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Abstract

Speech signal separation involves separating the component speech signals from an au-
dio mixture in which they are combined. In the field of independent component analysis,
this problem is known as the “cocktail party problem™ that describes the inherent human
ability to isolate specific auditory stimuli in noisy environments. For example, we encounter
the cocktail party phenomenon when focusing our attention to listen to a friend talking in a
crowded cafe, a busy street, or a bar with loud music playing. In audio-visual speech separa-
tion (AVSS), information from both audio and visual data is used in order to take advantage
of the multi-modal nature of human speech in the separation procedure. Recent research in
AVSS algorithms employs Deep Neural Network architectures to map the two modalities to
a latent vector space, and subsequently fusing them to extract the underlying speech signals.
The goal of this Thesis is to design our own architecture for the AVSS task. In addition, we
evaluate the separation performance of the proposed architecture on data from the Lombard
GRID and TCD-TIMIT databases under various experimental conditions designed to model

realistic scenarios of speech signal separation.
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Iepiinyn

O dwyoplopog oNUatog opAiog TeplaptBAavel Tov S10Y®PIGUE TOV GLGTATIKOV CTLATOV
OMATOG OTTO it MYNTIKN avApEEn Tovg TNV 0moio GLVIVALOVTOL. XTOV TOUEN TG AVAAVOTG
aveChpTNTOV GUVIGTOCHOV QVTO TO TPOPANU Elval YVOOTO m “"TpOPANUe KOKTEL ThpTL”,
TO 07010 OVOLPEPETAL GTNV EYYEVT] IKAVOTNTA TOV AVOPOT®V VO ATOLOVOVOUY GUYKEKPLLEVA
aKOLGTIKA epebicpata oe BopvPmon mepiPdiiovta. ['a Tapddelypa, GUVAVIAULE TO PALVO-
LLEVO TOV TTAPTL KOKTEWL OTav €GTIALOVIE TNV TPOGOYN HAG Y0 VO aKOVGOVUE Eva GIAO vV
WIAG 6€ £Vl YEUATO KAQE, G EVOV OPOLO LLE EVTOVT] KIVIoN 1) O€ £VaL UTTOP E SVVOLTH LOVGIKN.
2TOV OTTIKOAKOVGTIKS S1oymplopd opiiog, mAnpoeopisg 1060 omd 0KOVGTIKA OGO Kol rd
OTLTIKG, OESOUEVE YPNOYLOTOLOVVTOL TPOKEWEVOL VO ETOPEAN Ol 1 dradikacio TOV daympt-
opoY amd TV TOAVTPOTN PVGT THG ovOpdmvng opdiac. [Ipdopateg peréteg oe alyopibuovg
OTLTIKOOKOVGTIKOD SLOY®PIGLOV OLUALNG YPNGLOTOIOVV OPYLTEKTOVIKES BOOLOV VELPOVIKGOV
OIKTOOV Y10 TNV OTEKOVIOT TOV JEOOUEVOV GE Evay AavOAvVOVTA dVOGHATIKO ¥MDPOo Kol
enokorlovba Yo T ovvBeon TOVg TPOC TV €YY TOV VIOKEIUEV®V ONUATOV OpAiag. O
6THY0C OVTNG TNS SMAMUOTIKNG EPYAGIG £ival VO OYEOIAGOVLLE Ol STKLA LG OLPYLITEKTOVIKN
v avtv ™ Asttovpyia. Emmiéov, e€etdlovpe v amoTeEAEGLATIKOTNTO S0XOPIGUOV TNG
TPOTEWVOLEVNC OPYLTEKTOVIKNG o€ dedopéva amd TG Pdosig Lombard GRID kot TCD-TIMIT
VIO O1APOPES TEPOUATIKEG GUVONKES, OYEOIUGUEVEC DGTE VO LLOVIEAOTTOLOVV PEAAIGTIKA OE-

VApo 10 ®OPICLOD CUATOV QOVNC.
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Chapter 1

Introduction

1.1 Seeing Speech?

In the early days of air traffic control, operators would receive messages from pilots over
a central loudspeaker, instead of individual headsets. Often these messages would be inter-
mixed, with many pilots talking over one another, so operators would have to focus their
attention on specific pilot voices in order to decipher a message. Based on this observation,
in 1953 cognitive scientist C. E. Cherry would coin the “cocktail party effect”: our inherent
ability to "tune in” to specific speech signals and “tune out” others in a noisy environment.
Cherry would then remark on the complexity of the cognitive functions that make this possi-
ble. To illustrate, he listed the aspects of speech that an "automatic voice recognition machine”
could exploit in order to perform the same task: lipreading, accent differences, different di-

rections of the voice source, differences in gender, etc [1]. Later he would note [2]:

"One of our most important faculties is our ability to listen to, and follow, one speaker in
the presence of others. This is such a common experience that we may take it for granted, we
may call it “the cocktail party problem.” No machine has been constructed to do just this, to

filter out one conversation from a number jumbled together.” - Collin E. Cherry 1957

In recent years, ’cognitive machines” in the form of neural networks have been dominat-
ing the field of artificial intelligence including speech applications. The goal of designing the
machine proposed by Cherry seems even more feasible today, given the success of these mod-

els. Furthermore, the cocktail party problem has been thoroughly formalized mathematically,

1
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Figure 1.1: Illustration of the McGurk effect

and many approaches have been tested to tackle this problem in real-world applications.

Furthermore, the trend of user speech interfaces in personal assistants in recent years such
as Apple’s Siri or Amazon’s Alexa, as well as several augmented reality applications, have
created the incentive to further develop the field of automatic speech recognition. In typical
real-world usage of such assistants, the need for de-noising speech signals in acoustically
complex environments arises naturally. Methods for audio-visual speech separation (AVSS)
may prove useful here: removing interfering speech from user input is by far one of the most
challenging cases of noise suppression, and it may require the use of a camera in order for it

to be successfully performed.

However, incorporating computer vision in automatic speech recognition is not merely
a high-concept trick for improving performance: speech interpretation might be fundamen-
tally incomplete without the visual mode. Going back to Cherry’s original statement, a clear
emphasis on the audio-visual aspect of source separation is placed. Humans leverage the
multi-modal nature of speech in order to perceive speech in noisy environments, employing
lipreading when audio-only perception is insufficient. This fact is illustrated by the "McGurk
effect” [3], an illusion in which the perceived audio emanating from a speaker is transformed
by the visual stimuli that it is paired with. For example: if a ’ba” sound produced by a speaker
is accompanied by visuals of the facial movements associated with the production of a ’ga”

sound, the perceived speech will be ”da”.

From the above it becomes clear that, as speech recognition systems get more and more
sophisticated, the inclusion of a visual stream in speech recognition algorithms is inevitable,

and thus research on methods for manipulating audio-visual speech is a necessity.
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1.2 Thesis Goals and Contributions

Our goal is to implement an AVSS system using a multi-modal fusion mechanism for
combining temporally aligned audio and video data in order to infer relationships between
the two. The inferred information will then be used in decoding each speaker signal and re-

constructing the separated sources. More specifically, we list our main goals for our approach:

» Speaker Independence: Some speech separation architectures are designed in a speaker-

dependent fashion in order to exploit a certain speaker’s distinct vocal characteristics
for separation. Our proposed model instead is trained on datasets that have been split
in such a way so that the set of test speakers is disjoint from the set of training speak-
ers. This way, our evaluation of the model on the test set ensures generalization to

separating speakers that the model has no prior knowledge of.

* Scalability: A common problem amongst speech separation architectures is that they
are often designed for multi-regression purposes. In these, a corresponding speech sig-
nal is regressed for each speaker in the mixture. For this to work, the total number of
parameters used by the visual network must be increased as more and more speakers
are added. We design our model in such a way, as to not need to increase these pa-
rameters, instead applying a one-against-the-rest distinction of the visual modalities,

in which one targeted speaker’s visual modality is simply contrasted with all others.

 Applicability under different noise conditions: We train and evaluate our model under

different interference amplitude conditions, from cases where the noise is very low
to very adverse acoustic environments where the noise may surpass that of the target
speaker. Good separation performance on all levels of noise is desired, with the higher

noise conditions being more challenging.

The contributions of this Thesis to the field of AVSS are:

* A thorough exploration of the formal background of speech signal separation, review-
ing methods used in Blind Source Separation (BSS) and Independent Component Anal-

ysis (ICA), as well as how they are applied to AVSS.

* The development of a U-Net style speech separation network architecture, consisting

of strictly convolutional layers, with a unique audio-visual fusion gating mechanism
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for visually guided speech separation. The proposed model is designed in accordance

to the goals outlined above.

* An evaluation of our proposed architecture for different speech separation tasks and

speaker gender pairings on two appropriate datasets.

1.3 Related Work

Recently, Gao [4], Ephrat, [5] and Afouras [6] have developed some of the most im-
pressive speech source separation architectures, capable of separating unseen speaker mix-
tures from real-life data with remarkable efficiency. Demos of these systems can be found
on YouTube showcasing impressive separation results. The architecture of [4] is very simi-
lar to the one we propose, consisting of a U-Net audio analysis network that is fused in the
middle part with the outputs from a lipreading 3D convolutional network, as well as a facial
attribute analysis network that leverages correlation of certain speaker facial features with
aspects in the corresponding speech (for example, male facial features correlate with lower
pitch voices). The model proposed by Ephrat et al. [5] is an extension of earlier work [7]
that successfully furthers the capability of this architecture to separating unknown speakers,
namely speakers that have not been seen during model training. Their model extracts features
from audio and visual streams using a sequence of dilated convolutional layers, concatenat-
ing the resulting features and passing them through a bi-directional long short-term mem-
ory model (LSTM) to capture sequence correlations. This architecture has proven successful
in separating speech signals in environments with background noise present. A similar ap-
proach is presented in [6], extracting features from the two streams via convolutional layers,
concatenating them and passing them through a fully-connected layer. What is interesting
about this architecture is that first, only the magnitude part of each signal is separated, and
subsequently the resulting signals are phase corrected using a separate module designed for
estimating the appropriate phase correction. Notably, all aforementioned approaches estimate
a spectral mask that is used for separating the speech signals. We adopt this approach for our
proposed model as well, and we describe it in detail further in this Thesis.

A different approach to the AVSS problem is presented in [8], where audio and visual
embeddings are extracted from mixture audio spectrogram segments and the corresponding

speaker video frames using a combination of convolutional layers and bi-directional LSTMs.



1.4 Thesis Outline 5

The embeddings are subsequently fused, with the resulting audio-visual embeddings used for
deep clustering of the spectral components present in the audio mixture. The resulting clusters
correspond to the separated speech signals. Also, another recent publication [9] proposes the
use of variational autoencoders to separate speech mixtures.

Our model takes inspiration from all previously cited approaches, as well as the multi-
modal transform module presented in [10], used for speech enhancement, from which the
inspiration of the squeeze-excite fusion mechanism [11] that we employ is taken and modified
to suit our needs.

Finally, note that the U-Net architecture we will be using for speech separation in the
time domain has been employed in other similar tasks, such as audio-visual music source

separation [12], singing voice separation [13], and speech enhancement [14].

1.4 Thesis Outline

The remainder of this Thesis consists of the following four Chapters:

» Ch 2. Background: First, we review the fundamentals of a mathematical model of the

cocktail party problem. Beginning from rudimentary models for separating simple lin-
ear mixtures of signals, we build up to the spectral masking technique for separation

in the time-frequency domain, which is the central objective of our model.

* Ch 3. Implementation: Following, we present our design rationale for the speech sepa-

ration architecture we designed. We introduce each of its individual parts step by step,

showing the utility of each one in the separation pipeline.

» Ch 4. Results: Next, we present the performance evaluation of our model, testing it for
different types of speech separation tasks. We measure separation performance using
several different metrics, contrasting the efficiency of our approach to other related

architectures.

» Ch 5. Conclusion: Finally, we conclude this Thesis by summarizing our evaluation
findings, noting our proposed model’s advantages as well as its limitations, and dis-

cussing our ideas for how to potentially improve and test our design further.






Chapter 2

Background

In this chapter we explore the mathematical descriptions of the cocktail party problem
used by methods for BSS and ICA (Sections 2.1,2.2, and 2.3). We first introduce core concepts
of these disciplines, embellishing them eventually leading to the concept of spectral masks
(Section 2.4). Our end goal is to clarify the motivation behind choosing a spectral mask as the
target for the model to approximate. Finally, we discuss how spectral masks can be learned

within a deep learning framework, also incorporating the visual modality (Section 2.5).

2.1 A Simple Source Separation Framework

We begin by introducing some core principles commonly used in ICA and BSS to describe
the cocktail party problem mathematically. The two fields are closely related, with their key
difference being that in BSS the goal is to extract statistically independent signals combined
via some unknown procedure that is assumed to be a linear transformation, whereas ICA
provides a probabilistic tool for dealing with mixtures of independent components (random
variables), thought to be combined linearly [15].

Let us consider a set of discrete, real-valued signal components {s;} |, each adhering to
one of NV signal sources. These signals are combined by some unknown process, yielding a
set of observed signals {2;}77, at M different destinations, where measuring devices are in-
stalled. The standard framework for modeling signal mixtures is a simple linear combination

of the signal components at each time frame n:

N
z;[n] = Zaﬁsi[n] , for j=1,...,M. (2.1
i=1

7



8 Chapter 2. Background

In order to model random noise in the j-th measurement device, we add the component u;
to the mixture. This additive noise component is uncorrelated with the source signals and
“white”, i.e. any two noise signals u;, u; from different measuring devices ¢ # j are uncor-
related with each other, and also any two values of a noise signal at different time frames are

uncorrelated with each other. Thus:
N
x;[n] :Zaj,;si[n]jLuj[n] , for j=1,..., M, (2.2)
i=1
or using a more compressed notation:

—

Z[n] = As[n] + uln] (2.3)

. . . — — o e
where A € RM*Y is a matrix of mixture parameters and x [n], s [n] are vectors consisting of

the component values in the n-th time frame:

2 = ailn] wln] .. IM[n]]T,
3 =[] saln] .. sN[n]]T,
i) = [anlo] waln] ]|

The goal of ICA estimation is to derive the original source signals reconstructed using the
mixed data observations ?[n] This is done by de-noising observations and then estimating
the unmixing matrix, i.e. the inverse of matrix A denoted as W = A~!. The reconstructed

estimation is derived by the following generative model, after omitting noise:

§[n] = Win] = A" Z[n] (2.4)

e R S

L3 Unmixing
Algorithm

L 4

h 4

[5]
@
@

Figure 2.1: ICA/BSS view of the cocktail party problem for 3 speakers

|
|
5

L3

|
")
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Figure 2.2: Mixing and unmixing matrices in BSS

as in [16, 17], where W is an approximation of the ground-truth unmixing matrix.

A key assumption of ICA is the independence of the variables that are being combined,
something that cannot be practically guaranteed, however we can inspect the uncorrelatedness
of the variables, a slightly less stringent constraint than independence. Generally, two real

random variables z, y are uncorrelated if:

Elzy] — E[z]E[y] =0, (2.5)

whereas independence supposes that for every real function h : R — R the following holds:

Elh(z)h(y)] — E[h(x)E[A(y)] = 0 . (2.6)

This is the independence constraint assumed in classical ICA/BSS [18, 19].
Having outlined the process of ICA estimation, it is useful to comment on some of its

main ambiguities encountered when unmixing independent components in this fashion [18]

» Permutation: Because ordering of the observations x1, xs, . . ., £, isarbitrary and A, s [n]
are unknown parameters of the generative model, any ordering of the reconstructed
sources is in essence valid. Post-separation sorting needs to be applied, if a specific

order in the extracted signal components is expected.

* Scaling or variation: The power or variation of the signal may vary from source to

source, and, due to our lack of knowledge of the structure of A, an arbitrary scalar
multiplier applied to a row of A will distort the power level of the reconstructed signals.
A common assumption made to remedy this is that the power level of each component
is normalized: E [s?[n]] = 1. After unmixing, the reconstructed components can be

amplified accordingly.



10 Chapter 2. Background

» Under-determinedness: It is not rare that the number of sources in a mixture is larger

than that of the available measuring devices. As stated in [20], any number of M, N
destination devices and source signals may be encountered in BSS applications, yield-
ing under-determined, over-determined, or properly determined linear systems for the
generative model. Among these cases, mono-aural source separation refers to the task

of separating signals sampled from a single device, i.e. M = 1.

Having discussed these ambiguities, we re-write the formerly defined task of ICA esti-
mation, so that it may be described as a three-part transformation process of the observation

sequences, each corresponding to a matrix:

8[n] = APWZ[n] 2.7)

as in [21]. Each of the matrices A, P, W serves a specific purpose in addressing a kind of

aforementioned ambiguity. Specifically:

» A € R¥*¥ is a diagonal matrix with its elements set to amplify or diminish the recon-

structed signal energy to that appropriate for the corresponding source.

« P € {0,1}"*¥ is a permutation matrix reversing any incorrect permutation in the

assignment of extracted signals to sources.

« W € RM*M ig the unmixing matrix introduced earlier, restated as the generalized
inverse of A, i.e. W = AT, meaning that a pseudo-inverse is used when the system is

under-determined to derive an optimal estimation of the ground-truth signals.

It is easy to see how the ICA/BSS framework incorporates the cocktail party problem. In a
complex auditory environment, N audio sources (multiple speakers, background music, traf-
fic, ambient sounds, etc.) {s;[n]}Y., may be combined linearly into a mixture, and measured
by M different devices More specifically, in our application of interest we are concerned

with a mono-aural speech mixture, where multiple speech signals are superimposed linearly:

N
Tmiz|n] = Z a;si[n] . (2.8)
i—1
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Row; (4) 4

Pk S e
1 '

81 [‘ﬂ.] - Rowy (A) > fﬂ]
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_______________________________

(i) Signal mixing model for a single device (ii) Signal mixing model for an array of devices

Figure 2.3: Convolutional mixing BSS

2.2 Convolutional Source Separation

The basic BSS model described by equations (2.1) and (2.2) can be thought of as an
“instantaneous mixing model”, where any one of the observed variables z;[n] at time step n
is only affected by the values of the source signals at the given instance s;[n]. The motivation
of extending the definition of BSS to convolutional mixtures arises from the need to model
more complex natural mixing environments, where the signal component samples within
a given time window of length K, {s;[n + k]}kK:_Ol are weighted and delayed in time, thus
contributing to the observation at the destination in a time-distributed fashion. This sort of

function can be described by a convolutional mixture model [22], extending (2.1) as:

N K-

i) = ajix si)n] = > Y au[k] - siln — k], (2.9)

i=1 =1 k=0

[y

where symbol * denotes the convolution operation, or equivalently in matrix notation:

Zn) = (A% s )= Alkls[h— k], (2.10)

as in [23]. We can once again add a white noise component to this model to account for noise

in measurements:

—

Z[n] = (A s )[n] + uln] (2.11)

but we omit this from our formulation for now.
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As one can observe, the mixing matrix is no longer a flat 2D matrix, but each component
a;; is an FIR filter that contains a set of K convolution coefficients distributed in time a;; €
R, and A is said to be an FIR matrix [24].

Within this framework, the problem of ICA estimation is restated as a deconvolution prob-

RKXMXN

lem, i.e. the estimation of an unmixing filter matrix W &€ capable of reconstructing

the source signals when convolved with the observation signal vector:

8[n] = (W 2 )[n] = Z_:Vv[kmn—k]. (2.12)

Convolutional mixing of source signals can be better understood in the frequency do-
main, as the convolution theorem makes computations much simpler. By applying a Discrete

Fourier Transformation (DFT):

S 255 §1p

Zn] 255 X[f] .

Mixture and unmixture of components can thus be expressed in the frequency domain:

X[f] = A[f]SIf], 2.13)
S = WIAXIA. (2.14)

_>
Adding a noise component to this formulation i.e. ﬂ(t) LN [f], yields the equations:

X[f] = ALfISIA + UL, 2.15)
S = WIAXI] + UL, (2.16)

where A[f] € CM*N is the complex-valued DFT transformed representation of the FIR
matrix A. From the previous equations it follows that we can define the mixing and unmixing
matrices W|[f] = Af[f] € CV*M_ It can be shown from this that the ambiguities of the
instantaneous linear BSS model that we discussed in the previous section now get transferred
to the frequency domain for convolutional mixtures, so we can rewrite (2.7) as in [25] for

convolutional BSS:

SIf] = PLAALAWIAX /], 2.17)
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Figure 2.4: Representation of a signal in the time, frequency, and time-frequency domains

where A[f] € RY*Y is a diagonal scaling matrix of filters in the frequency domain, and
P[f] € {0,1}¥*N is a permutation matrix. Supplementary to the above, a transformation of

the convolutional system to the z-domain may also be derived [22].

2.3 Source Separation in the Time-Frequency Domain

Although several speech separation / enhancement frameworks exist which directly pro-
cess the mixture audio signal x,,,;, in the time domain, the methodology for our separation
pipeline aligns with works opting to process the signal in the time-frequency domain. More
specifically, we pre-process the speech signal by transforming it using a Short-Time Fourier
Transform (STFT). This representation is especially useful for non-stationary signals, where
the frequency density varies over time. Voice signals are considered to be stationary over a
short-time window estimated to be about 30-50 ms in duration [26].

An important property of STFT when considering signal mixtures is its additivity, mean-

ing that, when a sum of signals is transformed using STFT, the resulting time-frequency
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representation is equal to the sum of the STFTs of each individual signal, i.e.:

Tiz[n] = s1[n] + so[n] + -+ - + sy [n] =
Xiz[n, f] = Sin, f]+ Sa[n, fl+ ... Sx[n, f] . (2.18)

Furthermore, the formulations discussed earlier for convolutional BSS transfer to the
time-frequency domain. Indeed, by transforming the equations (2.13) and (2.17) we obtain

the de-convolution framework for this domain [23, 25]:

X[n, f] = Alf)S[n, £, (2.19)

and

Sln, f] = PLAAFWIfIX[n, £, where W[f] = A[f]', (2.20)

where all matrices are similar to the ones discussed in the previous section.

An optimal unmixing matrix can be computed by minimization of some maximum like-
lihood (ML) criterion with the use of a gradient descent method, such as the log likelihood
of the unmixed signals that are derived when applying this matrix to the input mixture[27].
Here, however, we focus our attention to methods of estimating an unmixing matrix based
on minimum mean square error (MMSE) estimation.

In the local Gaussian modeling method for audio source separation [28, 29], each ob-
served signal at an array of sensors, denoted in vector form ;( [n, f], is thought to be con-

%
tributed to by the i-th source according to the image vector Y;[n, f] € CM*M je.:
— N 4
X[n, f]=> Yin f]. (2.21)
=1

In order for this to conform to our current BSS model, the image vector satisfies 3_}@ n, f] =
col;(A[f]) - Si[n, f], where col;(A[f]) denotes the i-th column of the mixture matrix.

Source signals are assumed to be uncorrelated. However, due to the relative positions of
the microphones and sources, certain spacial correlations exist within the image vector. This
fact, combined with the natural assumption of the stationary nature of the source signals at a
short time frame, leads us to model the image vectors as complex-valued Gaussian random

variables with zero mean and covariance matrices 3; € RM*M fori =1,... N, ie.

Yiln, f] ~ N (0, Zfn, f]) (2.22)
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Furthermore, each of these covariance matrices can be refactored as:

where v;[n, f] is a scalar that contains the variational encoding information of source 7 at
the time-frequency bin [n, f], and R;[f] € RM*M models spatial correlation between the
sources in an image. Note that the matrix R[f] is static in time, meaning that the geometric
configuration of the speakers and microphones does not change over time.

Under this assumption and that of independence of the source signals, the random obser-
vation vector })[n, f] also turns out to be a normally distributed Gaussian random variable

with covariance matrix X[n, f] modeled as:

N

S, f] =Y wviln, fIRi[f] (2.24)

i=1

thus, by Wiener filtering [30, 31], we can derive the MMSE reconstructed image signals as:

Yiln, f] = v, f1R;[n, F15- [, f1X [, f] =

asin [32, 29].

The last method reviewed might feel slightly foreign compared to the ones we discussed
so far, estimating “audio image signals™ instead of the raw sources, but it bares notable sim-
ilarity to some of the spectral masking techniques that we review in the following section.
More specifically, the assumption of local stationarity of each speech signal, as well as of
uncorrelatedness between them, yields the formulation for estimating a ”mask™ of sorts that
selects specific segments of the signal in the time-frequency domain while diminishing oth-
ers. Furthermore, spectral masks are a natural extension of the MMSE estimation to the time-

frequency domain.

2.4 Spectral Masking

Consider a mono-aural audio separation setup, where a collection of /N source signals

{s;} | are to be estimated via a single channel device (M = 1). Recalling (2.18)
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szx[n>f]:Sl[naf]+82[n>f]++SN[n>f]>

our goal is to extract any randomly selected source S; from the mixture (perhaps as designated

by a user). This leads to the following partitioning of the mixture signal:

Nin,f]
Xia[n, f] = Siln, f1 4 Siln, f] =
j#i
Xmiz[n, f] = Si[n, f] + Nin, f], (2.26)

where S;[n, f] is denoted as the target signal and N [n, f] as the noise, or interference. We de-
fine a spectral separation mask as a filter in the time-frequency domain M; that when applied
via per-bin multiplication (denoted as ©) to the mixture signal X,,;, yields an approximate

reconstruction of the targeted source signal:

M;[n, f1 ® Xpmie[n, f] = Sin, f] . (2.27)

We next present two quintessential such formulations for time-frequency masks:

* Ideal Ratio Mask (IRM): Perhaps the most natural way to expand upon our previous

discussion of applying Wiener filtering to a source separation task is by introducing
the notion of the ideal ratio mask, sometimes referred to as a Wiener filter or Wiener-
like mask. More specifically, the IR mask is defined as the optimal solution to the

minimization of the following objective:

Mign, f] = GJZQ[?%}” {E [|Sz'[”, f1 = Miln, f1© Xpiz[n, f”?” : (2.28)

In other words, the IRM is a linear-MMSE estimator for each bin [n, f] of the tar-
get source magnitude spectrogram, computed by assuming that the target and interfer-
ence signals are zero-mean and mutually uncorrelated random variables. By solving

the above quadratic optimization problem, we can derive:

s
Minln 1) = (o m R + [N, 1P 229)

In [33, 34], a similar formulation of this filter is suggested:
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_ S f]? ’
et )= (s e £ v ) (230

where the 3 parameter is usually set to 0.5 in the spirit of a square root Wiener filter,

used to optimally reconstruct power spectral density.

* Ideal Binary Mask (IBM): A limitation shared among all ratio masks is their indefi-

niteness at points where N[n, f| = S;[n, f] ~ 0. In practical applications this can be
partially resolved by adding a small real number € to the denominator, but still incon-
sistent values of the IRM may result in unstable convergence during model training.

Binary masks avoid this problem, providing a more stable learning objective.

Binary masks offer a more simplistic take on noise filtering in the time-frequency do-
main, where specific spectral components pertaining to the target signal are passed on
and segregated from the rest of the signal whose amplitude is set to zero. Binary-valued
masks perform this action by setting their bins to one of two values € {0, 1}, applying

a selection of mixture components per-bin as representative of the de-noised signal.

An IBM filters the noisy signal by setting the time-frequency bins of the binary mask
M|n, f]to 1 when the target signal S;[n, f] dominates over the noise N[n, f]interms of
magnitude i.e. |S;[n, f]|* > |N[n, f]|?, whereas the rest are set to 0. We can summarize

this as:

1, if |S;[n, f]|? > |N[n, f]|?
My, g) = { 111 AT A @31
0, otherwise

or, using a more compressed notation:

MIB[naf] :u(|SZ[n>f]|2_ |N[n>f]|2) ) (232)
where u denotes the unit step function.

Despite their simplicity, binary masks are popular in many different domains of signal
separation applications, proving to be a robust objective target for optimal separation.
Several other benefits of the IBM as outlined in [35] are their flexibility across ditfer-
ent types of audio modalities, empirically supported psycho-acoustic correspondence,
well-definiteness, and ceiling (optimal) performance. The optimality of the IBM per

time-frequency bin, per time frame, and globally is shown formally by Li and Wang
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(1) Ideal Ratio Mask (i1) Ideal Binary Mask

Figure 2.5: Examples of IBM and IRM applied to a 2-speaker speech mixture

in [36] where they prove minimization of Signal-to-Noise Ratio (SNR) and MSE of
the estimated signal in contrast to the ground-truth signal. In this sense, an IBM is a

binary-valued Linear Minimum Mean Square Error (LMMSE) estimator.

Due to the similarity in the definitions of the IRM and IBM (both are LMMSE estimators
except the IBM is binary-valued whereas the other is real-valued) they share several positive
traits [37]. In fact it can be shown that both masks are special cases of the parametric Wiener
filter mask [38].

However these masks are limited in their ability to invert the phase distortion induced by
the mixture of audio modalities, although commonly regarded as less linguistically important
for speech signals. Instead, these masks focus on isolating segments in the mixture magnitude
that are representative of the target signal’s magnitude. Certain spectral mask formulations
such as ORM [33], PSM, [39] and cRM [40] attempt to amend this discrepancy by encoding
phase information of the target and interference signals. For our model however, we limit our
focus exclusively on the IRM and IBM for the sake of simplicity. Further, we will only be
evaluating models trained on the IBM as an objective, as those trained with the IRM failed

to yield improved results.

2.5 Spectral Masks as a Learning Objective

In this Section we present a formal description of how a spectral mask can be used as the
ground-truth for estimation in a training framework of a DNN used for the task of separating

select speakers from a mixture. More specifically, we formally state the goal of our archi-
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tecture as a signal estimator and define an objective to minimize in order to reach its desired
function.

Let us consider a set of speaker audio signals {s;}Y,, where s; € R%*Ts fori =
1,..., N consisting of T, samples of Cs-channel audio data. For our specific application
we assume a mono-aural source for each speaker i.e. Cs = 1, and that we have one measur-
ing device. Let us also assume that this set is complemented by the corresponding speaker
videos v; € RTv>CoxHXW 4 — 1 N, consisting of T, consecutive H x W frames of
C, color channel camera footage. Notice that this model allows for T, # T,,. Furthermore, it
can be assumed that the audio and video modalities are only partially aligned, and in general
that the number of audio frames is far greater than the number of video frames, i.e. T, > T,,,
with each video frame pertaining to a window of localized audio frames.

For the mixing model, we assume a simple linear combination model of the source signals.

Revisiting (2.1), the source mixture signal can be computed as:

N
Tmiz[n] = aisi[n] (2.33)
=1

or equivalently in the time-frequency domain:

Xomizln, f] = Z a;Si[n, f] . (2.34)

Following this, the problem of separating the signals generated by the several different
audio sources is described as approximating a mapping JF over the signal space [41], capable

of extracting the audio modality s; from the mixture ,,;;:

F
Tmiz > S .

We propose a generative model G of the separation process, capable of inferring the ideal
spectral mask that separates s; from the rest of the mixture, given audio and video modalities

of the speakers:

G (Tmiz, Vi, {03 }520) = Mi[n, f] (2.35)

where M, [n, f] is an approximate estimation of the ground-truth spectral mask defined for

the separation task:
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Notice that in (2.35) the set of video modalities is partitioned to {v; } U{v; },;, indicating
that the ¢-th speaker video modality essentially indicates the specific speaker source that we
would like to separate from the mixture. The key intuition behind incorporating the video
modalities into the separation pipeline is that events in the visual domain are correlated to
ones in the audio domain of the mixture, thus visual information can be used in localizing
these events for each source. This essentially provides a solution to the permutation prob-
lem presented in Section 2.1 and, furthermore, allows us to infer characteristics of the audio
modality from the accompanying video at each time frame, aiding in separation.

Several source separation pipelines use complex-valued time-frequency masks as the
ground-truth target for unmixing the signal, however the IBM that we use in our approach is
not. Therefore, our estimation of the reconstructed signal will use the possibly distorted mix-
ture phase as an approximation of the target signal phase. This distortion could be corrected
at a later stage by applying a phase correction module [6].

The reconstructed signal is derived as follows:

The estimated audio can then be extracted by applying an Inverse STFT.
The model for this estimation can be trained to minimize the bin-wise MSE between either

the reconstructed signal and the reference signal, or the estimated mask and the ground-truth

mask:
1
Esrercn(5i 5) = 77 2 |Sin. 1] = Sio g =
Lsprrcn(Si, Si) = — Mi[n, f] © Xis[n, f]‘z ; (2.37)
Larasic(Mi, NT) = TFZ]Mnf it 1| 2:38)

respectively, where T, F' are the number of time and frequency bins of the STFT. Any of the
two objectives can be minimized using some gradient-based optimization algorithm such as

the Adam optimizer [42].
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Our Proposed Approach

This chapter presents the specifics of our proposed model architecture for an audio-visual
speech separator. Specifically, we discuss the separation procedure step by step, namely, the
audio-visual data pre-processing for feature extraction (Section 3.1), the transformation and
fusion of their corresponding latent representations as derived by an appropriate encoder for
each stream (audio/visual), and finally the estimation of a spectral mask for separating the

target signal from the mixture (Section 3.2).

3.1 Generating Artificial Mixtures/ Pre-processing

In this Section we outline the employed method for obtaining input sample features ex-
tracted from our datasets consisting of speaker audios and videos.

The process of generating random mixtures from a dataset D containing Np distinct
speakers labeled J = {1, ..., Np} consists of first constructing an N-tuple of label-indexes
T = (i1,19,...iy) sampled without replacement from 7. This is done in order to avoid
training the model to separate a speech signal from another speech signal originating from
the same speakers. We then select a random video sample v; paired with a voice sample s;
from those available in the dataset for each speaker i € 7.

The video modalities for each speaker i € T denoted v; € RTV*HTXWXC may contain a
different number of frames. Thus, we truncate, or pad the video data to a standard number of
60 frames, setting 7|, = 60 which corresponds to an approximately 2-sec clip from the source
video. Subsequently, these videos are cropped around the Region-of-Interest (ROI) by first

locating the face area using the python “facenet” library of a face locating multi-task CNN

21
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Oniginal video Cropped & Grayscaled video
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Figure 3.1: Video pre-processing

[43]. A bounding box is extracted from the first frame of the video, which is assumed to
contain the speaker’s face for all other frames, and a fixed 64 x 96 pixel sub-area is used as a
boundary for the lip ROI area. Note that this simple and efficient process may induce a slightly
shaky ROI especially when subjects move their heads as they speak, which may adversely
affect our model’s performance. Luckily, the datasets we consider in the evaluation of our
model contain minimal amounts of speaker head movements. The final step in pre-processing
for the visual stream is converting each frame to gray-scale. Denoting the ¢-th frame of the
video as v!, the gray-scale conversion of tri-chromatic RGB footage is performed by applying
the formula v} = 0.3R(v}) + 0.69G(v}) + 0.11B(v}), where R(.), G(.), B(.) denote the red,
green, and blue channels of the image [44]. The pre-processed video can thus be represented

by a 60 x 64 x 96 x 1 tensor.

Pre-processing the audio data per speaker s; € R“*7 in the mixture can be a bit tricky,
since batches of audio frames need to be aligned with the video frames and different samples
may contain a different ratio of audio frames to video frames. After selecting an appropriate
such ratio 7, a certain portion of each speech signal is cropped or padded to a length of r - 60
audio frames that correspond to the fixed sequence of 60 video frames extracted during video
pre-processing. This segment is subsequently re-sampled with a 16 kHz sampling rate. The
power level of each signal is then normalized in order to resolve any scaling ambiguity:
E[s?] = 1. The cropped, re-sampled, and normalized signals are finally transformed using
a 512 sample STFT and a 512 sample length Hann window, which amounts to roughly 30
ms intervals in the time domain, ensuring somewhat stationary frequency distributions per
STFT time frame. The stride, or hop length of the filter is set according to the available time

samples so that the resulting time-frame representation has approximately 480 time frames,

necessary for spoken segments between different speakers to be temporally distinguishable
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by the classifier. The resulting STFTs have a band of 8 KHz thought to contain most linguistic
information of the speech segment. The audio modality features for each speaker after pre-

processing consists of 1 x 255 x 48 X tensors containing complex numbers, where X accounts

Speaker 1 audio medallity

Speaker 1 video modallityframe #25
r——

WO @0 W0 MO W0 RN ] o0 10090 15000 XO0D  Z000 W00 3000 AIL00
Speaker 2 video modallityfframe #25 Speaker 2 audio medallity

2 500 10000 15000 000 5000 0000 35000 40000

(i) Components of a sample, including speaker video and audio

Mixture audio

(i) Time domain mixture of speech signal

(iii) Speech signals in the time and time-frequency domains

Figure 3.2: An artificial mixture sample from the Lombard GRID dataset



24 Chapter 3. Our Proposed Approach

for some discrepancy in the representation dependant to the audio data length of the data set.

The mixture signal is constructed in the time domain by one of the mixture models we
define in Section 4.2 after re-sampling its components, and is subsequently transformed to its
STFT representation by transforming by the same procedure described previously. In order

to standardise the input audio data, we normalize the magnitudes of the mixture STFT to a

Xmiac

0-1 scale by max scaling X,,;, := ey

The maximum amplitude of the spectrum is

then cached for reconstruction of the separated signal at a later stage.

3.2 Architecture Description

In this Section we describe our proposed architecture and present our rationale for the

design choices we have implemented.

Many architectures often employ Recurrent Neural Networks (RNN) [45] for sequence
encoding from the audio and video streams, which however are slow to train and evaluate. In
recent years attention mechanisms and more specifically transformer architectures employed
to mitigate temporal information in sequence data have seen great success in several different
machine learning applications. This motivates us to devise a simple attention fusion module
capable of combining the visual and audio modalities into a heatmap-like representation of
the importance of the features in the reconstruction of an audio mask and then clipping using a
simple gating mechanism, to filter down the mixture audio embeddings to their most essential

parts for the estimation of a spectral mask.

An outline of our architecture can be seen in Figure 3.3. Our architecture essentially con-
sists of a multi-modal U-Net style encoder-decoder that maps aligned audio and video streams
to the desired time-frequency mask. The audio stream processing pipeline is intersected in
the middle part of the U-Net with the outputs from a video encoder, and modalities from the
two streams are combined with the help of a fusion module capable of distinguishing similar-
ities between the transformed video and audio, then combining the computed embeddings in
an attention heatmap necessary in localizing segments of the audio embedding extracted for
the mixture audio. After this, a gating mechanism clips off the least important segments of
the embeddings, which are then used in constructing an approximation of the optimal time-

frequency mask.
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Figure 3.3: Outline of model architecture

3.2.1 Audio Stream

Throughout several speech music separation or enhancement publications, U-Net CNN
architectures, which were originally conceived for the purpose of segmenting medical images
[46], have been established as a tried model architecture towards separation of signals in the
time-frequency domain [4, 12, 13, 14]. Furthermore, fusion of the visual modalities with
the latent variables derived from the U-Net encoder has been tried before both in audio-
visual speech and music signal separation with notable results [4, 12]. The main intuition
behind using a U-Net for the task of separating source signals from STFT data is its inherent
similarity to the problem of segmenting images: when inspecting a magnitude spectrogram of
mixed audio, different speaker source signals produce visibly different patterns that may be
apparently unmixable if we segment the magnitude spectrogram into different parts, assigning
different segments to the speakers that they correspond to.

Our audio processing pipeline is modeled after this architecture, consisting of an encoder
or “contraction path” part £ with 5 two-dimensional convolutional layers each with 3 x 3

kernels followed by batch normalization and ReLLU activation functions. Max-pooling layers
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Conv 1 | Conv2 | Conv3 | Conv4 | Conv5 | Conv6 | Conv Out
Encoder | Channels | 8 16 32 64 128 256 300
Pool - 2x2 - 2x2 2x2 | 2x2 |-
Decoder | Channels | 256 128 64 32 16 8 |
Upsample | 2 x 2 2x2 2x2 _ 2x2 |- -

Table 3.1: Audio analysis network architecture

are placed intermittently throughout the encoder part of the network. A detailed description
of the encoder architecture can be found in Table 3.1. The outputs from the middle part of
the U-Net are encoded audio embeddings pertaining to the time-frequency representations
of the transformed features. The resulting features z; have dimensions C; x D, x T, where
F, < F,T, < T are the compressed frequency and time dimensions of the embedding, and

C; is the number of semantically differentiated encoding channels:

2y = E(Xppin) € ROI=XTE (3.1

As one can observe from Table 3.1, as well as Figure 3.3, the contraction path of the
network compresses the temporal-frequency dimensions of the audio features while sequen-
tially expanding the number of channels. This process is described as “reducing the where
and increasing the what™: as resolution of the embeddings is reduced, the number of chan-
nels is increased, with each channel encoding a different aspect of the input signal. For our
architecture, different numbers of channels and resolutions were tested during development
of the separator, with the best model performance attained at 300 channels. As for the rest of
the dimensions of the output embedding, the resolution given appropriately shaped inputs is
16 x 30.

Following the contraction path, lies an expansion path or the decoder of the model which
inputs the audio embeddings fused with the video embeddings = and outputs an approximate
mask for separation of the target speaker’s speech signal. The outputs from the decoder are
passed through a sigmoid activation layer so as to have values mapped to a 0-1 range, and
the final estimated separation mask is thus constructed:

M(n, f) = o(Dy(2)) € R (32)

s

Being that our architecture is an end-to-end model, the mask has an output equal in di-
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mension to the input audio modality. Applying the mask to the input mixture yields the ap-
proximate representation of the signal in the time-frequency domain. The expansion path
is symmetrical to the contraction path, consisting of 5 transposed convolutional layers with
3 x 3 kernels, batch normalization, ReLU activation, and up-sampling layers. A key tech-
nique used in constructing the spectral mask in this application is the use of skip connections
by the U-Net. The outputs of each layer in the encoder are fed to their mirrored equivalents
in the expansion path as an input. This makes up for the information loss induced by com-
pression of the input images in the contraction path. By caching the outputs of each layer

pre-compression, we can potentially construct a more fine-grain mask in the output.

3.2.2 Visual Stream

As stated before, the visual stream is necessary for extracting speaker-specific informa-
tion that helps us assign specific extracted audio segments to the right speaker, i.e. helps
us deal with the permutation problem in BSS. Furthermore, information about lip move-
ments contains pertinent temporal information to localize specific word utterances for each
speaker, as well as the overlap of utterances among different speakers. Earlier methods in
AVSS pipelines have used the notion of a Visual Voice Activity Detector (V-VAD) [47] to
distinguish speech activity per video frame based on local mouth movements. More complex
formulations have attempted to encode cross-modal linguistic information from the visual to

the audio domain into visual masks used to enhance separation [48].

Convl Conv2 Conv3 Conv4 Conv5

KernelSize | 3 X3 x3 | 3x3x3|3x3x3|3x3%x3]| 3x3

Channels 16 32 64 64 300
Pool 4x6x2|4x4x1]12x2x1|2x2x1 -

Table 3.2: Visual analysis network architecture

Here we are interested in producing embeddings from video data that match the time-
frequency resolution of the audio embeddings D, x 7. The motivation for this is to concate-
nate the video and audio embeddings channel-wise in order to produce the fused modalities,
allowing us to use the video modality in an attention-like manner to guide the separation

procedure.
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Our proposed architecture consists of four 3D convolutional layers with a kernel size of
3x3x 3 followed by ReLLU and appropriately sized max-pooling layers. The designated utility
of these 4 convolutional layers is feature extraction from temporally and locally adjacent pix-
els. As can be seen from Table 3.2, the output channels from this part of the network is 64- D
(1024 when Dy = 16). This practically means that each one of the D bins of the transformed
frequency dimension of the inputs has 64 semantically different channels in the previous-to-
last layer of the visual convnet. The output from the 3D convnet is 2, € R*P=x1xTs which
is vectorized or flattened” as 2, = Vec(z,), so as to have dimension 64 x D, x T;. The
final layer is passed through a 2D convolutional layer with a 3 x 3 kernel, which outputs the
final embedding z, = Conv2D(z, ). In total, the video encoder has an output of dimension
C, x D, x T,. The output for the j-th speaker can be denoted as

25 = Ey(v;) € ROPXT= (3.3)

where &,(.) denotes application of the video encoder to the video modality.
In our pipeline the different speaker visual streams will use the same encoder as opposed

to a dedicated one for each speaker as is used by Gabay et al. [7].

3.2.3 Fusion Module

The mechanism we use for fusing the output embeddings from both encoders is an off-
shoot of the Squeeze-Excitation Fusion module [11], recently used for audio and visual modal-
ity fusion for speech enhancement [10] followed by a simple gating mechanism.

For the visual modality our methodology separates the video embeddings of interfering
speakers to the targeted one, which we suppose to have index ¢, and aggregates them one

representative embedding by addition:

Do =D Zuj o (3.4)

j#i
Our intuition for this choice, as opposed to using all other speakers’ visual embeddings
in the fusion module, is that since the outputs of the visual stream are encoded by the same
network, and their ordering should not matter (the only distinction made amongst the vi-
sual modalities is distinguishing the target speaker’s video), any network that combines them

should have roughly the same weights for each embedding in this set. As such, combining
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Figure 3.4: Audio-visual fusion module

them additively should produce an output not far too different than that of processing each
visual modality separately, given the additivity property of convolutional networks, when
their outputs are not passed through a non-linear activation function.

We denote the combined interfering speaker visual embeddings as z,, . as opposed to the
target speaker z, ;. Normally we would have to “squeeze” the total resolution of the embed-
dings into one value per channel by averaging the outputs, however since for our architecture
the resolution of the audio embeddings matches that of the video embeddings, the embed-
dings are simply concatenated channel-wise to produce a (2C, + Cy) x D, x T, tensor c.
This way we preserve some spatio-temporal information of the embeddings. We then map
the concatenated embeddings to an attention heatmap via a network consisting of a single
convolutional layer M that takes c as an input and maps it to a Cs; x D, x T, embedding.
This part of the network is something akin to the excitation part of the mechanism. This map-
ping is then point-wise multiplied to the audio embedding, and the product is passed through

a sigmoid layer to produce an attention heatmap of the components of the mixture:

C= 2y S Zu,r D 2z,
h=0(M(c)®z) . (3.5)

This representation discriminates against or advocates for the inclusion of certain seg-
ments of the output in the fused embedding z;. This embedding is produced by clipping all
values of the audio embedding that are valued less than a certain threshold in the resulting
heatmap and scaling the rest accordingly. This can be performed by the following gating

mechanism:

1
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Figure 3.5: The ReLU clipping function at different threshold p values

A graph of the ReLU clipping mechanism used here, defined for different threshold val-
ues, is shown in Figure 3.5 . This works to filter out parts of the embedding that are deemed
to be under a specific threshold of importance p, as the ReL.U activation function is zero at
points where the attention map is less than p.

The resulting clipped embeddings are fed to the decoder that constructs an appropriate
mask for separating the target signal, as outlined in our description of the audio stream. To
better understand the utility of each sub-network part, we present an image grid consisting
of the output modalities for each channel of the corresponding encoder in Figure 3.6. Each
picture shows C'; channels for a type of embedding, consisting of rectangles with dimensions

D, x T, (Height x Width).
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(i1) Video embedding z, ; (one speaker)

(ii1): Attention heatmap h (iv): Fused embedding =

Figure 3.6: Channels of embeddings derived from audio-visual data






Chapter 4

Evaluation of the Proposed Model

Following the explanation of our model’s architecture we now present the training proce-
dure (Section 4.1) and experimental frameworks (Section 4.2) for our designed architecture’s
training and testing. Further, we present the corresponding evaluation metrics we used in the
evaluation (Section 4.3), and finally we conduct a quantitative-comparative analysis of our
results obtained when applying our model under different experimental premises and test

datasets (Section 4.4).

4.1 Model Training and Datasets

Using artificially generated mixtures produced by the process described in the previous
chapter, each model is trained on a dataset of 10000 random speaker pairings for 5 epochs. The
optimizer employed is an Adam optimizer with a learning rate of 0.01 in order to minimize
the joint mask-speaker loss objective which is a joint version of the objectives (2.38) and

(2.37)1.e.

L(M;, Mz‘, S, Sz) = Lyask (M, Mz) +a-Lsprecu(S, Sz) =

wd POLENERTVIEYE S

n7f

Siln, f] — Mi[n, f] ® Xpmia|n, f]r) @)

The datasets we train our models on are the TCD-TIMIT dataset [49] and the Lombard
GRID dataset [50].

The Lombard GRID dataset is an audio-visual speech corpus of 54 individuals with both
male and female vocalizations and 100 utterances per speaker. The Lombard GRID dataset

provides two different viewing angles for the video modality, however we only experiment

33
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on front-facing footage. Its speech samples consist of sentences following a specific grammar
from a very small vocabulary. For example, a sentence from GRID might be something like
”place red in R 4 now”. When training on the Lombard GRID, we split the dataset to 44
training speakers and 10 test speakers, roughly even in terms of their ratio of male to female
vocalizing speakers.

The TCD-TIMIT dataset contains speech videos and audios of up to 63 different speakers,
both volunteers and trained lipspeakers (people who are trained to exaggerate mouth move-
ments during speech in order to be easy to lipread), filmed from two different angles. Again
we only use the front-facing footage. TCD-TIMIT is more linguistically rich than the GRID
dataset, containing a total of 6913 sentences. When training with the TCD-TIMIT dataset, we
split the dataset to 32 training speakers and 6 testing speakers with an even ratio of male to

female vocalizations. Trained lipspeaker data are omitted from the training set of our model.

4.2 Experimental Setup

In this section we describe the conditions for which our model will be trained, each de-
fined by a unique process under which the audio mixture is created, modeled after realistic
conditions by which multi-speaker audio mixtures may be produced.

Broadly our experiments can be classified into two mixture scenarios:

* Scenario 1: In this scenario, two speakers are located very close to each other, with

S
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(1) Scenario 1 (i1) Scenario 2

Figure 4.1: Speaker mixture scenarios
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both of their faces visible in frontal views, speaking through the same medium, as for
example in a news broadcast, where the guests-host speak over each other, resulting

to:

Tmiz[n] = s1[n] + s2[n] . (4.2)

The main challenge with this setup is that the speaker audios have the same power level,
which means that they are often difficult to discern from one another and inclusion of

segments in the final separation mixture might occur (interference error).

This separation scenario is highly challenging, and a test to the strength of source sep-

aration architectures.

* Scenario 2: In this scenario, interfering speaker audios are scaled down compared to
the target speaker’s audio, reflecting on their non preferential placement in the sound
sampling environment. An example of such a scenario is a video conference, when
someone close to the microphone is having another unrelated conversation, kids are

playing close by, or a TV/radio is on in the background. In such a scenario:

Tmia[n] = sifn] + > dys;[n] | (4.3)

J#i
where the sound sources for all the speakers except the targeted one are diminished
in amplitude by some scalar random variable d; that is distributed uniformly over an
interval within [0, 1]. We consider two different power diminishing ranges as uniform
distributions by which the d; parameter is sampled for each speaker: A low range of
scaling noise, indicating significant distance of the interfering speaker from the micro-

phone d; ~ U(0.3,0.5), and a high range, indicating a speaker closer to the micro-

phone, but still further away than the targeted speaker d; ~ 1£(0.5,0.8).

In this scenario, we will also be testing our separator under conditions that interfering
speakers do not have their faces appearing in the video stream, and only the target

speaker’s mouth is visible.

The derived mixtures from both experimental scenarios will be passed through a desig-
nated separator model trained on data generated specifically for this task, i.e. via the same

mixing process, and correspondingly the target signal will be separated by the mask produced.
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Figure 4.2: Schematic depicting relationship between SIR, SNR, SAR, and SDR

We repeat this procedure for the IBM and an oracle IRM in order to establish a theoretical

upper bound for the separation task.

4.3 Evaluation Metrics

In this section we present the evaluation metrics used in assessing the reconstruction
quality of the separated speaker signals derived. The quality measures considered here can

broadly be classified as (i) distortion measures and (ii) perceptual quality measures.

4.3.1 Distortion Measures

Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), and the Signal-to-
Artifact Ratio (SAR) are commonly employed measures of noise suppression, often em-
ployed to evaluate source separation models [51]. The formulation of these three performance
measures is closely related to that of the traditional SNR, considering that the total error be-

tween the ground-truth signal s and the estimated $ can be broken down to 3 components:

S=s+e,+e+e,, 4.4)

where:

* e, is the noise error component, denoting error that has been passed on to the recon-

structed signal by inclusion of environmental noise,

* ¢, is the interference error component, denoting error that has been passed on to the

reconstructed signal by inclusion of interfering speakers in the mixture, and
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* e, is the artifact error component, denoting error that is attributed to erroneous distor-

tions of the signal mixture caused by the reconstruction process.

The total sum of the error components:

eq=¢6€n+ e +eq, 4.5)

is called the distortion error. A pictorial description of the relation of these errors, the esti-
mated, and the reconstructed signal is shown in Figure 4.2.

By taking the log-scale power ratio of these components compared to the target signal, we
can derive meaningful quantitative metrics for the type of reconstruction error of our model,

measured in dB. More specifically we define:

* Source-to-Interference Ratio (SIR):

. s||?
SIR(s,8) = 10logy, (||||€||||2> , (4.6)

* Source-to-Noise Ratio (SNR):

112
SNR(s,3) = 10logy <M) , @.7)

[len|I?

 Source-to-Artifact Ratio (SAR):

. s+ e + e, ?
SAR(s,$) = 10log,, (H el I ) , (4.8)
* Source-to-Distortion Ratio (SDR):
SDR(s, §) = 101 [y 4.9
($>5)_ 0810 ||6 te te ||2 : ( . )

Our model will be evaluated on the SDR and SAR values attained by the separated target
source approximation, as well as the SDR improvement (SDRi) attained by comparing the

SDR of the separated source to that of the mixture. More specifically we define SDRi as:

SDRi(s, 8, Tmiz) = SDR(s,8) — SDR(S, Tz (4.10)

where x,,;, 1s the speech signal mixture from which s was separated.
In order to calculate these measures during testing, we use the corresponding utility of

the python museval library [52].
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4.3.2 Perceptual Quality Measures

The perceptual quality measures considered for evaluation of our model commonly found
in speech separation and enhancement literature are Perceptual Evaluation Speech Quality
(PESQ) [53], Short-Time Objective Intelligibility (STOI) [54] and the Virtual Speech Quality
Objective Listener (ViISQOL) [55]. Each of these defines a different process by which speech
signals are mapped to a perceptual quality scale.

ViSQOL and PESQ scores are mapped on a Mean Opinion Score - Listening Quality
Objective between 1 and 5, where 1 is the worst possible score and 5 the best. Note that
PESQ and ViSQOL scores are shown to be highly correlated. STOI scores are percentage
scores between 0 and 1, where 1 is the optimal score. The means by which we estimated each

score are listed:

» For PESQ, we used an already implemented routine available at the ITU’s ofticial

website, using the option +8000 for our audio data sampled at 16 kHz.

» For ViSQOL, we used the open source utility available at github using the default
similarity to quality model and the option —use_speech_mode for the wide-band 8000

Hz evaluation procedure.

» For STOI, we used the python module pystoi available on github.

4.4 Results

In this section we present results from different tests run for our model and contrast them
with similar work done in the past by architectures designed for tasks similar to the ones we
have examined.

In Table 4.1 we present a numbered list of the experiments we tested our model under,
where the column ”Speakers” refers to the number of speakers in the mixture and the column
”Noise level” refers to the scaling factor sampling distributions used for the interfering speak-
ers in scenario 2 while for scenario 1 we simply note ”"Equal”. The final row Video” refers to
the number of speaker videos available for the speakers in the mixture, with ”All” referring
to the case where all speakers have their lips appear in the video feed whereas “Target™ to the

case where only the target speaker appears in the video.
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Speakers Noise Level Videos
1 2 Low All
2 2 High All
3 2 Equal All
4 2 Low Target
5 2 High Target
6 3 High All
7 3 Low All
8 3 Low Target
9 4 Low All

Table 4.1: List of experimental settings

In Figure 4.3 we showcase the outputs of the separator for experimental case 3, where
two speakers from the TCD-TIMIT database with equal sound amplitude levels are mixed.
Despite some noise passing through, notice that the separated output matches that of the IBM

output, which is closely matched by its “’soft” estimation.

ML
L4

-

Mln, fl

(ii) Mask approximation (iii) Mask ground truth

Miln, Al @Xpxln,

(iv) Separated source (v) Ideal separation

Figure 4.3: Example of model output
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A comparative breakdown of the average performance scores as well as their standard
deviation is shown in Table 4.2 for the Lombard GRID corpus and in Table 4.3 for the TCD-
TIMIT corpus. In general our model yields significant SDR improvement in the separated
output from that of the mixture in all cases.

In low interference noise cases (experiments 1,4,7,9) the model showed admirable im-
provement of SDR on both datasets compared to the one feasibly achievable by a binary
mask. Perceptual objectives also attained fairly high results especially for the simplest case
of 2-speaker separation. For Lombard GRID, PESQ tested lower than ViSQOL scores across
all cases, whereas the opposite was true for the TCD-TIMIT dataset. A notable case in SDR
gain is that of 4-speaker mixtures, where the very audibly disruptive hubbub from many su-
perimposed speakers is cleaned leading to significant gain in quality. Furthermore, our inves-
tigation in the effect of inclusion of interfering speaker videos on the GRID dataset showed
that for very low noise induced by only one interfering speaker the inclusion of the video
modality yields no significant improvement. For higher noise levels the 2-speaker separation
task became slightly de-stabilized and yielded somewhat lower SDRi scores, as well as per-
ceptual scores. A slightly similar result was induced in 3-speaker mixtures indicating that we

may omit extraneous speaker modalities without significant loss in some cases.

Model Ideal Binary Mask Ideal Ratio Mask Mixture
SDRi SDR SAR STOI PESQ ViSQOL SDRi SDRi SDR
1 3.23 + 1.38 11.01 £+ 1.73 12.5 + 2.11 0.94 4+ 0.03 3.07 £+ 0.46 3.57 £ 0.38 4.91 4+ 1.56 5.13 + 1.57 7.78 +1.25
2 4.75 + 1.98 8.35 + 2.17 9.13 £ 2.74 0.89 £ 0.06 2.58 + 0.53 3.00 £ 0.39 7.70 £1.48 7.91 + 1.47 3.60 + 1.17
3 6.04 £+ 2.52 5.87 4+ 2.52 5.82 £+ 3.62 0.82 £+ 0.08 2.19+0.5 2.61 £ 0.42 10.2+1.35 10.4 £+ 1.33 —0.17 + 0.08
4 3.24 +1.53 11.01 £+ 1.64 12.7 £ 1.98 0.94 4+ 0.03 3.124+0.44 3.45 + 0.34 4.74 + 1.61 4.94 + 1.63 7.76 £ 1.24
5 4.45 +£2.18 8.05 + 2.23 8.70 £+ 3.08 0.88 £+ 0.07 2.53 + 0.55 2.95 £ 0.41 7.74 £ 1.57 7.93 £ 1.56 3.60 + 1.22
6 5.18 + 1.66 5.80 + 1.75 5.86 4 2.45 0.80 4 0.08 2.05 4 0.42 2.37 £ 0.33 8.88 + 1.15 9.12 4+ 1.13 0.61 + 0.82
7 4.29 +1.33 8.95 + 1.40 9.92 £ 1.76 0.89 £ 0.05 2.63 + 0.46 2.93 £ 0.35 6.38 = 1.25 6.61 + 1.26 4.66 + 0.89
8 4.14 £ 1.55 8.84 +1.61 9.72 £ 1.95 0.88 + 0.06 2.50 £ 0.47 2.93 £ 0.35 6.49 £+ 1.33 6.73 +1.34 4.71+£0.91
9 4.75 £ 1.17 7.74 £ 1.22 8.41 + 1.56 0.85 4+ 0.06 2.34 + 0.45 2.60 £+ 0.29 7.16 £ 1.01 7.39 + 1.02 2.99 + 0.72
Table 4.2: Experimental results on Lombard GRID corpus
Model Ideal Binary Mask Ideal Ratio Mask Mix
SDRi SDR SAR STOI PESQ ViSQOL SDRi SDRi SDR
1 3.42+2.34 11.16 + 2.38 13.87 + 2.84 0.93 £ 0.05 3.05 £+ 0.47 3.03 £ 0.51 5.33 £ 2.51 5.45 £ 2.53 7.74+1.24
2 5.54 4+ 2.69 9.24 4 2.64 11.04 + 3.36 0.89 4+ 0.07 2.89 4+ 0.47 2.72 4+ 0.46 8.57 £+ 2.29 8.71 + 2.29 3.69 +1.23
3 7.56 + 2.67 7.41 £+ 2.69 8.79 £ 3.55 0.85 £ 0.08 2.56 + 0.47 2.45 + 0.42 11.33 £ 2.17 11.5 £2.17 —0.15 &£ 0.07
6 5.88 + 2.06 6.45 + 2.09 7.28 £ 2.73 0.8 £ 0.09 2.33+0.41 2.24 4+ 0.36 10.08 + 1.97 10.28 =2 0.57 £ 0.78
7 4.5+ 1.98 9.23 £+ 2.05 10.99 £ 2.23 0.88 + 0.07 2.71 £ 0.41 2.6 £ 0.44 7.17 £ 2.25 7.33 £ 2.28 4.73 £ 0.89

Table 4.3: Experimental results on TCD-TIMIT corpus

As for the 2-speaker equal sound amplitude mixture, our model achieves an average SDRi

ot 6.04 on the Lombard GRID dataset and 7.56 on the TCD-TIMIT dataset. In general, tests
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(SDRi) 1 2 3 4 5
FF 343 | 491 | 583 | 333 | 457
FM 367 | 493 | 688 | 354 | 534
MF 317 | 531 | 637 | 338 | 423
MM 258 | 369 | 485 | 269 | 339

Table 4.4: Voice gender pairings effect on separation performance on Lombard GRID

TCD-TIMIT PESQ SDR
Gabbay [7] 2.09 0.40
Ephrat [5] 242 4.10
Gao [4] 291 10.9

GRID SDR | SIR | SAR | PESQ
Gabbay [7] 1B Mask | 185 | 861 | 406 | 174
Gabbay [7]IRMask | 3.06 | 586 | 7.9 242

Table 4.5: Results of similar architectures on 2-speaker separation

on TCD-TIMIT tend to work better for our architecture than those run on Lombard GRID
across most metrics except curiously enough for VISQOL. Notice, however, that the standard
deviation in SDR improvement on this dataset is significantly higher than that on Lombard
GRID. This may indicate the advantage of having a more diverse spoken vocabulary in sep-
arating speech, where it is more rare for words to coincide. Results on this experiment would
put us ahead of Ephrat [5] and Gabbay’s [7] work as can be seen from Table 4.5. However,
our model’s performance based on this test is yet to reach the state-of-the-art performance of

Gao’s model [4] .

An idiosyncrasy of our model is its inability to function without the use of a video modal-

ity that indicates the targeted speaker. As such, an audio-only baseline has been omitted.

Another interesting factor to investigate in 2-speaker mixtures is the effect of different
gender permutations on separation performance. In [8] and [5] a comparative breakdown of
model performance is presented on different kinds of speaker voice gender combinations
finding that male to male voice pairings are the hardest to separate, whereas female to female
voices do better, and different voice gender pairings (male to female or female to male) tend
to be more easily separable .

Our model differs from the previously cited work [8], [5] in that instead of separating all
speakers in the mixture our model specifically targets one speaker to separate from all the rest,
meaning that beyond the gender combinations, the specific permutation i.e. which speaker is
targeted matters. In Table 4.4 and in the violin plots of Figure 4.4 we have gathered results
for SDR improvement across different types of such pairings for all experimental cases that

involve two speakers, and note their average performance.

In general, it seems that separating female voices is easier, which seems to align with
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Figure 4.4: Model performance on different permutations voice gender
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the fact that female voices present a richness in frequency content greater than that of male
voices making them more distinctive. Overall the female to male permutation seems to be
the most favourable for separation.

As a final note on our model’s performance, by inspecting the violin plots we have pro-
duced, one can clearly see that by increasing the interference magnitude against which the
model has to discriminate increases variance in model performance and distances the average
SDRI score from the one attained by the oracle binary mask. The score distributions of the

model and the oracle are presented side by side in Figure 4.4.






Chapter 5

Conclusion

In this chapter, we draw our conclusions derived from the outcomes of the experimental
evaluation of our model (Section 5.1), as well as discuss possible future improvements, ex-
periments, and potential applications that may be tested for the architecture that we outlined

(Section 5.2).

S.1 Summary

To summarize, we state some of the notable achievements as well as shortcomings of our
architecture.

We managed to show that the audio-visual modality fusion method we developed can
yield significant results in speech separation tasks when combined with a U-Net architecture
and a 3D convolutional lip-reading Net. Another achievement of this model is its relative
simplicity to the performance it yields, containing no expensive fully connected or recursive
layers to model sequences, yielding good performance using only a small number of convo-
lutional layers. Furthermore, although our network may lack in total performance compared
to the current state-of-the-art, this kind of architecture could be highly scalable if adjusted to
work more efficiently, with no further parameters added as speakers are added to it, with the
addend that we may be able omit the video of interfering speakers and lose little accuracy,
however this claim may need further testing to prove for more speakers.

Although our model succeeds on average in suppressing a significant amount of interfer-
ence noise, it has a long way to go in order to meet state-of-the art standards and real world

applications. Significant work that transcends the purposes of this Thesis needs to be done in

45
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order to further optimize this model until it is ready for use.

5.2 Future Work

In the following list we present some potential additions to this thesis that came up during

development that we wish to see tried/implemented in future work:

* Optimizing hyper-parameters: Due to the limitations of the machine on which our

model was developed and tested (a single PC with an 4Gbyte NVIDIA palit card),
we skimmed the process of fine-tuning the model with the optimal hyper-parameters
as training a single model requires a lot of time. These include the number of inter-
mediate channels of the embeddings being fused, the kernel sizes of the networks, the

learning objective as well as the spectral resolution of the input spectrograms and more.

» Use of a more complex mask formulation / Phase correction: Although the IR mask was

originally tested as an objective for our model, it induced shakier training results and
yielded worse performance across all experimental cases, despite the IR oracle mask
achieving better separations across all cases. A second try at this however, perhaps
with changing some training hyper-parameters may prove fruitfull. Secondly, a com-
plex or phase sensitive mask may be used to diminish some of the adverse effects of
“phasiness™ in the reconstructed audios. A different approach to correcting phase dis-
tortion could be designing a phase sub-network as in Afouras et al. [6] for correcting

distortions in phase after estimating the magnitude of the signal.

» Background Noise in Separation: In the work done by Ephrat et al. [5] the separator

model is evaluated in a separation scenario that can be described as joint separation /
enhancement in which the model is trained in a two speaker separation scenario like

(4.2) to which background noise w[n] is added to the mixture, i.e.:

Tmiz[n] = s1[n] + s2[n] + o - w(n]

Furthermore, in Nguyen et al. [9] a similar mixture model is assumed where a non-

negative matrix factorization (NMF) model for background noise is used.

This sort of separation under noisy conditions poses an interesting challenge for any

work such as this and could be tested here as well.



5.2 Future Work 47

» Enhancement potential: A deeper investigation into the potential of our models ability

to separate speech signals from background noise signals ought to be investigated as a
parallel goal for this architecture, especially considering the U-Net’s tested efficiency

on noise suppression tasks [14].

» Non-frontal video modality: As stated previously, the datasets we chose to evaluate

our model also contain non-frontal view video recordings of the speakers. These can

be used in an investigation towards view-invariant speech separation [56].

* Online source separation: A drawback of our design is its inability to be applied on-

line, meaning that we cannot have the model operate on a live video stream, sepa-
rating audio frames from background noise on-the-fly. It might be fruitful to modify
our architecture to instead separate smaller sequenced chunks of audio data, instead of

processing large segments entirely as is done here.

* In-the-wild data: Many in-the-wild audio-visual speech datasets exist for training and

evaluating audio-visual speech separation pipelines, such as VoxCeleb [57], LRS [58],
AVSpeech [5] and others, but we opted to train our model on a controlled condition
setting as our initial goal. Furthering this project could include training and testing the

model for datasets such as these.
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