

UNIVERSITY OF THESSALY

ELECTRICAL AND COMPUTER ENGINEERING

Diploma Thesis:

Process-In-Memory System Simulation using the
Gem5 Platform

Papalekas Dimitrios

Supervisor:

Stamoulis Georgios

 ii

 iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ

Διπλωματική Εργασία:

Προσομοίωση Συστημάτων Επεξεργασίας στη
Μνήμη με τη Χρήση της Πλατφόρμας Gem5

Παπαλέκας Δημήτριος

Επιβλέπων:

Σταμούλης Γεώργιος

 iv

 v

Examination Committee:

Prof. Dimitriou Georgios

Prof. Stamoulis Georgios

Prof. Sotiriou Christos

University Of Thessaly, 24/2/2022

 vi

 vii

Acknowledgments

 Primarily, I would like to express my gratitude to my supervisor, Prof. Georgios

Dimitriu. He introduced me to uncharted research subjects, inspired my interest and supported

me with his deep knowledge and work ethics, despite all the setbacks that emerged along the

way. His enthusiasm for novelty and his reassuring personality are traits that I really look up to.

 I would also like to thank Prof. George Stamoulis. His guidance, arising from his

valuable experience and selfless mentorship, throughout my whole studies kept me always on

track. His initiative to introduce me to the Electronics lab of University of Thessaly was the

starting point of a collaboration and honest friendship with its leaders. Dr. Antoniadis

Charalambos, Dr. Garyfallou Dimitrios and Dr. Floros George. Their blend of hard work,

dedication and generous support refined my character.

 Last but not least, I would like to thank my family. Among others, my mom Mary

equipped me with self-belief, my father Costas with methodical mindset and my step-father

Nikos with honesty and patience. Also, I am grateful to my siblings, Andreas and Olympia, with

whom we share admiration and love. And of course, my soulmate Marini, who tirelessly loves

me and keeps me focused on my goals no matter what the circumstances are.

 viii

 ix

Abstract

 Contemporary CPU capabilities are more than enough to process demanding and intense

computational tasks. On the contrary, the challenges that impede the conventional DRAM

memory scaling renders it the main bottleneck of today's computer systems, diminishing that

way their total processing power. The aforementioned is severely felt when dealing with data-

intensive applications such as Machine Learning algorithms, Graph Processing or heavy

consumer workloads. To overcome the DRAM evolution obstacles system architects shifted

their research focus to Near-Data-Processing (NDP) architectures, where the memory die is

accompanied with logic capable of processing data where they reside, alleviating the need for

costly data transactions between the CPU and the main memory. The emergence of 3D-Stack

Memory models made the realization of such a venture feasible. However, only a small amount

of these models is commercially available and accessible.

In order to surpass the challenges that remain until the broad adoption of NDP

architectures, practical and easy-to-use NDP simulation environments must be developed and

distributed to enable contributions. Among a confined range of selection, we opted for

DAMOV, a general-purpose kernel-offloading PIM simulator based on zsim and Ramulator

along with its benchmark suite that contains a broad-scoped selection of memory intensive

applications.

The current study can be divided into two parts. The first part depicts a comprehensive

image of the NDP trends that define the contemporary research field, their branches, and the

range of application of them respectively. The second part presents a methodology for

determining the suitability of workloads for NDP execution function-offloading granularity,

after observing key metrics that are extracted from the simulator. By carefully applying the

metrics in a specific sequence, we classify the workloads into categories that can determine a

priori if NDP can result to execution speedup

 x

Περίληψη

 Οι δυνατότητες των σύγχρονων επεξεργαστών είναι επαρκείς ώστε να εκτελέσουν

απαιτητικές και έντονες υπολογιστικών διαδικασίες. Αντιθέτως, λόγω των εμποδίων που

δυσχεραίνουν την εξέλιξη της DRAM, η μνήμη καθίσταται κύρια αιτία υπολογιστικής

συμφόρησης. Το γεγονός αυτό είναι περισσότερο προφανές όταν αντιμετωπίζονται εφαρμογές

με μεγάλες απαιτήσεις δεδομένων, όπως είναι οι αλγόριθμοι Μηχανικής Μάθησης και η

επεξεργασία γραφημάτων. Προκειμένου να ξεπεραστούν οι δυσκολίες στην ανάπτυξη της

DRAM, οι επιστημονική κοινότητα έχει στρέψει το ενδιαφέρον της σε αρχιτεκτονικές

Επεξεργασίας Κοντά στη Μνήμη. Σε αυτού του τύπου τις αρχιτεκτονικές το κύκλωμα της

μνήμης συνοδεύεται από ένα λογικό κύκλωμα ικανό να επεξεργαστεί τα δεδομένα κοντά στο

χώρο αποθήκευσης τους, ελαχιστοποιώντας με αυτόν τον τρόπο την ανάγκη για ενεργοβόρες

μεταφορές δεδομένων ανάμεσα στην κύρια μνήμη και τον επεξεργαστή. Η πραγματοποίηση

τέτοιων εγχειρημάτων κατέστη δυνατή μετά την ανάπτυξη τρισδιάστατων μνημών. Παρόλα

αυτά, ελάχιστα μοντέλα είναι διαθέσιμα για εμπορική χρήση.

 Προκειμένου να διευκολυνθεί η έρευνα που θα καθιερώσει την Ε.Κ.Μ., γίνεται

προσπάθεια να αναπτυχθούν προσομοιωτές λογισμικού ανοικτού κώδικα και εύκολοι στη

χρήση. Μέσα από περιορισμένες επιλογές, επιλέξαμε τον DAMOV, έναν επεξεργαστή για

Ε.Κ.Μ γενικού σκοπού επιπέδου συνάρτησης, βασισμένο στους zsim και ramulator, μαζί με τα

προτεινόμενα benchmarks που τον συνοδεύουν, και αφορούν ένα μεγάλο εύρος εφαρμογών.

 Η παρούσα μελέτη διαχωρίζεται σε δύο τμήματα. Το πρώτο τμήμα παρουσιάζει μια

συμπυκνωμένη και κατανοητή ανάλυση των κύριων τομέων Ε.Κ.Μ, των κλάδων αυτών και του

πεδίου εφαρμογής για κάθε έναν. Το δεύτερο τμήμα παρουσιάζει μια μεθοδολογία ικανή να

καθορίσει την αποτελεσματικότητα της Ε.Κ.Μ σε επίπεδο συνάρτησης. Η μεθοδολογία

στηρίζεται στη δημιουργία κατηγοριών που περιέχουν εφαρμογές με παρόμοια συμπεριφορά,

και δημιουργούνται μέσω της εφαρμογής ειδικών μετρητικών κριτηρίων που προκύπτουν από

τη διεξαγωγή των πειραμάτων.

 xi

 xii

Table Of Contents

Contents
1 INTRODUCTION 1

2 BACKGROUND 4

2.1 3-DIMENSIONAL INTEGRATED MEMORY CIRCUITS 4
2.2 HYBRID MEMORY CUBE 6

3 NDP TRENDS 8

3.1 OVERVIEW 8
3.2 BULK IN-MEMORY OPERATIONS 9
3.3 INSTRUCTION LEVEL OFFLOADING 10

3.3.1 GraphPIM 11
3.3.2 CAIRO 12

3.4 FUNCTION OFFLOADING 13
3.4.1 TOM – Transparent Offloading and Mapping 14
3.4.2 Damov 15

4 METHODOLOGY 16

4.1 OVERVIEW 16
4.2 PROPOSED METRICS 19

4.2.1 Arithmetic Intensity (AI) 19
4.2.2 Last Level Cache Misses Per Kilo Instruction 19

5 EVALUATION 20

5.1 DAMOV SIMULATOR 20
5.1.1 Simulator Architecture 21

5.2 RESULTS 22
5.2.1 Retrieving the Metrics 22
5.2.2 Arithmetic Intensity Analysis 23
5.2.3 MPKI analysis 25
5.2.4 Applications Classification 26

6 CONCLUSIONS AND FUTURE WORK 31

7 APPENDIX 32

7.1 INSTALLATION 32
A. 33
7.2 TUTORIAL 33
7.3 CONFIGURATION 38

8 BIBLIOGRAPHY 41

 1

1 Introduction

For decades now, the performance of CPUs has been improving at a very fast rate,

minimizing the energy and time cost to perform demanding arithmetic operations. To execute

these computations, all the data involved must be located in the core's cache memory. Data

movement from the main memory to the processing cores can be up to four orders of magnitudes

slower, hence energy consuming also. Nowadays the datasets of modern applications are

immensely growing, increasing the occurrences of cache misses, thus the need for data

movement from the RAM to CPU [1, 2]. The aforementioned transfer happens via a narrow-

bandwidth memory bus. To increase performance, systems' evolution led to the inclusion of

mechanisms focused to the alleviation of the impact of data movement such as prefetchers and

deep cache hierarchies. This strategy, nevertheless comes with significant hardware cost and

does not fit well to the wide range of applications [3, 4, 5, 6]. To keep up with modern workload

needs, typical computer systems must either increase cache capacity by adding more cores or

include a main memory system that scales efficiently in terms of performance, energy and

capacity altogether. The first aforementioned assumption is ruled out by the dark silicon effect

[7] and by the fact that by sharing the last level cache memory, many CPU cores tend to access

the same memory addresses causing cache contention, or fail to exploit the caches due to little

data reusability [8]. The second is considered infeasible by many studies [9, 10] as,

understandably, the improvements of a category come on the expense of the others. As a result,

the focus on computer systems research is shifted from the Von-Neumann processor-centric

model to the Near-Data-Processing (NDP) paradigm [11, 12, 13, 14], a paradigm that suggest

the processing of data near or even inside the memory, where they reside. This paradigm aims

to function in an effective way for applications that are characterized by irregular access

patterns, little memory locality and larger working sets [15 16, 17, 18, 19]. Although NDP has

been proposed for more than 50 years [11, 20], hardware limitations prevented its

materialization. Recent breakthroughs such as 3D-stacked memory [21, 22] led to the realization

of the concept.

 2

NDP, also called Processing-In-Memory (PIM) can be divided into two main

approaches. The Processing-Using-Memory, that aims to exploit analog, bulk operations inside

memory cells such as simple bitwise operations [23, 24] and the Processing-Near-Memory that

suggests the integration of 3D-stacked memory along with a logic layer that operates as a CPU

directly underneath the main memory. Because the current bandwidth is limited by the numbers

of I/O pins available in DRAM and the capabilities of the memory bus, more bandwidth is now

provided to the cores of the NDP logic layer. The latter has been explored by means of

application-specific kernels [15, 16, 18] with individual instruction offloading [25, 26] and

general-purpose cores that encapsulate entire function-offloading capabilities [27]. Application-

specific kernels are PIM modules that try to exploit the characteristics of a specific category of

applications usually only offloading certain instructions for NDP. A classic example is

recognizing and offloading the data manipulation tasks of graph processing algorithms. Despite

the fact that application-specific solutions achieve important speedups when implemented for

crucial workload categories, the strict offloading conditions they oblige in are a barrier for their

widespread adoption. On the other hand, PUM and instruction offloading require either a

compiler or profiler to determine every instruction's PIM suitability, usually adding a time

overhead, or the programmer’s knowledge and PIM-specific code handling.

In our opinion, the most viable solution is in the direction of general-purpose function-

offloading. Offloading the whole function to the PIM consists of the mechanism with the less

demanding adjustments from the programmer’s endpoint, and general-purpose approach renders

the widespread adoption of the PIM paradigm more feasible by its panoramic perspective.

In order to defend our proposition and to perform a holistic review on the matter, we

present a comprehensive analysis of the most prolific trends in the NDP research field, analyzing

the benefits and the liabilities of each and every one. Later on, we narrow our focus to function-

offloading PIM execution and propose an empirically derived methodology on how to predict

whether applying PIM in the application under examination would result to a desired execution

speedup. We then try to highlight the significance of open-source general-purpose function-

 3

offloading software simulation of NDP systems that succeed to assist the exploration of a)

various architecture proposals b) offload-candidate workloads at no hardware cost and demand

no special programming adjustments.

Among the available options we chose the DAMOV simulator environment [28], a

simulator that combines zsim [29] and Ramulator [30] using the HMC 3D-stacked memory

model, coupled with a comprehensive benchmark suite compiled by a plethora of data-intensive

functions to examine potential benefits by executing them on the PIM. We carry on by

comparing the so far proposed workload profiling methods and select the most accurate in terms

of efficiency and execution simplicity. We then attempt to simplify some of the suggested

profiling methods and keep the process solely in the simulator’s environment. By examining

prior works and juxtaposing their extracted propositions with the results of the experiments we

conducted, we infer on the most precise and easy-to-use metrics that assist to identify the

usefulness of NDP. We showcase that two of the most prominent metrics are Αrithmetic

Ιntensity (AI) and cache Misses Per Kilo Instructions (MPKI).

 4

Figure 1 PSP eDRAM

2 Background

2.1 3-Dimensional Integrated Memory Circuits

 The term 3D IC refers to the method of vertically stacking integrated circuits for

purposes of space conservation and performance improvement. Despite the efforts being made

for both computational units and memory modules to conform to this paradigm, the necessity

for the memories’ development to overcome specific obstacles concerning space scaling and

bandwidth improvement made them the focal point of the 3D IC research field. The first

technical parameter that needed to be encountered was the means of communication and

interconnection among the several vertically stacked layers of the 3D chip. The two salient

manufacturing technologies that were explored were recrystallization and wafer bonding [31].

In the course of time, wafer bonding was identified as the prominent one and a specific sub-

technique of it, Through-Silicon-Vias (TSVs) became the approach of choice for the key

manufacturing companies. TSVs are electrical interconnects made of copper that completely

penetrate a silicon wafer in order to support communication between two vertically stacked

layers. They are characterized as a high-performance medium, the roots of which can be traced

back to 1958 [32, 33].

 5

Figure 2 High Bandwidth Memory [21]

 The first major corporation to achieve the realization of a 3D IC was Fujitsu in 1983

[34], later followed by Mitsubishi [35]. The aforementioned efforts did not use TSVs as their

interconnections technology, which were introduced to the industry in 1981 and were not

integrated into the chip’s design until 2008 [36]. Intel’s 2004 initiative to produce a 3D version

of its Pentium 4 resurged the community’s interest to stacked chipsets, an interest that later

entrained renowned companies like Samsung and Toshiba to the development of commercial

3D Memories such as PSPs eDRAM [37] [Figure 1].

Currently, the two main reference modules in terms of 3D memories are AMD’s and

Samsung’s High Bandwidth Memory (HBM) [Figure 2] and Micron’s (later supported by

Samsung) Hybrid Memory Cube. HBM implements stacked DRAM dies connected by TSVs to

produce a larger amount of bandwidth, up to 665 GB/s [22] by enabling parallel transfer of data

to and from the memory dies. This is feasible because HBM hosts two 256-bit memory channels

per block of 4 DRAMs, leading to a 4096 bits-wide bus for a standard HBM cube.

 6

Figure 3 Hybrid Memory Cube [20]

2.2 Hybrid Memory Cube

 The rapid development of 3D stacked memories acted as the key for incorporating

processing opportunities inside the memory. Having identified the memory wall as the

prevailing bottleneck of today’s computer systems’ performance, the potential of reducing data

movement by transferring the computation to the memory rather than the opposite forced the

corporations and researchers to the development of chips that integrate logic as well as memory.

Hybrid Memory Cube (HMC) [Figure 3] is one of the most popular 3D-stacked memory

architectures available. HMC is the result of the collaborative work of Samsung and Micron. It

consists of up to eight DRAM dies and one logic die. These vertical layers are connected with

each other by Through-Silicon-Vias (TSVs), vertical, high-performance interconnects designed

to slice through the silicon die, providing communication to between the layers. Within the cube,

memory is vertically divided to partitions named vaults (see picture). Underneath each vault lies

a vault controller, a logic unit that operates directly on the data present at the corresponding

vault and governs read and write requests to the vault. By developing a dedicated controller for

each vault, HMC succeeds to provide independent access to every vault thus achieving

parallelism. Referring to as much as 8 logic layers altogether every request can consume data

on a vertical axis and reach a maximum bandwidth of 80Gb/s per vault. The increase of the

accessible bandwidth compared to modern DRAM technologies manifests that the use of HMC

can attenuate the effects of bandwidth induced latency for bandwidth-bound applications when

these applications execute on a traditional DRAM module.

 7

Later on, we showcase a number of applications that appertain to this class and the

speedup that is achieved when they are offloaded for execution in a PIM that includes HMC as

the memory model of choice. One drawback to this independent memory access pattern is that

there is no specific memory requests timing and the response can be obtained in a different order

than the request was made because every vault executes as an independent memory module.

Every request from the Host CPU to the HMC memory module is first directed to the

corresponding vault and then stored to a buffer in the vault controller. Every such buffer retains

a FIFO protocol, so requests to a specific vault will be executed in order. Generally, though, the

vaults generally reorder their internal requests to optimize bandwidths and to reduce average

latencies, and the vaults do not communicate with each other so there is no guarantee that the

series of requests will be preserved. As a result, the host processor must implement a coherence

protocol, same to the network package that enumerate their requests to secure that data is

continuous and of the same order as on the protocols request, a matter which poses as a drawback

to a general-purpose PIM approach.

Additionally, the HMC specifies its own PIM commands [Figure 4] that implement

simple Atomic Instructions, commonly recurring bitwise operations that the logic layer can

execute straight on the correlated data. This type of commands has been the area of exploitation

for various instruction-level compiler-based PIM proposals because they do not encounter the

aforesaid data coherency issues and can be a very fast solution for workloads that make

extensive use of simple bitwise commands. Below, we present a table containing HMC’s most

basic commands

.

Figure 4 HMC Basic Commands

 8

3 NDP Trends

3.1 Overview

Since NDP was first introduced as an idea about five decades ago there have been many

different methodologies proposed, each of them aiming to address a separate aspect of the

processor-centric Von Neumann design that acted as a performance bottleneck. The majority of

the most significant of them converge to eliminating every unnecessary data movement among

memory and processing components. This way they aim to override the usage of the time and

energy intensive memory off-chip link as well as minimize the improper leveraging of the

caching hierarchy. In order to study these works we categorize them based on whether they

operate directly on the memory cells or use an added logic layer to Process-Near-Memory, based

on their range of application to general-purpose or application-specific and finally based on their

proposed offloading granularity to kernel offloading or instruction-level offloading.

The term offloading granularity is used to describe the level of insight of the candidate

section of code. In instruction-level offloading the system focuses on executing individual

commands on the PIM subsystem as opposed to kernel offloading where a whole function is

sent to PIM submodule to be executed. The first approach nullifies unnecessary data transfers

because only the instruction is sent to PIM where the data consist. The later approach prevails

regarding software development simplicity and usage abstraction, as the same hardware and

software architecture can support every offloading candidate function.

The following analysis can be considered as a coherent assessment of some of the most

significant propositions regarding PIM, nevertheless concentrates on the offloading candidate’s

selection methodologies which they suggest, examining the issue more from the programmers’

standpoint, since it is one of the most constraining concerns in the direction of PIM adoption.

 9

Figure 5 Triple Row Activation [39]

3.2 Bulk In-Memory Operations

 Although 3D-stacked memory architectures revolutionized the Processing-In-Memory

research field, there have been proposed approaches that attempt to take advantage of existing

DRAM architecture and operations to induce simple computation capabilities by implementing

minimal changes to the memory chips. Amongst the number of data intensive applications there

is a fraction of them that comprises almost exclusively of bulk data movement operations. With

the term bulk data movement operations, we refer to these blocks of instructions that require no

computation on the processing end, such as batch initialization of a memory block (initializing

an array to null) or bulk data copy from a memory address to another.

Investigating the existing DRAM internal organization, we observe that a DRAM chip

is divided to multiple DRAM banks. These banks communicate with each other and with the

I/O via a shared internal bus that is itself divided to subarrays. Each subarray is responsible for

a number of DRAM rows, the columns of which are connected together across the multiple rows

using bitlines. RowClone [38] implements a mechanism that issues a row-open request to

multiple rows of a subarray and activates the source and the destination row back-to-back. Then

the Pipelined Serial Mode transfers a large number of bytes from the source to the destination

 10

row. This way one can manage the initialization of several rows of DRAM to a specific number

by reducing the number of requests needed

Ambit [39] is an extension of RowClone that tries to include bitwise operations in its

range of application. Using a Triple-Row-Activation, as shown in figure 5, the cells of the first

two rows can participate as operand in bitwise majority functions and return the result to the

third row. Additionally, the sense amplifiers that are present to the DRAM subarrays are

equipped with an inverter. The results of each row’s NOT function is captured and stored to a

special, newly designed row, ready to be read when a NOT operation is issued. Tested on bitwise

operations both RowClone and Ambit achieved a 11.6x speedup and 44x operation throughput

respectively compared to traditional DRAM models and the NVIDIA GTX 745 GPU. Despite

of their results their applicability is limited to the aforementioned operations and their success

relies on carefully carving the requests to fit well with the memory row size, a problem that lies

into the programmers or the compilers consideration.

3.3 Instruction Level Offloading

 Many of the examinations that were made on workloads which are known to put the

memory bandwidth under significant pressure led to the conclusion that the vast majority of the

computational instructions are simple Read-Write-Modify operations such as integer addition

or equality checks. Also, very little amount of these instructions was related to the data chunks

that are being transferred, rendering up to the 90% of the data transfer as nonessential.

A classic example of these patterns are graph manipulation applications which are also

applicable to a broad domain. [39, 40]. The support of RWM operations from the HMC via

Atomic Instructions made this category of applications the prevailing subject of instruction-

offloading PIM research. In this section we review some of the most compelling propositions

regarding this category.

 11

Figure 6 GraphPIM Instruction offloading [41]

3.3.1 GraphPIM

 Baseline PIM architectures take advantage of the absence of time-consuming data

transfers using a memory bus, because both memory and the PIM logic are on the same chip.

Cache misses and data requests from the memory are still present but due to the amplified

bandwidth their impact on performance and energy consumption is minified. Graph traversal

and computational algorithms are infamous to invoke a significant amount of cache misses

because of the random memory access patterns they produce when traversing from one graph

vertex to another. Neither spatial nor temporal locality could be guaranteed. Understandably this

family of applications are immediately candidates for execution on a PIM.

Graph PIM [41] attempted to enlarge the performance gains by splitting the graph

algorithm to three parts. [figure 6] The first one and the third one refers to the vertex's metadata

so spatial locality and data presence in cache are presumable. The second one though is related

to accessing other nodes and is the one that produces the randomness in the access patterns.

Most of the time it consists of simple Read-Modify-Write commands such as comparisons and

 12

additions. GraphPIM implements an instruction-level Offloading mechanism that uses the

HMC-Atomic commands to perform these RMW operations directly on the memory and bypass

the need for data transfers. This methodology can entrain a 2.5x speedup over the baseline PIM

model and a 37% reduction on power consumption. The downside that prevents a wider

adoption of this methodology is the lack of exploration of candidate selection and requires from

the programmer to analyze the algorithm to identify the RMW commands and limits itself on

applications of which the majority of commands are RMW.

3.3.2 CAIRO

CAIRO [42] in essence functions like an extension of GraphPIM. Identifying the

underlying programming burden to assess instruction-level offloading suitability, CAIRO work

proposed a compile-time mechanism to automatically identify PIM candidate instruction by

performing five tests per instruction. The first test ensures that the translation of a block of code

produces only RWM commands that themselves translate to HMC Atomic commands. The

second test ensures that the selected atomic instruction is included in the atomic instruction set

provided by the HMC. The third is a direct access test, meaning that the addresses referenced in

the atomic command must be embedded in the instruction code and no register read is required

to access a memory location. E.g. lw $2 ($11) fails this test because register $11 that contains

the address to load is not accessible from the PIM. The fourth test ensures that the size of the

data that we ask the PIM to compute do not exceed 16 bytes. Lastly, a density test establishes

that there are several instruction candidates in a block of code so that the effect of PIM

computation will not be negligible.

We chose to analyze the tests mentioned above in order to showcase that instruction-

level offloading is based on sound mathematical foundations but requires either the programmer

to analyze the algorithm or strict offloading conditions to be met, affecting only a small group

of instructions.

 13

3.4 Function Offloading

All of these works are very accurate and efficient but rely their speedup results to the

application's translation to HMC atomic instructions and so forth being heavily reliant to the

memory model’s support of these commands. It should be also noted that all of the above are

idealized configurations that ignore the factor of maintaining cache coherency.

In order to facilitate NDP offloading from the programmer’s standpoint, many efforts

concentrate to the creation of tools that will be able to automatically distinguish Processing in

Memory candidate code blocks. A way to achieve the identification of such blocks is to run a

profiling tool beforehand and configure the PIM execution based on the experiments result. For

example, Intel’s V-Tune [43] can effectively detect if the application under examination is

compute or memory bound and provide results which can help the user identify if it is bandwidth

or cache bound. By inspecting those numbers and by combining them with proposed research

metrics, one can carry out more effective experiments. An alternative way is via the creation of

compiler-based techniques that aim to unify the process of both identifying and executing PIM

code blocks and completely dismiss the user – programmer from any extra effort. Albeit, as far

as the latter proposition is concerned, extending the compiler’s functionality to include these

capabilities requires several modifications to be made in the existing hardware which naturally

stands as an obstacle to widespread PIM adoption.

Although all proposed techniques converge to the fact that transaction bandwidth should

be the main criterion of choice, none of them has been successful to systematically recognize

the best fits for Near Data Processing among bandwidth-bound applications. So far application

categorization is based on experimental analysis and practical observations of execution results,

so many research groups attempt to provide a large domain of tested benchmarks and conclude

based on their output.

 14

Figure 7 TOM Hardware Selection Support [26]

3.4.1 TOM – Transparent Offloading and Mapping

 Until now, due to their potential to handle multiple functions at the same time, Graphic

Processing Units (GPUs) have been used as an execution alternative for tasks that support high

parallelism and can be divided to small individual tasks. Examples of such tasks are Image

Processing, Big Data applications and Machine Learning algorithms. One thing that the above

categories have in common is that they are memory bound applications, meaning that they

require only small, repeatedly computations to be made in a large portion of data. So far, the

restricted off-chip pin bandwidth could not provide enough data portions to the GPU running

threads. Combining the GPU cores with emerging 3D-stacked memory technologies by placing

GPU processing units on their logic layer can be seen as a promising way to leverage their

performance by reducing DRAM access overheads.

Transparent Offloading and Mapping (TOM) [26] attempts to explore the latter proposed

architecture of developing compiler-based techniques to offload bandwidth-intensive

computations in GPUs. The paper suggests the development of two mechanism. The first one is

a compiler extension that can identify loops which have the potential to be memory-bound. After

identifying the loop, the decision of whether the block should be executed on a PIM core is

made by an algebraic equation that essentially operates by scrutinizing the number of load and

 15

store commands the block will issue to the memory. The actual offloading is performed by a

series of added hardware components [figure 7] that utilize the aforementioned run-time

information, decide whether the block should be marked as an NDP candidate, and instruct the

GPU kernels to wait until the block is executed on a PIM. Additionally, based on the observation

that loops generate paternal memory accesses, often with spatial locality, a second mechanism

is responsible for copying the memory pages that the code blocks accessed in its first repetitions

inside the 3D-stacked memory to minimize the memory access time of these addresses. TOM

promises a 1.3x average performance improvement in comparison with baseline GPU models

that are not equipped with code offloading functionality.

3.4.2 Damov

 To assist the widespread adoption of PIM techniques in modern memory systems, a

more general approach of workload identification emerged. Ideally, the methodology should not

involve any programmer’s knowledge of the underlying offloaded algorithm. Despite the

customary reasons that could lead an algorithm to benefit from NDP, such as the aforementioned

big workload size, there was no specific understanding of the exact properties of an application

that could produce a data movement bottleneck. DAMOV consists a comprehensive analysis in

this direction. First of all, the DAMOV team developed the first open-source function-

offloading granularity simulator based on Zsim[] and Ramulator. Essentially, what the simulator

does is configuring the Ramulator to ignore any latency produced by the memory requests that

were initiated from the offloaded code block. A more detailed analysis of the simulator is

included in later chapter.

 Secondly, the research uses external profiling tools and well-established metrics, such

as the roofline model [44] to extract information about an application’s dependency on the

memory system. The main focus of their work is to methodically understand the reason behind

any memory related slowdowns an algorithm may experience. For example, after traversing

through a number of processing cores ranging from 4 to 256, they investigate the total cache

misses. If this number of misses decreases as the cores count increases, that means that the

 16

application makes a good utilization of the caches but is dependent on the cache size. Similarly,

apps that continue to produce a big amount of caches misses are bounded by the main memory’s

off-chip link bandwidth. They continue accordingly until they end up generating six function

categories based on the source of the data transfer bottleneck. Finally, the team provides an

extended suite of benchmarks that are well-suited for NDP experiments, a benchmarking suite

that we also use in our work.

 Despite being essential to identify the exact reason of slowdown, an extensive

methodology like this is not necessary if the primary goal is to define if the application can

exploit NDP to improve its performance. To this extent, the methodology should be as simple

as it gets, using only the minimum number of metrics and classification steps needed.

4 Methodology

4.1 Overview

All the above-mentioned works have attempted to come up with a proposed

methodology that determines if a selected workload is suitable for NDP. This decision is usually

made by using different profiling tools, the results of which assist to identify the root causes of

the data movement bottleneck. Nevertheless, they often use isolated metrics that could

potentially be combined to produce an empirical, yet more methodical way to recognize which

algorithm can benefit by moving its computation to the memory chip. Another limiting factor

of their analysis is that they concentrate on a specific application or an individual category of

applications, not allowing for generic and applicable conclusions to be made. There is therefore

created a need to constructively categorize applications, so that a programmer can decide on

whether the algorithm could benefit from PIM just by identifying in which class it belongs.

There are many ways to perform such classifications. Firstly, it can be based on whether the

functions in question are compute or memory bound. Then it can be derived from the

application’s memory access pattern and whether it can manage to effectively exploit the CPU

caching mechanisms. Many functions produce irregular access patters, rendering, that way, the

 17

caches hierarchy ineffective. In addition, existing algorithm classifications can be simplified to

make the classification process faster and comprehensive.

Prior works have come up with indicative metrics that can be observed as a guide for

efficient workload profiling. Such metrics are the Arithmetic Intensity (AI), the Last Level

Cache Misses Per Kilo Instruction (MPKI) and the Last-To-First Miss Ratio (LFMR). These

metrics, when read in some specific order, can lead to conclusion concerning the effect of NDP

of an algorithm. This sequence must be carefully fabricated to reduce any possible inaccuracy

each metric produces when used by itself. It also can be read in a way that every metric assigns

every application in a category, resulting in distinctive classes that a programmer can rely on to

make approximations on the behavior of the relying algorithm and it's NDP suitability. For

example, we expect functions with low AI to benefit from the NDP system. Equivalently, a

higher MPKI acts as indicator that the application puts a lot of pressure to the memory

subsystem, and we expect a speedup when functions with high MPKI are offloaded to the PIM

unit.

 The goal of our methodology is first of all to accurately extract the above-mentioned

metrics for every algorithm under examination, and then to provide a combination of these

metric that is able to produce exact classes of functions with similar behavior when offloaded

to PIM. The methodology we developed can be broken down to three major steps. The first step

is the profiling of each application via the extraction of its key metrics. This is done by feeding

the source code of the function accompanied with the corresponding workload to the simulator

and subsequently filtering the resulting log files through our python facilitation scripts. These

scripts are carved in a way to automatically output all needed metrics for every different

configuration of the environment such as the number of cores or the distinct workloads applied.

The second step is the independent analysis of the AI and MPKI metrics in order to conclude

on whether they can serve as sufficient indicators for the usefulness of the PIM execution for

the function under consideration. As the analysis of the second step suggests that certain

applications do not comply with these assumptions, we propose a two-step workload

classification method which relies on dividing the application firstly by their MPKI metric and

then by their AI. Although classification techniques have also been suggested in the past, we

find our two-step approach to provide a sufficient trade-off between accuracy and simplicity. Its

 18

simplicity can be a key factor for a future transcription of this work as a real-time methodology

that can be executed by the compiler, further alleviating any programmer’s involvement.

In our evaluation we make a considerate selection of illustrative algorithms for every

classification category in order to allow the generalization of our results and to verify the

conclusions emerging at previous studies. We provide scripts and techniques that facilitate the

user to perform the whole analysis inside the simulator's environment, without the need of

installing and deploying external profiling tools. We, finally, select a careful sequence of the

aforementioned metrics' evaluation, based on which a programmer can determine a priori and

with a narrow error percentage the effectiveness of the NDP execution of the application in

question.

Specifically, we observed that all the applications that produced an MPKI value that

surpassed a threshold value went on to achieve a performance improvement from the NDP. For

the experiments conducted, this threshold was calculated to the value of 10. While correctly

provisioning for these applications, MPKI failed to be consistent for the functions that lay under

the threshold value. Eventually, applying the AI metric for this group of algorithms resulted in

a sound classification of these apps. All low MPKI apps that generated an AI more than 40,

performed better on the host platform than on the PIM. In conclusion, this two-step evaluation

creates three groups of functions with predictable outcome as far as NDP speedup is concerned.

The experiments were conducted on a broad set of application, that can serve for the

generalization of the results and the easier adoption of the proposed classification. The DAMOV

benchmarking suite consists of a representative collection of applications from various popular

domains such as graph processing […], machine learning […], databases […], vector arithmetic

and other commonly used workloads.

 19

4.2 Proposed Metrics

4.2.1 Arithmetic Intensity (AI)

The metric of arithmetic intensity indicates whether the application under examination

is considered compute-bound or memory-bound. For an application to be considered compute-

bound, the total time consumed performing computations must outweigh the time spent for data

transfers by a significant amount. Approaching the issue from another point of view, a certain

portion of data that is copied from the main memory to the cache must be exploited and reused

for several computations. Consequently, it is safe to define Arithmetic Intensity as the quotient

of instructions a CPU performs divided by the total bytes accessed in the main memory.

Successfully performing a number of operations without the need to issue a memory request

implies a compute-bound function, and, conversely, issuing many requests for a small number

of instructions indicates a memory-bound function. A less error-prone definition should suggest

replacing the denominator by the number of bytes accessed per cache line, but since we are

trying to unify the process of evaluating the metrics, we adopt the simpler evaluation that is also

facilitated by the simulator. Predictably, we expect an application with high compute intensity

to not suffer from severe data movement bottlenecks, as demonstrated by prior work [45].

This metric can be used by its own from the programmer to predict the algorithm’s

suitability for NDP execution with a satisfactory accuracy. During our evaluation we came

across functions that do not oblige completely to the aforementioned criterion, but the majority

of the applications that were characterized as memory-bound went on to achieve speedups while

on an NPD environment. Some of the various potential sources of memory boundedness are

cache misses, cache coherence traffic, and long queuing latencies. Due to the existence of

functions that do not appertain to this rule, a need for complementary metrics emerges

4.2.2 Last Level Cache Misses Per Kilo Instruction

In order for a memory request to be directed to the main memory, the required data must

not reside in the last level cache. Only after a last level cache miss the CPU initiates a transaction

 20

to the memory. Last Level Cache Misses Per Kilo Instructions (LLC-MPKI) is used as an

indicator [2, 16, 46, 47] of an application’s dependance from the memory system. A high MPKI

value can either mean that the app produces accesses to memory addresses that are far from one

another, making it harder for the system to collect all the data needed inside the cache hierarchy,

or that the app operates on a significant amount of data, the size of which exceeds the caches

capacity by a lot. LLCMPKI is, accordingly, proportional to the applications memory-

boundness and a sufficient estimation of an algorithms data locality.

As its name suggests, MPKI can be derived as the quotient of the number of the cache

misses occurred during the execution divided by the average instructions among all processing

cores of the system. Practically, the log file of zsim includes both statistics, so a carefully

developed python script can be enough to extract the metric. Since last-level cache, in the

present case the L3, is shared among all processing units, inspecting the L3 cache is more

architecturally independent than focusing on L1 or L2 caches that scale accordingly to the

number of CPU cores.

5 Evaluation

5.1 DAMOV Simulator

 As stated before, the real hardware for HMC is not commercially available. In order to

verify the aforementioned theoretical estimations and come up to our conclusions, we perform

software simulation. To simulate the host, as well as the NDP processing cores we use zsim, a

multicore x86 open-source simulator. Zsim is configured through a .cfg configuration file that

determines the needed execution parameters and generates memory trace files. Each line of

these files represents a memory request to a specific memory address. These trace files are later

fed to Ramulator, a cycle-accurate DRAM simulator that supports a wide range of commercial

or even academic memory standards, such as DDR4 and HMC. Coupled with an extensive

benchmarking suite and expanded to support software instrumentation, the package is called

 21

DAMOV simulator. Software Instrumentation is the process of adding pre-declared hooks

inside the code that denote that a specific sector of code most be treated differently. For example,

inside the DAMOV the hooks are used before and after a function to declare that its execution

will be offloaded to PIM. The full tutorial is included in the Appendix section.

 In order to simulate the host system ZSim is modified to produce filtered memory traces.

This means that Ramulator will be aware only of the requests that reached the memory

controller, ignoring the requests that were served by the systems cache, thus inside the ZSim.

For the PIM system, unfiltered traces are obtained. Consequently, when the host’s pipeline

issues a request, it is directly fed to the main memory, with the difference that Ramulator is

specifically instructed to use the HMC memory model and ignore the overhead metrics that are

related to the off-chip link. That way it mimics that the processing unit lies directly underneath

the main memory module. As far as software instrumentation is concerned, while in PIM mode,

any memory requests that originate from the section of code that is denoted for NDP, are directly

fed to the Ramulator.

 It is clear that the selected software simulation environment has several advantages, with

the most prevailing of them being its simplicity. ZSim and Ramulator are easily configurable

regarding the caches size, hierarchy, supported memory models, model of CPU execution (in-

order, out-of-order) and other top-level options. Nevertheless, assuming that just by subtracting

any latency induced by the off-chip links constitutes an efficient approximation, fails to cope

with significant issues such as memory coherence. In reality, the vaults of the HMC are not

equipped by any internal communication mechanism, so coherence must be taken care of from

the host CPU, as it is already been said. Implying that there is no memory bus shrinks the

problem down to essentially just a bandwidth problem, which is generally true, but to a smaller

extent.

5.1.1 Simulator Architecture

 In order to evaluate the performance of our experiments we have configured our

simulator to resemble a Host CPU with private L1 (32 kB) and L2(256 kB) caches and a shared

 22

L3 (8 MB) cache hierarchy. In the NDP configuration, the processing core is only equipped with

an L1 cache that serves as a buffer for the main memory.

 Although current computer systems are equipped with classical 2-D DRAMs, in order

to narrow down our focus to only the data movement aspect of the execution, we oblige to prior

works that suggest keeping every other system component the same. To that extent, even the

Host CPU model is equipped with a 3-D HMC main memory module. In order to compare

possible PIM execution to the todays traditional Van Neumann architecture, one could instruct

Ramulator to use the DRAM model instead.

 Based on previous studies [27, 49], we do not perform extensive scalability analysis as

far as the number of processing cores is concerned, as it is shown that you need at least 64 cores

to fully exploit the bandwidth provided by the HMC. Hence, we vary the core count between 64

and 256. Except for specific cases, the majority of the applications behave in a similar way when

increasing the number of the processing units, so we only present the exceptions in this work.

5.2 Results

5.2.1 Retrieving the Metrics

 The goal of our work is to provide a way for a unified analysis that can be contained

exclusively inside the environment of the simulator. To this end we combine the statistics files

from both zsim and Ramulator with our python scripts. To retrieve the AI we use the get_ai.py

script. Inside every zsim.out file there is a line that describes the number of instructions executed

at every CPU core. Our python program at first takes the zsim.stat file of every experiment as

an input and returns the average number of instructions executed in all processing cores. The

error produced by the assumption of perfect parallelism that is induced from calculating an

average value compensates for the alleviation of the need for external software. Without loss of

generality, the same metric can be derived by taking the total instructions executed in all

processing cores as the denominator. The difference that it would produce is the extraction of a

 23

different threshold value for AI. Then, the same script reads the Ramulator’s output file to

calculate the total bytes read from the main memory. Lastly it determines the AI as the ratio of

the instructions’ average divided by the total memory transaction bytes issued to Ramulator

For the extraction of the MPKI metric, the DAMOV simulator has already provided the

get_stats_per_app.py script. The program requires exclusively the zsim output to determine the

number of L3 cache misses and the divide this number with the average instructions performed

by the host CPU. In the Appendix section, we present some modifications we made to the source

script in order to support burst execution of experiments with various configuration options such

as platform (host, pim), processing cores number or workload size.

Figure 8 Speedup Over AI

5.2.2 Arithmetic Intensity Analysis

 In order to conclude on whether the metric of Arithmetic Intensity is a suitable one, we

extract its value for 28 representative applications [Figure 8]. As stated before, we should

observe that functions with low AI could benefit from their PIM offloading resulting to speedup.

After asserting this issue, we should search for a threshold value that will act as an indicator for

the programmer to decide upon. A first observation that can be made is that there is no

proportionality between the AI value and the resulted speedup from the NDP. This divergence

on the results hints to ser to understand that there is another characteristic metric that defines

1.
03

1.
04 1.

3 1.
37 1.

77

1.
78 2.

14

1.
76

1.
75

1.
78

1.
34 1.
43

1.
25

1.
29

1.
26

1.
11

1.
04

0.
91

1.
34

1.
16

0.
71 0.
78

0.
78

0.
82 0.
9 0.
99

0.
65

2.
54

SPEEDUP OVER AI

 24

the result. The highest average speedup is calculated to be x1.83 in the area between 10.1 and

12 of AI [Figure 9]. If we extend the area of our focus until we reach the first slow down, the

apps with AI between 6.8 and 15 result to an average speedup of 1.55.

A promising observation to the direction of our research is that all functions that are

subjected to a performance slow down are concentrated in the area between 45.10 and 390.

There are two exceptions in opposite directions. The Bezier Kernel calculation performs better

on the host CPU, but is not included in the aforementioned area. Additionally, the Padding

algorithm that holds the highest speedup calculated at x2.54, also holds the highest AI value

(447).

Figure 9 AI area with highest speedup average

AI Group Average Speedup

AI < 40 1.41

AI > 40 0.81

Figure 10 Average Speedup based on AI Threshold

That being said, an AI value of 40 segregates the functions into two groups [Figure 10].

The first group consists of all apps with AI equal or less than 40. Inside this group only one

1 0 . 1 0
1 1 . 0 0

1 2 . 0 0
1 2 . 0 0

1 2 . 0 0
1 2 . 0 0

1.
77

1.
78 2.

14

1.
76

1.
75

1.
78

 25

function does not reduce its execution time when offloaded to PIM (x0.91). Inside the second

group that contains the functions with AI greater than 40, all applications perform better on the

host platform except for one (x2.54). In conclusion, the AI value of 40 manages to classify the

apps with a 92% efficiency.

 Although being an adequate percentage, that 92% could be improved if we include this

AI threshold analysis as a part of our two-step categorization method that we later present.

Figure 11 Speedup Over MPKI

5.2.3 MPKI analysis

Our previous analysis stipulates that MPKI is potentially a more accurate metric than

AI, as prior works have shown that every application that results in a high MPKI value can

improve its performance if offloaded to PIM. After simulating the same 28 apps as above

[Figure 11], the output can verify this theory for a threshold value of 10. Hence, all the functions

with an MPKI value greater than 10 show execution time enhancements when they are executed

in the PIM. For our experiments, the average speedup these applications deliver is x1.76

0.
82

0.
78

0.
71

0.
65

0.
9

0.
91

1.
29

1.
25

1.
04

1.
37

1.
3

1.
04

1.
03

0.
78

0.
99

1.
34

1.
26

1.
11 1.
16

1.
75 1.
78

1.
76

1.
77

1.
78

2.
14

1.
34 1.

43

2.
54

 26

Nevertheless, the metric is incapable of showing the existence of functions that can

benefit from the NDP even though they have a smaller MPKI result. We observe a random

speedup pattern for the applications that resulted in an MPKI value less than 10. Using the

knowledge of the underlying algorithm, we can notice that many of the apps that can benefit

from the PIM despite their small MPKI value perform only trivial algebraic calculations (e.g.

triple matrix multiplication). These observations lead us to assume that MPKI can be coupled

with AI to provide a more precise characterization method.

For example, in our experiments they are three database MapReduce algorithms. The

nature of these applications suggests that although they utilize the caches in an effective manner,

the increased size of their workload require a significant number of requests to be issued to the

main memory. The bandwidth provided by the HMC (39.7 GB for Word_Count , 43.7 for

Linear_Regression) can alleviate the costs of the necessary data movements.

5.2.4 Applications Classification

 Taking the above metric analysis into account, we observe that a sequential deployment

of both could produce an accurate technique to determine the NDP suitability of a workload.

Exploiting the fact that MPKI is accurate for applications that reside above the threshold value,

we firstly divide the applications into two groups. The group A [Figure 12] consists of all the

functions that produce a speedup as a result of their high MPKI value. In the present case, group

A includes 12 applications with an average speedup of x1.76.

 27

Figure 12 Group A applications

We then apply the AI metric filtering to the group B which contains the applications that

the MPKI failed to accurately address. Among the low MPKI apps, the AI succeeds to address

the potential performance improvements dividing the application into B and C groups. B

functions can make good use of the PIM due to their memory boundness. In B group we classify

the functions that produce MPKI < 10 but AI < 40 [Figure 13]. Their average speedup value is

x1.20, less than the average value of the A group, as expected.

0

0.5

1

1.5

2

2.5

3

Group A

 28

Figure 13 Group B applications

The compute bound applications of the remaining group C [Figure 14] are more suited

for execution on the Host CPU. In this last group we classify the apps with MPKI < 10 and

also AI > 40. The average speed up for the functions of this group is x0.804.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.45 1.40 1.16 0.87 0.52 0.48 0.54 0.45 5.56

6.4 6.6 6.8 8.4 13.7 14.3 17.7 18.7 39.7

Group B

Group B MPKI AI Speedup Group

polybench_linear-algebra_3mm 1.45 6.4 1.03 B

polybench_linear-algebra_gemm 1.4 6.6 1.04 B

polybench_linear-algebra_gemver 1.16 6.8 1.3 B

polybench_stencil_convolution-2d 0.87 8.4 1.37 B

phoenix_WordCount_main 0.52 13.7 1.25 B

phoenix_Linearregression 0.48 14.3 1.29 B

polybench_linear-algebra_doitgen 0.54 17.7 1.04 B

chai_BS_BEZIER_KERNEL 0.45 18.7 0.91 B

phoenix_PCA_main 5.56 39.7 1.34 B

 29

Group C MPKI AI Speedup

chai_BFS_BFS 2.55 51 0.78

phoenix_Kmeans 0.28 294 0.9

chai_TRNS_CPU 5.55 310 0.99

ligra_BC_edgeMapSparseRmat 0.16 390 0.65

hpcg_HPCG_ComputePrologation 0.13 50 0.78

hpcg_HPCG_ComputeSYMGS 0.11 78 0.82

hpcg_HPCG_ComputeRestriction 0.15 45.1 0.71

Figure 14 Group C applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

2.55 0.28 5.55 0.16 0.13 0.11 0.15
51 294 310 390 50 78

45.1

Group C

 30

The resulting classification diagram is as follows

Figure 15 Classification Diagram

 31

6 Conclusions and Future Work

In this work we deducted a comprehensive review analysis of the most prevalent categories

in the domain of NDP research. We presented the range of application for every one and

highlighted their advantages and disadvantages. In order to support the unrestricted research

about the adoption of PIM, even though its commercialization is not on a desirable level, we

narrowed down our focus to software simulation using the DAMOV simulator. For the

facilitation of the programmer, we concentrated our efforts to function-offloading NDP

approaches with no knowledge of the underlying algorithm. In this direction we presented a

simplified, yet accurate two-step classification method that is based on two prevalent metrics

and successfully divides applications based on their NDP execution speedup. These metrics are

AI and LLC MPKI.

The future of NDP will eventually deal with significant challenges, such as cache

coherence. But based on this thesis, we could point out two main direction that can shape future

research. We believe that the future of NDP exploration should highlight whether the generic

approach of function-offloading will be beneficial enough to prevail against the faster but

confined instruction-offloading. We also propose that the simplicity of this analysis could be a

good starting point for the development of a real-time compiler-based offloading technique.

 32

7 Appendix

7.1 Installation

Due to the several and fragile dependencies of the project, it is recommended to install

the simulator on a clean image. We tested the installation process using a Virtual Machine and

we verified that it works but takes its toll performance wise. Also, after several trial-and-error

cycles, we strongly recommend to use an Ubuntu 18.04 image. The DAMOV simulator team

has lately provided a script that takes care of the packages’ versioning but is based on the Ubuntu

18.04 environment. To install the simulator you should navigate inside the scripts folder and

run ./setup.sh and ./compile.sh. If the installation produces any errors referring to the compilers

version, or the version of the Python installed, please configure the gcc alternatives to use a gcc-

6+ compiler as follows:

- Remove the current gcc alternative priorities

o sudo update-alternatives --remove-all gcc

o sudo update-alternatives --remove-all g++

- Install the gcc version

o sudo apt-get install gcc-6.* g++-6.*

- Update the alternatives

o sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6.* 10

o sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6.* 10

o sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30

o sudo update-alternatives --set cc /usr/bin/gcc

o sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30

o sudo update-alternatives --set c++ /usr/bin/g++

- Configure the alternatives

 33

o sudo update-alternatives --config gcc

o sudo update-alternatives --config g++

After successfully configuring both the compiler and the python versions, you can follow the

commands provided at the simulators repository [https://github.com/CMU-SAFARI/DAMOV].

a.

7.2 Tutorial

The simulator’s suite provides plenty of workload benchmarks carefully carved to fit the

simulation environment of the PIM capabilities that were added to the simulator. Nevertheless

one can create its own benchmark written in C or C++ to conduct specific experiments. In order

for zsim to understand which code segment is under examination, the special zsim hooks must

be included. A simple demo of a trivial application that just initializes an array inside the

memory is presented below in figure 16. After the successful compilation of the workload the

user must produce the configuration file for the simulator.

In order to simultaneously generate multiple files for various configurations, that are

also organized according to the simulators file system, a python script is provided as shown in

the figure 17 below. By alternating the array ‘number_of_cores’ the user can specify the

experiments scalability. After line 104, by manually commenting out the commands that

correspond to any unnecessary CPU configurations, you can exclude them from the simulation.

The functions in-between are responsible to create the suitable file system for the configuration

files.

The next step is running the experiment for both the Host and the PIM platform and

compare the output stats. The commands are provided below in figures 18 and 19 respectivelly.

In order to decrease the idle time and automate the process, we created two python scripts. The

first script is ‘run_and_get.py’ [Figure 20] that unifies the process of running and reading the

output of an experiment. The second is the ‘batch_run.py’ [Figure 21] that instructs the previous

script to execute based on the combinatorics of choice, such as the number of cores, the

processing platform and the specific workload.

 34

Figure 16 Create & Compile Custom Workload

 35

 36

Figure 17 Configuration File Generation

Figure 18 Run & Read Stats from host

 37

Figure 19 Run & Read Stats from PIM

Figure 20 Run & Get

 38

Figure 21 Batch Run

7.3 Configuration

In this section we examine the configuration file [Figure 22] to inspect to what extend

we can alternate the simulators configuration. The first sector of the script is about the CPU

cores. The most significant change we can make is modifying the number of cores. As far as

the caches are concerned, you can change the size, the associativity, and the latency in cycles.

It is very simple to change the memory model, among the available models inside Ramulator.

In the ‘sim’ section the user can specify the path for the output file. The max total instructions

number can also be modified to increase or decrease the simulation time. The selected

instructions count is calculated to be the best trade-off between speed and credibility. Finally,

the user selects the command that points to the workloads executable.

 39

 40

Figure 22 The Config File

 41

8 Bibliography

2. Mutlu, Onur, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.

"Processing data where it makes sense: Enabling in-memory
computation." Microprocessors and Microsystems 67 (2019): 28-41.

3. Boroumand, Amirali, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric
Shiu, Rahul Thakur, Daehyun Kim et al. "Google workloads for consumer devices:
Mitigating data movement bottlenecks." In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 316-331. 2018.

4. Jia, Zhen, Jianfeng Zhan, Lei Wang, Chunjie Luo, Wanling Gao, Yi Jin, Rui Han, and
Lixin Zhang. "Understanding big data analytics workloads on modern
processors." IEEE Transactions on Parallel and Distributed Systems 28, no. 6 (2016):
1797-1810.

5. R. Sites, “It’s the Memory, Stupid!” MPR, 1996

6. Tsai, Po-An, Yee Ling Gan, and Daniel Sanchez. "Rethinking the memory hierarchy
for modern languages." In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 203-216. IEEE, 2018.

7. Qureshi, Moinuddin K., M. Aater Suleman, and Yale N. Patt. "Line distillation:
Increasing cache capacity by filtering unused words in cache lines." In 2007 IEEE 13th
International Symposium on High Performance Computer Architecture, pp. 250-259.
IEEE, 2007.

8. Tziouvaras, Athanasios. "Design space exploration in near-data co-processors for
general-purpose acceleration, in high-performance and low-power processing
environments." PhD diss., University of Thessaly.Electrical and Computer
Engineering, 2021.

9. Qureshi, Moinuddin K., Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer.
"Adaptive insertion policies for high performance caching." ACM SIGARCH Computer
Architecture News 35, no. 2 (2007): 381-391.

 42

10. Ferdman, Michael, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. "Clearing the clouds: a study of emerging scale-out
workloads on modern hardware." Acm sigplan notices 47, no. 4 (2012): 37-48.

11. McKee, Sally A. "Reflections on the memory wall." In Proceedings of the 1st
conference on Computing frontiers, p. 162. 2004.

12. Stone, Harold S. "A logic-in-memory computer." IEEE Transactions on
Computers 100, no. 1 (1970): 73-78.

13. Elliott, Duncan G., W. Martin Snelgrove, and Michael Stumm. "Computational RAM:
A memory-SIMD hybrid and its application to DSP." In 1992 Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 30-6. IEEE, 1992.

14. Patterson, David, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. "A case for
intelligent RAM." IEEE micro 17, no. 2 (1997): 34-44.

15. Zhu, Qiuling, Tobias Graf, H. Ekin Sumbul, Larry Pileggi, and Franz Franchetti.
"Accelerating sparse matrix-matrix multiplication with 3D-stacked logic-in-memory
hardware." In 2013 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1-6. IEEE, 2013.

16. Ahn, Junwhan, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. "A
scalable processing-in-memory accelerator for parallel graph processing."
In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, pp. 105-117. 2015.

17. Ghose, Saugata, Amirali Boroumand, Jeremie S. Kim, Juan Gómez-Luna, and Onur
Mutlu. "Processing-in-memory: A workload-driven perspective." IBM Journal of
Research and Development 63, no. 6 (2019): 3-1.

18. Hsieh, Kevin, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. "Accelerating pointer chasing in 3D-
stacked memory: Challenges, mechanisms, evaluation." In 2016 IEEE 34th
International Conference on Computer Design (ICCD), pp. 25-32. IEEE, 2016.

19. Liu, Pei, Ahmed Hemani, Kolin Paul, Christian Weis, Matthias Jung, and Norbert
Wehn. "3D-stacked many-core architecture for biological sequence analysis
problems." International Journal of Parallel Programming 45, no. 6 (2017): 1420-
1460.

 43

20. Shaw, David Elliot, Salvatore J. Stolfo, Hussein Ibrahim, Bruce Hillyer, Gio

Wiederhold, and J. A. Andrews. "The NON-VON database machine: A brief
overview." IEEE Database Eng. Bull. 4, no. 2 (1981): 41-52.

21. Memory Cube Consortium, “Hybrid Memory Cube Specification Rev. 2.0,”
http://www.hybridmemorycube.
Hybrid org/

22. JEDEC, High Bandwidth Memory (HBM) DRAM, Standard No. JESD235 (2013).

23. V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O.
Mutlu, P. B. Gibbons, T. C. Mowry, Buddy-RAM: Improving the Performance and
Efficiency of Bulk Bitwise Operations Using DRAM, arXiv:1611.09988 [cs:AR]
(2016)

24. V. Seshadri, O. Mutlu, Simple Operations in Memory to Reduce Data Movement, in:
Advances in Computers, Volume 106, 2017.

25. J. Ahn, S. Hong, S. Yoo, O. Mutlu, K. Choi, A Scalable
Processing-in-Memory Accelerator for Parallel Graph Processing, in: ISCA, 2015.

26. J. Ahn, S. Yoo, O. Mutlu, K. Choi, PIM-Enabled Instructions:
A Low-Overhead, Locality-Aware Processing-in-Memory Architecture, in: ISCA,
2015

27. K. Hsieh et al., "Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems," 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp. 204-216, doi:
10.1109/ISCA.2016.27.

28. Geraldo F. Oliveira, Juan Gómez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, Onur Mutlu, "DAMOV: A
New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks".
arXiv:2105.03725 [cs.AR], 2021.

29. Sanchez, Daniel & Kozyrakis, Christos. (2013). ZSim: fast and accurate
microarchitectural simulation of thousand-core systems. ACM SIGARCH Computer
Architecture News. 41. 475. 10.1145/2508148.2485963.

 44

30. Y. Kim, W. Yang, O. Mutlu. "Ramulator: A Fast and Extensible DRAM Simulator". In
IEEE Computer Architecture Letters, March 2015.

31. Reif, Rafael; Tan, Chuan Seng; Fan, Andy; Chen, Kuan-Neng; Das, Shamik; Checka,
Nisha (2002). "3-D Interconnects Using Cu Wafer Bonding: Technology and
Applications" (PDF). Advanced Metallization Conference

32. William Shockley, “Semiconductive Wafer and Method of Making the Same”, US
Patent # 3,044,909, filed on October 23, 1958 and granted on July 17, 1962

33. Merlin Smith and Emanuel Stern, “Methods of Making Thru-Connections in
Semiconductor Wafers”, US Patent # 3,343,256, filed on December 28, 1964 and
granted on September 26, 1967.

34. Kawamura, S.; Sasaki, Nobuo; Iwai, T.; Mukai, R.; Nakano, M.; Takagi, M. (1984).
"3-Dimensional Gate Array with Vertically Stacked Dual SOI/CMOS Structure
Fabricated by Beam Recrystallization". 1984 Symposium on VLSI Technology. Digest
of Technical Papers: 44–45

35. Akasaka, Yoichi; Nishimura, T. (December 1986). "Concept and basic technologies
for 3-D IC structure". 1986 International Electron Devices Meeting: 488–491.

36. Kada, Morihiro (2015). "Research and Development History of Three-Dimensional
Integration Technology" (PDF). Three-Dimensional Integration of Semiconductors:
Processing, Materials, and Applications. Springer. pp. 8–13. ISBN 9783319186757.

37. James, Dick (2014). "3D ICs in the real world". 25th Annual SEMI Advanced
Semiconductor Manufacturing Conference (ASMC 2014): 113–119.

38. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, M. A. Kozuch, P. B. Gibbons, T. C. Mowry, RowClone: Fast and Energy-
Efficient In-DRAM Bulk Data Copy and Initialization, in: MICRO, 2013

39. V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, T. C. Mowry, Fast Bulk Bitwise AND and OR in DRAM, CAL (2015)

40. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J. M. Hellerstein, Distributed
GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, VLDB
Endowment (2012)

 45

41. Fidel, Adam & Amato, Nancy & Rauchwerger, Lawrence. (2014). KLA: A new
algorithmic paradigm for parallel graph computations. Parallel Architectures and
Compilation Techniques - Conference Proceedings, PACT.
10.1145/2628071.2628091.

42. L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar and H. Kim, "GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks," 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 457-468, doi: 10.1109/HPCA.2017.54.

43. Hadidi, Ramyad & Nai, Lifeng & Kim, Hyojong & Kim, Hyesoon. (2017). CAIRO: A
Compiler-Assisted Technique for Enabling Instruction-Level Offloading of
Processing-In-Memory. ACM Transactions on Architecture and Code Optimization.
14. 1-25. 10.1145/3155287.

44. Santos, Paulo C., Marco AZ Alves, Matthias Diener, Luigi Carro, and Philippe OA Navaux.
"Exploring cache size and core count tradeoffs in systems with reduced memory access
latency." In 2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 388-392. IEEE, 2016

45. Intel Corp., “Intel VTune Profiler User Guide,”
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/,
2021

46. Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures." Communications of the ACM 52, no. 4 (2009):
65-76.

47. Doerfler, Douglas, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook, Thorsten
Kurth, Mathieu Lobet, Tareq Malas, Jean-Luc Vay, and Henri Vincenti. "Applying the roofline
performance model to the intel xeon phi knights landing processor." In International
Conference on High Performance Computing, pp. 339-353. Springer, Cham, 2016.

48. Kim, Hyojong, Hyesoon Kim, Sudhakar Yalamanchili, and Arun F. Rodrigues. "Understanding
energy aspects of processing-near-memory for HPC workloads." In Proceedings of the 2015
International Symposium on Memory Systems, pp. 276-282. 2015.

49. Nai, Lifeng, and Hyesoon Kim. "Instruction offloading with hmc 2.0 standard: A case study for
graph traversals." In Proceedings of the 2015 International Symposium on Memory Systems,
pp. 258-261. 2015.

50. Santos, Paulo C., Marco AZ Alves, Matthias Diener, Luigi Carro, and Philippe OA Navaux.
"Exploring cache size and core count tradeoffs in systems with reduced memory access
latency." In 2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 388-392. IEEE, 2016.

