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Abstract

It has been proven that lung cancer is one of the most commonly and lethal diseases,

diminishing life expectancy worldwide. In past years, professional scanners that can project

the entire human body, have produced an increasing number of bio­medical images displaying

lung cancer nodules. At the same time, the scientific community took advantage of ongoing

advances in computer vision via Deep Learning (a sub­field of Artificial Intelligence) to deal

with challenges like segmentation, detection, and classification of lung cancer nodules. All

of them have a common aim; provide support and assistance to radiologists for punctual

diagnoses.

In this thesis, we offer a range of Deep Learning approaches for analyzing images from

the Lung Image Database Consortium­Image Database Resource Initiative [1] (LIDC­IDRI)

database using Convolutional Neural Networks techniques. All these methods are applied to

solve the 2­class, 3­class, 4­class and 5­class lung cancer nodule classification problem.
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Περίληψη

Έχει αποδειχθεί ότι ο καρκίνος του πνεύμονα είναι μια από τις πιο κοινές και θανατηφό­

ρες ασθένειες, μειώνοντας το προσδόκιμο ζωής παγκοσμίως. Τα τελευταία χρόνια, επαγγελ­

ματικοί σαρωτές που μπορούν να προβάλλουν ολόκληρο το ανθρώπινο σώμα, παρήγαγαν

έναν αυξανόμενο αριθμό βιο­ιατρικών εικόνων που εμφανίζουν οζίδια καρκίνου του πνεύ­

μονα. Ταυτόχρονα, η επιστημονική κοινότητα εκμεταλλεύτηκε τις συνεχείς προόδους στην

υπολογιστική όραση μέσω της Βαθιάς Μάθησης (ένα υπο­πεδίο της Τεχνητής Νοημοσύνης)

για να αντιμετωπίσει προκλήσεις όπως η κατάτμηση, η ανίχνευση και η ταξινόμηση των

όζων του καρκίνου του πνεύμονα. Όλα τα παραπάνω έχουν ως κοινό στόχο να παρέχουν

υποστήριξη και βοήθεια στους ακτινολόγους για ακριβείς διαγνώσεις.

Σε αυτήν την εργασία, προσφέρουμε μια σειρά από προσεγγίσεις Βαθίας Μάθησης για

την ανάλυση εικόνων από τη βάση δεδομένων Lung Image Database Consortium­Image

Database Resource Initiative [1] (LIDC­IDRI) χρησιμοποιώντας τεχνικές ΣυνελικτικώνΝευ­

ρωνικών Δικτύων. Όλες αυτές οι μέθοδοι εφαρμόζονται για την επίλυση του προβλήματος

ταξινόμησης όζων καρκίνου του πνεύμονα σε 2, 3, 4 και 5 κατηγορίες.
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Chapter 1

Introduction

Cancer is a term used to describe a group of diseases characterized by abnormal cell pro­

liferation [2] [3]. Lung cancer is among the most frequent and fatal types of cancer. The last

one is the second most commonly diagnosed cancer in men, after prostate cancer, and the

third most prevalent cancer in women, after breast and colorectal cancer [4] [5]. Accord­

ing to GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185

Countries [6], in the year 2021, 2,206,771 more new cases of lung cancer were presented,

occupying a percentage of 11.4 against all new cancer cases. In total, there were an estimated

1,796,144 deaths as a cause of lung cancer, which represents approximately the 18.0% of all

cancer deaths.

All the above emphasizes the importance of a prompt and accurate diagnosis of lung can­

cer cases. For this purpose, in the last decades, a variety of new medical imaging techniques

[7] [8] has been developed, with Computed Tomography (CT) scan [9] to be he most func­

tional one [10]. As a result, many datasets with bio­medical images have been constructed

[11]. The ever­growing field of Artificial Intelligence (AI) [12] exploits these data positively

,through Deep Learning (DL) techniques [13], to examine them and learn more about tumors.

More specifically, Convolutional Neural Networks (CNN) technique is well­established in

bio­medical imaging analysis [14] and this is proved by many researches relative το segmen­

tation [15] [16], detection [17] [18] and classification [19] [20] of lung cancer nodules.

In this thesis, we adopt a Deep Learning (DL) approach to categorize lung cancer nod­

ules from Lung Image Database Consortium­Image Database Resource Initiative [1] (LIDC­

IDRI) database, according to their malignancy level. Our methods use pretrained Convolu­

tional Neural Networks (pretrained CNN) [21] and Transfer Learning [22] and have as a result

1



2 Chapter 1. Introduction

the 2­class (binary), 3­class (trinary), 4­class and 5­class classification of nodules.

The structure of the thesis has the following format. In chapter 2, an analytical report of

Medical Imaging domain is provided. Then, in chapter 3, we present an extended introduction

to Deep Learning and some of the techniques that uses. Chapter 4 is referred to the LIDC­

IDRI database that will be later used, in chapter 5, to apply our Deep Convolutional Neural

Networks architectures. The results will be presented in chapter 6. In chapter 7, we discuss

about the importance of our work for the healthcare system and we refer to some limitations

that we faced. Finally, in chapter 8 we conclude our findings and make some thoughts for

future work to improve our methodology.



Chapter 2

Medical Imaging

Medical Imaging [23] [24] is a part of biological imaging [25] and encompasses a va­

riety of techniques and processes for viewing the human body for diagnostic, monitoring,

treatment, and follow up purposes. The most commonly used imaging techniques in clini­

cal medicine include X­ray radiography, computed tomography (CT), magnetic resonance

imaging (MRI), ultrasound, and digital pathology (Fig.2.1 and Fig.2.2). Each one of these

technologies exploits physical phenomena such as light, electromagnetic radiation, radioac­

tivity, nuclear magnetic resonance, and sound to provide invaluable information for better

understanding and treating the part of the body being investigated.

Figure 2.1: X­ray and CT scan of lung cancer. (Figure from [26])

3



4 Chapter 2. Medical Imaging

Figure 2.2: A 73­year­old woman with a visible pulmonary nodule at MRI (left) and chest

x­ray (right). All images courtesy of Marco Ali. (Figure from [27])

Medical imaging is crucial in a variety of medical settings and at all major levels of health

care. In the medical community, it is firmly believed, that the only way who can lead to effec­

tive decisions in public health and preventive medicine, as well as in curative and palliative

care, is the existence of accurate diagnoses. In general, diagnostic imaging services are criti­

cal for verifying, correctly diagnosing, and documenting the progress of various diseases, as

well as analyzing treatment responses.

2.1 Computed Tomography

InComputed tomography (CT), the term tomography comes from the Greek words tomos

(a cut, a slice, or a section) and graphein (to write or record) [28]. It is a structural imaging

process that uses sophisticated Χ­ray technology to help detect a variety of diseases and

conditions. It combines several X­ray projections obtained from various angles tomake cross­

sectional images of locations inside the body by rotating the X­ray tube around the body.

Simultaneously, at the opposite end of the X­ray tube, a detector array captures transmission

projection data, which is based on the idea that the density of the tissue passed through by

the X­ray beam may be determined by calculating the attenuation coefficient [29]. The grey

levels in a CT slice that are related to X­ray attenuation, represent the proportion of X­rays

absorbed as they passing through each voxel [30].
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All the information from a CT scan is stored in DICOM files. Digital Imaging and Com­

munications in Medicine (DICOM) is the international standard to transmit, store, retrieve,

print, process, and display medical imaging information, enabling the integration of medical

imaging devices such as scanners[31]. Each DICOM file has a, so called, header part, which

contains significant metadata, as well as a part for the pixel data of the image. Patient health

information (PHI) such as patient name, medical record number, and date of birth, as well

as image acquisition characteristics such as picture dimensions, voxel size, repetition time

(TR), and voxel data type, are commonly found in the header component of a DICOM file

(Fig.2.3).

Figure 2.3: DICOM object with metadata and image. The header is zoom in (right hand side)

and it illustrates a few of the attributes that the object contains. (Figure from [32])



Chapter 3

Deep Learning

Deep Learning is a subset of Machine Learning (ML), which is a subset of Artificial

Intelligence (AI) Fig.3.1. Artificial Intelligence is a domain of computer science, which is

concerned with training computer systems to think and learn by imitating the way that the

human brain functions. In this way, machines will be capable of performing tasks that typi­

cally require human intelligence. [33]Machine Learning and Deep Learning are the twomain

techniques that help Artificial Intelligence work.

Machine Learning, as well as Deep Learning, learns from data coming from the past

and makes predictions or decisions based on them. The main difference between those two

applications of Artificial Intelligence is that the second one is also very helpful in the wider

field of Data Science because it is a way to automate predictive analytics.[34] It can accept as

input unlabeled data in its raw format and after many complex computations end up defining

the hierarchy of features and how useful each one could be in the research, without human

intervention. [35]

3.1 Neural Networks

The termDeep Learning is closely related to Artificial Neural Networks (ANN). Artificial

Neural Networks was reported for the first time by McCulloch and Pitts in the 1940s [37]) as

mathematical models made to work and make decisions similar to the way that humans’ brain

does. The most important thing to construct functional ANNs is data. Fortunately, nowadays

in the Big Data era, we can train them with plenty of data, making them more robust and

trustworthy for humans.

6



3.1 Neural Networks 7

Figure 3.1: AI, Machine Learning, Deep Learning and the relationship between them (Figure

from [36])

The basic form of Neural Networks (NNs) consists of three layers, which are Input layer,

Hidden layer and Output layer. In the Input layer, Neural Network accepts the independent

variables or inputs of the model (x). Then, each hidden layer is composed of a large number of

simple elements, called neurons, and is responsible for processing the inputs. A Neural Net­

work is characterized as Artificial if only one Hidden layer exists. Deep neural networks are

Artificial Neural Networks that have more than one hidden layer between input and output.

This can be shown in Fig.3.2. Finally, the Output layer generates the desired predictions.

Figure 3.2: Artificial vs Deep Neural Networks (Figure from [38])
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In Fig.3.3, the learning process of a neuron (or so called perceptron) is given schemat­

ically, just for a better understanding of the function of Neural Networks. As it seems, ev­

ery input xi, is associated with the corresponding weight wi. Then, the sum of these terms

becomes the argument of an activation function ϕ, resulting in the output y. This can be

described mathematically with Eq.3.1.

y = ϕ(wTx) (3.1)

Figure 3.3: Schema of a perceptron (Figure from [39])

Activation functions and weights are responsible for transferring the input from one layer

to another in the correct form. In most cases non­linear activation functions are used, because

they are differentiable and can solve the Vanishing Gradient problem [40] by transforming

the output values to be within an acceptable range, but there are also linear. Some common

activation functions are presented below mathematically and schematically in Fig.3.4:
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1. Binary step function, which is a linear function

y =

0 if x < 0

1 if x ≥ 0

(3.2)

2. Linear or Identity function, where the activation is proportional to the input

y = x (3.3)

3. Sigmoid function, which is a non­linear function

y =
1

1 + e−x
(3.4)

4. TanH function, which is very similar to the sigmoid

y =
2

1 + e−2x
− 1 (3.5)

5. ReLU, which is the most common function used for hidden layers

y =

0 if x < 0

x if x ≥ 0

(3.6)

Figure 3.4: Linear(a) and Non­linear(b) activation functions
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3.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a category of Deep Neural Networks (DNN),

which is inspired by the primary visual cortex. They are suitable for many research domains

associated with processing data that has a grid pattern, such as images and videos. Further­

more, they are designed based on the architectural principle of shared weights. The purpose

of this principle is to reduce the number of training parameters by setting many weights to

the same value.

As shown in Fig. 3.5, every Convolutional Neural Network consists of two main parts.

The first one, known as convolutional base, is used to extract the features from the input array.

Convolutional Layers and Pooling Layers belong to the convolutional base. The second part

of a Convolutional Neural Network, known as head, is used to determine the final output,

i.e. the class of an image if the task is a classification problem. Fully­Connected Layers and

Loss Layer belong to head.

Figure 3.5: Convolutional Neural Network architecture (Figure from [41])

The parameters in the Convolutional Layer are arrays with small dimensions called filters

or kernels. They operate by scanning over an image and calculating the dot product between

filters and this image, ending up inmaps that illustrate the extracted features. This operation is

shown in Fig. 3.6. Then, the Pooling Layer is following to reduce the overall computational

complexity of image analysis. This is done by reducing the spatial dimension of the input

image (without loss of information) after convolution and the number of parameters in the

net. There are many different pooling operations such as average and max pooling (Fig. 3.7).

Finally, the operation ends by flattening the output of the convolutional base to be ready for

the Fully­Connected Layer, which is a FeedForward Neural Network, and computing the final
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output.

Figure 3.6: Convolution procedure (Figure from [42])

Figure 3.7: Pooling procedure (Figure from [43])

3.2.1 Transfer Learning

A very common problem in the field of Deep Learning is the lack of labeled data, that can

be used for training deep learning models. Specifically, in the domain of medical imaging,

labeled data collection encounters many obstacles, such as the high cost and the increased

required effort of radiology experts. So, it was necessary to make deep Convolutional Neural

Network models functional even in small datasets. Transfer Learning is one of the techniques

used for this purpose. It is a process in which a Convolutional Neural Network is trained on

small datasets by exploiting a network that was previously trained (pretrained models) on a

large dataset. For example, many models used the ImageNet challenge dataset to train their

filters and weights. The most used pretrained models are AlexNet [44], VGG [45], ResNet

[46], Inception [47], and DenseNet [48].
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As shown in Fig. 3.8, there are two ways to adapt a pretrained model in a Convolution

Neural Network. The first method is called fixed feature extraction. According to the proce­

dure that it follows, all the fully connected layers, from the Convolutional Neural Network

pretrained model, are removed and only the convolutional base (convolution and pooling

layers), along with the filters and weights, are remaining. Then, we add new fully connected

layers to the convolutional base and we update only the weights of these layers in the training.

In the second method, which is called fine­tuning, we again replace the fully connected layers

with new ones, but also we fine­tune all or part of the filters of the convolusional base. More

often, we select the deeper layers to fine­tune, because these are responsible for extracting

more complex features related to the given data.

Figure 3.8: Fixed feature extraction and fine­tuning techniques for the use of Transfer Learn­

ing (Figure from [49])



Chapter 4

Analysis of LIDC­IDRI database

The Lung Image Database Consortium­Image Database Resource Initiative [1] database,

also known as LIDC­IDRI, is the world’s largest and most widely used pulmonary lung nod­

ule database. The National Cancer Institute [50] (NIH) established the first component of

LIDC­IDRI under the name LIDC. Then, the IDRI database was generated with the help of

the Foundation for the National Institutes of Health [51] (FNIH) and eight medical imaging

companies. Finally, the CT scans from the two databases above are all combined, and we led

in the advanced LIDC­IDRI database with the extra help of the Food andDrugAdministration

[52] (FDA).

LIDC­IDRI dataset contains in total 1018 CT scans coming from 1010 different. Nod­

ules is divided in three categories depending on their size; nodules with a diameter bigger

than 3 mm (total 2648), nodules with a diameter of less than 3 mm (total 4702) and non­

nodules with a diameter bigger than 3 mm [53] [54](Fig. 4.1). According to the privacy rules

of the Health Insurance Portability and Accountability Act [55] (HIPAA) , anonymization

software had to be used to erase all protected health information (PHI) contained inside the

DICOM headers of the images[1]. For the creation of all these images were used many vari­

ous types of scanners from manufacturers, such as GEMedical Systems LightSpeed, Phillips

and Siemens.

13
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Figure 4.1: Division of nodules depending on their size. (a) Nodule with a diameter bigger

than 3 mm, (b) Nodule with a diameter of less than 3 mm and (c) Non­nodule with a diameter

bigger than 3 mm (Figure from [53])

Each of the 1018 scans can be either a standard­dose diagnostic CT scan or a lower­

dose CT scan and has numerous 2D slices as well as an XML file [56]. This file contains

information about the nodule’s location, contour, and some other features. Following a four­

radiologist two­phase image annotation approach, the following features emerged:

• subtlety, with values in range = (1,2,3,4,5). It describes how difficult is the detection

of a nodule, where ’5’ denotes the easier detection.

• internal structure, with values in range = (1,2,3,4) or respectively (‘Soft Tissue’,‘Fluid’,‘Fat’,‘Air’),

which denotes the internal composition of the nodule.

• calcification, with values in range = (1,2,3,4,6) or respectively (‘Popcorn’, ‘Lami­

nated’, ‘Solid’, ‘Non­central’, ‘Central’, ‘Absent’). It describes the pattern of calci­

fication, if present.

• sphericity, with values in range = (1,2,3,4,5) or respectively (‘Linear’, ‘Ovoid/Linear’,

‘Ovoid’, ‘Ovoid/Round’, ‘Round’), which describes the three­dimensional shape of the

nodule in terms of its roundness.
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• margin, with values in range = (1,2,3,4,5) or respectively (‘Poorly Defined’, ‘Near

PoorlyDefined’, ‘MediumMargin’, ‘Near Sharp’, ‘Sharp’). It denotes howwell­defined

the nodule margin is

• lobulation, with values in range = (1,2,3,4,5), which is the degree of lobulation ranging

from none to marked.

• spiculation, with values in range = (1,2,3,4,5), which refers to the extent of spiculation

present, ranging from none to marked

• texture, with values in range = (1,2,3,4,5) or respectively (‘Non­Solid/GGO’, ‘Non­

Solid/Mixed’, ‘Part Solid/Mixed’, ‘Solid/Mixed’, ‘Solid’)

• malignancy, with values in range = (1,2,3,4,5) or respectively (‘HighlyUnlikely’, ‘Mod­

erately Unlikely’, ‘Indeterminate’, ‘Moderately Suspicious’, ‘Highly Suspicious’). It

describes the assessement of the likelihood of malignancy.

In Fig. 4.2 is performed a lung nodule image and its annotation for all the features pre­

sented above.

Figure 4.2: Example nodule from the LIDC­IDRI dataset with diagnostic feature values from

four radiologists. (Figure from [57])



Chapter 5

Our architectures for lung cancer

nodules classification

5.1 Data preprocessing

For the purposes of our research, we used a part of LIDC­IDRI database. More specifi­

cally, we processed only bio­medical images with nodules greater than 3mm. The total num­

ber of them was 2648 different nodules in a DICOM format.

From theDICOM file, we isolated every 3D scan alongwith information related to it. This

information concerns the intercept and slope, which are necessary for converting pixels from

Hounsfield units to intensity. Furthermore, we kept information about the pixel­based Region

of Interest (RoI), which is given for each nodule separately and is also a 3D image with the

same dimensions as the nodule. The final, and more important, clue was the annotation, of at

least one to at most four radiologists, for the malignancy level of each nodule.

5.1.1 First phase of preprocessing

In the first phase of preprocessing, we used the RoI mask of each nodule to help us sep­

arate the slices with the most information on them. In our case, the given RoI mask was a

binary mask, which means that the value of each pixel is ’0’ if it belongs to the background

and ’1’ if it belongs to the nodules’ area. The dimensions are the same as the corresponding

nodule image [58].

So the first step was to split each 3D nodule image and its corresponding mask, in the

2D slices that included. Coming up next, we set a threshold in the number of pixels that

16
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belong to the nodules’ area. Following the histogram in Fig. 5.1 and the mean value of the

number of aces in RoI masks, we decided to set the threshold in the value of 10. It means,

practically, that every slice of a nodule image that has less than 10 aces (or less than 10 pixels

that correspond to nodule area) in the mask, was deleted. In this way, only the rest slices

with important information for each nodule formed our database. In total, we have 23754 2D

slices.

Figure 5.1: Histogram of the number of aces in RoI masks. Mean value is 15 aces.

5.1.2 Second phase of preprocessing

In the second phase, we normalized the raw CT 2D slices from above, in the range (0, 1).

Then, we constructed 3 databases by processing the previous 2D slices. The three cases are

presented below:

1. Raw CT 2D slices, which contains the normalized raw CT 2D slices.

2. Lung window 2D slices, which contains only the part of the 2D slice that illustrates

the lung area. It is done by converting the pixels from Hounsfield units to intensity



18 Chapter 5. Our architectures for lung cancer nodules classification

with the formula :

pixelV alue = slope · 2DImageArray + intercept (5.1)

where slope and intercept is given from metadata of the DICOM file. Then, we scale

pixel intensity data using specified window level, width, and intensity range (0, 1).

3. Concatenation of the two previous datasets, which contains 3D images. Here, we

stack the 2D raw CT slice with the corresponding 2D lung window slice and a 2D

array with pixel values equal to zero and dimensions the same as the other slices.

Since the deep Convolutional Neural Networks, that we will use later, need as input 3D

images with same dimensions, we applied zero­padding [59] [60] in all 2D slices of the first

two dataset cases and in all 2D slices of each 3D image in the third case. So, we resize all 2D

slices in dimension (98, 98), because, as shown in Fig. 5.2, the bigger dimension was 98 in

x axis. After zero­padding, we converted each 2D slice of the first two cases in 3D image by

stacking it 3 times.

Figure 5.2: Histogram of values of width and height of all images. Max value is 98.
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5.1.3 Third phase of preprocessing

As mentioned in Chapter 4 the original labels contain 5 different classes that indicate the

malignancy level of each nodule :

• class ’0’: ‘Highly Unlikely’

• class ’1’: ‘Moderately Unlikely’

• class ’2’: ‘Indeterminate’

• class ’3’: ‘Moderately Suspicious’

• class ’4’: ‘Highly Suspicious’

Scince there are annotations of at least one to at most four radiologists for each nodule, we

had to make the final label one­dimensional. This is done by taking the mode of the classes

appeared in the annotation of a nodule. If there was more than one mode we kept the greater

value as we want to avoid assuming a nodule benign although it was malignant. Then, we

create three subcases for each case of Subsection 5.1.2:

• 5­class classification dataset with all images and labels as they emerged from the pre­

vious preprocess. The number of instances per class is shown in Fig. 5.3.

Figure 5.3: Barplot of number of instances per class in 5­class classification dataset.
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• 4­class classification dataset with all images that do not belong to ’Intermediate’ class

and with labels:

– class ’0’: ‘Highly Unlikely’

– class ’1’: ‘Moderately Unlikely’

– class ’2’: ‘Moderately Suspicious’

– class ’3’: ‘Highly Suspicious’

The number of instances per class is shown in Fig. 5.4.

Figure 5.4: Barplot of number of instances per class in 4­class classification dataset.

• 3­class classification dataset with all images from the previous preprocess, but to pre­

pare the labels we merged the previous class ’0’ with class ’1’ and class ’3’ with class

’4’ and kept class ’2’ as it was. So, now we have:

– class ’0’: ‘Highly Unlikely and Moderately Unlikely’

– class ’1’: ‘Indeterminate’

– class ’2’: ‘Moderately Suspicious and Highly Suspicious’

The number of instances per class is shown in Fig. 5.5.
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Figure 5.5: Barplot of number of instances per class in 3­class classification dataset.

• 2­class classification dataset with all images that do not belong to ’Intermediate’ class

and with labels:

– class ’0’: ‘Highly Unlikely and Moderately Unlikely’

– class ’1’: ‘Moderately Suspicious and Highly Suspicious’

The number of instances per class is shown in Fig. 5.6.

Figure 5.6: Barplot of number of instances per class in 2­class classification dataset.
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5.2 Preparation of deep model’s inputs

Before we construct deep models for the three classification problems (binary, trinary and

5­way) described previously, it was necessary to ensure their functionality and robustness. So,

in Subsection 5.2.1 we talk about Stratified K­fold Cross Validation [61] and in Subsection

5.2.2 about Data Generator technique, which are responsible for the way that the data will be

loaded in the models.

5.2.1 Split datasets into train, validation and test sets

First of all, we used Stratified K­fold Cross Validation method to split the dataset into

train and test sets. Through this method, the dataset is separated in K folds, where (K − 1)

folds is used for training and 1 fold for testing. In our case, the seperation is applied on the

nodules and not on the 3D slices that our datasets contain,and K is equal to 5. Stratified K­

Fold algorithm ensures that every fold will contain same percentage of every class. This is

very important, because the data in our problem is imbalanced and there is the danger that all

instances of a class will be only in the training or in the testing set and the classifier will fail

to make correct predictions.

The function of Stratified K­fold Cross Validation method is described in Fig. 5.7. We

make K iterations and each time one different fold will be the testing set. The procedure

reaches to end when each fold has been used as the testing set. The final performance of

the classifier is the average of the performances of all iterations. It is worth mentioning, that

10 percent of training set is used as a validation set in the fitting process of the classifier. It

contains same amount of instances of all classes just like train and test set do.

5.2.2 Data Generator

In our project, we had to handle images that consume a lot of memory space. In this

circumstance, the creation of a custom Data Generator [63] is highly recommended. It is a

class of the Python’s high­level package, Keras [64], that can be modified based on our needs.

The use of a Data Generator allows us to transmit, in your architecture, in batches the data

that you want. The following is a description of how our custom Data Generator works:
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Figure 5.7: K­fold representation, where K=5. (Figure from [62])

1. takes a list that contains IDs of nodules

2. loads a given number of IDs (batch size)

3. loads all preprocessed 3D slices (3 × 98 × 98) that belong to those nodules and con­

catenate them in a 4D array with shape (4× 3× 98× 98)

4. pass this 4D array through our architecture either for training or validation or evaluation

of the model

5. repeat steps 2, 3 and 4 as many times as needed to load all instances.

5.3 Convolutional Neural Network Classifiers

As our datasets contain only a few images, it is not possible to successfully extract fea­

tures with a custom Convolutional Neural Network. This led us to adopt the transfer learning

method, keeping the filters and weights from pretrained models. In our project, we finally

chose the Inception­V3 model [65], because, after trials with many pretrained models, it was

the onewith the best performance. It is trained in over than onemillion images from ImageNet

database [66], that belong to one thousand different classes and thus it is more stable and ac­

curate than a new custommade CNN. In Fig. 5.8 is presented the architecture of Inception­V3

model, as described in the original paper. In the Subsections 5.3.1, 5.3.2 and 5.3.4, we convert

the last three layers to make the model more suitable for our experiment.
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Figure 5.8: Diagram of the Inception­V3 model. (Figure from [67])
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5.3.1 Binary case

For each of the three cases of dataset (raw CT, lung window and concatenated) we applied

the architecture in Table 5.1. We followed the fine­tuning method only in the Neural Network

layers and we ended up with Adam [68] as optimizer and the value 0.001 as learning rate.

Input tensor shape

(3× 98× 98)

Inception­V3 convolution layers

with no pooling in last layer

Flatten

150 neurons, Dense, ReLU

Dropout 0.4

50 neurons, Dense, ReLU

Dropout 0.3

1 neuron, Dense, sigmoid

Table 5.1: Binary model architecture for raw CT, lung window and concatenated dataset.

5.3.2 Trinary case

For the raw CT dataset we applied the architecture in Table 5.2. After the fine­tuning

procedure, we selected Adam as optimizer and the value 0.001 as learning rate. This time,

for lung window and concatenated dataset we differentiate the architecture as shown in Table

5.3. After the fine­tuning procedure, we selected Adam as optimizer and the value 0.005 as

learning rate.
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Input tensor shape

(3× 98× 98)

Inception­V3 with no pooling in

last layer

Flatten

80 neurons, Dense, ReLU

Dropout 0.4

3 neuron, Dense, softmax

Table 5.2: Trinary model architecture for raw CT dataset.

Input tensor shape

(3× 98× 98)

Inception­V3 with no pooling in

last layer

Flatten

150 neurons, Dense, ReLU

Dropout 0.4

3 neuron, Dense, softmax

Table 5.3: Trinary model architecture for lung window and concatenated dataset.

5.3.3 4­class case

For the raw CT dataset we applied the architecture in Table 5.4. After the fine­tuning

procedure, we selected Adam as optimizer and the value 0.005 as learning rate. This time,

for lung window we differentiate the architecture as shown in Table 5.5 and we selected

Adam as optimizer and the value 0.001 as learning rate. For concatenated dataset we chose

the architecture in Table 5.6. After the fine­tuning procedure, we selected Adam as optimizer
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and the value 0.005 as learning rate.

Input tensor shape

(3× 98× 98)

Inception­V3 with no pooling in

last layer

Flatten

150 neurons, Dense, ReLU

Dropout 0.4

50 neurons, Dense, ReLU

Dropout 0.3

4 neuron, Dense, softmax

Table 5.4: 4­class model architecture for raw CT dataset.

Input tensor shape

(3× 98× 98)

Inception­V3 with no pooling in

last layer

Flatten

80 neurons, Dense, ReLU

Dropout 0.4

40 neurons, Dense, ReLU

Dropout 0.3

4 neuron, Dense, softmax

Table 5.5: 4­class model architecture for lung window dataset.
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Input tensor shape

(3× 98× 98)

Inception­V3 with no pooling in

last layer

Flatten

150 neurons, Dense, ReLU

Dropout 0.4

4 neuron, Dense, softmax

Table 5.6: 4­class model architecture for concatenated dataset.

5.3.4 5­class case

For each of the three cases of dataset (raw CT, lung window and concatenated) we applied

the architecture in Table 5.7. We followed the fine­tuning method only in the Neural Network

layers and we ended up with Adam [68] as optimizer and the value 0.0005 as learning rate.

Input tensor shape

(3× 98× 98)

Inception­V3 convolution layers

with no pooling in last layer

Flatten

150 neurons, Dense, ReLU

Dropout 0.4

75 neurons, Dense, ReLU

Dropout 0.4

5 neuron, Dense, softmax

Table 5.7: 5­class model architecture for raw CT, lung window and concatenated dataset.
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Results

6.1 Evaluation Metrics

After the training of a deep learning model, comes the testing process. On this stage,

we have to evaluate our model in new unseen data, which tough are related to the training

data. This is done by using different evaluation metrics [69] that are suitable for each type of

problems. For the purpose of this classification problem, we first need to define theConfusion

Matrix [70] (Fig. 6.1). In this, four variables are calculated:

• True Positives (TP) number describes the number of instances that was actually belong

to positive class and was correctly predicted.

• False Negatives (FN) number describes the number of instances that was actually be­

long to positive class and was wrongly predicted.

• False Positives (FP) number describes the number of instances that was actually belong

to negative class and was wrongly predicted.

• True Negatives (TN) number describes the number of instances that was actually be­

long to negative class and was correctly predicted.

29
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Figure 6.1: Confusion Matrix overview for binary classification (Figure from [69]).

Confusion matrix can, also, be created for multi­class classification with dimensionsN×

N , where N is the number of classes. In this case, it is like we construct a confusion matrix

of each class against all the other remaining classes. For example, for class A in Fig. 6.2 the

following apply:

FN = EAB + EAC (6.1)

FP = EBA + ECA (6.2)

TN = TPB + ECB + EBC + TPC (6.3)

Figure 6.2: Confusion Matrix overview for multi­class classification (Figure from [69]).
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So, for our problem, we utilized the following metrics based on all of the above informa­

tion:

1. Accuracy, which expresses the proportion of correct predictions to the total number of

instances considered. This metric is the most commonly used but it is not very good in

the case of unbalanced data. It is calculated by the formula:

Accuracy =
TPclass_name + TNclass_name

TPclass_name + TNclass_name + FPclass_name + FNclass_name

(6.4)

2. Precision, which expresses the proportion of the correct predicted instances of a class

to the total number of instances that predicted to belong in this class. It is calculated

by the formula:

Precision =
TPclass_name

TPclass_name + FPclass_name

(6.5)

3. Recall, which expresses the proportion of the correct predicted instances of a class to

the total number of the instances that actually belong to this class. It is calculated by

the formula:

Recall =
TPclass_name

TPclass_name + FNclass_name

(6.6)

4. F1­score, is a good choice when the data is imbalanced and combines the recall and

precision. It is calculated by the formula:

F1 − score =
2 ∗ Precisionclass_name ∗Recallclass_name

Precisionclass_name +Recallclass_name

(6.7)

5. Area Under the Curve (AUC) (Fig. 6.3) considered to be the best evaluation metric. It

can be applied either in binary or in multi­class classification, but in the second case

calculation of AUC follows the one­vs­all technique. Curve is reffered to Receiver

Operating Characteristic) (ROC) curve and is defined as the False Positive Rate (FPR)

versus the True Positive Rate (TPR) for a variaty of candidate threshold values between

0.0 and 1.0.



32 Chapter 6. Results

Figure 6.3: ROC­AUC curve. (Figure from [71]).

6.2 Results

6.2.1 Overview

In this section, we present the results obtained by the transfer learning deep models pro­

posed in section 5.3. For each of the binary, trinary, 4­class and 5­class cases, we compare

the results of training and testing them in Raw CT, Lung Window and Concatenated dataset.

From the results in Tables 6.1, 6.2, 6.3, 6.4, we can easily understand that every classifier

was negatively affected by the fact that our data was highly imbalanced.

6.2.2 Binary case

In the 2­class (binary) experiment the performance is satisfactory for each of the three

dataset cases (Table 6.1). However, we see that the proposed method has the best outcome

when it uses the Lung Window dataset for training and testing. Furthermore, We can observe

that it is more accurate when a nodule is malignant (belongs to classs ’1’), than when a nodule

is benign (belongs to classs ’0’). This is, mainly, because the classifier is trained in highly

imbalanced data.



6.2 Results 33

Raw CT Lung Window Concatenated

Accuracy 0.80 0.81 0.76

AUC 0.79 0.80 0.78

Precision(class ′0′) 0.63 0.67 0.57

Precision(class ′1′) 0.89 0.89 0.92

Recall(class ′0′) 0.76 0.75 0.83

Recall(class ′1′) 0.81 0.84 0.74

F1score(class ′0′) 0.69 0.70 0.67

F1score(class ′1′) 0.85 0.86 0.82

Table 6.1: Results for binary case.

6.2.3 Trinary case

In the 3­class (trinary) experiment the performance is less satisfactory for each of the three

dataset cases (Table 6.2). However, we see that the proposed method has the best outcome

when it uses either the Raw CT or the Concatenated dataset for training and testing. We can

observe that it is very accurate when a nodule is malignant (belongs to classs ’2’), but it is

more difficult to recognize the remaining classes ’0’ and ’1’.

6.2.4 4­class case

In the 4­class experiment the performance is moderate for each of the three dataset cases

(Table 6.2). However, we see that the proposed method has the best outcome when it uses the

Raw CT dataset and the Concatenated dataset for training and testing. We can observe that it

is very accurate when a nodule is malignant (belongs to classs ’3’) or is moderately unlikely

to bemalignant (belongs to class ’1’) but it is more difficult to recognize the remaining classes

’0’ and ’2’. This experiment took place because we wanted to avoid the ’Intermediate’ class

as it has had much more instances from the other classes and further confuses the classifier.
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Raw CT Lung Window Concatenated

Accuracy 0.61 0.55 0.59

AUC(class ′0′) 0.60 0.60 0.57

AUC(class ′1′) 0.66 0.64 0.66

AUC(class ′2′) 0.78 0.72 0.75

Precision(class ′0′) 0.52 0.47 0.50

Precision(class ′1′) 0.52 0.47 0.50

Precision(class ′2′) 0.78 0.78 0.76

Recall(class ′0′) 0.32 0.35 0.27

Recall(class ′1′) 0.58 0.62 0.62

Recall(class ′2′) 0.76 0.59 0.70

F1score(class ′0′) 0.33 0.34 0.29

F1score(class ′1′) 0.54 0.53 0.54

F1score(class ′2′) 0.77 0.66 0.73

Table 6.2: Results for trinary case.

6.2.5 5­class case

In the 5­class experiment the performance is the least satisfactory for each of the three

dataset cases (Table 6.2). However, we see that the proposed method has the best outcome

when it uses the Raw CT dataset and the Lung Window dataset for training and testing. We

can observe that it is very accurate when a nodule is malignant (belongs to classs ’4’), but it

is more difficult to recognize the remaining classes ’0’, ’1’, ’2’ and ’3’. Specifically, we can

see that the performance for the class ’2’ (Intermediate) is very bad and it led us to construct

a model only for the other four classes as shown in subsection 6.2.4, which ultimately shows

really good performance.
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Raw CT Lung Window Concatenated

Accuracy 0.57 0.43 0.53

AUC(class ′0′) 0.64 0.70 0.70

AUC(class ′1′) 0.72 0.73 0.72

AUC(class ′2′) 0.55 0.51 0.53

AUC(class ′3′) 0.78 0.75 0.77

Precision(class ′0′) 0.43 0.42 0.36

Precision(class ′1′) 0.44 0.36 0.41

Precision(class ′2′) 0.46 0.30 0.36

Precision(class ′3′) 0.70 0.72 0.74

Recall(class ′0′) 0.36 0.49 0.57

Recall(class ′1′) 0.60 0.63 0.61

Recall(class ′2′) 0.20 0.10 0.15

Recall(class ′3′) 0.84 0.76 0.73

F1score(class ′0′) 0.36 0.44 0.43

F1score(class ′1′) 0.50 0.39 0.49

F1score(class ′2′) 0.27 0.12 0.21

F1score(class ′3′) 0.76 0.72 0.74

Table 6.3: Results for 4­class case.
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Raw CT Lung Window Concatenated

Accuracy 0.41 0.36 0.37

AUC(class ′0′) 0.70 0.73 0.70

AUC(class ′1′) 0.64 0.64 0.63

AUC(class ′2′) 0.53 0.51 0.51

AUC(class ′3′) 0.58 0.52 0.55

AUC(class ′4′) 0.80 0.78 0.80

Precision(class ′0′) 0.35 0.25 0.38

Precision(class ′1′) 0.22 0.19 0.21

Precision(class ′2′) 0.50 0.26 0.39

Precision(class ′3′) 0.30 0.28 0.29

Precision(class ′4′) 0.66 0.63 0.62

Recall(class ′0′) 0.49 0.65 0.53

Recall(class ′1′) 0.52 0.62 0.52

Recall(class ′2′) 0.11 0.02 0.03

Recall(class ′3′) 0.30 0.07 0.23

Recall(class ′4′) 0.76 0.72 0.81

F1score(class ′0′) 0.32 0.35 0.38

F1score(class ′1′) 0.31 0.30 0.33

F1score(class ′2′) 0.16 0.03 0.04

F1score(class ′3′) 0.30 0.02 0.24

F1score(class ′4′) 0.71 0.67 0.70

Table 6.4: Results for 5­class case.
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Discussion

7.1 Classification

The classification procedure has been researched for many years through statistics and

Machine and Deep Learning for solving many common problems and very good results have

been achieved. Nevertheless, deep learning models have not been satisfactorily expanded and

researched upon medical images. So far, the review procedure of a CT scan or other images

coming from imaging techniques in clinical medicine (for example X­ray, MRI, ultrasound)

is time­consuming and hasmany stages. It requires the participation of radiologists and physi­

cians who are experts in reading and interpreting CT scans. Most of the time, there is a time

delay, because of the difficult communication between them or because one or more of them

do not work at this specific time.

So, the main goal of this thesis was to apply deep learning techniques based on Convolu­

tional Neural Networks to solve the problem of categorization of CT scans with pulmonary

nodules, and to create systems that doctors can consult, along with their knowledge. Since

many pretrained models based on CNN have been successfully trained on large databases, for

example ImageNet dataset, which contains more than one million images, we can use them

to improve the performance of models trained on medical images. One significant feature of

deep learning models is that, after the training procedure, the model is ready to accept new

images for categorization and make a prediction in a few seconds, unlike doctors. Further­

more, these models have been trained on many different lung cancer cases, so they can help

doctors in difficult and unknown cases.
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38 Chapter 7. Discussion

The existing works try to classify the lung cancer nodules into 2 classes (benign or ma­

lignant), ignoring the separation of benign nodules in ’Highly Unlikely’ and ’Moderately

Unlikely’ malignancy and the separation of malignant nodules in ’Highly Suspicious’ and

’Moderately Suspicious’ malignancy. Also, they ignore the existence of nodules that were

annotated as indeterminate.

In this thesis, we propose architectures based on Convolutional Neural Networks. They

try to classify the lung cancer nodules either on 2 classes (benign or malignant), either on

3 classes (benign, Indeterminate, malignant), either on 4 classes (’Highly Unlikely’, ’Mod­

erately Unlikely’, ’Highly Suspicious’, ’Moderately Suspicious’), or on 5 classes (’Highly

Unlikely’, ’Indeterminate’, ’Moderately Unlikely’, ’Highly Suspicious’, ’Moderately Suspi­

cious’). The last two tasks are suitable to help doctors in new and different from the already

existing cases. Furthermore, we used not only the raw CT images but also the lung window

of those images. So, we gave input in our models those two data types separately and in

combination ending up with satisfactory results that can be helpful in the medical field.

7.2 Limitations

Through our research, we understood that the application of deep learning in the process­

ing of medical images is of utmost importance for the immediate diagnosis of lung cancer,

and consequently, the improvement of life expectancy. However, we faced some limitations

related to the fact that deep learning techniques require plenty of data and the same sample

availability per class, for the training procedure. Unfortunately, due to privacy rules, most of

the medical data can not be used for researches. Although the LIDC­IDRI database, that we

used for our experiments, is one of the largest datasets with medical images, it only contains

1010 CT scans with highly imbalanced data. The above forced us to use the transfer learning

method (pretrained models), which is suitable for images with 2D volume, whereas all CT

scans have 3D volume images. So, we had to work with 2D volume images and radiologists

had to annotate each 2D volume image and not the initial 3D volume image. This is such

a big deal because it can lead to information loss that may lead to false predictions for life

issues.



Chapter 8

Conclusion and future work

In this thesis, we dealt with an issue related to biomedical engineering. Our motivation

was to help the medical community in the correct and timely diagnosis of lung cancer cases,

as it is one of the most deadly forms of cancer. More specifically, we tried to assess the

malignancy level of lung cancer nodules by using transfer learning deep models. We prepro­

cessed the Lung Image Database Consortium­Image Database Resource Initiative (LIDC­

IDRI) database in three different ways. Then, we used all these cases to train and test many

different Convolutional Neural Network architectures, with the pretrained model, Inception­

V3.

In the future, we want to improve this research by exploring 3D transfer learning, which

will give us the opportunity to work with the initial 3D volume images from CT scans. Fur­

thermore, we can use augmentation techniques to avoid the imbalance of the data. All the

above will probably, let us create more robust models for the classification of lung cancer

nodules.
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Appendix

Code and System specifications

1 Code

Code written for this thesis, is given in many different jupyter notebooks. You can find it

on Google Drive

(https://drive.google.com/drive/folders/1TmNZABqgKEaDpEq9uhsdIAwTTBmBTHQp?

usp=sharing).

2 System specifications

For the purposes of this thesis, we used two different systems:

• Windows x64, CPU AMDA10 Extreme Edition Radeon R8, 4 cores, 8 GB RAM, 2.00

GHz (for preprocess of images)

• Kaggle (online platform for running machine and deep learning architectures), which

offers free GPU NVIDIA Tesla P100 with 2 CPU cores and 13 GB RAM (for runnig

deep models)
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