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Abstract 
 

 

 Contemporary CPU capabilities are more than enough to process demanding and intense 

computational tasks. On the contrary, the challenges that impede the conventional DRAM 

memory scaling renders it the main bottleneck of today's computer systems, diminishing that 

way their total processing power. The aforementioned is severely felt when dealing with data-

intensive applications such as Machine Learning algorithms, Graph Processing or heavy 

consumer workloads. To overcome the DRAM evolution obstacles system architects shifted 

their research focus to Near-Data-Processing (NDP) architectures, where the memory die is 

accompanied with logic capable of processing data where they reside, alleviating the need for 

costly data transactions between the CPU and the main memory. The emergence of 3D-Stack 

Memory models made the realization of such a venture feasible. However, only a small amount 

of these models is commercially available and accessible.  

In order to surpass the challenges that remain until the broad adoption of NDP 

architectures, practical and easy-to-use NDP simulation environments must be developed and 

distributed to enable contributions. Among a confined range of selection, we opted for 

DAMOV, a general-purpose kernel-offloading PIM simulator based on zsim and Ramulator 

along with its benchmark suite that contains a broad-scoped selection of memory intensive 

applications.  

The current study can be divided into two parts. The first part depicts a comprehensive 

image of the NDP trends that define the contemporary research field, their branches, and the 

range of application of them respectively. The second part presents a methodology for 

determining the suitability of workloads for NDP execution function-offloading granularity, 

after observing key metrics that are extracted from the simulator. By carefully applying the 

metrics in a specific sequence, we classify the workloads into categories that can determine a 

priori if NDP can result to execution speedup 

 



  
  x 
 
 

 

Περίληψη 
 

 Οι δυνατότητες των σύγχρονων επεξεργαστών είναι επαρκείς ώστε να εκτελέσουν 

απαιτητικές και έντονες υπολογιστικών διαδικασίες. Αντιθέτως, λόγω των εμποδίων που 

δυσχεραίνουν την εξέλιξη της DRAM, η μνήμη καθίσταται κύρια αιτία υπολογιστικής 

συμφόρησης. Το γεγονός αυτό είναι περισσότερο προφανές όταν αντιμετωπίζονται εφαρμογές 

με μεγάλες απαιτήσεις δεδομένων, όπως είναι οι αλγόριθμοι Μηχανικής Μάθησης και η 

επεξεργασία γραφημάτων. Προκειμένου να ξεπεραστούν οι δυσκολίες στην ανάπτυξη της 

DRAM, οι επιστημονική κοινότητα έχει στρέψει το ενδιαφέρον της σε αρχιτεκτονικές 

Επεξεργασίας Κοντά στη Μνήμη. Σε αυτού του τύπου τις αρχιτεκτονικές το κύκλωμα της 

μνήμης συνοδεύεται από ένα λογικό κύκλωμα ικανό να επεξεργαστεί τα δεδομένα κοντά στο 

χώρο αποθήκευσης τους, ελαχιστοποιώντας με αυτόν τον τρόπο την ανάγκη για ενεργοβόρες 

μεταφορές δεδομένων ανάμεσα στην κύρια μνήμη και τον επεξεργαστή. Η πραγματοποίηση 

τέτοιων εγχειρημάτων κατέστη δυνατή μετά την ανάπτυξη τρισδιάστατων μνημών. Παρόλα 

αυτά, ελάχιστα μοντέλα είναι διαθέσιμα για εμπορική χρήση. 

 Προκειμένου να διευκολυνθεί η έρευνα που θα καθιερώσει την Ε.Κ.Μ., γίνεται 

προσπάθεια να αναπτυχθούν προσομοιωτές λογισμικού ανοικτού κώδικα και εύκολοι στη 

χρήση. Μέσα από περιορισμένες επιλογές, επιλέξαμε τον DAMOV, έναν επεξεργαστή για 

Ε.Κ.Μ γενικού σκοπού επιπέδου συνάρτησης, βασισμένο στους zsim και ramulator, μαζί με τα 

προτεινόμενα benchmarks που τον συνοδεύουν, και αφορούν ένα μεγάλο εύρος εφαρμογών. 

 Η παρούσα μελέτη διαχωρίζεται σε δύο τμήματα. Το πρώτο τμήμα παρουσιάζει μια 

συμπυκνωμένη και κατανοητή ανάλυση των κύριων τομέων Ε.Κ.Μ, των κλάδων αυτών και του 

πεδίου εφαρμογής για κάθε έναν. Το δεύτερο τμήμα παρουσιάζει μια μεθοδολογία ικανή να 

καθορίσει την αποτελεσματικότητα της Ε.Κ.Μ σε επίπεδο συνάρτησης. Η μεθοδολογία 

στηρίζεται στη δημιουργία κατηγοριών που περιέχουν εφαρμογές με παρόμοια συμπεριφορά, 

και δημιουργούνται μέσω της εφαρμογής ειδικών μετρητικών κριτηρίων που προκύπτουν από 

τη διεξαγωγή των πειραμάτων. 
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1 Introduction 
 

For decades now, the performance of CPUs has been improving at a very fast rate, 

minimizing the energy and time cost to perform demanding arithmetic operations. To execute 

these computations, all the data involved must be located in the core's cache memory. Data 

movement from the main memory to the processing cores can be up to four orders of magnitudes 

slower, hence energy consuming also. Nowadays the datasets of modern applications are 

immensely growing, increasing the occurrences of cache misses, thus the need for data 

movement from the RAM to CPU [1, 2]. The aforementioned transfer happens via a narrow-

bandwidth memory bus. To increase performance, systems' evolution led to the inclusion of 

mechanisms focused to the alleviation of the impact of data movement such as prefetchers and 

deep cache hierarchies. This strategy, nevertheless comes with significant hardware cost and 

does not fit well to the wide range of applications [3, 4, 5, 6]. To keep up with modern workload 

needs, typical computer systems must either increase cache capacity by adding more cores or 

include a main memory system that scales efficiently in terms of performance, energy and 

capacity altogether. The first aforementioned assumption is ruled out by the dark silicon effect 

[7] and by the fact that by sharing the last level cache memory, many CPU cores tend to access 

the same memory addresses causing cache contention, or fail to exploit the caches due to little 

data reusability [8]. The second is considered infeasible by many studies [9, 10] as, 

understandably, the improvements of a category come on the expense of the others. As a result, 

the focus on computer systems research is shifted from the Von-Neumann processor-centric 

model to the Near-Data-Processing (NDP) paradigm [11, 12, 13, 14], a paradigm that suggest 

the processing of data near or even inside the memory, where they reside. This paradigm aims 

to function in an effective way for applications that are characterized by irregular access 

patterns, little memory locality and larger working sets [15 16, 17, 18, 19]. Although NDP has 

been proposed for more than 50 years [11, 20], hardware limitations prevented its 

materialization. Recent breakthroughs such as 3D-stacked memory [21, 22] led to the realization 

of the concept. 
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NDP, also called Processing-In-Memory (PIM) can be divided into two main 

approaches. The Processing-Using-Memory, that aims to exploit analog, bulk operations inside 

memory cells such as simple bitwise operations [23, 24] and the Processing-Near-Memory that 

suggests the integration of 3D-stacked memory along with a logic layer that operates as a CPU 

directly underneath the main memory. Because the current bandwidth is limited by the numbers 

of I/O pins available in DRAM and the capabilities of the memory bus, more bandwidth is now 

provided to the cores of the NDP logic layer. The latter has been explored by means of 

application-specific kernels [15, 16, 18] with individual instruction offloading [25, 26] and 

general-purpose cores that encapsulate entire function-offloading capabilities [27]. Application-

specific kernels are PIM modules that try to exploit the characteristics of a specific category of 

applications usually only offloading certain instructions for NDP. A classic example is 

recognizing and offloading the data manipulation tasks of graph processing algorithms. Despite 

the fact that application-specific solutions achieve important speedups when implemented for 

crucial workload categories, the strict offloading conditions they oblige in are a barrier for their 

widespread adoption. On the other hand, PUM and instruction offloading require either a 

compiler or profiler to determine every instruction's PIM suitability, usually adding a time 

overhead, or the programmer’s knowledge and PIM-specific code handling.  

In our opinion, the most viable solution is in the direction of general-purpose function-

offloading. Offloading the whole function to the PIM consists of the mechanism with the less 

demanding adjustments from the programmer’s endpoint, and general-purpose approach renders 

the widespread adoption of the PIM paradigm more feasible by its panoramic perspective. 

In order to defend our proposition and to perform a holistic review on the matter, we 

present a comprehensive analysis of the most prolific trends in the NDP research field, analyzing 

the benefits and the liabilities of each and every one.  Later on, we narrow our focus to function-

offloading PIM execution and propose an empirically derived methodology on how to predict 

whether applying PIM in the application under examination would result to a desired execution 

speedup. We then try to highlight the significance of open-source general-purpose function-



  3
  
  
offloading software simulation of NDP systems that succeed to assist the exploration of a) 

various architecture proposals b) offload-candidate workloads at no hardware cost and demand 

no special programming adjustments.  

 

Among the available options we chose the DAMOV simulator environment [28], a 

simulator that combines zsim [29] and Ramulator [30] using the HMC 3D-stacked memory 

model, coupled with a comprehensive benchmark suite compiled by a plethora of data-intensive 

functions to examine potential benefits by executing them on the PIM. We carry on by 

comparing the so far proposed workload profiling methods and select the most accurate in terms 

of efficiency and execution simplicity. We then attempt to simplify some of the suggested 

profiling methods and keep the process solely in the simulator’s environment. By examining 

prior works and juxtaposing their extracted propositions with the results of the experiments we 

conducted, we infer on the most precise and easy-to-use metrics that assist to identify the 

usefulness of NDP. We showcase that two of the most prominent metrics are Αrithmetic 

Ιntensity (AI) and cache Misses Per Kilo Instructions (MPKI).  
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Figure 1 PSP eDRAM 

 

2 Background 

 

2.1 3-Dimensional Integrated Memory Circuits 

 

 The term 3D IC refers to the method of vertically stacking integrated circuits for 

purposes of space conservation and performance improvement. Despite the efforts being made 

for both computational units and memory modules to conform to this paradigm, the necessity 

for the memories’ development to overcome specific obstacles concerning space scaling and 

bandwidth improvement made them the focal point of the 3D IC research field. The first 

technical parameter that needed to be encountered was the means of communication and 

interconnection among the several vertically stacked layers of the 3D chip. The two salient 

manufacturing technologies that were explored were recrystallization and wafer bonding [31]. 

In the course of time, wafer bonding was identified as the prominent one and a specific sub-

technique of it, Through-Silicon-Vias (TSVs) became the approach of choice for the key 

manufacturing companies. TSVs are electrical interconnects made of copper that completely 

penetrate a silicon wafer in order to support communication between two vertically stacked 

layers. They are characterized as a high-performance medium, the roots of which can be traced 

back to 1958 [32, 33].  
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Figure 2 High Bandwidth Memory [21] 

 

 The first major corporation to achieve the realization of a 3D IC was Fujitsu in 1983 

[34], later followed by Mitsubishi [35]. The aforementioned efforts did not use TSVs as their 

interconnections technology, which were introduced to the industry in 1981 and were not 

integrated into the chip’s design until 2008 [36]. Intel’s 2004 initiative to produce a 3D version 

of its Pentium 4 resurged the community’s interest to stacked chipsets, an interest that later 

entrained renowned companies like Samsung and Toshiba to the development of commercial 

3D Memories such as PSPs eDRAM [37] [Figure 1]. 

  

Currently, the two main reference modules in terms of 3D memories are AMD’s and 

Samsung’s High Bandwidth Memory (HBM) [Figure 2] and Micron’s (later supported by 

Samsung) Hybrid Memory Cube. HBM implements stacked DRAM dies connected by TSVs to 

produce a larger amount of bandwidth, up to 665 GB/s [22] by enabling parallel transfer of data 

to and from the memory dies. This is feasible because HBM hosts two 256-bit memory channels 

per block of 4 DRAMs, leading to a 4096 bits-wide bus for a standard HBM cube.  
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Figure 3 Hybrid Memory Cube [20] 

2.2 Hybrid Memory Cube 

 

 The rapid development of 3D stacked memories acted as the key for incorporating 

processing opportunities inside the memory. Having identified the memory wall as the 

prevailing bottleneck of today’s computer systems’ performance, the potential of reducing data 

movement by transferring the computation to the memory rather than the opposite forced the 

corporations and researchers to the development of chips that integrate logic as well as memory. 

Hybrid Memory Cube (HMC) [Figure 3] is one of the most popular 3D-stacked memory 

architectures available.  HMC is the result of the collaborative work of Samsung and Micron. It 

consists of up to eight DRAM dies and one logic die. These vertical layers are connected with 

each other by Through-Silicon-Vias (TSVs), vertical, high-performance interconnects designed 

to slice through the silicon die, providing communication to between the layers. Within the cube, 

memory is vertically divided to partitions named vaults (see picture). Underneath each vault lies 

a vault controller, a logic unit that operates directly on the data present at the corresponding 

vault and governs read and write requests to the vault. By developing a dedicated controller for 

each vault, HMC succeeds to provide independent access to every vault thus achieving 

parallelism. Referring to as much as 8 logic layers altogether every request can consume data 

on a vertical axis and reach a maximum bandwidth of 80Gb/s per vault. The increase of the 

accessible bandwidth compared to modern DRAM technologies manifests that the use of HMC 

can attenuate the effects of bandwidth induced latency for bandwidth-bound applications when 

these applications execute on a traditional DRAM module.  
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Later on, we showcase a number of applications that appertain to this class and the 

speedup that is achieved when they are offloaded for execution in a PIM that includes HMC as 

the memory model of choice. One drawback to this independent memory access pattern is that 

there is no specific memory requests timing and the response can be obtained in a different order 

than the request was made because every vault executes as an independent memory module. 

Every request from the Host CPU to the HMC memory module is first directed to the 

corresponding vault and then stored to a buffer in the vault controller. Every such buffer retains 

a FIFO protocol, so requests to a specific vault will be executed in order. Generally, though, the 

vaults generally reorder their internal requests to optimize bandwidths and to reduce average 

latencies, and the vaults do not communicate with each other so there is no guarantee that the 

series of requests will be preserved. As a result, the host processor must implement a coherence 

protocol, same to the network package that enumerate their requests to secure that data is 

continuous and of the same order as on the protocols request, a matter which poses as a drawback 

to a general-purpose PIM approach.  

Additionally, the HMC specifies its own PIM commands [Figure 4] that implement 

simple Atomic Instructions, commonly recurring bitwise operations that the logic layer can 

execute straight on the correlated data. This type of commands has been the area of exploitation 

for various instruction-level compiler-based PIM proposals because they do not encounter the 

aforesaid data coherency issues and can be a very fast solution for workloads that make 

extensive use of simple bitwise commands. Below, we present a table containing HMC’s most 

basic commands 

.  

Figure 4 HMC Basic Commands 
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3 NDP Trends 
 

3.1 Overview 
 

Since NDP was first introduced as an idea about five decades ago there have been many 

different methodologies proposed, each of them aiming to address a separate aspect of the 

processor-centric Von Neumann design that acted as a performance bottleneck. The majority of 

the most significant of them converge to eliminating every unnecessary data movement among 

memory and processing components. This way they aim to override the usage of the time and 

energy intensive memory off-chip link as well as minimize the improper leveraging of the 

caching hierarchy. In order to study these works we categorize them based on whether they 

operate directly on the memory cells or use an added logic layer to Process-Near-Memory, based 

on their range of application to general-purpose or application-specific and finally based on their 

proposed offloading granularity to kernel offloading or instruction-level offloading.  

The term offloading granularity is used to describe the level of insight of the candidate 

section of code. In instruction-level offloading the system focuses on executing individual 

commands on the PIM subsystem as opposed to kernel offloading where a whole function is 

sent to PIM submodule to be executed. The first approach nullifies unnecessary data transfers 

because only the instruction is sent to PIM where the data consist. The later approach prevails 

regarding software development simplicity and usage abstraction, as the same hardware and 

software architecture can support every offloading candidate function.  

The following analysis can be considered as a coherent assessment of some of the most 

significant propositions regarding PIM, nevertheless concentrates on the offloading candidate’s 

selection methodologies which they suggest, examining the issue more from the programmers’ 

standpoint, since it is one of the most constraining concerns in the direction of PIM adoption. 
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Figure 5 Triple Row Activation [39] 

 

3.2 Bulk In-Memory Operations 

  

 Although 3D-stacked memory architectures revolutionized the Processing-In-Memory 

research field, there have been proposed approaches that attempt to take advantage of existing 

DRAM architecture and operations to induce simple computation capabilities by implementing 

minimal changes to the memory chips. Amongst the number of data intensive applications there 

is a fraction of them that comprises almost exclusively of bulk data movement operations. With 

the term bulk data movement operations, we refer to these blocks of instructions that require no 

computation on the processing end, such as batch initialization of a memory block (initializing 

an array to null) or bulk data copy from a memory address to another.  

Investigating the existing DRAM internal organization, we observe that a DRAM chip 

is divided to multiple DRAM banks. These banks communicate with each other and with the 

I/O via a shared internal bus that is itself divided to subarrays. Each subarray is responsible for 

a number of DRAM rows, the columns of which are connected together across the multiple rows 

using bitlines. RowClone [38] implements a mechanism that issues a row-open request to 

multiple rows of a subarray and activates the source and the destination row back-to-back. Then 

the Pipelined Serial Mode transfers a large number of bytes from the source to the destination 
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row. This way one can manage the initialization of several rows of DRAM to a specific number 

by reducing the number of requests needed 

Ambit [39] is an extension of RowClone that tries to include bitwise operations in its 

range of application. Using a Triple-Row-Activation, as shown in figure 5, the cells of the first 

two rows can participate as operand in bitwise majority functions and return the result to the 

third row. Additionally, the sense amplifiers that are present to the DRAM subarrays are 

equipped with an inverter. The results of each row’s NOT function is captured and stored to a 

special, newly designed row, ready to be read when a NOT operation is issued. Tested on bitwise 

operations both RowClone and Ambit achieved a 11.6x speedup and 44x operation throughput 

respectively compared to traditional DRAM models and the NVIDIA GTX 745 GPU.  Despite 

of their results their applicability is limited to the aforementioned operations and their success 

relies on carefully carving the requests to fit well with the memory row size, a problem that lies 

into the programmers or the compilers consideration. 

 

3.3 Instruction Level Offloading 

  

 Many of the examinations that were made on workloads which are known to put the 

memory bandwidth under significant pressure led to the conclusion that the vast majority of the 

computational instructions are simple Read-Write-Modify operations such as integer addition 

or equality checks. Also, very little amount of these instructions was related to the data chunks 

that are being transferred, rendering up to the 90% of the data transfer as nonessential.  

A classic example of these patterns are graph manipulation applications which are also 

applicable to a broad domain. [39, 40]. The support of RWM operations from the HMC via 

Atomic Instructions made this category of applications the prevailing subject of instruction-

offloading PIM research. In this section we review some of the most compelling propositions 

regarding this category. 
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Figure 6 GraphPIM Instruction offloading [41] 

 

3.3.1 GraphPIM 

 

 Baseline PIM architectures take advantage of the absence of time-consuming data 

transfers using a memory bus, because both memory and the PIM logic are on the same chip. 

Cache misses and data requests from the memory are still present but due to the amplified 

bandwidth their impact on performance and energy consumption is minified. Graph traversal 

and computational algorithms are infamous to invoke a significant amount of cache misses 

because of the random memory access patterns they produce when traversing from one graph 

vertex to another. Neither spatial nor temporal locality could be guaranteed. Understandably this 

family of applications are immediately candidates for execution on a PIM.  

Graph PIM [41] attempted to enlarge the performance gains by splitting the graph 

algorithm to three parts. [figure 6] The first one and the third one refers to the vertex's metadata 

so spatial locality and data presence in cache are presumable. The second one though is related 

to accessing other nodes and is the one that produces the randomness in the access patterns. 

Most of the time it consists of simple Read-Modify-Write commands such as comparisons and 
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additions. GraphPIM implements an instruction-level Offloading mechanism that uses the 

HMC-Atomic commands to perform these RMW operations directly on the memory and bypass 

the need for data transfers. This methodology can entrain a 2.5x speedup over the baseline PIM 

model and a 37% reduction on power consumption. The downside that prevents a wider 

adoption of this methodology is the lack of exploration of candidate selection and requires from 

the programmer to analyze the algorithm to identify the RMW commands and limits itself on 

applications of which the majority of commands are RMW. 

 

3.3.2 CAIRO 

  

CAIRO [42] in essence functions like an extension of GraphPIM. Identifying the 

underlying programming burden to assess instruction-level offloading suitability, CAIRO work 

proposed a compile-time mechanism to automatically identify PIM candidate instruction by 

performing five tests per instruction. The first test ensures that the translation of a block of code 

produces only RWM commands that themselves translate to HMC Atomic commands. The 

second test ensures that the selected atomic instruction is included in the atomic instruction set 

provided by the HMC. The third is a direct access test, meaning that the addresses referenced in 

the atomic command must be embedded in the instruction code and no register read is required 

to access a memory location. E.g. lw $2 ($11) fails this test because register $11 that contains 

the address to load is not accessible from the PIM. The fourth test ensures that the size of the 

data that we ask the PIM to compute do not exceed 16 bytes. Lastly, a density test establishes 

that there are several instruction candidates in a block of code so that the effect of PIM 

computation will not be negligible.  

We chose to analyze the tests mentioned above in order to showcase that instruction-

level offloading is based on sound mathematical foundations but requires either the programmer 

to analyze the algorithm or strict offloading conditions to be met, affecting only a small group 

of instructions. 
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3.4 Function Offloading 

 

All of these works are very accurate and efficient but rely their speedup results to the 

application's translation to HMC atomic instructions and so forth being heavily reliant to the 

memory model’s support of these commands. It should be also noted that all of the above are 

idealized configurations that ignore the factor of maintaining cache coherency.  

In order to facilitate NDP offloading from the programmer’s standpoint, many efforts 

concentrate to the creation of tools that will be able to automatically distinguish Processing in 

Memory candidate code blocks. A way to achieve the identification of such blocks is to run a 

profiling tool beforehand and configure the PIM execution based on the experiments result. For 

example, Intel’s V-Tune [43] can effectively detect if the application under examination is 

compute or memory bound and provide results which can help the user identify if it is bandwidth 

or cache bound. By inspecting those numbers and by combining them with proposed research 

metrics, one can carry out more effective experiments. An alternative way is via the creation of 

compiler-based techniques that aim to unify the process of both identifying and executing PIM 

code blocks and completely dismiss the user – programmer from any extra effort. Albeit, as far 

as the latter proposition is concerned, extending the compiler’s functionality to include these 

capabilities requires several modifications to be made in the existing hardware which naturally 

stands as an obstacle to widespread PIM adoption.  

Although all proposed techniques converge to the fact that transaction bandwidth should 

be the main criterion of choice, none of them has been successful to systematically recognize 

the best fits for Near Data Processing among bandwidth-bound applications. So far application 

categorization is based on experimental analysis and practical observations of execution results, 

so many research groups attempt to provide a large domain of tested benchmarks and conclude 

based on their output. 
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Figure 7 TOM Hardware Selection Support [26] 

 

3.4.1 TOM – Transparent Offloading and Mapping 

 

 Until now, due to their potential to handle multiple functions at the same time, Graphic 

Processing Units (GPUs) have been used as an execution alternative for tasks that support high 

parallelism and can be divided to small individual tasks. Examples of such tasks are Image 

Processing, Big Data applications and Machine Learning algorithms. One thing that the above 

categories have in common is that they are memory bound applications, meaning that they 

require only small, repeatedly computations to be made in a large portion of data. So far, the 

restricted off-chip pin bandwidth could not provide enough data portions to the GPU running 

threads. Combining the GPU cores with emerging 3D-stacked memory technologies by placing 

GPU processing units on their logic layer can be seen as a promising way to leverage their 

performance by reducing DRAM access overheads.   

Transparent Offloading and Mapping (TOM) [26] attempts to explore the latter proposed 

architecture of developing compiler-based techniques to offload bandwidth-intensive 

computations in GPUs. The paper suggests the development of two mechanism. The first one is 

a compiler extension that can identify loops which have the potential to be memory-bound. After 

identifying the loop, the decision of whether the block should be executed on a PIM core is 

made by an algebraic equation that essentially operates by scrutinizing the number of load and 
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store commands the block will issue to the memory. The actual offloading is performed by a 

series of added hardware components [figure 7] that utilize the aforementioned run-time 

information, decide whether the block should be marked as an NDP candidate, and instruct the 

GPU kernels to wait until the block is executed on a PIM. Additionally, based on the observation 

that loops generate paternal memory accesses, often with spatial locality, a second mechanism 

is responsible for copying the memory pages that the code blocks accessed in its first repetitions 

inside the 3D-stacked memory to minimize the memory access time of these addresses. TOM 

promises a 1.3x average performance improvement in comparison with baseline GPU models 

that are not equipped with code offloading functionality. 

 

3.4.2 Damov 

  

  To assist the widespread adoption of PIM techniques in modern memory systems, a 

more general approach of workload identification emerged. Ideally, the methodology should not 

involve any programmer’s knowledge of the underlying offloaded algorithm. Despite the 

customary reasons that could lead an algorithm to benefit from NDP, such as the aforementioned 

big workload size, there was no specific understanding of the exact properties of an application 

that could produce a data movement bottleneck. DAMOV consists a comprehensive analysis in 

this direction. First of all, the DAMOV team developed the first open-source function-

offloading granularity simulator based on Zsim[] and Ramulator. Essentially, what the simulator 

does is configuring the Ramulator to ignore any latency produced by the memory requests that 

were initiated from the offloaded code block. A more detailed analysis of the simulator is 

included in later chapter. 

            Secondly, the research uses external profiling tools and well-established metrics, such 

as the roofline model [44] to extract information about an application’s dependency on the 

memory system. The main focus of their work is to methodically understand the reason behind 

any memory related slowdowns an algorithm may experience. For example, after traversing 

through a number of processing cores ranging from 4 to 256, they investigate the total cache 

misses. If this number of misses decreases as the cores count increases, that means that the 
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application makes a good utilization of the caches but is dependent on the cache size. Similarly, 

apps that continue to produce a big amount of caches misses are bounded by the main memory’s 

off-chip link bandwidth. They continue accordingly until they end up generating six function 

categories based on the source of the data transfer bottleneck. Finally, the team provides an 

extended suite of benchmarks that are well-suited for NDP experiments, a benchmarking suite 

that we also use in our work. 

            Despite being essential to identify the exact reason of slowdown, an extensive 

methodology like this is not necessary if the primary goal is to define if the application can 

exploit NDP to improve its performance.  To this extent, the methodology should be as simple 

as it gets, using only the minimum number of metrics and classification steps needed. 

 

4 Methodology 
 

4.1 Overview 
 

All the above-mentioned works have attempted to come up with a proposed 

methodology that determines if a selected workload is suitable for NDP. This decision is usually 

made by using different profiling tools, the results of which assist to identify the root causes of 

the data movement bottleneck. Nevertheless, they often use isolated metrics that could 

potentially be combined to produce an empirical, yet more methodical way to recognize which 

algorithm can benefit by moving its computation to the memory chip. Another limiting factor 

of their analysis is that they concentrate on a specific application or an individual category of 

applications, not allowing for generic and applicable conclusions to be made. There is therefore 

created a need to constructively categorize applications, so that a programmer can decide on 

whether the algorithm could benefit from PIM just by identifying in which class it belongs. 

There are many ways to perform such classifications. Firstly, it can be based on whether the 

functions in question are compute or memory bound. Then it can be derived from the 

application’s memory access pattern and whether it can manage to effectively exploit the CPU 

caching mechanisms. Many functions produce irregular access patters, rendering, that way, the 
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caches hierarchy ineffective. In addition, existing algorithm classifications can be simplified to 

make the classification process faster and comprehensive.  

Prior works have come up with indicative metrics that can be observed as a guide for 

efficient workload profiling. Such metrics are the Arithmetic Intensity (AI), the Last Level 

Cache Misses Per Kilo Instruction (MPKI) and the Last-To-First Miss Ratio (LFMR). These 

metrics, when read in some specific order, can lead to conclusion concerning the effect of NDP 

of an algorithm. This sequence must be carefully fabricated to reduce any possible inaccuracy 

each metric produces when used by itself. It also can be read in a way that every metric assigns 

every application in a category, resulting in distinctive classes that a programmer can rely on to 

make approximations on the behavior of the relying algorithm and it's NDP suitability. For 

example, we expect functions with low AI to benefit from the NDP system. Equivalently, a 

higher MPKI acts as indicator that the application puts a lot of pressure to the memory 

subsystem, and we expect a speedup when functions with high MPKI are offloaded to the PIM 

unit. 

 The goal of our methodology is first of all to accurately extract the above-mentioned 

metrics for every algorithm under examination, and then to provide a combination of these 

metric that is able to produce exact classes of functions with similar behavior when offloaded 

to PIM.  The methodology we developed can be broken down to three major steps. The first step 

is the profiling of each application via the extraction of its key metrics. This is done by feeding 

the source code of the function accompanied with the corresponding workload to the simulator 

and subsequently filtering the resulting log files through our python facilitation scripts. These 

scripts are carved in a way to automatically output all needed metrics for every different 

configuration of the environment such as the number of cores or the distinct workloads applied. 

The second step is the independent analysis of the AI and MPKI metrics in order to conclude 

on whether they can serve as sufficient indicators for the usefulness of the PIM execution for 

the function under consideration. As the analysis of the second step suggests that certain 

applications do not comply with these assumptions, we propose a two-step workload 

classification method which relies on dividing the application firstly by their MPKI metric and 

then by their AI. Although classification techniques have also been suggested in the past, we 

find our two-step approach to provide a sufficient trade-off between accuracy and simplicity. Its 
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simplicity can be a key factor for a future transcription of this work as a real-time methodology 

that can be executed by the compiler, further alleviating any programmer’s involvement. 

In our evaluation we make a considerate selection of illustrative algorithms for every 

classification category in order to allow the generalization of our results and to verify the 

conclusions emerging at previous studies. We provide scripts and techniques that facilitate the 

user to perform the whole analysis inside the simulator's environment, without the need of 

installing and deploying external profiling tools. We, finally, select a careful sequence of the 

aforementioned metrics' evaluation, based on which a programmer can determine a priori and 

with a narrow error percentage the effectiveness of the NDP execution of the application in 

question.  

Specifically, we observed that all the applications that produced an MPKI value that 

surpassed a threshold value went on to achieve a performance improvement from the NDP. For 

the experiments conducted, this threshold was calculated to the value of 10. While correctly 

provisioning for these applications, MPKI failed to be consistent for the functions that lay under 

the threshold value. Eventually, applying the AI metric for this group of algorithms resulted in 

a sound classification of these apps. All low MPKI apps that generated an AI more than 40, 

performed better on the host platform than on the PIM. In conclusion, this two-step evaluation 

creates three groups of functions with predictable outcome as far as NDP speedup is concerned.  

The experiments were conducted on a broad set of application, that can serve for the 

generalization of the results and the easier adoption of the proposed classification. The DAMOV 

benchmarking suite consists of a representative collection of applications from various popular 

domains such as graph processing […], machine learning […], databases […], vector arithmetic 

and other commonly used workloads. 
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4.2 Proposed Metrics 
 

4.2.1 Arithmetic Intensity (AI) 
 

The metric of arithmetic intensity indicates whether the application under examination 

is considered compute-bound or memory-bound. For an application to be considered compute-

bound, the total time consumed performing computations must outweigh the time spent for data 

transfers by a significant amount. Approaching the issue from another point of view, a certain 

portion of data that is copied from the main memory to the cache must be exploited and reused 

for several computations. Consequently, it is safe to define Arithmetic Intensity as the quotient 

of instructions a CPU performs divided by the total bytes accessed in the main memory. 

Successfully performing a number of operations without the need to issue a memory request 

implies a compute-bound function, and, conversely, issuing many requests for a small number 

of instructions indicates a memory-bound function. A less error-prone definition should suggest 

replacing the denominator by the number of bytes accessed per cache line, but since we are 

trying to unify the process of evaluating the metrics, we adopt the simpler evaluation that is also 

facilitated by the simulator. Predictably, we expect an application with high compute intensity 

to not suffer from severe data movement bottlenecks, as demonstrated by prior work [45].  

This metric can be used by its own from the programmer to predict the algorithm’s 

suitability for NDP execution with a satisfactory accuracy. During our evaluation we came 

across functions that do not oblige completely to the aforementioned criterion, but the majority 

of the applications that were characterized as memory-bound went on to achieve speedups while 

on an NPD environment. Some of the various potential sources of memory boundedness are 

cache misses, cache coherence traffic, and long queuing latencies. Due to the existence of 

functions that do not appertain to this rule, a need for complementary metrics emerges 

 

4.2.2 Last Level Cache Misses Per Kilo Instruction 
 

In order for a memory request to be directed to the main memory, the required data must 

not reside in the last level cache. Only after a last level cache miss the CPU initiates a transaction 
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to the memory. Last Level Cache Misses Per Kilo Instructions (LLC-MPKI) is used as an 

indicator [2, 16, 46, 47] of an application’s dependance from the memory system. A high MPKI 

value can either mean that the app produces accesses to memory addresses that are far from one 

another, making it harder for the system to collect all the data needed inside the cache hierarchy, 

or that the app operates on a significant amount of data, the size of which exceeds the caches 

capacity by a lot. LLCMPKI is, accordingly, proportional to the applications memory-

boundness and a sufficient estimation of an algorithms data locality.  

As its name suggests, MPKI can be derived as the quotient of the number of the cache 

misses occurred during the execution divided by the average instructions among all processing 

cores of the system. Practically, the log file of zsim includes both statistics, so a carefully 

developed python script can be enough to extract the metric. Since last-level cache, in the 

present case the L3, is shared among all processing units, inspecting the L3 cache is more 

architecturally independent than focusing on L1 or L2 caches that scale accordingly to the 

number of CPU cores. 

 

5 Evaluation 
 

5.1 DAMOV Simulator 

 

 As stated before, the real hardware for HMC is not commercially available. In order to 

verify the aforementioned theoretical estimations and come up to our conclusions, we perform 

software simulation.  To simulate the host, as well as the NDP processing cores we use zsim, a 

multicore x86 open-source simulator. Zsim is configured through a .cfg configuration file that 

determines the needed execution parameters and generates memory trace files. Each line of 

these files represents a memory request to a specific memory address. These trace files are later 

fed to Ramulator, a cycle-accurate DRAM simulator that supports a wide range of commercial 

or even academic memory standards, such as DDR4 and HMC. Coupled with an extensive 

benchmarking suite and expanded to support software instrumentation, the package is called 
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DAMOV simulator. Software Instrumentation is the process of adding pre-declared hooks 

inside the code that denote that a specific sector of code most be treated differently. For example, 

inside the DAMOV the hooks are used before and after a function to declare that its execution 

will be offloaded to PIM. The full tutorial is included in the Appendix section. 

 In order to simulate the host system ZSim is modified to produce filtered memory traces. 

This means that Ramulator will be aware only of the requests that reached the memory 

controller, ignoring the requests that were served by the systems cache, thus inside the ZSim. 

For the PIM system, unfiltered traces are obtained. Consequently, when the host’s pipeline 

issues a request, it is directly fed to the main memory, with the difference that Ramulator is 

specifically instructed to use the HMC memory model and ignore the overhead metrics that are 

related to the off-chip link. That way it mimics that the processing unit lies directly underneath 

the main memory module. As far as software instrumentation is concerned, while in PIM mode, 

any memory requests that originate from the section of code that is denoted for NDP, are directly 

fed to the Ramulator.  

 It is clear that the selected software simulation environment has several advantages, with 

the most prevailing of them being its simplicity. ZSim and Ramulator are easily configurable 

regarding the caches size, hierarchy, supported memory models, model of CPU execution (in-

order, out-of-order) and other top-level options. Nevertheless, assuming that just by subtracting 

any latency induced by the off-chip links constitutes an efficient approximation, fails to cope 

with significant issues such as memory coherence. In reality, the vaults of the HMC are not 

equipped by any internal communication mechanism, so coherence must be taken care of from 

the host CPU, as it is already been said. Implying that there is no memory bus shrinks the 

problem down to essentially just a bandwidth problem, which is generally true, but to a smaller 

extent.  

 

5.1.1 Simulator Architecture 

 

 In order to evaluate the performance of our experiments we have configured our 

simulator to resemble a Host CPU with private L1 (32 kB) and L2(256 kB) caches and a shared 
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L3 (8 MB) cache hierarchy. In the NDP configuration, the processing core is only equipped with 

an L1 cache that serves as a buffer for the main memory. 

 Although current computer systems are equipped with classical 2-D DRAMs, in order 

to narrow down our focus to only the data movement aspect of the execution, we oblige to prior 

works that suggest keeping every other system component the same. To that extent, even the 

Host CPU model is equipped with a 3-D HMC main memory module. In order to compare 

possible PIM execution to the todays traditional Van Neumann architecture, one could instruct 

Ramulator to use the DRAM model instead.   

 Based on previous studies [27, 49], we do not perform extensive scalability analysis as 

far as the number of processing cores is concerned, as it is shown that you need at least 64 cores 

to fully exploit the bandwidth provided by the HMC. Hence, we vary the core count between 64 

and 256. Except for specific cases, the majority of the applications behave in a similar way when 

increasing the number of the processing units, so we only present the exceptions in this work. 

 

5.2 Results 

 

5.2.1 Retrieving the Metrics 

 

 The goal of our work is to provide a way for a unified analysis that can be contained 

exclusively inside the environment of the simulator. To this end we combine the statistics files 

from both zsim and Ramulator with our python scripts. To retrieve the AI we use the get_ai.py 

script. Inside every zsim.out file there is a line that describes the number of instructions executed 

at every CPU core. Our python program at first takes the zsim.stat file of every experiment as 

an input and returns the average number of instructions executed in all processing cores. The 

error produced by the assumption of perfect parallelism that is induced from calculating an 

average value compensates for the alleviation of the need for external software. Without loss of 

generality, the same metric can be derived by taking the total instructions executed in all 

processing cores as the denominator. The difference that it would produce is the extraction of a 
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different threshold value for AI.  Then, the same script reads the Ramulator’s output file to 

calculate the total bytes read from the main memory. Lastly it determines the AI as the ratio of 

the instructions’ average divided by the total memory transaction bytes issued to Ramulator  

For the extraction of the MPKI metric, the DAMOV simulator has already provided the 

get_stats_per_app.py script. The program requires exclusively the zsim output to determine the 

number of L3 cache misses and the divide this number with the average instructions performed 

by the host CPU. In the Appendix section, we present some modifications we made to the source 

script in order to support burst execution of experiments with various configuration options such 

as platform (host, pim), processing cores number or workload size.  

 

 

Figure 8 Speedup Over AI 

 

5.2.2 Arithmetic Intensity Analysis 

 

 In order to conclude on whether the metric of Arithmetic Intensity is a suitable one, we 

extract its value for 28 representative applications [Figure 8]. As stated before, we should 

observe that functions with low AI could benefit from their PIM offloading resulting to speedup. 

After asserting this issue, we should search for a threshold value that will act as an indicator for 

the programmer to decide upon. A first observation that can be made is that there is no 

proportionality between the AI value and the resulted speedup from the NDP. This divergence 

on the results hints to ser to understand that there is another characteristic metric that defines 
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the result.  The highest average speedup is calculated to be x1.83 in the area between 10.1 and 

12 of AI [Figure 9]. If we extend the area of our focus until we reach the first slow down, the 

apps with AI between 6.8 and 15 result to an average speedup of 1.55.  

A promising observation to the direction of our research is that all functions that are 

subjected to a performance slow down are concentrated in the area between 45.10 and 390.  

There are two exceptions in opposite directions. The Bezier Kernel calculation performs better 

on the host CPU, but is not included in the aforementioned area. Additionally, the Padding 

algorithm that holds the highest speedup calculated at x2.54, also holds the highest AI value 

(447). 

 

  

Figure 9 AI area with highest speedup average 

 

  

AI Group Average Speedup 

AI < 40 1.41 

AI > 40 0.81 

 

Figure 10 Average Speedup based on AI Threshold 
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function does not reduce its execution time when offloaded to PIM (x0.91). Inside the second 

group that contains the functions with AI greater than 40, all applications perform better on the 

host platform except for one (x2.54). In conclusion, the AI value of 40 manages to classify the 

apps with a 92% efficiency.  

 Although being an adequate percentage, that 92% could be improved if we include this 

AI threshold analysis as a part of our two-step categorization method that we later present.  

 

 

Figure 11 Speedup Over MPKI 

 

5.2.3 MPKI analysis 

 

Our previous analysis stipulates that MPKI is potentially a more accurate metric than 

AI, as prior works have shown that every application that results in a high MPKI value can 

improve its performance if offloaded to PIM.  After simulating the same 28 apps as above 

[Figure 11], the output can verify this theory for a threshold value of 10. Hence, all the functions 

with an MPKI value greater than 10 show execution time enhancements when they are executed 

in the PIM. For our experiments, the average speedup these applications deliver is x1.76 
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Nevertheless, the metric is incapable of showing the existence of functions that can 

benefit from the NDP even though they have a smaller MPKI result. We observe a random 

speedup pattern for the applications that resulted in an MPKI value less than 10. Using the 

knowledge of the underlying algorithm, we can notice that many of the apps that can benefit 

from the PIM despite their small MPKI value perform only trivial algebraic calculations (e.g. 

triple matrix multiplication). These observations lead us to assume that MPKI can be coupled 

with AI to provide a more precise characterization method.  

For example, in our experiments they are three database MapReduce algorithms. The 

nature of these applications suggests that although they utilize the caches in an effective manner, 

the increased size of their workload require a significant number of requests to be issued to the 

main memory. The bandwidth provided by the HMC ( 39.7 GB for Word_Count , 43.7 for 

Linear_Regression) can alleviate the costs of the necessary data movements.  

 

5.2.4 Applications Classification 

 

 Taking the above metric analysis into account, we observe that a sequential deployment 

of both could produce an accurate technique to determine the NDP suitability of a workload. 

Exploiting the fact that MPKI is accurate for applications that reside above the threshold value, 

we firstly divide the applications into two groups. The group A [Figure 12] consists of all the 

functions that produce a speedup as a result of their high MPKI value. In the present case, group 

A includes 12 applications with an average speedup of x1.76. 
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Figure 12 Group A applications 

 

 

We then apply the AI metric filtering to the group B which contains the applications that 

the MPKI failed to accurately address. Among the low MPKI apps, the AI succeeds to address 

the potential performance improvements dividing the application into B and C groups. B 

functions can make good use of the PIM due to their memory boundness. In B group we classify 

the functions that produce MPKI < 10 but AI < 40 [Figure 13]. Their average speedup value is 

x1.20, less than the average value of the A group, as expected. 
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Figure 13 Group B applications 

 

The compute bound applications of the remaining group C [Figure 14] are more suited 

for execution on the Host CPU. In this last group we classify the apps with MPKI < 10 and 

also AI > 40. The average speed up for the functions of this group is x0.804. 
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Group B MPKI AI Speedup Group 

polybench_linear-algebra_3mm 1.45 6.4 1.03 B 

polybench_linear-algebra_gemm 1.4 6.6 1.04 B 

polybench_linear-algebra_gemver 1.16 6.8 1.3 B 

polybench_stencil_convolution-2d 0.87 8.4 1.37 B 

phoenix_WordCount_main 0.52 13.7 1.25 B 

phoenix_Linearregression 0.48 14.3 1.29 B 

polybench_linear-algebra_doitgen 0.54 17.7 1.04 B 

chai_BS_BEZIER_KERNEL 0.45 18.7 0.91 B 

phoenix_PCA_main 5.56 39.7 1.34 B 
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Group C MPKI AI Speedup 

chai_BFS_BFS 2.55 51 0.78 

phoenix_Kmeans 0.28 294 0.9 

chai_TRNS_CPU 5.55 310 0.99 

ligra_BC_edgeMapSparseRmat 0.16 390 0.65 

hpcg_HPCG_ComputePrologation 0.13 50 0.78 

hpcg_HPCG_ComputeSYMGS 0.11 78 0.82 

hpcg_HPCG_ComputeRestriction 0.15 45.1 0.71 

 

Figure 14 Group C applications 
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The resulting classification diagram is as follows 

 

 

Figure 15 Classification Diagram 
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6 Conclusions and Future Work 
 

In this work we deducted a comprehensive review analysis of the most prevalent categories 

in the domain of NDP research. We presented the range of application for every one and 

highlighted their advantages and disadvantages. In order to support the unrestricted research 

about the adoption of PIM, even though its commercialization is not on a desirable level, we 

narrowed down our focus to software simulation using the DAMOV simulator. For the 

facilitation of the programmer, we concentrated our efforts to function-offloading NDP 

approaches with no knowledge of the underlying algorithm. In this direction we presented a 

simplified, yet accurate two-step classification method that is based on two prevalent metrics 

and successfully divides applications based on their NDP execution speedup. These metrics are 

AI and LLC MPKI.  

The future of NDP will eventually deal with significant challenges, such as cache 

coherence. But based on this thesis, we could point out two main direction that can shape future 

research. We believe that the future of NDP exploration should highlight whether the generic 

approach of function-offloading will be beneficial enough to prevail against the faster but 

confined instruction-offloading. We also propose that the simplicity of this analysis could be a 

good starting point for the development of a real-time compiler-based offloading technique.  
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7 Appendix 
 

7.1 Installation 
 

Due to the several and fragile dependencies of the project, it is recommended to install 

the simulator on a clean image. We tested the installation process using a Virtual Machine and 

we verified that it works but takes its toll performance wise. Also, after several trial-and-error 

cycles, we strongly recommend to use an Ubuntu 18.04 image. The DAMOV simulator team 

has lately provided a script that takes care of the packages’ versioning but is based on the Ubuntu 

18.04 environment.  To install the simulator you should navigate inside the scripts folder and 

run ./setup.sh and ./compile.sh. If the installation produces any errors referring to the compilers 

version, or the version of the Python installed, please configure the gcc alternatives to use a gcc-

6+ compiler as follows: 

- Remove the current gcc alternative priorities 

o sudo update-alternatives --remove-all gcc  

o sudo update-alternatives --remove-all g++ 

 

- Install the gcc version  

o sudo apt-get install gcc-6.* g++-6.*  

 

- Update the alternatives  

o sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6.* 10 

o sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6.* 10 

o sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30 

o sudo update-alternatives --set cc /usr/bin/gcc 

o sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30 

o sudo update-alternatives --set c++ /usr/bin/g++ 

 

- Configure the alternatives  
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o sudo update-alternatives --config gcc 

o sudo update-alternatives --config g++ 

After successfully configuring both the compiler and the python versions, you can follow the 

commands provided at the simulators repository [https://github.com/CMU-SAFARI/DAMOV]. 

a.  

7.2 Tutorial 

 

The simulator’s suite provides plenty of workload benchmarks carefully carved to fit the 

simulation environment of the PIM capabilities that were added to the simulator. Nevertheless 

one can create its own benchmark written in C or C++ to conduct specific experiments. In order 

for zsim to understand which code segment is under examination, the special zsim hooks must 

be included. A simple demo of a trivial application that just initializes an array inside the 

memory is presented below in figure 16. After the successful compilation of the workload the 

user must produce the configuration file for the simulator.  

In order to simultaneously generate multiple files for various configurations, that are 

also organized according to the simulators file system, a python script is provided as shown in 

the figure 17 below. By alternating the array ‘number_of_cores’ the user can specify the 

experiments scalability. After line 104, by manually commenting out the commands that 

correspond to any unnecessary CPU configurations, you can exclude them from the simulation. 

The functions in-between are responsible to create the suitable file system for the configuration 

files. 

The next step is running the experiment for both the Host and the PIM platform and 

compare the output stats. The commands are provided below in figures 18 and 19 respectivelly. 

In order to decrease the idle time and automate the process, we created two python scripts. The 

first script is ‘run_and_get.py’ [Figure 20] that unifies the process of running and reading the 

output of an experiment. The second is the ‘batch_run.py’ [Figure 21] that instructs the previous 

script to execute based on the combinatorics of choice, such as the number of cores, the 

processing platform and the specific workload.  
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Figure 16 Create & Compile Custom Workload 
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Figure 17 Configuration File Generation 

 

 

 

Figure 18 Run & Read Stats from host 
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Figure 19 Run & Read Stats from PIM 

 

 

 

Figure 20 Run & Get 
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Figure 21 Batch Run 

 

 

7.3 Configuration 

  

In this section we examine the configuration file [Figure 22] to inspect to what extend 

we can alternate the simulators configuration. The first sector of the script is about the CPU 

cores. The most significant change we can make is modifying the number of cores. As  far as 

the caches are concerned, you can change the size, the associativity, and the latency in cycles. 

It is very simple to change the memory model, among the available models inside Ramulator.  

In the ‘sim’ section the user can specify the path for the output file. The max total instructions 

number can also be modified to increase or decrease the simulation time. The selected 

instructions count is calculated to be the best trade-off between speed and credibility. Finally, 

the user selects the command that points to the workloads executable.  
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Figure 22 The Config File 
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