

2018

Fotis E. Alexakos

[Evaluation of multiple slices and tiles in

HEVC video encoding]
Supervisor: Dr. Maria G. Koziri, Computer Science

Department, University of Thessaly, Lamia

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

«Υπεύθυνη Δήλωση μη λογοκλοπής και ανάληψης προσωπικής ευθύνης»

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, και

γνωρίζοντας τις συνέπειες της λογοκλοπής, δηλώνω υπεύθυνα και ενυπογράφως ότι η

παρούσα εργασία με τίτλο «Evaluation of multiple slices and tiles in HEVC video encoding»

αποτελεί προϊόν αυστηρά προσωπικής εργασίας και όλες οι πηγές από τις οποίες

χρησιμοποίησα δεδομένα, ιδέες, φράσεις, προτάσεις ή λέξεις, είτε επακριβώς (όπως υπάρχουν

στο πρωτότυπο ή μεταφρασμένες) είτε με παράφραση, έχουν δηλωθεί κατάλληλα και

ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται

στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή (κατά το πρότυπο IEEE 2006).

Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που

δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία

αυτή ή τμήμα της δεν µου ανήκει διότι είναι προϊόν λογοκλοπής.

25 Ιουνίου 2018

Ο ΔΗΛΩΝ

Φώτης Ε. Αλεξάκος

“Affirmation of no plagiarism and responsibility assumption”

Having full awareness of copyright laws and plagiarism consequences, I hereby

responsibly declare and sign that this present work bearing the title “Evaluation of multiple

slices and tiles in HEVC video encoding” is strictly the fruit of my own personal labour. Also,

every source of information, ideas or wording used (either as they are or with edits) is clearly

referenced appropriately in the text, while a full list of the above mentioned sources is to be

found at the end of this work (IEEE 2006 style). Finally, I, the undersigned, fully assume all the

legal and administrative consequences that might arise in the case that this work or parts of it

will be proved to infringe copyright or be a product of plagiarism, either today, or in the future.

June 25th, 2018

Sincerely,

Fotis E. Alexakos

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Contents

Abstract .. 1

CHAPTER 1: Brief Introduction to Video Coding 1

Preliminaries .. 1

Video Coding standards evolution .. 2

Digest of a Video Coding Standards comparison .. 4

CHAPTER 2: Overview of the HEVC standard 7

Introduction ... 7

Features of H.265 .. 7

HEVC Computational Complexity .. 11

CHAPTER 3: An overview of available parallelization methods in

HEVC .. 13

Introduction ... 13

Exploitation of data level parallelism ... 14

Wavefront Parallel Processing... 15

Slices .. 15

Tiles .. 16

Slices and tiles ... 17

CHAPTER 4: Evaluation of multiple slices and tiles 19

Introduction ... 19

The HEVC Test Model (HM) ... 19

Description of our testing environment .. 20

Result collection and analysis .. 33

Conclusion and ideas for further research .. 42

References

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

List of figures

Figure 1: Evolution of Video Coding Standards .. 3

Figure 2: Block diagram of an HEVC encoder (with greyed decoder modules) 7

Figure 3: CTB to CB partinioning.. 8

Figure 4: Coding Unit partitioning .. 9

Figure 5: Splitting of CUs to PUs and then into TUs .. 9

Figure 6: Prediction Units and Prediction Blocks sizes .. 10

Figure 7: An example of arranging TUs in an LCU. ... 10

Figure 8:Encoding time of various HEVC configurations vs. MPEG4 .. 14

Figure 9: Execution Time Analysis of the HEVC Encoder .. 14

Figure 10: Demonstration of WPP using five (5) threads ... 15

Figure 11: A slice-based partitioned frame with CTBs following a raster scan order within it 16

Figure 12: An example of Tiles partitioning using four columns and three rows 17

Figure 13: Example of slice segment partitioning of a frame ... 17

Figure 14: Example of tile segment partitioning of a frame ... 18

Figure 15: Sample header of an HEVC .cfg file .. 22

Figure 16: Slicing options configuration sample ... 23

Figure 17: Tiling options configuration sample ... 23

Figure 18: Division of a full-HD frame (1920x1080 pixels) into 10 tiles 25

Figure 19: A tile with "dimensions" of 10 x 9 CTUs ... 26

Figure 20: A tile with "dimensions" of 10 x 5 CTUs ... 27

Figure 21: Directory structure of our testing environment ... 28

Figure 22: Bash script to initiate test runs... 28

Figure 23: Exhibiting slices in a P frame of 'Traffic' sequence ... 29

Figure 24: Exhibiting tiles in 'Traffic' frame ... 30

Figure 25: Slicing AND tiling in 'Traffic' .. 30

Figure 26: Output data collection for QP=27 .. 33

Figure 27: Output data for QP=37 ... 34

Figure 28: Impact of QP on coding efficiency .. 34

Figure 29: R-D curves demonstrating coding efficiency .. 36

Figure 30: Sample R-D curve that shows the use of 'mode' parameter in bjontegaard2() 37

Figure 31: Summary of encoder output data .. 38

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Figure 32: All the calculated BD values ... 40

Figure 33: Bjontegaard metric barcharts .. 41

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

List of Tables

Table 1: Load balancing achieved with regard to frame partitioning ... 18

Table 2: Explanation of HEVC encoder configuartions .. 20

Table 3: Two of the sequences used for HEVC testing .. 24

Table 4: Partitioning parameters ... 27

Table 5: Some of the first lines produced by the encoder with info about test conditions used . 31

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

1

Abstract
The ever growing demand for even better and better video quality have driven the

development of sophisticated video coding techniques with High Efficiency Video

Coding (HEVC) being the most recent standard. HEVC (known also as H.265) provides

for great compression without perceivable loss in image quality. This standard is about to

replace its predecessor H.264, widely known as MPEG-4. Yet, this efficiency of H.265

comes at the cost of a (much) increased coding complexity algorithm. In other words,

coding time mainly, but also decoding time are higher.

In order to deal with the above issue, H.265 standard is designed so as to promote

code parallelization at a high grade. Thus, one can choose between the following two

high level parallelization methods:

i. Frame segmentation in slices or/and tiles and

ii. Wavefront parallelization

Purpose of this thesis is to evaluate various segmentation ways, trying to conclude

about the best segmentation in slices and tiles in order to achieve the most efficient

parallelization keeping the highest coding efficiency possible.

Structure of this essay is as follows: First, we present shortly and briefly compare the

most common video coding standards that have been developed until today. Next, we

delve into HEVC with reference to various slicing and tiling methods used to improve its

performance via parallelization strategies. We continue presenting HEVC Reference

Software and the Test Model [1], [2] we used for our tests and experiments. Finally, we

describe in details several “runs” of HEVC encoder whose output naturally leads to

specific conclusions.

CHAPTER 1: Brief Introduction to Video Coding

Preliminaries
 Traditionally, digital video has always been the most space demanding Computer

Science application. This is because, a movie is in fact too much information in the form

of thousands and thousands images presented as “frames”. Each one of these frames

needs several bytes to be described depending on its resolution (in pixels), colour bit

depth and so on. Also, people’s demand concerning video quality has grown significantly

lately. Thus, having started with –say- CGA [3] resolutions of 320x200 pixels with 4-bit

colour depth back in the ‘80s, we tend to use High Definition(HD) and Ultra High

Definition(UHD) Video of such resolutions as 3840x2160 and 10-bits colours, or even

4K and 8K standards etc. Moreover, increased traffic caused by applications such as

video-on-demand, video apps for mobile devices (smartphones, tablets) and so on,

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Video Encoding principles

2

impose severe challenge on today’s networks. Also, there is increased desire for higher

quality and resolutions in mobile applications [4].

 As a result, there was an early need for algorithms to compress video so as to

reduce needed storage capacity or/and bandwidth and transmission time accordingly.

Today, in the ICT business, we distinguish between two types of data compression

algorithms: Lossy and lossless. According to Wikipedia, the term lossy or irreversible

compression describes algorithms that encode data either discarding part of them or by

using inexact approximations to convey the content [5]. On the other hand, the term

lossless compression refers to techniques that encode data in a way that they can be

decompressed precisely to their original form and size; while we would get an

approximation only of the prototype data in case lossy compression were chosen. Of

course this “approximation” used in lossy compression strategies leads to higher

compression rates (i.e. smaller files). [6]

Run Length Encoding (RLE) and Lempel-Ziv-Welch (LZW) are lossless

compression examples, with H.264 and H.265 being lossy compression algorithms. Now,

Video Compression is an application of data compression and its objective is to remove

redundant information from a video and to omit those parts of the video that will not be

noticed by a human eye [7].

Video Coding standards evolution
 Typically video compression algorithms are based on the fact that most pixels in a

frame are highly correlated with others in the same frame or adjacent (previous or next)

ones. Therefore, we can reduce the amount of data required to represent a video by

removing any redundancy inside the frame (intra-frame) or in-between them (inter-frame)

[7].

We can broadly classify redundancy in a video as follows:

 Spatial redundancy: Or Intra-Frame Redundancy. This term is attributed to

redundant information existing within the frame. Since a video frame is

simply a picture that can be independently processed, we can remove such

redundancies by applying various digital image compression algorithms on

each frame.

 Temporal redundancy: It is natural for frames that are captured within

hundredths of a second to be highly correlated. In other words: They are

adjacent (in time) and present extremely few differences. This is called

Temporal or Inter-Frame redundancy. [7]

 An encoder uses intra-prediction methods to eliminate spatial redundancy and

inter- to remove temporal one. In order to optimize predictions, several settings have to

be applied on the encoder. In general, we divide frames in three categories: I(Intra),

P(Predicted) and B(Bidirectional). For P and B frames, both inter- and intra-predictions

can be used, while we apply only intra- for I frames. (The prefix ‘inter’ has the meaning

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Video Encoding principles

3

of ‘between frames’ while ‘intra’ stands for ‘in a frame’). Also, a P frame is predicted

from a reference one preceeding it, while a B frame can be either predicted from a

preceding or subsequent one. For inter-prediction purposes, the encoder reorders frames

as they arrive. [8].

Nowadays, any modern video compression standard uses similar basic steps to

encode a video [7]:

1) Divide each frame of the video into blocks of pixels

2) Identify and remove spatial redundancies within each frame

3) Exploit temporal redundancies between the adjacent frames and remove

those redundancies.

4) Identify and remove the remaining spatial redundancies using quantization,

transformation and entropy encoding.

We will see more about the above techniques in the discussion about the HEVC

standard [9].

We are going to discuss about various Video Coding standards here. Most of them

have appeared since the early ‘90s and were developed by the ITU-T and ISO

organizations about which we talk below. The following figure shows their evolution

until today.

Figure 1: Evolution of Video Coding Standards

ITU-T is the Telecommunication Standardization Sector of ITU which in turn

stands for International Telecommunication Union. ISO is the acronym of the

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Video Encoding principles

4

International Organization for Standardization. ITU-T is also known as Video Coding

Experts Group (VCEG) while ISO can also be found as Moving Picture Experts Group

(MPEG). ITU-T since its formation in 1997 aims at maintaining prior video coding

standards and developing modern ones, as today there is high demand for moving

pictures services, either conversational and non-conversational. On the other hand, VCEG

was founded earlier (in 1988) to provide for video and audio coding standards to serve

applications such as video distribution and digital storage media. In 2001, both

organizations merged to the Joint Video Team (JVT) to develop a new International

Standard (Recommendation) today known as the H.264 Recommendation/MPEG-4 part

10 standard [10].

Digest of a Video Coding Standards comparison

H.261

The first video coding standard developed by ITU-T immediately after its

formation was the H.261 one. Actually, this came to be just the first member of a whole

codecs family under the naming standard of H.26x. It was also the first well spread and

used standard, i.e. with major support. At first it aimed to serve the need for video

transmission over ISDN lines supporting one or more 64Kbps channels. In fact, the

standard only describes the decoder allowing the encoder design to use any motion

compensation method as long as the output could be handled properly by the decoder. In

any case, a 16x16 block called macroblock is the main processing unit. Inter- and intra-

predition is supported while the 8x8 Discrete Cosine Transformation(DCT) was

introduced followed by rounding the coefficients (scalar quantization). Consequently,

they are scanned in a zig-zag run and coded (variable length coded is supported) to

remove redundant information. Any international video coding standard which has been

introduced since then is closely based on the same mechanisms. [10]

MPEG-1

MPEG-1 was developed by the homonymous Group during 1993 in order to cater

for the compression of VHS digital video and video CDs. It supports input sources with

resolutions of 352x288 (PAL) or 352x240 (NTSC) processed at 1.5Mbps. At higher bit

rates MPEG-1 provides better video quality than H.261. [10]

H.262/MPEG-2

The successor of the above standards were H.262, also known as MPEG-2. It was

developed by ITU-T and MPEG together in 1992. It outclasses MPEG-1 as it supports

interlaced video (used in older TV systems) and offers better performance at bitrates

greater or equal to 3Mbps. Backwards compatibility with MPEG-1 is also supported for

consistency purposes. This means that an MPEG-2 player can decode both MPEG-2 and

MPEG-1 videos. [10]

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Video Encoding principles

5

H.263, H.263+ and H.263++

The descendant of H.262 standard was naturally H.263 and its enhancements

(versions 2 and 3). It was developed (ver. 1) in 1995 by ITU-T. H.263 is quite efficient in

conferencing as it offers double quality at any bit rate compared to its predecessors.

Compared to H.261 it supports:

• DCT coefficients are coded using 3-D variable length code

• Bi-directional prediction

• Arithmetic entropy coding.

• Median motion vector prediction

H.263+ is another name for the version 2 of H.263 which was presented at early 1998.

This update offered support for features such as flexible and custom video formats, error

robustness and Supplemental Enhancement Information(SEI). Finally, in 2000 an

H.263++ version (or version 3) was released that supported an improved compression

efficiency over H.263, better picture quality, packet loss concern, even more resilience to

errors and additional SEI [10].

MPEG-4

MPEG-4 standard was developed by MPEG (Moving Picture Experts Group) in

late 1998. It acquired the formal International Standard Status of MPEG-4 ver. 2 at the

very beginning of the millennium. This standard supports various applications which can

be surveillance cameras with poor resolutions or HDTV broadcasting and DVDs. MPEG-

4 Part 2 has about 21 profiles. Some of these sophisticated profiles are:

 Simple Face Animation

 Simple FBA

 Scalable Texture

 Advanced Core

 N-Bit

 Hybrid

 Advanced Coding Efficiency

 Advanced Real Time Simple [10].

H.264/MPEG-4 Part 10/AVC

H.264/MPEG-4 AVC released in 2003 is a joint project done by ITU-T Video

Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group

(MPEG). These standards show significant improvement in intra coding and inter coding

efficiency. It presents enhanced error robustness, and increased flexibility. It has efficient

motion compensation and reduced bit-rate. Different block sizes are used for performing

motion compensation which results in better video quality. The basic processing unit is

16x16 pixel macro blocks. The two entropy encoding methods used are CAVLC and

CABAC. For all syntax elements, Context-Adaptive Variable-Length Coding (CAVLC)

uses a single codeword set. RLE is used to code the transformation coefficient. In

Context-Adaptive Binary Arithmetic coding, information entropy (from symbols coded in

the near past) is exploited for encoding. It also uses arithmetic coding for transmission.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Video Encoding principles

6

Some of the current applications for AVC are: Internet Video (.mp4 files), High

Definition TV, Video Conference etc [7].

In comparison to prior video coding standards, H.264 saves almost half the bit

rate while increasing greatly the compression percentage. This standard supports

organization of coded info plus flexibility in coding and thus can increase resilience to

errors. One have to notice though that the increased coding efficiency and flexibility

suffers a penalty of increased complexity (i.e. execution time) compared with older

standards [10]. The same seems to be valid for the most contemporary video coding

standard –H.265- described in the pages that follow.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

7

CHAPTER 2: Overview of the HEVC standard

Introduction

In January 2010 the ITU-T/VCEG and MPEG organizations jointly issued a Call

for Proposals (CfP) that led to the formal launch of the HEVC project. Since a project to

create another video coding standard that would offer the best compression-to-quality

ratio ever was quite bold, both ITU-T and MPEG had already studied its feasibility.

Today the project outcome is formally standardized as ITU-T Recommendation H.265 or

MPEG-H part 2. Although, there was a first version of HEVC available from the

beginning of 2013 still, the new standard was not defined officially until April 2013 [9].

Features of H.265

 The figure below illustrates the architecture of the HEVC transcoder. We present

briefly H.265 features in the following paragraphs, based on [4] and [11].

Figure 2: Block diagram of an HEVC encoder (with greyed decoder modules)

The basic block in HEVC is known as the largest coding unit (LCU) and can be

recursively split into smaller coding units (CUs), which in turn can be split into small

prediction units (PUs) and transform units (TU). These concepts are explained below.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

8

1) Coding tree units (CTUs) consisting of coding tree blocks (CTBs) : Previous

standards (such as MPEG-4), used macroblocks as basic coding units. Each

macroblock was composed of 16x16 strictly sized blocks of luminance samples and

two 8x8 blocks with the corresponding chroma samples (that is in the case of 4:2:0

color sampling, which is the most common). Its HEVC analogous is the coding tree

unit (CTU). Its size is selected by the encoder and can be larger than 16x16. There

is a -rather important- naming convention here: In texts concerning the HEVC

standard, when a term ends with ‘unit’, a logical unit is indicated which will be

eventually encoded in a bit stream. On the other hand, if a term ends with ‘block’, a

portion of video frame buffer to be processed by a module is implied. Thus, a

coding tree unit (CTU) is a logical unit that consists of three coding tree blocks

(CTBs). One CTB for luminance (luma) and two for the corresponding chroma

samples. Syntax elements are also included. A luma CTB can have sizes of 16x16,

32x32 or 64x64 samples. The larger the size, the better the compression. Now, each

CTB can be split into smaller Coding Blocks (CBs) with multiple ways in a tree-

like structure (‘quadtree’) to help decide the prediction type (inter- or intra-picture).

(Figure 3).

Figure 3: CTB to CB partinioning

2) Coding units (CUs) and coding blocks (CBs): A Coding Unit (CU) is used to code

the prediction type. Each CU consists of a luma (Y) CB and two chroma ones (Cb

and Cr) with the associated syntax elements. The size and positions of CBs are

specified by that quadtree CTU syntax mentioned before, with the root being the

CTU itself. Thus, the largest size a luma CB can have, is that of the luma CTB. We

can have CUs with size up to 64x64 pixels, which is the Largest Coding Unit

(LCU) size. This makes the LCU 16 times larger than the macroblock the core of

the coding layer of AVC/MPEG4. CTU is concurrently split into CBs. One or

many CUs form a CTB while CUs are further partitioned into Prediction Units

(PUs) that form tree-like structures of Transform Units (TUs).(Figures 4 and 5).

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

9

Figure 4: Coding Unit partitioning

Figure 5: Splitting of CUs to PUs and then into TUs

3) Prediction units and prediction blocks (PBs): As mentioned above, CUs (being

formed by CBs) are the decision points for the prediction type. For this to work,

CBs are also partitioned to prediction blocks (PBs) according to spatial (intra-) or

temporal (inter-) predictability. PB sizes may vary from 4x4 to as much as 64x64

samples. (Figure 6).

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

10

Figure 6: Prediction Units and Prediction Blocks sizes

4) TUs and transform blocks: A Coding Unit forms the root of a Transform Unit

(TU). Transform Blocks (TBs) are, essentially, blocks of signal samples upon

which the same transform is applied. A luma or chroma CB may have the size of

a single corresponding (Y, Cb or Cr) TB or may be further split to smaller TBs.

Integer arithmetic transformations akin to DCT (Discrete Cosine Transform) or

DST (Discrete Sine Transform) are applied to TBs with sizes of 4x4, 8x8, 16x16

or 32x32 (squares) with DST preferred for luma intra (spatial) prediction

residuals. (Fig. 7).

Figure 7: An example of arranging TUs in an LCU.

4x4

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

11

5) Motion vector signaling: By using data from adjacent Prediction Blocks (PBs)

and the reference frame, the best candidates are derived. This is called Advanced

Motion Vector Prediction (AMVP). HEVC also supports a merge mode for

Motion Vector coding that allows the inheritance of MVs from spatially or

temporally or spatially neighboring PBs.

6) Motion compensation: Motion Vectors use quarter–sample precision and

interpolation of fractional-sample positions is achieved via 7 or 8 –tap filters. As

in its predecessor standard, HEVC can use multi reference pictures and uni- or

bipredictive (that “looks” back and forth) coding. This is achieved by transmitting one

or two MVs respectively for each PB. Weighted prediction is supported too by

applying offset and scaling operations to the prediction signals.

7) Intra-picture prediction: HEVC uses samples of adjacent block borders in the same

picture as reference for spatial prediction requirements. This is chosen when inter

prediction is not applied. Two (2) planar modes are supported (namely Intra Planar

and Intra DC) and 33 angular, thus providing for 35 prediction modes. Prediction

mode selection is based on those modes of adjacent PBs decoded previously.

8) Quantization control: The H.265 standard uses uniform reconstruction quantization

(URQ) as its predecessor. Numerous scaling matrices support the available TB

sizes. The quantization step (Qstep) value is determined by an integer Quantization

Parameter (QP). QP is in the range [0,51] for 8-bit sequences. [12]

9) Entropy coding: HEVC uses an improved version of Context Adaptive Binary

Arithmetic Coding (CABAC) scheme for entropy coding. Although it shares the

same basic idea as the algorithm in MPEG-4 (a variant of arithmetic coding

offering lossless compression) [13], CABAC is now optimized for improved

utilization of parallel architectures (yielding better speed efficiency), less usage of

context memory and better compression ratios.

10) In-loop deblocking filtering: In order to smooth several discontinuities that are

often observed at the boundaries of PBs and TBs, a parallelization friendly

deblocking filter is used, very much like the one in MPEG-4. Besides the

enhancements concerning parallelism, its decision-making and filtering mechanism

are also simpler. The filter is operated after the inverse quantization process and its

output is fed to the Sample Adaptive Offset filter described below.

11) Sample adaptive offset (SAO): To further improve the quality of reconstructed

frames and thus optimizing the decoder’s output, a SAO filter is operated after the

deblocking one. It aims to reduce sample distortion and that is generally achieved

by mapping offsets to reconstructed samples according to their classification in

several categories. The appropriate offsets are then to be added to each sample

depending on its category. [14]

HEVC Computational Complexity

 As we have already mentioned, the high coding efficiency achieved by H.265

standard, comes at the cost of higher computational complexity, i.e. increased encoding

and decoding (mainly encoding) time. We are going to present this problem in some

detail here, because it is this increased computational complexity that has motivated

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

The H.265/HEVC standard

12

research in exploring ways to speed up the whole trancoding processes.

 In [15] (Chapter 4) one can find an extensive study of HEVC’s computational

complexity in comparison to that of its predecessor H.264/AVC. Nevertheless, we

conducted our own tests to compare execution time of HEVC (for specific

configurations) with that of its predecessor H.264/AVC. A sample lies below, where two

(2) different H.265 encoding configurations have been tested for four (4) Quantization

Parameter (QP) values each. Two (2) of the usual test sequences (Kimono and Traffic)

were encoded using both H.265 and H.264 reference software (HM 16.14 for H.265 and

JM 19.0 for H.264: Will be further described later). The available hardware utilized was

an Intel Core 2 Duo E8400 CPU running 64-bit Ubuntu Linux. Execution times are

depicted in the barcharts below. As can be clearly seen the computational complexity of

HEVC is quite higher than this of H.264/AVC.

Figure 8:Encoding time of various HEVC configurations vs. MPEG4 for the Kimono and Traffic sequences

 Finally, other researchers like in [16] have also measured the ratio of coding

complexity increase in HEVC, always compared with that of H.264/AVC. For the

purposes of the above mentioned paper, HEVC encoder and decoder were run under

several configurations described as: All-intra (AI), random access (RA), low-delay B

(LB) and low-delay P (LP). Those test runs proved that H.265 takes up to triple the time

that H.264 needs (on average) to encode the same sequence. Especially when only intra

prediction is selected, HEVC is 3.2 times slower than MPEG4.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
13

CHAPTER 3: An overview of available parallelization methods in HEVC

Introduction
 Before we delve into HEVC and its parallelization, we have to explain the term

“coding efficiency” which has been and will be used many times in the present thesis. So,

by the term coding efficiency we denote the maximum video quality we can achieve

keeping the bit rate at a desirable low level. In other words, coding efficiency has to do

with how much can a coder compress a sequence (i.e. decrease its bit rate) without

noticeable degradation in quality, or even with no quality loss. [17] Now, in order to

estimate coding efficiency, two significant metrics are employed: Bit rate (commonly

written as one word:bitrate) and Peak Signal to Noise Ratio(PSNR).

 Bitrate, as the word implies, is the number of bits of information that are

processed per time unit (usually per second). When we deal with video, this number is

normally expressed in Kbits per second or Kbps.

 Peak Signal to Noise Ratio – PSNR expresses the comparison (ratio) of the

maximum possible value of a signal to that of the noise that corrupts it, where the term

noise generally denotes “unwanted signal” that disrupts the original. We use the decibel

logarithmic scale to measure PSNR. When we talk about video transcoding, PSNR is a

metric of the difference between the original (raw) video and that played by a decoder.

Thus, low PSNR characterizes a poor quality, “noisy” signal. Another important

particularity about video is that PSNR is computed for both luma and chroma samples.

Yet, as the human visual system is more sensitive to luminance (brightness), Y-PSNR (or

luma-PSNR) is the preferred metric. [18].

As we have already stated, while HEVC offers much better coding efficiency

compared to H.264/AVC, this great improvement suffers the penalty of increased

computational complexity. Unfortunately, although hardware becomes more powerful by

the day, all these advances in CPU, bus, memory technology etc. cannot cope with the

above stated problem. Therefore, several computer scientists all over the globe

continuously work on researching the acceleration of HEVC algorithms. In fact, this great

HEVC computational complexity was expected since the standard was conceived, thus

leading HEVC developers to make the software easy to be parallelized from the

beginning. On the other hand, parallelization in MPEG4 was only an afterthought. [19].

According to several researchers, parallel computing is the means to accelerate HEVC

processing. Therefore, high-level parallelization is supported by some HEVC features

like wavefront parallel processing (WPP) [20], [21], slices and tiles [19], [22], [23], [24]

and some features which allow low-level parallelization (inside the encoding process),

such as local parallel method which allows parallel motion estimation [24]. Exploiting

CPU features like SIMD, MISD, MIMD etc. (e.g. Intel’s SSE, SSSE3, AVX etc.

instructions) has also been extensively studied as a way to achieve faster encodings [25],

[26].

Before we focus on parallelization based on frame segmentation to slices and

tiles, we shall briefly refer to some of the aforementioned other methods and tools

employed to speed up the encoding process.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
14

Exploitation of data level parallelism
 Today’s CPUs (at least most of them) provide media instructions. A typical

example on common server platform is the Intel and AMD SSE/MMX technologies,

which are based on the single-instruction-multiple-data (SIMD) methods. By exploiting

the significant data-level parallelism, SIMD technologies provide a series of effective

approaches for fast algorithm implementation, which brings useful guidance to optimize

the computational performance [27]. Several works address performance improvement of

audio/video signal processing using NEON compiler intrinsic on ARM platforms, and

SSE or AVX intrinsics on Intel platforms [25].

 Now, if we examine and test HEVC using some version of the reference software

and also utilizing an appropriate profiler, it has been shown that the most time-consuming

modules are (in descending order):

i. Motion Compensation

ii. Hadamard transform

iii. SAD & SSD calculations (Sum of Absolute Differences, Sum of Square

Differences)

iv. Integer transforms

v. Rate-Distortion Optimizated Quantization (RDOQ)

vi. Memory operations

(The above are depicted in the chart below).

Therefore, we can speed up encoding by improving for example the existing MC

implementation using SSSE3 instructions like PMADDUBSW to compute the required

vector products [26], [27].

Figure 9: Execution Time Analysis of the HEVC Encoder

35

17.278

12.986 12.931

8.806 8.706

4.294

PERCENTAGE OF PARTICIPATION IN TIME COMPLEXITY

Execution time analysis

MC Hadamard Other SAD/SSD RDOQ Memory Integer Transf.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
15

Wavefront Parallel Processing
 Another method used to speed up the whole encoding process is Wavefront

Parallel Processing (denoted as WPP from now on). The idea here is to partition a frame

into ‘treeblocks’ organized as rows that can be processed each one by a different

execution thread. It has been proved that in such a case we have only low coding losses.

Of course, any coding dependency is to be preserved. To elaborate on this last statement:

In order to freely process a treeblock, we need to have ready the top-left, left and top-

right treeblocks for predictions to work as expected. So we must “interpose” two

treeblocks (at least) between consecutive treeblocks rows we process in parallel. Due to

this, heavy communication between CPU-cores is required (something that is not needed

if we use tiling without cross border filtering). Fortunately, modern CPUs include many

cores which can easily communicate with each other, thus making WPP well suited for

today’s hardware, especially when the last one is supported by appropriate software

libraries. Another advantage of WPP is that it can be implemented almost out-of-the-box.

That is because several operations as predictive and entropy coding, or in-loop filtering

can be performed in one processing cycle and WPP has no impact on the single step

processing capability. We can find examples of WPP utilization in streaming HD video

over broadband (e.g. fiber optic) channels and in applications where delays are

unacceptable. (Though in the last case, WPP should be combined with dependent slices).

[28].

Figure 10: Demonstration of WPP using five (5) threads

Slices
 Besides rows of ‘treeblocks’, slices are another way to partition a frame in order

to parallelize its coding or decoding. By ‘slices’ we describe frame partitions that can be

transcoded separately (alone- by a single CPU thread). This means that we don’t need any

information from other such slices in order to process a specific one. Therefore, a slice

cannot use Coding Units from neighboring ones for prediction (intra or inter). It is also

obvious that the number of CUs composing a slice should be an integer one. Of course, a

slice can never extend to multiple frames. We use the notation I-slice to refer to a slice

that consists of intra-prediction CUs only, P-slices are slices that can contain both inter-

prediction and intra-prediction CUs but in the case of inter-prediction it is unidirectional,

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
16

while slices that can contain intra- and bidirectional inter-prediction are refered as B-

slices (B stands for ‘B’idirectional). Thus, while Motion Estimation and Motion

Compensation in a B-slice can use up to two blocks in different reference frames, in a P-

slice, only one reference frame can be used by its CUs [29].

 Network parameters such as the largest protocol unit that can be transferred (or

Maximum Transmission Unit (MTU)) or graphic specific constraints such as the

maximum number of Coding Tree Blocks that can be contained in a slice can greatly

affect slice partitioning. To elaborate on this, we use Fig. 12. We can see here that

partitioning occurs if we follow the raster-scan order within the picture thus yielding less

spatial correlation within the frame. [22]

Figure 11: A slice-based partitioned frame with CTBs following a raster scan order within it

We also have to notice that every slice includes additional information in the form

of a header. Of course, this increases its size and produces overhead that we cannot

ignore at lower bitrates. This extra information, combined with the aforementioned

reduced spatial correlation, also harms coding efficiency. To put it in a nutshell: Using

many slices improves parallelism but may lead to non-negligible coding losses. On the

other hand, if we choose only one or few slices per frame, decoder might not be able to

perform in real-time. This is because, the number of slices is determined during encoding

time, but the decoder counts on them to improve its performance [19].

Tiles
Besides slices, tiles are another structure used to facilitate parallel processing. As

we have seen, each frame is partitioned into CTBs in a rows x columns manner. A tile

can be thought of as the rectangular region formed by the intersection of a row and

column. With tiles, there can be uniform spacing in row and column boundaries

specification, or not. Generally, tile partitioning is considered to be more flexible than

slicing. This is mostly because as tiles share the same boundaries with CTBs, they are

more compact (spatially) than a slice containing the same number of CTBs. This yields

higher pixel correlation with regard to slices. Moreover, there is no tile header info in

contrary to slice headers. Although each tile can contain different number of CTBs, their

number is always integer. A raster scan order is followed when processing LCUs in each

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
17

tile and the same order (raster scan) is followed when processing tiles in a frame [30](Fig.

11). To make a long story short: Tile partitioning of pictures, combined with parallel

processing seems to really improve coding speed. Yet, as with slices, there is a price to be

paid: A degradation in coding efficiency. [31]

Figure 12: An example of Tiles partitioning using four columns and three rows

Slices and tiles
 It is also possible that both tile and slice segments coexist in the same picture; in

which case rules have to be set on the way tiles relate to slices. Specifically, no CTB in a

tile can span multiple slices and no CTB in a slice can span multiple tiles. [19]. When

such conditions are met, the only way that a segment of a slice or even a whole one can

span multiple tiles, is its starting point to coincide with that of a tile. (Fig. 14, 15 below)

[9].

Figure 13: Example of slice segment partitioning of a frame

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC
18

Figure 14: Example of tile segment partitioning of a frame

The benefits and drawbacks of the above approaches are examined in detail in

[24]. There we can find tables that assess the degree of CPU (or CPU cores’) utilization,

in terms of load balancing percentage (with 100% being excellent); depending on the

frame resolution and the layout of the chosen partitioning scheme (in a ‘slice X tiles’

pattern).

Part of such a table is presented below as Table 2. (Where: AvgCTU is the average

number of CTUs per tile/slice and MaxCTU is the number of CTUs in the biggest tile/slice

of the frame partition).

Num. of

Processors

Layout AvgCTU MaxCTU Load Balance

(100%)

2560x1600 (40x25 CTUs)

4 1x4 250 280 89

 2x2 250 260 96

 4x1 250 250 100

6 1x6 166.7 200 83

 2x3 166.7 180 93

 3x2 166.7 182 92

 6x1 166.7 175 95
Table 1: Load balancing achieved with regard to frame partitioning

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
19

CHAPTER 4: Evaluation of multiple slices and tiles

Introduction
 Now that we have explained both the need for code optimization in HEVC so as

to speed up processing and a way to achieve this by partitioning each frame to slices and

tiles; we can proceed to present in detail the main goal of this thesis. The idea –in simple

words- was to experiment with various frame segmentation ways, trying to objectively

measure HEVC’s coding efficiency in each case. This means that we had to run the

H.265 encoder several times with different configurations collecting and evaluating any

output. Here, “output” consists of both the encoded bitstream (.bin files) and the various

metrics and statistics produced by the encoder. Thus, we are going to present below how

these experiments were conducted and some conclusions we think were drawn.

The HEVC Test Model (HM)
 The reference software for HEVC is called HM (HEVC Test Model) and, as

stated in the manual that accompanies the downloadable zip file, its main purpose is to

provide a platform for researchers to experiment with. (e.g. Test different coding tools

and evaluate performance accordingly). It is neither optimized in any way, nor claimed to

be a super efficient implementation. Also, it is not suitable for any particular use. [2]

 The software is developed in C++ and it is documented in details with the

utilization of the Doxygen package. HM can be downloaded from the site:

http://hevc.info/ in the form of a .zip file which contains the following:

 HM software: Support for the following profiles:

 the Main, Main 10, and Main Still Picture profiles

 the Monochrome, Monochrome 12 and Monochrome 16 profiles

 the Main 12 profile

 the Main 4:2:2 10 and Main 4:2:2 12 profiles

 the Main 4:4:4, Main 4:4:4 10, and Main 4:4:4 12 profiles

 the Main 4:4:4 Still Picture and Main 4:4:4 16 Still Picture profiles

 the Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12

Intra, Main 4:4:4 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, and Main 4:4:4

16 Intra profiles

 the High Throughput 4:4:4 16 Intra profile

 SHM software: Support for the Scalable Main, the Scalable Main 10, Scalable

Monochrome, Scalable Monochrome 12, Scalable Monochrome 16, and Scalable

Main 4:4:4 profiles

 HTM software: Support for the Multiview Main and 3D Main profiles

 HM+SCC software: Support for the following profiles:

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

http://hevc.info/

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
20

 Screen-Extended Main and Screen-Extended Main 10 profiles

 Screen-Extended Main 4:4:4 and Screen-Extended Main 4:4:4 10 profiles

 Screen-Extended High Throughput 4:4:4, Screen-Extended High Throughput

4:4:4 10, and Screen- Extended High Throughput 14 profiles

The profiles mentioned above are supported via specific configuration files that exist in

the directory named cfg/ and we are going to discuss about some of them in the

paragraphs that follow. Yet, table 3 below provides a brief explanation about the

aforementioned configurations [18].

Name Configurations

main Uses InternalBitDepth of 8

main10 Uses InternalBitDepth of 10

Intra_main, intra_main10 All frames are I frames

lowdelay_P_main, lowdelay_P_main10 Uses an I frame followed by P frames. GOP

size is 4

lowdelay_main, lowdelay_main10 Uses an I frame followed by B frames. GOP

size is 4

randomaccess_main,

randomaccess_main10

An I frame is inserted every 32 frames. All

other frames are B frames. GOP size is 8
Table 2: Explanation of HEVC encoder configuartions

Description of our testing environment
 We used HEVC Test Model (HM) 16.14 for our purposes, which was downloaded

from https://hevc.hhi.fraunhofer.de/ and installed on several Linux boxes (Ubuntu 16.04,

64-bits). We found out that the software was executed quite faster in Linux O/S compared

to Windows 7, 10 and macOS Sierra. (Surveying the reasons is beyond the scope of this

work). Three (3) machines were used to run the encoder which allowed us to execute this

number of tests simultaneously. We will present here a description of the experiments

and how they were set.

 We worked with the contents folder named “HM-16.14”. Building both the

encoder and the decoder for Linux OS is quite simple. One needs just to type ‘make’ in

HM-16.14/build/linux directory. Yet, we had to alter the ‘makefiles’ in order to make use

of LLVM’s clang and clang++ compilers (initially made to be used by CERN) which

seem to produce executables that run faster, especially with the –O4 switch [32]. The

executables built are left in HM-16.14/bin. The encoder (which we actually ran) is under

the filename: TAppEncoderStatic. There are several sample configuration files for testing

purposes located in HM-16.14/cfg and they are distinguished in three main groups. The

ones that contain the string ‘Intra’, those with ‘LowDelay in their filename and others

with filenames containing ‘RandomAccess and they are to be used for intra-prediction

only, random-access and low-delay conditions respectively [33].

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
21

 The above mentioned parameter groups define different testing conditions for the

encoder that can be roughly described as follows:

All Intra: Only intra prediction is used for coding. In other words only information from

within the frame is exploited for ME purposes. No previous or subsequent frames are

involved. This leads to extremely poor execution time, so we will avoid using this

configuration and prefer inter-prediction instead.

Low Delay: Frames are coded in the same order as their transmission. This configuration

applies mostly to live video with interaction support, where delays are not tolerable while

random access is not compulsory. To assess ‘low delay’ configuration we use either B

frames with bi- and uni-prediction or P ones with unidirectional prediction only.

Random Access: This configuration is chosen when we want the best compression

efficiency with ability to begin decoding at almost any second. In this case, pictures are

not transmitted in the same order as coded, which means that a structural delay is urged.

We use ‘random access’ in applications like video podcasting or streaming. [34].

A discrete Group of Pictures (GOP) structure is defined for each one of the above

configurations. Namely, an intra_main .cfg file has to cater that each single frame is

coded only in intra-prediction mode. A lowdelay_main configuration will code only the I-

frame (initial frame) using intra-prediction and all the others using P or B inter- modes.

For randomaccess configurations, sequences of either I or B frames are periodically used

in a form like IBBB….BBI. [8]

 Among the numerous settings one can experiment with, there are some that must

be edited according to the properties of the video to be encoded. Thus, parameters we had

to change for each test point are [33], [11]:

 InputFile that contains the path of the source video sequence on the system to test

 FrameRate which obviously defines the frame rate of the sequence to be encoded

 SourceWidth and SourceHeight are accordingly- the width and height (in pixels)

of the input video

 FramesToBeEncoded: How many frames of the input sequence we wish to encode

 QP or Quantization Parameter (will be explained later)

 InputBitDepth: How many bits are used for color (e.g 8-bit, 10-bit high color etc)

Most of the above parameters are to be found at the header of each configuration file.

Below is a sample of the ones we used.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
22

Figure 15: Sample header of an HEVC .cfg file

 Besides the above, we had to tamper with some other parameters specific to the

purposes of our work which will elaborate below. The rest were left with their default

values.

 Our experiments had to do with slicing and tiling options and also with quantization.

For each video sequence four quantization parameter (QP) values were to be used: 22, 27, 32

and 37. These values define the QP values used for the I and P-frames in a sequence

(configuration files further define QP values used for other frames). Yet, most of our concern

had to do with slicing and tiling parameters which we explain here.

 The parameters which one has to modify in slice mode, are as follows:

 SliceMode defines whether the input video will be partitioned into slices or not

and how exactly will those slices be cut. It offers four options: 0 (no slices at all),

1 for setting a maximum number of Largest Coding Units (LCUs) in a slice, 2 for

setting a maximum number of bytes in a slice and 3 to cut slices so as to ensure a

maximum number of tiles in a slice. We have to assign tile partitioning

parameters, in order to take into account mode 3 of SliceMode and allocate the

tiles to each slice.

 SliceArgument is an option relative with SliceMode value. If SliceMode value is

0, nothing happens. If SliceMode value is 1, one has to edit the maximum number

of blocks that each slice will contain. If SliceMode value is 2, the user has to

insert the maximum number of bytes per each slice. If SliceMode value is 3, we

have to provide the maximum number of tiles per slice.

 LFCrossSliceBoundaryFlag sets whether in-loop filters, like Adaptive Loop

(ALF) and Deblocking, will be applied across or not across the slice boundary. It

takes value 0 for not across and value 1 for across.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
23

Figure 16: Slicing options configuration sample

Settings concerning tiling are as follows:

 TileUniformSpacing : Can be 0 or 1. A value of 0 means that column boundaries

are assigned by TileColumnWidthArray while row ones are assigned by

TileRowHeightArray. A value of 1 implies that column and row boundaries are

assigned uniformly.

 NumTileColumnsMinus1: If N is the number of tile columns per frame then it is

set to N-1 as C array style of tile numbering (0 to N-1) is used.

 TileColumnWidthArray defines an array that includes tile column width values

in units of CTU starting from left to right in the frame. E.g. In Kimono sequence,

each frame consists of 510 CTUs, distributed in 30 columns x 17 rows. Therefore,

if we want to partition the frame in 3 slices with 4 discrete tiles in each slice, we

can insert values 7,8 and 7 (space separated) in TileColumnWidthArray. This will

yield four tiles with 7+8+7+8=30 CTUs width respectively.

 NumTileRowsMinus1: Like NumTileColumnsMinus1 mentioned above. The

number of tile rows in a frame minus 1. For instance, if a frame has to be

partitioned into 3 tile rows, NumTileRowsMinus1 will be 2.

 TileRowHeightArray: Like TileColumnWidthArray. Defines an array of tile row

height values in units of CTU starting from top to bottom in frame. Let’s take for

example the Traffic sample sequence (1000 CTUs per frame in 40 columns x 25

rows). If we wish to partition each frame to 3 slices by 4 tiles each, then, one way

is to set this array to contain values 8,8. Thus, three (3) tiles per column will be

produced with the first two to include 8 CTUs and a third one of 9 (8+8+9=25).

 LFCrossTileBoundaryFlag sets whether in-loop filter is across or not across the

tile boundary. It takes value 0 for not across and value 1 for across.

Figure 17: Tiling options configuration sample

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
24

Let’s elaborate on the above explaining the parameter values we have used. First

of all, we decided to evaluate six (6) segmentation ways for two parameter groups and

four (4) discrete QP values each. Specifically, we tested the following frame

segmentations:

i. 2 slices – no tiles

ii. 2 slices with 6 discrete tiles each (2 x 6)

iii. 3 slices

iv. 3 slices x 4 tiles

v. 4 slices and

vi. 4 slices x 3 tiles

Each tile is inside in exactly one slice and each slice can contain only whole (not parts)

tiles.

 The raw videos we have dealt with are Kimono and Traffic. Their attributes are

presented in the following table [33].

Sequence

name

Resolution Frame

count

Frame

rate

Bit

depth

Intra Random

access

Low-

delay

Traffic 2560x1600 150 30fps 8 Main/

Main10

Main/

Main10

Kimono

1920x1080 240 24fps 8 Main/

Main10

Main/

Main10

Main/

Main10

Table 3: Two of the sequences used for HEVC testing

 As we can see above, each frame in Traffic sequence consists of

2560*1600=4096000 pixels. Thus, if one chooses MaxCUWidth and MaxCUHeight of

64 pixels each (as they are by default), we have 4096000/(64*64)=1000 CTUs per

picture. They are distributed at a 40x25 (width X height) pattern. In Kimono sequence,

respectively, there are 1920*1080/(64*64)=30*round(1080/64)=510 CTUs per frame as

illustrated below with the image being partitioned in 10 tiles [24].

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
25

Figure 18: Division of a full-HD frame (1920x 1080 pixels) into 10 tiles (5 columns with a width of 6 CTUs; 2 rows with a
height of 8 and 9 CTUs each)

 So, if we want to partition Traffic in 3 slices containing 4 tiles each, we can define

the corresponding configuration parameters as follows:

 SliceMode=3 (enforce maximum tiles in a slice)

 SliceArgument=4 (4 tiles per slice at most)

 TileUniformSpacing=0 (TileColumnWidth indicates column boundaries and

TileRowHeightArray indicates row boundaries)

 NumTileColumnsMinus1=3 (3+1=4 tile columns per picture)

 TileColumnWidthArray=[10 10 10] (which yields 4 tiles per slice (40 CTUs div

4) with a width of 10 CTUs each)

 NumTileRowsMinus1=2 (2+1=3 rows of tiles per picture)

 TileRowHeightArray=[8 8] (which yields 3 tiles (8+8+9=25 CTUs) by height).

Using software like StreamEye, we can verify that the above configuration will

produce encoded BitStreams with frames partitioned in slices containing tiles as the one

that can be seen below.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
26

Figure 19: A tile with "dimensions" of 10 x 9 CTUs (green line separates tiles while yellow demarcates slices)

Now, let’s consider another example. We are going to setup the encoder, so as to

partition every Kimono frame to 4 slices with 3 tiles each. As we have seen, every

Kimono frame consists of 30 CTUs in width X 17 CTUs in height=510 CTUs. Thus, we

can use the following parameter set:

 SliceMode=3 (enforce maximum tiles in a slice)

 SliceArgument=3 (3 tiles per slice at most)

 TileUniformSpacing=0

 NumTileColumnsMinus1=2 (2+1=3 tile columns per picture)

 TileColumnWidthArray=[10 10] (which yields 3 tiles per slice (30 CTUs div 3)

with a width of 10 CTUs each)

 NumTileRowsMinus1=2 (2+1=3 rows of tiles per picture)

 TileRowHeightArray=[5 4 4] (which yields 4 tiles (5+4+4+4=17 CTUs) by

height).

A sample tile in a frame produced using configuration files like the above, looks like

the one in Fig. 18.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
27

Figure 20: A tile with "dimensions" of 10 x 5 CTUs

The full list of values for the SliceArgument, NumTileColumnsMinus1,

TileColumnWidthArray, NumTileRowsMinus1 and TileRowHeightArray

parameters we had to use for the chosen six segmentations for each one of the two

sequences is cited in Table 5 below.

Kimono sequence (510 CTUs per frame)
Segmentat

ion

SliceArgu

ment

NumTileColumnsM

inus1

TileColumnWidth

Array

NumTileRowsMi

nus1

TileRowHeight

Array

2 slices 255 0 irrelevant 0 0

2x6 6 3 7 8 7 2 6 5

3 slices 170 0 irrelevant 0 0

3x4 4 3 7 8 7 2 6 5

4 slices 128 0 irrelevant 0 0

4x3 3 3 7 8 7 2 6 5

Traffic sequence (1000 CTUs per frame)
Segmentat

ion

SliceArgu

ment

NumTileColumnsM

inus1

TileColumnWidth

Array

NumTileRowsMi

nus1

TileRowHeight

Array

2 slices 500 0 irrelevant 0 0

2x6 6 3 10 10 10 2 8 8

3 slices 334 0 irrelevant 0 0

3x4 4 3 10 10 10 2 8 8

4 slices 250 0 irrelevant 0 0

4x3 3 3 10 10 10 2 8 8
Table 4: Partitioning parameters

Now that we have explained how frame partitioning is achieved tampering with

the .cfg files, we can proceed to elaborate more on our test runs.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
28

The encoder would be executed for four (4) QP values of 22, 27, 32 and 37

accordingly. Each experiment should be conducted twice: One time for the main low

delay P and one time for the random access parameter sets. Thus we had to run the

encoder 6*4*2=48 times for each sequence.

 As we experimented with two (2) sequences, we had to perform 48*2=96 runs

and collect this number of output files. In order to do so, twelve (12) configuration files

had to be created for each sequence: Six to define the appropriate seqmentation for the

low-delay parameter set and six for the random-access conditions. Below is the directory

structure of our testing environment.

Figure 21: Directory structure of our testing environment

 To explain the above figure, we have to say that each dozen of the appropriate

configuration files is located under MyCfg/ directory. Obviously, config files for, say,

Kimono sequence, are inside the homonymous folder. The directory named random/

contains the output of executions with random-access conditions. Low-delay executions

are left in the same directory with the encoder executable as *.txt files.

Now, in order to perform all or some of the required tests, we wrote a Bash [35]

script to do the job. It is located in the same path with TAppEncoderStatic (the encoder

executable) under the name of RunTests. We used the taskset Linux command [36] to

distribute each encoder process to a different CPU core when possible. Part of the script,

is depicted below.

Figure 22: Bash script to initiate test runs

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
29

 Each time we completed a full set of tests (24 runs, 12 for each sequence), we

copied the results for the specific QP value, changed the Quantization Parameter in each

.cfg file and the tests started all over. To our benefit, Linux offers a very handy stream

editor (sed) that allowed for changing QP values in all 24 configuration files with a

single command like this [37]:

sed ’s /QP : 22/QP : 27/g ’ *.cfg

As stated above, we also had to use Elecard’s StreamEye program to check if the

chosen frame segmentation was indeed applied on the encoded bitstream. We present

below a frame of the Traffic sequence (rendered by StreamEye) after a 4x3 segmentation

encoding. First picture exhibits slicing, the second one shows tiling and the last exhibits

both (yellow gridlines demarcate slices while green lines are tile boundaries).

Figure 23: Exhibiting slices in a P frame of 'Traffic' sequence

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
30

Figure 24: Exhibiting tiles in 'Traffic' frame

Figure 25: Slicing AND tiling in 'Traffic'

Moreover, as can be seen in the script we wrote, the encoder was executed using

Bash shell with commands and output redirections like:

./TAppEncoderStatic –c MyCfg/Traffic/lowdelay_P_main_2_slice_6_tile.cfg >

traf2x6lowdelay.txt

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
31

Thus, the output was saved in a text file each time in order to be reclaimed and

studied later. The results produced by the encoder (besides the coded bitstream of course)

consist of rich information about the configuration used to run it and a great deal of

details concerning the coding of each frame. As a summary, the encoder provides

invaluable data like the number of I, P and B frames, the average BitRate, luma PSNR,

chroma PSNR, YUV-PSNR, total duration of the encoding process in seconds etc. The

frames that follow illustrate some parts of one of the many outputs we had to process.

HM software: Encoder Version [16.17] (including RExt)[Linux][GCC

5.4.0][32 bit]

Input File : Kimono_1920x1080_24.yuv

Bitstream File : kimono_2x6.bin

Reconstruction File : rec.yuv

Real Format : 1920x1080 24Hz

Internal Format : 1920x1080 24Hz

Sequence PSNR output : Linear average only

Sequence MSE output : Disabled

Frame MSE output : Disabled

MS-SSIM output : Disabled

Cabac-zero-word-padding : Enabled

Frame/Field : Frame based coding

Frame index : 0 - 99 (100 frames)

Profile : main

CU size / depth / total-depth : 64 / 4 / 4

RQT trans. size (min / max) : 4 / 32

Max RQT depth inter : 3

Max RQT depth intra : 3

Min PCM size : 8

Motion search range : 64

Intra period : -1

Decoding refresh type : 0

QP : 32

Max dQP signaling depth : 0

Cb QP Offset : 0

Cr QP Offset : 0

QP adaptation : 0 (range=0)

GOP size : 4

Input bit depth : (Y:8, C:8)

MSB-extended bit depth : (Y:8, C:8)

Internal bit depth : (Y:8, C:8)

PCM sample bit depth : (Y:8, C:8)

Intra reference smoothing : Enabled

………………………

Cost function: : Lossy coding (default)

RateControl : 0

WPMethod : 0
Table 5: Some of the first lines produced by the encoder with info about test conditions used

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
32

In the above table, we deliberately choose to show an example where the total

time value is of no sense (negative). This is due to an overflow of the variable responsible

for the timing. The overflow itself happened because of the extreme execution duration in

the cases when the hardware used was not powerful enough. Allow us to notice that there

had been cases when the encoder had needed more than 12 hours to process all the frames

of a sequence. On the other hand, the process of encoding all 240 Kimono frames, took

(only ?) 621.360 sec when an Intel core-i5 CPU was utilized.

SUMMARY --

Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

100 a 1595.2877 37.2787 40.1721 41.7759 38.0669

I Slices--

Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

1 i 7088.2560 40.4183 41.4720 42.6766 40.8927

P Slices--

Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

99 p 1539.8032 37.2470 40.1590 41.7668 38.0460

B Slices--

Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

0 b -nan -nan -nan -nan -nan

RVM: 0.000

Bytes written to file: 836579 (1606.232 kbps)

Total Time: -1559.360 sec.

Summary of the encoding process

Execution of the encoder on more powerful hardware

SUMMARY --

Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

240 a 5380.2400 41.5382 43.2229 44.7398 42.1568

Bytes written to file: 6725300 (5380.240 kbps)

Total Time: 621.360 sec.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
33

Result collection and analysis
 Thankfully, as we have seen, HEVC reference software does compute itself

metrics as PSNR and BitRate during the encoding process. Thus, upon completion of all

96 runs, we gathered the results the encoder produced as output and created a spreadsheet

like these below.

Figure 26: Output data collection for QP=27

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
34

Figure 27: Output data for QP=37

One of the first things to be noticed is the significant decline in output bitstream

size. This is a clear example of the impact that QP value has on achieved compression

rate (and therefore to coding efficiency) as cited in [18] and depicted in the graphs that

follow.

Figure 28: Impact of QP on coding efficiency

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

22 27 32 37

O
u

tp
u

t
B

it
st

re
am

 s
iz

e
 (

b
yt

e
s)

Quantization Parameter

Kimono

Traffic

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
35

Using numeric data like those of the above spreadsheets (figures 27 & 28), we got

Rate-Distortion graphs [38] as those depicted in the figures that follow.

41.5730

39.6632

37.3756

34.8624

34

35

36

37

38

39

40

41

42

0 1000 2000 3000 4000 5000

Y
-P

SN
R

BitRate

Kimono RandomAccess

2 slices

2x6 slices x tiles

3 slices

3x4

4 slices

4x3

33

34

35

36

37

38

39

40

41

42

0 1000 2000 3000 4000 5000 6000

Y
-P

SN
R

Bit Rate

Kimono LowDelay

2 slices PSNR

2x6 Y-PSNR

3 slices Y-PSNR

3x4 Y-PSNR

4 slices Y-PSNR

4x3 Y-PSNR

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
36

Figure 29: R-D curves demonstrating coding efficiency

 Although we are supposed to read PSNR and bitrate differences between two

simulation conditions in these RD plots, it is obvious that the existing differences are very

hard to be distinguished. Therefore, we have to use a metric introduced in 2001 by Gisle

Bjøntegaard, known as BD-PSNR [39]. Using this method, one can find the average

difference between curves such as the above. Specifically, small BD-metric values
indicate little context breaks and thus better quality. In other words the more the
picture is partitioned, more contexts are broken and greater is the BD-rate increase

[31].

34

35

36

37

38

39

40

41

42

43

1000 3000 5000 7000 9000 11000 13000 15000

Y-
P

SN
R

BitRate

Traffic RandomAccess

2 slices

2x6

3 slices

3x4

4 slices

4x3

32

34

36

38

40

42

44

0 5000 10000 15000 20000

Y
-P

SN
R

Bit Rate

Traffic Lowdelay

2 slices Y-PSNR

2x6

3 slices

3x4

4 slices

4x3

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
37

 In order to calculate BD-PSNR for our data, we used MatLab code developed by

Giuseppe Valenzise in 2010, improved by Serge Matyunin in 2013 and it is freely

available via GitHub [40]. We had simply to repeatedly call function bjontegaard2()
with our results as input for both modes (‘dsnr’ and ‘rate’). We have to explain here that

this function’s last parameter (‘mode’) offers the option to calculate either the differences

in Y-axis (PSNR), or in BitRate (X-axis). It is a string that can have two values:

'dsnr' - average PSNR difference or

'rate' - percentage of bitrate saving between data set 1 and data set 2

Figure 32 below demonstrates the use of the parameter.

Figure 30: Sample R-D curve that shows the use of 'mode' parameter in bjontegaard2() function

 We used GNU Octave [41] which interpretes and runs MatLab code to call

bjontegaard2(). First we had to collect PSNRs and BitRates per segmentation way and

QP value in a separate worksheet. Part of this worksheet is depicted below.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
38

Figure 31: Summary of encoder output data

Then, we wrote Visual Basic macros that read BitRate and Y-PSNR vectors from the

worksheet and produce a text file with the appropriate calls to bjontegaard2() (in MatLab

syntax of course). These macros were called when clicking on button ‘Save Text’ (visible

in the above figure). Thus, several text files were produced with calls like these below.

res1=bjontegaard2([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336],[

41.7775 , 39.3521 , 36.9606 , 34.3806],[12750.0992 , 5149.032 ,

2533.56 , 1328.72],[41.776 , 39.3523 , 36.9497 , 34.3663],’dsnr’);

res2=bjontegaard2([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336],[

41.7775 , 39.3521 , 36.9606 , 34.3806],[12728.0832 , 5122.6192 ,

2515.9184 , 1316.2112],[41.7767 , 39.3532 , 36.9571 , 34.3721

],’dsnr’);

res3=bjontegaard2([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336],[

41.7775 , 39.3521 , 36.9606 , 34.3806],[12752.496 , 5151.8016 ,

2536.1888 , 1331.7136],[41.776 , 39.3515 , 36.9496 , 34.3668

],’dsnr’);

res4=bjontegaard2([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336],[

41.7775 , 39.3521 , 36.9606 , 34.3806],[12738.1888 , 5133.3744 ,

2522.6256 , 1320.8464],[41.7762 , 39.3522 , 36.9534 , 34.3721

],’dsnr’);

res5=bjontegaard2([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336],[

41.7775 , 39.3521 , 36.9606 , 34.3806],[12754.9024 , 5153.4096 ,

2539.096 , 1333.7984],[41.776 , 39.3519 , 36.9503 , 34.3658],’dsnr’);

Those calls were pasted into Octave and eventually we had BD-PSNR metrics for

every possible QP value and frame partinioning scheme. Figure 13 shows the data

computed, with 2 slice partitioning being the “yardstick” in the first row, 2x6 is the

reference for the second row etc. It is obvious that values at symmetric matrix positions

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
39

are of opposite sign and thus there was no need to calculate again the average difference

between, say, RD-curves of 2x6 vs. 2-sliced runs when we had done so for 2-sliced vs.

2x6 segmentation.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
40

Bjontegaard Metric

Kimono LowDelay
Segm

. W
ay

2 slices
2x6

3 slices
3x4

4 slices
4x3

2 slices 0 0.05966 0.01659 0.06540 0.03548 0.06987

2x6 -0.05966 0 -0.04318 0.00584 -0.02426 0.01040

3 slices -0.01659 0.04318 0 0.04896 0.01896 0.05346

3x4 -0.06540 -0.00584 -0.04896 0 -0.03007 0.00457

4 slices -0.03548 0.02426 -0.01896 0.03007 0 0.03459

4x3 -0.06987 -0.01040 -0.05346 -0.00457 -0.03459 0

Kimono RandomAccess
Segm

. W
ay

2 slices
2x6

3 slices
3x4

4 slices
4x3

2 slices 0 0.060035 0.022022 0.065745 0.038253 0.070920

2x6 -0.060035 0 -0.038115 0.005816 -0.021886 0.011084

3 slices -0.022022 0.038115 0 0.043861 0.016285 0.049067

3x4 -0.065745 -0.005816 -0.043861 0 -0.027670 0.0052872

4 slices -0.038253 0.021886 -0.016285 0.027670 0 0.032911

4x3 -0.070920 -0.011084 -0.049067 -0.0052872 -0.032911 0

Traffic LowDelay
Segm

. W
ay

2 slices
2x6

3 slices
3x4

4 slices
4x3

2 slices 0 0.022439 0.0084849 0.025030 0.012306 0.028514

2x6 -0.022439 0 -0.013994 0.0026518 -0.010156 0.006159

3 slices -0.0084849 0.013994 0 0.016606 0.003847 0.016275

3x4 -0.025030 -0.0026518 -0.016606 0 -0.012779 0.0035112

4 slices -0.012306 0.010156 -0.003847 0.012779 0 0.016275

4x3 -0.028514 -0.006159 -0.016275 -0.0035112 -0.016275 0

Bjontegaard Metric

Traffic RandomAccess
Segm

. W
ay

2 slices
2x6

3 slices
3x4

4 slices
4x3

2 slices 0 0.031384 0.00854029 0.0347364 0.0177372 0.0369156

2x6 -0.031384 0 -0.022915 0.0033908 -0.013703 0.005597

3 slices -0.0085403 0.022915 0 0.026285 0.009223 0.028476

3x4 -0.034736 -0.0033908 -0.026285 0 -0.017078 0.0022102

4 slices -0.017737 0.013703 -0.009223 0.017078 0 0.019273

4x3 -0.036916 -0.005597 -0.028476 -0.0022102 -0.019273 0

Figure 32: All the calculated BD values

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
41

The above data (BD-metric values) are much more readable in barchart format. So, we

decided to keep the 2 slices partitioning as a reference and produce the following graphs.

Figure 33: Bjontegaard metric barcharts

0.05966

0.01659

0.06540

0.03548

0.06987

2x6 3 slices 3x4 4 slices 4x3

Kimono LowDelay ('dsnr')

1.84100

0.51203

2.03060

1.10506

2.16771

2x6 3 slices 3x4 4 slices 4x3

Kimono LowDelay ('rate')

0.000000

0.020000

0.040000

0.060000

0.080000

2x6 3 slices 3x4 4 slices 4x3

Kimono RandomAccess
('dsnr')

0.00000

1.00000

2.00000

3.00000

2x6 3 slices 3x4 4 slices 4x3

Kimono RandomAccess
('rate')

0.000000

0.005000

0.010000

0.015000

0.020000

0.025000

0.030000

2x6 3 slices 3x4 4 slices 4x3

Traffic LowDelay ('dsnr')

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

2x6 3 slices 3x4 4 slices 4x3

Traffic LowDelay ('rate')

0.000000

0.010000

0.020000

0.030000

0.040000

2x6 3 slices 3x4 4 slices 4x3

Traffic RandomAccess ('dsnr')

0.00000

0.50000

1.00000

1.50000

2x6 3 slices 3x4 4 slices 4x3

Traffic RandomAccess ('rate')

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles
42

Conclusion and ideas for further research
A glance at the previously displayed barcharts shows that best coding efficiency is

achieved with either no partinioning at all, or by using only slicing (no tiles at all). Yet,

no partitioning is out of the question, since slicing and/or tiling is absolutely required to

achieve efficient code parallelization and thus best temporal performance. Moreover, if

we want to maximize parallelization, we also have to include tiles in the chosen

partitioning scheme [31], [19], [23]. Thus, it seems that 2x6 (slices X tiles) is our best

choice. In fact, load balancing is maximized if we use a hardware configuration of two

(2) CPUs with six (6) cores each (e.g. Two Intel Xeon W-2133 CPUs [42]).

 As we have seen in past works like [24], several partitionings have already been

evaluated from the scope of load balancing and resource utilization in general besides the

above we chose. So, it seems attractive, as a future project to further investigate CPU

utilization achieved by our six (6) frame segmentations. In other words, a parallel

scalability analysis like the one presented in [19] would not be meaningless.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

References

[1] " Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI," 2017.

[Online]. Available: https://hevc.hhi.fraunhofer.de/.

[2] Bossen Fr., Flynn D., Sharman K., Sühring K., "JCTVC HM Software Manual," 21 1 2018.

[Online]. Available:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/doc/software-manual.pdf.

[Accessed 3 2018].

[3] "Wikipedia (CGA)," [Online]. Available:

https://en.wikipedia.org/wiki/Color_Graphics_Adapter.

[4] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, "Overview of the High

Efficiency Video Coding (HEVC) Standard," IEEE Transactions on circuits and systems for

video technology, vol. 22, no. 12, 2012.

[5] "Wikipedia Lossy compression," [Online]. Available:

https://en.wikipedia.org/wiki/Lossy_compression.

[6] "Wikipedia Lossless compression," [Online]. Available:

https://en.wikipedia.org/wiki/Lossless_compression.

[7] Sruthi S., Dr. Shreelekshmi R., "Video Compression - from Fundamentals to H.264 and H.265

Standards," Int. Journal of Engineering and Computer Science ISSN:2319-7242, Vol. 4, Issue

7, pp. 13468-13473, July 2015.

[8] R. I. Chernyak, "Analysis of the Intra Predictions in H.265/HEVC," Applied Mathematical

Sciences, vol. 8, no. 148, pp. 7389-7408, 2014.

[9] M. B. Vivienne Sze, "Design and Implementation of Next Generation Video Coding Systems

(H.265/HEVC Tutorial)," ISCAS Tutorial, 2014.

[10] K. D. H. J. Rao K. R., High Efficiency Video Coding(HEVC), Dordrecht: Springer, 2014.

[11] G. Dimopoulos, "IMPLEMENTATION OF HEVC (H.265) VIDEO ANALYSIS TOOL," Lamia, 2017.

[12] Wiegand Th., Sullivan G.J., Bjontegaard G., Luthra A., "Overview of the H.264/AVC Video

Coding Standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, July 2003.

[13] I. E. Richardson, The H.264 Advanced Video Compression Standard, 2nd ed., Wiley and

Sons, 2010.

[14] Fu Chih-Ming, Alshina Elena, Alshin Alexander, Huang Yu-Wen, Chen Ching-Yeh, and Chia-

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Yang Tsai, Chih-Wei Hsu, Lei Shaw-Min, Park Jeong-Hoon, Han Woo-Jin, "Sample Adaptive

Offset in the HEVC Standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, vol. 22, no. 12, Dec. 2012.

[15] Corrêa G., Assunção P., Agostini L., da Silva Cruz L.A., Performance and Computational

Complexity Assessment of HEVC. In: Complexity-Aware High Efficiency Video Coding,

Springer, Cham, 2016.

[16] M. V. T. D. H. A. H. Jarno Vanne, "Comparative Rate-Distortion-Complexity Analysis of HEVC

and AVC Video Codecs," vol. 22, no. 12, Dec. 2012.

[17] Ohm Jens-Rainer, Sullivan G. J., Schwarz H., Thiow Keng Tan Th. K., Wiegand Th.,

"Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency

Video Coding (HEVC)," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, vol. 22, no. 12, pp. 1669-1684, Dec. 2012.

[18] B. Benny, Next-Generation Video Coding and Streaming, John Wiley & Sons, 2015.

[19] Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink, Gordon Clare, "Parallel Scalability and

Efficiency of HEVC Parallelization Approaches," vol. 22, no. 12, 2012.

[20] P. S. Henry F., "Wavefront Parallel Processing," in Joint Collaborative Team on Video Coding

(JCT-VC) - JCTVC-E196, Geneva, 2011.

[21] Heng Tse Kai, Asano W., Itoh Tak., Tanizawa Ak., Yamaguchi Jun, Matsuo Tak., Kodama

Tom., "A HIGHLY PARALLELIZED H.265/HEVC REAL-TIME UHD SOFTWARE ENCODER," in IEEE

International Conference on Image Processing (ICIP), Paris, 2014.

[22] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth and M. Zhou, "An overview of tiles in

HEVC," IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 969-977,

December 2013.

[23] Maria Koziri, P. Papadopoulos P, N. Tziritas, A. N. Dadaliaris, Thanasis . Loukopoulos, S. U.

Khan and C. Z. Xu, "Adaptive Tile Parallelization for Fast Video Encoding in HEVC," in 12th

Int. Conf. on Green Computing and Communications (GreenCom 2016), Kos, Greece, 2016.

[24] Migallón H., Piñol P., López-Granado O., Galiano I., Malumbres M.P., "Performance analysis

of frame partitioning in parallel HEVC encoders," Journal of Supercomputing, 10 Jan. 2017.

[25] Mitra G., Johnston B., Rendell A.P., McCreath E., Zhou Jun, "Use of SIMD Vector Operations

to Accelerate Application Code Performance on Low-Powered ARM and Intel Platforms," in

IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD

Forum, 2013.

[26] Yang Lu, Qi Zhang, Bin Wei, "Real-Time CPU Based H.265/HEVC Encoding with x86 Platform

Technology," in International Conference on Computing, Networking and Communications

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

(ICNC), Workshop on Computing, Networking and Communications (CNC), 2015.

[27] Chen Keji, Duan Yizhou, Yan Leju , Sun Jun, "Efficient SIMD Optimization of HEVC Encoder

over X86 Processors," Beijing 100871, China.

[28] Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI, "Wavefronts for

HEVC Parallelism," [Online]. Available:

https://www.hhi.fraunhofer.de/index.php?id=543&L=1. [Accessed March 2018].

[29] P. Piñol, H. M. Gomis, O. M. L. Granado, M. P. Malumbres, "Slice-based parallel approach

for HEVC encoder," Journal of Supercomputing, vol. 71, no. 5, pp. 1882-1892, 2015.

[30] M. Z. Sze and Madhukar Budagavi, Parallel tools in HEVC for high-throughput processing,

vol. 8499, 2012, pp. 8499 - 8499 - 13.

[31] Malossi G., Palomino D., Diniz Cl., Susin A., Bampi S., "Adjusting Video Tiling to Available

Resources in a per-frame Basis in High Efficiency Video Coding," in New Circuits and Systems

Conference (NEWCAS), 2016 14th IEEE International, Vancouver, BC, Canada, 2016.

[32] C. Lattner, "Introduction to the LLVM Compiler System," 4 11 2008. [Online]. Available:

https://llvm.org/pubs/2008-10-04-ACAT-LLVM-Intro.pdf. [Accessed 2018].

[33] F. Bossen, "“Common Test Conditions and Software Reference Configurations”," document

JCTVC-H1100, JCT-VC, Feb. 2012.

[34] M. Wien, High Efficiency Video Coding. Coding Tools and Specification, HeidelBerg:

Springer-Verlag, 2015.

[35] "Wikipedia (BASH shell)," [Online]. Available:

https://en.wikipedia.org/wiki/Bash_(Unix_shell).

[36] "Linux manpages (taskset command)," [Online]. Available:

https://linux.die.net/man/1/taskset.

[37] Free Software Foundation - GNU project, "sed, a stream editor," GNU project, [Online].

Available: https://www.gnu.org/software/sed/manual/sed.html.

[38] S. Akramullah, Digital Video Concepts, Methods and Metrics: Quality, Compression,

Performance, and Power Trade-off Analysis, Apress, 2014.

[39] G. Bjontegaard, "Calculation of average PSNR differences between RD-Curves. Proceedings

of the ITU-T Video Coding Experts Group (VCEG)," in VCEG-33, 2001.

[40] M. S. Giuseppe Valenzise G., "GitHub (bjontegaard2)," 2013. [Online]. Available:

https://github.com/serge-m/bjontegaard2. [Accessed March 2018].

[41] Free Software Foundation - GNU project, "GNU Octave," GNU project, 2017. [Online].

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

Available: https://www.gnu.org/software/octave/.

[42] Intel Corporation, "Product Specifications," Intel, [Online]. Available:

https://goo.gl/wpzFGp.

[43] "Wikipedia (DCM)," [Online]. Available:

https://en.wikipedia.org/wiki/Discrete_cosine_transform.

[44] "Wikipedia (DSM)," [Online]. Available:

https://en.wikipedia.org/wiki/Discrete_sine_transform.

[45] J. Martínez, P. Cuenca, F. Delicado and F. Quiles, "Objective video quality metrics: A

performance analysis," 3 2018.

[46] Cebrián-Márquez G., Hernández-Losada J. L., Martínez J.L., Cuenca P., Tang M., Wen J.,

"Accelerating HEVC using heterogeneous platforms," Journal of Supercomputing, no. 71,

2015.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 06:10:12 EEST - 18.227.48.172

