

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάλυση και σύγκριση Front-end

 JavaScript Frameworks: React.js & Vue.js

Διπλωματική Εργασία

Χρήστος Τσισλιάνης

Επιβλέπων: Γιώργος Θάνος

Φεβρουάριος 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάλυση και σύγκριση Front-end

 JavaScript Frameworks: React.js & Vue.js

Διπλωματική Εργασία

Χρήστος Τσισλιάνης

Επιβλέπων: Γιώργος Θάνος

Φεβρουάριος 2022

v

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Analyzing and Comparing Front-end JavaScript Frameworks:

React.js & Vue.js

Diploma Thesis

Christos Tsislianis

Supervisor: Giorgos Thanos

February 2022

vii

Εγκρίνεται από την Επιτροπή Εξέτασης:

Επιβλέπων/πουσα Γιώργος Θάνος

Μέλος ΕΔΙΠ, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Γιώργος Σταμούλης

Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Χαρίκλεια Τσαλαπάτα

Μέλος ΕΔΙΠ, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

ix

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω

ρητά ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι

κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας,

αποτελούν αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν προσβάλλουν

οποιασδήποτε μορφής δικαιώματα διανοητικής ιδιοκτησίας, προσωπικότητας και

προσωπικών δεδομένων τρίτων, δεν περιέχουν έργα/εισφορές τρίτων για τα οποία

απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής

αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές

αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα σημεία

όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων

αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική

αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με πλήρη

περιγραφή. Δηλώνω επίσης ότι τα αποτελέσματα της εργασίας δεν έχουν χρησιμοποιηθεί

για την απόκτηση άλλου πτυχίου. Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις

νομικές και διοικητικές συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την

οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι

προϊόν λογοκλοπής.

Ο/Η Δηλών/ούσα

Χρήστος Τσισλιάνης

Ονοματεπώνυμο Φοιτητή/ήτριας

xi

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference is

included in the bibliographic references section. I also declare that the results of the work

have not been used to obtain another degree. I fully, individually and personally undertake

all legal and administrative consequences that may arise in the event that it is proven, in

the course of time, that this thesis or part of it does not belong to me because it is a product

of plagiarism.

The Declarant

Christos Tsislianis

Name of Student

xiii

Διπλωματική Εργασία

Ανάλυση και σύγκριση Front-end

 JavaScript Frameworks: React.js & Vue.js

Χρήστος Τσισλιάνης

Περίληψη

Το οικοσύστημα της JavaScript (JS) έχει αναπτυχθεί ραγδαία τα τελευταία χρόνια με έναν

ολοένα αυξανόμενο αριθμό πλαισίων (frameworks) JavaScript (JSfs) που οδηγούν την

υιοθέτηση λύσεων Singe Page Applications (SPA) σε υψηλά ποσοστά. Λόγω του μεγάλου

αριθμού πλαισίων και βιβλιοθηκών με παρόμοια χαρακτηριστικά, η επιλογή της

υιοθέτησης του καταλληλότερου JSf για ανάπτυξη διαδικτυακών υπηρεσιών έχει γίνει

αινιγματική και προβληματική. Αυτή η εργασία επιχειρεί την αντιμετώπιση του

διλήμματος επιλογής ενός πλαισίου από την προαναφερθείσα πληθώρα πλαισίων,

εστιάζοντας σε δύο από τα πιο δημοφιλή και ευρέως χρησιμοποιούμενα JSfs, τα React.js

και Vue.js. Συγκρίνοντας και αντιπαραβάλλοντας την υλοποίηση των πιο σημαντικών

λειτουργιών τους και αξιολογώντας τις πιο κοινές ποιοτικές μετρήσεις που πρέπει να

λαμβάνονται υπόψη κατά την επιλογή ενός πλαισίου, επισημαίνονται οι διαφορές και οι

ομοιότητές τους. Στη συνέχεια, τα ευρήματα αναλύονται σε μια προσπάθεια να ρίξουν

φως στο αναφερόμενο πρόβλημα. Η παρούσα εργασία επισημαίνει και κάνει συστάσεις

με βάση τα ευρήματα της ανάλυσης, η οποία πραγματοποιείται από την οπτική των

προγραμματιστών.

Στη συνέχεια εμβαθύνει στην ανάλυση και προχωρά στη δοκιμή των ευρημάτων με την

υλοποίηση δύο εφαρμογών SPA σε κάθε πλαίσιο, για να επιδείξει τις βασικές λειτουργίες

και να προσομοιώσει πώς αυτές υλοποιούνται και συμπεριφέρονται στην πράξη

Τα αποτελέσματα δείχνουν ότι κάθε πλαίσιο/βιβλιοθήκη έχει πλεονεκτήματα και τα

μειονεκτήματά, ανάλογα με την περίπτωση χρήσης. Εν τέλει, θα πρέπει κανείς να εξετάσει

το προς υλοποίηση έργο, και ποιοι παράγοντες είναι πιο σημαντικοί, ώστε να κάνει την

βέλτιστη επιλογή.

xiv

Λέξεις-κλειδιά:

JavaScript; Frameworks; React; Vue; Comparison; Web Applications; SPA

xv

Diploma Thesis

Analyzing and Comparing Front-end JavaScript

Frameworks: React.js & Vue.js

Christos Tsislianis

Abstract

The JavaScript (JS) ecosystem has grown rapidly in the recent years with an ever-increasing

number of front-end JavaScript frameworks (JSfs) leading the Single Page Applications

(SPA) adoption in high rates. Due to the overwhelming amount of frameworks and libraries

with similar features, the choice of adopting the most suitable JSF for SPA development has

become puzzling. This thesis attempts an abstraction of the “problem” of the

aforementioned plethora of front-end frameworks by focusing on two of most popular and

widely used JSfs: React.js and Vue.js. By comparing and contrasting the implementation of

their most important functionalities and evaluating the most common qualitative metrics

to be considered when choosing a framework, their differences and similarities are pointed

out. The findings are then analyzed in an attempt to shed light on the stated problem. The

focus of the thesis is to point out and make any recommendations based on the findings of

the analysis, which is performed from - and based mainly on- the developers’ perspective.

It then continues -and deepens- the analysis and proceeds to put the findings to the test

with the implementation of two SPA applications on each framework, to demonstrate the

core functionalities and simulate how these are implemented and behave in practice, in

real life development procedure.

The results indicate that each framework/library comes with their different advantages and

disadvantages overall, as well as according to use case scenarios. In the end, one has to

consider the project at hand and which factors matter the most overall to make the optimal

choice.

xvi

Keywords:

JavaScript; Frameworks; React; Vue; Comparison; Web Applications; SPA;

xvii

Table of Contents

Περίληψη ... xiii

Abstract ... xv

Table of Contents .. xvii

 Introduction ...1

1.1 Background ...1

1.2 Problem statement ...2

1.3 Objectives ...2

1.4 Related Work ..2

1.5 Scope – Limitation ...3

1.6 Thesis Structure ...3

 Methodology..5

2.1 Research Method ..5

 Data Collection .. 5

 Data Analysis ... 5

 Implementation Strategy ... 6

 Theory ..7

3.1 Web Application ..7

 HYPERTEXT MARKUP LANGUAGE & CASCADING STYLE SHEETS (HTML & CSS) 7

3.2 JavaScript ..7

 JavaScript XML (JSX) ... 8

 JavaScript Frameworks... 8

 Framework versus library ... 9

3.3 Template Syntax ..9

3.4 Document Object Model ... 10

3.5 Model View Controller Pattern (MVC) .. 10

xviii

3.6 Single Page Application (SPA) .. 11

3.7 Asynchronous JavaScript And XML(AJAX) ... 12

3.8 Hypertext Transfer Protocol (HTTP) .. 13

3.9 Application Programming Interface (API) .. 13

3.10 Back-End .. 13

 Node.js .. 14

 MongoDB .. 14

 JavaScript Frameworks ..15

4.1 Selection of Frameworks ... 15

4.2 Description of the selected frameworks .. 16

 Vue.js .. 16

 React ... 17

 Selected JavaScript Frameworks Comparison Analysis & Evaluation19

5.1 Selection of Comparison & Evaluation Criteria .. 19

5.2 Comparison ... 20

 Components .. 20

 Data-binding and State Management ... 22

 Routing .. 25

 Scripting and Rendering ... 25

 Platform support ... 26

 External Libraries & Modules ... 26

 Native Applications .. 27

 Localization.. 27

 Documentation & Community Support .. 28

 Learning curve and developer experience .. 29

5.3 Conclusion ... 32

 Demonstration & Comparison of Applications Developement34

6.1 Selection of Applications ... 34

6.2 To-Do Applications .. 35

 Developing the To-Do applications ... 35

6.3 AUTH Applications .. 45

xix

 Backend ... 45

 Front-end .. 47

 Development of the Applications ... 49

 Conclusion .. 115

7.1 Findings & Results ... 115

7.2 Summary ... 117

7.3 Future Work & Discussion ... 118

Bibliography .. 121

APPENDIX .. 133

Source Code of To-Do Applications .. 133

 Introduction

1.1 Background

As the web evolves and takes on an ever-growing part of people’s digital lives-at least in

parts of the world where (fast) internet connection is available-which is also growing in fast

rates, the technologies that enable and support it grow with it. The “world” is now

connected and the demand for the tasks that can be performed online, skyrockets. At the

same time as the usage of the web shifts further to mobile devices each year [1], all the

while those devices become more powerful in technical terms, by getting significant

memory, processor and graphics upgrades each year, the demand for what can be done

on the browser rises. This fact has in turn increased the complexity of web applications

powered by JavaScript, resulting to the development of libraries and frameworks as a

means to deal with new scaling demands and streamline the development process by

removing a lot of duplicate work through abstractions [2]. State management, routing, data

processing, and manipulation are just a few of the advanced themes that libraries and

frameworks help developers handle. Many of today’s frameworks are adopting single-page

application principles [3] which enhances the browser experience of the user, and tends to

become the new industry standard. The wide adoption of SPA has been fueling the

development of an ever increasing number of front-end frameworks, which results in an

overwhelming plethora of choices available to the developer or company that has to make

a decision. The need for fast and informed decisions concerns everyone from the individual

to the enterprise and in between, and is of high importance, as monetary, time

management and decision-fatigue factors are involved in the process. This project intends

to provide a better understanding of how to evaluate frameworks qualitatively, and then

compare two popular JavaScript frameworks based on the evaluation findings, thereby

adding to the public discussion in a –attempted- constructive and beneficial manner.

2

1.2 Problem Statement

The aim of this project is to compare two popular client-side JavaScript Frameworks and

provide insight and perhaps a blueprint about how to choose the appropriate framework.

For this to be made possible, a better understanding of how one can evaluate frameworks

depending on different factors has to be gained, for which an investigation about which

factors to use when comparing frameworks is necessary. Such an investigation will

contribute in giving an overview of what and how to compare, when comparing

frameworks, as well as a justification on how to select which frameworks to compare.

Following, this thesis will conduct an analysis of two popular client-side web applications

frameworks based on the chosen factors, by first evaluating them through the comparison

and contrast of their basic functionalities and features, and secondly by applying the

frameworks on: 1. A SPA To-Do-list application 2. A SPA-MVC Authentication-Authorization

with Registration and CRUD functionalities, in an attempt to capture the selected

frameworks’ development process.

1.3 Objectives

1. Provide insight for certain qualitative metrics as they are applied on- and are the

basis of- the comparison process.

2. Derive conclusions about which frameworks implementation is proven to be the

most beneficial for the developer for each one of the chosen metrics.

3. Re-evaluate, enrich and demonstrate findings of 2 as a proof-of-concept by

developing two identical applications on each framework.

1.4 Related Work

Many attempts have been done to evaluate JavaScript frameworks in the past. One of the

most common ways to evaluate the frameworks is by benchmarking using different

metrics. Gizas, Christodoulou, and Papatheodorou tested a few prominent JavaScript

frameworks, looking at their performance, quality, and validation. This was done by using

specific test tools for this purpose [4].

Benchmarking frameworks, nevertheless, may not provide a realistic representation of

the frameworks, as research has shown that JavaScript benchmarks are typically short

3

and behave differently than real-world applications. Furthermore, benchmarks do not

always reflect the same behaviors as real-world applications [5].

Surveys, such as those conducted by Pano, Graziotin, and Abrahamsson [6], can also be

used to evaluate frameworks. The goal of their survey was to discover the factors that

influenced developers' decision to use JavaScript. The poll was based on, among other

things, performance and effort expectations, as well as the effects of social factors. The

examples above indicate the necessity for and procedures for reviewing frameworks;

nonetheless, the author discovered a lack of knowledge concerning when and what should

be evaluated when evaluating related studies.

1.5 Scope – Limitation

Due to the project's time and size constraints only two frameworks will be reviewed.

Furthermore, there will be only one programming language used, and fewer metrics are

chosen for evaluating the frameworks than there would be in a more comprehensive study

of a different magnitude.

The metrics researched in this study were chosen based on their popularity (how

frequently they appear in related studies), and the metrics that would be more relevant

to developers according to the author’s experience and research foundings.

Furthermore, the applications that are being tested are small and basic compared to

complex, real-life production applications which would potentially introduce further

implications and/or provide different conclusions.

1.6 Thesis Structure

This thesis content is organized into seven chapters.

• Chapter two presents the research process and applied

methodology employed on this study including the data collection

and analysis and the implementation strategy formulation.

• Chapter three presents basic concepts and technologies related to

and surrounding JSfs and this projects’ particular comparison and

apps implementation.

4

• Chapter four presents the process of choosing which frameworks to

compare, and proceeds to the chosen frameworks’ presentation.

• Chapter five consists of the analysis of the evaluation process for

defining which metrics to consider for comparison and the

comparison analysis of the chosen frameworks.

• Chapter 6 presents the implementation of the applications and the

analysis and comparison between them

• Chapter 7 presents the conclusions of the comparison process and

discusses thoughts around the overall subject as well as on possible

further enrichment of the comparison.

5

 Methodology

The research technique and methodology used in this study are described in this chapter.

2.1 Research Method

In order to accomplish objectives 1 and 2, a qualitative data analysis methodology is used.

The document review is the primary technique used in this phase to gather and organize

past research on the subject.

 Data Collection

The data from prior studies was gathered in the first step of the thesis research technique

in order to compare different JavaScript frameworks. On the most popular online academic

databases, such as IEEE, ScienceDirect, and Scopus, there is a number of published research

studies on JavaScript frameworks’ comparison available. The majority of comparative

studies, though, may be found on internet blogs, developer support websites, and JS

framework online documentation. As a result, the data collection procedure encompasses

all relevant documents, including developers’ personal blogs, on the subject. The the

material in question is fragmented and dispersed throughout the various sources,

according to preliminary data analysis. Each source compares the different frameworks in

different ways. For example, a source might include qualitative data regarding React and

Vue.js frameworks for some of the critical metrics covered in this paper, but not for others.

 Data Analysis

Secondly, the data from stage one were analyzed to gain understanding and formulate a

view on the subject through inductive reasoning on observations and patterns.

The report then proceeded with organizing the aspects deducted from the second stage, in

the two categories defined from objective 1.

The - now organized - data were filtered through the analytic hierarchy process (AHP) [7],

developed by Saaty, which was used to help analyse the importance of the aspects’ criteria.

6

The now weighted aspects were pair-wise compared while AHP was again utilized and the

process was repeated in an iterative manner until certain minimums as well the defined

scope-limitations of the thesis were met.

At this point the objective 1 was met and objective two was thus ready to be approached.

Implementation Strategy

For objective two to be fulfilled, the next stage of the project required case study

approach. Further research and an empirical inquiry on the chosen aspects were the

means applied to reach objective two.

7

 Theory

This chapter introduces general contextual concepts and integral technologies of the Web

development and JS ecosystem.

3.1 Web Application

A web application is a computer program that runs on a web server and accesed through

the browser. When opposed to traditional apps, the idea behind a web application is that

developers just need to create one client rather than one for each operating system.

Because all that is necessary to operate a web application is a web browser, they are

relatively simple to use. Browser-supported languages like JavaScript and HTML are

frequently used to create web apps.

 HyperText Markup Language & Cascading Style Sheets (HTML & CSS)

HyperText Markup Language (HTML) is used to define the content of the web page and the

way it is organized while Cascading Style Sheets (CSS) is used to determine how the page is

presented. Finally JS is used to specify and enable the actions on the content of the page

[8]. Web browsers convert HTML and CSS-encoded pages into a readable 'document' for

the user [8]. Modern browsers come with a JavaScript interpreter built in. This is not

exclusive to PCs and laptops, since this technology has spread to a variety of other devices,

including game consoles, tablets, and smartphones [9].

3.2 JavaScript

JavaScript (JS) is a high-level, lightweight, interpreted/just-in-time compiled programming

language used to add dynamic behavior to web pages/applications, thus often described

as “the language of the web”. Whereas HTML and CSS provide structure and aesthetic to

web pages, JavaScript adds interactive components the user can engage with. As a text-

based programming language that allows you to construct interactive web pages on both

the client and server sides. Although foremost used as a client-side scripting language,

there are numerous use cases of JS engagement in server-side envornments and

8

applications such as Node.js, Deno, Apache, MongoDB, CouchDB, Adobe Acrobat, GNOME

Shell etc [7]. Given its widespread use across most modern websites and all modern web

browsers [4], this programming language has indisputable popularity. Modern web

browsers have an inbuilt interpreter for JavaScript codes that can parse and execute the

language [9], which is one of the language's most important characteristics. JavaScript, for

example, allows and implements adding new HTML to the web page, editting of the

content, and modifying the styles, while responding to user input, such as mouse clicks,

pointer movements, and keystrokes. [10].

JavaSript’s object oriented nature, the utilization of first-class functions, dynamic typing

and the support for multiple programming paradigms, give it a lot of versatility [11]

Considering` the overall characteristics and its potential, the popularity of JS among front-

end developers comes as no surpise.

 JavaScript XML (JSX)

JSX is a syntax not unlike XML/HTML, but extending ECMAScript to allow shifting the

paradigm to integrate HTML into JS instead of the opposite. The notion is that the syntax is

converted into standard JavaScript objects that the JavaScript engine can understand. This

is useful since it allows you to write HTML/XML in the same file as JavaScript, allowing you

to take advantage of the JavaScript features. [12]. It was created by the React team for

usage in React apps, although it can also be used in other frameworks, such as Vue [13].

 JavaScript Frameworks

JavaScript interacts with the browser through a complicated event-driven mechanism. Due

to JS’s considerable flexibility [11], as noted in ch. 3.2, writing maintainable code is

particulary difficult.

Because JavaScript is so frequently used for developing interactive online applications and

because of its popularity, a variety of plug-ins, frameworks, and libraries are created to

make the development proccess easier and more effective. A software framework is a set

of libraries that utilize their own architectural and design concepts. Hundreds of JavaScript

frameworks have been created in recent years to aid front-end developers in swiftly

developing applications [3]. The majority of the frameworks are open source, with a

9

number of them having distinguished themselves by becoming a critical component of

multiple projects as a result of their features and integration with excellent tools [14].

 Framework versus Library

Frameworks and libraries are both pieces of reusable code authored by other programmers

that can be utilized to solve common problems and aimplify and abstract basic

functionalities.The terminology used to distinguish frameworks from libraries is a little

hazy: In online debates and articles, both “library” and “framework” are interchangeably

used when reffering to React. Defining the two terms and using them distinctively, would

be beneficial for coherency and clarity in the field.

A library is a collection of narrowly-scoped resources that perform a series of well specified

operations, through predefined functions and classes. This standard is followed by

JavaScript libraries as well. For example, jQuery, which performs DOM manipulation, event

handling, CSS animation and AJAX capabilities, serves as a proper representative. On the

other hand libraries that are particularly focused to the execution of a certain specific

activity, such as JSLint or Mocha, can be categorized as tools and are used to perform a

single task like syntax checking, testing etc.

A framework is essentially a collection of libraries, which is organized and executed in a

specific manner. They provide a skeleton for developing an application, enforcing or simply

suggesting – depending on whether is is “opinionated” or “unopinionated” - certain best

practices. The main technical difference bertween the two is in regard to the control flow.

Simply put, when using a Library, the developer is in control of the application flow i.e the

code “calls” the library. In case of a framework the opposite is the case, justifying the term

“Inversion of Control”. The above apply as such to JSfs as well. A framework provides a set

of guidelines for the developer to construct the entire web app, whereas a library has no

similar overarching control, but instead focuses on acting as a platform where simpler

domain-specific operations must be plugged in, or just acting as such specific-standalone

tooling [15].

3.3 Template Syntax

A lot of modern JavaScript frameworks utilize something known as the template syntax.

The template syntax is a means of defining the dynamic part of our HTML structure. The

10

template will keep track of the component’s local state by binding the data in the state to

the UI that it represents [16].

3.4 Document Object Model

The DOM is a W3C (World Wide Web Consortium) standard, for accessing HTML and XML

documents. It serves as the data representation of the objects that constitute a web

document such as a web page. At the same time it is a Web API that provides the ability

to dynamically manipulate the structure, style, and content of a page. Essentially it acts as

a representation of the document's logical structure in terms of nodes and objects

allowing JS to access and alter the appearance and behavior of a website. This is the

reason that the DOM is so vital for JavaScript frameworks. In fact the DOM is language-

agnostic, as it can be called as a script (although web developers usually use it through

JS). It is essentially a conversion of the structure and content of an HTML document into

an object model that can then be utilized by the program.

Figure 1. The correlation beween JavaScript, the DOM interface, and the HTML document.

3.5 Model View Controller Pattern (MVC)

The Model-View-Controller pattern (shown in Figure 2) is a generic software design

paradigm that applies to the majority of web applications.

11

Figure 2. A basic illustration of the MVC structure.

This pattern is a representation of how most web apps handle internal interactions and

how users interact with them. The pattern is made up of three parts and the interactions

between them: the model, which manages the data and logic according to the controller

input, the view, which constitutes of any graphical and informational interpretation of the

model that is presented to the end-user, and the controller, which translates the user input

to commands for the view or the model thus interacting with the data and altering the view

that the user sees. The view (“V”) section of the MVC pattern contains the majority of the

essential functionalities and features of the frameworks explored in this study. The

controller, which defines interactions with the model, might be regarded as dynamic

JavaScript functionality allowing for user-model interaction. Although originally created for

desktop applications, the MVC paradigm is now widely utilized in web applications. [17].

3.6 Single Page Application (SPA)

In contrast to a Multi-Page Application (MPA) - where the server must send back the entire

page at every user request, which must then be reloaded at the web browser- A Single Page

Application (SPA) is a web application that consists of discrete components that are loaded

in memory on the initial page visit and updated autonomously, avoiding the need for the

full page to refresh after each user activity. It makes the application more dynamic with

12

real-time updates, thus providing a better User Experience (UX) which resembles that of

native applications- with fast page transitions, without the full- web-app-refreshing

interrupting the usage flow, resulting in rich, high performance User Interfaces (UIs).

Because the components may be reused, this type of development allows for less server-

side code, resulting in a significant reduction in the amount of code required. The SPA was

first created and patented in 2002, notably targeting JavaScript as an intended language

for its development [18].

3.7 Asynchronous JavaScript And XML1 (AJAX)

AJAX is a sum of technologies bundled together to take advantage of the introduction of

asynchronous items on the web, rather than a single technology or tool. AJAX uses the

XMLHttpRequest (XHR) object to communicate with servers. Because of its "asynchronous"

nature, data in a variety of formats, such as JSON, HTML, XML, and text files, may be sent

1 Extensible Markup Language

Figure 3. SPA – MPA lifecycle comparison Source:

Adapted from [84]

13

and received, exchanging information, and updating the content without reloading the

page.

The success of SPAs, which would later become widespread, was primarily due to the

earlier AJAX’s breakthroughs in client-server communication.

3.8 HyperText Transfer Protocol (HTTP)

The HTTP is an an application-layer, client-server protocol designed for the exchange of

data on the Web. In a typical HTTP communication, a client machine makes a request to a

named host, which is located on a server, which then sends a response message including

any requested data. A set of methods (GET, POST etc.) are defined and utilized to specify

the exact action to be executed for a specific resource, by the queried server. HTTP is

transmitted over TCP/TLS over TCP link, though it could potentially be transmitted over any

trustworthy transport protocol [19]. It is essentially the foundation of the Web, since it is

used to load web pages using hypertext links, as well as for fetching or storing any

additional resources.

3.9 Application Programming Interface (API)

API is the abbreviation for Application Programming Interface. A Web API, is an API over

the Web which is accessible through the HTTP protocol. It acts as a framework which aids

developers in the creation and development of HTTP-based RESTFUL services that

communicate with client entities such as browsers. The function of an API is to provide data

to the programmers who subsequently make it accessible to the end-user. Any text format

such as JSON and XML is supported. A server-side web API is a programmatic interface that

exposes one or more endpoints which can be publicly accessed. It specifies a

communication system for the client and the server to exchange messages.

3.10 Back-End

A Back-End (backend) is required to serve a single-page application and give a database

connection in order to create a fully developed application. In this section, we will introduce

a server environment called Node.js, Express which is a JavaScript back-end framework and

MongoDB which is a document database. When all three are used together to form the

14

back-end environment it is commonly referred to as the MEVN stack, as results from thein

initials.

 Node.js

Node.js is a comprised of Google Chrome’s V8 JavaScript engine, a platform abstraction

library (libuv), and a core library written – for the most part - in JS. It is a cross-platform,

open-source runtime environment for creating scalable JavaScript back-end and network

applications. Node.js is lightweight and efficient thanks to its event-driven, non-blocking

input/output (IO) mechanism, which makes it ideal for I/O-intensive - as well as - real-time

applications running across multiple devices [20]. Node.js represents a paradigm shift as it

allows web applications to be developed with the same programming language in both the

client as well as the server side.

 MongoDB

In contrast to relational databases (e.g MySQL), MongoDB is a NoSQL (non-relational)

document-oriented database. This means it stores data in JSON-like documents in a non-

tabular manner. MongoDB has a powerful and expressive query language that lets you filter

and order documents by any field, while the queries are also in JSON format, so they're

easy to compose. MongoDB has full ACID (Atomicity – Consistency – Isolation - Durability)

attributes, which are a set of key properties that define DB transactions and ensure they

are handled reliably [21].

15

 JavaScript Frameworks

This chapter contains a justification for the choice of frameworks, React.js (React) and

Vue.js (Vue), as well as a description of each framework used in the evaluation.

4.1 Selection of Frameworks

Essentially, to an extent, the same factors that apply to choosing a framework to use, also

apply to also choosing one for evaluation.

"Demand, usability, community, and reputation" are the four factors that influence

framework selection, according to Duvander and Romhagen [22]. The demand is linked to

the skills required for frameworks, how demand is influenced by geography, and the impact

project requirements have on the framework selection process. In this study, usability

refers to the aspects of the development process that help and improve it, or that hinder

and make it difficult, such as documentation and structure, as well as the time it takes to

start a project with a framework and the total time it takes to complete a task with a

framework. Community of a framework/language is of utmost importance in programming

and especially in web development. When there is an active community, the ability to look

for solutions on online communities like Stack Overflow is improved. The maintenance of

the code is easier when there is a large user community since it is easier to find developers

who are familiar with a specific framework. Finally, reputation concerns the view held by

developers as well as related professionals for a specific framework and how this view is

formulated. The company “behind” a framework can have a role here, as well, as major

and well-known companies like Google or Facebook can provide a sense of trustworthiness.

The above regards where taken into consideration for selecting two –out of the plethora

of JSfs- to be evaluated and compared.

Of course this implies that more/all JSfs have been initially evaluated –which is not the case.

None the less, the author’s previous time with the subject, as well as minimal developer

experience with one of the selected frameworks, plus the study and literature review

conducted for this thesis, allow for a safe assumption that the essentials proposed from

the referred studies and experience are met by the selected frameworks, which is of course

16

already self-evident by their massive adoption at professional- production level. After this

theoretical basis was met it was a matter of certain characteristics, nuances and

correlations between them, as the four themes mentioned above, that made them the

author’s final choice for evaluation.

4.2 Description of the Selected Frameworks

Ιn the following subsections the two selected frameworks are presented.

 Vue.js

Vue is the newest of the two frameworks in question. It is a, progressive framework

designed to be incrementally adoptable for integration with existing projects or combining

libraries and tooling to enable complex user interfaces (UIs) and Single-Page Applications

(SPA) according to its developer [23]. Progressive means that it is simple to use, versatile,

and fast, and that it can be used as a library or a framework depending on the

requirements.

Vue, like React, makes use of virtual DOM, and some of its capabilities have been refined

even further in Vue.

How Vue.js “works”

Vue.js comes with a reactivity system [24]. We must first build a Vue instance, and generate

certain attributes when Vue is instantiated. Vue provides getters and setters for data

properties (particular properties of the Vue object) when you declare them. These are

methods comprised by special keywords (get/set) in correlation with a function, that

operate on a JS object, and have the goal of dynamically returning a computed value and

dynamically detecting changes in a given property.

Using Node.js, Vue.js can perform Server Side Rendering (SSR) and although Vue.js does

not natively support mobile app development, offers a variety of options for creating native

iOS and Android apps with Vue.js [25].

Evan You first launched Vue in February 2014, and it is still developed by him and a team

of core members [26].

For the following evaluation Vue v2.5.22 is used.

17

 React

React is an open-source JavaScript library, used for constucting interactive user interfaces.

As stated in section 3.2.3, the term "library" denotes that it is intended to provide a

platform for the developer to build on rather than to cover all aspects of the program. It is

declarative, meaning it creates, updates, and renders unique views for every state [27].

React includes state management and DOM rendering by default, however it does not

contain routing or some other client-side functionalities.

Because React does not employ regular HTML templates, there is no corresponding HTML-

template file present. JavaScript is used to define the entire HTML document code. The use

of a virtual DOM is also introduced in React. Because of faster processing, data changes are

made first in the virtual DOM before the real DOM. In the following chapter, we'll go into

virtual DOM in further depth.

By utilizing Node.js , React.js can implement SSR, as well as support mobile applications’

development with React Native.

How React “works”

Each component in a React application is in charge of rendering a small, reusable chunk of

HTML. Complex applications can be developed using simple building blocks of nested

components. A component is also able to record its own internal state - for example, a

TabList component can keep track of the currently open tab by storing a variable [28].

React uses a virtual DOM, which is essentially a JavaScript representation of a DOM tree.

As a result, instead of reading or writing directly to the DOM, it will use its virtual

representation, which will then attempt to update the browser's DOM in the most efficient

manner possible. React elements, in contrast to browser DOM elements, are simple objects

that are “easy” to generate. Finally, the changed objecsts of the virtual DOM will be

accordingly updated at the real DOM.

 The justification of implementing a virtual DOM, is that the DOM-tree’s manipulation is

faster this way, due to JavaScript’s inherent speed.

React is maintained by Facebook and its developer- and business -community. Jordan

Walke published it for the first time in March of 2013. React is used on Facebook itself, as

well as Instagram and WhatsApp [29].

For the following evaluation, React v16.6.1 is used.

19

 Selected JavaScript Frameworks Comparison Analysis

& Evaluation

5.1 Selection of Comparison & Evaluation Criteria

Pano et al. [5] used a qualitative interpretative study with 18 users to develop a model of

ideal JSf aspects such as usability, cost, efficiency, and functionality. Although the research

is not concerned with the comparison of JS frameworks, it does examine the primary

considerations developers have when selecting one. Developers, for example, choose

frameworks that require less lines of code for specific purposes, favor modularity and

readability of code. Automated event handling and DOM manipulation seem to be

important, as is clear documentation, and browser support. A JavaScript framework has a

large variety of “duties”, thus there are a lot of things it has to deal with, which makes it

difficult to conduct a thorough and precise analysis. In this assessment, the frameworks are

assessed based on a core set of functions that they provide. i.e. their feasibility to perform

basic operations and cover common functionalities, as they are empirically defined and

documented from the plethora of diverse functions and numerous usage cases in SPAs or

MPAs.

The functions that will be evaluated during the code evaluation and the development

period are divided into two categories:

 Explicit programming-related functionalities, such as: DOM Manipulation, various

Selectors, basic form elements, functions for event handling, Ajax capabilities,

routing browser compatibility etc. In further detail, the above are translated in the

following functionalities and features of a JS which are then presented, discussed

and examined practically-programatically as:

Components, Data binding and State Management, Routing, Scripting and

Rendering, in chapter 5 as an overall introduction to the main –compared- features

of the frameworks, while they are further elaborated upon and examined at

greater detail in the applications implementation in chapter 6.

 Qualitative metrics not directly connected to the programing efficiency but explicit

to the successful adoption of a framework, including: popularity, ecosystem,

developer experience etc. as discussed in chapter 5.

20

5.2 Comparison

In this section the main objective of the thesis begins, which is to present and elaborate on

the comparison points and metrics regarding the two frameworks’ programing

functionalities and overall qualities as they are defined in the previous sections.

 Components

The developer interacts with the framework components the majority of the time during

the application development process. As a result, a review of component syntax,

functionality, and usability is justified.

React offers two – most prevalent -distinct types of Components: Function components

and Class components.

The first approach, shown in Listing 5.1, resembles the implementation of a native

JavaScript function. The following basic component calculates the sum of two added

numbers.

function SumOfNumbers (props) {

 return <h1> The sum is {props.num1 + props.num2}</h1>;

}

 Listing 5.1: SumOfNumbers - native JavaScript - component in React

The second approach, involves simple ECMAScript 6 (ES6) classes, which in this case are all

child classes of React’s Component class, as in Listing 5.2 below.

class SumOfNumbers extends React.Component {

 render() {

 return <h1> The sum is {this.props.num1 +

this.props.num2}</h1>;

 }

}

Listing 5.2 SumOfNumbers - ES6 class - component in React

21

React allows components to be rendered directly. This is accomplished by passing an object

to ReactDOM's render method, which includes the name and parameters of the

component [30]. The render function of ReactDOM is demonstrated in Listing 5.3 below.

function SumOfNumbers(props) {

 return <h1>The sum is {props.num1 + props.num2}</h1>;

}

ReactDOM.render(

 <SumOfNumbers num1={2} num2={3} />,

document.getElementById (‘root’));

Listing 5.3 The JSX for the SumOfNumbers component rendering

Listing 5.3 shows JSX syntax for generating an element. JSX appears to be a template

language, but it is actually a syntax extension to JavaScript [31], and it has all of its

capabilities. React uses it instead of HTML or template literals, because it optimizes

compiling, is statically-typed and –for the most part- type-safe. JSX is essentially syntactic

sugar for constructing items. In a React application, however, using JSX syntax is not

obligatory but it does make developing a React application easier [31]. Components in

React take input in the form of properties, which are called props. Using properties is also

demonstrated in Listing 5.3 above.

Components have a specific lifecycle in React. The lifecycle has methods, which will run

before or after an event: constructor(), static getDerivedStateFromProps(), render(), and

componentDidMount() are called when an instance of a component is being created and

inserted into the DOM (Mounting) while, static getDerivedStateFromProps(),

shouldComponentUpdate(), render(), getSnapshotBeforeUpdate(), componentDidUpdate()

are called in this particular order when changed props or state are causing an update.

Method componentWillMount() "is considered legacy and developers are prompted to

avoid it in new code “ [32].

The syntax of Vue's Single File Components is simple and straightforward. Vue components,

like React components, have their own separated scope with properties. A Vue component

is registered with a message property and utilized in the template In Listing 5.4.

22

// Define a new component called todo-item

Vue.component('todo-item', {

 template: 'This is a todo'

})

var app = new Vue(...)

Listing 5.4 Component registration in Vue

As shown in Listing 5.4, registering a Vue component [33] is simple, although the syntax

differs significantly from that of React.

Lifecycle hooks can likewise be used in Vue to access different stages of processing, and are

tied to the Vue instance itself, not to components, unlike React. Vue’s Lifecycle hooks are:

beforeCreate, created, beforeMount, mounted, beforeUpdate, updated, beforeDestroy and

destroyed, [34] the latter two of which are deprecated at v.3.0.0 (Vue3) and later versions,

and are now instead called: activated and deactivated [35].

To summarize, React's component style is the most similar to native JavaScript, and so it is

considered the easiest syntax to learn for previous JavaScript developers. On the other

hand, Vue’s components offer a bit more functionalities. In terms of the fundamental

applications, there are no significant challenges in any of the framework's component

implementations. The most efficient approach to use components is mostly determined by

the developer's prior knowledge and habits; there is no particular benefit to choose one

framework over another based on component implementation.

 Data-binding and State Management

There could be a significant difference in terms of performance, as well as how

communication between a component and a view can and should be implemented. This

also applies to data binding in components. This section analyzes and contrasts the

differences between the two frameworks’ data binding and state management options.

The data in React is supposed to flow downwards, which is termed one-way data flow. Data

from any parent component can be passed to a child component, but not vice versa2. As a

result, the page's input fields have no direct access to the component's state. In other

2 React’s two way data binding solution is officially available at the latest version

23

words, HTML is unable to modify the component. This paradigm offers advantages in terms

of simplicity, but most applications require the ability to change the state of their parent

component at some point. In this case, inverted data flow is required. For example moving

data from an HTML input field to a component is considered inverse data flow. It's possible

with callback functions in React, as well as attaching an event handler to DOM events and

retrieving the value of the HTML input field from the event object [36]. Moreover, React

officially supports a solution for two way data binding in the latest -at the time of writing-

version (v17.0.2) [37].

In below Listing 5.5, the value of the input field is first set by the component's state, and

then the data must be moved in the opposite way using a method.

render() {

 return <input value={this.state.value}

onChange()={this.handleChange} />

}

Listing 5.5 React input field with onChange() event

The data is moved in the opposite direction in Listing 5.5, and the onChange() event handler

is set to the handleChange() method. The event object is passed as a parameter to the

handleChange() function. When the value of an input field is updated, the state of the

component changes in accordance with the event's target value.

Vue on the other hand officially provides a two-way data binding option since its first

release. Two-way data binding allows you to modify the state of a component as a result

of changing the view, for example, when the value of an input field changes, the

component's addressed property changes as well. Event handlers aren't required in this

scenario; they do exist, but they're managed by the framework and abstracted away from

the developer. Vue's way of two-way binding is shown in Listing 5.6.

<input v-model=”name” >

Listing 5.6. Two-way data binding in Vue

24

Vue's two-way data binding results in more clean and straightforward code compared to

React. However, while it has the advantage of a simpler implementation, it is less

manageable and performant. The framework must wire up watchers for each element in

order to support two-way data binding. These watchers are used to see if the value of the

input element has changed. Watchers require resources from the browser, and as their

number increases, in some cases, keeping track of all the many models and views that use

the same data may be problematic. The issue is depicted in Figure 4 below.

As seen in Figure 4, each View makes use of its corresponding Model’s property. When the

Property is changed it also affects the input value for the next Model, thus altering its state.

This leads to further changes in the corresponding property, and thus the next View,

leading to an input value change which in turn alters the state of the next model. The result

is that a “cascading effect” is triggered which leads to a loop that continues indefinitely if

it keeps going in the same direction.

As it can be understood, both ways of data binding have their respective advantages and

disadvantages. Because of the dependencies between the models and the views , two-way

data binding can lead to unmanageable situations, so it should best be used for more trivial

operations. On the other hand, on one-way data flow, more custom code is required but

Figure 4. The two-way data binding Infinite loop

25

its exactly because the event handlers are set by hand, that a possible error can be easier

tracked down to the action that caused it, and the overall unidirectional data flow’s

behavior is easier to predict [38].

 Routing

Because entry-level routing capabilities are a required component in most applications, the

framework's routing options should be investigated. Each framework’s ability and methods

of implemention of routing functionality are described and assessed in this section.

Router or comparable functionality is not included in React. React requires a router

framework for this, and React Router is likely the most popular alternative. Since the used

version, React Router also supports dynamic routing, which enables responsive routes,

allowing the content of a website to be instantly updated according to the device’s.

Vue includes an official router in its base installation, whereas React requires an additional

library. Dynamic routing, nested routes, navigation routes / guards and route parameters

are among Vue’s router features [39] .

S Scripting and Rendering

The virtual DOM is React’s approach of constructing the DOM. The term ”virtual” refers to

the UI representation that is synced with the “real” DOM, reducing the resources that the

browser needs to use. In terms of scripting performance, this provides numerous

advantages as it introduces better performance and cross-browser compatibility.

In practice, virtual DOM allows React to detect any state and/or prop changes. All of the

modifications that need to be performed are done first in the virtual version. When the

content of the element is no longer changing and the difference between the original and

altered content is finalized, the updates are batched and sent to the browser (“real”) DOM.

By using the virtual DOM, less memory usage is required and the DOM actions are

performed significantly faster [40].

Vue's runtime efficiency has also been much improved in this regard. Vue, like React,

features a virtual DOM implementation, in an even more optimized way. While React re-

renders the entire component sub-tree when the component state changes, in Vue the

dependencies are tracked automatically, which means that the re-rendering takes place

26

only at nodes that are required. The above removes the need for the developers to perform

the necessary optimizations themselves [41].

Virtual DOM is used by both React and Vue, with some considerations emerging from a

detailed examination of the framework's scripting and rendering capabilities. It seems

though that despite the minor differences in implementation strategy, which give Vue a

slight boost performance-wise, the differences are significant only when rendering

extremely large data structures. As a result, performance discrepancies should not be

highlighted in the overall assessment.

 Platform Support

For each framework, there are browsers that are completely supported, browsers that are

deprecated or not at all supported, and other ones that require the use of polyfill scripts to

function properly. Polyfill scripts, often known as polyfills, are short compatibility packages

that incorporate missing JavaScript functionality for a particular browser. In most cases,

this entails providing the –legacy- browser with the code needed to run newer features.

The various polyfills may perform significantly differently in practice. Support may vary

considerably across browser versions.

All major modern browsers are supported in both frameworks by default. On the other

hand Internet Explorer 8 and earlier versions are discontinued while support for Internet

Explorer 9, 10, and 11 requires polyfills. As a result, both frameworks are fairly equal in this

scenario. React's requirement for external libraries, on the other hand, must be considered.

External libraries are frequently required by React for various functionality, each of which

has its own set of browser requirements, therefore the necessity for polyfills may change.

 External Libraries & Modules

External libraries add functionality to a library or framework that is not available by default.

The above includes the addition of developer tools, enhancement of the UX, and also that

the performance. Since the User Experience (UX) is such a large aspect of an app, employing

an external library can provide more specific and complete implementations for a variety

of certain aspects. High-performant graphics for example, also offering wide compatibility,

and scalability, can be difficult to create. It is the exclusive focus of certain libraries. This

section gives a quick rundown of the frameworks' library requirements and the current

27

supply. Routing libraries, user-experience, user interface libraries, and even libraries for

creating new libraries are all available in React. In this regard, the React community is very

active, and there is constantly team of programmers that work on a certain feature. These

alternatives often provide better optimization than Vue’s native approach, which tries to

cover all functionalities by default.

Vue offers a large number of external libraries to choose from: ranging from UI Components

and Utilities, Frameworks for mobile/SSR/Static generators and more, to all kinds of

Utilities for state management, HTTP Requests, Typescript, animations, localization, styling,

custom events, payments, and development tools etc [41].

Vue, as a framework, seeks to accommodate a wider range of applications, ideally acting

totally independently. React on the other hand is referred to as a library, since it does not

seek to offer all functionalities, instead serving as a foundation to build upon. A React

application will inevitably be complemented with the use of external libraries, whereas Vue

can function idependantly at least for basic functionalities as the ones described so far.

 Native Applications

One important feature that React has that Vue is lacking, is a robust system for native

rendering, which allows the developer to create mobile apps using the same React

component paradigm as web apps. Vue does have a means to leverage their component

syntax in natively rendered projects, and while they offer numerous alternatives such as

Native Script, Vue Native, and Weex, they have not been as thoroughly vetted and hence

lag behind React Native. For developing native apps, React is clearly superior.

 Localization

In many circumstances, the ability to modify the application's language is required, hence

the user experience of the application is also heavily influenced by localization.

React doesn't have any built-in localization functionality, so you'll have to rely on third-

party libraries. A basic react localization library [42] is one of the most popular options.

Each string is defined for each language independently in react-localization, and API

methods are used to alter or change the current language. After that, you can utilize the

formatted strings in a component.

28

Vue depends on third party solutions for localization such as Vuex-i18n and vue-localize, as

there is no official solution provided.

 Documentation & Community Support

The framework's documentation is a developer's primary source of information, therefore

it should be taken into account while assessing the framework's practicality, as well as the

size and activity of its community. For newer frameworks in particular, community support

may be lacking or fragmented for specific parts, making documentation an even more

important consideration. Inadequate documentation can stifle or even stop application

development.

The documentation for React is extensive and covers all of the framework's common

features [43]. It follows a predictable pattern that is simple to read and comprehend.

There's also a separate tutorial part [44] with step-by-step instructions that the developer

can implement directly in the browser or by creating a project in an editor. The lesson

begins with the installation of React and concludes with a fully functional game. It also

includes theory parts that have been well-adapted.

Among all JavaScript frameworks, React has one of the most active communities. Users

may keep up with the latest news and join discussions on the topic in social media, as well

as in React’s own discussion boards and chat.

The documentation for Vue is well-organized, with unified theory and tutorials that provide

correct examples for each area as the reader progresses. Writing is done mainly from a

theoretical standpoint, but it also includes practical assignments and recommendations

that the developer can test localy and stay relevant with their learning. Vue template

syntax, instances & event handling, watchers & computed properties, classes, reusability &

composition, properties, styles, form bindings, conditional & list rendering, components-

basics & in-depth, are all covered in the documentation, as is routing and state

management, so it is fair to say that all the essentials as well as more complex features are

presented. There's also a plethora of advice for developers on testing, deployment and

migration from prior versions. Vue also has a section in its docs where it compares to

different frameworks including React [45].

29

The Vue ecosystem consists of a booming community with officialy-maintained resources,

including as a forum, real-time chat, and GitHub repositories, to connect, raise and resolve

issues, answer questions and contribute in different manners.

Popularity is also frequently linked to community support. Section 5.2.11 goes over

popularity in more depth.

 Developer Experience - Learning Curve

The field of JS frameworks is relatively new. At some point a developer who is programming

in JavaScript is likely to have some prior experience with the language, but not with

frameworks. Learning a new programming technology takes time, however the learning

curve varies depending on the particular framework.

In addition to the overall review, the developer experience, which includes installation,

error messages, and compilation time is also an important factor.

According to Vue's own development team, it has the shortest learning curve. In

comparison to Vue, React is not the most user-friendly solution in terms of learning curve.

The use of JSX may have the most impact on the curve. To start with Vue, only experience

with HTML and ES5 JavaScript will be required, with the syntax being rather simple and

straightforward. Vue's default linter is ESLint is a linter tool that is responsible for analyzing

code, discovering mistakes, and reporting them. The ESLint rules in Vue's default

configuration are somewhat strict. Semicolons and unused variables, for example, are not

permitted. This may be off-putting to certain developers. The configuration, on the other

hand, can be altered.

The Node.js NPM package manager can be used to install each framework. Both

frameworks are also accessible in other package managers - Yarn being the most common

alternative - and they can be installed with ease by running a single command which

downloads and installs the necessary dependencies for the particular module. For

scaffolding new projects or components, both have their own Command Line Interface

(CLI). A framework's compile time is another factor that influences the developer

experience. Regarding this comparison, both frameworks are commendable in this regard.

Sample applications build in 150-400 milliseconds for React, with Vue being considerably

faster at 60-150 milliseconds. Also both React and Vue offer dedicated developer tools for

application overview and debugging: One thing that separates and gives Vue an advantage

30

in developer experience is the Vue GUI, which provides the user with an optical

representation of the vue-cli, allowing a more clear and intuitive overview than the CLI

environment, thus enhancing ease of use and making it user-friendly especially for the new

developer.

 Popularity and future

How popular it is and what sort of prospects it has are major considerations in the

practicality of JavaScript framework for organizations' main development direction, as well

as for a developer's educated and intentional choice. Choosing a dying framework may be

disastrous for a corporation and certainly not ideal for a developer, and it would almost

certainly result in a significant loss of money and/or time in both circumstances, overtly

and implicitly. The popularity of an application has a significant impact on community

support and, as a result, on the speed with which it is developed. The goal of this section is

to look at the frameworks' present popularity and determine how likely it is that the

development process will continue in each scenario.

There are various services that gather measurenments and provide stats about JSfs

popularity. Hotframeworks website [9] is utilized in this section, as a source that provides

such data. HotFrameworks ranks frameworks according to their received GitHub stars and

the number of queries considering a certain framework on Stack Overflow. Results are

standardized to a 0-100 scale [46].

Based on HotFrameworks' scores, Table 1 demonstrates the popularity of React and Vue.

[57].

Table 1

Framework

Github Score

Stack Overflow

Score Overall Score

React 99 97 98

Vue.js 100 87 93

31

React now has the largest share of popularity, as evidenced by GitHub stars and Stack

Overflow queries combined, despite Vue scoring higher on Github.

React Usage Statistics 2020

 For the fourth year in a row, React was voted the best front-end JavaScript

framework in the State Of JS 2019 worldwide survey of JavaScript developers.

Since 2016, React has been voted the best JavaScript framework, beating out

prominent competitors Vue and Angular.

 According to the State Of JS 2019 poll, 71.7 percent of JavaScript developers are

presently using React, with another 12 percent expressing an interest in learning

it in the future. This represents a significant increase of approximately 8% above

the previous year's figure of 64% active users.

 With 35.9% of votes in Stack Overflow's developer poll 2020, React was rated

the second most popular web framework, trailing only jQuery, which has been

losing ground to React.

 As of June 2020, roughly 1.45 - 1.6 million websites - live and historical - were

developed with React, according to Wappalyzer and BuiltWith data.

 At the same time it had 150k stars and 1388 contributors at Github, and was

almost reaching its record high of 7.5-8.5 million downloads per week,

according to NPM Statistics.

Vue Usage Statistics 2020

 For the second year in a row, Vue was voted the best Front-End JSf in the State

Of JS 2019 developer survey, beating out Angular. In 2017, Vue was ranked third,

and in 2016, it was placed fifth.

 According to the State Of JS 2019 poll, 40.5% of JavaScript developers are

presently developing with Vue and plan to continue so, while 34.5% have

expressed strong interest of using it in the future (second most rated behind

32

Svelte). This represents a nearly 12-percentage-point increase in the previous

year’s 28.8% of the total users.

 Vue was named 7th most popular all around web framework and 3rd most

popular front-end JSf following React and Angular according to Stack Overflow's

developer survey 2020.

 As of June 2020, around 427k-693k websites - live and historical - were

developed with Vue, according to Wappalyzer and BuiltWith data.

 At the same time Vue had an astounding 1.63 million weekly downloads on

NPM, edging out Angular, as seen in NPM statistics and 166k stars and 293

contributors at Github.

As it is made obvious from the State of JS 2019 survey [47], as well as from number of

npm downloads, React was- at the time- by far the most popular of the two

frameworks, with Vue rising in popularity at a much greater rate. Interestingly Vue had

considerably more Github stars, which can be attributed to its dedicated community of

developers [48].

5.3 Conclusion

As stated at the start of the chapter, some characteristics are more important in evaluating

frameworks, whereas others, have a smaller effect on the total rating. The following are

important factors to consider while developing a web application:

1. The prerequisites must be met. The framework must be able to implement the following

features as a minimum: data transfer to and from the server, routing, and data grid

(standalone or from additional libraries) capabilities.

2. The framework's development has to continue. The ongoing maintainance and further

enrichment framework's cannot be halted, as this will have severe effects to the

framework's users.

3. High efficiency. The development of a specific task must be completed quickly and

effectively, taking into account the framework's ready-to-use features, learning curve,

documentation, and support from the community.

33

The comparison of the two JSfs regarding the evaluation criteria defined in 5.1 does not

signify any –considerably important- discrepancies, which indicates that the final

judgement criteria are –for the most part- subject to personal opinion or company policy,

and the task specifications. The study would suggest that Vue.js is most fitted for the

integration of a front-end JSf into an existing application while React.js would be the choice

for building mobile apps with JavaScript. The two frameworks have unique features and

characteristics that may appear as supporting or inhibiting their ability to adequately

implement a task, based on the scale and the nature of the desired implementation. There

is no one-fits-all solution although the both behave particularly well in almost all of the

metrics considered.

34

 Demonstration & Comparison of Applications

Developement

In this chapter we will be further elaborating on the differences between the two

frameworks as they were referenced in chapter 5.1 and presented in chapters 5.2.1-5.2.4,

and will be further enriching the comparison with new points and inputs.

The method of this comparison will be the-step by step- presentation of the development

of two applications in every framework, while commenting on and explaining the

functionalities, which are divided into logical/functional units-sections. At the end of every

section the main points will be evaluated and compared.

6.1 Selection of Applications

To-Do applications have long time proven their utility as tutorial-example apps for learning

and demonstrating purposes in the web development and JS community. This is because -

depending on their complexity and tasks they perform, but even in their simplest form,

they utilize-and thus help to demonstrate- all the basic functionalities of the technology

stack at hand i.e. a JSF in this case.

For the scope of this thesis, a fairly standard To-Do App was developed in React and Vue.

On the other hand, User Authentication and Authorization is a pre-requisite for almost any

web application or even the most basic of websites, and represents the most basic level of

security and data privacy and personalization. In this spirit, a Authentication-Authorization

application with Registration and CRUD3 functionalities was developed with the two

frameworks (although not all of the functionalities are implemented because of the limited

scope of the project-thesis).

The four frontends developed with the chosen frameworks have the exact same feature

set and behavior –respectively- as pairs (To-Do applications-Authentication applications),

3 (GET, POST, PUT, DELETE, PATCH)

35

within the same UI scenarios. The next sections go through how the scenarios were

implemented.

For these implementations the following versions of the frameworks were used: React

17.0.2 and Vue 3.2.2. These versions support React Hooks (since React 16.8) and Vue

Composition API [49] (since Vue 3.0.0) which are the new core features that have updated

and enriched the way of writing the components, from class to function for React and

Options API to Composition API for Vue.

6.2 To-Do Applications

The To-Do apps will now be built, focusing on how to add, remove, and edit data, as well

as pass data from the parent to the child component as props, and vice verca in the form

of event listeners.

The two frameworks will be showcased, and compared back to back on how the four

functions of the application are performed in each case.

• Creating the To-Do List

• Add To-Do Item

• Add To-Do at enter press

• Delete Item

The above functions correspond to equal comparison points, as shown below:

• Data Mutation

• Detecting changes and updating state

• Event listeners

• Component communication

 Developing the To-Do Applications

The development of each of the two frameworks’ version of the To-Do app will be realized

by completing each functionality-section, for each of the respective frameworks and then

comparing the implementations before continuing to the next section.

36

Creating the Apps

This section compares the file structure of the two frameworks.

The final file structure of the two applications is depicted in Figures 5, 6 bellow. There are

two .CSS files for React app, each one corresponding to the respective .js file, create-react-

app generates its default React components with their own CSS file as seen in Figure 6. In

Vue (Figure 5) there are no standalone .CSS files. For its basic Vue components, Vue CLI

creates single files including HTML, CSS, and JavaScript, a Vue architecture feature known

as Single File Components (SFC) [50].

In the end, they do the same thing, but the developer in React or Vue has the freedom to

format the files differently. It's all a matter of personal preference. There is a lot of

debate among developers about how CSS should be written, especially in the context of

Figure 6. File structure of

React To-Do App

Figure 5. File structure of Vue

To-Do App

37

React, where there are a variety of CSS-in-JS solutions like styled-components and

emotion.

Creating the To-Do List

This section compares how the two frameworks perform data mutation.

The source code for TodoItem.js component in Fig.15, essentially represents a typical React

component.

The same component in Vue in Fig.16 represents the structure of the source code of a

typical Vue file4. Although the <style> …<style> part of the component is not shown here,

so that it is a complete analogy of React’s ToDoItem.js.

In React, as seen in Listing 6.1 we are creating a list of To-Dos with useState() Hook which

we import from React. This permits us to maintain our components' local state. It should

normally be an empty array. The data inside the array are the initial data (for demonstration

purposes). Normaly, we want it tobe an empty array. With const [list, setList] =

useState(“…”), two variables are created: const list = “…”, and const setList , which is

assigned a function that enables list to be recreated(mutated) with a new value.

const [list, setList] = useState([

 { id: 1, text: "Pick up John" },

 { id: 2, text: "Buy groceries" },

]);

 const [toDo, setToDo] = useState("");

 const [showErr, setShowErr] = useState(false);

Listing 6.1 React state: Creating a list of todos

In Vue we are using Composition API. The setup() function, in Listing 6.2, contains and

exposes to the app, all of the mutable data for the component and their functions. A ref()

function is used to wrap each piece of state (data that we want to be able to change) data

in our program. This ref() function is a Vue import that allows our app to update anytime

any of the data changes. Here, const list (“...”) plays the role of both list and setList of

React’s implementation and can be further referenced by calling list.value.

4 The <style> …<style> part of the component –following the </script>- is not shown here,
so that it is a complete analogy of React’s ToDoItem.js, and the comparison can be clearer

38

setup() {

 const list = ref([

 { id: 1, text: "Pick up John" },

 { id: 2, text: "Buy groceries" }

]);

 const todo = ref("");

 const logo = Logo;

 const showErr = ref(false);

}

Listing 6.2 Vue state: Creating a list of To-Dos

Comparison - Data Mutation

React and Vue are both creating data that can be changed. Whenever a piece of data

wrapped inside a ref() method is modified, Vue basically combines its own variant of list

and setlist. In order to change state in React, you must first execute setList() with the

value inside. Vue assumes that the developer will do so.

Add To-Do Item

This section demonstrates how the two frameworks listen for changes and update state.

In React, there is a value property on the input field. For adding a new ToDo, a

onChange() event listener JSX is used to automatically update this variable whenever its

value changes.

<Input type="text" placeholder="I need to..."value="{toDo}"

 onChange()="{handleInput}"/>

 Listing 6.3 JSX for adding a new To-Do in React

Whenever the value is altered, it uses the handleInput() function to update state, as shown

in Listing 6.4.

const handleInput = (e) => {

 setToDo(e.target.value);

};

39

Listing 6.4 Update state in React

The addition of a new item on the list is performed through the createNewItem()

function, illustrated in Listing 6.5, which is called when the “+” button of the UI is

selected by the user.

const createNewItem = () => {

const toDoId = newId();

 const newItem = { id: toDoId, text: toDo };

 setList([...list, newItem]);

 setToDo("");

};

Listing 6.5 Creation of new item in React

The newId() function (not shown) creates a new ID that will be passed to the new To-Do

item.

Then, setList() function is run and an array is passed in that includes the entire list as well

as the newly created newItem(). Finally setToDo() is run and receives an empty string. This

is done to ensure that the input value is blank, ready for the new To-Do to be entered.

The input field In Vue has a directive named v-model on it (Listing 6.6). This enables two-

way binding. It ties the input of this field to the todo variable created in the setup() function

and then exposes it as a key inside of the returned object.

<input type="text"

placeholder="I need to..."

 v-model="todo"

 v-on:keyup.enter="createNewItem"

 />

Listing 6.6. Vue Input field

In listing 6.7, the stateful values in the setup function's return object are list, todo, and

showErr, while the rest are functions we want to be able to call from other parts of the app.

40

return {

 todo,

 list,

 showErr,

 createNewItem,

 newId,

 onRemoveItem,

 displayErr,

};

Listing 6.7 Return from setup() (ToDo.vue)

At page load, todo must be set as an empty string, like follows: const todo = ref("").

todo.value is linked to the text entered into the input area. Two-way binding allows the

input field to update the ref() value and vice versa.

In Listing 6.8 below, by pushing todo.value into list.value, the contents of todo.value are

inserted in the list array, before todo.value gets updated to an empty string. The toDoId()

function is the same as used in the React example.

function createNewItem() {

 const toDoId = newId();

 list.value.push({ id: toDoId, text: todo.value });

 todo.value = "";

}

Listing 6.8 Create new To-Do item in Vue

Comparison - Listening for changes and updating state

In React, listening for changes in the input is accomplished through an onChange() event

listener while the state updates accordingly through the handleInput() function. In Vue

both the input and the list (state) updates are achieved through the two-way-binding

feature with the v-model directive. Creating the item in the list also requires two steps in

React versus one step in Vue. Vue seems to have a more compact and abstractive way of

listening for changes and updating state, as seen at the creation of a new To-Do item, with

41

its v-model directive and the composition API, while React needs to be more verbose to

achieve the same functionality, much like in JS.

Add To-Do at enter

This section showcases and compares event listeners in the two frameworks.

Adding a click event that is triggered from clicking a button (Listing 6.9) and creates a new

To-Do item in React, resembles handling an in-line onClick event in vanilla JS.

<button

className="ToDo-Add"

onClick=" {createNewItem}"> +

</button>

Listing 6.9 Add-ToDo button in React

In order for a new To-Do to be added when pressing the enter button, we setup an event

listener to handle the event. This necessitates the input tag handling a onKeyPress event,

as shown in Listing 6.10.

<input type="text" placeholder="I need to..."

 value="{toDo}"

 onChange()="{handleInput}"

 onKeyPress="{handleKeyPress}"

/>

Listing 6.10 Event listener for key-press in React

The handleKeyPress function triggers the createNewItem() function whenever the enter

key is pressed, as in Listing 6.11 below.

const handleKeyPress = (e) => {

 if (e.key === "Enter") {

 createNewItem();

 }

42

};

Listing 6.11 At enter, create a new To-Do (React)

In Vue we just have to apply the “@” symbol, a shortcut for the v:on directive, on the type

of event-listener we need. In listing 6.12, we add a click event listener at clicking the “+”

button, while in Listing 6.13 the same functionality is assigned on pressing the enter key,

again by using the v-on directive.

<button class="ToDo-Add" @click="createNewItem"> + </button>

Listing 6.12 Assigning functionality to a button with the v-on (@) directive in Vue

<input type=”text” v-on:keyup.enter = ”createNewItem”/>

 Listing 6.13 Assigning functionality to a key-press with the v-on directive in Vue

Comparison - Event listeners

In React, setting up event listeners for basic functions like click events is simple, as it is

similar to how an in-line onClick event would be handled in vanilla JS . In such case,

similarity with native JS is React’s advantage. However, setting up a listener for creating a

new To-Do item when the pressing the enter button, took a little bit longer in React.

In Vue, on the contrary, key-press events are as simple as click events, which are indeed

very simple and straightforward as mentioned earlier. This is due to the power and

simplicity of Vue directives.

Delete Item

This section compares how components communicate in the two frameworks.

In React, the removeItem() function, seen in Listing 6.15, is located inside ToDo.js. To be

able to refer to it from within ToDoItem.js we pass on the removeItem() function to the

child component (ToDoItem.js) as a prop, as in Listing 6.16 below, to make it accessible.

43

const removeItem = (id) => {

 setList(list.filter((item) => item.id !== id));

};

 Listing 6.14 The React function for deleting item

<ToDoItem key="{item.id}" item="{item}" removeItem="{removeItem}" />

 Listing 6.15. Deletion of ToDoItem component inside React’s ToDo.js

Then inside <ToDoItem/> component we reference removeItem of the parent component

(ToDo.js) function as props.removeItem. However, through destructuring (Listing 6.16) we

have access to the function directly as removeItem (Listing 6.17).

const ToDoItem = (props) => { const { item, removeItem } = props; };

 Listing 6.16. Destructuring

<button className="ToDoItem-Remove" onClick={() =>

removeItem(item.id)}>

 -

</button>

 Listing 6.17. Delete button in React

In Vue, to access the onRemoveItem() of ToDo.vue, we refer to the function at the very

moment of adding the ToDoItem.vue (child) component inside ToDo.vue (parent) (Listing

6.18). Essentially, with the above, we create a custom event-listener that “listens” for any

emit that the “remove” string triggers (Listing 6.19). In such occasion it calls the

onRemoveItem() function which filters the id from the list.value array (Listing 6.20).

<ToDoItem v-for="item in list" :item="item" @remove="onRemoveItem"

:key="item.id" />

44

 Listing Listing 6.18: ToDoItem component inside Vue’s ToDo.vue

<button class="ToDoItem-Remove" @click="emit(“remove”,item.id)"> -

</button>

Listing 6.19: The delete item button in ToDo.vue

function onRemoveItem(id) {

 list.value = list.value.filter((item) => item.id !== id);

}

Listing 6.20: Filtering out the To-Do task that is meant for deletion in Vue

Comparison - Component communication

In both React and Vue, props are passed to the child component at the time of its creation.

Props will give React components access to parent functions. The props must first be passed

down to make it accessible to the child component [51]. In Vue, events, that will normally

be “caught” at the parent component, have to be emitted from the child [52]. In our case

Vue utilizes a custom event listener to call the parent's function.

Accessing a parent function i.e. emiting data back to the parent takes two steps in both

React and Vue. It would actually need three steps in React if we hadn’t used the

destructuring assignment syntax JS expression5. The same would also be the case with Vue

if the $emit part had not been placed inside the @click listener as in Listing 6.19, but was

instead implemented as in Listing 6.21:

<button class="ToDoItem-Remove" @click=”removeItem(item.id))">-

</button>

 Listing 6.21: The delete item button in ToDo.vue

5 Destructuring is not supported by Internet Explorer

45

In this scenario, as in Listing 6.22 bellow, a emit function would have to be created in the

child component (ToDoItem.vue) as a method:

function removeItem(id) {

 emit("remove", id);

}

 Listing 6.22: Emit function inside ToDoItem.vue (alternative approach)

We would then have direct access to the id (as a key of the item props) by passing the item

props to the child’s props array, as follows: “..., props: [“item”],... ” (see Figure 13 for the

complete implementation).

As a conclusion Vue offers more flexibility in component communication, and specifically

in emitting data from child to parent.

The complete source code for React and Vue To-Do applications is illustrated in Fig.12 13

14 15, 16, 17, and 18.

6.3 AUTH Applications

A back-end application will serve the Authentication-Authorization APIs for both front-end

applications.

The front-ends will have the following features:

• Statefull components

• LocalStorage

• Protected resources

• Client-Side Routing

• Form validation

 Backend

A Node.js – Express server is set up/developed for the needs of the front-end frameworks’

presentation. It uses MongoDB Atlas as a database for storing user information and

Mongoose ODM (Object Document Mapping) to perform CRUD (Create, Read, Update,

46

Delete) operations to the database. For Authentication the application uses JSON Web

Token (JWT) open standard for Token-based Authentication plus bcryptjs to hash and verify

passwords.

Technology Stack

• Node.js v14.17.6.

• Express 4.17.1

• bcryptjs 2.4.3

• jsonwebtoken 8.5.1

• mongoose 5.9.1

• MongoDB Atlas

The APIs that the backend provides are shown in Table 2 below:

Methods Urls Actions

POST /api/auth/signup Register account

POST /api/auth/signin Login account

GET /api/test/all Access public content

GET /api/test/user Access User content

GET /api/test/admin Access Admin content

Table 2. API routes for the front-ends

Fig.7 below, presents a complete representation of SPA architecture that includes

communication with a server, which resembles the applications’ implementation that

follows in section 6.2.2.

47

 Front-end

The presentation process will be organized into four basic sections, which also define the

comparison format. For every (sub-)section, the same components’ implementation in

each framework will be presented and then compared before moving on to the next one.

The application UIs will include the following components and functionalities which

correspond to the (sub-)sections for presentation-comparison:

• Components for Authentication:

o Login

o Logout

o Signup

The front-end will validate the Form data before they are sent to the back-

end.

Figure 7. Architecture of SPA

Source: Adapted from [86].

48

• Public and Authorized-only routes:

o Admin

o User

The routes depend on the user’s roles and the navigation bar’s items change

dynamically in accordance.

• State management

• Authentication and Data Services

External Libraries – Packages – Modules

Both apps use the same or corresponding technology stacks which include external

packages/modules for state management, routing, HTTP requests, validation and styles.

For this project the following modules are used:

▪ React

 redux 4.0.5 A Predictable State Container for JS Apps

 react-redux 7.2 Official React bindings for Redux

 redux-thunk 2.3.0 Async middleware for Redux.

 react-router-dom 5 DOM bindings for React Router.

 Axios 0.19.2 Promise-based HTTP client for the browser and node.js

 react-validation 3.0.7 Component for simple form validation of React

components.

 validator 13.1.1 A library of string validators and sanitizers

 bootstrap 4 Tool collection for styling components and creating

responsive websites and web applications.

▪ Vue

49

 vue-router 4 Vue.js official router

 Vuex 4 State management library for Vue.js applications

 Axios: 0.21.1 (As above)

 vee-validate 4 Form Validation for Vue.js

 bootstrap 4 (As above)

 Development of the Applications

In the following sections the development process and comparison of the two

applications is presented.

Create the Apps

• React

The following command is used for creating the React application:

npx create-react-app react-redux-JWT-authentication

React officially suggests npx create-react-app as it installs the latest version by default.

Create React App creates frontend build pipeline, that can be used it with any backend. It

leverages Babel and Webpack behind the scenes, but the user isn't required to understand

or interact with them [53].

React can be used in other ways for different use cases [49].

• Vue

The following command is used to create the Vue application:

vue create vue3-Vuex-JWT-authentication

The Vue create command uses the Vue CLI which must be already installed from npm (npm

install -g @vue/cli). The CLI (Command Line Interface) provides the user with certain

preset/setup options. For the needs of this application the default preset is selected that

provides a basic Babel -ESLint setup [54].

There are additional ways for installing Vue according to use-case scenarios [55]. Vue also

offers another way for creating an app, with Vite instead of the Vue CLI, which offers better

performance.

50

For both frameworks Node.js and npm must also be installed.

Both create-react-app and vue-cli scaffold a basic application out of the box which is served

in localhost by running the npm start / npm run serve commands respectively. The apps

can now be viewed in the browser at localhost:80806 or other port depending on the local

environment. The cli will provide a direct link.

We can now proceed to modify the generated files accordingly and gradually create the

applications.

The corresponding devtools for React and Vue will be added to the browser for debugging

and component inspection.

The final folders & files structure for this React and Vue applications can be seen in Fig.8

and 9 respectively.

6 If 8080 port is taken, a new one will be automatically assigned, usually 8081 or 8082, and
the app will be served there.

51

Figure 8. File structure of React - AUTH application

52

Figure 9. File structure of Vue - AUTH application

In Fig.8 and 9 (only) the folders specific to the application are shown as opened.

The components folders for the two applications is identical, with the exception of the files’

suffixes. React has two extra files-actions, reducers- for Redux state management, while

the Redux store is a single file residing in /src. In Vue, the Vuex store represents a respective

folder since it contains two separate files (the authentication module and the store).

React’s tree also contains a helper folder, where the routing helper is located, while both

file trees have the same exact services folder with the two identical files. The file containing

53

the CSS for the React application is located in the /src folder whereas in Vue there is no

such file since the CSS is embedded in every individual component (SFCs). The app’s main

components App.vue and App.js, as well as the entry points for each application- main.js

and index,js- are also located in the /src folder for Vue and React respectively. In Vue there

is also the separate router.js file, for the routing configurations in contrary to React where

no separate file is used. For the port configuration React uses the .env while Vue has a

special vue.config,js file.

The rest of the folders and files are created at the apps’ creation, from the scaffolding of

the CLI/npx respectively, and are irrelevant for the scope of this application.

The files can also be organized in different ways. For example, another common practice

for structuring a React app is to have each component in its own separate directory with

its own index.js file, index.CSS file and presumably an additional index.test.js file, if testing

configuration is present. Vue developers are also not constrained to using the SFC

structure, but it is considered common-best practice and community support is based on

this structure.

Application Overview

Below is the overview of the application. All steps are the same for each of the examined

frameworks, thus presented once, with any framework-specific variations noted:

- The App components act as containers with React/Vue Router. The apps state is obtained

via the Redux/Vuex Store. The navbar can then be displayed dependent on the current

state.

- The Login and Signup components contain a form for submitting the user data, along with

validation provided by the react-validation/Vee-Validate libraries. They send authorization-

authentication actions (login/signup) to the Redux Thunk Middleware / Vuex store which

call the API using auth-service.

- The auth-service methods make HTTP requests using Axios. Within these methods, the

JWT is likewise stored and retrieved from the Browser Local Storage.

- All visitors can see the Home component.

- After the login action is completed, the Profile component displays the user information.

54

- The BoardUser and BoardAdmin components are featured in the navbar - or not -

according to the user roles. Protected resouses can be accessed from the web API by using

the user service in these components.

- A helper function is used by the user service to insert the JWT to the HTTP header. The

function, exposes an object that contains the JWT of the currently logged in user, as

retrieved from the Local Storage.

As made obvious from the above description, the logical structure of the two applications

is almost identical in terms of implementation logic.

Development Process

The Applications’ Entry Points

First, we setup the entry point for each application, in index.js for React and main.js for

Vue, where we modify the auto-generated code and make the appropriate imports as in

Listing 6.23 and 6.24 respectively.

• React

The <Provider> component in index.js (Listing 6.23),is needed so that the appropriate

nested components are able to access the Redux store. The index.css is the application's

CSS file.

import React from "react";

import ReactDOM from "react-dom";

import { Provider } from "react-redux";

import store from "./store";

import "./index.css";

import App from "./App";

ReactDOM.render(

 <Provider store = store}>

 <App />

 </Provider>,

55

 document.getElementById("root")

);

 Listing 6.23 React’s application entry point: index.js

• Vue

In src/main.js, we modify the original code inside as follows (Listing 24):

import { createApp } from "vue";

import App from "./App.vue";

import store from "./store";

import router from "./router";

import "bootstrap";

import "bootstrap/dist/css/bootstrap.min.css";

createApp(App)

 .use(router)

 .use(store)

 .mount("#app");

Listing 6.24: Vue’s application entry point: main.js

Auth & User Services

The Auth and User services are the applications’ entry points for communication with the

API.

The Services, described below, are identical for both React and Vue applications.

In src/services folder, we create the following files:

services/

 user-auth.js

 auth-service.js

 user-service.js

The above files will host the Helper function, the Authentication service, and the Data

service respectively.

56

It should be noted that Axios must be installed, before proceeding to interact with the

Services.

Authentication service

For HTTP requests, the service uses Axios, and for user information and JWT, it uses Local

Storage.

Axios provides the following methods:

 POST: Used to make a post request to the server with the user’s data at

signup/login , and also save the JWT to the browser’s Local Storage at login.

 Delete: Used to delete the JWT from the browser’s Local Storage at logout.

The above methods are used in signup(), login(), and logout() functions as

demonstrated below in Listing 6.25.

import Axios from “Axios”;

const API_URL = “http://localhost:8080/api/auth/”;

class AuthService {

 login(name, pass) {

 return Axios

 .post(API_URL + “signin”, { name, pass })

 .then((res) => {

 if (res.data.accessToken) {

 localStorage.setItem(“user”, JSON.stringify(res.data));

 }

 return res.data;

 });

 }

 logout() {

 localStorage.removeItem(“user”);

 }

 signup(name, email, pass) {

 return Axios.post(API_URL + “signup”, {

57

 name,

 email,

 pass,

 });

 }

}

export default new AuthService();

Listing 6.25: Authentication Service: auth-service.js

Data Service

To retrieve data from the server we make use of the available methods. In order to access

protected resources, an Authorization header must be included in the HTTP request. For

this reason a helper function called userAuth() is defined inside the user-auth.js file (Listing

6.26).

The function looks for user item in Local Storage. It returns the HTTP Authorization header

with the JWT accessToken in case of a logged in user present, or an empty object otherwise.

export default function userAuth() {

const user = JSON.parse(localStorage.getItem(‘user’));

if (user && user.accessToken) {

return { ‘x-access-token’: user.accessToken };

} else {

return {};

 }

}

Listing 6.26 User-auth.js (Helper function)

Now, in user-service.js, we establish a service to provide data access, as shown in Listing

6.27, by using the userAuth() function to add an HTTP header when requesting authorized

resources.

import Axios from ‘Axios’;

import userAuth from ‘./user-auth’;

58

const API_URL = ‘http://localhost:8080/api/test/’;

class UserService {

 getPublicInfo() {

 return Axios.get(API_URL + ‘all’);

 }

 getBoardUser() {

 return Axios.get(API_URL + ‘user’,{headers:

userAuth() });

 }

 getBoardAdmin() {

 return Axios.get(API_URL + ‘admin’, { headers:

userAuth() });

 }

}

export default new UserService();

Listing: 6.27: Data Service: user-service.js

State Management

• React

Redux

“Redux is a predictable state container for JavaScript applications. It helps you write

applications that behave consistently, run in different environments (client, server, and

native), and are easy to test. On top of that, it provides a great developer experience, such

as live code editing combined with a time traveling debugger.” [56]

Even though Redux is not an official direct recommendation for State Management in

React, as no other alternative is neither, it is nevertheless hinted as such since it is

mentioned many times throughout the official React documentation. In any case, it has

been the most used solution in the React community for years, far ahead the “competition”

as well [57].

59

Create Redux Actions

The Store's only source of truth is Actions. These are plain JS objects that feature a type

field that specifies the type of action to be taken, while the other fields provide

information/data. Two kinds of Actions will be created in src/actions folder:

actions/

 auth.js

 message.js

The above files contain the signup/login/logout, and set/clear message actions

respectively.

The types.js file, which specifies the type field, will also be created.

Action Types

The string constants for determining every action must first be defined, as in Listing

6.28:

export const SIGNUP_SUCCEEDED = “SIGNUP_SUCCEEDED ”;

export const SIGNUP_FAILED = “SIGNUP_FAILED”;

export const LOGIN_SUCCEEDED = “LOGIN_SUCCEEDED ”;

Figure 10. Redux overview

 Source: Adapted from [87]

60

export const LOGIN_FAILED = “LOGIN_FAILED”;

export const LOGGED_OUT = “LOGGED_OUT”;

export const SET_MSG = “SET_MSG”;

export const CLEAR_MSG = “CLEAR_MSG”;

 Listing 6.28: Action Types file: actions/type.js

Following, the Action Creators - functions that create and return the Actions objects- will

be defined.

Message Action Creator

The folowing Listing 6.29 shows the Redux action creator responsible for the APIs

notifications .

import { SET_MSG, CLEAR_MSG } from “./types”;

export const setMsg = (msg) => ({

 type: SET_MSG,

 payload: msg ,

});

export const clearMsg = () => ({

 type: CLEAR_MSG,

});

Listing 6.29: Message Action Creator file: actions/message.js

Authentication Action Creator

In Listing 6.30, the creator for authentication-related operations is presented. We use

AuthService to send – asynchronous - HTTP requests that result in dispatch(es) which is/are

then handled by the reducers.

• AuthService.signup(...) is called by the signup() method.

o If the registration is successful, SIGNUP_SUCCEDED and SET_MSG are

dispatched.

61

o If the registration fails, SIGNUP_FAILED and SET_MSG are dispatched.

• AuthService.login(..) is called by the login() method

o If the login is successful, LOGIN_SUCCEEDED and SET_MSG are

dispatched.

o If the login fails, LOGIN_FAILED and SET_MSG are dispatched

Note that a Promise is returned for the components that use them.

import {

 SIGNUP_SUCCEEDED ,

 LOGIN_SUCCEEDED ,

 SIGNUP_FAILED,

 LOGIN_FAILED,

 SET_MSG,

 LOGGED_OUT,

} from“. / types”;

import AuthService from“.. / services / auth-service”;

export const signup = (name, email, pass) => (dispatch) => {

 return AuthService.signup(name, email, pass).then(

 (res) => {

 dispatch({

 type: SIGNUP_SUCCEEDED

 });

 dispatch({

 type: SET_MSG,

 payload: res.data.msg,

 });

 return Promise.resolve();

 },

 (err) => {

 const msg = (err.res && err.res.data && err.res.data.msg) ||

err.msg || err.toString();

 dispatch({

 type: SIGNUP_FAILED,

 });

 dispatch({

 type: SET_MSG,

62

 payload: msg ,

 });

 return Promise.reject();

 });

};

export const login = (name, pass) => (dispatch) => {

 return AuthService.login(name, pass).then(

 (data) => {

 dispatch({

 type: LOGIN_SUCCEEDED ,

 payload: {

 user: data

 },

 });

 return Promise.resolve();

 },

 (err) => {

 const msg = (err.res && err.res.data && err.res.data.msg) ||

err.msg || err.toString();

 dispatch({

 type: LOGIN_FAILED,

 });

 dispatch({

 type: SET_MSG,

 payload: msg ,

 });

 return Promise.reject();

 });

};

export const logout = () => (dispatch) => {

 AuthService.logout();

 dispatch({

 type: LOGGED_OUT,

 });

};

 Listing 6.30: Authentication Actions Creator: actions/auth.js

63

Create Redux Reducers

In the src/reducers folder, two reducers will be present, each of which manages a distinct

part of the application state in accordance to dispatched Redux actions. The two reducers

will then be combined at index.js.

reducers /

 index.js

 auth.js

 message.js

The reducers correspond to the signup/login/logout, and set/clear message Actions

respectively.

Message Reducer

The reducer that revisions the message state according to the previous state and a

dispatched message action (Listing 6.31).

import { SET_MSG, CLEAR_MSG } from “../actions/types”;

const initState = {};

export default function (state = initState , action) {

 const { type, payload } = action;

 switch (type) {

 case SET_MSG:

 return { msg : payload };

 case CLEAR_MSG:

 return { msg : “” };

 default:

 return state;

 }

 Listing 6.31: Message Reducer: reducers/message.js

Auth Reducer

This reducer (Listing 6.32) is responsible for updating the isLoggedIn state, as well as that

of the user, according to the message state.

64

import {

 SIGNUP_SUCCEEDED ,

 SIGNUP_FAILED,

 LOGIN_SUCCEEDED ,

 LOGIN_FAILED,

 LOGGED_OUT,

} from“.. / actions / types”;

const user = JSON.parse(localStorage.getItem(“user”));

const initState = user

 ? { isLoggedIn: true, user}

 : { isLoggedIn: false, user: null};

export default function(state = initState , action) {

 const {

 type,

 payload

 } = action;

 switch (type) {

 case SIGNUP_SUCCEEDED :

 return {

 ...state,

 isLoggedIn: false,

 };

 case SIGNUP_FAILED:

 return {

 ...state,

 isLoggedIn: false,

 };

 case LOGIN_SUCCEEDED :

 return {

 ...state,

 isLoggedIn: true,

 user: payload.user,

 };

 case LOGIN_FAILED:

 return {

 ...state,

 isLoggedIn: false,

 user: null,

 };

65

 case LOGGED_OUT:

 return {

 ...state,

 isLoggedIn: false,

 user: null,

 };

 default:

 return state;

 }

}

 Listing 6.32: Authentication Reducer: reducers/auth.js

Combine Reducers

Because a Redux application (usually) has only one store, we utilize reducer composition

rather than using several stores to handle the data processing logic [58] .This is performed

in index.js file (Listing 6.33).

import { combineReducers } from “redux”;

import auth from “./auth”;

import msg from “./message”;

export default combineReducers({ auth, msg });

 Listing 6.33: Combine Reducers: reducers/index.js

Redux Store

The Store is tasked with connecting Actions and Reducers together as well as maintaining

the application's state.

66

At this point, Redux and Thunk Middleware need to be installed. We can also install Devtool

Extension7 as a developer dependency as such: “npm install—save-dev redux-devtools-

extension”.

After the modules’ installalation, combineReducers() is now imported, which was used in

order to combine the two reducers into one in the previous section, and pass it to

createStore() (Listing 6.34):

import { createStore, applyMiddleware } from “redux”;

import { composeWithDevTools } from “redux-devtools-extension”;

import thunk from “redux-thunk”;

import rootReducer from “./reducers”;

const middleware = [thunk];

const store = createStore(rootReducer,

 composeWithDevTools(applyMiddleware(...middleware))

);

 export default store;

Listing 6.34: Redux Store: src/ store.js

7 Helps us to use visualize our redux store in the browser using the corresponding browser
extension.

67

• Vue

Vuex

“Vuex is a state management pattern + library for Vue.js applications. It serves as a

centralized store for all the components in an application, with rules ensuring that the state

can only be mutated in a predictable fashion. It also integrates with Vues’ official devtools

extension to provide advanced features such as zero-config time-travel debugging and

state snapshot export / import” [59].

Figure 11. Overview of Vuex

Source: Adapted from [60]

Vuex Authentication module

The Vuex authentication-module is placed in src/store folder:

store/

68

 auth.module.js

 index.js

The above two files contain the authentication module and the Vuex Store - that contains

all the relevant modules - respectively.

In Listing 6.35 below, we import auth.module to main Vuex Store in index.js.

import { createStore } from "Vuex";

import { auth } from "./auth.module";

const store = createStore({

 modules: {

 auth,

 },

});

export default store;

Listing 6.35 Vuex store: index.js

Then, we define the Vuex Authentication module (Listing 6.36), which includes the

following:

 state

 actions

 mutations

More specifically the status & user state, the login/logout/signup actions, and the

loginSucceeded/loginFailed/loggedOut/signupSucceeded/signupFailed mutations,

respectively.

AuthService is utilized to pefrorm authentication requests:

import AuthService from '../services/auth-service';

const user = JSON.parse(localStorage.getItem('user'));

const initState = user

 ? { status: { loggedIn: true }, user }

 : { status: { loggedIn: false }, user: null };

69

export const auth = {

 namespaced: true,

 state: initState ,

 actions: {

 login({ commit }, user) {

 return AuthService.login(user).then(

 user => {

 commit('loginSucceeded', user);

 return Promise.resolve(user);

 },

 err => {

 commit('loginFailed');

 return Promise.reject(err);

 }

);

 },

 logout({ commit }) {

 AuthService.logout();

 commit('logout');

 },

 signup({ commit }, user) {

 return AuthService.signup(user).then(

 res => {

 commit('signupSucceeded');

 return Promise.resolve(res.data);

 },

 err => {

 commit('signupFailed');

 return Promise.reject(err);

 }

);

 }

 },

 mutations: {

 loginSucceeded(state, user) {

 state.status.loggedIn = true;

 state.user = user;

 },

70

 loginFailed(state) {

 state.status.loggedIn = false;

 state.user = null;

 },

 logout(state) {

 state.status.loggedIn = false;

 state.user = null;

 },

 signupSucceeded(state) {

 state.status.loggedIn = false;

 },

 signupFailed(state) {

 state.status.loggedIn = false;

 }

 }

};

 Listing 6.36: Vuex Authentication module: auth.module.js

State Management Comparison

First of all because Redux is a standalone library, not specific to React, we need to import

other libraries e.g the React-Redux library so that React components are able to interact

with the store, as well as middlewares for async logic (Thunk), for it to be functional [61].

Vuex on the other hand is tightly coupled with Vue, hence there is less boilerplate code for

Vuex to get started, which is clearly seen in the import statements of files store.js and

index.js respectively.

Another thing to be noted here is that with first-party solutions there are less decisions to

be made on behalf of the developer. For example on React side, the first decision to be

made is the choice of a State management library e.g. Redux or Mobx? Then, let’s assume

Redux is chosen, another decision needs to be made in regards of middleware: Thunk or

Saga? This is, interestingly, the same main “problem” this thesis is examining, just on a

higher level -meaning it is not as equally an important decision- but the reasoning is exactly

same: How to navigate and make choices in a world full of numerous

frameworks/libraries/packages etc. Of course there is the other side of the coin in this

situation also, which is that there is less flexibility with the more integrated solutions like

71

Vue’s. So, in the end it is a tradeoff. That being said, Vuex is also not without its alternatives,

like the lightweight Pinia [62] and other- mostly lightweight- variations of Vuex [63]

although none of them is widely adopted.

React has a more modular approach as is to be expected since it is a library so it requires

external libraries/packages for further functionality. Moreover, its modular logic is also

present “internally” to React’s structuring logic as well as that of its various solutions

libraries like Redux. Vue on the other hand has the logic of providing more compact

solutions as it is single file component implementation seems to also reflect on its state

management solution (Vuex). As we can see in Vuex the whole logic is contained in the

same file (auth.module.js) whereas in Redux it is divided into two separate files each one

representing a single logical unit (actions and reducers).

Of course, as said before, nothing inhibits the developer from also separating logic in Vuex

by abstracting actions and mutations to separate files and import them into the store but

again, this is the best practice and the intended structuring way of the library’s creator(s)

[64].

As for similarities, they share an important concept: both Redux and Vuex –usually- use

only one store -a single state management “object store”-, thus the global state is a “single

source of truth”, even though they are both based on the Flux pattern in which multiple

stores are a common practice [65].

They also both have their corresponding devtools, the standalone Redux devtools and the

–seamless- integration with Vue.js devtools for Vuex.

As for mutating state, while Redux uses reducers, Vuex uses mutations. In Redux, as in

React, state is always immutable, while in Vuex committing mutation by the store is the

only way to change data, since there is no dispatcher like Redux. We can see how Vuex is

directly assigning new values to state variables in auth.modules.js (in the corresponding

mutations part) while Redux Reducers calculate a new state -taking the previous state and

an action as input – to be then combined with the other reducers at the store, as a root

reducer through the combineReducers() function. As before in the To-Do applications, here

again the same pattern is noticed: Vue tends to “directly” access values (either through bi-

directional -as in two-way binding- or uni-directional -as in Vuex- data flow) while React

takes a “longer route” following the functional programming paradigm through the use of

72

pure functions8 as Redux’s reducers*: “React and Redux both need pure functions coupled

with immutability to run in a predictable fashion” [66].

Although Redux is a framework agnostic library there seems to be a correlation between

its logic of implementation and that of React’s, that’s why it has been the standard choice

for state management for years, even resulting in many developers mistaking it as a React

specific-implementation, as Vuex is for Vue.

From the above, it can be safely deduced that, comparing Redux to Vuex, although not

directly a React-Vue comparison, is still relevant for our scope and adds complementary

value and meaning to the overall comparison.

Components for Authentication

Rather than utilizing Axios or AuthService directly, the Authentication Components

communicate and dispatch calls to Redux Thunk Middleware for React, which in turn gets

State from Redux and makes the requests to auth-service. Instead they communicate with

Vuex Store directly, in Vue’s case, returning status through this.$store.state.auth and

making the http requests to auth-service.

 Login Page

• React

In the components folder at the src level, the following files are added to host the respective

components:

components/

 login.component.js

 signup.component.js

 profile.component.js

The login page presents a form with two fields: username and password. The user’s inputs

are validated in real-time. Once the validation passes, the User gets through Authentication

8 A function that is free from side-effects and for the same input value it always produces
the same result.

73

process and - provided that the process is successful - has now access to protected

resources.

Form Validation

For input fields validation we use react-validation [67], a library –a component actually-

that provides basic form validation for React components. According to the Controlled

Components [68] approach, the displayed value is tied to the state of the component. A

function associated to the form element's onChange() event handler is called to update

the value. Updates. The state property gets updated by the onChange() function, and in

turn the form element’s value is also updated.

As the react-validation prompts in the instructions [67], we define the required() function

which is then passed as an array in the validations attribute in the form. The form itself is

implemented by the <Form/> component, which is a wrapper around the native form

component, and is imported from react-validator, as is the Input component which hosts

the two input fields: username & password.

The Form validateAll() method is then used to verify the validation functions in validations.

The CheckButton component is used to verify whether or not the form validation was

successful, and it does not appear on the form (display: none). It uses React’s ref property

to reference the Form component.

Login

A form with a username and password is found on the Login page.

 – The form’s fields will be verified as required fields.

 – If the validation is successful, the user gets forwarded to the Profile page after

completing the login process, which involves a login action being dispatched.

For accessing the application state we use Redux connect() function with

mapStateToProps():

 – Redirect user to Profile page by checking isLoggedIn.

 – Show response message with msg.

First of all, since we have chosen to define React’s components as classes, we need to

implement a constructor to be able to initialize state and bind methods, as seen in Listing

74

6.37. At the constructor’s implementation, super(props) must be called before any other

statement. The constructor gets called first and then the component is mounted [69].

The connect() function links a React component to a Redux store [70], for managing state,

while the mapStateToProps() function selects the part of the data from the store that the

connected component need. At render() lifecycle method we check if user is logged in,

according to the state coming from the props that are getting passed to it through

mapStateToProps(). If true, the user gets redirected to Profile page by the Redirect

component of react-router-dom module which is imported.

If false, the user will proceed to provide username and password. The submission of the

new data in the form fields triggers the onChangeName() and onChangePass() functions

respectively which set the new values of the state variables through the setState() function

[69]. Since the state is immutable and cannot be updated directly in React, The setState()

fuction is the only proper way to do it.

At the form submission, handleLogin() function is called which sets the loading state, calls

the forms’ validateAll() function and if the validation passes, a login action is dispatched.

The user gets redirected to the profile page through the history.push() function of react-

router-dom. In any case, the loading state is again updated.

The Login button element has an effect on it which shows on screen or not, according to

the loading state value (true/false) and finally the appropriate response message is shown.

import React, { Component } from “react”;

import { Redirect } from ‘react-router-dom’;

import Form from “react-validation/build/form”;

import Input from “react-validation/build/input”;

import CheckButton from “react-validation/build/button”;

import { connect } from “react-redux”;

import { login } from “../actions/auth”;

const required = (value) => {

 if (!value) {

 return (<div className=”alert alert-danger” role=”alert”>

This field cannot be empty!

75

</div>);

 }

};

class Login extends Component {

 constructor(props) {

 super(props);

 this.handleLogin = this.handleLogin.bind(this);

 this.onChangeName = this.onChangeName.bind(this);

 this.onChangePass = this.onChangePass.bind(this);

 this.state = {

 name: “”,

 pass: “”,

 loading: false,

 };

 }

 onChangeName(e) {

 this.setState({

 name: e.target.value,

 });

 }

 onChangePass(e) {

 this.setState({

 pass: e.target.value,

 });

 }

 handleLogin(e) {

 e.preventDefault();

 this.setState({

 loading: true,

 });

 this.form.validateAll();

 const {

 dispatch,

 history

 } = this.props;

 if (this.checkBtn.context._errors.length === 0) {

 dispatch(login(this.state.name, this.state.pass)).then(() => {

 history.push(“/profile”);

 window.location.reload();

76

 }).catch(() => {

 this.setState({

 loading: false

 });

 });

 }

 else {

 this.setState({

 loading: false,

 });

 }

 }

 render() {

 const {

 isLoggedIn,

 msg

 } = this.props;

 if (isLoggedIn) {

 return <Redirect to=”/profile” />;

 }

return (

<div className=”col-md-12”>

<div className=”card card-container”>

<img

 src=”//ssl.gstatic.com/accounts/ui/avatar_2x.png”

 alt=”profile-img”

 className=”profile-img-card”

 />

<Form

 onSubmit={this.handleLogin}

 ref={c =>

 {

 this.form = c;

 }}

 >

 <div className=”form-group”>

 <label htmlFor=”name”>Username</label>

 <Input

77

 type=”text”

 className=”form-control”

 name=”name”

 value={this.state.name}

 onChange()={this.onChangeName}

 validations={[required]}

 />

 </div>

 <div className=”form-group”>

 <label htmlFor=”pass”>Password</label>

 <Input

 type=”pass”

 className=”form-control”

 name=”pass”

 value={this.state.pass}

 onChange()={this.onChangePass}

 validations={[required]}

 />

 </div>

 <div className=”form-group”>

 <button

 className=”btn btn-primary btn-block”

 disabled={this.state.loading}

 >

 {this.state.loading && (

)}

 Login

 </button>

 </div>

 {msg && (

 <div className=”form-group”>

 <div className=”alert alert-danger” role=”alert”>

 {msg }

 </div>

 </div>

)}

 <CheckButton

 style={{ display: “none” }}

78

 ref={ c => {

 this.checkBtn = c;

 }}

 />

</Form>

< /div> < /div>);

}

}

 function mapStateToProps(state) {

 const {

 isLoggedIn

 } = state.auth;

 const {

 msg

 } = state.msg;

 return {

 isLoggedIn,

 msg

 };

 }

 export default connect(mapStateToProps)(Login);

Listing 6.37: React Login page: login.component.js

• Vue

In the components folder at src level, the following files will host the respective

Vue components:

components/

 Login.vue

 Signup.vue

 Profile.vue

Form Validation

The form and fields of the page are built with the VeeValidate’s Form and Field

components. They are imported from VeeValidate 4.x and are used to validate input. These

79

are higher-order components (HOC) that - based on the name of the field - automatically

hook into the validation rules (schema). As seen in Listing 6.38 the Form component has

two Field components: username & password. If a field is invalid, an error message is

displayed. The ErrorMessage component allows you to display error messages without

having to use scoped slots on the Form or Field components [71]. Nothing is rendered if

there are no messages concerning the associated field. The validation schema with the

appropriate messages are defined in the data() function by Yup, which is also imported.

Login

Initially we check the user logged-in status using the declared computed property

loggedIn() and Vuex Store as such: “this.$store.state.auth.status.loggedIn”. Because the

store option is provided to the root instance (in index.js) the above is made possible. The

store will thus be injected into all child components who will be able to access it as

this.$store [72]. If the status from the store changes, loggedIn value updates accordingly.

This occurs because Vuex stores are reactive, which means that if the store's state changes,

the retrieved state will update reactively and effectively. If the status is true, it means the

user is logged in, thus the created() lifecycle hook [73] and Vue Router are utilized to

forward them to the Profile page.

In case that the user is not already logged in, at form submission, the task is being handled

by the handleLogin() method. First the loading state is set to true which affects the

appearance and behavior of the login button as seen in the template in Listing 6.38. Then,

Vuex dispatches the login action for the user and the router redirects the user to profile

page on success, else the loading state is updated to false and the appropriate message is

shown as it is defined in the Vuex authentication module.

<template>

 <div

 ...

 />

 <Form @submit="handleLogin" :validation-schema="schema">

 <div class="form-group">

 <label for="name">Username</label>

 <Field name="name" type="text" class="form-control" />

80

 <ErrorMessage name="name" class="error-feedback" />

 </div>

 <div class="form-group">

 <label for="pass">Password</label>

 <Field name="pass" type="pass" class="form-control" />

 <ErrorMessage name="pass" class="error-feedback" />

 </div>

 <div class="form-group">

 <button class="btn btn-primary btn-block"

:disabled="loading">

 <span

 v-show="loading"

 class="spinner-border spinner-border-sm"

 >

 Login

 </button>

 </div>

 <div class="form-group">

 <div v-if="message" class="alert alert-danger"

role="alert">

 {{ msg }}

 </div>

 </div>

 </Form>

 </div>

 </div>

</template>

<script>

import { Form, Field, ErrorMessage } from "vee-validate";

import * as yup from "yup";

export default {

 name: "Login",

 components: {

 Form,

 Field,

81

 ErrorMessage,

 },

 data() {

 const schema = yup.object().shape({

 name: yup.string().required("Username cannot be empty !"),

 pass: yup.string().required("Password cannot be empty !"),

 });

 return {

 loading: false,

 msg : "",

 schema,

 };

 },

 computed: {

 loggedIn() {

 return this.$store.state.auth.status.loggedIn;

 },

 },

 created() {

 if (this.loggedIn) {

 this.$router.push("/profile");

 }

 },

 methods: {

 handleLogin(user) {

 this.loading = true;

 this.$store.dispatch("auth/login", user).then(

 () => {

 this.$router.push("/profile");

 },

 (err) => {

 this.loading = false;

 this.msg =

 (err.res &&

 err.res.data &&

 err.res.data.msg) ||

 err.msg ||

82

 err.toString();

 }

);

 },

 },

};

</script>

<style scoped>

...

</style>

 Listing 6.38: Vue Login page: Login.vue

Login Page Comparison

Vue, again -as in the Redux-Vuex comparison- has less boilerplate code, since its router and

state management solutions are first-party-solution libraries. React on the other hand has

to import all corresponding companion libraries.

Vue’s -roughly-equivalent for React’s constructor is beforeCreate() and it usually does not

have to be explicitly called. Unlike React where the constructor sets up the class, Vue

handles the class creation for you.

For form validation they both import and use the “same” wrapper-components, although

their respective libraries implementations used here are based on different approaches

(HOC for VeeValidate and Controlled Components for react-validation).

In both approaches the displayed value is bound to component state. VeeValidate abstracts

(”automates”) the binding to the input values. Where v-model would normally be used is

now not needed because VeeValidate implements it under the hood by constructing an

internal model, which “watches” and keeps the <Field /> component’s field instances and

the input synced [74]. To update the value under the Controlled Component's react-

validation approach, a function linked to the onChange() event handler on the form

element is called. The onChange() function modifies the state property, which modifies the

value of the form element.

Vue’s –actually VeeValidate’s- implementation is clearly more abstract, easier and requires

far less code in comparison to React’s/react-validation’s verbose implementation. On

83

readability side, still the same is true but there could be a caveat to Vue’s completely

abstracted implementation: The reviewing of the code by another developer could

introduce an “obstacle” to understanding the functionality, if they are not familiar with

VeeValidates implementation. Of course it would require just a quick review of the

documentation to understand how this is working, but then again in a comparison like this,

concerning first and foremost the developer’s experience- where the required time and

effort always represent an important factor-, everything counts and ads up to form the

overall evaluation.

Finally Vue uses a separate < ErrorMessage > component for handling error messages while

React uses the < CheckButton > component to check if verification passes. One “point” for

each here as: On the one hand Vue uses an extra component for error displaying which

React encapsulates into the Redux messages, while on the other hand React uses the –

indeed “strange”- (at least to the authors’ eyes) <CheckButton> component and checkbtn()

function for checking if the validation is successful, which Vue accomplishes elegantly by

VeeValidates’ abstraction, with again the same problematic.

For the actual login process, React passes the onSubmit event to the handleLogin() function

in contrary to Vue that passes the user as an argument. Then, Vue can update the loading

value directly while react has to use the setState() function. In Vue we can call the dispatch

directly –because of direct access to the store through $store- with only the user as an

argument since it contains all the user state properties (name, pass). In React we call

dispatch through the imported Login Auth Action, where we pass the name and password

properties explicitly through the state object. The general pattern shows that Vue’s

reactivity allows for things being performed “easier”, with fewer steps i.e. less code.

As for redirecting to Profile page, Vue uses programmatic navigation i.e. the router’s

instance methods, which enable accessing the router instance through $router. This allows

for this.$router.push [75] to be called without having to import the router, which is the

equivalent of window.history.pushState (of the window.history API) that is used in React’s

implementation.

In both the above cases (login and redirection) Vue’s solution is again cleaner and less

verbose.

Finally React performs the evaluation of loading state, which then acts as a conditional for

the rendering of the spinner, outside of the render. On Vue, v-show, one of its directives,

84

is used to achieve the same result, with the exact same (number of) steps i.e. lines of code.

So this comes down to personal preference. It should though be noted, that the if

statement used in React, is much more intuitive and closer to the native JS experience, and

thus –presumably- to the developer’s prior knowledge and familiarity.

 Registration Page

• React

The implementation of the Registration Page is quite the same as the Login one. Thus in

Listing 6.39 below only the differences/add-ons from Login page are shown, the rest of the

code is exactly the same.

There are a few more details necessary for Form Validation:

username (name): Is required, length: 3 -30 characters.

email: Is required, in email-format.

password (pass): Is required, length: 8 - 40 characters.

To validate the email, we also use the validator's isEmail() function. The required function

from react-validation is used as a pattern to form the corresponding validation-check

functions const email, vname, vpass with their respective value restrictions. The new

onChange()- functions are added to handle the new field inputs. According to the result

(SIGNUP_SUCCEEDED /SIGNUP_FAILED) in the Auth Actions Creator to the handleSignup()

function, the message is set to its value, passed down and eventually shown to the user.

 ...

import { isEmail } from “validator”;

....

import { signup } from “../actions/auth”;

....

const email = (value) => {

 if (!isEmail(value)) {

 return (<div className=”alert alert-danger” role=”alert”>

This is not a valid email.

</div>);

 }

85

};

const vname = (value) => {

 if (value.length < 3 || value.length > 30) {

 return (<div className=”alert alert-danger” role=”alert”>

The username must be between 3 and 30 characters.

</div>);

 }

};

const vpass = (value) => {

 if (value.length < 8 || value.length > 40) {

 return (<div className=”alert alert-danger” role=”alert”>

The password must be between 8 and 40 characters.

</div>);

 }

};

class Signup extends Component {

 constructor(props) {

 super(props);

 this.handleSignup = this.handleSignup.bind(this);

 this.onChangeName = this.onChangeName.bind(this);

 this.onChangeEmail = this.onChangeEmail.bind(this);

 this.onChangePass = this.onChangePass.bind(this);

 this.state = {

 name: “”,

 email: “”,

 pass: “”,

 valid : false,

 };

 }

...

 onChangeEmail(e) {

 this.setState({

 email: e.target.value,

 });

 }

...

86

 handleSignup(e) {

 e.preventDefault();

 this.setState({

 valid : false,

 });

...

 if (this.checkBtn.context._errors.length === 0) {

 this.props.dispatch(signup(this.state.name,

this.state.email, this.state.pass))...render() {

 const {

 msg

 } = this.props;

 return (

...

<Form

 onSubmit={this.handleSignup}

 ref={ c =>

 {

 this.form = c;

 }}

 >

 {!this.state.valid && (

 <div>

 <div className=”form-group”>

 ...

 <div className=”form-group”>

 <label htmlFor=”email”>Email</label>

 <Input

 type=”text”

 className=”form-control”

 name=”email”

 value={this.state.email}

 onChange()={this.onChangeEmail}

 validations={[required, email]}

87

 />

 </div>

 <div className=”form-group”>

 <label htmlFor=”pass”>Password</label>

 <Input

 type=”pass”

 className=”form-control”

 name=”pass”

 value={this.state.pass}

 onChange()={this.onChangePass}

 validations={[required, vpass]}

 />

 </div>

 <div className=”form-group”>

 <button className=”btn btn-primary btn-block”>Sign

Up</button>

 </div>

 </div>

)}

 {msg && (

 <div className=”form-group”>

 <div className={ this.state.valid ? “alert alert-valid” :

“alert alert-danger” } role=”alert”>

 {msg }

 </div>

 </div>

)}

</Form>

</div>

</div>

);

}

}

function mapStateToProps(state) {

const { msg } = state.msg;

return {

msg

};

88

}

export default connect(mapStateToProps)(Signup);

 Listing 6.39: React Registration Page: signup.component.js

• Vue

This page as seen in Listing 6.40 resembles the Login Page, except that for the

Registration’s form validation, the validation schema contains some extra details:

username (name): Is required, length: 3-30 characters

email: Is required, in email-format, maximum length: 50 characters

password (pass): Is required, length: 8-40 characters

The user loggedIn() status is retrieved from Vuex store (auth.module.js) module-through

authentication service (auth.js) which uses Axios for the HTTP call and then reponse to

auth.module.js-in the computed() function and its value is checked at mounted() [35]. The

user is forwarded to the Profile page if they have been logged in already. Else, on submitting

the form, the handleSignup() function is called and, as with the Login page, the fields are

checked with the validation schema and corresponding messages are shown. If the

validation passes, auth/signup Vuex action is dispatched with the new values of the state

variables set accordingly, and the success message is rendered as per the result of the v-if

tag.

...

<template>

...

<Form @submit="handleSignup" :validation-schema="schema">

 <div v-if="!valid ">

 <div class="form-group">

 <label for="name">Username</label>

 <Field name="name" type="text" class="form-control" />

 <ErrorMessage name="name" class="error-feedback" />

 </div>

 <div class="form-group">

 <label for="email">Email</label>

89

 <Field name="email" type="email" class="form-control" />

 <ErrorMessage name="email" class="error-feedback" />

 </div>

 <div class="form-group">

 <label for="pass">Password</label>

 <Field name="pass" type="pass" class="form-control" />

 <ErrorMessage name="pass" class="error-feedback" />

 </div>

<div class="form-group">

 <button class="btn btn-primary btn-block"

:disabled="loading">

 <span

 v-show="loading"

 class="spinner-border spinner-border-sm"

 >

 Sign Up

 </button>

 </div>

 </div>

 </Form>

<template>

<script>

export default {

 name: "Signup",

 components: {

 Form,

 Field,

 ErrorMessage,

 },

data() {

 const schema = yup.object().shape({

 name: yup

 .string()

 .required("Username cannot be empty!")

 .min(3, " Username must be at least 3 characters!")

 .max(30, " Username cannot be longer than 30 characters!"),

 email: yup

 .string()

90

 .required("Email cannot be empty !")

 .email("Email is invalid!")

 .max(50, "Email cannot be longer than 50 characters!"),

 pass: yup

 .string()

 .required("Password cannot be empty!")

 .min(6, " Password must be at least 8 characters!")

 .max(40, " Password cannot be longer than 40 characters!"),

 });

return {

 valid : false,

 loading: false,

 msg : "",

 schema,

 };

 },

 computed: {

 loggedIn() {

 return this.$store.state.auth.status.loggedIn;

 },

 },

 mounted() {

 if (this.loggedIn) {

 this.$router.push("/profile");

 }

 },

 methods: {

 handleSignup(user) {

 this.msg = "";

 this.valid = false;

 this.loading = true;

 this.$store.dispatch("auth/signup", user).then(

 (data) => {

 this.msg = data.msg;

 this.valid = true;

 this.loading = false;

 },

 (err) => {

91

...

}

</script>

<style scoped>

...

</style>

Listing 6.40: Vue Registration page: Signup.vue

Registration Page Comparison

In Vue, as in Login Page but even more obvious here, since there are more fields, the

validation is enabled one time at the <Form> component and includes all fields, while in

React each corresponding validation has to be explicitly declared at each field.

Vue’s and VeeValidate’s convenience, deriving from their tendency to abstraction comes

with the “side effect” of not being clear to a potential reviewer, as discussed in the Login

Page comparison analysis, in contrary to React where, we can see that with JSX, we can

utilize more "natural" constructs like if statements, functions, loops, and so on than with

Vue code.

 Profile Page

• React

At the user’s Profile page the active User is retrieved from localStorage using the Redux

store's application state (props). The data are originally retrieved at auth-service, which

passes them as a response to the auth actions creator (auth.js).

According to the response, it checks if a logged-in user exists, and shows user information

along with the token from localStorage, or redirects user to perform the login action in

the opposite scenario. The source code is presented in Listing 6.41 below.

import React, { Component } from “react”;

import { Redirect } from ‘react-router-dom’;

import { connect } from “react-redux”;

class Profile extends Component {

render() {

 const { user: userLoggedIn } = this.props;

92

 if (!userLoggedIn) {

 return <Redirect to=”/login” />;

 }

 return (

 <div className=”container”>

 <header className=”jumbotron”>

 <h3>

 {userLoggedIn.name} Profile

 </h3>

 </header>

 <p>

 Token:

{userLoggedIn.accessToken.substring(0, 20)} ...{” “}

{userLoggedIn.accessToken.substr(userLoggedIn.accessToken.length -

20)}

 </p>

 <p>

 Id: {userLoggedIn.id}

 </p>

 <p>

 Email: {userLoggedIn.email}

 </p>

 Authorities:

 {userLoggedIn.roles &&

 userLoggedIn.roles.map((role, index) =>

 <li key={index}>{role}

)}

 </div>

);

 }

}

function mapStateToProps(state) {

 const { user } = state.auth;

 return {user,};

}

export default connect(mapStateToProps)(Profile);

93

 Listing 6.41: React Profile page: profile.component.js

Vue

This page gets the current user from Vuex Store with the computed property

userLoggedIn(). Then, when the component has been mounted at the DOM (at mounted()

hook), it checks if the user exists i.e. is logged in, and shows user information: name,

access token, id, email, authorities (user roles). It redirects to the Login page in the

opposite case. Listing 6.42 shows the source code.

<template>

 <div class="container">

 <header class="jumbotron">

 <h3>

 {{userLoggedIn.name}} Profile

 </h3>

 </header>

 <p>

 Token:

 {{userLoggedIn.accessToken.substring(0,20)}} ...

{{userLoggedIn.accessToken.substr(userLoggedIn.accessToken.length -

20)}}

 </p>

 <p>

 Id:

 {{userLoggedIn.id}}

 </p>

 <p>

 Email:

 {{userLoggedIn.email}}

 </p>

 Authorities:

 <liv-for="role in userLoggedIn.roles"

:key="role">{{role}}

 </div>

94

</template>

<script>

export default {

 name: 'Profile',

 computed: {

 userLoggedIn() {

 return this.$store.state.auth.user;

 }

 },

 mounted() {

 if (!this.userLoggedIn) {

 this.$router.push('/login');

 }

 }

};

</script>

Listing 6.42: Vue’s Profile Page: Profile.vue

Profile Page Comparison

In React an extra component- <Redirect /> from the react-router-dom library is used for

redirecting the user the login, adding to boilerplate code.

React’s way of defining the “Authorities” with the map() function i.e. creating a list of the

roles is much more verbose than the simple v-for directive in Vue, which obviously wins in

readability, ease of use and implementation. Yet another instance of a trade-off between

simplicity and abstraction (Vue) versus the explicit, native feeling of JavaScript (es6)

(React).

All in all, React uses more (lines of) code to achieve the same result.

Components for Accessing Resources

In this section the components for accessing public and authorized content are developed.

They make use of the UserService to get data from the API, as described below:

 -HomePage: A page that displays public content. This page may be viewed without logging

in.

95

The following two pages contain private/protected information:

 -BoardUser page: Accessible as logged-in user/admin. Fetches the data through

UserService.getBoardUser().

 -BoardAdmin page: Accessible as logged-in admin. Fetches the data though

UserService.getBoardAdmin().

For React we create the components in the corresponding folder:

components/

 home.component.js

 board-user.component.js

 board-admin.component.js

The same process for Vue:

components/

 Home.vue

 BoardUser.vue

 BoardAdmin.vue

 Home Page

• React

As demonstrated in Listing 6.43, after the state is initialized in the constructor and the

component output is rendered to the DOM, React calls the componentDidMount() [76].

Inside it, the Data Service’s (user-service.js) getPublicInfo() method is called, which

retrieves the public content from the server, via a Axios HTTP call. The content state is set

to the response (res) data or an error (err) message (msg) and the UI update is scheduled.

Consequently the render method is triggered again and the new content is displayed on

the page.

import React, { Component } from “react”;

import UserService from “../services/user-service”;

export default class Home extends Component {

 constructor(props) {

96

 super(props);

 this.state = {

 content: “”

 };

 }

 componentDidMount() {

 UserService.getPublicInfo().then(

 res => {

 this.setState({

 content: res.data

 });

 },

 err => {

 this.setState({

 content:

 (err.res && err.res.data) ||

 err.msg || err.toString()

 });

 }

);

 }

 render() {

 return (

 <div className=”container”>

 <header className=”jumbotron”>

 <h3>{this.state.content}</h3>

 </header>

 </div>

)

 }

}

 Listing 6.43: React Home page: home.component.js

• Vue

After the Vue instance is created and setup and the component output is inserted into the

DOM, the mounted() lifecycle hook is called. Inside it, the Data Service’s (user-service.js)

97

getPublicInfo() method is called, which retrieves content from the server via Axios HTTP

call. The content property is set to the response data or an error message depending on its

value. The page’s content is then re-rendered. The implementation of the Vue Home page

is demonstrated in Listing 6.44 below.

<template>

 <div class="container">

 <header class="jumbotron">

 <h3> {{ content }} </h3>

 </header>

 </div>

</template>

<script>

import UserService from "../services/user-service";

export default {

 name: "Home",

 data() {

 return {

 content: "",

 };

 },

 mounted() {

 UserService.getPublicInfo().then(

 (res) => {

 this.content = res.data;

 },

 (err) => {

 this.content =

 (err.res &&

 err.res.data &&

 err.res.data.msg) ||

 err.msg ||

 err.toString();

 }

);

 },

98

};

</script>

Listing 6.44: Vue Home Page: Home.vue

Home Page Comparison

Here, for Vue, the mounted() hook is used to call UserService for the page’s content as soon

as the component is mounted on the DOM, and the equivalent lifecycle method

componentDidMount() is utilized to perform the same task in React, at the same point in

the lifecycle. Both Vue’s hook and React’s method run as soon as the component’s output

render to the DOM has already happened for the first time.

For data-binding and rendering the variables or expressions Vue uses the mustache-like

double braces syntax in the template (as some other JavaScript libraries do). React apps, as

previously stated, do not employ templates and instead need the developer to design the

DOM in JavaScript, usually using JSX. There the (state) variable (e.g. this.state.content) is

used inside curly braces.

 Role Based Pages

In role-based pages we are requesting authorized resources. This demands that, along

with the corresponding Axios HTTP call to the API, the userAuth() function is also used to

confirm the presence of a logged-in user, as well as to retrieve user state and token as

demonstrated previously the Data Service implementation (Listing 6.27).

• React

Bellow in Listing 6.45 are shown only parts of the User Page that are different from the

Home page, while the Admin Page is similar and thus is omitted.

import ...

export default class BoardUser extends Component {

 constructor(props) {

...

 componentDidMount() {

99

 UserService.getBoardUser().then(

 res => {

 ... });

 },

 err => {

 ...

 });

 }

);

 }

 render() {

...

 }

 Listing 6.45: React User page component: board-user.component.js

• Vue

The same parts- as in React- of the Vue User Page, are shown in Listing 6.46.

<template>

 ...

</template>

<script>

export default {

 name: "User",

 data() {

 return {

 content: "",

 };

 },

 mounted() {

 UserService.getBoardUser().then(

 (res) => {

 ...

}

100

</script>

 Listing 6.46. Vue User page: BoardUser.vue

Routing, Navbar, & The complete App Component

The App components, App.js and App.vue, are the top level components acting as

containers for the rest of ther components of the respective applications. This means the

rest of the components (pages) have to be imported here, so that they can be actually

rendered and shown on the screen.

In this section we will define the routing and add the dynamic navigation bar in the App

component. The navbar changes dynamically based on the current User's login status and

roles.

Below is an overview of which links are shown in the navbar under which conditions:

 Home: Present at all times.

 Login & Sign Up: Present if the user is not yet signed in.

 User: Present if there is a logged-in user.

 Admin Board: Present only if ROLE_ADMIN is included in the user roles.

• React

Create React Router History

The terms “history” and "history object" pertain to React Router’s history package, while

“browser history” is a particular implementation for the DOM, which can be used in web

browsers that are compatible with the HTML5 history API.

The custom history object used by the React Router for navigation is shown in Listing 6.47.

import { createBrowserHistory } from “history”;

export const history = createBrowserHistory();

Listing 6.47: helpers/history.js

101

The actual routing for React is implemented -with the help of the custom history object-

in the following App component in Listing 6.48.

The App Component with navbar

The navbar changes dynamically based on the current User's roles as obtained from the

Redux Store state.

All the components of the application are imported here, in the main App component.

Out of them, the Role-based components, along with the Profile page one, are lazy

loaded, through the React.lazy() function and the dynamic import of the aforementioned

components. The dynamic import is used for Webpack to -automatically- perform the

code-splitting necessary for the lazy-loading. The React.lazy function allows a dynamic

import to be rendered as a regular component. Components that are lazy-loaded are

wrapped with a Suspense component, that allows the rendering of some kind of fallback

content (e.g. a loading indicator) to be shown until the main (lazy) component is fully

loaded [77].

At componentDidMount() hook, user gets state from props and if a user value is present in

the application state, userLoggedIn and showBoardAdmin update their state accordingly

(true/false), else the initial state is used as the condition for the routing.

The <Router> component is used to synchronize the custom history with Redux. Here, it is

the one responsible for rendering the App component, while the <Route> component

defines which component will be rendered for each route or path. The Switch statement

makes sure only one component will be rendered at a time. The history object [78]

contains the session history and is used for navigation.

The <Link> component is handling all the internal links of the navbar making them

accessible. Both <Router> and <Link>, although they are components, are not rendered

on the page. The result is that the links with the paths to public content, React AUTH (/)

and Home (/home) are always present on the page. The role-based Admin Board

(/admin) and User (/user) links are (not) shown according to the user state, as are the

links for Authentication – Login (/login), Sign Up (/signup) and Logout (redirects to /login).

The Profile page (/profile), which renders as the userLoggedIn name, also requires a

logged-in user for it to show on the navbar.

102

A message action is dispatched when the user clicks on different links (at url-change),

which uses react router’s location9 [79] to detect route changes, and eventually update

the message state (clears the message). The implementation is presented in Listing 6.48

below.

import React, { Component } from “react”;

import { connect } from “react-redux”;import React, { Suspense, lazy

} from 'react';

import { Router, Route, Switch, Link } from “react-router-dom”;

import “bootstrap/dist/css/bootstrap.min.css”;

import “./App.css”;

import Login from “./components/login.component”;

import Signup from “./components/signup.component”;

import Home from “./components/home.component”;

//lazy-loaded

constProfile=React.lazy=> import(“./components/profile.component”);

const BoardUser = React.lazy(()=> import (“./components/board-

user.component”);

const BoardAdmin=React.lazy(() => (“./components/board-

admin.component”);

import { logout } from “./actions/auth”;

import { clearMsg } from “./actions/message”;

import { history } from ‘./helpers/history’;

class App extends Component {

 constructor(props) {

 super(props);

 this.logOut = this.logOut.bind(this);

 this.state = {

 showBoardAdmin: false,

 userLoggedIn: undefined,

 };

 history.listen((location) => {

 props.dispatch(clearMsg());

 });

9 Locations denote where the app is currently, as well as its past and future state.

103

 }

 componentDidMount() {

 const user = this.props.user;

 if (user) {

 this.setState({

 userLoggedIn: user,

 showBoardAdmin: user.roles.includes(“ROLE_ADMIN”),

 });

 }

 }

 logOut() {

 this.props.dispatch(logout());

 }

 render() {

 const { userLoggedIn, showBoardAdmin } = this.state;

 return (

 <Router history={history}>

 <Suspense fallback={

 <div>Loading...</div>

 }>

 <div>

 <nav className=”navbar navbar-expand navbar-dark bg-dark”>

 <Link to={”/”} className=”navbar-brand”>

 React AUTH

 </Link>

 <div className=”navbar-nav mr-auto”>

 <li className=”nav-item”>

 <Link to={”/home”} className=”nav-link”>

 Home

 </Link>

 {showBoardAdmin && (

 <li className=”nav-item”>

 <Link to={”/admin”} className=”nav-link”>

 Admin

 </Link>

104

)}

 {userLoggedIn && (

 <li className=”nav-item”>

 <Link to={”/user”} className=”nav-link”>

 User

 </Link>

)}

 </div>

 {userLoggedIn ? (

 <div className=”navbar-nav ml-auto”>

 <li className=”nav-item”>

 <Link to={”/profile”} className=”nav-link”>

 {userLoggedIn.name}

 </Link>

 <li className=”nav-item”>

 <a href=”/login” className=”nav-link”

onClick={this.logOut}>

 LogOut

 </div>

) : (

 <div className=”navbar-nav ml-auto”>

 <li className=”nav-item”>

 <Link to={”/login”} className=”nav-link”>

 Login

 </Link>

 <li className=»nav-item»>

 <Link to={”/signup”} className=”nav-link”>

 Sign Up

 </Link>

 </div>

)}

 </nav>

105

 <div className=”container mt-3”>

 <Switch>

 <Route exact path={[”/”, “/home”]} component={Home} />

 <Route exact path=”/login” component={Login} />

 <Route exact path=”/signup” component={Signup} />

 <Route exact path=”/profile” component={Profile} />

 <Route path=”/user” component={BoardUser} />

 <Route path=”/admin” component={BoardAdmin} />

 </Switch>

 </div>

 </div>

 </Suspense>

</Router>

);

}

}

function mapStateToProps(state) {

const { user } = state.auth;

return {

user,

};

}

export default connect(mapStateToProps)(App);

 Listing 6.48: React App component: App.js

• Vue

Routing

For Vue, the routes for the application are defined in src/router.js (Listing 6.49).

First, from vue-router, the createRouter() function, which genarates a Router instance that

the Vue app can use, and the createWebHistory() function, that creates an HTML5 history10,

are imported as shown in Listing 6.49 below. Following, all of the app’s components are

imported, with the difference that the role-based and the profile pages will be lazy-loaded.

10 API that provides access to the browser navigation history via JS.

106

Lazy-loading allows for the selection of the parts of JavaScript we need for the first page

load, thus reducing the page load time [80]. Code splitting is also used in conjunction, and

is the process of splitting the app into lazily loaded chunks [81]. The above are achieved

through dynamic imports and the use of a function to call them on the component.

Then, we define the routes as an objects array. The application’s routes are represented by

the array, while its items are the route objects. The path property represents the url (for

example, the "/" at the first object indicates the base URL), the component property defines

which component will be rendered when this url path is visited, and the name property

indicates the route's name.

At the end of the file, the router is created with createRouter() method which takes the

routes object as its parameter.

import { createWebHistory, createRouter } from "vue-router";

import Home from "./components/Home.vue";

import Login from "./components/Login.vue";

import Signup from "./components/Signup.vue";

// lazy-loaded

const Profile = () => import("./components/Profile.vue")

const BoardAdmin = () => import("./components/BoardAdmin.vue")

const BoardUser = () => import("./components/BoardUser.vue")

const routes = [

 {

 path: "/",

 name: "home",

 component: Home,

 },

 {

 path: "/signup",

 component: Signup,

 },

 {

107

 path: "/login",

 component: Login,

 },

 {

 path: "/home",

 component: Home,

 },

 {

 path: "/profile",

 name: "profile",

 // lazy-loaded

 component: Profile,

 },

 {

 path: "/user",

 name: "user",

 // lazy-loaded

 component: BoardUser,

 },

 {

 path: "/admin",

 name: "admin",

 // lazy-loaded

 component: BoardAdmin,

 },

];

const router = createRouter({

 history: createWebHistory(),

108

 routes,εε

});

export default router;

 Listing 6.49: Routes for Vue-Router: router.js

The complete App component with navbar

The navbar changes dynamically according to the current User roles as determined in the

Vuex Store state.

In Vue, the userLoggedIn() and showBoardAdmin() functions are calculated as computed

properties that access the user state from Vuex store and determine if there is a logged-in

user (user state), and if the user has Admin Role, respectively. Based on these inputs the

Vue template utilizes the v-if directive to determine which links will show on the navbar

and which corresponding routes are available to the user, while the <Router-link>

component is used for enabling the navigation in the app. As for rendering the appropriate

component, according to the Vue Router documentation: “The <router-view> component

is a functional component that renders the matched component for the given path” [82].

It is essentially the main <div> that contains all the components, and it returns the

component that matches the current path. The overall source for the App component is

shown in Listing 6.50 below.

<template>

 <div id="app">

 <nav class="navbar navbar-expand navbar-dark bg-dark">

 VueJS AUTH

 <div class="navbar-nav mr-auto">

 <li class="nav-item">

 <router-link to="/home" class="nav-link">

 Home

 </router-link>

 <li v-if="showBoardAdmin" class="nav-item">

 <router-link to="/admin" class="nav-link">Admin

Board</router- link>

109

 <li class="nav-item">

 <router-link v-if="userLoggedIn" to="/user" class="nav-

link">User</router-link>

 </div>

 <div v-if="!userLoggedIn" class="navbar-nav ml-auto">

 <li class="nav-item">

 <router-link to="/signup" class="nav-link">

 Sign Up

 </router-link>

 <li class="nav-item">

 <router-link to="/login" class="nav-link">

 Login

 </router-link>

 </div>

 <div v-if="userLoggedIn" class="navbar-nav ml-auto">

 <li class="nav-item">

 <router-link to="/profile" class="nav-link">

 {{ userLoggedIn.name }}

 </router-link>

 <li class="nav-item">

 LogOut

 </div>

 </nav>

 <div class="container">

 <router-view />

 </div>

 </div>

110

</template>

<script>

export default {

 computed: {

 userLoggedIn() {

 return this.$store.state.auth.user;

 },

 showBoardAdmin() {

 if (this.userLoggedIn && this.userLoggedIn['roles']) {

 return this.userLoggedIn['roles'].includes('ROLE_ADMIN');

 }

 return false;

 },

 return false;

 }

 },

 methods: {

 logOut() {

 this.$store.dispatch('auth/logout');

 this.$router.push('/login');

 }

 }

};

</script>

Listing 6.50: Vue App component: App.vue

App component, Routing & navbar Comparison

React-Router v4 requires the declaration of the routes right in the HTML (unlike previous

versions of React-Router), in a switch statement. Vue on the other hand uses a separate -

dedicated- file (router.js), where the routes are declared as objects. This is not mandatory,

since the routes object could be declared in the <script> part of the App.vue SFC, and used

as such, so the developer has the freedom to choose and act accordingly. A separate file is

obviously a neater way to do it, keeping the html cleaner and less crowded, but it adds the

111

overhead of a new file which comes with an extra import, plus Vue’s routes declaration is

a bit more verbose. There is a trade-off between lines of code and readability here. Other

than that both frameworks use corresponding components for the same functions: Vue

Router uses <Router-link> for the navigation, and <router-view> for rendering the

component of the selected path, while React Router has <Link> and <Route> for the

respective functionalities. One thing is that React also uses the <Router> component for

integration with Redux. Vue has no need of similar solution since its state management

solution is -de facto- integrated and tightly coupled to begin with.

Finally, both make extensive use of the HTML5 History API.

The lazy loading and code-splitting features require a bundler, like Webpack, that both

frameworks enable with the app’s creation and no further tweaking is required. Lazy

loading components also provided right out of the box in both frameworks and they both

use Webpack dynamic imports for the code-splitting. One difference is that React requires

its React.lazy() function for the rendering. The <Suspense> component used in React as a

fallback while waiting for the component to load, is currently a new feature in Vue, still in

experimental stage, and has the same exact functionality, although it will only be used with

async components as made clear in the documentation [83]. For lazy loading routes Vue

Router again provides the feature right away as secondary routes are already configured to

be lazily loaded by default (when using the Vue CLI). React Router as well has no problem

in integrating the component’s lazy loading even without the Vue’s convenience.

As for rendering the matching component, Vue’s v-if directive was again a cleaner and more

intuitive solution for matching and showing data than the state variable acting as

conditional outside of the render in React, which was not something difficult to

conceive/understand and implement, just more explicit. Some, of course would argue that

the JSX way resembles more to what they are already accustomed to from native JS, which

is also true, so in the end it is a matter of preference.

As seen earlier, React does not have a concept similar to Vue’s computed properties, so the

userLoggedIn() and showBoardAdmin() values are “computed” inside the

componentDidMount() method which technically means that in React this happens later

(after the initial render) than in Vue(before the initial render), which does not affect the

functionality in any way.

112

Final Steps

• React

CSS style for React Components

The CSS for the application’s styling is located in src/App.CSS which is imported in the App

component (App.js)

Port Configuration for the Web API

As CORS is utilized in most HTTP servers, allowing them to specify any origins i.e domains,

ports e.t.c, from which resourses can be loaded, a port must likewise be configure a for this

application.

A .env file is created in the project’s root folder, which contains the port value as such:

PORT=8081

Now the app is set to run at port 8081.

113

▪ Running the App

At the CLI, in the folder where the app is created, running npm start creates a frontend

build pipeline, which can be used it with any backend, in our case Node.js. This essentially

“runs” the App which is now ready to be viewed.

At the server side, while in the folder where the app is created, the CLI command node

server.js starts the development server at localhost: 8081 which now serves the React

front-end at localhost: 808*, where * is set according to the configuration and the available

ports on the network, so it may vary.

• Vue

CSS style for Vue Components

The styling of the Vue application takes place in the corresponding <style> section of each

component, according to the SFC implementation.

Port Configuration for the Web API

As in React’s case above, the port for the Vue app needs to be configured as well.

A vue.config.js file is created in the project’s root folder with the following lines of code,

as shown in Listing 6.51:

module.exports = {

 devServer: {

 port: 8081

 }

}

 Listing 6.51: Vue configuration file: vue.config.js

The app will now be running on port 8081.

114

Running the App

At the CLI, in the folder where the app is created, running npm run serve runs the app

according to the package.json configuration, which in this case executes the default preset

“vue-cli-service serve” script.

The application is now served at localhost: 808*, and will be automatically connected to

the backend-API running at localhost: 8081.

Both React & Vue applications can be served from the API - on a different port- at the same

time.

Comparison- Final Steps

For the styling of the application, Vue follows its own SFC logic while for React the

traditional-default approach was followed here, while there are other solutions as

mentioned in 6.2.1.

As for the port setup, React’s port configuration is obviously simpler with just a value

assignment.j

115

 Conclusion

React and Vue, two of the most successful JavaScript frameworks in recent times, were

investigated in this thesis. This chapter concludes with a summary of the findings, a

discussion on the results, and the study's general conclusion and suggestions, as well as

some final overall comments on the subject.

7.1 Findings & Results

The summarized results of the comparison analysis conducted in the previous

corresponding sections are presented here.

Components: React seems to provide more syntax freedom/choices in terms of creating

components as it provides two distinct ways to do it. This contributes to the

freedom/flexibility which react is "renounced" for, which is of course always accompanied

with a certain degree of “responsibility”, so it depends on the point of view whether it is a

positive or a negative factor.

Reacts' JSX way of handling html and writing components has been a point of disagreement

among developers since day one. One the one hand it gives more power over the html

template on the other it adds a gnostic overhead to the learning volume resulting to a

steeper learning curve. Both arguments are valid.

Vue's Single File Components are very developer friendly, intuitive and easy to use, because

of their arrangements of JavaScript, html and CSS adding for an easier and quicker adoption

of the framework.

Data Binding: Essentially both frameworks provide the choice of one or two way data

binding. React is significantly favorable to one way data binding, to the point that the

general sense for many years was that two-way data binding was not possible in React. Vue

on the other hand is well known and even preferred for this exact feature of making two

way binding easy and effective thus making the code more readable and simpler while

losing in performance and manageability. This is perhaps why, in version 3 of Vue, the team

proposes one way binding as a better solution.

116

Routing: This is where the main -de facto- difference of the two "contestants" makes its

appearance. React, being a library itself, does not come with a native routing solution thus

an external library is required, and available. Vue, as a complete framework, includes an

official router in its default installation. Both solutions support dynamic routing.

Scripting and Rendering: Both frameworks utilize the creation of Virtual Dom with nuances

that become insignificant – performance-wise – in most cases, with the exception of

rendering large data structures in which case Vue may be more optimal, because of the

way it specifies the re-rendering of the components.

Platform Support: No significant differences in terms of support for the browsers are

spotted. Each framework is fully supported in all modern browsers, and requires polyfills

for legacy ones. However it should be notice that React, being a library, introduces another

layer of required compatibility for the necessary external libraries, which is indeed in most

cases provided.

External Libraries & Modules: React has a huge ecosystem of external solutions for each

and every possible use case. Vue does not fall short on this regard either while not on the

same level as react. Both ecosystems are vibrant and being actively enriched. React's

nature as a library, means it uses external libraries specifically and independently

developed for their own specific case. This may be interpreted as being more optimized in

comparison to Vue's default native solutions for the same functionalities which of course

comes with its own inherent quality of a tightly coupled and robust solution specifically

developed for and applied to Vue. One might have to choose a "specificity side" to declare

winner here.

Localization: Both frameworks rely on external localization libraries.

Documentation & Community Support: Vue has arguably one of –if not the best

documentation in the JSf ecosystem, while React dos not fall short on this regard either,

even if not as impressively well documented and thorough as Vue's. React has the largest

community in the ecosystem while Vue's community is also vibrant and dedicated, as made

obvious from the number of Github stars presented in 6.2.10.

Learning Curve & Developer Experience: Vue is considered the most beginner friendly of

all the major JSfs. The level of abstraction it provides as well as the structure of its

components make it intuitive and relatively easy to adopt for someone coming from a

native (vanilla) JavaScript background. React’s steeper learning curve is mostly attributed

117

to the use of JSX which is not mandatory in any case, but does play well with React

components. In terms of development experience both frameworks check all the boxes,

with Vue going the extra mile with its Graphical User Interface (GUI) that accompanies the

vue-cli.

Popularity and future: Both of the frameworks' popularity metrics promise a promising

future. Both are being actively developed and regularly updated. A factor that could play

its part and make the difference here is the backing of React by Facebook. To this point

though this important fact does not seem to play as an important role as one would imagine

because of the intrinsic qualities of the open-source ecosystem.

7.2 Summary

As hinted from the introduction of this chapter there is no announcement of a clear winner

in this study. Both frameworks perform well in the examined programming functionalities

with one having the edge over the other in some but again in specific cases that cannot

therefore be generalized. The same applies to the rest qualitative metrics that arguably

play a key part in deciding whether to adopt a framework or not. What React lacks in terms

of completed and default solutions it gains in modularity and configuration capabilities.

This, which is in the author's opinion their biggest difference and point for debate, is not

really a difference of React and Vue, per se, meaning that it is intrinsic of their different

nature as a library and a framework respectively. That being said, they still serve the same

purpose which makes the comparison between them justifiable and valid.

The only point where there seems to be a clear winner is in native applications

development where React would be the best solution.

So how would one decide?

The answer of the author would be, according to the use case. Vue for example is suitable

for rapid prototyping and progressive introduction to a project due its progressive nature.

React's stong point is its flexibility to add packages on the go, and not be bound to specific

solutions. There are numerous other factors that could potentially weight in the decision

making e.g. the developers' knowledge of ECMAscript 2015 (es6) introduced features, that

are more prominent in React than Vue. Other-completely different and non-technical

118

factors- such as social factors e.g. the job market, local adoption (Vue is largely used in

China and the USA but not in Europe) etc. play a critical role in decision for adoption and

could be further studied in future work. In other words, as vague as it might seem in an

academic paper, each has its own place and time, and at the same time - and on the

contrary one might add- more often than not it boils down to personal preference which

of course has as a prerequisite the ("tedious") task of dedicating at least a short period of

time to experimenting with both.

7.3 Future Work & Discussion

There is only so much that can fit to a paper of this magnitude thus this study has been far

from exhaustive. Numerous technical -and non- points for comparison lie in the heart of

the JavaScript frameworks' ecosystem and in that of the author's. Specific features that

were left out of this study -for various reasons, varying from the research methodologies'

findings, to the authors own technical inadequacies or preferences- include: Server Side

Rendering capabilities, hybrid applications and Progressive Web Apps development in

React & Vue, Vue & React as front-end frameworks for Decentralized Apps (Dapps), as well

as further enriching the evaluation model by adding more frameworks, such as the

established Angular and the upper-coming and promising Svelte. The environment in which

the applications where developed could also further include more browsers and different

set of configurations, integration with different backend technologies and databases The

deployment of the applications to various serves and environments, integration of CI/CD

pipelines and A/B testing should perhaps be the first step to enriching, solidifying or

challenging the validity of the findings for comparison, since these are the necessary steps

and elements that eventually bring a project built with a front-end JavaScript framework

to life, and the field were the advantages and the limitations converge and prepare to meet

the true cause of their existence: The user.

The JavaScript ecosystem, particularly the one of its numerous frameworks, is fertile

ground for research and development and will continue to be so due to its main quality of

powering the Web. Their relationship and interaction is such that creates a positive

feedback loop that will fuel new exciting capabilities in the years to come, in which

academia will surely play an important role, that of providing objective reasoning and

119

grounding for the numerous projects and technologies that eventually-to a greater or lesser

extent- affect our lives, directly and/or indirectly, in a multitude of ways.

121

Bibliography

[1]

Broadbandsearch, "Mobile vs Desktop Internet Usage (Latest 2022 Data),"

Broadbandsearch.net, 2022. [Online]. Available:

https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-

statistics. [Accessed 7 January 2022].

[2]

M. W. Docs, "Introduction to client-side frameworks," MDN Web Docs,

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks/Introduction. [Accessed 12 August 2021].

[3]

M. W. Docs, "SPA (Single-page application) - MDN Web Docs Glossary:

Definitions of Web-related terms," Mozilla and individual contributors,

2021. [Online]. Available:

https://web.archive.org/web/20210616121411/https:. [Accessed 15 9

2021].

[4]

C. S. P. T. Gizas A., "Comparative evaluation of JavaScript frameworks," in

WWW'12 - Proceedings of the 21st Annual Conference on World Wide Web

Companion, 2012.

[5]

P. R. a. B. L. a. B. Zorn, "Conference on Web Applications," in JSMeter:

Comparing the behavior of JavaScript benchmanrks with real web

applications, 2010.

122

[6]

A. &. G. D. &. A. P. Pano, "What leads developers towards the choice of a

JavaScript framework?," 2016.

[7]

R.W.Saaty, "The analytic hierarchy process—what it is and how it is used,"

Mathematical Modelling, vol. 9, no. 3-5, 1987.

[8]

&. B. M. S. Oney, "FireCrystal: Understanding interactive behaviors in

dynamic web pages," in 2009 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), 2009.

[9]

C. L. Mariano, "Benchmarking JavaScript Frameworks (Masters

dissertation)," Dublin, Ireland, 2017.

[10]

l. Kantor, "javascript.info," 13 June 2021. [Online]. Available:

https://javascript.info/intro. [Accessed 1 9 2021].

[11]

Techterms, "techterms," 7 March 2013. [Online]. Available:

https://techterms.com/definition/framework. [Accessed 3 9 2021].

[12]

React, "Introducing JSX," Facebook Inc, 2021. [Online]. Available:

https://reactjs.org/docs/introducing-jsx.html. [Accessed 3 9 2021].

[13]

Vue3, "Render Functions," Evan You, [Online]. Available:

https://v3.vuejs.org/guide/render-function.html#jsx. [Accessed 14 August

2021].

123

[14]

D. A. P. Graziotin, "Making sense out of a jungle of JavaScript frameworks–

towards a practitioner-friendly comparative analysis,," in International

Conference on Product Focused Software Process Improvement.

[15]

A. R. Heale, 2015.

[16]

Vue, "Template Syntax," [Online]. Available:

https://vuejs.org/v2/guide/syntax.html.

[17]

C. Mocenni, "The Analytic Hierarchy Process".

[18]

S. Fluin, "Why Developers and Companies Choose Angular," medium.com,

25 December 2017. [Online]. Available: https://medium.com/angular-

japan-user-group/why-developers-and-companies-choose-angular-

4c9ba6098e1c. [Accessed 5 9 2021].

[19]

M. W. Docs, "An overview of HTTP," Mozilla and individual contributors,

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Overview. [Accessed 14 9 2021].

[20]

Tutorialspoint, "Node.js - Introduction," [Online]. Available:

https://www.tutorialspoint.com/nodejs/nodejs_introduction. [Accessed 7

9 2021].

[21]

MongoDB, "MongoDB The application data platform," MongoDB, Inc.,

2021. [Online]. Available: https://www.mongodb.com/. [Accessed 29 8

2021].

124

[22]

a. O. R. J. Duvander, Interviewee, “What affects the choice of a JavaScript

framework: Interview with developers” ,. [Interview]. 2019.

[23]

Vue, "What-is-Vue-js," Evan You, [Online]. Available:

https://vuejs.org/v2/guide/#What-is-Vue-js. [Accessed 5 9 2021].

[24]

A. Amaechi, "Your guide to reactivity in Vue.js," Evan You, 17 December

2020. [Online]. Available: https://blog.logrocket.com/your-guide-to-

reactivity-in-vue-js/. [Accessed 27 August 2021].

[25]

Vue3, "Mobile," Evan You, 2021. [Online]. Available:

https://v3.vuejs.org/guide/mobile.html#mobile.

[26]

E. You, "github," Github, Inc, [Online]. Available:

https://github.com/vuejs/vue/releases/tag/0.6.0.

[27]

D. Deutsch, "Understanding MVC Architecture with React," 2017. [Online].

Available: https://medium.com/of-all-things-tech-

progress/understanding-mvc-architecture-with-react-6cd38e91fefd.

[28]

GeeksforGeeks, "React.js (Introduction and Working)," 30 7 2021. [Online].

Available: https://www.geeksforgeeks.org/react-js-introduction-

working/.

[29]

G. S. Padam, "tutorialslink.com," 9 June 2020. [Online]. Available:

https://tutorialslink.com/Articles/What-is-React-Introduction-to-

React/1529.

125

[30]

React, "Rendering Elements," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/rendering-elements.html. [Accessed 26 August

2021].

[31]

React, "Introducing JSX," Facebook Inc., [Online]. Available:

https://reactjs.org/docs/introducing-jsx.html. [Accessed 25 August 2021].

[32]

React, "The Component Lifecycle," [Online]. Available:

https://reactjs.org/docs/react-component.html#the-component-lifecycle.

[33]

Vue, "Composing with Components," Evan You, [Online]. Available:

https://vuejs.org/v2/guide/#Composing-with-Components.

[34]

Vue, "Instance Lifecycle Hooks," [Online]. Available:

https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks.

[35]

Vue3, "Lifecycle Hooks," [Online]. Available:

https://v3.vuejs.org/api/options-lifecycle-hooks.html#mounted.

[Accessed 1 September 2021].

[36]

Meks, "Inverse Data Flow in React," 11 November 2020. [Online].

Available: https://dev.to/mmcclure11/inverse-data-flow-in-react-mg7.

[37]

React, "Two-way Binding Helpers," 2021. [Online]. Available:

https://reactjs.org/docs/two-way-binding-helpers.html. [Accessed 13 9

2021].

[38]

H. a. t. e. d. o. t.-w. d. binding?, "What are the exact demerits of two-way

data binding?," 2015. [Online]. Available:

126

https://hashnode.com/post/what-are-theexact-demerits-of-two-way-

data-binding-ciibz8fnq01f8j3xthmjjs6di . [Accessed September 2021].

[39]

V. Router, "Vue Router," Evan You, Eduardo San Martin Morote, 2021.

[Online]. [Accessed September 2021].

[40]

B. Krajka, "The difference between Vrtual DOM and DOM," 12 Oktober

2015. [Online]. Available: https://reactkungfu.com/2015/10/the-

difference-between-virtual-dom-and-dom/. [Accessed 29 August 2021].

[41]

Vue, "Comparison with Other Frameworks," [Online]. Available:

https://vuejs.org/v2/guide/comparison.html

. [Accessed 4 September 2021].

[42]

Stefalda, "react-localization," [Online]. Available:

https://github.com/stefalda/react-localization. [Accessed 9 September

2021].

[43]

React, "Hello World," Facebook, Inc, 2021. [Online]. Available:

https://reactjs.org/docs/hello-world.html. [Accessed 27 August 2021].

[44]

React, "Tutorial: Intro to React," 2021. [Online]. Available:

https://reactjs.org/tutorial/tutorial.html. [Accessed 27 August 2021].

[45]

Vue, "Introduction," [Online]. Available: https://vuejs.org/v2/guide/.

[Accessed 28 August 2021].

127

[46]

Hotframeworks, 2021. [Online]. Available: https://hotframeworks.com/.

[Accessed 12 September 2021].

[47]

S. o. JS, "Demographics," 2019. [Online]. Available:

https://2019.stateofjs.com/demographics/. [Accessed 22 August 2021].

[48]

S. Daityari, "Angular vs React vs Vue: Which Framework to Choose in

2021," 15 March 2021. [Online]. Available:

https://www.codeinwp.com/blog/angular-vs-vue-vs-react/. [Accessed 8

September 2021].

[49]

Madewithvuejs, "Vue 3 – A roundup of infos about the new version of

Vue.js," 28 April 2021. [Online]. Available:

https://madewithvuejs.com/blog/vue-3-roundup. [Accessed 28 August

2021].

[50]

Vue3, "Single File Components," Evan You, [Online]. Available:

https://v3.vuejs.org/guide/single-file-component.html#single-file-

components. [Accessed 25 August 2021].

[51]

React, "Thinking in React," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/thinking-in-react.html. [Accessed 1 September

2021].

[52]

Vue, "Components Basics," Evan You, [Online]. Available:

https://vuejs.org/v2/guide/components.html#Listening-to-Child-

Components-Events. [Accessed 23 August 2021].

128

[53]

React, "Create a New React App," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/create-a-new-react-app.html#create-react-app.

[Accessed 22 August 2021].

[54]

V. CLI, "Creating a Project," Evan You, [Online]. Available:

https://cli.vuejs.org/guide/creating-a-project.html#vue-create. [Accessed

23 August 2021].

[55]

Vue3, "Installation," 23 August 2021. [Online]. Available:

https://v3.vuejs.org/guide/installation.html#installation. [Accessed 24

Agust 2021].

[56]

Redux, "Getting Started with Redux," Dan Abramov and the Redux

documentation authors, [Online]. Available: Redux is a predictable state

container for JavaScript apps.. [Accessed 3 September 2021].

[57]

J. Potter, "mobx vs redux," [Online]. [Accessed 9 September 2021].

[58]

Redux, "Redux Fundamentals, Part 3: State, Actions, and Reducers," Dan

Abramov and the Redux documentation authors, [Online]. Available:

https://redux.js.org/tutorials/fundamentals/part-3-state-actions-

reducers#splitting-reducers. [Accessed 4 September 2021].

[59]

Vuex, "What is Vuex?," [Online]. Available: https://vuex.vuejs.org/#what-

is-vuex. [Accessed 4 September 2021].

129

[60]

Vuex, "What is a "State Management Pattern"?," [Online]. Available:

https://vuex.vuejs.org/#what-is-a-state-management-pattern. [Accessed

5 September 2021].

[61]

Alexandros Gougousis, "Design patterns in action: Decorator and Redux

Middlewares," 15 August 2018. [Online]. Available:

https://blog.gougousis.net/design-patterns-in-action-decorator-and-

redux-middlewares/. [Accessed 5 September 2021].

[62]

E. John, "Pinia vs. Vuex: Is Pinia a good replacement for Vuex?," LogRocket,

Inc, 6 July 2021. [Online]. Available: https://blog.logrocket.com/pinia-vs-

vuex/. [Accessed 26 August 2021].

[63]

Openbase, "openbase.com," Openbase, Inc., [Online]. Available:

https://openbase.com/js/vuex/alternatives. [Accessed 27 August 2021].

[64]

Vue3, "Single File Components," Evan You, [Online]. Available:

https://v3.vuejs.org/guide/single-file-component.html#why-sfc.

[Accessed 25 August 2021].

[65]

Michal, "Vuex vs. Redux - similarities and differences," 8 June 2021.

[Online]. Available: https://www.merixstudio.com/blog/vuex-vs-redux/.

[Accessed 15 September 2021].

[66]

Newbedev, "ReactJS/Redux - Pure vs Impure Javascript functions?,"

newbedev, [Online]. Available: https://newbedev.com/reactjs-redux-

pure-vs-impure-javascript-functions. [Accessed 7 September 2021].

130

[67]

React-validation, "npmjs.com," [Online]. Available:

https://www.npmjs.com/package/react-validation. [Accessed 16

September 2021].

[68]

React, "Forms," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/forms.html#controlled-components. [Accessed

16 September 2021].

[69]

React, "React.Component," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/react-component.html#setstate. [Accessed 14

September 2021].

[70]

React-Redux, "connect()," Dan Abramov and the Redux documentation

authors.. [Online]. [Accessed 3 September 2021].

[71]

Vee-validate, "ErrorMessage," [Online]. Available: https://vee-

validate.logaretm.com/v4/v4/api/error-message#errormessage.

[Accessed 9 September 2021].

[72]

Vuex, "State," [Online]. Available:

https://vuex.vuejs.org/guide/state.html#single-state-tree. [Accessed 28

August 2021].

[73]

Vue3, "Lifecycle hooks," 2 March 2021. [Online]. Available:

https://v3.vuejs.org/api/options-lifecycle-hooks.html#created. [Accessed

16 Septenber 2021].

131

[74]

Vee-validate, "Form Values," Abdelrahman Awad, [Online]. Available:

https://vee-validate.logaretm.com/v4/guide/components/handling-

forms#form-values. [Accessed 3 September 2021].

[75]

V. Router, "Programmatic Navigation," Evan You, Eduardo San Martin

Morote, [Online]. Available:

https://router.vuejs.org/guide/essentials/navigation.html#programmatic-

navigation. [Accessed 4 September 2021].

[76]

React, "React.Component," Facebook Inc., 2021. [Online]. Available:

https://reactjs.org/docs/react-component.html#componentdidmount.

[Accessed 2 September 2021].

[77]

React, "Code-Splitting," Facebook Inc., 2021. [Online]. Available: he lazy

component should then be rendered inside a Suspense component, which

allows us to show some fallback content (such as a loading indicator) while

we’re waiting for the lazy component to load.. [Accessed 8 9 2021].

[78]

Remix, "history," GitHub, Inc, 14 August 2021. [Online]. Available:

https://github.com/remix-run/history#history---. [Accessed 4 September

2021].

[79]

R. Router, "Hooks," React Training, 2021. [Online]. Available:

https://reactrouter.com/web/api/location. [Accessed August 25 2021].

[80]

M. W. Docs, "Lazy loading," Mozilla and individual contributors, [Online].

Available: https://developer.mozilla.org/en-

US/docs/Web/Performance/Lazy_loading. [Accessed 12 September 2021].

132

[81]

M. W. Docs, "Code splitting," Mozilla and individual contributors, [Online].

Available: https://developer.mozilla.org/en-

US/docs/Glossary/Code_splitting. [Accessed 15 September 2021].

[82]

V. Router, "API Reference," Evan You, Eduardo San Martin Morote,

[Online]. Available: https://router.vuejs.org/api/#router-link. [Accessed 8

September 2021].

[83]

Vue3, "Suspense," Evan You, 7 3 2021. [Online]. Available:

https://v3.vuejs.org/guide/migration/suspense.html#suspense.

[84]

Paweł, "What are Single Page Applications(SPA)?," Forem, 15 September

2019. [Online]. Available: https://dev.to/kendyl93/what-are-single-page-

applications-spa-32bh. [Accessed 15 August 2021].

[85]

A. HelloJS, 2017. [Online]. Available: https : / / blog . hellojs . org /.

[86]

H. Gerstaecker, "Single Page Applications: The Rise of Web Apps in 2020,"

1 March 2020. [Online]. Available: https://hackernoon.com/single-page-

applications-the-rise-of-web-apps-in-2020-un6c32gm. [Accessed 26

August 2021].

[87]

P. CHANDRA, "Redux Architecture Overview," LinkedIn , 22 March 2021.

[Online]. Available: https://www.linkedin.com/pulse/redux-architecture-

overview-priyesh-chandra-1c/. [Accessed 30 August 2021].

133

Appendix

Source Code of To-Do Applications

Figure 12. React’s ToDoItem.js source code

134

Figure 13. Vue’s TodoItem.vue source code

135

Figure 14. React’s ToDo.js (first half)

136

Figure 15. React’s ToDo.js (second half)

137

Figure 16. Vue’s Template part of ToDo.vue

138

Figure 17. Vue’s script part of ToDo.vue (first half)

139

Figure 18. Vue’s script part of ToDo.vue (second half)

	Περίληψη
	Abstract
	Table of Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Related Work
	1.5 Scope – Limitation
	1.6 Thesis Structure

	Chapter 2 Methodology
	2.1 Research Method
	2.1.1 Data Collection
	2.1.2 Data Analysis
	2.1.3 Implementation Strategy

	Chapter 3 Theory
	3.1 Web Application
	3.1.1 HyperText Markup Language & Cascading Style Sheets (HTML & CSS)

	3.2 JavaScript
	3.2.1 JavaScript XML (JSX)
	3.2.2 JavaScript Frameworks
	3.2.3 Framework versus Library

	3.3 Template Syntax
	3.4 Document Object Model
	3.5 Model View Controller Pattern (MVC)
	3.6 Single Page Application (SPA)
	3.7 Asynchronous JavaScript And XML (AJAX)
	3.8 HyperText Transfer Protocol (HTTP)
	3.9 Application Programming Interface (API)
	3.10 Back-End
	3.10.1 Node.js
	3.10.2 MongoDB

	Chapter 4 JavaScript Frameworks
	4.1 Selection of Frameworks
	4.2 Description of the Selected Frameworks
	4.2.1 Vue.js
	4.2.2 React

	Chapter 5 Selected JavaScript Frameworks Comparison Analysis & Evaluation
	5.1 Selection of Comparison & Evaluation Criteria
	5.2 Comparison
	5.2.1 Components
	5.2.2 Data-binding and State Management
	5.2.3 Routing
	5.2.4 S Scripting and Rendering
	5.2.5 Platform Support
	5.2.6 External Libraries & Modules
	5.2.7 Native Applications
	5.2.8 Localization
	5.2.9 Documentation & Community Support
	5.2.10 Developer Experience - Learning Curve
	5.2.11 Popularity and future

	5.3 Conclusion

	Chapter 6 Demonstration & Comparison of Applications Developement
	6.1 Selection of Applications
	6.2 To-Do Applications
	6.2.1 Developing the To-Do Applications
	Creating the Apps
	Creating the To-Do List
	Add To-Do Item
	Add To-Do at enter
	Delete Item

	6.3 AUTH Applications
	6.3.1 Backend
	6.3.2 Front-end
	External Libraries – Packages – Modules

	6.3.3 Development of the Applications
	Create the Apps
	The Applications’ Entry Points
	Auth & User Services
	State Management
	Components for Authentication
	Components for Accessing Resources
	Routing, Navbar, & The complete App Component
	Final Steps

	Chapter 7 Conclusion
	7.1 Findings & Results
	7.2 Summary
	7.3 Future Work & Discussion

	Bibliography
	Appendix
	Source Code of To-Do Applications

