of overlap and needs

good handling by a legalizer.

The general form of the objective function is the following:

maximize/minimize f (X) (3.7a)

subject to AX ≤ D (3.7b)

X is a set of variables including cell coordinates and auxiliary variables.

f (X) can be any of the aforementioned cost functions.

AX ≤ D is any physical or electrical constraints such as HPWL constraints, delay

constraints, slack constraints, etc.

An example of an objective function derived by [14] is:

maximize TNS (3.8a)

subject to HPWL ≤ HPWLlimit (3.8b)

which gives good timing results without suffering from excessive wirelength in-

crease.
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Chapter 4

Timing Driven Placement

In this chapter we describe the implementation of our net weight assignment

method. We first start by describing the general details of our Global Placer, which

is based on a very popular force-directed algorithm called Kraftwerk2 [15]. This part

describes, the different forces that act on components in detail and it’s essential for

understanding our timing driven implementation.

Next we describe our net weight assignment process by presenting the general

notion behind it, the different mapping functions used, the way they translate timing

information into weights and the way weights are distributed into the circuit.

Finally we present how the above, is linked with the Kraftwerk2 algorithm. The

general overview of the Timing Driven Global Placement is shown in figure 4.1.

Weights act as an interface between the timing analysis and the core placement

algorithms. Also there is a feedback between the placement layout and the timing

analysis at every iteration, to update timing information.

Figure 4.1: Timing Driven GP overview

4.1 Kraftwerk2 Algorithm

Kraftwerk2 [15] is an analytic quadratic global placer which formulates the place-

ment problem with a set of forces that act on cells. The first force, is called net force

and corresponds to the spring force from Hooks Law. Its purpose is to minimize

the quadratic cost function, by keeping components close together. The magnitude

of this force is proportional to the distance between the components. The second

force, is called move force and its purpose is to remove overlap between components.

The magnitude of this force is proportional to the amount of overlap at each point

inside the core area. Both of these forces act simultaneously and iteratively, leading
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the global placement problem to a solution convergence at the event of a force equi-

librium. Additionally kraftwerk2 describes a new net model called "Bound2Bound"

which exactly represents the half-perimeter wirelength (HPWL) in the quadratic cost

function and achieves better performance than conventional net models.

4.1.1 Problem Formulation and Bound2Bound net model

In the case of quadratic placement, each net n ∈ N , is represented by a set of

two-pin edges e ∈ En, which connect the pins of the net. One edge is defined as

e = (p, q) and connects pins p and q. The netlength of the circuit Γ is expressed in

the following quadratic cost function:

Γ(x, y) =
1

2

∑
n∈N

∑
e∈En

cx,pq(xp − xq)2 + cy,pq(yp − yq)2
(4.1)

Net models simply specify the set En, i.e. which edges represent the net N . If

the clique net model is used, all possible two-pin connections of the net are utilized

and the cost function becomes:

Γ(x, y) =
1

2

∑
p=1

∑
q=p+1

cx,pq(xp − xq)2 + cy,pq(yp − yq)2
(4.2)

Connection costs cx , cy can be utilized to approximate different net models. For

example GordianL uses the following formula to adapt the clique model to the star

model:

cGordianL
x,pq =

1

P

2

P

4

|xp − xq| cGordianL
y,pq =

1

P

2

P

4

|yp − yq|

The first two factors adapt the clique model to the star model and the third factor

linearizes the quadratic distance between pins p and q.

In the clique net model, there is a high approximation error between the length

of the clique net and the HPWL. That is due to the existence of connections between

inner pins and their lengths, which contribute to the clique length but are ignored

in the HPWL metric.

Due to the above the Bound2Bound net model is developed which achieves the

following:

• Linearizes the cost function

• Has lower connections at each net than the clique net model, which leads to

more sparse matrices and better run times.

• Does not require extra pins like the star net model.

• Exactly represents the HPWL metric.

• Achieves better minimization of the given objective than the clique and hybrid

clique/star net models.
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The Bound2Bound net model works by removing all inner two-pin connections

and utilizing only connections to the boundary pins. Figure 4.2 shows a circuit with

a 5-pin net defined between an output yellow pin and four blue input pins.

Figure 4.2: Circuit defining a 5-pin net

Figure 4.3: Clique net model (a) and Bound2Bound net model (b)

Figure 4.3 (a) illustrates the clique edges for the x direction. Edges between

input pins (shown inside the gray area) are removed. By utilizing only connections

to the boundary pins the property of the HPWL netlength is emulated.

The connection weight of the Bound2Bound net model is given as follows:

cB2B
x =

{
0 p,q inner pins

2

P−1

1

|xp−xq |
else

(4.3)

It is mathematically proven that if 4.3 is used into the cost function 4.1, it exactly

represents the HPWL for each net.

Also the Bound2Bound net model, linearizes the cost function. Each connection

inside the cost function, is evaluated as:

cx,pq(xp − xq)2

If we apply the Bound2Bound net model we achieve,

cB2B
x · cx,pq(xp − xq)2 =

2

P − 1
cx,pq(xp − xq) (4.4)

This is very helpful because the minimization of the cost function can be han-

dled directly by solving the system of linear equations and it does not require the

calculation of the gradient as shown in the next section.
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4.1.2 Cost function minimization and net force

As seen in section 2.3 the quadratic cost function can be separated in the x and

y direction. If we focus on the x direction the cost function can be written in a matrix

to vector notation as:

Γx(x) =
1

2
xTLxx + bT

x x + const (4.5)

The Laplacian matrix Lx is a symmetric positive definite matrix which is equivalent to

the Γx cost function being convex. The minimum is obtained by setting the derivative

to zero, i.e.

∇Γx(x) = Lxx + bx = 0⃗ (4.6)

Solving the above system of linear equations with respect to x gives the x-positions

of the modules with minimal netlength.

Equation (4.6) is similar to the equation from Hooke’s Law:

F⃗ = k · x, Kraftwerk2 introduced the idea of resembling each two-pin connection as

an elastic spring that pulls components together. This is called the net-force and is

proportional to the length of the net. With that in mind, equation 4.6 can be written

as:

Fnet
x (x) = ∇Γx(x) = Lxx + bx (4.7)

which is a vector that stores the summation of net-forces that act on each compo-

nent.

Because the integral of the force is energy, this means that the cost function Γx

represents the energy of the spring system. The problem now can be expressed as

the determination of the x-positions that produce the minimum energy state of the

system.

4.1.3 Overlap confrontation and move force

If the net force solely acts on the modules, then these are pulled very close to

each other and produce a lot of overlap. To treat this issue, force-directed quadratic

placers utilize an additional force called move force, with the purpose of pushing

modules away from each other into overlap free areas.

To determine the move force, a demand and supply system D is structured,

which represents the module overlap and the chip area respectively.

D(x, y) = Ddem(x, y) − Dsup(x, y) (4.8)

Equation (4.8) derives a value which quantifies the overlap amount at point (x, y).
The greater this value is, the greater the magnitude of the move force exerted on

components that lie at point (x, y).

The demand of the system Ddem(x, y), is formulated by utilizing the formula of

the following function:

Rdem,i(x, y) =
{

1 if x, y ∈ Amod,i

0 else

This is a mapping which defines if a point (x, y) lies inside an area occupied by

module i or not. This area is specified as, Amod,i = wi · hi, where wi, hi is the width

and height of the module i respectively.
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Then the demand that module i contributes at point (x, y) is calculated as:

Dmod,i
dem (x, y) = dmod,i · Rdem,i(x, y) (4.9)

where dmod,i is the module density. Module density is normally one but it can be

increased or decreased to scale modules up or down respectively. This is helpful for

some tuning techniques that can be applied to the Kraftwerk2 algorithm such as

removing unwanted free space, around large modules.

Finally the total demand of the system Ddem(x, y), is simply the summation of

the demands corresponding to each module i:

Ddem(x, y) =
n∑
i

Dmod,i
dem (x, y) (4.10)

If dmod,i = 1 the value of Ddem,i at point (x, y) reflects the number of modules covering

this point i.e. how many modules overlap at this point.

The supply of the system Dsup(x, y) is formulated in a similar manner. First a

mapping is done which defines if a point lies inside the area of the chip Achip:

Rsup(x, y) =
{

1 if x, y ∈ Achip

0 else

Next the supply of the system Dsup is given as:

Dsup(x, y) = dsup · Rsup(x, y) (4.11)

where dsup is the supply density. If dsup = 1 then equation (4.11) is always 1 for every

point that lies inside the chip. This means that the value of the demand and supply

system D, eq: (4.8) at a point (x, y) is equal to −1 if free space exists, 0 if that point is

occupied by exactly one module and positive if that point is occupied by more than

one modules.

Unlike the module density dmod, the supply density is not one by default. In-

stead its value is calculated based on a formula which is derived by the following

analysis.

As a prerequisite, the supply and demand system has to be balanced, i.e. the

integral over the demand has to equal the integral over the supply. This is necessary

to adapt the demand completely to the supply:∫ ∞

−∞

∫ ∞

−∞

Dsup(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

Ddem(x, y) dx dy (4.12a)∫ ∞

−∞

∫ ∞

−∞

dsup · Rsup(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

n∑
i

dmod,iRdem,i(x, y) dx dy (4.12b)

dsup · Achip =

n∑
i

dmod,iAmod,i (4.12c)

dsup =
Amod,total

Achip
(4.12d)
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Equation (4.12c) denotes that the area of the chip multiplied by a constant must be

equal to the summation of the areas of each module of the chip i.e. the modules

have to exactly fit in the dsup · Achip space.

The demand and supply system value D(x, y) can be interpreted as a charge

distribution which creates an electrostatic potential Φ(x, y). This potential is derived

by solving the following Poisson’s equation:(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = −D(x, y) (4.13)

After determining Φ(x, y), then the electric field produced by the charge distri-

bution is specified as:

E(x, y) = ∇Φ(x, y)

From electromagnetic theory we know that electric force is the multiplication of the

charge with the electric field. As mentioned before, we can handle the x and y
directions separately. By working on the former the move force is specified as:

Fmove
x (x) = qcharge,x · E(x) (4.14)

To be in agreement with the net force Fnet, which denotes a force produced by

a spring connection, we have to represent (4.14) in the form of Hooke’s Law. To

achieve that, qcharge is interpreted as a spring constant
◦

wi and the electric field E, as

the distance between a target point
◦
xi and the position xi of module i.

Fmove
x (xi) =

◦
wi · (xi −

◦
xi) (4.15)

If x ′i denotes the module’s i position at the beginning of a placement iteration, then

the target point
◦
xi can be calculated from (4.15) in the following way:

◦
xi = x ′i − E(x ′i ) = x ′i −

∂

∂x
Φ(x, y)

∣∣∣∣∣∣
(x′i ,y′i )

(4.16)

After the target point is specified, equation (4.15) is used with xi being the indepen-

dent variable (also participating into the net-force equation (4.7)) which represents

the solution at the end of the iteration.

The spring constant
◦
wi affects the distance the module i moves at each placement

iteration. Target point
◦
x i is the upper bound the module i can reach if net-force didn’t

exist.

Move force is next represented in a matrix-vector notation by collecting the spring

constants in the diagonal matrix

◦

Cx = diag(
◦
wi) and the gradients of the potential in

the vector

Φx = [(∂/∂x)Φ(x, y)|(x′
1
,y′

1
), (∂/∂x)Φ(x, y)|(x′

2
,y′

2
), . . . , (∂/∂x)Φ(x, y)|(x′n ,y′n)]T

Target points are represented in the vector
◦
x = x′ − Φx . Therefore, the move force in

matrix to vector notation is

Fmove
x =

◦

Cx(x −
◦
x)
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4.1.4 Hold Force and the combined Force-Equilibrium Solution

The kraftwerk2 algorithm works in an iterative manner. Besides the move force,

the net force is also acting on the modules and minimizes the netlength. If net-force

is not compensated during the beginning of each placement iteration, the modules

would collapse back to a position of low netlength and high overlap. This creates

oscillations and convergence to a solution is impossible. For this purpose, another

force is used called hold force. Hold force is simply the inverse of the net force at the

beginning of each placement iteration

Fhold
x = −(Lxx′ + bx) (4.17)

Where x′ are the module positions at the beginning of each placement iteration. Hold

force ensures that components spread out evenly at each iteration and they do not

return back, to high overlap positions. It is also important to note that the hold force

only depends on the initial module position x′ and not on the positions during the

placement iteration x. Thus hold force, is constant for the duration of one placement

iteration.

In summary, the following three forces are used by Kraftwerk2, the net force Fnet
x ,

the move force Fmove
x and the hold force Fhold

x . Setting the sum of these three forces

to zero gives the core system of linear equations used in the algorithm’s iterative

placement process:

Fnet
x + Fmove

x + Fhold
x = 0⃗ (4.18a)

Lxx + dx +
◦

Cx(x −
◦
x) − (Lxx′ + dx) = 0⃗ (4.18b)

Lx(x − x′) +
◦

Cx(x − x′ + Φx) = 0⃗ (4.18c)

Lx∆x +
◦

Cx∆x +
◦

CxΦx = 0⃗ (4.18d)

(Lx +
◦

Cx)∆x = −
◦

CxΦx (4.18e)

The summation Lx +
◦

Cx is a symmetric, positive definite and highly sparse matrix.

The multiplication

◦

CxΦx produces a constant vector. This results in a system of

linear equations the solution of, derives the distance the modules move, ∆x. Then,

the new module positions are calculated as, x = x′ + ∆x.

Figure 4.4 illustrates the forces exerted on a component (represented by a point)

in the x-direction. At the beginning of the placement iteration the module starts

from an initial position x ′ where the net force is equal to the hold force. Due to

some overlap occurring at this position, a move force is generated that pushes the

component forward towards its target point
◦
x. As the module moves, the net force

increases until it neutralizes the impact of the move force and the component stops.

On the start of the next iteration the hold force increases to meet the new net force

to decouple from the previous step and the procedure continues as previously.
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Figure 4.4: Force Equilibrium solution of one placement iteration

Algorithm 2 represents the pseudocode of Kraftwerk2. At first, an initial place-

ment is computed by minimizing the quadratic cost function 4.1 over a few iterations.

This initial placement results in a minimal netlength and high overlap solution with

components concentrated mostly around the center. Then, in global placement, the

modules are spread iteratively over the chip, by utilising move force and hold force.

The global placement iterates, until the module overlap drops below a certain limit

e.g. 20%. Most of the runtime of Kraftwerk2 is spent on solving the Poisson equation

(4.13) and the system of linear equations (4.18d).
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Algorithm 2: Kraftwerk2

// Quadratric Placement
for i < Iinit do

// For x-direction:
Create: Lx , bx ;

Solve: Lxx + bx = 0⃗;

// For y-direction:
Create: Ly, by;

Solve: Lyy + by = 0⃗;

i + +;

end

// Global Placement
repeat

Create: D(x, y);
Solve:

( ∂2

∂x2 +
∂2

∂y2

)
Φ(x, y) = −D(x, y)// Determine potential Φ(x, y);

// determine module movement in x-direction

Create: Lx , bx ,
◦

Cx,Φx ;

Solve: Lx∆x +
◦

Cx∆x +
◦

CxΦx = 0⃗;

x = x′ + ∆x // update module x-positions;

// determine module movement in y-direction

Create: Ly, by,
◦

Cy,Φy ;

Solve: Ly∆y +
◦

Cy∆y +
◦

CyΦy = 0⃗;

y = y′ + ∆y // update module y-positions;

until Module Overlap ≤ 20%;

4.2 Mapping Idea

As aforementioned our method works by assigning weights to critical nets to

increase the net force these nets exert on components. The general mapping process

is summarized in figure 4.5.

First of all, weights are bounded by an upper and lower value. As the slack

worsens, the weight increases. Slacks below the average of the slack distribution

are considered critical and they receive weights > 1 to increase their net force. Slacks

above the average are considered non-critical and they receive weights < 1 to relax

their net force.

Experimental results showed that lower weights helped into reducing the WNS

and TNS metrics further. That is because relaxing the net force of non critical

components, helps into their separation from critical and thus they don’t contribute

to the overlap of the critical areas. This means that the move force exerted on critical

components is smaller and this helps into keeping them closer together. Also the

weight lower bound, ensures that no zero and negative values exist.
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It is also important to note, that the definition of criticality is based on the aver-

age slack reference and not on the zero point. Everything is a matter of prioritizing

those that are worse of the rest and not those that simply have a negative value. In a

hypothetical scenario in which the whole slack distribution happens to be positive,

in timing driven placement we don’t want to relax the net force with weights < 1

but to prioritize those that have worse slack than the others and aim for further

improvement.

Figure 4.5: Mapping Idea

Figure 4.6 illustrates the slack histogram of a design. The x-axis corresponds to

slack windows and the y-axis to the corresponding number of components. The blue

color and red color represent positive and negative slack values respectively. The

yellow color represents the slacks that belong close to the average value. Based on

what is discussed above, the yellow color separates the histogram into two segments,

one critical which receives weights > 1 and a non-critical which receives weights <

1.

Figure 4.6: Slack Histogram

A question not answered yet, is how the specific values of the weights are gener-

ated. As we’ve said earlier we want the weights to increase gradually as we move to

the left of the x-axis and slack values worsen. This simplest way to achieve that is

by using a linear function bounded by the weight lower bound and the weight value
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equal to one. This function is illustrated in figure 4.7 which maps the above slack

histogram into weights. Weight functions will be discussed in detail, in the following

section.

Figure 4.7: Sample Mapping Function

Here it is also the right time to discuss one main drawback of our net weighting

approach. Making some targeted nets shorter during placement may sacrifice the

wirelength of other nets that are connected through common cells. This tends to

increase the overall wirelength of the design and also non-critical nets might become

critical. Experimental results showed that the Half Perimeter Wirelength Increase

(HPWL) is relative to the aggressiveness of the weight function i.e. how big are the

weights it generates. There is a trade off between the increase in wirelength and

the WNS and TNS drop. However if the function is too aggressive, in some designs

both the wirelength and the timing metrics might worsen. This penalty must be

kept generally low because although timing might improve in the placement state,

subsequent states might suffer from wire congestion and routability issues leading

to worse results on the finalized chip state both in terms of timing and power.

4.3 Weight Functions

4.3.1 Linear Function

The linear weight function, is defined by specifying two points and drawing

the line between them. The first (blue color) is called the threshold point, and

corresponds to a weight = 1, generated for the average of the slack distribution

savg. The second point (yellow color) corresponds to the lower weight bound wmin,

generated for the maximum slack of the design smax . The third point corresponds

to the maximum weight generated by the function, wmax by the worst slack of the

design. This value, cannot be explicitly specified in this weight function and depends

on its slope.

The reason we don’t specify the slope of the function based on the wmax value

instead of the wmin, is because we need to ensure that the latter always has a positive

value.

We will now derive the formula of the linear function represented in figure 4.8.
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We first start by determining the slope which is the tangent of the line connecting

the two points:

α =
1 −wmin

savg − smax

Next, we know that any linear function can be specified by its slope and a point of

choice (xo, y0), that lies on the function as, y − y0 = a(x − x0). By using (savg, 1) as

the point of choice, we have:

W(s) − 1 = α(s − savg)

W(s) = 1 +
1 −wmin

savg − smax
(s − savg)

Which gives the final form of the linear function:

W(s) = 1 −
1 −wmin

smax − savg
(s − savg) (4.20)

Figure 4.8: Linear Weight Function

The problem of the linear function, is the inability to control the maximum weight

value wmax . The latter is very important because it controls the magnitude of the

net-force acting on the critical components. Experiments showed that the weights

generated by the linear function, proved to be small, due to the general low impact

on the TNS and WNS reduction. However the linear function was the best of the rest

in terms of the expense in wirelength.

4.3.2 Piece Wise Linear Function

The piecewise linear function (PWL) is constructed with the aim of being able to

specify the wmax value and achieving finer control over the weight assignment of the

critical nets. This function consists of two independent linear segments, joining at

the threshold point. The first segment, is exactly the linear function defined above

and the second segment, is a new linear function specified by the (smin, wmax) and

(savg, 1) points.
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The slope of the new linear segment is defined as:

α =
wmax − 1

smin − savg

And its formula is:

W(s) − 1 = α(s − savg)

W(s) = 1 +
wmax − 1

smin − savg
(s − savg)

W(s) = 1 −
wmax − 1

savg − smin
(s − savg)

In conclusion, the general formula of the segmented function is:

WPWL(s) =

 1 −
1−wmin

smax−savg
(s − savg) savg ≤ s ≤ smax

1 −
wmax−1

savg−smin
(s − savg) smin ≤ s < savg) (4.22)

Figure 4.9: Segmented Mapping Function

By specifying both the maximum and minimum weight values, the piecewise

linear function gives higher control over the net assignment process. The slope of the

left segment can now be increased independently and critical nets can be prioritized

more by generating higher weights. Experiments showed that this function results

in substantial reduction of the TNS and WNS metrics, way above the reduction of

the linear function.

4.3.3 Slow Piece Wise Exponential Function

As aformentioned, a common drawback of timing-driven placers, is the increase

they induce on the total wirelength of the design. This increase is relative to the

aggressiveness of the net weight assignment process. This means that using higher

wmax values, results in a greater expense of excess wirelength.
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The piecewise exponential function (PWE), attempts to mitigate this problem by

following a softer approach till it reaches the maximum weight wmax , value. This is

achieved by replacing the linear segment of the (PWL) function with an exponential

segment which is bounded by the (smin, wmax) and (savg, 1) points and stays always

below the linear segment. This is illustrated at figure 4.10.

The dashed line represents the corresponding left segment of the previous piece-

wise linear function and it is given for reference. For values less than the (smin, the

exponential segment surpasses the linear segment but of course these values do not

belong to the slack domain. However this observation is important because it is

exploited later for the further improvement of this function.

The formula of the (PWE) function, is specified as an exponential function mir-

rored by the y-axis and shifted savg units to the left:

W(s) = e−a(s−savg)
(4.23)

Parameter α ensures that the function gives the maximum weight for the worst slack

of the design, i.e. it satisfies the condition, W(smin) = wmax . Subtituting the value of

smin at function (4.23) and solving for α gives the following:

W(smin) = wmax

e−(α·wmin+savg) = wmax

−(α ·wmin + savg) = ln(wmax)
−α ·wmin = ln(wmax) − savg

α = −
ln(wmax)

wmin − savg

and the general formula of the piecewise exponential function is:

Wslow
PWE(s) =

 1 −
1−wmin

smax−savg
(s − savg) savg ≤ s ≤ smax

e−
ln(wmax )

wmin−savg
(s−savg) smin ≤ s < savg)

(4.25)
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Figure 4.10: Exponential Mapping Function

From experimental results the above approach showed a decrease in the total

wirelength expense relative to the piecewise linear counterpart, but the TNS and

WNS drop was substantially less. In general this net-weighting approach proved to

be less aggresive than required.

4.3.4 Fast Piece Wise Exponential Function

The best outcome is to achieve high WNS and TNS reduction and limit the

wirelength increase at the same time. The fast piece wise exponential function

attempts just that and it’s illustrated in figure 4.11. It is defined by separating the

left segment slack domain into two discrete zones. One critical zone which consists

of very critical components that follows an aggressive net weight assignment and one

non-critical zone which follows a more relaxed assignment and tries to recover from

the wirelength expense.

For better visualization, the linear and slow exponential function are also repre-

sented with the dashed and bold black lines respectively. As seen, the fast exponen-

tial function is above the linear in the critical zone and below in the non-critical.

This new exponential segment is calculated based on the two points seen with the

purple and blue color. The former separates the two zones and the latter separates

the two segments. The purple point is also where the linear and the exponential

function meet. In that way, the linear segment is used as a reference.

The critical zone is picked to be a percentage of the slack domain of the expo-

nential function. In this example it is chosen to be the 30% of the domain. It is

also important to note that upper bound weight w′max is not implicitly specified and

depends on the slope of the function. It is ensured however that w′max > wmax at all

times.

Algorithm 3 shows how the new exponential function is derived.
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Algorithm 3: Calculate fast PWE function

// Calculate the left segment domain
1 ∆s = smin − savg;

// Define critical zone as 30% of the domain
2 critical_zone = 0.3 · ∆s;

// Find the point (cx,cy) which seperates the critical and
non-critical zone

3 cx = smin − critical_zone;

4 cy =WPWL(cx);

// Use points (cx,cy) and (savg, 1) to define the fast PWE
function.

5 α =
ln(cy)

cx−threshold ;

6 Wfast
PWE(s) = e−a(s−savg)

;

Figure 4.11: Fast Piece Wise Exponential Function

56



4.4 Timing Driven Kraftwerk2

4.4.1 Weight Distribution

The weight function determines a weight based on the slack of the output gatepin

of a component. It then spreads this weight to the net defined by this gatepin. This

approach is more pessimistic in nature and tries to minimize nets as much as pos-

sible even if an edge of a net might not be critical. This method also works in

conjunction with the way the construction of the Laplacian matrix is made which is

the following, Each component is traversed and the components it connects to are

specified, based on its output gatepin. If a connection exists between a driver compo-

nent i and a sink component j, then both of the entries L(i, j) and L(j, i) are created.

In that way we can create the whole matrix by following the net definition.

However in a design, multiple output components exist. Following is an algo-

rithm that shows how to determine a weight, on multiple output components. This

is depicted in figure 4.12. A component with two output pins which defines two

different nets between the input pins {3,4} and {5,6,7}. First a weight is calculated

using the slack values of the output pins. Then the maximum value is determined

and it is spread in both of the nets. As shown the negative slack s2 produces a

higher weight w2 which is then spread to every edge of the two nets my multiplying

the connection costs which correspond to the entries of the Laplacian matrix.

Figure 4.12: Timing Weight Net Distribution

Another question that will probably arise is, why the maximum weight is spread

everywhere, even to non critical connections which will probably lead to excess

HPWL? This is done for two reasons. First, because the number of multiple out-

put components is very small and their effect can be considered negligible. Second,

for an ease of implementation because in our software, when we construct the Lapla-

cian matrix, we only check the connecting edges of the component i.e. with which

components we connect to. We do not check to which net an edge belongs to i.e.

from which input pin it originates from.

Finally a special case is clarified which is the occasion where some pins of a
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component might be unconstrained. Unconstrained means timing requirements are

unspecified and the slack is infinite. This can occur in two different scenarios:

• At least one constrained pin exists (Figure 4.13).

• Constrained pin does not exist (Figure 4.14).

In the first case we simply exclude the unconstrained pin/pins from the maximum

weight calculation. In the second case all the pins are excluded so a weight cannot

be calculated. We solve this problem by spreading a neutral weight equal to one

which leaves the connection cost values intact. That is due to the fact that uncon-

strained connections don’t need to be prioritized by the placer and increase their

net-force.

Figure 4.13: Constrained pin exists
Figure 4.14: Constrained pin

does not exist

Following is the algorithm that implements the above procedure written in a

function called get_component_weight() which returns the weight corresponding to

a specific component. Variable out_pin_num corresponds to the number of ouput

pins the component has and parameter constrained_flag specifies if the gatepin is

constrained or not. Using weight_function() we calculate a weight based on the

slack of the output gatepin. The weight_function() can be any of the aforementioned

mapping functions and it is user defined by a global parameter.
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Algorithm 4: get_component_weight()

Input: component index

Output: weight

max_weight = −inf ;

foreach output_gatepin ∈ component do

{

out_pin_num + +;

// Exclude unconstrained pins from max calculation
if constrained_flag == 1 then

{

continue;

}

// Calculate weight
weight = weight_function(slack);

if max_weight > weight then

{

max_weight = weight;
}

}

// If at least one constrained pin exists
if max_weight! = −inf then

{

return max_weight;
}

// All output pins are unconstrained
else

{

return 1;

}

4.4.2 General Algorithm

So far we’ve described how the weights are generated by the various functions

and how they are distributed in the network. In this chapter we describe how the

previous work, is linked with the core of the global placement algorithm. This is

illustrated in figure 4.15.

First, the quadratic placement runs as normally, in which the components are

concentrated at the center of the chip. At this stage, no weights are inserted. It

continues with the execution of the global placement algorithm.

Our work begins by running Static Timing Analysis (STA) to obtain the timing

information of the circuit. STA runs always at the first placement iteration and

the subsequent runs, are parameterized via specific variables. We specify both the

maximum number of STA to be run as well as the interval between two successive

runs. The next step, derives the essential parameters, used by the weight functions.

These are the minimum, maximum slack of the design and the average of the slack

distribution. In the final step, we calculate a weight for every component of the
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design and we distribute it on its every connection. This is done concurrently with

the creation of the matrices.

Figure 4.15: Timing Driven Global

Placement

An open and important question is, at

which stage we should begin our timing

analysis so the information we obtain is

meaningful. For example shall we start from

an unplaced netlist or some initial place-

ment? Information obtained at later place-

ment iterations, might be more accurate but

at the same time, the weights generated

won’t have the same impact. That is be-

cause in force directed placement, compo-

nents spread out at each iteration and they

don’t return back to old positions due to the

utilization of the hold force. This means

that connections between critical compo-

nents cannot shorten as time goes on, by

increasing their weights, but only to avoid

their further increase. For this reason it is

essential to generate weights from the first

placement iteration and avoid the sudden

spreading of critical components. A possi-

ble approach, would be to run a non-timing

driven placement to obtain a layout, run a

timing analysis and then use this timing in-

formation to start a timing driven placement.

However due to the very large run time, this

approach is not feasible.

In our case, we run Static Timing Analysis immediately after Quadratic Place-

ment. Experimental results showed that, this approach gave the best results in

terms of WNS and TNS reduction instead of initiating STA at a later early stage, e.g.

the 3rd or the 4th iteration. Also this approach manifests the advantage of referenc-

ing our slack to weight mapping based on the average of the slack distribution. In

the post quadratic placement stage, all the components are concentrated at the core

center and the only connections that contribute to the delay are those to the I/Os.

For this reason the TNS value is very small compared to later more representative

placement stages but due to the fact that we use the average, high weights are still

generated, and critical components are identified.
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Next in algorithm 5 we present the pseudocode of the Timing Driven Global

Placement. It is identical to the Kraftwerk2 with the addition of two new blocks of

code, one that obtains/updates timing information through static timing analysis

and one where it injects the timing information into the placement matrices.

In the first code block through the sta_iterations and sta_iteration_interval vari-

ables, we control the maximum number of iterations and the interval between two

successive iterations respectively.

In the second code block we traverse every single component of the design and we

use the get_component_timing_weight function to obtain its timing weight by using

the methodology described in the previous section. Then on every edge of the net

defined by this component, we multiply the weight to the connection cost (e.g. B2B)

and we create the entry in the corresponding matrices.

It is also important to note, that the Quadratic Placement section, remains in-

tact.
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Algorithm 5: Kraftwerk2 Timing Driven

// Quadratic Placement
// Do not include timing information in this step

1 Create: Lx , bx ;

2 Create: Ly, by;

3 Solve: Lxx + bx = 0⃗;

4 Solve: Lyy + by = 0⃗;

// Global Placement
5 i = 0;

6 j = sta_iteration_interval;
7 repeat

// Update Timing Information
8 if i ≤ sta_iterations then

9 if j == sta_iteration_interval then

10 Run: Static_Timing_Analysis();
11 i + +;

12 j = 0;

13 end

14 j + +;

15 end

// Inject Timing Information
16 foreach component ∈ design do

17 get_component_timing_weight();

18 foreach connection ∈ component do

19 entry = component_weight · connection_cost;
20 Create entry in: Lx , bx ;

21 Create entry in: Ly, by;

22 end

// Update module positions

23 Solve: Lx∆x +
◦

Cx∆x +
◦

CxΦx = 0⃗;

24 Solve: Ly∆y +
◦

Cy∆y +
◦

CyΦy = 0⃗;

25 x = x′ + ∆x;

26 y = y′ + ∆y ;

27 end

28 until Module Overlap ≤ 20%;
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Chapter 5

Experimental Results

This chapter presents the results of this thesis. Our Timing-Driven Global Placer

is implemented in C language and is integrated into an existed, under development

EDA tool called ASP. This tool has been used exclusively for the duration and com-

pletion of these tests. We used six benchmarks in total. The machine in which the

tests run is a server with an 12-core Intel Xeon(R) CPU E5-2620 v4 @ 2.10 Ghz,

physical memory of 64GB, running on Fedora 20.

5.1 Flow

Figure 5.1: Experiments Flow

In our testing, the flow of figure 5.1 was

followed. First a gate-level netlist is imported

into our tool in a verilog format. The gate

level netlist is produced by the RTL model by

maping the logic gates into real gates spec-

ified by a standard-cell library. A standard

cell library is a collection of combinational

and sequential logic gates that adhere to a

standardized set of logical, electrical, and

physical policies. In our case we use a 25nm

standard-library from a company called IHP.

From this library we import two files. The

first one (.lef) is called a liberty file. It cap-

tures abstract information about the logical

functionality, the capacitance of each input

pin, leakage power and timing. The second

file (.lef) includes information about the di-

mensions of the cells, the location and di-

mension of both the power/ground and sig-

nal pins and information on blockages. It

can be thought as an abstract view of the

GDS file produced in the finalized design

state.

Next we specify the timing requirements of the design i.e. the clock period. Fol-
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lowing is an early stage in the hierarchical chip design approach, which is the Floor

Planning. Here, the netlist is grouped into functional blocks and these blocks are

positioned in way so that they don’t overlap with each other. Next is the placement

of the input and output ports of the chip.

The final two stages belong to this thesis interest. In the first one we specify the

global parameters that tune the behavior of the timing driven placer. Specifically we

give values to the following parameters:

• function_type

• sta_iteration_interval

• sta_iterations

• wmin

• wmax

Parameter function_type determines which weight function we use for the net assign-

ment process. In the below testcases we test every single function for every design

We use a constant value for the STA parameters. That is, sta_iteration_interval = 2

and sta_iterations = 5. Then we try different combinations of { wmin, wmax }. In case

of the linear mapping function, only the minimum weight is specified and the com-

binations are denoted as, { wmin, x } where ’x ’ stands for "don’t care" value. Next the

timing driven global placement begins and runs iteratively until the overlap metric

objective is met.

The different weight combinations { wmin, wmax } are specified in the following

manner:

1. Test Linear weight function for different wmin values starting from value 0.1

and ending at value 0.9 at increments of 0.1 .

2. Use the wmin value that produces the biggest reduction in the WNS and TNS

metrics, as the lower bound for the other weight functions.

3. Experiment with different wmax values.

For every type of function, we present graphs in Apendix A that illustrate the

impact of the weight assignment on the design metrics. The graph with the dark

blue color
(
{x,x}

)
represents the value of a conventional non timing-driven placement.

Green and red color represent a reduction/increase of any amount, respectively. We

also present the percentages of decrease/increase in metric values relative the non-

td placement, in tables. Finally a table illustrates the best results obtained for each

weight function.

The infinite number of weight pair combinations and the great variety of mapping

functions resulted in a high number of testcases. This in conjuction with the limited

amount of computing resources, required us to test designs with a relative small

number of components due to the very large CPU time overhead. The purpose was

to test the behavior of the net-weight assignment and experiment with as many

values as possible in a reasonable amount of time. By testing small designs we can

identify a range of optimal weight values that work well and use them for larger
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designs with the hope that the timing metrics reduction will scale well. The designs

tested are summarized in table 5.1.

Benchmarks # Cells

PID 3401

AES 7487

AES192 9195

apbAES192 10201

LDPC 52506

b19 218976

Table 5.1: OpenCores Benchmarks Characteristics

5.2 Results

PID

The results of the Linear mapping function are presented in figure 5.2 and table

5.2. It can be seen that the smaller the wmin values are, the bigger the reduction in

the WNS and TNS metrics is. That is mainly true for two reasons.

First, choosing small wmin values increases the gradient of the linear function

and achieve higher weights in the critical slack area.

Second, lower weights relax the net force of non critical components and increase

their move distance. In that way, non-critical components move away from critical

and separate. In that way, they do not interfere with the density calculation of

critical areas which is responsible for the generation of the move force. If non-

critical components lie above critical, they might increase the move force of the area

and critical components will be pushed further while the goal is to keep them as

close as possible.

It is also clear that the HPWL increase is relative to the reduction of the timing

metrics. That is because critical components concentrate closer together and their

connections through common cells increase.

Next in figure 5.3 and table 5.3 we present the results for a piece wise linear

(PWL) and a slow piece wise exponential (PWEslow) weight function. Here the genera-

tion of higher weights achieves substantially better reduction on the timing metrics

but with a higher expense in HPWL. Comparing PWL and PWEslow we can see that

PWEslow has smaller increase in HPWL for almost every weight bound pair. That is

because this function follows a less aggressive net weighting approach by always

being below the corresponding left segment of the PWL function.

Finally in figure 5.4 and table 5.8 we present the results of the most aggressive

fast piece wise exponential (PWEfast ) weight function. This function is below the left

segment of the PWL function for the non-critical zone and above for the critical zone,

achieving values higher than wmax . We remind that wmax does not represent the

maximum weight the function generates but the maximum value the PWL would

generate if it was used instead. We provide two different variations of this function

determined for two different critical zone (CZ ) values. We can see that the 50%
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critical zone decreases the timing metrics sooner but it has higher expense in HPWL

and the end result considering the timing metrics is the same.

(a) TNS relative to weights (b) WNS relative to weights

(c) HPWL relative to weights

Figure 5.2: Impact of Linear weight function on design metrics

Weight Bounds HPWL WNS TNS

{0.9,x} +2.3% -1.3% +0.5%

{0.8,x} +1.2% -3.9% -2.1%

{0.7,x} +0.2% -6.5% -5.6%

{0.6,x} +0.2% -6.5% -6.0%

{0.5,x} +0.4% -10.5% -8.2%

{0.4,x} +2.2% -12.8% -9.5%

{0.3,x} +2.9% -12.7% -10.1%

{0.2,x} +3.3% -15.0% -12.5%

{0.1,x} +3.5% -17.1% -13.3%

Table 5.2: Percentage change relative to conventional placement for Linear weight

function
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure 5.3: Impact of PWL & PWEslow weight functions on design metrics

PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.2,4} 4.4% -15.8% -13.1% 6.9% -18.0% -13.4%

{0.2,5} 7.4% -19.0% -16.1% 2.4% -16.4% -13.9%

{0.2,6} 6.4% -18.7% -15.9% 4.1% -21.2% -16.9%

{0.2,7} 5.1% -21.0% -17.1% 4.8% -21.9% -17.4%

{0.2,8} 6.4% -19.2% -17.0% 4.4% -23.1% -18.5%

{0.2,9} 8.0% -19.0% -18.3% 7.5% -22.4% -18.6%

{0.2,10} 5.1% -19.8% -17.7% 8.1% -24.3% -19.0%

{0.2,15} 8.8% -27.1% -24.0% 5.8% -27.8% -24.4%

{0.2,20} 10.8% -27.6% -25.8% 10.2% -28.4% -25.2%

{0.2,30} 12.1% -33.2% -31.7% 10.9% -34.0% -31.6%

Table 5.3: Percentage of change relative to conventional placement for PWL &

PWEslow weight functions
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(a) TNS relative to weights for CZ = 30% (b) TNS relative to weights for CZ = 50%

(c) WNS relative to weights for CZ = 30% (d) WNS relative to weights for CZ = 50%

(e) HPWL relative to weights for CZ = 30% (f) HPWL relative to weights for CZ = 50%

Figure 5.4: Impact of PWEfast weight funtion on design metrics

Critical Zone = 30% Critical Zone = 50%

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.2,4} 6.0% -21.5% -17.2% 8.1% -21.5% -16.1%

{0.2,5} 8.3% -21.9% -17.1% 7.5% -22.0% -17.8%

{0.2,6} 6.2% -24.0% -18.2% 6.8% -28.0% -23.2%

{0.2,7} 7.2% -24.8% -24.5% 8.8% -27.9% -25.2%

{0.2,8} 7.2% -29.9% -26.0% 9.5% -30.8% -27.7%

{0.2,9} 8.3% -31.1% -27.6% 12.2% -32.3% -28.8%

{0.2,10} 8.4% -32.8% -28.5% 13.4% -36.2% -33.0%

{0.2,20} 14.4% -38.6% -38.0% 21.5% -40.7% -39.2%

{0.2,30} 19.4% -41.9% -39.9% 28.9% -42.2% -40.6%

Table 5.4: Percentage of change relative to conventional placement for PWEfast weight

function
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Mapping Function HPWL WNS TNS

Linear +3.3% -17% -13.3%

PWL +12% -33% -32%

PWEslow +11% -34% -32%

PWEfast +19.4% -42% -40%

Table 5.5: Best results per weight function

For the following designs, the graphs which represent the values of the wire-

length and timing metrics, are depicted in the Appendix A.

AES

We will now proceed with the results of the AES design. Here we follow the exact

same flow as above by first presenting the results of the Linear weight function. The

results are similar to the PID design which has the characteristic of having very low

HPWL expense.

Next the results of the PWL & PWEslow are illustrated. Here the latter is proven

to be less aggressive than it should and cannot reach the reduction values of the

former. However the HPWL increase is substantially less.

Finally we compare the results of two different PWEfast functions. Here the

reduction can reach values as high as 80%. However the HPWL expense is large.

This is proven to be a trade-off and it must be handled differently based on the design

specifications.

Weight Bounds HPWL WNS TNS

{0.9,x} +0.3% +1.5% -1.0%

{0.8,x} +0.4% -1.3% -4.7%

{0.7,x} +0.8% -4.9% -6.8%

{0.6,x} +0.7% -5.7% -8.5%

{0.5,x} +1.3% -1.8% -10.7%

{0.4,x} +1.7% 0.8% -12.1%

{0.3,x} +2.5% -3.9% -14.8%

{0.2,x} +3.8% -11.9% -19.0%

{0.1,x} +6.5% -12.1% -21.5%

Table 5.6: Percentage of change relative to a conventional placement for Linear
weight function
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PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.2,7} 4.6% -22.2% -31.3% 3.5% -16.0% -25.1%

{0.2,8} 4.9% -21.3% -32.4% 3.5% -16.5% -25.5%

{0.2,9} 5.1% -25.0% -34.4% 3.5% -17.5% -25.9%

{0.2,10} 5.4% -22.7% -33.5% 3.4% -18.0% -26.4%

{0.2,15} 6.7% -19.3% -37.8% 3.6% -15.1% -23.1%

{0.2,20} 8.3% -19.3% -42.0% 3.8% -22.7% -29.9%

{0.2,30} 11.3% -23.2% -48.3% 4.3% -21.2% -32.3%

{0.2,50} 13.9% -27.4% -58.7% 4.8% -24.0% -34.8%

{0.2,100} 21.3% -38.8% -71.5% 6.2% -28.2% -38.2%

{0.2,200} - - - 7.4% -29.9% -41.2%

Table 5.7: Percentage of change relative to conventional placement for PWL &

PWEslow weight functions

Critical Zone = 40% Critical Zone = 70%

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.2,20} 5.3% -24.0% -35.2% 9.0% -37.3% -49.0%

{0.2,30} 6.6% -29.7% -38.9% 11.4% -43.9% -58.0%

{0.2,50} 7.9% -32.3% -44.2% 16.2% -50.1% -67.2%

{0.2,100} 10.1% -41.2% -52.7% 27.7% -52.1% -73.9%

{0.2,150} 11.3% -43.4% -57.2% 34.1% -61.0% -78.8%

{0.2,170} 11.9% -45.2% -58.5% 35.7% -61.8% -79.2%

{0.2,200} 12.8% -45.0% -60.1% 37.7% -58.7% -80%

Table 5.8: Percentage of change relative to conventional placement for PWEfast weight

function

Mapping Function HPWL WNS TNS

Linear +6.5% -12.1% -21.5%

PWL +21.3% -38.8% -71.5%

PWEslow +7.4% -29.9% -41.2%

PWEfast +37.7% -58.7% -80%

Table 5.9: Best results per weight function

AES192

In the AES192 design the linear function has again similar results to the above.

The comparison between the PWL & PWEslow shows that the higher aggressiveness

of the former has the upper hand again, in terms of WNS and TNS reduction. Finally

by presenting the results of the PWEfast weight function, we can see that it can reach

TNS reduction close to 90% and for a relative small HPWL expense. This shows that

AES192 design handles high weight assignment very well.
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Weight Bounds HPWL WNS TNS

{0.9,x} -0.1% +8.3% +0.1%

{0.8,x} -0.2% -0.3% -5.9%

{0.7,x} -0.1% -0.3% -7.9%

{0.6,x} +0.1% -8.3% -14.6%

{0.5,x} +0.3% -9.2% -17.6%

{0.4,x} +1.0% -7.3% -16.7%

{0.3,x} +1.9% -5.3% -14.2%

{0.2,x} +3.2% -8.9% -15.5%

{0.1,x} +6.0% -4.3% -12.8%

Table 5.10: Percentage of change relative to conventional placement for Linear weight

function

PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.5,10} +3.3% -5.6% -24.6% +0.8% -5.9% -19.2%

{0.5,20} +7.4% -5.6% -35.0% +1.8% -5.3% -18.1%

{0.5,30} +11.7% -12.5% -39.6% +2.4% -6.3% -19.6%

{0.5,50} +17.3% -23.8% -44.7% +4.0% -5.6% -19.8%

{0.5,70} +20.7% -23.8% -53.5% - - -

{0.5,100} +25.1% -40.3% -54.8% +5.0% -8.6% -24.3%

{0.5,200} - - - 5.8% -16.5% -31.1%

{0.5,300} - - - 6.9% -17.8% -33.4%

Table 5.11: Percentage of change relative to conventional placement for PWL &

PWEslow weight functions

Critical Zone = 40% Critical Zone = 70%

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.5,10} 1.9% -6.3% -19.2% 4.6% -8.3% -21.8%

{0.5,20} 4.4% -6.9% -20.5% 7.8% -25.4% -41.7%

{0.5,30} 5.2% -13.2% -27.2% 10.6% -38.0% -53.4%

{0.5,50} 7.0% -17.8% -33.7% 14.0% -26.1% -65.8%

{0.5,100} 9.2% -28.4% -43.9% 17.2% -28.4% -79.8%

{0.5,200} 11.2% -42.2% -58.6% 21.2% -25.4% -86.1%

{0.5,300} 13.3% -27.4% -63.0% 23.4% -25.7% -89.4%

Table 5.12: Percentage of change relative to conventional placement for PWEfast

weight function

Mapping Function HPWL WNS TNS

Linear +6.0% -4.3% -12.8%

PWL +25.1% -40.3% -54.8%

PWEslow +6.9% -17.8% -33.4%

PWEfast +23.4% -25.7% -89.4%

Table 5.13: Best results per weight function

apbAES128

The apbAES128 has the exact opposite behavior, relative to the previous de-

signs. Aggressive net weight assignment, over-constraints the design and creates

new critical paths. The Linear weight function produces the best result here.
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Weight Bounds HPWL WNS TNS

{0.9,x} -7.0% +0.3% -13.6%

{0.8,x} -0.9% -21.4% -16.4%

{0.7,x} -3.8% +13.1% -3.3%

{0.6,x} +3.3% -14.6% -14.1%

{0.5,x} -0.5% -18.5% -14.4%

{0.4,x} +2.5% -20.6% -24.9%

{0.3,x} +4.1% -22.6% -31.1%

{0.2,x} +13.4% -19.6% -29.6%

Table 5.14: Percentage of change relative to conventional placement for Linear weight

function

PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.3,4} +22.8% -13.9% -20.9% +19.9% -17.6% -25.2%

{0.3,5} +19.2% -23.2% -28.1% +20.6% -28.4% -29.9%

{0.3,6} +20.8% -33.2% -28.5% +27.1% -33.0% -30.6%

{0.3,7} +28.8% -34.5% -28.7% +28.1% -36.2% -28.5%

{0.3,8} +29.8% -32.6% -23.5% +28.9% -33.7% -27.1%

{0.3,9} +31.2% -35.8% -29.8% +29.5% -36.4% -32.2%

{0.3,10} +41.2% -39.6% -13.7% +37.6% -34.6% -26.3%

{0.3,20} +57.7% -46.4% -31.8% +53.8% -42.7% -34.2%

{0.3,30} +79.1% -30.3% +43.5% +57.4% -39.3% +28.6%

{0.3,50} +98.2% -41.0% +31.5% +94.8% -41.7% +38.3%

{0.3,100} +108.9% -35.0% +40.8% +98.1% -36.8% +36.8%

Table 5.15: Percentage of change relative to conventional placement for PWL &

PWEslow weight functions

Critical Zone = 30% Critical Zone = 50%

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.3,4} +19.9% -24.7% -28.4% +22.1% -30.7% -28.0%

{0.3,5} +23.6% -33.6% -30.8% +29.5% -36.4% -32.2%

{0.3,6} +29.8% -34.7% -26.4% +29.8% -35.1% -26.4%

{0.3,7} +40.2% -38.0% -25.3% +39.5% -33.4% -26.5%

{0.3,8} +38.8% -22.9% -23.1% +47.8% -41.4% -28.7%

{0.3,9} +45.6% -28.3% -19.1% +59.5% -39.2% +17.8%

{0.3,10} +41.5% -36.9% -22.3% +71.1% -39.1% +36.3%

{0.3,20} +90.6% -42.6% +38.0% +106.7% -33.9% +46.0%

{0.3,30} +90.2% -43.0% +26.9% +102.8% -41.4% +21.5%

{0.3,50} +110.8% -32.7% +56.3% +141.1% -19.1% +99.3%

{0.3,100} +122.5% +13.4% +91.5% +184.2% -25.8% +91.5%

Table 5.16: Percentage of change relative to conventional placement for PWEfast

weight function

Mapping Function HPWL WNS TNS

Linear +13.4% -19.6% -29.6%

PWL +20.8% -33.2% -28.5%

PWEslow +20.6% -28.4% -30.0%

PWEfast +23.6% -33.6% -30.8%

Table 5.17: Best results per weight function
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LDPC

The LDPC design has similar behavior as the apbAES design with lower weight

combinations producing better results. The TNS reduction degrades with the in-

crease of the upper weight bounds.

Weight Bounds HPWL WNS TNS

{0.8,x} 0.2% -9.4% -9.0%

{0.7,x} 0.5% -10.2% -12.3%

{0.6,x} 0.8% -7.6% -15.7%

{0.5,x} 1.1% -7.4% -19.3%

{0.4,x} 1.5% -10.1% -22.1%

{0.3,x} 2.1% -20.7% -25.0%

{0.2,x} 2.7% -20.5% -28.6%

{0.1,x} 3.7% -25.3% -33.1%

Table 5.18: Percentage of change relative to conventional placement for Linear weight

function

PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.1,5} 6.3% -36.5% -42.2% 6.2% -36.0% -42.1%

{0.1,6} 6.9% -38.2% -43.3% 6.8% -37.4% -43.0%

{0.1,7} 7.4% -36.7% -43.4% 7.3% -37.9% -43.1%

{0.1,8} 7.9% -39.1% -43.5% 7.7% -37.8% -43.4%

{0.1,9} 8.3% -39.3% -43.3% 8.1% -39.3% -42.9%

{0.1,10} 8.7% -40.8% -43.0% 8.4% -39.8% -42.7%

{0.1,20} 11.2% -38.4% -41.2% 10.6% -38.4% -40.0%

{0.1,30} 12.9% -39.4% -39.0% 12.0% -37.8% -36.9%

{0.1,40} 13.9% -34.6% -37.9% 12.6% -34.4% -36.0%

{0.1,50} 14.7% -33.3% -36.5% 13.2% -38.1% -34.3%

{0.1,100} 16.6% -31.4% -33.4% 14.6% -34.9% -32.1%

Table 5.19: Percentage of change relative to conventional placement for PWL &

PWEslow weight functions

Critical Zone = 30% Critical Zone = 50%

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.1,5} +9.7% -37.8% -40.8% +10.2% -38.9% -40.8%

{0.1,6} +10.6% -39.7% -41.1% +11.4% -37.2% -40.1%

{0.1,7} +11.5% -38.1% -40.2% +12.4% -37.6% -38.5%

{0.1,8} +12.2% -40.1% -39.0% +14.0% -37.2% -38.2%

{0.1,9} +12.9% -38.6% -39.1% +13.3% -38.8% -38.8%

{0.1,10} +13.4% -37.3% -38.9% +14.6% -37.9% -38.6%

{0.1,20} +17.2% -37.1% -36.3% +18.0% -39.2% -34.5%

{0.1,30} +18.4% -38.6% -35.0% +20.2% -39.8% -35.2%

{0.1,40} +19.7% -41.6% -35.1% +22.5% -30.8% -31.6%

{0.1,50} +20.8% -38.0% -34.3% +24.6% -33.9% -25.1%

{0.1,100} +29.2% -3.4% -16.8% +37.8% +17.4% +14.2%

Table 5.20: Percentage of change relative to conventional placement for PWEfast

weight function
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Mapping Function HPWL WNS TNS

Linear +3.7% -25.3% -33.1%

PWL +6.9% -38.2% -43.3%

PWEslow +8.1% -39.3% -43.0%

PWEfast +10.2% -38.9% -40.8%

Table 5.21: Best results per weight function

B19

The B19 has a peculiar behavior so far, with low wmax values increasing the TNS

metric. As weights get more aggressive, timing metrics start to reduce.

Weight Bounds HPWL WNS TNS

{0.8,x} +3.5% -19.0% -9.7%

{0.7,x} +6.8% -15.0% 0.7%

{0.6,x} +1.9% -21.2% -19.8%

{0.5,x} +5.0% -19.2% -7.4%

{0.3,x} +7.5% -21.2% -15.6%

{0.2,x} +6.1% -11.2% -12.3%

{0.1,x} +11.2% -7.9% -4.4%

Table 5.22: Percentage of change relative to a conventional placement for Linear
mapping function

PWL PWEslow

Weight Bounds HPWL WNS TNS HPWL WNS TNS

{0.6,4} 9.0% -19.4% 0.2% 7.6% -21.7% 2.3%

{0.6,5} 9.9% -19.1% 0.4% 10.3% -15.3% 2.2%

{0.6,6} 4.8% -22.6% -12.6% 9.4% -16.6% 6.7%

{0.6,7} 10.9% -21.3% -1.1% 4.3% -22.1% -7.6%

{0.6,8} 11.4% -18.5% -1.1% 8.9% -13.4% 7.2%

{0.6,9} 5.2% -22.9% -17.6% 6.8% -19.3% -0.5%

{0.6,10} 12.6% -20.2% -12.4% 7.7% -20.2% -3.9%

{0.6,20} 17.8% -20.2% -12.7% 10.9% -30.7% 5.7%

{0.6,30} 19.4% -27.5% -25.2% 12.6% -30.7% -1.6%

{0.6,50} 21.5% -35.9% -24.2% 11.1% -38.0% -11.0%

{0.6,100} 30.3% -35.8% -33.5% 17.0% -26.6% -16.9%

Table 5.23: Percentage of change for PWL & PWEslow relative to a conventional place-

ment
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Weight Bounds HPWL WNS TNS

{0.6,5} +9.3% -20.2% +0.3%

{0.6,6} +8.5% -20.0% +5.8%

{0.6,7} +8.4% -19.0% +5.0%

{0.6,8} +10.5% -26.1% +1.8%

{0.6,9} +10.9% -30.4% +5.3%

{0.6,10} +10.0% -31.1% +3.0%

{0.6,20} +17.2% -26.3% -19.0%

{0.6,30} +20.3% -40.2% -21.0%

{0.6,40} +19.8% -38.2% -25.4%

{0.6,50} +24.2% -38.5% -18.4%

{0.6,100} +34.4% -41.3% -12.6%

Table 5.24: Percentage of change relative to a conventional placement for PWEfast

weight function

Mapping Function HPWL WNS TNS

Linear +1.9% -21.2% -19.8%

PWL +30.3% -35.8% -33.5%

PWEslow +17% -26.6% -16.9%

PWEfast +19.8% -38.2% -25.4%

Table 5.25: Best results per weight function

Summarized Results

The following table, summarizes the best results so far in terms of TNS reduction

for each design.

Design HPWL WNS TNS

PID +19.4% -42.0% -40.0%

AES +37.7% -58.7% -80%

AES192 +23.4% -25.7% -89.4%

apbAES128 +23.6% -33.6% -30.8%

LDPC +6.9% -38.2% -43.3%

B19 +30.3% -35.8% -33.5%

Average +23.55% -39.0% -52.8%

Table 5.26: Best results per design

Impact of Legalization

Although the results so far have been very promising, they are not totally rep-

resentative of the reality because the placement procedure is not finalized till the

completion of the Legalization step. The following table shows the impact of legal-

ization on the design metrics. It can be seen that the wirelength and WNS have a

negligible increase due to the displacement of the cells. However the designs which

produced the best decrease in TNS value (AES, AES192) have a big increase of the

same, after legalization. The final TNS value however is still way lower than the non-

timing driven placement with a 72.8% and a 60% decrease for the AES and AES192

designs respectively
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Increase after Legalization

Designs HPWL WNS TNS

PID 3% 3% 3%

AES 2% 12% 33%

AES192 3% 4% 277%

apbAES182 3% 1% 2%

LDPC 1% 0% 2%

b19 2% 3% 4%
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Chapter 6

Conclusions and Future Work

In this thesis we provided an implementation of a timing driven global placer

based on a net weight assignment method. The end results proven to be very

promising with substantial reduction in the WNS and TNS metrics and a relative

small degradation of the total wirelength. Also apart from the calls to the STA en-

gine, there was negligible impact in the execution time of the placer. However one

caveat which is clear from the demonstration of the experimental results, is the

unpredictability of this method considering the impact of weight pair values on the

design metrics and the difficulty of identifying optimal values. That unpredictability

is a problem, especially on large designs which require high CPU run time and make

the method of trying multiple weight pair combinations unfeasible.

Further improvements must focus on ways of making the impact of weights more

predictable by guessing proper weight values pre-placement. This could be done

by obtaining more data for more designs and by trying to detect similarities and

peculiarities between them. Machine learning could also be of great help. Another

possible positive improvement would be the incorporation of sensitivity approaches

as mentioned in section 3.2. In that way the net weight assignment process is not

totally heuristic and a better understanding of weight impact is given, not only on

timing metrics but also on other design characteristics.
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Appendix A

Result Graphs

A.1 AES

(a) TNS relative to weights (b) WNS relative to weights

(c) HPWL relative to weights

Figure A.1: Impact of Linear weight function on design metrics
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure A.2: Impact of PWL & PWEslow weight functions on design metrics
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(a) TNS relative to weights for CZ = 40% (b) HPWL relative to weights for CZ = 70%

(c) WNS relative to weights for CZ = 40% (d) WNS relative to weights for CZ = 70%

(e) HPWL relative to weights for CZ = 40% (f) HPWL relative to weights for CZ = 70%

Figure A.3: Impact of PWEfast weight funtion on design metrics

A.2 AES192

(a) TNS relative to weights (b) WNS relative to weights

(c) HPWL relative to weights

Figure A.4: Impact of Linear function on design metrics
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure A.5: Impact of PWL & PWEslow weight functions on design metrics
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(a) TNS relative to weights for CZ = 40% (b) HPWL relative to weights for CZ = 70%

(c) WNS relative to weights for CZ = 40% (d) WNS relative to weights for CZ = 70%

(e) HPWL relative to weights for CZ = 40% (f) HPWL relative to weights for CZ = 70%

Figure A.6: Impact of PWEfast weight funtion on design metrics
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A.3 apbAES128

(a) TNS relative to weights
(b) WNS relative to weights

(c) HPWL relative to weights

Figure A.7: Impact of Linear function on design metrics
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure A.8: Impact of PWL & PWEslow weight functions on design metrics
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(a) TNS relative to weights for CZ = 30% (b) HPWL relative to weights for CZ = 50%

(c) WNS relative to weights for CZ = 30% (d) WNS relative to weights for CZ = 50%

(e) HPWL relative to weights for CZ = 30% (f) HPWL relative to weights for CZ = 50%

Figure A.9: Impact of PWEfast weight funtion on design metrics
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A.4 LDPC

(a) TNS relative to weights (b) WNS relative to weights

(c) HPWL relative to weights

Figure A.10: Impact of Linear function on design metrics
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure A.11: Impact of PWL & PWEslow weight functions on design metrics
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(a) TNS to weights for CZ = 30% (b) HPWL to weights for CZ = 50%

(c) WNS to weights for CZ = 30% (d) WNS to weights for CZ = 50%

(e) HPWL to weights for CZ = 30% (f) HPWL relative to weights for CZ = 50%

Figure A.12: Impact of PWEfast weight funtion on design metrics
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A.5 b19

(a) TNS relative to weights (b) WNS relative to weights

(c) HPWL relative to weights

Figure A.13: Impact of Linear function on design metrics
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(a) TNS relative to weights for PWL (b) TNS relative to weights for PWEslow

(c) WNS relative to weights for PWL (d) WNS relative to weights for PWEslow

(e) HPWL relative to weights for PWL (f) HPWL relative to weights for PWEslow

Figure A.14: Impact of PWL & PWEslow weight functions on design metrics
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(a) TNS relative to weights for CZ = 50% (b) WNS relative to weights for CZ = 50%

(c) HPWL relative to weights for CZ = 50%

Figure A.15: Impact of PWEfast weight funtion on design metrics
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Appendix B

Design Layouts

B.1 PID

(a) PID non Timing-Driven Placement (b) PID Timing-Driven Placement
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B.2 AES

(a) AES non Timing-Driven Placement (b) AES Timing-Driven Placement

B.3 AES192

(a) AES192 non Timing-Driven Placement (b) AES192 Timing-Driven Placement
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B.4 apbAES128

(a) apbAES128 non Timing-Driven Placement (b) apbAES128 Timing-Driven Placement

B.5 LDPC

(a) LDPC non Timing-Driven Placement (b) LDPC Timing-Driven Placement
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