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Abstract- Offshore pipelines are vulnerable to local collapse and buckling propagation upon application 

of external pressure. Local imperfections, such as ovalization, wall thickness variation around the pipe-

wall, material anisotropy, and residual stresses fields are some of the main parameters that reduce the 

strength of the pipeline under high external pressures. The pipeline may locally collapse due to local 

imperfections, resulting in the formation of a propagating buckle. The buckle starts to propagate at a high 

velocity along the pipe length, leaving flattened pipe sections behind. The minimum pressure that allows 

the buckle to propagate is referred to as “buckle propagation pressure”. In this thesis, the collapse 

responses of different diameter-to-thickness ratio pipe cross-sections with imperfections, upon application 

of external pressure, are studied numerically using a non-linear finite element simulation. The collapse 

response is investigated with the two-dimension modeling of rings, which correspond to the pipe cross-

sections. Also, the collapse capacity of rings is examined in three dimensions. Furthermore, the influence 

of initial imperfections, ring geometry, material properties and residual stresses on the collapse pressure, 

is investigated through parameter analyses. The collapse responses of the rings are examined for elastic 

and inelastic material cases and the results are compared with analytical solutions. Also, the quasi-static 

buckle propagation phenomenon under steady state conditions is examined through three-dimensional 

analyses of pipes with different cross-sectional geometries. The propagation pressure is estimated through 

the corresponding pressure- volume response. The results are compared with those calculated by 

analytical equations proposed by publications and standards. In addition, the dependence of the 

propagation pressure on the element type is examined through parametric analyses. Furthermore, it is 

demonstrated that the pipe length must be long enough for obtaining steady-state propagation conditions. 

Moreover, the characteristics of integral buckle arrestor devices are introduced in the end of this thesis. 

The capability of this device to limit a propagating buckle is studied with the three-dimension finite 
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element modeling of an integral arrestor device which connects two adjacent pipe sections. A buckle 

arrestor stiffens the structure locally, and its resistance to collapse rises. Under these circumstances, it is 

more difficult for the buckle to continue its propagation and thus, it is «arrested» by the device. The 

pressure of quasi-static crossing of buckle arrestor is referred to as «crossover pressure» and it is 

associated with the efficiency of the device to arrest the propagating buckle. Also, the dependence of the 

calculated crossover pressure on the finite element type is examined though parametric analyses. 
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Λέξεις-κλειδιά: Κατάρρευση, διάδοση ύβωσης, αναστολέας ύβωσης, πεπερασμένα στοιχεία, ατέλειες, 

ανισοτροπία υλικού, παραμένουσες τάσεις, ελαστικό-ανελαστικό υλικό. 

 

Περίληψη- Οι υποθαλάσσιοι αγωγοί είναι επιρρεπής στην εμφάνιση τοπικού λυγισμού και διαδιδόμενης 

ύβωσης. Τοπικές ατέλειες όπως η οβαλότητα, η μεταβολή του πάχους κατά τη περιφέρεια του αγωγού, η 

ανισοτροπία υλικού και τα πεδία παραμενουσών τάσεων, είναι παράγοντες οι οποίοι επηρεάζουν την 

δομική ευστάθεια των υποθαλάσσιων αγωγών σε περιπτώσεις αυξημένης εξωτερικής πίεσης. Οι τοπικές 

ατέλειες αποτελούν κάποιους από τους βασικότερους παράγοντες που επιφέρουν τη τοπική αστοχία του 

αγωγού και τον επακόλουθο σχηματισμό διαδιδόμενης ύβωσης. Η ύβωση διαδίδεται σε υψηλή ταχύτητα 

κατά μήκος του αγωγού αφήνοντας πεπλατυσμένα τμήματα αγωγού στα μετόπισθεν. Η διάδοση της 

ύβωσης πραγματοποιείται υπό σταθερή πίεση, η ελάχιστη δυνατή τιμή της οποίας ορίζεται ως η πίεση 

διάδοσης της ύβωσης. Στη παρούσα εργασία, η εφαρμογή της εξωτερικής πίεσης μελετάται αριθμητικά, 

διαμέσου προγράμματος πεπερασμένων στοιχείων, σε διατομές αγωγού διαφορετικού λόγου διαμέτρου 

προς πάχος, οι οποίες φέρουν αρχικές ατέλειες. Η μελέτη για τη μεταβολή της εξωτερικής πίεσης 

πραγματοποιείται μέσω διδιάστατων αναλύσεων δακτυλίων, οι οποίοι αντιστοιχούν στις διατομές του 

αγωγού. Επίσης, η αντίσταση των δακτυλίων στη κατάρρευση μελετάται σε τρεις διαστάσεις. Επιπλέον, 

μελετάται  μέσω παραμετρικών αναλύσεων, η επιρροή των αρχικών ατελειών, της γεωμετρίας των 

δακτυλίων, των ιδιοτήτων υλικού και των παραμενουσών τάσεων στη τιμή της πίεσης κατάρρευσης. Η 

εφαρμογή της εξωτερικής πίεσης μελετάται για τις περιπτώσεις δακτυλίων ελαστικού και ανελαστικού 

υλικού και τα αποτελέσματα συγκρίνονται με αναλυτικές λύσεις. Επίσης, το φαινόμενο της οριακά 

στατικής διάδοσης της ύβωσης υπό την ελάχιστη δυνατή πίεση (πίεση διάδοσης), μελετάται μέσω 

τριδιάστατων αναλύσεων αγωγών με ίδιο μήκος και διαφορετικές διαστάσεις διατομών. Η πίεση 

διάδοσης υπολογίζεται μέσω των διαγραμμάτων πίεσης- μεταβολή όγκου. Τα αποτελέσματα 

συγκρίνονται με τα αντίστοιχα που προκύπτουν από αναλυτικές μεθόδους και από ακριβείς αναλυτικές 

εξισώσεις που προτείνονται από τη βιβλιογραφία και τους αντίστοιχους κανονισμούς. Επιπρόσθετα, η 

εξάρτηση της πίεσης διάδοσης από αλλαγές στον τύπο του στοιχείου, εξετάζεται μέσω παραμετρικών 
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αναλύσεων . Επιπλέον, μέσω παραμετρικών αναλύσεων συμπεραίνεται ότι το μήκος του αγωγού πρέπει 

να είναι αρκετά μεγάλο έτσι ώστε να επιτευχθούν οι αμετάβλητες συνθήκες πίεσης διάδοσης. 

Επιπρόσθετα, στο τέλος της παρούσας διπλωματικής εργασίας γίνεται εισαγωγή στα χαρακτηριστικά των 

integral αναστολέων ύβωσης. Η ικανότητα της συγκεκριμένης συσκευής να περιορίσει μία διαδιδόμενη 

ύβωση μελετάται μέσω της τριδιάστατης μοντελοποίησης πεπερασμένων στοιχείων, ενός integral 

αναστολέα ύβωσης ο οποίος συνδέει δύο γειτνιάζοντα τμήματα αγωγού. Ένας αναστολέας ύβωσης 

τοπικά αυξάνει τη δυσκαμψία της κατασκευής με αποτέλεσμα η αντίσταση της στη κατάρρευση να 

αυξάνει. Υπό αυτές τις συνθήκες, είναι δύσκολο η ύβωση να συνεχίσει τη διάδοσή της, με αποτέλεσμα 

να περιορίζεται από τη συσκευή. Η πίεση στην οποία οριακά στατικά διαπερνά η ύβωση τον αναστολέα 

ύβωσης αναφέρεται ως “πίεση ανάσχεσης” και συνδέεται με την αποδοτικότητα αυτής της συσκευής να 

περιορίσει τη διαδιδόμενη ύβωση. Ακόμα, η εξάρτηση της υπολογιζόμενης πίεσης ανάσχεσης από τον 

τύπο του πεπερασμένου στοιχείου, μελετάται μέσω παραμετρικών αναλύσεων. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



ix 

 

Table of Contents 

 

Chapter 1 – Introduction ............................................................................................................................ 1 

1.1 Introduction ........................................................................................................................................... 1 

1.2 Buckling of Elastic Rings ...................................................................................................................... 6 

1.3 Imperfect Elastic Rings ...................................................................................................................... 12 

1.4 Pre-buckling and Post-Buckling Behavior of Perfect Elastic Rings ............................................... 14 

1.5 Plastic collapse mechanism ................................................................................................................ 16 

1.6 Thesis Organization ............................................................................................................................ 18 

Chapter 2 - Ring Analysis of Collapse and Buckle Propagation Under External Pressure ............... 19 

2.1 Introduction ......................................................................................................................................... 19 

2.2 Initial Imperfections ........................................................................................................................... 20 

2.3 Numerical Modeling ........................................................................................................................... 22 

2.3.1 Numerical modeling of rings with initial ovality ........................................................................... 25 

2.3.2 Numerical modeling of rings with initial ovality and eccentricity ............................................... 27 

2.4 Numerical Results ............................................................................................................................... 29 

2.4.1 Initially ovalized rings ..................................................................................................................... 29 

2.4.2 Initially ovalized rings with thickness eccentricity ....................................................................... 39 

2.5 Parameter Study on Factors affecting Collapse Pressure ............................................................... 47 

2.5.1 Initial Ovality ................................................................................................................................... 48 

2.5.2 Initial Eccentricity ........................................................................................................................... 51 

2.5.3 Diameter-to-thickness ratio (D/t) .................................................................................................... 58 

2.5.4 Material Anisotropy ......................................................................................................................... 60 

2.5.4.1 Numerical modeling ...................................................................................................................... 60 

2.5.4.2 Numerical results .......................................................................................................................... 62 

2.5.5 Residual Stresses .............................................................................................................................. 64 

2.6 Elastic-Inelastic ring mechanical behavior ....................................................................................... 66 

2.6.1 Effect of finite element discretization on the mechanical behavior of elastic thin-walled 2D 

rings ............................................................................................................................................................ 71 

2.6.2 Effect of finite element discretization on the mechanical behavior of elastic thin-walled 3D 

rings ............................................................................................................................................................ 73 

2.7 Two-dimensional Analysis and Prediction of the Propagation Pressure ....................................... 78 

2.7.1 Prediction of the propagation pressure through Case Studies .................................................... 80 

Chapter 3 - Analysis of Initiation and Steady-State Buckle Propagation in Tubes ............................ 82 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



x 

 

3.1 Introduction ......................................................................................................................................... 82 

3.2 Numerical Modeling ........................................................................................................................... 82 

3.3 Numerical Results ............................................................................................................................... 84 

3.3.1 Numerical results of buckle propagation pressure ....................................................................... 85 

3.3.2 Comparison of analytical and numerical calculations of buckle propagation pressure ............ 93 

3.4 Parameter Study ................................................................................................................................. 95 

3.4.1 Effect of finite element discretization ............................................................................................. 95 

3.4.2 Effect of tube’s geometric parameters ........................................................................................... 98 

Chapter 4 – Finite Element Analysis of Integral Buckle Arrestors .................................................... 100 

4.1 Introduction ....................................................................................................................................... 100 

4.2 Numerical Modeling ......................................................................................................................... 101 

4.3 Numerical Results ............................................................................................................................. 103 

4.4 Parameter study of the crossover pressure estimation .................................................................. 108 

Chapter 5 - Conclusions ......................................................................................................................... 110 

References ................................................................................................................................................ 113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



xi 

 

List of Figures 

Fig. 1.1 Schematic representation of the “S-lay” pipeline installation method (Source:[1]). ....................... 3 

Fig. 1.2 Schematic representation of the “J-lay” pipeline installation method and the corresponding 

installation loads (Source:[1]). ...................................................................................................................... 3 

Fig. 1.3  Numerical simulation of the formation and propagation of local instabilities at a pipeline section.

 ...................................................................................................................................................................... 4 

Fig. 1.4  Numerical simulation of buckle propagation phenomenon along the pipeline. ............................. 4 

Fig. 1.5  Numerical simulation of the initiation of a local buckle in a pipeline section which is surrounded 

by integral buckle arrestors. .......................................................................................................................... 5 

Fig. 1.6  Numerical simulation of the flipping mode of crossover for the installed arrestors along the line.

 ...................................................................................................................................................................... 5 

Fig. 1.7  Cross-sectional elements of the ring mean circumference before and after deformation. The force 

and moment intensities acting on the circumferential element are shown on the left side [4]. .................... 7 

Fig. 1.8 The figure represents the cross-sectional deformation of an initially ovalized ring and the 

locations of maximum stress at four equally-spaced points (A, B, C, D) around the circumference. ........ 14 

Fig. 1.9  Plastic hinge model with geometric relationships for the analysis of cross-sectional deformation 

[14]. ............................................................................................................................................................. 17 

 

Fig. 2.1  Initially ovalized ring by a uniform radial displacement wo(θ) . ................................................ 20 

Fig. 2.2 Wall thickness variation of the ring in the form of thickness eccentricity in Y direction. ............ 22 

Fig. 2.3 Nominal stress-strain diagram for X65 material. .......................................................................... 23 

Fig. 2.4 True stress- logarithmic plastic strain diagram for X65 material. ................................................. 24 

Fig. 2.5 The finite element mesh which is assembled by CPE4R elements (D/t=40). ............................... 26 

Fig. 2.6 Sequence of collapse configurations of metal ring with D/t=40 (Δο = 0.01% ). ......................... 27 

Fig. 2.7 Finite element mesh of half ring model (D/t=20), which is assembled by CPE4R elements. ....... 29 

Fig. 2.8 Stage of collapse (D/t = 40, Δο = 0.01%). ................................................................................ 30 

Fig. 2.9  Intermediate stage of the collapse sequence (D/t = 40, Δο = 0.01%). ..................................... 30 

Fig. 2.10 Stage of the first contact between the two opposite quarter sides of the ring’s inner 

circumference (D/t = 40, Δο = 0.01%). .................................................................................................. 31 

Fig. 2.11 Final stage of the sequence of collapse configurations (D/t = 40, Δο = 0.01%). .................... 31 

Fig. 2.12 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t = 40, Δο =

0.01%). ....................................................................................................................................................... 32 

Fig. 2.13 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t = 40, Δο = 0.01%). ......................................................................... 33 

Fig. 2.14 Pressure-ovality response of the initially ovalized ring with D/t=40 (Δο = 0.01% ). ................ 33 

Fig. 2.15 Pressure-ovality response of the initially ovalized ring with D/t=30 (Δο = 0.01%). ................. 35 

Fig. 2.16 Sequence of collapse configurations of metal ring with D/t=30 (Δο = 0.01% ). ....................... 35 

Fig. 2.17 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t=30 , Δο = 0.01%).

 .................................................................................................................................................................... 36 

Fig. 2.18 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t=30, Δο = 0.01%). .............................................................................. 36 

Fig. 2.19 Pressure-ovality response of the initially ovalized ring with D/t=20 (Δο = 0.01%). ................. 37 

Fig. 2.20 Sequence of collapse configurations of metal ring with D/t=20 (Δο = 0.01% ). ....................... 38 

Fig. 2.21 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t=20, Δο = 0.01%). 38 

Fig. 2.22 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t=20, Δο = 0.01%). .............................................................................. 39 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



xii 

 

Fig. 2.23  Ring configuration at the stage of collapse (D/t=20, Δο = 0.05%  and  Ξο = 20%). .............. 40 

Fig. 2.24 Numerical simulation of ring deformation at an intermediate stage of the collapse sequence 

(D/t=20, Δο = 0.05%  and  Ξο = 20%). ................................................................................................... 41 

Fig. 2.25 Numerical simulation of ring deformation at the final stage of collapse (D/t=20, Δο =

0.05%  and  Ξο = 20%). ............................................................................................................................ 41 

Fig. 2.26 Equivalent plastic strain at an intermediate stage of the collapse sequence (D/t=20, Δο =

0.05%  and  Ξο = 20%). ............................................................................................................................ 42 

Fig. 2.27 Ring configuration at the stage of collapse (D/t=20, Δο = 1.6%  and  Ξο = 5%). .................... 42 

Fig. 2.28 Numerical simulation of ring deformation at an intermediate stage of the collapse sequence 

(D/t=20, Δο = 1.6%  and  Ξο = 5%). ........................................................................................................ 43 

Fig. 2.29 Numerical simulation of ring deformation at the final stage of collapse (D/t=20, Δο =

1.6%  and  Ξο = 5%). ................................................................................................................................ 43 

Fig. 2.30 Equivalent plastic strain at an intermediate stage of the collapse sequence (D/t=20, Δο =

1.6%  and  Ξο = 5%). ................................................................................................................................ 44 

Fig. 2.31 Pressure versus change in area responses of constant ovality Δο = 0.05%   and varied initial 

eccentricity (D/t=20). .................................................................................................................................. 45 

Fig. 2.32 Pressure versus change in area responses of constant ovality Δο = 1.6%   and varied initial 

eccentricity (D/t=20). .................................................................................................................................. 45 

Fig. 2.33 Pressure versus change in area responses of constant ovality Δο = 0.05%   and varied initial 

eccentricity (D/t=30). .................................................................................................................................. 46 

Fig. 2.34 Pressure versus change in area responses of constant ovality Δο = 1.6%   and varied initial 

eccentricity (D/t=30). .................................................................................................................................. 47 

Fig. 2.35 Pressure-ovality responses for different magnitudes of initial ovality (D/t=20). ........................ 48 

Fig. 2.36 Pressure-ovality responses for different magnitudes of initial ovality (D/t=30). ........................ 49 

Fig. 2.37 Pressure-ovality responses for different magnitudes of initial ovality (D/t=40). ........................ 49 

Fig. 2.38 The variation of the collapse and normalized pressure by P𝑦 with initial ovality for various ring 

geometries. .................................................................................................................................................. 50 

Fig. 2.39 Pressure versus change in area responses of initially ovalized rings for different values of initial 

eccentricity in Y direction (D/t=20, Δο = 0.05%). .................................................................................... 52 

Fig. 2.40 Pressure versus change in area responses of initially ovalized rings for different values of initial 

eccentricity in Y direction (D/t=30, Δο = 1.6%). ...................................................................................... 52 

Fig. 2.41 The variation of collapse and normalized pressure with initial ovality for the ring of D/t=20. .. 54 

Fig. 2.42 The variation of collapse and normalized pressure with initial ovality for the ring of D/t=30. .. 55 

Fig. 2.43 The variation of collapse and normalized pressure with initial eccentricity for the ring of 

D/t=20. ........................................................................................................................................................ 56 

Fig. 2.44 The variation of collapse and normalized pressure with initial eccentricity for the ring of 

D/t=30. ........................................................................................................................................................ 57 

Fig. 2.45 Collapse pressure versus D/t for various values of initial ovality. .............................................. 58 

Fig. 2.46 Collapse pressure versus D/t for various values of initial eccentricity (Δο = 0.05%). .............. 59 

Fig. 2.47 Collapse pressure versus D/t for various values of initial eccentricity (Δο = 1.6 %). ................ 59 

Fig. 2.48 Finite element mesh of the three-dimensional ring of D/t=40 and L=10mm. The depicted mesh 

is assembled by quadratic elements of reduced integration C3D20R. ........................................................ 62 

Fig. 2.49 The variation of collapse pressure in the presence of anisotropy with parameter S for a variety of 

D/t rings. ..................................................................................................................................................... 63 

Fig. 2.50 The variation of collapse pressure in the presence of anisotropy with parameter D/t for different 

values of parameter S in the range of 0.85 to 1.1. ....................................................................................... 63 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



xiii 

 

Fig. 2.51 Schematic representation of the circumferential residual stress distribution for the finite element 

model of D/t=30. ......................................................................................................................................... 65 

Fig. 2.52 The variation of collapse pressure in the presence of residual stress field with parameter R for 

the ring of D/t=30........................................................................................................................................ 65 

Fig. 2.53  Pressure-Ovality responses for elastic rings of various imperfection values and D/t=40. ......... 68 

Fig. 2.54  Pressure versus the area change curves for elastic rings of various imperfection values and 

D/t=40. ........................................................................................................................................................ 68 

Fig. 2.55 Pressure-maximum displacement responses for various values of initial ovality (D/t=40). The 

solid dots correspond to the pressure of first yielding, calculated from (1.29). .......................................... 69 

Fig. 2.56 Pressure-ovality responses in elastic and inelastic case of rings of various imperfection values 

(D/t=40). ..................................................................................................................................................... 70 

Fig. 2.57  Pressure-change in area responses in elastic and inelastic case of rings of various imperfection 

values (D/t=40). .......................................................................................................................................... 71 

Fig. 2.58 Pressure-ovality response of CPE4 finite element type for the elastic ring of D/t=40 with initial 

ovality of  Δο = 0.01%. ............................................................................................................................. 72 

Fig. 2.59 Pressure-ovality response of CPE8R finite element type for the elastic ring of D/t=40 with 

initial ovality of  Δο = 0.01%. ................................................................................................................... 72 

Fig. 2.60 Pressure-ovality response of CPE8 finite element type for the elastic ring of D/t=40 with initial 

ovality of  Δο = 0.01%. ............................................................................................................................. 73 

Fig. 2.61 Pressure-ovality response for mesh discretization with SC8R finite element type (3D elastic ring 

of D/t=40, L=10mm and Δο = 0.01% ). .................................................................................................... 74 

Fig. 2.62 Pressure-ovality response for mesh discretization with S4R finite element type (3D elastic ring 

of D/t=40, L=10mm and Δο = 0.01% ). .................................................................................................... 75 

Fig. 2.63 Pressure-ovality response for mesh discretization with S4 finite element type (3D elastic ring of 

D/t=40, L=10mm and Δο = 0.01% ).......................................................................................................... 75 

Fig. 2.64 Pressure-ovality response for mesh discretization with S8R finite element type (3D elastic ring 

of D/t=40, L=10mm and Δο = 0.01% ). .................................................................................................... 76 

Fig. 2.65 Pressure-ovality response for mesh discretization with C3D8R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). ............................................................................................. 76 

Fig. 2.66 Pressure-ovality response for mesh discretization with C3D8 finite element type (3D elastic ring 

of D/t=40, L=10mm and Δο = 0.01% ). .................................................................................................... 77 

Fig. 2.67 Pressure-ovality response for mesh discretization with C3D20R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). ............................................................................................. 77 

Fig. 2.68 Pressure-ovality response for mesh discretization with C3D20 finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). ............................................................................................. 78 

Fig. 2.69  Pressure-change in deformed cross-sectional area of a ring response. The intermittent line 

separates two equal areas (A1 = A2). ......................................................................................................... 80 

Fig. 2.70  Pressure versus change in area response of a ring with D/t=20. The propagation pressure is 

estimated by the Maxwell line condition. ................................................................................................... 81 

Fig. 2.71  Pressure versus change in area response of a ring with D/t=30. The propagation pressure is 

estimated by the Maxwell line condition. ................................................................................................... 81 
 

Fig. 3.1 The three-dimensional model of length L=15D used in the finite element analyses of pipes with 

D/t=20 and 30. ............................................................................................................................................ 84 

Fig. 3.2 Pressure-change in volume responses for the tube of D/t=30. (a) The variation of pressure with 

the integrated volume reduction and (b) the variation of pressure with volume like parameter. ................ 86 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



xiv 

 

Fig. 3.3 The numerical simulations of the sequence of buckle propagation phenomenon for the 

corresponding (1)-(5) stages of pressure-change in volume response (D/t=30). ........................................ 88 

Fig. 3.4 Pressure-change in volume responses for the tube of D/t=20. (a) The variation of pressure with 

the integrated volume reduction and (b) the variation of pressure with volume like parameter. ................ 89 

Fig. 3.5 Sequence of collapse configurations for the pipe cross-section where the initial imperfection is 

assigned (pipe of D/t=30 and L=15D). ....................................................................................................... 90 

Fig. 3.6 Deformed configurations of ring and pipe cross-sections at the stage of contact. ........................ 91 

Fig. 3.7  Six different states of cross-sectional deformation along the pipe length at different angles and 

planes of view. ............................................................................................................................................ 92 

Fig. 3.8 Sequence of collapse configurations for the pipe of D/t=30 along the longitudinal direction. The 

numbers above the configurations correspond to the states of cross-sectional deformation of Fig. 3.7. .... 93 

Fig. 3.9 Pressure-change in volume responses for different element types of full integration (D/t=30 pipe 

model of L=15D). ....................................................................................................................................... 96 

Fig. 3.10 Pressure-change in volume responses for different element types of reduced integration (D/t=30 

pipe model of L=15D). ............................................................................................................................... 97 

Fig. 3.11 The variation of pressure with volume like parameter for quadratic elements C3D20 (D/t=30 

pipe model of L=15D). ............................................................................................................................... 97 

Fig. 3.12  Pressure-change in volume response for a short pipe of D/t=30 and half-length of L=5D. ....... 99 

Fig. 3.13 Comparison of pressure-change in integrated volume responses for the finite element models of 

L=5D and L=15D and cross-sectional geometry D/t=30. ........................................................................... 99 
 

Fig. 4.1 Schematic representation of the geometric characteristics of an integral buckle arrestor, which 

connects two pipe sections. ....................................................................................................................... 101 

Fig. 4.2 The three-dimensional finite element model which consists of an integral arrestor of length LA 

that connects an upstream pipe segment of length L1 and a downstream pipe segment of length L2. ..... 103 

Fig. 4.3  Pressure-change in volume responses for the finite element model analysis that consists of 

quadratic elements C3D20. In the second figure (b) the pressure is normalized by the collapse pressure of 

the upstream pipe section and the volume change is normalized by the internal volume of the model at 

undeformed conditions. ............................................................................................................................. 105 

Fig. 4.4 Sequence of deformed configurations from the stage of collapse (1) to the stage of the flipping 

crossover mode (7). The numbered stages correspond to the numbers in bullets of the pressure-change in 

volume response for the finite element model that is discretized with quadratic elements C3D20. ......... 107 

Fig. 4.5 Pressure-change in volume response for the finite element model analysis that consists of linear 

elements C3D8R. ...................................................................................................................................... 109 

Fig. 4.6 Pressure-change in volume response for the finite element model analysis that consists of linear 

elements C3D8. ......................................................................................................................................... 109 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



xv 

 

 

List of Tables 

Table 2.1 Strain-stain pairs of data for X65 steel. ...................................................................................... 23 

Table 2.2 True stress- logarithmic plastic strain pairs of data for X65 steel. ............................................. 25 

Table 2.3 Geometric parameters in terms of outer diameter D and thickness t for different D/t ratios. .... 25 

Table 2.4 Collapse pressure (Pco), critical elastic pressure (Pcr) and yield pressure (Py) for the rings of 

D/t=20, 30 and 40. The collapse pressures correspond to an initial ovality value of 0.01%. ..................... 34 

Table 2.5 Collapse pressure (MPa) for initially ovalized rings of D/t=20, 30 and 40. .............................. 49 

Table 2.6  Collapse pressure (MPa) for rings of D/t=20 and D/t=30. ........................................................ 51 

Table 2.7 Geometric parameters in terms of outer diameter D and thickness t for different D/t ratios. .... 61 

 

Table 3.1 Propagation pressure estimations (MPa) from the FE models of L=15D and from analytical 

methods and expressions. ............................................................................................................................ 94 

Table 3.2 Numerical estimations of the propagation pressure for different element types of reduced and 

full integration (model of D/t=30 and L=15D). .......................................................................................... 98 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



1 
 

 

Chapter 1 – Introduction 

1.1 Introduction 

  The progression in pipeline technology makes feasible the installation and safe operation of 

long pipelines in onshore and offshore regions. Therefore, pipelines constitute one of the basic 

methods for transportation of hydrocarbons. Pipelines are expensive projects due to their high costs of 

manufacturing. However, the maintenance costs of these projects are low, and their life expectancy is 

up to 40 years. One example of an offshore pipeline project is the Blue Stream pipeline, which 

connects Russia and Turkey through the Black Sea. The pipeline has a length of 430 km and is 

established at a sea depth of 2150 m. This project was completed in 2003 and it was considered as the 

deepest subsea pipeline at time of construction. Another deepwater pipeline project is the Medgaz 

pipeline between Algeria and Spain. The subsea pipeline is established at depths of 2150 km and the 

pipeline started to operate in 2009. Other examples of offshore pipeline projects are the Green Stream 

pipeline (2004) between Libya and Sicily and the Nord Stream pipeline between Russia and Germany 

(2011). These are some typical examples of pipeline projects which are currently operating.  

  Many challenges are posed during the design stage of offshore pipelines. More specifically, 

the pipeline must be capable to sustain the applied loads during installation and must be able to operate 

safely under external and internal pressure loading. The ambient external pressure rises proportionally 

with the sea depth and thus it poses a significant challenge for the offshore pipeline design. Also, the 

high temperature and pressure of the flowing hydrocarbon must be considered during offshore pipeline 

design [1]. The installation methods of subsea pipelines pose major challenges for the design of 

offshore pipelines. During installation the pipeline is empty, and the basic methods of pipeline 

installations are the S-lay method, the J-lay method, the Reeling method and the Tow methods. The 

S-lay and J-lay methods are schematically represented in Fig. 1.1 and Fig. 1.2 respectively. As it can 

be seen from both figures, a combination of loads is applied on the empty pipeline. At stinger, a 

combination of bending and tension intensities are applied (Fig. 1.1), whereas at the “sagbend” region 

a combined loading of external pressure, bending and tension exists (Fig. 1.1, Fig. 1.2). The combined 

loading conditions at the “sagbend” region close to the seafloor, may lead to local buckling of the 

pipeline. This local buckling reduces the pipeline stiffness and results in the local collapse of the 

pipeline region. This configuration is in the form of a “dogbone” shape due to the contact between two 

opposite regions of the most deformed interior surface of the pipeline. While the deformation 

proceeds, the contact is further stabilized, and the local region takes a flatten shape. This local damage 

can initiate further instabilities, which under the appropriate conditions will “propagate” along the 
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pipeline length resulting in further flattening of the pipeline. The propagation of instabilities along the 

pipe length is referred to as «buckle propagation phenomenon». This propagation performs under a 

low pressure, which is known as the «propagation pressure» and the propagation pattern refers to the 

global flattening of the pipeline. Fig. 1.3 depicts the numerical simulation of the formation and the  

subsequent propagation of a local collapse, at a region of a steel pipeline. This local instability will 

start to propagate in two directions along the pipeline length under the propagation pressure and the 

catastrophic consequences are presented in Fig. 1.4. Unless an obstacle or a field of higher pressure is 

reached, buckle propagation will be continued, and more pipeline sections will be destroyed. The 

propagation pressure is approximately 15-25% of the pipe’s collapse pressure [1].  

The buckling propagation phenomenon is aborted by using buckle arrestors. These devices are 

welded between two adjacent pipe sections, and they are periodically installed along the line to limit 

the propagation of collapse. Fig. 1.5 shows a length of a pipeline section, where two integral buckle 

arrestors are installed. In the same figure, the initiation of collapse and its propagation in two opposite 

directions along the pipeline is shown as well. The damage induced by the propagating buckle along 

the line will be limited in the presence of buckle arrestor devices. When the buckle approaches the 

arrestor, the buckle propagation phenomenon diminishes, because a higher pressure than the 

propagation pressure is needed for the buckle to pass over the device. While the buckle is «crossing» 

the arrestor, the pressure starts rising until a maximum pressure value, which is defined as the 

«crossover pressure». The magnitude of crossover pressure shows the capability of the arrestor device 

to stop the damaging effects of buckle propagation. Buckles cross the arrestors at different deformation 

modes, which are dependent on the geometric characteristics of the device. Arrestor devices of high 

efficiency, exhibit a mode of deformation which is flipped by 90°. This reversed ovalization 

configuration is called the «flipping mode of crossover», and a characteristic example of that mode of 

deformation is shown in Fig. 1.6. 

The above loading conditions should be considered during the offshore pipeline design. The 

modern design concept for the safe mechanical behavior of subsea pipelines, is based on the limit state 

design criteria. The considered limit states for an offshore pipeline are many. Two typical examples of 

limit states are the design against buckling under external pressure and the design against burst under 

internal pressure. Therefore, many standards have been developed for all possible failure modes. The 

standards of API R. P. 1111 [2] and DNVGL-ST-F101 [3] will be used in this thesis. In the following 

section, the analysis of the mechanical response of a long cylindrical shell under external pressure will 

be presented in the form of buckling theory [1], [4]-[6]. 
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Fig. 1.1 Schematic representation of the “S-lay” pipeline installation method (Source:[1]). 

 

 

 

 

Fig. 1.2 Schematic representation of the “J-lay” pipeline installation method and the corresponding 

installation loads (Source:[1]). 
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Fig. 1.3  Numerical simulation of the formation and propagation of local instabilities at a pipeline 

section. 

 

 

 

Fig. 1.4  Numerical simulation of buckle propagation phenomenon along the pipeline. 
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Fig. 1.5  Numerical simulation of the initiation of a local buckle in a pipeline section which is 

surrounded by integral buckle arrestors. 

 

 

 

 

 

Fig. 1.6  Numerical simulation of the flipping mode of crossover for the installed arrestors along the 

line. 
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1.2 Buckling of Elastic Rings 

The elastic buckling of thin rings will be analyzed in this section. This two-dimensional 

problem is a simplified consideration of long cylindrical shell with perfect geometry, which is 

subjected to uniform external pressure. A rectangular ring wall cross-section of a long cylinder is 

assumed. For the determination of the kinematic relations that describe the cross-sectional 

deformation, an arbitrary point «A» of the cross-section is considered at the mean circumference or 

«Reference Line», as shown in Fig. 1.7 [1], [4], [5], [7]. The ring cross-section of mean radius Rm and 

thickness t is shown in the same figure. It is assumed that the cross-section follows a Bernoulli-type 

in-plane deformation, which means that the plane sections remain plane and normal to the deformed 

mean line after deformation. The position of point A of the small cross-sectional element can be seen 

before and after deformation, where it is denoted as «A′». The notations w(θ) and υ(θ) denote the 

components of the displacement vector in radial and tangential direction respectively. The position of 

point A before (x, y) and after deformation (x∗, y∗) are derived from Fig. 1.7 as follows 

 

x = r cos(θ) 
 

 

(1.1) 

𝑦 = r sin(θ) 
 

(1.2) 

x∗ = (Rm + w) cos(θ) − υ sin (θ) 

 

(1.3) 

𝑦∗ = (Rm + w) sin(θ) + υ cos (θ) 

 

(1.4) 

The kinematic relations for the thin circular ring have been postulated from the kinematic analysis of 

Fig. 1.7. By using the notation (∗)′ =
d(∗)

dθ
⁄  to describe the derivative of a variable, the 

circumferential strain of the deformed cross section is postulated as follows [1], [4], [5], [7] 

ε = εο + zk (1.5) 

where  

εο = (
υ′ + w

Rm
) +

1

2
(

υ − w′

Rm
)

2

 
 
(1.6) 

 

and  

k =
υ′ − w′′

Rm
2  

 

 
(1.7) 
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The first term of (1.6) is the axial strain, ε, in the tangential direction and is presented by the following 

form 

εa =
υ′ + w

Rm
 

 
(1.8) 

 

 

Equation (1.7) expresses the curvature change of the examined reference line element. The cross-

sectional rotation β, which is shown in Fig. 1.7, is expressed as 

 

β =
υ − w′

Rm
 

 

 

 

Fig. 1.7  Cross-sectional elements of the ring mean circumference before and after deformation. The 

force and moment intensities acting on the circumferential element are shown on the left side [4].  
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The force N and moment M intensities are acting on the small element of reference line, as shown in 

Fig. 1.7. These intensities can be obtained by integrating over the element cross-section of area A =

b t. The resulting formulas are presented below 

N =  E∗ A εο 

Μ =  E∗ Ι k 

where   I = bt3

12⁄  and,  E∗ = E
(1 − ν2)⁄  is the elastic modulus under plain strain conditions. 

The potential energy will be used to derive the ring equilibrium equations. The potential 

energy Π is the sum of strain energy U and potential energy V of external loads acting on the element. 

The strain energy is calculated as 

U =
1

2
∫ (Nεο + Mk)Rmdθ

2π

0

=  
E∗ A Rm

2
  ∫ εο

2dθ

2π

0

+
E∗ Ι Rm

2
∫ k2dθ

2π

0

 

 
(1.9) 

 

 

The load in this case is the external pressure P and it has been proved that the potential energy of this 

load type is V = −P ΔΑ, where ΔΑ is the reduction of the enclosed area. The initial area is  Ao =

πRm
2 and the deformed area A∗ can be calculated as follows [4] 

A∗ = ∫ dA∗

A∗

=  
1

2
  ∫ (

d𝑥∗

d𝑥∗
+

d𝑦∗

d𝑦∗
) dA∗

2π

0

=
1

2
  ∫ div𝐱∗dA∗

2π

0

  

 
 

 

 

The substitution of (1.3) and (1.4) to the last equation results in 

A∗ =
1

2
  ∫ (2Rmw + υ2 − υw′ + υ′w + w2)dθ + πRm

2

2π

0

  

 
 

 

 

Given that  ΔΑ = Ao − A∗ , the reduction of the enclosed area is 

ΔΑ =
1

2
  ∫ (2Rmw + υ2 − υw′ + υ′w + w2)dθ

2π

0

  

 
 

 

 

Given that W= -V, it follows 
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W =  
P

2
  ∫ (2Rmw + υ2 − υw′ + υ′w + w2)dθ

2π

0

  

 
(1.10) 

 

 

The sum of (1.9) and (1.10) gives the potential energy as shown below 

 

Π =   Rm ∫ (
E∗(A εο

2 + Ι k2)

2
+ P (w +

1

2Rm
(υ2 − υw′ + υ′w + w2)) dθ

2π

0

   

 
(1.11) 

 

 

For the enforcement of equilibrium, the stationary value of Π is sought, and using variational calculus 

the final equations of equilibrium are derived [1], [4], [5], [7] 

 

Rm N′ + M′ − RNβ − PRm
2β = 0 

 

Μ′′ − RmΝ − Rm(Νβ)′ − PRm(υ′ + w) = PRm
2 

 
 

(1.12) 

 

The pre-buckling solution is  No = −PRm and it follows that εο
0 =

wo
Rm

⁄  . Also, the following 

expressions are derived 

No = E∗A
wo

Rm
 

wo = −
PRm

2

E∗ t
 

υο = 0 

 

The components of displacement wo, υο of the circular configuration, refer to the pre-buckling stage. 

When bifurcation buckling occurs, the ring will take a slightly non-circular shape and the equations of 

this stage are derived by perturbing the displacements of the pre-buckling stage as follows [1], [4], [5] 

w → wο + w1 

υ → υο + υ1 

Substituting the perturbating relations into (1.12) and neglecting terms that are of order higher than 

two in w1 and υ1 , results in the equations for loss of stability as follows [1], [4], [5] 
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E∗ A Rm
2 (υ1

′ + w1)′ + E∗ I (υ1 − w1
′)′′ = 0 

 

E∗ A Rm
2(υ1

′ + w1) − E∗ I (υ1 − w1
′)′′′ + P Rm

3(w1
′′ + w1) = 0 

 

 
 

(1.13) 

 

A solution of the following form satisfies (1.13) 

 

 υ1 = C1 sin(nθ)                         
      w1 = C2cos (nθ)   , n = 1,2,3 … 

 

 
(1.14) 

 

Substituting (1.14) into (1.13) results in the following linear system 

 

(
n2(1 + a) n (1 + an2)

n (1 + an2) (1 + an4) − (n2 − 1) γ
) (

C1

C2
) = 0 

 

where  a = I
ARm

2⁄  and  γ =
P Rm

E∗A⁄  . 

 

For nontrivial solution,  C1, C2 ≠ 0 and the determinant of matrix must be zero and it follows  

 

(
n2(1 + a) n (1 + an2)

n (1 + an2) (1 + an4) − (n2 − 1) γ
) = 0 

 

After some algebraic steps the following sequence of eigenvalues are derived 

 

 

Pn =
 2 E∗ (n2 − 1)

3 (1 + a)
 (

t

Dm
)

3

    n = 2,3 … 

  

 

 
 

(1.15) 

 

where  Dm = 2Rm. 

 

The term “a” is much smaller than unity (a ≪ 1) for high Dm/t ratios (e.g., Dm/t ≥ 30), and thus 

1 + a ≅ 1. Minimum pressure is obtained for n=2 and the corresponding eigenvalue is the critical 

elastic or “elastic buckling” pressure of the ring under plain strain conditions [1], [4]-[6] (Bryan 

(1980)) 
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Pcr =
2 E

(1 − 𝜈2)
 (

t

Dm
)

3

 

 
(1.16) 

  

 

The solution for the vector displacements is 

 

w1 = ω cos(2θ) 
 

 υ1 = −
ω

2
 sin(2θ) 

 

where  ω = C2 =  −2C1 

 
 

(1.17) 

 

 

 

It can be seen from (1.16) that an important influencing parameter of the buckling pressure formula is 

the diameter-thickness-ratio (DTR or D/t). The present analysis has been proceeded in terms of the 

mean diameter.  

 Up to this point, the collapse pressure is derived for a long pipe of elastic material and in the 

absence of any imperfections. In deep water applications, the metal pipelines are thick walled with a 

D/t less than 25 [8] and it was concluded [9], [10] that these tubular structures collapse at pressure 

value close to the yield pressure which is given as follows 

 

Py = 2σy  
t

Dm
 

 
                                                                                        

(1.18) 

  

  

 

Therefore, the ring collapse occurs in the plastic range of the material and this mode is referred to as 

«plastic buckling». The basic condition for elastic buckling of a metal ring with no imperfections is 

given below 

Pcr ≤ Py 

⟹
2 E

(1 − ν2)
 (

t

Dm
)

3

≤ 2σy  
t

Dm
 

 

⟹   
Dm

t
≥ √

 E

(1 − ν2)σy
 

 
                                                                                        

(1.19) 
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The result of (1.19) defines the critical D/t that separates the elastic and plastic buckling mode of a 

perfect metal ring. Murphey et al. [10] recognized that an estimation of the collapse pressure, Pco, of a 

metal ring without any imperfections, can be given as follows  

 

Pco =
PcrPy

√(Pcr
2 + Py

2)

 

 

 

(1.20) 

 
 

 

In the following sections, the pre-buckling and post-buckling behavior of elastic-plastic and elastic 

rings will be examined. 

 

1.3 Imperfect Elastic Rings 

  An imperfect elastic ring is considered with an initial imperfection (w0, υ0) defined by the 

buckling mode of (1.17)  

 

w0 = ω cos(2θ) 
 

 υ0 = −
ω

2
 sin(2θ) 

 
 

(1.21) 

 

 

 

 

This type of initial imperfection corresponds to an initial oval shape of amplitude ω (Fig. 1.8). Upon 

application of external pressure, it is expected that the initial oval shape will increase its amplitude. It 

can be shown (the proof is omitted) that the deformation of an initially imperfect elastic ring is 

expressed in terms of radial and tangential deformation as follows [4] 

 

w(θ) = ω (
1

1 − P
Pcr

⁄
 ) cos(2θ) 

 

 

(1.22) 

 
 

 

υ (θ) = −
ω

2
(

1

1 − P
Pcr

⁄
 ) sin(2θ) 

 

 

(1.23) 
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The stress acting on the pipe wall is equal to  

 

 

σ(θ) =
NΘ

t
+ (

M (θ)

t2

12⁄
) 

t

2
 

 

 

 

 

(1.24) 

 

where 

 

 

M(θ) =
3E∗I

Rm
2  (

ω

1 − P
Pcr

⁄
) cos(2θ) 

 

 

 

 

(1.25) 

 

The last equation (1.25) shows that the maximum bending stresses will occur at four equally-spaced 

locations at the circumference of the ring ( θ = 0, π
2 ⁄ , π, 3π

2 ⁄  ), which are denoted as A, B, C, D 

in Fig. 1.8. Therefore, the maximum stress acting at those points is  

 

 

σmax =
−PRm

t
± (

PRmω

1 − P
Pcr

⁄
) 

1

(t2

6 ⁄ )
   

 

 

 

 

(1.26) 

 

 

The first term in (1.26) is referred to the membrane stress (σm) and the second term is referred to the 

bending stress. First yielding occurs when the sum of these stresses equals the yield stress σy. The 

pressure of first yielding is denoted as Pf, and it can be calculated by the following equation [11] 

 

 

Pf
2 − (

σy t

Rm
+ (1 +

6Rm

t
 (

ω

Rm
) ) Pcr) Pf +

σy t

Rm
 Pcr = 0 

 

 

 

 

(1.27) 

 

The equation for the calculation of first yielding pressure is attributed to Timoshenko [11]. The last 

equation is expressed in terms of yield pressure Py and Pcr as follows  

 

Pf
2 − (Py + ζ Pcr)Pf + Py Pcr = 0 

 

 

 

(1.28) 
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where  ζ = 1 +
6Rm

t⁄  (ω
Rm

⁄ ) 

 

The solution of (1.28) is [1] 

 

 

Pf =
1

2
((Py + ζ Pcr) − [(Py + ζ Pcr)

2
− 4PyPcr]

1
2⁄ ) 

 

 

 

 
(1.29) 

 

 

 

 

 

 

Fig. 1.8 The figure represents the cross-sectional deformation of an initially ovalized ring and the 

locations of maximum stress at four equally-spaced points (A, B, C, D) around the circumference. 

    

 

1.4 Pre-buckling and Post-Buckling Behavior of Perfect Elastic Rings 

The pre-buckling solution that satisfies the equations of equilibrium (1.12) is derived in 

section 1.2, and it follows that the absolute value of the membrane stress in the circumferential 

direction of the ring is equal to 

 

|σm
0| =

PRm

t
 

 

(1.30) 
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From the pre-buckling solution it has been shown that the ring’s deflection is uniform around the 

circumference wo(θ) = wo, and thus it follows 

 

εο
0 =

|wo|

Rm
 

 

 

(1.31) 

 

where 

 

|wo| =
PRm

2(1 − ν2)

Ε t
 

 

 

(1.32) 

 

The analysis will be focused on a quadrant of the ring due to symmetries imposed by the ring’s 

circular shape. The area change between the undeformed and deformed configurations of the quadrant 

can be expressed by the following form 

ΔΑ =
1

2
πRm|wo| 

(1.33) 

 

The application of Hooke’s law under plane strain conditions at the pre-buckling stage (|σm
0|, εο

0) is 

given by    

|σm
0| =

E

1 − ν2
 εο

0 

 

 
(1.34) 

 

Combining (1.31) and (1.33) results in the following expression 

εο
0 =

2ΔΑ

πRm
2  

 

 
(1.35) 

 

The substitution of (1.35) and (1.30) tο (1.34), gives the relation of pressure P with ΔΑ during the pre-

buckling response 

P = (
2Et

(1 − ν2)πR𝑚
3 ) ΔΑ 

 

 
(1.36) 

 

 

The critical elastic pressure of such a ring is derived in section 1.2.  The initial post-buckling response 

of perfectly elastic rings was studied by Budiansky [12], and the analytical equations are presented 

below 
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P = Pcr (1 +
27

32
 Δ2) 

 

P = Pcr (1 +
9

16Αο
 ΔΑ)  

(1.37) 

 
(1.38) 

 

 

where Αο is the initial area enclosed by the unloaded stress-free ring, and Δ is the ovality parameter 

which will be explained further in the following chapter. When the pressure attains Pcr, the ring 

buckles elastically. The deformed area at the buckling stage, ΔΑcr, is calculated from (1.36) as follows 

 

 ΔΑcr =
 Pcr (1 − ν2) π R𝑚

3

2Et
 

 

 

 
(1.39) 

 

1.5 Plastic collapse mechanism 

A ring of mean radius Rm and thickness t with elastic-plastic material is considered. The 

simplest kinematic model to describe the plastic deformation of that ring under external pressure 

loading, was first proposed by Palmer and Martin [13]. The model consists of four equally spaced 

plastic hinges which they are connected by four segments and thus the model has a rhombus shape 

(Fig. 1.9). A quarter of the quadrilateral’s undeformed and deformed configurations, as well as the 

geometric relationships, are represented on the right side of Fig. 1.9. Let “x” and “η” define the 

normalized induced deflections in Y and X directions respectively. The enclosed area of the deformed 

quadrilateral can be expressed as a function of x. Using the geometric relationships for the triangle in 

the deformed configuration , the area enclosed is expressed as follows [4] 

A∗ =
Rm

2(1 − x)√1 + 2x − x2

2
 

Therefore, the change in area between the two configurations is  

 

ΔΑ =
Rm

2 − Rm
2(1 − x)√1 + 2x − x2

2
 

 
(1.40) 

 

The equilibrium analysis of the deformed configuration will give the pressure- deflection relation in 

the post-buckling region. The equilibrium path of plastic collapse mechanism was derived in [4] and 

the resulting formula is [14] 
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P = 2 σy
∗(

t

Dm
)2

1

2x − x2
 

 
(1.41) 

 

where Dm is the ring’s mean diameter and σy
∗is the yield stress under plane-strain conditions, which 

can be taken as σy
∗ = 1.125 σy . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9  Plastic hinge model with geometric relationships for the analysis of cross-sectional 

deformation [14]. 
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1.6 Thesis Organization 

The present thesis is divided into five chapters. Chapter 1 presents shortly the ring buckling 

theory, and the terms of elastic and plastic buckling are properly defined. Also, analytical equations 

that describe the pre-buckling and post-buckling behavior of elastic-inelastic rings are included in this 

chapter. Chapter 2 presents detailed model studies of the collapse of rings in two dimensions. The 

mechanical behavior of rings upon application of uniform external pressure is examined also by three-

dimensional finite element model analyses. The effects of initial imperfections on the collapse 

pressure, are studied through parametric studies for rings of elastic and inelastic material. Also, the 

propagation pressure is calculated through two-dimensional analytical methods. Chapter 3 presents 

the three-dimensional analysis of buckle propagation phenomenon. The propagation pressure is 

estimated from the pressure-change in volume responses for different pipe geometries. Furthermore, 

the main parameters that influence the propagation pressure are studied through parameter analyses. 

Chapter 4 studies the performance of an integral buckle arrestor by three-dimension finite element 

model analysis. Furthermore, the arrestor’s capability to limit a propagating buckle is studied through 

parametric analyses. Finally in Chapter 5, a summary of the most important conclusions drawn in this 

work are presented. 
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Chapter 2 - Ring Analysis of Collapse and Buckle Propagation Under 

External Pressure 

 

2.1 Introduction 

  External pressure is one of the most important load parameters that affects the mechanical 

behavior of subsea pipelines because they collapse if the external pressure is larger than a critical 

pressure value (Chapter 1). If collapse conditions are satisfied in a segment of an offshore pipeline, a 

local buckle is formed which results in flattening of the pipe’s section. Soon after the formation and 

the collapse of the local section, buckle starts to propagate at a high velocity along the pipe’s length, 

leaving flattened pipe sections behind. The buckle propagates under a constant pressure, the «buckle 

propagation pressure» (Chapter 1). Unless an obstacle, like a buckle arrestor is reached, buckle 

propagation will be continued, and more pipeline sections will be destroyed.  

  This chapter deals primally with the two-dimensional analysis of collapse of a tube under 

external pressure and the related problem of buckle propagation is examined as well. A pipeline, which 

is established at the bottom of the ocean, undergoes external pressure loading and as a result the 

problem is a three-dimensional (3D) one. However, under plane strain conditions the same problem is 

considered as a two-dimensional (2D) one and thus only a cross-section of the tube is considered for 

analysis. More specifically, the formulation of the two-dimensional analysis is based on a «ring» of 

external diameter D and thickness t, where pressure is acting on the ring external circumference and it 

is assumed to be always normal to the surface. Furthermore, the mechanical responses of rings are 

examined in three dimensions as well. 

  Previous studies [9], [15]-[19] have shown that the collapse response of a pipe is affected by 

many factors such as geometric imperfections, material properties, material anisotropy and 

residual stresses, which are induced by manufacturing process. In the current thesis special emphasis 

will be given on the effect of initial geometric imperfections, such as initial ovality and wall 

thickness variation around the circumference of a ring, on the collapse pressure. Also, the influence 

of material anisotropy and residual stresses fields on the collapse capacity of a pipe will be 

examined in the current thesis. The effects of these factors on the structural integrity of a pipe, are 

analyzed numerically by creating finite element models of two-dimensional and three-dimensional 

rings in the general-purpose Finite Element program ABAQUS standard. The effects of these factors 

on the collapse pressure of rings are also examined in previous theses [20], [21]. 
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2.2 Initial Imperfections 

  A description of the initial imperfections in the forms of ovality and wall thickness variation 

will be given in this section. Ovality as an initial imperfection of a ring, describes the magnitude of 

deviation from the prefect circular shape. Initial ovality is expressed by the following form (Section 

1.2, equation (1.17)) [15] 

wo(θ) = ω cos (2θ) (2.1) 

where ω is the amplitude of initial oval shape as shown in Fig. 2.1. 

 

 

Fig. 2.1  Initially ovalized ring by a uniform radial displacement wo(θ) . 

 

The desired initial ovality value, Δο , that will be implemented into the finite element models is 

calculated by the following form [1], [22] 

 

Δο =
Dmax − Dmin

Dmax + Dmin
 

 

 

(2.2) 

where Dmax and Dmin represent the maximum and minimum values of the ring’s outer diameters.  

wo 0 =ω 

D
m

in
 

Dmax 

wo(π
2⁄ ) = −ω 

θ 

R 

Y 

X 
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The initially ovalized shape of the cross-section of the ring can be written in a more general form by 

means of the external diameter of ellipse Dθ  at all polar angles as follows  

 

Dθ = D + 2ω cos(2θ) 

 
(2.3) 

 

Apparently, Dmax = D + 2ω and  Dmin = D − 2ω and substituting these two expressions to (2.2) 

results in the following expression 

 

Δο =
ω

R
    

 

 
(2.4) 

 

where R is the external radius of the ring. 

The variation of wall thickness around the circumference for a circular ring can be expressed by the 

following expression [9], [22] 

 
tθ

t
= 1 −

η

t
sin (θ) 

 

 
(2.5) 

 

where tθ is the thickness in radial direction and η is the magnitude of eccentricity between the outer 

and the inner circles in Y direction (Fig. 2.2). Maximum and minimum values of thickness exist for 

angles  θ =
3π

2
 and θ =

π

2
  respectively, and from (2.5) it follows that  

 

tmax = t + η 
 

tmin = t − η 
 

 
(2.6) 

 

The desired initial eccentricity Ξο that will be implemented into the finite element models, is 

calculated by use of the following expression [9], [22] 

 

Ξο =
tmax − tmin

tmax + tmin
 

 

 

 
(2.7) 

 

Substituting (2.6)  to (2.7) results in the following expression 

 

Ξο =
η

t
 

 

 
(2.8) 
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Fig. 2.2 Wall thickness variation of the ring in the form of thickness eccentricity in Y direction. 

 

 

2.3 Numerical Modeling 

  The numerical framework of ABAQUS standard is used, for the development of finite 

element two-dimensional ring models with initial imperfections in the forms of ovality and wall 

thickness variation. The numerical analyses will be divided in two cases. In the first case, initial 

imperfections will be in the form of ovality and thus only a quarter of the ring is needed for analysis 

due to the symmetries of (2.3). The second case involves initial imperfections of both ovality and wall 

thickness variation. Therefore, a half of the ring is needed to be modeled in this case. The need of half 

ring analysis in this case, arises from the symmetries of equations (2.3), (2.5). 

The material properties of steel grade X65 are used to examine the elastic-plastic behavior of 

the models. The material is characterized by elastic modulus E=210 GPa, poisson ratio ν=0.3 and yield 

stress σy = 449.40 MPa. The material nominal stress-strain response (Fig. 2.3) is produced from data 

pairs [20], [21] which are listed in Table 2.1. 
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Fig. 2.3 Nominal stress-strain diagram for X65 material. 

 

 

Table 2.1 Strain-stain pairs of data for X65 steel. 

Stress (σ) (MPa) 

 

Strain (e) (%) 

 

0.00 0.00 

448.44 0.21 

448.50 1.00 

448.51 2.00 

464.99 3.00 

477.48 4.00 

490.02 5.00 

501.32 6.00 

509.98 7.00 

517.50 8.00 

526.32 8.99 

531.31 10.00 

537.24 11.05 

542.74 11.95 

545.16 12.97 

547.53 

549.86 

13.99 

15.03 
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However, the above data pairs should be transformed into true stress (σΤ)-logarithmic plastic 

strain (εpl
ln) pairs for their assignment to ABAQUS numerical framework. The equations that relate 

true and nominal stress-strain pairs are listed bellow 

 

σT=σ (1+e) 

 

εpl
ln = ln(1 + e) −

σT

E
 

 

 
(2.9) 

 

 

By applying the tabulated data of Table 2.1 to (2.9) set of equations, σΤ- εpl
ln  pairs are produced, 

(Table 2.2) and thus the chart of true stress- logarithmic plastic strain is created (Fig. 2.4). 

 

 

 

Fig. 2.4 True stress- logarithmic plastic strain diagram for X65 material. 
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Table 2.2 True stress- logarithmic plastic strain pairs of data for X65 steel. 

True stress (σΤ) (MPa) 

 
Logarithmic plastic strain (εpl

ln) (%) 

 

449.40 0.00 

452.99 0.78 

457.47 1.76 

478.95 2.73 

496.60 3.69 

514.50 4.63 

531.38 5.57 

545.70 6.51 

558.90 7.43 

573.67 8.34 

584.43 9.25 

596.63 10.20 

607.60 11.00 

615.85 11.90 

624.15 12.80 

632.50 13.70 

 

2.3.1 Numerical modeling of rings with initial ovality  

As it was mentioned in the beginning of section 2.3, a quarter of a ring is considered for the 

analysis of the mechanical response of a ring under external pressure. Rings of three different values of 

D/t are modeled with initial ovality imperfection of 0.01%. Their geometric characteristics are listed in 

Table 2.3. The initial ovality is assigned to the models by creating quadrant ellipse cross-sections. All 

the rings are discretized using four-node, reduced-integration plane-strain finite elements, which are 

defined as CPE4R in ABAQUS. The mesh in all cases consists of 50 elements in the circumferential 

direction and 8 elements in the through-thickness direction. Therefore, the model is discretized by a 

total number of 400 elements. Symmetry boundary conditions are applied at the bottom and top sides 

of the model. More specifically, «YSYMM» boundary conditions are applied at the bottom side to 

restrict the body’s displacement in Y direction and its rotation about X and Z directions, and 

«XSYMM» boundary conditions are applied at the top side so that the body will not be able to 

translate in X direction and rotate about Y and Z directions. The finite element mesh used in the finite 

element models is presented in Fig. 2.5 for the ring of D/t=40. 

Table 2.3 Geometric parameters in terms of outer diameter D and thickness t for different D/t ratios. 

D/t 

 

D (mm) 

 

t(mm) 

40 600 15 

30 610 20 

20 410 20 
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Fig. 2.5 The finite element mesh which is assembled by CPE4R elements (D/t=40). 

 

From the ring buckling analysis of the previous chapter, it is recognized that when the pressure 

reaches a critical level the ring loses its stability and exhibits non-linear deformation in the post-

buckling range. Therefore, the post-buckling deformations of the ring are driven by the four-equally 

spaced locations of maximum stress around the circumference. The collapse sequence of 

configurations for the ring of D/t=40 and initial ovality of 0.01%, is presented in Fig. 2.6. The 

numbers above the deformed configurations correspond to the pressure ovality response of Fig. 2.14, 

which will be discussed in section 2.4.1. After the stage of collapse (stage (1)), the top and bottom 

sides of the ring move towards the center of the cross-section and the left and right sides move away 

from that. The final collapse configuration (stage (6)) corresponds to the stage of contact between the 

top and bottom sides of the ring’s inner surface. In the numerical models, the translation of the top side 

through the negative Y axis is restricted by using a two-dimensional analytical rigid surface. 

Therefore, the surface-to-surface contact method is used, and a contact pair is created between the 

rigid body and the inner surface of the model. The translation of the model’s inner side through the 

rigid body is aborted by using the penalty method as an interaction property of the pair.  
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Fig. 2.6 Sequence of collapse configurations of metal ring with D/t=40 (Δο = 0.01% ).  

 

 

The analysis is developed through two steps which are consisted of increments. In the first 

step, which is denoted as the «initial step» in ABAQUS, the boundary conditions are assigned to the 

model in the way described above. Also, the displacements and rotations of the analytical rigid body 

are aborted. That was achieved by using the «ENCASTRE» boundary condition which aborts the 

displacements and rotations about X, Y, Z axes at a «Reference Point (RP)» of the rigid body. The last 

step of the analysis (second step) describes the application of external pressure at the outer surface of 

the model. In this step a nonlinear analysis is conducted using Riks’ continuation method, so that the 

pre-buckling response, the collapse pressure, and the unstable post-buckling response are obtained. 

 

2.3.2 Numerical modeling of rings with initial ovality and eccentricity  

  In the case of a ring with initial imperfections of both ovality and eccentricity, the numerical 

modeling differs from that followed in section 2.3.1. A half ring domain is considered for analysis 

here. Two possible types of eccentricity exist [22], [18]. The first type involves an eccentricity value, 

which is imposed in Y direction, where the minor-axis of the ellipse exists. In the second type, the 

eccentricity exists in the X direction and thus, the maximum and minimum values of thickness 

correspond to the major axis of the ellipse. The ring geometries examined here, are developed with 
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eccentricity in Y direction (Fig. 2.2). Rings of D/t=20 and 30 (Table 2.3) are modeled with both 

ovality and eccentricity in the form of half ellipse cross-sections with imposed thickness eccentricity in 

Y direction. The models are discretized using four-node, reduced-integration plane-strain finite 

elements, denoted as CPE4R in ABAQUS. For both D/t values, the mesh consists of 100 elements in 

the circumferential direction and 8 elements in the through-thickness direction. Therefore, the model is 

discretized by a total number of 800 elements. The two opposite vertically quarter sides of the model 

are constrained with the «XSYMM» boundary condition which prescribes zero node displacements in 

X direction and zero node rotations about the Y and Z axes. Also, «YSYMM» boundary conditions are 

applied on a node of the outer surface (Y=0 and θ=0) to abort the body’s displacement in Y direction 

and its rotations about the X and Z axes. The finite element mesh used in the numerical modeling, is 

presented in Fig. 2.7 for the ring with D/t=20. 

The wall thickness variation is assigned to the models using equation (2.7), and thus the inner 

and the outer ellipse are eccentric by a distance “η” in Y direction. The top side moves inward until it 

reaches the bottom side. Unless a contact pair restriction is considered between the two sides, the top 

inner surface will finally pass through the bottom inner surface. In the finite element models, such a 

translation was aborted by the establishment of self-contact method for the inner surface and the 

penalty method is used as the interaction property of contact. The steps that develop the analysis of 

these imperfection models are alike with those described in section 2.3.1. The boundary conditions 

described above, are stated in the initial step and the uniform external pressure is applied in step 1 

using Riks’ continuation method. 
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Fig. 2.7 Finite element mesh of half ring model (D/t=20), which is assembled by CPE4R elements. 

 

2.4 Numerical Results 

  In this section the numerical results will be presented for the initially ovalized models and for 

the models with imperfection combinations of ovality and eccentricity. Firstly, the initial ovality of 

0.01% will be implemented in the models for the examination of the corresponding mechanical 

response upon external pressure application. Furthermore, the effect of imperfection combinations on 

the collapse pressure as well as the collapse configurations, will be examined for different pairs of 

ovality and eccentricity. 

 

2.4.1 Initially ovalized rings 

  A small initial ovality value of  Δο = 0.01% is considered for the cases of D/t =20, 30 and 40 

(Table 2.3). The collapse configurations of the imperfect rings are expected to be in the form of Fig. 

2.6, due to the formation of four equally spaced plastic hinges around the circumference of the ring. 

This type of collapse mode is present for all of the different D/t ‘s examined. The contours of collapse 

configurations are presented in the following figures (Fig. 2.8-Fig. 2.11) for the case of D/t=40. 

 

Y 

X θ 
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Fig. 2.8 Stage of collapse (D/t = 40, Δο = 0.01%). 

 

Fig. 2.9  Intermediate stage of the collapse sequence (D/t = 40, Δο = 0.01%). 
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Fig. 2.10 Stage of the first contact between the two opposite quarter sides of the ring’s inner 

circumference (D/t = 40, Δο = 0.01%). 

 

 

Fig. 2.11 Final stage of the sequence of collapse configurations (D/t = 40, Δο = 0.01%). 

 

 

From (1.19) it is expected that a ring of D/t=40 (here D is the outer diameter) will buckle in 

the elastic range. At the stage of collapse (Fig. 2.8) the ring’s maximum stress (404.6 MPa) has not 

exceeded the material’s yield stress, which is 449.4 MPa (Table 2.2). Because the imperfection here is 
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small, one can say that the mechanical behavior of this ring approaches that of the perfect case. Thus, 

the numerical results show that collapse occurs at a stress which is lower than the yield stress. 

Equivalent plastic strain contours (Fig. 2.12- Fig. 2.13) were captured from ABAQUS, and the 

formation of the four plastic hinges around the circumference is clearly shown, for the previous stages 

of collapse sequence.  

  The collapse response of the elastic-plastic rings upon uniform external pressure loading, is 

expected to develop a limit load which is sensitive to imperfection amplitudes changes [4], [9]. After 

the collapse stage, the cross-sectional ovalization will be increased, and the pressure carrying capacity 

of the ring will fall significantly. The pressure-ovality response for the ring of D/t=40 is presented in 

Fig. 2.14. The numbers on the response correspond to the deformed configurations of Fig. 2.6 and Fig. 

2.8- Fig. 2.11. 

 

 

Fig. 2.12 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t = 40, Δο =
0.01%). 
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Fig. 2.13 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t = 40, Δο = 0.01%). 

   

 

 

Fig. 2.14 Pressure-ovality response of the initially ovalized ring with D/t=40 (Δο = 0.01% ). 

 

The above figure indicate that a limit load is developed in the response, which is the collapse 

pressure (Pco). The maximum collapse capacity of this ring is Pco = 7.64 MPa, and it is shown at stage 

(1). After the limit load point, the pressure drops, and the system becomes unstable due to the 

formation of the plastic hinges [4]. An arbitrary intermediate stage of collapse sequence was presented 
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in Fig. 2.9 and it was denoted as stage (3) in Fig. 2.6 and Fig. 2.14. First contact between the bottom 

and the top side of the ring occurs at stage (6). After first contact, the structure seems reaching stability 

and a corresponding rising in pressure is observed. Stage (7) corresponds to the deformed 

configuration of Fig. 2.11 and is referred to as the final stage of collapse configurations. The critical 

elastic pressure (1.16) and the yield pressure (1.18) are calculated for the ring of D/t=40 and the results 

are listed in Table 2.4. It can be seen that Pco is lower than Pcr, indicating that the collapse occurs in 

the elastic range of the material. 

  The pressure-ovality response for the ring of D/t=30 is shown in Fig. 2.15 and the 

corresponding sequence of collapse configurations is presented in Fig. 2.16. The post-buckling 

deformation becomes restricted to four-equally spaced points around the circumference of the ring. 

Fig. 2.17-Fig. 2.18 show the equivalent plastic strain contours for an arbitrary intermediate stage of 

collapse sequence and for the stage of first contact between the bottom and the top side of the inner 

surface of the ring. It can be seen from Table 2.4 that the ring of D/t=30 collapses in the elastic range 

of the material, because the collapse pressure is lower than the critical elastic pressure.  

 

Table 2.4 Collapse pressure (Pco), critical elastic pressure (Pcr) and yield pressure (Py) for the rings of 

D/t=20, 30 and 40. The collapse pressures correspond to an initial ovality value of 0.01%. 

D/t 

 

Pco Pcr Py 

20 47.01 62.24 46.09 

30 17.53 17.98 30.47 

40 7.64 7.78 23.05 
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Fig. 2.15 Pressure-ovality response of the initially ovalized ring with D/t=30 (Δο = 0.01%). 

 

 

Fig. 2.16 Sequence of collapse configurations of metal ring with D/t=30 (Δο = 0.01% ). 
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Fig. 2.17 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t=30 , Δο =
0.01%). 

 

 

 

 

Fig. 2.18 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t=30, Δο = 0.01%). 
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  The pressure-ovality response and the corresponding sequence of collapse configurations, are 

presented for the ring of D/t=20 in Fig. 2.19 and Fig. 2.20 respectively. The post-buckling behavior is 

like that observed in the previous ring cases. The formation of four plasticized locations at the quarter 

points of the ring is shown by the equivalent plastic strain contours for the ring of D/t=20 (Fig. 2.21-

Fig. 2.22). The results of Table 2.4 show that the ring of D/t=20 follow the plastic buckling mode of 

collapse because the collapse pressure has exceeded the yield pressure. 

  The three rings have a common value of initial imperfection and different geometries. The 

results show that the collapse pressure varies with the D/t ratio. Therefore, the D/t and generally the 

geometric characteristics of the rings, significantly influence the collapse capacity of these structures. 

The influence of geometric parameters on the collapse pressure will be examined through parametric 

studies in section 2.5.3. 

 

Fig. 2.19 Pressure-ovality response of the initially ovalized ring with D/t=20 (Δο = 0.01%). 
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Fig. 2.20 Sequence of collapse configurations of metal ring with D/t=20 (Δο = 0.01% ). 

 

 

 

 

Fig. 2.21 Equivalent plastic strain at an intermediate stage of collapse sequence (D/t=20, Δο =
0.01%). 
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Fig. 2.22 Equivalent plastic strain at the stage of first contact between the two opposite quarter sides of 

the ring’s inner circumference (D/t=20, Δο = 0.01%). 

 

 

2.4.2 Initially ovalized rings with thickness eccentricity 

  Different pairs of imperfection amplitudes were implemented in the ring models of D/t =20, 

30 (Table 2.3) for the examination of their combined effects on both the collapse mode and the 

collapse capacity of the rings. For the ring of D/t=20, a pair of small ovality and large eccentricity is 

considered to pronounce the effect of eccentricity on the collapse response of the structure. Therefore, 

the ring is modeled with a combined imperfection of  Δο = 0.05%  and  Ξο = 20%, and their collapse 

configurations are presented in Fig. 2.23-Fig. 2.25. The concentration of high stresses in the areas of 

the “crown”, and the “shoulder” (Fig. 2.24) make these locations perform like plastic hinges and the 

structure behaves like a plastic mechanism. Apparently, the collapse response in this numerical 

simulation differs significantly from the collapse response observed in the initially ovalized rings 

without eccentricity (Section 2.4.1). The reason can be attributed to the cumulative plastic deformation 

at the locations of “crown” and “shoulder” as it is presented in Fig. 2.26. The final configuration is 

non-symmetrical about the X axis (Fig. 2.25) and thus the ring follows a mode “U” sequence of 

collapse [18]. 
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  For the ring of the same geometric characteristics, a pair of strong initial ovality and weak 

initial eccentricity imperfection is considered. For this case, the ring modeling constitutes of 

imperfection amplitudes Δο = 1.6%  and  Ξο = 5% (Fig. 2.27-Fig. 2.29). Unlike the previous case, 

the ovality effect is quite distinguishable here. The ring plasticizes at four locations around the 

circumference (Fig. 2.28 and Fig. 2.30), and thus the structure performs like a plastic mechanism. The 

collapse mode here is a reminiscent of that observed in the initially ovalized rings without eccentricity 

(Section 2.4.1). The main difference is observed at the final stage of collapse (Fig. 2.29) because the 

top moves a larger displacement than the bottom. This collapse behavior can be attributed to 

eccentricity effects, which result in the nonsymmetrical about the X axis response at the final stage of 

collapse. 

 

 

Fig. 2.23  Ring configuration at the stage of collapse (D/t=20, Δο = 0.05%  and  Ξο = 20%). 
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Fig. 2.24 Numerical simulation of ring deformation at an intermediate stage of the collapse sequence 

(D/t=20, Δο = 0.05%  and  Ξο = 20%). 

 

 

 

Fig. 2.25 Numerical simulation of ring deformation at the final stage of collapse (D/t=20, Δο =
0.05%  and  Ξο = 20%). 
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Fig. 2.26 Equivalent plastic strain at an intermediate stage of the collapse sequence (D/t=20, Δο =
0.05%  and  Ξο = 20%). 

 

 

 

Fig. 2.27 Ring configuration at the stage of collapse (D/t=20, Δο = 1.6%  and  Ξο = 5%). 
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Fig. 2.28 Numerical simulation of ring deformation at an intermediate stage of the collapse sequence 

(D/t=20, Δο = 1.6%  and  Ξο = 5%). 

 

 

Fig. 2.29 Numerical simulation of ring deformation at the final stage of collapse (D/t=20, Δο =
1.6%  and  Ξο = 5%). 
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Fig. 2.30 Equivalent plastic strain at an intermediate stage of the collapse sequence (D/t=20, Δο =
1.6%  and  Ξο = 5%). 

  The variation of pressure with the deformed cross-sectional ring area is examined for every 

case of imperfection combination. For the ring considered above with imperfections of pronounced 

eccentricity (Δο = 0.05%  and  Ξο = 20% ), the pressure versus change in area response is shown in 

Fig. 2.31. The response of zero initial eccentricity and initial ovality of 0.05%, for the examined ring 

geometry, is included in the same figure for comparison. As the wall thickness variation rises, the drop 

in the collapse pressure rises as well. Moreover, the influence of eccentricity is strong in the post-

buckling regions and weak in the pre-buckling regions of the responses. For the same ring geometry 

(D/t=20) with imperfections of pronounced ovality (Δο = 1.6%  and  Ξο = 5%), the variation of 

pressure with the change in the enclosed ring area is demonstrated in Fig. 2.32. The response of zero 

eccentricity and 1.6% initial ovality is included in the graph as well. The small increasement in the 

wall thickness variation from Ξο = 0%  to Ξο = 5%, under a constant ovality of Δο = 1.6% , 

corresponds to minor changes in the collapse capacity of the ring. Also, the pre-buckling and the post-

buckling behaviors are not affected by the increase in wall thickness variation imperfection. 
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Fig. 2.31 Pressure versus change in area responses of constant ovality Δο = 0.05%   and varied initial 

eccentricity (D/t=20). 

 

 

 

 

Fig. 2.32 Pressure versus change in area responses of constant ovality Δο = 1.6%   and varied initial 

eccentricity (D/t=20). 
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  The combined effect of ovality and eccentricity is examined also for the ring with D/t=30, 

and the analysis proceeds with the same pairs of imperfections used for D/t=20. The ring with 

Δο = 0.05%  and  Ξο = 20% exhibits the “U” collapse mode, due to the pronounced eccentricity 

effects, and the corresponding collapse mode of the ring with Δο = 1.6%  and  Ξο = 5% is like those 

presented in Fig. 2.27-Fig. 2.29. Therefore, the contours of collapse modes for D/t=30 are not 

included, due to the similarities with the previous ring. The pressure versus change in area responses 

are shown in Fig. 2.33 and Fig. 2.34  for the cases of strong (Δο = 0.05%  and  Ξο = 20%,) and weak 

eccentricity (Δο = 1.6%  and  Ξο = 5%) respectively. The responses of zero eccentricity are included 

in both figures. It is observed that the effects of wall thickness variation are pronounced for high 

changes in the initial eccentricity value, whereas minor differences between the responses are observed 

for small changes in the initial eccentricity value. The influence of initial eccentricity on the collapse 

pressure will be examined through parametric studies in section 2.5.2. 

 

 

 

 

 

Fig. 2.33 Pressure versus change in area responses of constant ovality Δο = 0.05%   and varied initial 

eccentricity (D/t=30). 
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Fig. 2.34 Pressure versus change in area responses of constant ovality Δο = 1.6%   and varied initial 

eccentricity (D/t=30). 

 

 

 

2.5 Parameter Study on Factors affecting Collapse Pressure 

  The parametric dependence of the collapse pressure will be examined in this section. Up to 

this point, it has been demonstrated that the collapse pressure is sensitive to initial ovality  

imperfection and depends on the geometrical parameters of the ring. Therefore, it can be concluded 

that the collapse pressure is a function of Δο and D/t. Furthermore, it has been demonstrated that when 

wall thickness variation is assigned to the models, the collapse pressure is affected and varies with D/t. 

However, pipes are usual to exhibit anisotropic yielding and they always consist of residual stresses 

(RS), which are induced from the manufacturing process. As it was discussed in the introductory 

section 2.1, these parameters affect the collapse capacity of pipes, and thus they will be examined in 

the following parametric studies of rings. Therefore, the collapse pressure is expressed as a function of 

the influencing parameters as follows 

 

Pcο = f (Δο, Ξο,
D

t
, σy, RS)  
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2.5.1 Initial Ovality 

  A set of four different initial ovality values will be inserted into the models of different D/t’s, 

discussed in section 2.4.1. The initial ovality value of Δο = 0.01% has already been considered and 

thus, models of Δο = 0.05%, 0.1%, 0.5% and 1% have been created for the three D/t rings. Therefore, 

twelve additional models were developed in ABAQUS numerical framework. The following pressure-

ovality responses (Fig. 2.35- Fig. 2.37), represent the detrimental effect of initial ovality on the 

collapse pressure of the three D/t ring cases. The collapse pressures of the initially ovalized rings are 

listed in Table 2.5. From the figures and the table, it is obvious that the higher the initial ovality value, 

the lower the corresponding collapse pressure.  

 

 

Fig. 2.35 Pressure-ovality responses for different magnitudes of initial ovality (D/t=20). 
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Fig. 2.36 Pressure-ovality responses for different magnitudes of initial ovality (D/t=30). 

 

 

Fig. 2.37 Pressure-ovality responses for different magnitudes of initial ovality (D/t=40). 

 

Table 2.5 Collapse pressure (MPa) for initially ovalized rings of D/t=20, 30 and 40. 

D/t 

 
Δο = 0.01% Δο = 0.05% Δο = 0.1% Δο = 0.5% Δο = 1% 

20 47.01 44.63 42.46 33.63 28.50 
30 17.53 16.83 16.25 13.20 11.31 
40 7.64 7.50 7.30 6.29 5.59 
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Apparently, it can be concluded that the collapse pressures of the ring cases, examined above, 

are imperfection sensitive. The collapse pressure and the normalized collapse pressure by P𝑦 (1.18), 

are plotted against initial ovality, for every ring geometry (D/t=20, 30 and 40) and the results are 

demonstrated in Fig. 2.38. The collapse pressure decreases as the magnitude of imperfection (initial 

ovality) rises. However, as the D/t is getting smaller the collapse pressure drop rises significantly. For 

instance, the collapse pressure drop is 18.51 MPa and 2.05 MPa in the cases of D/t =20 and D/t=40 

respectively. Therefore, the impact of initial ovality on the collapse pressure is being diminished as the 

D/t is getting higher. 

  

                (a) 

 

               (b) 

Fig. 2.38 The variation of the collapse and normalized pressure by P𝑦 with initial ovality for various 

ring geometries. 

 

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Initial Ovality (%) 

D/t=20

D/t=30

D/t=40

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Initial Ovality (%) 

D/t=20

D/t=30

D/t=40

Pco (MPa) 

Pco/Py 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



51 

 

2.5.2 Initial Eccentricity  

  The effect of wall thickness variation on the collapse pressure of rings, discussed in section 

2.4.2, will be further investigated here for various values of initial eccentricity. The cases of  Ξο =

0%, 5%, 10%, 15% and  20%, will be examined for the initially ovalized rings of section 2.4.2. 

Therefore, twenty models have been created in ABAQUS standard. The collapse pressures of the rings 

are tabulated in Table 2.6. From the table it can be interpreted that the collapse pressure decreases 

with increasement of the imperfection amplitudes. The influence of wall thickness variation on the 

pressure versus change in area responses, is shown in Fig. 2.39 for all the induced values of initial 

eccentricities for the ring of D/t=20 with 0.05% initial ovality value. As it can been seen from the plot, 

the effects of eccentricity are pronounced in the post buckling region. The higher the value of 

eccentricity the lower the corresponding collapse pressure. On the contrary, minor changes are 

observed in the pre buckling regions of the responses. The same conclusions are reached when it 

comes to the case of D/t=30 with 1.6 % initial ovality value (Fig. 2.40). Pressure-change in area 

responses have also been created for the cases of D/t=20 with Δο = 1.6% and D/t=30 with Δο =

0.05% and they are not included here because they are of the same type as those of Fig. 2.39- Fig. 

2.40.  

 

Table 2.6  Collapse pressure (MPa) for rings of D/t=20 and D/t=30. 

D/t=20 D/t=30 

Ξο (%) 

 
Δο = 0.05% Δο = 1.6% Δο = 0.05% Δο = 1.6% 

0 44.63 24.43 16.95 9.78 

5 44.44 24.33 16.75 9.70 

10 43.74 23.97 16.50 9.50 

15 42.46 23.40 16.08 9.24 

20 40.34 22.61 15.44 8.96 
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Fig. 2.39 Pressure versus change in area responses of initially ovalized rings for different values of 

initial eccentricity in Y direction (D/t=20, Δο = 0.05%). 

 

 

 

Fig. 2.40 Pressure versus change in area responses of initially ovalized rings for different values of 

initial eccentricity in Y direction (D/t=30, Δο = 1.6%). 
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  The calculated collapse pressure for every imperfection pair of Table 2.6 is plotted against 

initial ovality to obtain the corresponding curves of different initial eccentricities. Also, the normalized 

collapse pressure by the yield pressure is plotted against initial ovality, and the responses are presented 

in Fig. 2.41 and Fig. 2.42 for D/t=20 and D/t=30 respectively. It can be seen for both geometries that 

with the increasement of initial ovality imperfection, the collapse pressure drops significantly for all 

the cases of initial eccentricity. Furthermore, it can be observed from both figures that as the initial 

eccentricity is getting smaller, the curves become a little steeper, and thus it can be interpreted that the 

pressure drop rises too. In the case of D/t=20 (Fig. 2.41), it can be calculated from Table 2.6 that the 

pressure drop is 20.11 MPa for Ξο = 5% and 17.73 MPa for Ξο = 20%. Also, in the case of D/t=30 

(Fig. 2.42), it can be calculated from Table 2.6 that the pressure drop is 7.05 MPa for Ξο = 5% and 

6.48 MPa for Ξο = 20%. The calculated pressure drops show that the ovality effects are pronounced 

when eccentricity imperfections are weak. This conclusion agrees with the corresponding collapse 

modes of section 2.4.2. Also, it is worth mentioning that the observations made here are in fair 

agreement with those mentioned in [18]. 

  Using the tabulated results of Table 2.6, the collapse pressure for every imperfection 

combination is plotted against initial eccentricity and the corresponding plots are presented in Fig. 

2.43 and Fig. 2.44 for D/t=20 and D/t=30 respectively. The collapse pressure is normalized by the 

yield pressure and is plotted against initial eccentricity, as is shown in Fig. 2.43 and  Fig. 2.44. As the 

thickness eccentricity rises, a significant drop in the collapse pressure is observed for both cases of 

induced initial ovality. It can be observed that the drop in pressure rises when it comes to the case of 

small ovality and thus the pressure drop is high. This will be verified through Table 2.6. In the case of 

D/t=20 (Fig. 2.43), the pressure drop is 4.29 MPa for Δο = 0.05% and 1.82 MPa for Δο = 1.6%. 

Also, in the case of D/t=30 (Fig. 2.44) the pressure drop is 1.51 MPa for Δο = 0.05% and 0.82 MPa 

for Δο = 1.6%. The results imply that the influence of eccentricity is stronger in the cases of small 

ovality, which is a conclusion that agrees with the obtained collapse modes of section 2.4.2 and the 

observations of [18]. 
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                    (a) 

 

                  (b)  

 

Fig. 2.41 The variation of collapse and normalized pressure with initial ovality for the ring of D/t=20. 
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                (a)  

 

               (b) 

           

Fig. 2.42 The variation of collapse and normalized pressure with initial ovality for the ring of D/t=30. 
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          (a) 

 

          (b) 

 

Fig. 2.43 The variation of collapse and normalized pressure with initial eccentricity for the ring of 

D/t=20. 
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                       (a) 

 

                       (b)   

 

Fig. 2.44 The variation of collapse and normalized pressure with initial eccentricity for the ring of 

D/t=30. 
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2.5.3 Diameter-to-thickness ratio (D/t) 

  Diameter-to-thickness ratio is a parameter that affects the collapse pressure of a ring. The 

influence of this parameter was mentioned in Fig. 2.38, where it was observed that for higher values of 

D/t the collapse pressure was less sensitive to initial imperfections in the form of ovality. The collapse 

pressure values of Table 2.5 are plotted against D/t to obtain the corresponding curves of various 

initial ovalities (Fig. 2.45). The significant drop in pressure can be observed for all the constant ovality 

curves. More specifically, the pressure drop is more pronounced as the D/t is getting lower. The 

influence of D/t parameter will also be investigated for the cases of initially ovalized rings with 

thickness eccentricity in Y direction (Section 2.5.2). The collapse pressure values of Table 2.6 are 

plotted against D/t, and the corresponding curves of various eccentricities are presented in Fig. 2.46 

and Fig. 2.47 for the rings with Δο = 0.05% and Δο = 1.6 % respectively. From the figures and the 

tabulated results of Table 2.6 it can be interpreted that the influence of initial eccentricity is getting 

weaker as the D/t rises. Similar observations were made in a plot of [22] for a variety of thickness 

eccentricity values and zero ovality. 

 

 

 

Fig. 2.45 Collapse pressure versus D/t for various values of initial ovality. 
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Fig. 2.46 Collapse pressure versus D/t for various values of initial eccentricity (Δο = 0.05%). 

 

 

 

Fig. 2.47 Collapse pressure versus D/t for various values of initial eccentricity (Δο = 1.6 %). 
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2.5.4 Material Anisotropy 

The fabrication process of tubes and pipes induce anisotropic properties in the manufactured 

material, and they remain present in the finished product. A common type of anisotropic material 

properties of the finished pipe product is in the form of anisotropic yielding. For instance, in seamless 

pipes a difference between the yield stress in the circumferential (σy,T) and axial (σy,Ζ) directions 

always exists. The examination of anisotropy in seamless pipes will be examined under the Hill 

criterion of anisotropy [23]. Hill-type anisotropy is described by a yield function f, which can be 

expressed in a cylindrical coordinate system (R, T, Z) as follows [1] 

𝑓 = √σZ
2 − (1 +

1

ST
2 −

1

SR
2) σZσT +

1

ST
2 σT

2 +
1

SZT
2 σZT

2 

 
(2.10) 

 
 

where   ST =
σy,T

σy,Ζ
⁄ , SR =

σy,R
σy,Ζ

⁄ , SZT =
σy,ZT

σy,Ζ
⁄  . The notations σy,R , σy,T and σy,Ζ stand for 

the yield stresses in radial (R), transverse (T) and longitudinal (Z), whereas  σy,ZT denotes the yield 

stress under pure shear loading conditions. The ST, SR, SZT parameters express the variation of yield 

stress in the corresponding directions where they are referred to. Apparently, these variations are 

diminished when the parameters are equal to unity. The effect of anisotropy on the collapse pressure of 

pipes is examined by creating three-dimensional rings in the ABAQUS standard numerical framework. 

The models are created under the assumption that SR = ST = S and SZT = 1, and thus (2.10) is 

rearranged as follows 

𝑓 = √σZ
2 − σZσT +

1

S2
σT

2 

 
(2.11) 

 
 

2.5.4.1 Numerical modeling 

Three-dimensional rings of six different D/t values are considered for the examination of 

anisotropic yielding in pipes. The cross-sectional geometric characteristics of rings are presented in 

Table 2.7. Three-dimensional rings are created with a longitudinal length of L=10mm. An initial 

ovality value of 0.2% is assigned to the models by following the procedure described in section 2.3.1 

for two dimensional ovalized rings. Here, the initially ovalized cross-section of each ring is considered 

to be located at the axes origin (Z=0), whereas the cross-section of Z=10 mm is made to be circular. 

Due to the symmetries of the problem (Section 2.3), three-dimensional quadrant ring models are 

considered for the analyses. The Cartesian coordinate system (X, Y, Z) is chosen for the application of 
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boundary conditions. All the rings are discretized by 20-node quadratic brick elements of reduced 

integration (C3D20R). The circumferential direction of the models consists of 50 elements, the 

through-thickness direction consists of 8 elements and the longitudinal direction consists of one 

element. Therefore, the model is discretized by a total number of 400 elements as shown in Fig. 2.48. 

The boundary nodes at the cross sections of planes Z=0 and Z=10 mm, are constrained with the 

«ZSYMM» boundary condition option, and thus their nodes are prescribed to have zero displacements 

in Z direction and zero rotations about the X and Y axes. Furthermore, «XSYMM» boundary 

conditions are applied at the top side of the model along Z direction to constrain the node 

displacements X direction, and node rotations about the Y and Z axes. Also, the «YSYMM» boundary 

condition is assigned to the boundary nodes of the bottom side to constrain the node displacements in 

Y direction, and node rotations about the X and Z axes. 

The elastic-plastic material properties of steel grade X65 (Table 2.2) are used in the numerical 

analyses of rings. The anisotropy is assigned following the Hill criterion as described by (2.11). A 

polar cylindrical coordinate system is defined in ABAQUS numerical framework for the application of 

anisotropic material properties, and material orientation is considered in the numerical modeling as 

well. The analysis is developed through two incremental steps in a similar way as described in section 

2.3. The Riks’ continuation algorithm that is implemented in ABAQUS software is used for the 

incremental calculation of the collapse pressure. 

 

 

Table 2.7 Geometric parameters in terms of outer diameter D and thickness t for different D/t ratios. 

D/t 

 

D (mm) 

 

t (mm) 

40 

35 

600 

600 

15 

17.14 

30 610 20 

25 

20 

15 

410 

410 

410 

16.4 

20 

27.3 
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Fig. 2.48 Finite element mesh of the three-dimensional ring of D/t=40 and L=10mm. The depicted 

mesh is assembled by quadratic elements of reduced integration C3D20R. 

 

 

2.5.4.2 Numerical results 

Following the numerical modeling of the previous section, six different values of the 

parameter S (S =
σy,T

σy,Ζ
⁄ ) are assigned to every D/t ring to study the anisotropic yielding of rings. 

More specifically, the variable S is selected to vary between the range of 0.85 to 1.1, by six prescribed 

values: S=0.85, 0.90, 0.95, 1, 1.05, 1.1. The calculated collapse pressures of D/t’s for every value of S, 

are normalized by the corresponding value of collapse pressure in the absence of anisotropy (S=1), and 

the results are plotted against the considered values of variable S and D/t’s, as shown in Fig. 2.49 and 

Fig. 2.50 respectively. Clearly, the results show that the effect of anisotropy on the collapse pressure, 

diminishes for higher D/t rings. On the other hand, the anisotropic yielding detrimental effects are 

pronounced for lower D/t rings. The presented results here are in fair agreement with those presented 

in previous works [1], [20], [22], [24] but a straight comparison of the results is not possible due to the 

differences in material and numerical modeling. 

X 
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Fig. 2.49 The variation of collapse pressure in the presence of anisotropy with parameter S for a 

variety of D/t rings. 

 

 

 

Fig. 2.50 The variation of collapse pressure in the presence of anisotropy with D/t for different values 

of parameter S in the range of 0.85 to 1.1. 
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2.5.5 Residual Stresses 

The fabrication process of tubes and pipes induce residual stress fields in the finished product 

of a cold forming process. The residual stress fields affect the mechanical properties of the formed 

products, and they subsequently affect the collapse performance of a tube under uniform external 

pressure loading conditions. For the determination of the residual stress field amplitudes in the formed 

products, pipe ring splitting tests are conducted as presented in [1]. In this section, the effect of 

residual stresses on the collapse pressure of rings will be examined numerically within the ABAQUS 

numerical framework. 

The three-dimensional ring of D/t=30 (Table 2.7) is selected to examine the effects of residual 

stresses on the collapse pressure. The numerical modeling procedure, included the amplitude of initial 

ovality and the application of boundary conditions, is the same as that followed in section 2.5.4.1. The 

only difference here exists in the number of finite elements used in the through-thickness direction; 9 

elements used in Y direction. Therefore, the ring totally consists of 450 quadratic elements of reduced 

integration (C3D20R). The residual stresses are assigned in the finite element model as a linear stress 

distribution through the pipe wall thickness. This procedure is also adopted in previous works [20], 

[25] . Fig. 2.51 represents schematically the circumferential residual stress distribution through the 

ring wall thickness, where the residual stress value is σR on the outer ring surface and −σR on the 

inner ring surface. A parameter R =
σR

σy⁄  is introduced, and it is decided to vary in the range of 0.1 

to 0.9; R=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The different values of R are induced into the finite 

element model. The calculated collapse pressures for every value of R, are normalized by the 

corresponding value of collapse pressure for σR = 0 ,and the results are plotted against the examined 

values of variable R, as shown in Fig. 2.52. As it was expected, the collapse pressure of the same ring 

is getting lower as long as the residual stress parameter R increases. The results here, are in agreement 

with the results of previous works [1], [20], [22], [25] on the same subject for a variety of D/t values. 
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Fig. 2.51 Schematic representation of the circumferential residual stress distribution for the finite 

element model of D/t=30. 

 

 

Fig. 2.52 The variation of collapse pressure in the presence of residual stress field with parameter R 

for the ring of D/t=30. 
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2.6 Elastic-Inelastic ring mechanical behavior 

 The collapse responses of the rings examined in section 2.5.1, where expressed by the 

pressure-ovality and the pressure-change in area variations. These numerical responses will be 

compared with analytical solutions of pre-buckling and post-buckling analysis of chapter 1. Firstly, P 

in (1.41) will be expressed in terms of an arbitrary variable ξ as follows 

P = 2 σy
∗(

t

Dm
)2

1

ξ
 

 
(2.12) 

 

The lengths γ and β of the deformed configuration of Fig. 1.9 can also be expressed as a function of 

variable ξ, and the formulas are presented below 

γ = Rm√1 − ξ 

β = Rm√1 + ξ 

 
(2.13) 

 

Therefore, the change in area between the two configurations is 

 

ΔΑ =
Rm

2 − Rm
2√1 − ξ2

2
  

 

 
(2.14) 

 

The ovality of the ring’s cross section is expressed by (2.2), and using the above simplified plastic 

model it is obvious that Dmin = 2Rin√1 − ξ  and Dmax = 2Rin√1 + ξ . The substitution of  Dmin and 

Dmax in (2.2) gives the relation of ξ with ovality, Δ, as follows 

ξ =
2Δ

1 + Δ2
 

 
(2.15) 

 

 

The substitution of  (2.15) to (2.12) will give the expression of P in terms of ovality, and the result is 

presented below 

P = 2 σy
∗(

t

Dm
)2  

1 + Δ2 

2Δ
   

 
(2.16) 

 

 

Solving (2.14) for ξ and substituting to (2.12) results in 

P = 2 σy
∗(

t

Dm
)2

1

√1 − (1 −
2ΔΑ

Rm
2)

2
    

 
(2.17) 
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The analytical expression (2.17) describes the post-buckling area reduction upon application of 

external pressure. The initial shape of the cross-sectional area is assumed to be circular in (2.17). Prior 

to buckling, the change in area enclosed by the ring upon application of external pressure is described 

by (1.36), and thus the corresponding area at the buckling stage, ΔΑcr, can be calculated by (1.39). 

Therefore, ΔΑcr can be considered in (2.17) as follows 

P = 2 σy
∗(

t

Dm
)2

1

√1 − (1 −
2(ΔΑ − ΔΑcr)

Rm
2 )

2
    

 
(2.18) 

 

 

 Material changes will be made for the 2D ring of D/t=40 (Table 2.3), which has initial 

imperfections in the form of ovality. Therefore, the initial ovality values of 

Δο = 0.01%, 0.05%, 0.1%, 0.5% and 1% will be induced in the ring of such geometry. Thus, five 

elastic models are created in ABAQUS standard by following the numerical modeling procedure of 

section 2.3.1. The elastic material properties are E=210000 MPa and ν=0.3. The numerical results will 

be compared with the analytical solutions of chapter 1. Fig. 2.53 shows the influence of initial ovality 

on the pre-buckling and post-buckling responses. The analytical post-buckling curve (1.37) of the 

perfect ring case is included in the same plot. While the initial imperfection value rises, the deviation 

of collapse pressure from that of the perfect case rises too and thus, the ring “softens” and collapses at 

lower pressures. The same observations can be made from Fig. 2.54, where the variation of pressure 

with the reduction in the enclosed area is presented. In this figure both the pre-buckling (1.36) and 

post-buckling (1.38) responses are included for comparison with the curves of the numerical results. 

Minor changes are observed in the pre-buckling region. The post-buckling responses are like those of 

Fig. 2.53 and thus, similar observations are made. Prior to buckling, the cross-sectional deformation of 

imperfect rings is described by (1.22). Equation (1.22) can be expressed in terms of maximum 

displacement,  wmax and initial ovality Δο for a ring of mean radius Rm as follows 

 

P
Pcr

⁄ = 1 −
Δο

(
wmax

Rm
⁄ )

 

 

 

(2.19) 

 

The responses of pressure versus maximum displacement are shown in Fig. 2.55 for the initial ovality 

values of Δο = 0.01%, 0.05%, 0.1%, 0.5% and 1% that were assigned into the ring of D/t=40. As 

mentioned in section 2.2, the variable of initial ovality is calculated from (2.4). The marked dots on the 

plot represent the results for the pressure of first yielding (Pf), which are calculated from (1.29) for the 

five values of initial ovality. Clearly, the results show that Pf is imperfection sensitive. 
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Fig. 2.53  Pressure-Ovality responses for elastic rings of various imperfection values and D/t=40. 

 

 

 

Fig. 2.54  Pressure versus the area change curves for elastic rings of various imperfection values and 

D/t=40.  
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Fig. 2.55 Pressure-maximum displacement responses for various values of initial ovality (D/t=40). The 

solid dots correspond to the pressure of first yielding, calculated from (1.29). 

 

  The elastic pressure-ovality responses, presented above for the ring of D/t=40, will be plotted 

in a common chart with the corresponding responses of the inelastic cases of section 2.5.1. Fig. 2.56 

shows the elastic and inelastic responses for the examined thin wall ring (D/t=40). This figure 

summarizes the differences between the elastic and inelastic cases. The elastic material responses 

bifurcates when a critical pressure value is reached, and the post-buckling response follow a positive 

slope pattern. On the contrary, the inelastic cases develop a limit point pressure, which is the 

maximum collapse capacity of the ring. As it was discussed in section 2.5.1, the collapse pressure is 

imperfection sensitive. Meanwhile, the equilibrium path of the plastic collapse mechanism (2.16) is 

included in the figure. The results are in agreement with theory and numerical results of previous 

projects [1], [4], [15]. The pressure versus change in area responses of elastic-inelastic rings are 

presented in Fig. 2.57. The behavior is similar with those of pressure versus ovality responses, and the 

post-buckling analytical expression (2.18) is plotted on the same figure for comparison. 
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Fig. 2.56 Pressure-ovality responses in elastic and inelastic case of rings of various imperfection 

values (D/t=40). 
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Fig. 2.57  Pressure-change in area responses in elastic and inelastic case of rings of various 

imperfection values (D/t=40). 
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same mesh density, the model is discretized using eight-node biquadratic plane strain finite elements 

of reduced and full integration, which are denoted in ABAQUS as CPE8R and CPE8 respectively. The 

corresponding pressure-ovality responses of CPE8R and CPE8 finite element discretization are shown 

in Fig. 2.59 and Fig. 2.60 respectively. The pressure-ovality response of both element types maintain a 

positive slope for pressures higher than the critical pressure which is lower than that of the analytical 

solution (1.37). 

 

Fig. 2.58 Pressure-ovality response of CPE4 finite element type for the elastic ring of D/t=40 with 

initial ovality of  Δο = 0.01%. 

 

 

 

Fig. 2.59 Pressure-ovality response of CPE8R finite element type for the elastic ring of D/t=40 with 

initial ovality of  Δο = 0.01%. 
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Fig. 2.60 Pressure-ovality response of CPE8 finite element type for the elastic ring of D/t=40 with 

initial ovality of  Δο = 0.01%. 
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integration), are considered in the finite element analyses. Therefore, eight finite element models of 

elastic material and D/t=40 are created in ABAQUS standard. 

The equilibrium path of pressure versus the ovalization of the ring cross-section is created for 

every finite element type, and the responses are presented in Fig. 2.61- Fig. 2.68. The post-buckling 

analytical curve (1.37) is included in figures for comparison with the curves of the numerical results. 

Except from the response of C3D8 finite elements, the pressure-ovality responses of the rest element 

types buckle elastically at a critical pressure which is lower than that of the analytical solution. Thus, 

the post-buckling part of the pressure-ovality response, obtained from C3D8 finite elements, follows a 

positive slope which is higher than the analytical post-buckling curve. This post-buckling behavior is 

mentioned in section 2.6.1 for the same ring (2D ring of D/t=40) with initial ovality of 0.01%, when a 

mesh of CPE4 type of finite elements is used. Furthermore, the slopes of the post-buckling region for 

the responses of SC8R, C3D20R and C3D20 converge with the analytical curve as the cross-sectional 

ovalization rises. For the same range of ovalization values, the post-buckling responses obtained from 

the element types of S4R, S4, S8R and C3D8R develop a positive slope but they do not coincide with 

the analytical curve. 

 

 

Fig. 2.61 Pressure-ovality response for mesh discretization with SC8R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 
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Fig. 2.62 Pressure-ovality response for mesh discretization with S4R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 

 

 

 

 

Fig. 2.63 Pressure-ovality response for mesh discretization with S4 finite element type (3D elastic ring 

of D/t=40, L=10mm and Δο = 0.01% ). 
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Fig. 2.64 Pressure-ovality response for mesh discretization with S8R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 

 

 

 

 

Fig. 2.65 Pressure-ovality response for mesh discretization with C3D8R finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 
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Fig. 2.66 Pressure-ovality response for mesh discretization with C3D8 finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 

 

 

 

 

Fig. 2.67 Pressure-ovality response for mesh discretization with C3D20R finite element type (3D 

elastic ring of D/t=40, L=10mm and Δο = 0.01% ). 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 0.002 0.004 0.006 0.008 0.01

Ovality 

 C3D8 element type

Theoretical Post-buckling curve

0

1

2

3

4

5

6

7

8

9

10

0 0.002 0.004 0.006 0.008 0.01

Ovality 

 C3D20R element type

Theoretical Post-buckling curve

P (MPa) 

P (MPa) 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 17:26:54 EEST - 3.133.128.217



78 

 

 

Fig. 2.68 Pressure-ovality response for mesh discretization with C3D20 finite element type (3D elastic 

ring of D/t=40, L=10mm and Δο = 0.01% ). 

 

 

2.7 Two-dimensional Analysis and Prediction of the Propagation Pressure  

  The buckling and post-buckling behavior of a ring under external pressure was examined in 

the previous sections. As it was discussed, the deformation of a ring under plain strain conditions 

corresponds to the cross-sectional deformation of an infinite long tube. Soon after collapse, a 

significant downturn in pressure follows and the cross-sectional ovalization increases, due to the 

formation of four hinges at the quarter points of the ring’s circumference. The post-buckling response 

continues until the two opposite quarter points of the ring’s inner circumference come into contact. In 

the case of a long tube, the collapse of a local section follows a short transient region of propagation 

until steady-state conditions are reached for the establishment of buckle propagation phenomenon. At 

the occurrence of steady-state conditions the buckle is assumed to propagate quasi-statically under a 

constant pressure Pp, which is called propagation pressure.  

  In the limit of steady state propagation under quasi-static conditions, Chater and Hutchinson 

[26] proposed a two-dimensional method for the evaluation of the buckling propagation pressure. This 

evaluation method is based on the ring mode of deformation under plain strain conditions and the 

assumption of an idealized material. More specifically, while the buckle propagates quasi-statically, it 

is assumed that the material points of the tube are subjected to monotonic plastic loading. This 

assumption neglects the presence of non-proportional stresses during deformation and thus, it is 

implied that the material’s deformation is path independent [27]. Fig. 2.69 shows schematically the 
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pressure-change in area response for a ring’s cross-section. The stages ΔΑi and ΔΑf correspond to the 

initial and final change in area respectively. The initial and final stages of the cross-sectional area are 

referred to the undeformed and fully deformed cross-section respectively. The intermittent line stands 

for the constant pressure, PP  ,which equalizes the two areas (A1 = A2). This graphical condition is 

referred to as Maxwell construction [26], [27] or Maxwell line. The product of the change in area 

between the two stages times the buckle propagation pressure equals the work done by the pressure, 

ΔW, as follows 

 

PP (ΔΑi − ΔΑf) = ΔW 
 

(2.20) 

 

This work is subsequently absorbed by the ring for the transition from the initial undeformed stage to 

the final stage of deformation. Because of the path independent deformation history assumption, the 

work can be calculated form the following equation 

ΔW = ∫ P dΔA
ΔΑf

ΔΑi

 
(2.21) 

 

The condition of Maxwell’s line is satisfied by equating (2.20) and (2.21) and thus, the propagation 

pressure can be evaluated by the following equation  

 

PP =
1

(ΔΑf − ΔΑi)
 ∫ P dΔA

ΔΑf

ΔΑi

  

 

 

(2.22) 

 

The propagation pressure can also be estimated from the plastic hinge model of Fig. 1.9, proposed by 

Palmer and Martin [13]. The internal work produced by the four plastic hinges of momentum Mp is 

expressed as follows 

 

Wint = 4 Mp  
π

2
   

 

(2.23) 

 

The external work produced by the pressure is 

 

Wext = P (R √2)2 

 

(2.24) 
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By equating the expressions of (2.23) and, (2.24) the propagation pressure can be evaluated from the 

following expression 

 

Pp = π σy  (
t

D
)

2

 

 

(2.25) 

 

 

Fig. 2.69  Pressure-change in deformed cross-sectional area of a ring response. The intermittent line 

separates two equal areas (A1 = A2). 

 

 

 

2.7.1 Prediction of the propagation pressure through Case Studies 

  The rings of D/t=20 and D/t=30 (Table 2.3) are considered as case studies for the prediction 

of the propagation pressure by the establishment of Maxwell’s line condition. An initial ovality of 1% 

and 0.05% is induced in the rings of D/t=20 and D/t=30 respectively. Fig. 2.70 and Fig. 2.71 depict the 

variation of pressure with the deformed cross-sectional area for the rings of D/t=20 and 30 

respectively. The Maxwell lines are also included in the responses for the estimation of the 

propagation pressure. The propagation pressure is estimated as 5.3 MPa and 2.2 MPa for the rings of 

D/t=20 and 30 respectively. 

  The propagation pressure of the above rings will be estimated by equation (2.25) as well. By 

substituting the geometric parameters for each ring and the material properties, the calculated 

propagation pressures are 3.36 and 1.52 MPa for the rings of D/t=20 and 30 respectively. In the 

upcoming chapter, the problem of propagation pressure will be addressed again by performing three-
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dimensional numerical analyses of tubes with the same geometric cross-sectional parameters. 

Therefore, the present estimations of propagation pressures will be compared with those of the full-

scale analysis. 

 

 

Fig. 2.70  Pressure versus change in area response of a ring with D/t=20. The propagation pressure is 

estimated by the Maxwell line condition. 

 

 

Fig. 2.71  Pressure versus change in area response of a ring with D/t=30. The propagation pressure is 

estimated by the Maxwell line condition. 
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Chapter 3 - Analysis of Initiation and Steady-State Buckle Propagation in 

Tubes 

3.1 Introduction  

  The problem of propagating buckles along the length of long tubular members is of great 

importance, since it is strongly connected with the collapse of subsea pipelines. Once the buckle 

initiates, due to local dents or imperfections in the pipe wall region, it propagates under a critical 

pressure, which is the propagation pressure. The significance of this pressure was pointed out in the 

previous chapters, and it was presented as the pressure value requirement for a buckle to propagate 

under steady-state quasi-static conditions. In this chapter the problem of buckle propagation will be 

addressed again by the finite element analysis of three-dimensional (3D) models, which undergo 

external pressure loading. The geometric parameters of  Table 2.3 will be considered for the models 

with adequate length L for reaching steady-state conditions of buckle propagation. The models will be 

developed in the general-purpose Finite Element program ABAQUS/ standard. The estimations of the 

propagation pressure from the three-dimensional analyses will be compared with those of the previous 

chapter. Furthermore, the propagation pressure sensitivity to finite element type and pipe length is 

examined through parametric analyses.  

 

3.2 Numerical Modeling 

  Three-dimensional models of length L=15D and two different D/t ‘s (D/t=20 and 30) are 

developed in the ABAQUS numerical framework. The material properties are chosen to be the same 

with those of the two-dimensional models, and thus the material properties of steel grade X65 are 

considered (Table 2.2). For the numerical modeling, the one-fourth of a half pipe is considered for 

analysis with a length of L=15D. The mesh consists of 25 elements in the circumferential direction, 4 

elements in the through-thickness direction and 150 elements in the longitudinal direction. Therefore, 

the models are discretized by a total number of 15000 elements. The finite element models are 

discretized by 8-node quadrilateral in-plane general-purpose continuum shell elements of reduced 

integration (SC8R). The choice of the type of finite elements is important for obtaining reliable results, 

and this issue will be discussed later in this document. Therefore, three-dimensional models of two 

different values of D/t are created. Fig. 3.1 shows the one-fourth of a half pipe model and the mesh 

used to discretize the domain with SC8R finite elements. The boundary nodes at the cross-section of 

plane Z=0, are constrained to have zero displacements in Z direction and zero rotations about the X 

and Y axes. These restrictions are applied to the model by selecting the «ZSYMM» boundary 
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condition option in ABAQUS numerical framework. On the other hand, the boundary nodes at the 

cross section of plane Z=15D are constrained with the «ENCASTRE» boundary condition option, 

which aborts the displacements and rotations of nodes in X, Y and Z directions. Furthermore, the 

nodes of the tube generator sector at X=0 and   θ = π
2⁄ , are constrained to have zero displacements in 

X direction and zero rotations about the Y and Z axes. This type of restriction is denoted in ABAQUS 

numerical framework as «XSYMM» boundary condition. Finally, the «YSYMM» boundary condition 

is assigned to the boundary nodes of the domain’s edge at Y=0 and θ=0, so that the nodes have zero 

displacements in Y direction as well as zero rotations about the X and Z axes. 

  A necessary condition for the propagation of a buckle is that the pipe should bear a local 

damage or imperfection, so that the buckle be initiated from this region of concentrated damage 

(Chapter 1). Therefore, a local imperfection in the form of ovality is introduced in the finite element 

models. The imperfection is assigned by permitting the existence of an initial displacement of 

magnitude U in the unloaded condition of the structure. Fig. 3.1 shows the point «A», where an initial 

displacement in Y direction is applied. When the displacement is removed, the point does not return to 

its original position due to elastic-plastic material properties. Thus, the cross-section, where the point 

A is located, does not return to its original circular shape and it takes an oval shape. The initial 

displacement is different between the two D/t models, and thus the models have different values of 

initial ovality. More specifically, the models of D/t=20 and 30 are assigned the initial ovality values of 

1%, 0.05% respectively. 

  The initial ovality affects the collapse pressure but not the value of the propagation pressure 

under steady state conditions. Based on the arguments of the previous chapters, the cross-sectional’s 

collapse sequence will follow the ring collapse mode under plain strain conditions. Thus, to restrict the 

translation of the top side through negative Y axis, a three-dimensional analytical rigid surface is 

developed, and a contact pair is created between the upper surface of the analytical rigid body and the 

inner surface of the model by using the surface-to-surface method. The translation of the model’s inner 

side through the analytical rigid body is aborted by using the penalty method of nonlinear contact 

stiffness behavior as an interaction property of the pair.  
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Fig. 3.1 The three-dimensional model of length L=15D used in the finite element analyses of pipes 

with D/t=20 and 30. 

 

The analysis is developed through four incremental steps. In the first step, which is denoted as 

the initial step in ABAQUS, the boundary conditions are applied on the model in the way described 

above. Also, the displacements and rotations of the analytical rigid body are aborted. That is achieved 

by using the «ENCASTRE» boundary condition on a Reference Point (RP) of the rigid body. The next 

step is a static general step, which consists of the application of the initial displacement in the 

unloaded stress-free structure. In the third step, the imposed displacement is removed, and the 

boundary conditions are applied on the imperfect model. This step is also general static. In the last step 

of the analysis (fourth step), the uniform external pressure load is applied on the outer surface of the 

model. In this step a nonlinear analysis is conducted using Riks’ continuation method and thus the pre-

buckling response, the collapse pressure, and the unstable post-buckling response are obtained. 

3.3 Numerical Results 

  In this section the numerical results of buckle propagation pressure will be presented for the 

3D models of D/t=20 and 30. The numerical results of propagation pressure will be compared with 

those of section 2.7.1 and with those of accurate analytical expressions for the calculation of 

propagation pressure. 
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3.3.1 Numerical results of buckle propagation pressure  

  The equilibrium path of pressure-change in volume responses will be created for the 

estimation of the propagation pressure. The initial volume of the model was taken as Vo =

(
π Rin

2

4
⁄ )  L . The numerical results of pressure are normalized by the yield pressure Py (1.18), and 

the integrated change in the volume of the model upon deformation is normalized by the initial volume 

Vo. Therefore, the equilibrium path of pressure against the change in volume response is created, and 

the result is shown in Fig. 3.2a. For the pipe model of D/t=30. The numbers on the response 

correspond to the deformed configurations of Fig. 3.3. At stage (1) of Fig. 3.2a, collapse occurs at the 

region of the pipe where the local damage exists. The pipe collapses at a pressure maximum of 

Pco = 18.04 MPa . The local initial ovality of the model is 0.05%. As it was mentioned in the previous 

section, the magnitude of initial imperfection affects only the collapse pressure of the pipe, and it does 

not influence the value of the propagation pressure. After the collapse stage, the pressure carrying 

capacity drops significantly (2) until a minimum pressure value is reached at stage (3). The stage of 

minimum pressure corresponds to the first contact between the quarter points of the most deformed 

cross section. In the meanwhile, a small increase in pressure is observed on the transition from stage 

(3) to stage (4). The contact between the two surfaces locally “strengthens” the most deformed cross-

section, and thus an immediate and short-length stiffening of the pipeline is observed, due to the 

pressure increase [26], [27]. After stage (4), the collapsed or “buckled configuration” starts to 

propagate quasi statically along the pipe length under steady-state conditions. Therefore, the 

propagation pressure is estimated as Pp ≈ 3.08 MPa for the D/t=30 pipe model under consideration. A 

volume like parameter is also used to examine the relation of pressure to volume reduction for the two 

pipe models of different D/t ratios. This parameter is expressed by the following formula 

ΔV̂ =
L Rin

N
 √∑(Ui,y)2

N

i

 

 

(3. 1)        

 

where L and Rin are the length and the internal radius of the pipe (L=15D) respectively, Ui,y is the 

displacement in Y direction of a node i, which is located at the inner edge of the tube upper generator 

and N is the number of nodes i at the inner edge of the tube upper generator. The variation of pressure 

with the volume like parameter for the tube of D/t=30 is presented in Fig. 3.2b. The pressure versus 

change in volume responses for the case of D/t=20 are presented in Fig. 3.4. The deformed 

configurations of that case are of the same nature as those presented for the case of D/t=30, and thus 
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are not included here. The propagation pressure is estimated as   Pp ≈ 8.42 MPa for the tube of 

D/t=20.  

 

                  (a) 

 

                (b) 

Fig. 3.2 Pressure-change in volume responses for the tube of D/t=30. (a) The variation of pressure with 

the integrated volume reduction and (b) the variation of pressure with volume like parameter. 
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Fig. 3.3 The numerical simulations of the sequence of buckle propagation phenomenon for the 

corresponding (1)-(5) stages of pressure-change in volume response (D/t=30). 
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                  (a) 

 

 

                 (b)   

Fig. 3.4 Pressure-change in volume responses for the tube of D/t=20. (a) The variation of pressure with 

the integrated volume reduction and (b) the variation of pressure with volume like parameter. 
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[28]. Fig. 3.5 shows the sequence of collapse configurations for the D/t=30 pipe cross-section, where 

the initial imperfection in the form of ovality is assigned (Fig. 3.1). The states of deformation for the 

2D ring of D/t=30, were presented in Fig. 2.16. The two-dimensional and three-dimensional collapse 

configurations at the stage of contact are presented in a common figure, as shown in Fig. 3.6. The 

results show that the cross-sectional deformation of pipe at contact is higher than that of ring.  

 

 

 

Fig. 3.5 Sequence of collapse configurations for the pipe cross-section where the initial imperfection is 

assigned (pipe of D/t=30 and L=15D). 
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Fig. 3.6 Deformed configurations of ring and pipe cross-sections at the stage of contact. 

 

 

 

  For the pipe of D/t=30, the first contact between the quarter points of the cross-section, where 

the imperfection is assigned (Fig. 3.1) and the buckle is initiated, is presented by stage (3) in the 

numerical simulations of Fig. 3.3. At this stage, the states of deformation of the pipe that correspond to 

the states of the cross-sectional deformation at the origin of the model (Fig. 3.5), are selected in the 
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configurations of Fig. 2.16 and Fig. 3.8  show that the pipe cross-sectional deformation along the 

longitudinal direction, is higher than the cross-sectional deformation of the ring under plain strains 

conditions. This observation has already been made at the stage of contact (Fig. 3.6), between the two-

dimension and three-dimension analysis of the cross-sectional deformation. These differences between 

two-dimensional and three-dimensional configurations are reasonable because the three-dimensional 

pipe model is more flexible to deform in three dimensions than the ring model in two dimensions. 
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(a)  

 

 

(b) 

 

Fig. 3.7  Six different states of cross-sectional deformation along the pipe length at different angles 

and planes of view. 
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Fig. 3.8 Sequence of collapse configurations for the pipe of D/t=30 along the longitudinal direction. 

The numbers above the configurations correspond to the states of cross-sectional deformation of Fig. 

3.7.  

 

 

3.3.2 Comparison of analytical and numerical calculations of buckle propagation 

pressure  

  In this chapter, accurate analytical expressions from publications and standards will be used 

to calculate the propagation pressure for the cases of tubes presented above. These analytical results 

will be compared with the numerical results of the previous section, as well as with the estimations of 

propagation pressure of section 2.7.1. From the experiments of Kyriakides and Babcock [29], the 

following analytical expression is postulated for the calculation of propagation pressure 

 

Pp = A σy (
t

D
) β  

 

(3.2)        

 
 

where A, β are parameters dependent on the alloys. For the tubes of X65 steel examined here, A=14.5 

and β=2.254. 
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The following expression for calculating the propagation pressure is proposed by API RP 1111 [2] 

standard 

 

Pp = 24 σy (
t

D
) 2.4  

 

(3.3)        

 
 

where D is the outside diameter of the pipe, t is the wall thickness and σy is the yield pressure of the 

material. 

The proposed formula for the calculation of the propagation pressure is given by DNVGL-ST-F101 [3] 

standard as follows 

 

Pp = 35 σy afab (
t

D
) 2.5  

 

(3.4)        

 
 

where D is the outside diameter of the pipe, t is the wall thickness and σy is the yield pressure of the 

material and  afab is a fabrication factor, which is equal to unity for the cases examined here. 

The propagation pressure is calculated for both tubes from the expressions (3.2)-(3.4), and the 

results are listed in Table 3.1. The numerical results of section 3.3.1, as well as the results of sections 

2.7.1 for the propagation pressure, are listed in the same table. It seems that the two-dimensional 

analysis underestimates the calculated propagation pressure. The discrepancies between the results can 

be attributed to the three-dimensional characteristics of buckle propagation phenomenon. While the 

buckle propagates in the longitudinal direction, the tube’s generators deform in the direction of 

propagation. Therefore, the existence of longitudinal deformation in the model is the reason for the 

underestimating results of two-dimensional analysis. However, the results from the expressions (3.2)-

(3.4) are closer to those of the numerical analysis. 

 

Table 3.1 Propagation pressure estimations (MPa) from the FE models of L=15D and from analytical 

methods and expressions. 

D/t Numerical 

calculation 

2D 

Maxwell 

line  

Palmer& 

Martin 

Kyriakides& 

Babcock 

API 

RP 1111 

DNV    

GL-ST-

F101 

20 8.42 5.3 3.36 7.20 7.67 8.27 

30 3.08 2.2 1.52 2.94 2.95 3.06 
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3.4 Parameter Study 

The parametric dependence of the propagation pressure will be examined in this section. From 

the analytical expressions presented above, the propagation pressure is dependent on the pipe 

geometric characteristics and the material properties. Furthermore, it has been concluded from 

experimental and numerical analyses of the literature [27] that a long enough pipe is needed for the 

establishment of steady-state propagation conditions. Thus, the variation of propagation pressure with 

the pipe length will be examined through parameter analyses. Also, the sensitivity of the propagation 

pressure on the finite element (FE) type of mesh discretization, will be examined by parametric 

studies. 

3.4.1 Effect of finite element discretization  

    The pipe of D/t=30 will be modeled for different element types. The mesh density will 

remain the same as that used in section 3.2. Firstly, the 4-node doubly curved shell elements of 

reduced (S4R) and full integration (S4) are considered for the model. Furthermore, the pipe was 

discretized by different types of brick elements. More specifically, the model was discretized by 8-

node linear brick elements of reduced (C3D8R) and full integration (C3D8). Also, the pipe was 

discretized by 20-node quadratic brick elements of full integration (C3D20). Therefore, five different 

analyses have been conducted in ABAQUS standard for the D/t=30 pipe. The variation of pressure 

with the integrated reduction in volume of the pipe model, is presented by the P Py
⁄ − ΔV

Vo
⁄  responses 

for the S4R, S4, C3D8R and C3D8 finite element types, as shown in Fig. 3.9- Fig. 3.10. For the finite 

element type of C3D20, the variation of pressure with the volume like parameter is presented by the 

P − ΔV̂ response as shown in Fig. 3.11. The observable differences that exist in the collapse pressure, 

is due to the differences in the initial imperfection values between the analyses. Since the initial 

imperfection does not influence the propagation pressure estimation, a greater that 0.05 % ovality is 

used for some element types for the initiation of collapse. From Fig. 3.9- Fig. 3.10 it can be observed 

that the volume of the corresponding pressure minimum (stage (3) in Fig. 3.3), differs between the 

elements. This discrepancy can be attributed to contact sensitivity between the elements of internal 

surface and the analytical rigid body.  

The propagation pressure for each case can be estimated from the responses, and the results 

are summarized in Table 3.2. In the same table the estimated propagation by using SC8R elements is 

included as well. It seems that the propagation pressure estimation varies significantly with the 

element type. The comparison of the estimated propagation pressures of Table 3.2, with the calculated 

propagation pressure from the proposed equation of API RP 1111 standard [2] (Table 3.1), shows that 

the difference is the minimum (2.03% lower with respect to that calculated from (3.3)) when C3D20 
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elements are used, and the maximum for C3D8 elements (19.32% higher with respect to that 

calculated from (3.3)). However, the difference is even lower if the numerical estimations are 

compared with the calculated propagation pressure from the proposed formula of DNV GL-ST-F101 

standard [3]. The minimum difference in this case exists for SC8R finite element discretization (0.65% 

higher with respect to that calculated from (3.4)), and the maximum difference is observed upon 

C3D8R finite element discretization (16.99% higher with respect to that calculated from (3.4)). Also, 

the comparison of the numerical estimations of Table 3.2 with the calculated propagation pressure 

from the proposed formula of Kyriakides & Babcock [29] gives minimum and maximum differences 

for C3D20 finite elements (1.70% lower with respect to that calculated from(3.2)) and C3D8 (19.73% 

higher with respect to that calculated from(3.2)) finite elements respectively. 

 

 

Fig. 3.9 Pressure-change in volume responses for different element types of full integration (D/t=30 

pipe model of L=15D). 
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Fig. 3.10 Pressure-change in volume responses for different element types of reduced integration 

(D/t=30 pipe model of L=15D). 

 

 

 

Fig. 3.11 The variation of pressure with volume like parameter for quadratic elements C3D20 (D/t=30 

pipe model of L=15D). 
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Table 3.2 Numerical estimations of the propagation pressure for different element types of reduced 

and full integration (model of D/t=30 and L=15D). 

Element type Pp (MPa) 

 

SC8R 

S4R 

S4 

C3D8R 

C3D8 

C3D20 

3.08 

2.62 

2.64 

2.54 

3.52 

2.89 

 

 

 

3.4.2 Effect of tube’s geometric parameters 

  The model of Fig. 3.1 with D/t=30 will be considered here with a length of L=5D to verify 

the need for a large pipe length, so that the buckle will be propagating under steady-state conditions. 

The model is discretized with SC8R finite elements, and the mesh consists of 25 elements in the 

circumferential direction, 4 elements in the through-thickness direction and 100 elements in the 

longitudinal direction. The variation of pressure with the integrated change in volume is presented in 

terms of  P Py
⁄ − ΔV

Vo
⁄  response as shown in Fig. 3.12. Clearly, the response is not able to develop a 

pressure plateau, due to the insufficient length of the pipe model. Thus, the propagation pressure is not 

possible to be estimated by the analysis of that finite element model. The important factor of sufficient 

pipe length is presented in Fig. 3.13 by comparing the response of Fig. 3.12 with that of Fig. 3.2a in a 

common figure. The differences between the two responses are outstanding, and they highlight the 

need for an adequate pipe length for the establishment of steady-state buckle propagation conditions. 
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Fig. 3.12  Pressure-change in volume response for a short pipe of D/t=30 and half-length of L=5D. 

 

 

 

 

 

Fig. 3.13 Comparison of pressure-change in integrated volume responses for the finite element models 

of L=5D and L=15D and cross-sectional geometry D/t=30. 
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Chapter 4 – Finite Element Analysis of Integral Buckle Arrestors  

4.1 Introduction  

The problem of collapse and its catastrophic propagation under a constant pressure, the 

«propagation pressure», along a pipeline length, was studied numerically in the previous chapter. Once 

the buckle is initiated locally at a pipeline section, it will propagate in a quasi-static manner along a 

pipeline length, unless an obstacle is reached to abort its further propagation. One way to «arrest» the 

propagation of a buckle would be achieved by increasing the pipe wall thickness. This approach 

ensures that the constant pressure of the sea floor environment is always lower than the propagation 

pressure, and thus local buckles will not propagate along the pipeline length. Practically, this method 

increases the costs of pipeline material and installation methods (Chapter 1) and thus it would not be 

considered for a pipeline project [30]. Following the concept of thicker wall thickness, special devices 

have been developed for the efficient arrest of a propagating buckle. These devices are referred to as 

«buckle arrestors» and they are installed to connect periodically pipe sections along the line. A buckle 

arrestor has an average wall thickness value, which is higher than that of the pipeline, and thus it acts 

as an obstacle for the further propagation of a buckle. There are different types of buckle arrestor 

devices which are dependent on the water depth. For relatively shallow water depths the slip-on 

arrestor device is generally used, whereas for pipeline projects established in deep water, the integral 

arrestor device is generally used [30]. The buckle arrestor devices safeguard the structural integrity of 

the pipeline and make the structure stiffer. Once the buckle approaches the arrestor, it will not continue 

further its path of propagation, and the pressure will increase until a maximum pressure, due to the 

local substantial stiffening of the structure. The maximum pressure is referred to as «crossover 

pressure», and it is dependent on the arrestor geometric characteristics. The magnitude of the crossover 

pressure indicates the ability of the arrestor device to efficiently abort the further propagation of a 

buckle. 

The integral arrestor device will be considered in this thesis. This device consists of an internal 

diameter, which is of the same scale as that of the pipeline, and a thicker wall thickness compared to 

that of the pipeline. This device is welded between two pipe segments to arrest the transition of buckle 

from the upstream pipe section to the downstream pipe section. The geometric characteristics of an 

integral arrestor are presented schematically in Fig. 4.1. It should be mentioned that the geometry of 

buckle arrestor and its way of connection with the pipe sections, correspond to the finite element 

model that is considered for analysis as it will be presented in the following section. A more general 

schematic representation of an integral buckle arrestor is presented in [27], [30], [31]. As shown in 

Fig. 4.1, the buckle arrestor is characterized by a length « LA» and a wall thickness «h», which is 
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higher than the pipe wall thickness «t» that is connected to. In the same figure, the short regions of 

variable thickness used to connect the device and the pipe segments are shown as well. 

This chapter focuses on the numerical study of an integral buckle arrestor, which connects two 

pipeline sections. For that purpose, a three-dimensional (3D) model is developed in the general-

purpose Finite Element program ABAQUS/ standard. The crossover pressure will be estimated for an 

integral arrestor of given geometric characteristics. Also, the crossover pressure sensitivity to finite 

element type is examined through parametric analyses. 

 

 

Fig. 4.1 Schematic representation of the geometric characteristics of an integral buckle arrestor, which 

connects two pipe sections. 

 

4.2 Numerical Modeling 

  A three-dimensional finite element model was developed in the ABAQUS numerical 

framework, to simulate the initiation and quasi-static propagation of a buckle along the pipe length, 

and its arrest by an integral arrestor, which connects two pipeline segments. The pipe of D/t=30 is 

considered with the cross-sectional geometric parameters of Table 2.3 and the material properties of 

steel grade X65 (Table 2.2). The integral arrestor is considered with the same material properties as 

the pipeline, and its geometric parameters are the same as those used in [21]. Therefore, the integral 

arrestor of length  LA = 1.198D and thickness h=2.5t is used in the finite element model analysis. The 

finite element model is an assembly of an upstream pipe segment of length L1, a transition segment of 

length LT, an arrestor of length LA, a transition segment of length LT and a downstream pipe segment 

LA 

h 
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t 

Arrestor 
Pipe 
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of length L2. The length of the upstream pipe section is L1 = 10D , so that the buckle can propagate 

under steady state conditions, and the transition sections have a length of LT = 50 mm. The values of 

L1,  LT, L2 are similar to those used in [21]. Therefore, a finite element model with a total length of 

L=20D is created in the ABAQUS numerical framework. For the numerical modeling, the one-fourth 

of a pipeline section, which consists of two pipe sections connected by an integral arrestor, is 

considered for analysis as shown in Fig. 4.2. The whole model domain is discretized by 20-node 

quadratic brick elements of full integration (C3D20). The circumferential directions of pipe sections 

and arrestor consist of 25 elements, whereas in every through-thickness direction of the model 4 

elements are used. In the longitudinal direction, 60 elements are used in the downstream pipe section 

of L2 and 25 elements are used in LA. The upstream pipe section of L1is partitioned at a distance of 9D 

from the axes origin, and thus the section is divided into two parts. In the first part of length 9D, 40 

elements were used in the longitudinal direction, whereas in the second part of length D 20 elements 

are used. The transition sections are discretized with 4 elements in the longitudinal direction. The 

boundary nodes at the cross sections of planes Z=0 and Z=20D are constrained with the «ZSYMM» 

boundary condition option as described in section 3.2. Furthermore, the nodes of the model sector at 

X=0 and   θ = π
2⁄ , are constrained with the «XSYMM» boundary condition, whereas the nodes of the 

model edge at Y=0 and θ=0 are constrained with the «YSYMM» boundary condition. 

  An initial imperfection in the form of ovality is introduced in the model for the formation and 

initiation of a local buckle. Following the procedure of section 3.2, the imperfection is assigned at a 

point «A» in the origin (Fig. 4.2), by means of displacement U. The magnitude of the given 

displacement at point A is U=8. In that imperfect region, the structure locally buckles due to uniform 

pressure loading at the external surface of the pipe. Therefore, the cross section, where the point A is 

located takes an oval shape. From the collapse configurations of the previous chapters, it is expected 

that the imperfect cross-section at the origin (Fig. 4.2) will follow a sequence of collapse 

configurations similar to those presented in Fig. 3.5. Therefore, to restrict the translation of top side 

through negative Y axis, a three-dimensional analytical rigid surface is created. A master-slave contact 

pair is created between the analytical rigid surface and the part of the inner surface that will come into 

contact. The contact is modelled using the penalty method algorithm, which takes into account 

nonlinear contact stiffness behavior.  
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Fig. 4.2 The three-dimensional finite element model which consists of an integral arrestor of length LA 

that connects an upstream pipe segment of length L1 and a downstream pipe segment of length L2. 

 

The analysis is developed through four steps, and in the same manner as described in section 

3.2. The first three general static steps exist for the assignment of initial imperfection in the model and 

in the last step the uniform external pressure is applied on the model. The response of the system 

during application of external pressure, is analyzed using Riks’ continuation algorithm, which is 

implemented in ABAQUS software. 

 

4.3 Numerical Results 

In this section, the results from the numerical simulation of the finite element model of Fig. 

4.2 (D/t =30) will be presented by means of the deformed configurations and the corresponding 

pressure-change in volume responses. Fig. 4.3a depicts the variation of pressure with the numerically 

integrated volume reduction during the initiation and propagation of buckle, and its final arrest by an 

integral buckle arrestor. The numbers in circles on the response of Fig. 4.3a correspond to the 

deformed configurations of Fig. 4.4. Collapse occurs at stage (1) in the upstream pipe section (Fig. 

4.2) where the initial imperfection exists and thus, a first peak in pressure is observed in the response. 
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The pressure-change in volume response give a collapse pressure of 17.11 MPa. Soon after the 

occurrence of collapse, the pressure carrying capacity of the pipe drops as it is presented by the (1)-(2)-

(3) sequence. At stage (3) the pressure reaches a minimum pressure due to the first contact between the 

inner pipe walls. The local contact immediately stiffens the pipe and thus an increasement in pressure 

is observed until a constant pressure value is reached. The upstream pipe length has an appropriate 

magnitude so that the buckle can propagate unaffected until the arrestor is engaged. Thus, the 

formation of pressure plateau is observed in the response and the deformed configuration (4). The 

buckle propagates «freely» under a minimum propagation pressure of 2.86 MPa, until the stiffening 

effects of the arrestor are introduced in its path. The second increasement in pressure after the constant 

pressure plateau, correspond to the local stiffening of the structure due to the presence of the arrestor. 

Therefore, the buckle is «arrested» as it can be seen from the deformed configuration (5). The 

increasement in pressure continues until a maximum pressure value is reached, as shown at stage (6) of 

the response. That second pick of pressure-change in area response, corresponds to the crossover 

pressure of the arrestor. Therefore, the crossover pressure is 14.05 MPa for the finite element model of 

Fig. 4.2 (D/t =30) that was discretized with quadratic elements C3D20. After stage (6) the pressure 

drops, and the deformed configuration of the downstream pipe section (7) seems to follow an 

ovalization mode, which is perpendicular to that observed in the upstream pipe section (Fig. 4.4). The 

rotation of the ovalization mode by 90° is referred to as the «flipping mode of crossover» and is 

strongly associated with the geometric characteristics of the arrestor (Chapter 1). The normalized 

pressure-change in integrated volume response is presented in Fig. 4.3b. In that figure the pressure is 

normalized by the collapse pressure of the upstream pipe and the incremental change in volume is 

normalized by the initial internal volume of the model Vo. The initial enclosed volume of the model is 

expressed in terms of internal radius Rin  as Vo = (
π Rin

2

4
⁄ ).  

The experimental and numerical results of literature [27], [30]-[32], [21] have shown that 

thinner arrestors «flatten» after the crossover stage («flattening» mode of crossover), whereas thicker 

arrestors exhibit the flipping mode of crossover as presented here by the numerical results. The 

flipping mode of crossover is associated with the efficiency of the device to arrest the propagating 

buckle. Since an increase in thickness of the pipe wall can affect the propagation of collapse (Section 

4.1), it follows that a thicker arrestor is more difficult to be ovalized with respect to a thinner arrestor. 

Therefore, thicker arrestors result in high crossover pressures, and they are associated with reverse 

ovalization phenomena of the downstream pipe section.  
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             (a) 

 

 

            (b) 

 

Fig. 4.3  Pressure-change in volume responses for the finite element model analysis that consists of 

quadratic elements C3D20. In the second figure (b) the pressure is normalized by the collapse pressure 

of the upstream pipe section and the volume change is normalized by the internal volume of the model 

at undeformed conditions. 
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Fig. 4.4 Sequence of deformed configurations from the stage of collapse (1) to the stage of the flipping 

crossover mode (7). The numbered stages correspond to the numbers in bullets of the pressure-change 

in volume response for the finite element model that is discretized with quadratic elements C3D20. 
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4.4 Parameter study of the crossover pressure estimation 

The parametric dependance of the crossover pressure estimation on the finite element type of 

mesh discretization will be examined in this section. Following the numerical modeling procedure of 

section 4.2, the finite element model (Fig. 4.2) was discretized with 8-node linear brick elements of 

reduced (C3D8R) and full integration (C3D8). These changes are made by keeping the same 

magnitude of initial imperfection at the origin as well as model geometry and mesh density. Therefore, 

two different analyses are conducted in ABAQUS standard. Fig. 4.5 and Fig. 4.6 show the variation of 

pressure with the numerically integrated volume reduction of the finite element model, which was 

discretized with C3D8R and C3D8 finite elements respectively. By changing the finite element type, 

the arrestor continues to exhibit the flipping mode of crossover and the deformed configurations of the 

model are of the same type as those presented in Fig. 4.4. Therefore, the deformed configurations for 

the finite element models of C3D8R and C3D8 are not presented here. The pressure-change in volume 

response of C3D8R finite element discretization (Fig. 4.5) result in a crossover pressure of 12.25 MPa 

(12.81% reduction compared to the crossover pressure obtained with C3D20 finite element 

discretization). Changing the finite element type to C3D8 (Fig. 4.6), the analysis results in a crossover 

pressure of 16.91 MPa, a value that is 20.36 % higher with respect to that calculated by using C3D20 

finite elements. Clearly, the finite element type affects the value of the crossover pressure. The highest 

crossover pressure value is obtained by using C3D8 finite elements, whereas the lowest is obtained by 

using C3D8R finite elements. The results show that discrepancies exist not only for analyses of 

different finite element type but also for analyses of the same finite element type and different 

integration scheme. 
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Fig. 4.5 Pressure-change in volume response for the finite element model analysis that consists of 

linear elements C3D8R. 

 

 

 

 

Fig. 4.6 Pressure-change in volume response for the finite element model analysis that consists of 

linear elements C3D8. 
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Chapter 5 - Conclusions  

  The present thesis is concerned with the subjects of collapse and buckle propagation in 

offshore pipelines. These matters have been studied numerically using the general-purpose finite 

element program ABAQUS/ standard. The numerical study focuses on the development of two-

dimensional and three-dimensional models that help clarify the mechanical behavior of pipelines upon 

application of external pressure. The terms of elastic and plastic buckling are defined in chapter 1 by a 

short introduction to ring buckling theory. Therefore, the formulas of critical elastic pressure and 

collapse pressure are defined for perfect rings. Furthermore, the pre-buckling and post-buckling 

behavior of elastic and inelastic rings are presented through analytical equations. 

  A detailed numerical study of the performance of rings upon application of external pressure 

is presented in chapter 2. Two-dimensional ring models of different diameter-to-thickness ratios 

(D/t’s) are created with imperfections in the form of ovality and wall thickness variation. The collapse 

responses of initially ovalized models without wall thickness variation shows that initial ovality has a 

detrimental effect on the collapse capacity of rings. Furthermore, the effects of thickness eccentricity 

on the collapse pressure are presented through parameter analyses. Meanwhile, the numerical results 

show that initial imperfections not only affect the collapse capacity of rings but also the corresponding 

collapse mode. Also, the influence of ring geometries on the collapse pressure has been studied 

through parametric studies and it has been concluded that the detrimental effects of initial ovality and 

thickness eccentricity are weaker for higher diameter-to-thickness ratios. Also, the factor of material 

anisotropy, which exists due to fabrication process of pipes, is studied by the numerical analysis of 

three-dimensional ring models of various D/t’s. The results show that the anisotropic effects on the 

collapse performance of pipe are weaker for higher D/t’s, whereas they are stronger as the D/t is 

getting lower. In addition, the remaining residual stress fields in the finished pipe product are studied 

in a three-dimensional ring model of specific D/t geometry. The numerical results clearly show the 

reduction of the collapse pressure as the residual stress fields are getting stronger.  

The effects of initial ovality on the collapse pressure, has also been studied for thin-walled 

rings of elastic material. Firstly, elastic two dimensional rings of a given geometry and variable 

imperfection amplitudes are created, and the pre-buckling and post-buckling responses are obtained 

from the finite element analyses. It is concluded that the higher the imperfection value the lower the 

collapse pressure. Moreover, a ring of specific imperfection amplitude is selected to study the 

influence of finite element type on the elastic post-buckling part of pressure-ovality responses. The 

changes in the finite element type are made by keeping constant the mesh density. The post-buckling 

responses obtained from the different finite element types are compared with the theoretical post-
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buckling curve. The results show that major differences between the numerical and analytical results 

exist in the post-buckling region upon application of CPE4 finite elements. Furthermore, three-

dimensional ring models are created to study the mechanical behavior of elastic rings upon different 

finite element type discretization. Letting the geometric cross-sectional parameters and initial 

imperfection amplitude be the same as those used in the two-dimension ring analysis, finite element 

models of various element types and constant mesh density are created and analyzed. The obtained 

elastic post-buckling part of pressure-ovality response of different finite element types, is compared 

with the theoretical post-buckling curve. Outstanding differences observed between the numerical and 

theoretical curves upon C3D8 finite element discretization. The last section of chapter 2 presents two 

analytical methods for the calculation of propagation pressure in two dimensions. 

  A detailed analysis of propagation pressure is presented in chapter 3, by the development of 

three-dimensional finite elements models. The variation of pressure with the integrated reduction in 

pipe model volume upon deformation, is created from the numerical results, and is illustrated by 

pressure-change in volume responses. The propagation pressure is estimated by the responses for two 

D/t pipe models. The numerical estimations of propagation pressure are compared with those 

calculated from analytical methods of chapter 2, as well as with the results from accurate analytical 

expressions from publications and standards. It is found that the two-dimensional results underestimate 

the propagation pressure. Furthermore, the influences of finite element type discretization and pipe 

length on the propagation pressure estimations, are studied through parametric analyses for a given 

pipe model geometry. The results show that the propagation pressure varies significantly with the 

element type. More specifically, the difference between the numerical estimations and the results from 

the proposed formulas of API RP 1111 standard [2] and Kyriakides & Babcock [29], is minimized for 

C3D20 finite element discretization and maximized for C3D8 finite element discretization. However, 

if a comparison is made with the calculated propagation pressure from the proposed formula of DNV 

GL-ST-F101 standard [3], the differences between the analytical and numerical results are minimized 

again for SC8R finite element discretization, but they are maximized for C3D8R finite element 

discretization. Furthermore, a three-dimensional model of short length is created to study the influence 

of pipe geometry on the propagation pressure conditions. The results clearly show that the pipe length 

is so short that the buckle is not able to propagate under steady state conditions.  

A device to limit the extent of damage produced by a propagating buckle is presented in 

chapter 4, by the creation of a three-dimensional finite element model of a buckle arrestor which 

connects two pipe sections of a line. The integral arrestor device, of a given set of geometric 

parameters is considered for the finite element analysis. This chapter is mainly focusing on the 

numerical calculation of the crossover pressure. This is achieved by creating the pressure-change in the 
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integrated volume response. As it was mentioned in chapter 4, the magnitude of crossover pressure is 

strongly related with the ability of the device to limit or «arrest» the propagation of an instability (e.g. 

propagating buckle). Therefore, the influence of finite element type of mesh discretization on the 

crossover pressure is examined by parametric studies. Under the same finite element model geometry 

and mesh density, numerical analyses of a different finite element type of reduced and full integration 

are conducted. The comparison of the results with those obtained by the primary finite element type, 

show that not only the finite element type but also the scheme of integration influence the accuracy of 

the numerical results. 
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