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Abstract

Latch-based designs have many advantages over Flip-Flop-based designs such

as timing, power, and area but their use is constrained. First, most RTL implemen-

tations nowadays are Flip-Flop-based due to the existence of Latches being level-

sensitive, while Flip-Flops are edge-triggered components, allowing for easier circuit

Static Timing Analysis (STA) validation. After that, state of the art STA engines are

dependent on a number of hypotheses about the essence of the design and the com-

bination of the nature of Latches may lead to timing errors and poor quality results.

In more detail, the existence of combinational feedback loops in a Latch-based design

may drive the STA engine to disable these feedback loops in an effort to minimize

the effect of the violation-timing error on the circuit timing validation. In relation to

the above, in some cases where more than one Latches clocked on different phases

are transparent simultaneously, may come up with a wrong timing analysis, since a

momentery combinational feedback it may be produced functionally. Another case

that can cause a wrong timing report is the procedure of a setup checking on a

Latch. In this work, we introduce a Latch-STA methodology that supports Syn-

chronous, Cyclic, and Acyclic circuits and has been implemented and integrated on

an Electronic Design Automation (EDA) tool called ASP. We need to mention that

the combination of this work with the existing ASP ASTA tool could provide timing

analysis on Bundled-Data Latch-Based designs. Eventually, we present the exper-

imental results and emphasize the fact that this work handles effectively the above

assumptions and design cases.



Περίληψη

Τα ψηφιακά κυκλώµατα που στηρίζουν τη σχεδίαση τους σε Μανδαλωτές έχουν

αρκετά πλεονεκτήµατα σε σχέση µε τα ψηφιακά κυκλώµατα που στηρίζουν την υλο-

ποίηση τους σε Καταχωρητές, σε τοµείς όπως είναι ο χρονισµός, η ενέργεια και το

εµβαδόν, η χρήση τους όµως είναι περιορισµένη. Αρχικά στη σηµερινή εποχή οι πε-

ϱισσότερες κυκλωµατικές υλοποιήσεις στηρίζονται σε Καταχωρητές, λόγω της ϕύσης

τους που τα καθιστά πυροδοτούµενα στην ακµή σε σχέση µε τους Μανδαλωτές που

πυροδοτούνται µε ϐάση το ενεργό χρονικό επίπεδο. ΄Ετσι κυκλώµατα µε Καταχωρητές

είναι πιο εύκολα διαχειρίσιµα στο γεγονός της επαλήθευσης της χρονικής λειτουργείας

τους µέσω της Στατικής Χρονικής Ανάλυσης. Στη συνέχεια, τα ϐιοµηχανικά εργαλεία

Στατικής Χρονικής Ανάλυσης είναι εξαρτώµενα από διάφορες υποθέσεις σχετικά µε την

ϕύση του κυκλώµατος, το οποίο σε συνδιασµό µε την ϕύση των Μανδαλωτών, µπορεί

να οδηγήσει σε λάθη χρονισµού καθώς επίσης και σε χαµηλής ποιότητας αποτελέσµα-

τα. Πιο συγκεκριµένα η ύπαρξη κύκλων ανατροφοδότησης σε κυκλώµατα σχεδιασµένα

µε Μανδαλωτές, µπορεί να οδηγήσει το εργαλείο στο γεγονός να ¨κόψει¨ αυτούς τους

κύκλους στην προσπάθεια να µειώσει τα λάθη χρονισµού κατά την διάρκεια της χρο-

νικής επαλήθευσης του κυκλώµατος. Σε συσχέτιση µε το παραπάνω, σε περιπτώσεις

όπου Μανδαλωτές που είναι χρονισµένοι σε διαφορετικές ϕάσεις ϱολογιών, προάγουν

δεδοµένα ταυτόχρονα, µπορεί να παραχθεί µια εσφαλµένη χρονική ανάλυση. Μια α-

κόµη περίπτωση που µπορεί να εισάγει εσφαλµένη χρονική ανάλυση είναι η διεργασία

κατά την οποία πραγµατοποιείται χρονικός έλεγχος στην τιµή setup του Μανδαλωτή.

Σε αυτή την πτυχιακή εργασιά παρουσιάζουµε µία µεθοδολογία Στατικής Χρονικής Α-

νάλυσης Μανδαλωτών, η οποία υποστηρίζει, Σύγχρονα, Κυκλικά κ ΄Ακυκλα κυκλώµατα,

καθώς επίσης αξίζει να αναφερθεί πως αυτή η δουλειά έχει υλοποιηθεί και ενσωµατω-

ϑεί σε ένα εργαλείο αυτοµατισµού που ονοµάζεται ASP. Τέλος ϑα παρουσιάσουµε τα

πειραµατικά αποτελέσµατα που συλλέξαµε από αυτή την δουλειά και ϑα εµβαθύνουµε

στο γεγονός κατά το οποίο η συγκεκριµένη µεθοδολογία που αναφέραµε παραπάνω,

διαχειρίζεται µε επιτυχία τις παραπάνω υποθέσεις και τους τύπους κυκλωµάτων.
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Chapter 1

Introduction

With the increasing use of electronic systems, modern VLSI circuit implementa-

tions require smaller and more energy-efficient circuit designs. The two fundamental

sequential electronic circuit structures are the Flip-Flop and the Latch. Latch-based

designs have many advantages over Flip-Flop-based designs such as timing, power,

and area but their use is constrained. The major difference between a latch and a

flip-flop is that latches are level sensitive, meaning they operate whenever the input

changes from zero binary level to one binary level or from one binary level to zero

binary level. Flip-Flops are edge-triggered, meaning they turn on when the clock sig-

nal changes from low to high or high to low. As a result of this circumstance and the

scenario known as time borrowing, latches tend to operate faster and contribute to

better power performance as the presence of the clock is absent. [1] In the case of the

area, latches take up a smaller area, but flip-flops, which is made up of two latches

and a clock, take up more. However, when compared to flip-flops, the existence of

level-sensitive latches might make circuit timing analysis more complicated, which

is why their use is limited.

The STA engines are now one of the most significant components of EDA tools.

A timing engine can easily detect timing errors in multiple parts of the EDA flow,

allowing for circuit validation and verification through many stages of the design

process. Ηowever, state-of-the-art STA engines are dependent on several hypothe-

ses about the essence of the design and the combination of the nature of Latches

may lead to timing errors and poor quality results. In more detail, the existence of

combinational feedback loops in a Latch-based design may drive the STA engine to

disable these feedback loops to minimize the effect of the violation-timing error on

the circuit timing validation. [2] Concerning the above, in some cases where more

than one Latches clocked on different phases are transparent simultaneously, may

come up with a wrong timing analysis. Another case that can cause a wrong timing

report is the procedure of a setup checking on a Latch. It’s worth noting that the

algorithms that make up an industrial STA engine work only with Directed Acyclic

Graphs. As a result, due to the presence of combinational cycles, such engines are

incompatible with asynchronous designs. Regarding the previous, one clear exam-

ple of when STA engines fail is when dealing with Bundle Data designs that use the

Desynchronization methodology with latches. Asynchronous controllers generate

enable signals for the two Latches in the Master-Slave model in these situations.

7



The incorrect timing analysis in the controllers will propagate the error to the Latch

data path, resulting in poor quality timing outcomes.

1.1 Aims of this Work

Considering the previous, we can infer that robust and dependable STA engines

are in high demand nowadays, since they are one of the most important validation

tools in EDA flows. Secondary Latches provide several advantages over Flip-Flops,

as described, but they also provide a number of challenges in terms of signal and

timing analysis.

This thesis aims to present and implement a Latch STA methodology named

Fast ICV that can properly handle the industrial STA engine above hypotheses. In

further detail, this project adopts a new Latch STA methodology that comes with an

automated procedure for giving an accurate and effective Latch STA timing analysis,

taking into account the proper assumptions on the timing existence of a Latch and

the correct STA analysis fundamentals. It is worth mentioning that this Latch-STA

methodology has been designed and integrated on an Electronic Design Automation

(EDA) tool named ASP and supports Synchronous, Cyclic, and Acyclic circuits, and

is also adaptable with the existing ASTA engine of the ASP tool in order to provide

timing analysis on Bundled-Data designs, based on the combination of the two

methodologies.

1.2 Execution Plan

Taking into account the STA fundamentals and by providing the appropriate

files, meaning the Verilog netlist and the Technology Timing library, the Latch STA

engine is ready to begin operating on the worst-case delay analysis. It’s worth men-

tioning that this methodology’s flow is totally automated, allowing the user to easily

specify the environment parameters, such as the periods of the Latch clocks phases,

their waveforms, and the appropriate feature to be applied based on the circuit’s

type for complete timing analysis. In more detail, having a netlist and the correct

timing information for the design under analysis we can produce a complete timing

report which can help us validate the Latch-based design timing rules. For further

validation and correlation with the state-of-the-art STA engines, our timing engine

produces an SDF file that can be used for dynamic simulation. Taking a brief view

of the above steps:

• Load Design: Provide the netlist and the Technology Timing Library.

• Enable Latch Analysis: Enable the correct analysis features based on circuits

type.

• Report Timing: Complete log of the Latch timing analysis.

• SDF Simulation: Proceed to Dynamic Simulation.

Finally, we should point out that in the following chapters of this thesis, we

provide a detailed explanation of the results produced by our STA engine in com-

parison to the state-of-the-art STA industrial tool, as well as the complete experi-

8



mental methodology that covers all of the circuits our Latch STA methodology sup-

ports.

9



Chapter 2

Theoretical Background

We must first review the fundamental concepts of static timing analysis before

moving on to the core of this work. STA is one of the most significant aspects of the

EDA flow, thus having the essential understanding of the concepts on which this

work is developed is necessary.

2.1 Static Timing Analysis Fundamentals

2.1.1 Static Timing Analysis

One of the numerous approaches for verifying the timing of a digital design

is Static Timing Analysis (STA). Timing simulation, which may check both the

functionality and the timing of the design, is an alternative method for verifying the

timing. As it is clear, timing analysis simply handles the timing issues of a design.

When comparing the two validation techniques, STA is static since it analyzes the

design statically and does not rely on input vectors being applied at the input pins.

[3]

2.1.2 Setup and Hold Times

For the circuit to provide proper data propagation, we must verify various timing

checks in sequential elements. Because synchronous circuits require the presence of

a clock, these checks assist the designer in ensuring that the correct data is latched

at the appropriate clock edge and that the correct input data is unambiguous. We

refer to these checks as Setup and Hold times.Figure 2.1 [3]

• The Setup time is the amount of time before the active clock when the data

input must stay stable.

• Similarly, the Hold time is the least amount of time that the data input must

remain stable following the clock’s active edge.

10



Figure 2.1: Setup Hold Checks at Flip-Flop

2.1.3 Timing Arcs and Unateness

The Static Timing Analysis is fully dependent on the existence of timing paths

in the circuit. These timing paths are defined from a starting point to a boundary

or an ending point. But which are the fundamental elements that a timing path

is constructed on? Each circuit cell consists of several Timing Arcs. Timing arcs

define the way the cell output is going to change at different input transitions. We

refer to the above as Unateness or Timing Sense, which is a kind of relationship

between input and output pins.

Each type of cell has its timing arcs. Combinational cells such as AND, OR have

timing arcs from each input to each output pin. On the other hand, sequential cells

such as flip-flops and latches have timing arcs from the clock to the output and

timing constraints from the data pins to the output pins. [3]

Figure 2.2: Combinational and Sequential Timing Arcs

11



In more detail, grouping the timing arcs based on their unateness: [3]

• If a rising transition on an input causes the output to rise or not change, and

a falling transition on an input causes the output to fall or not change, the

timing arc is positive unate.

• A negative unate timing arc is one in which a rising transition on an input

produces a falling transition on the output, and a falling transition on an input

causes a rising transition on the output.

• The output transition in a non-unate timing arc is not simply influenced by

the direction of change of one input, but also by the state of the other inputs.

Figure 2.3: Example of Timing Sense Characterisation

2.1.4 Non-Linear Delay Model

Traditional STA engines to perform are dependant on timing libraries. Several

models demonstrate the timing information from the library cells, however, in this

work, we focus on the Non-linear Delay Model (NLDM). In this model delay, output

slew, and delay values are provided for each cell combinational or sequential (timing

checks are also provided from lib files for sequential elements) through the Look Up

Tables (LUTs). We can imagine a LUT as a 2D array that given the input slew and

the output capacitance we can compute the output slew and the delays of each cell.

Having a timing arc between an input and an output pin we can use the input slew

and the output capacitance as indexes in the 2D array to calculate the output slew

and the delay values. It is worth mentioning, that in most cases where we cannot

map exactly the indexes in the array bi-linear interpolation is used for the extraction

of the corresponding values.
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2.1.5 Graph-Based and Path-Based Analysis

There are two basic approaches when it comes to STA. The first is Graph-Based

Analysis (GBA), which is the most often utilized by STA tools. Path-Based Analysis

(PBA) is the second one.

When it comes to setup analysis for GBA, the output slew and delay of the cell

are calculated using the worst input slew of each gate. In the case of PBA, we

pick the actual slew and delay for each combination of timing arcs at a cell while

traversing the whole set of timing paths.

Figure 2.4: GBA and PBA Methodologies

GBA is preferred due to the polynomial algorithmic complexity in contrast to PBA

having exponential algorithmic complexity in the effort to traverse all of the timing

paths. However, in terms of results, PBA is more accurate due to path discovering

and it adds no pessimism in the whole analysis. In terms of GBA extra pessimism

is added and not all of the paths are detectable in the circuit timing analysis.

2.1.6 Delay and Slew Propagation

STA engines work with directed acyclic graphs, as previously stated. These

graphs are known as timing graphs because they are made up of the entire set of

timing arcs associated with the circuit. STA algorithms perform delay and transi-

tion time propagation over all possible combinations of input and output cell pins

concerning worst-case analysis (max) and best-case analysis (min) to execute STA

on these graphs. In all situations, delay and slew propagation on timing arcs are

independent. Delay and transition time at the driver output pin are dependent on

input net transition and total output net capacitance. The above assumptions are

also used in the implementation of the Fast ICV method.

Each of the timing paths has a startpoint and an endpoint. Startpoints are usu-

ally referred to as starting from a sequential elements output pin or a primary input.

All possible cells in the circuit would be traversed by the STA algorithms. Arrival

time (AT) refers to the time when a signal arrives at a certain place at a specific time.

The predecessors of this cell will be included in the computation since it is obvious
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to compute the arrival time at a certain point. Arrival times are usually come up

as a pair of the worst-case analysis and the best-case analysis, meaning the latest

moment a signal can change and the earliest moment a signal can change. Suppose

we have u and v where u is the predecessor of v, defining AT (v) for late and early

analysis. FI(v) stands for the fanin of the node: [3]

ATl(v) = max
u∈FI(v)

(ATl(u) + dl(u, v))

ATe(v) = min
u∈FI(v)

(ATe(u) + de(u, v))

In case v is the startpoint:

ATl(v) = 0

ATe(v) = 0

The second important terminology is Required Arrival Time (RAT). We may

relate this concept to the Arrival time, with the exception that we compute RAT by

traversing backward from the endpoints of the timing paths. This idea is important

because we use it to upper bound the real arrival times in such a way that the clock

cycle is intended and the timing margin is not violated. In terms of computation,

a backward topological sort is used so that in late analysis, the required arrival

time at a pin is calculated by subtracting the timing arc delay from the minimum

required arrival times of the successor pins. The early analysis uses the same idea,

subtracting the maximum successors’ arrival times by the timing arc delay. Defining

RAT (v) for late and early analysis for a pair of v and u. FO(v) stands for the fanout

of the node: [3]

RATl(v) = min
u∈FO(v)

(RATl(u) − dl(u, v))

RATe(v) = max
u∈FO(v)

(RATe(u) − de(u, v))

In case v is the endpoint:

RATl(v) = Tclk − ts

RATe(v) = th

Where ts stands for setup time and th for hold time.

Now that we review the two fundamental terminologies for delay propagation, we

can state that the following conditions must be preserved for proper circuit opera-

tions, at every node of the graph:

ATl(v) ≤ RATl(v)

ATe(v) ≥ RATe(v)

Slack is the value that reflects the connection between AT and RAT and is deter-

mined by the difference between these two values:

slackl(v) = RATl(v) − ATl(v)
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slacke(v) = ATe(v) − RATe(v)

If slack is positive, no timing violation occurred for that pin, and we can increase

AT as the value of slack is at this point, without propagating a timing error. If slack is

negative, on the other hand, and we want our circuit to work within the established

conditions, the path to this pin must speed up. Finally, slack is a useful indicator

for determining the clock parameters in our circuit. [3]

2.2 Latch Timing

As discussed above, a latch is a sequential element that is level sensitive, mean-

ing they operate whenever the input changes from zero binary level to one binary

level or from one binary level to zero binary level. Flip-Flops are edge-triggered,

meaning they turn on when the clock signal changes from low to high or high to low.

As a result of this circumstance and the scenario known as time borrowing, latches

tend to operate faster and contribute to better power performance. In this section,

we are going to review the above terminologies in detail.

2.2.1 Latch Timing Arcs

Latches are sequential elements that are level triggered, meaning they operate

whenever the input changes from zero binary level to one binary level or from one

binary level to zero binary level. There are two types of timing arcs in a latch: Data

to Out and Enable to Out. As it is clear, there are two possible ways for propagating

data to output, change Out based on Data and change Out following Enable.

Let’s assume we have a positive level-sensitive latch. In that case, data propa-

gation will pass to Out when Enable is to one binary level. So in case enable is "1",

and Data toggles, the propagation from Data to Out will directly occur. As we can

see in the following picture Out follows Data changes.

Figure 2.5: Positive Level Sensitive Latch Data to Out Timing Arc

On the other hand, if data start to change when Enable is "0" there will be no

toggle at the Out till Enable switches to "1". So Out would follow Data only when

Enable change. In the following picture, we can observe how Enable affects the

change at the output.
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Figure 2.6: Positive Level Sensitive Latch Enable to Out Timing Arc

2.2.2 Latch Timing Checks

As seen in the above lines, the change in Output is very dependent on the

relationship between Data and Enable, and because latches are sequential elements,

we must apply certain conditions to ensure that data propagation does not negatively

impact Output. As previously stated, latches are level-sensitive elements, implying

that data propagates across the whole active enable window. So, what if Data toggles

extremely near to Enable when it goes from one level to another? We may infer that

setup and hold timing checks in latches are necessary, particularly at the closing

enable edge to prevent data propagation errors at the output.

Figure 2.7: Latch Setup and Hold Check

Given a linear pipeline with two Flip-Flops and a latch at the middle we can

define timing checks in a latch as follows:

AL ≤ T/2 − sL

aL ≥ T/2 + hL

We can guarantee accurate data propagation to the output at the next clock edge

by performing this setup check. We persuade ourselves that data will not propagate

to the output at the current or prior clock edge by holding the data and performing

the hold check. Finally we can conclude that since latches are transparent for half of
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the period’s clock, setup and hold checks come up concerning latch enable closing

edge.

2.2.3 Latch Time Borrowing

It is obvious at this point that a level-sensitive latch may propagate data during

the entire time Enable is asserted. In contrast to edge-triggered flip-flops, a latch

is transparent for half of at its active clock period, which might lead to a significant

concept known as Time Borrowing. [4,5]

First, consider how flip-flops would operate in the following design scenario. The

clocks’ period is 10 ns, and all four flip-flops are positive edge triggered. Flip-Flop
1 and Flip-Flop 3 are clocked on clock one, whereas Flip-Flop 2 and Flip-Flop 4 are

clocked on clock two.

Figure 2.8: Flip-Flop circuit scenario

Examining the combinational delay at each stage of this four-stage cycle circuit

shows that there is a 8ns delay from Flip-Flop 1 to Flip-Flop 2, implying that this

maximum path delay forces the circuit to operate under the period of at least 8ns.

Furthermore having a period of 10 ns and a pulse width of 5 data violations may

occur at some timing paths. Using the Flip-Flop 1 to Flip-Flop 2 path as an example,

data will arrive after the positive edge of Flip-Flop 2 after Flip-Flop 1 launches the

data, potentially resulting in a violation.

On the other hand, how would latches respond to the above findings we made for

the flip-flop-based design? Each flip-flop is replaced with a latch in the schematic

below. The period, the pulse width of the clocks and path combinational delays

remain unchanged. All four latches are positive level sensitive. Latch 1 and Latch
3 are clocked on phase one, whereas Latch 2 and Latch 4 are clocked on phase

two.
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Figure 2.9: Latch circuit scenario

As a starting point, let’s look at the Latch1 to Latch 2 path. Returning to our

memory, latches are level sensitive, which implies that Latch 2 will be transparent

for half a period in our situation, in contrast to edge-triggered flip-flop. In such

an instance, there will be no violation from Latch1 to Latch 2 since the data will

be captured by Latch 2 at the 8th ns. As a preliminary observation, we can see

that timing violations may be avoided by using level-sensitive latches. The second

important point to note is that when the data is captured at the 8th ns by Latch
2, data propagation may proceed to path Latch 2 to Latch 3 as that design path

is short enough to allow for appropriate data propagation. Latch usage helps the

design to operate faster and not forcing the period to be at least 8ns as it was

done by flip-flops. We can refer to that technique that lets the longer combinational

paths "borrow" some time from the following shorter combinational paths as Time

Borrowing. [4]

Figure 2.10: Latch Time Borrowing

More specifically, since a latch is transparent, data might come after the latch

enable clock edge, allowing it to borrow time from the following cycle, reducing

the time for the next stage. [3] Typically borrowing occurs in the same clock cycle.

Summarizing the main goals of time borrowing we can conclude that: [4]

• Time borrowing helps us avoid timing violations.

• In a multistage circuit, the time of each stage would be reduced.

NOTE: At the above cases we made the assumption that all the sequential ele-

ments are ideal, meaning they do not have an internal delay, and the library setup

time at both cases is zero.
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2.3 Bundled-Data Design

Asynchronous designs have many advantages over synchronous designs in case

of performance. The absence of the clock may drive better performance and power

results. One significant example is the Bundled-Data design and more specifically

in our case, a bundled data design with latches is the Desynchronization methodol-

ogy. Through this methodology, asynchronous controllers generate the clock signals

for the synchronous data paths, which indicates that Asynchronous Static Timing

Analysis is required for the asynchronous part and STA for the synchronous data

path. [6, 7] First consider the circuit at picure 2.11 before the Desynchronization

method. [6,7]

Figure 2.11: Circuit Before Desynchronization Methodology

Following up as shown in figure 2.12 [6, 7] every flip-flop is replaced with two

latches, a Master and a Slave, and as it clear each controller provides the appropriate

enable signal to each latch. The transformation into latches it is not deeply related

to the Desynchronization methodology, however as stated at the previous section

latches can contribute to better timing results and avoid violations. So the key idea

is, that till the data are not stable the enable must be delayed. [6,7] Finally in figure

2.13 we can observe the complete outcome of this process. [6,7]
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Figure 2.12: Desynchronization Methodology

Figure 2.13: Desynchronization Outcome
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Chapter 3

STA for Latch-based Design

Approaches and Challenges

Let us look at the challenges that STA engines face when it comes to Latch STA

and the proposed literature methodology that helps us come up with our implemen-

tation before we look at the suggested technique, Fast ICV.

3.1 Industrial Tools STA Latch-based Design Challenges

As previously said, STA engines have become one of the most important com-

ponents of EDA tools. A timing engine can quickly detect timing errors in various

portions of the EDA flow, providing circuit validation and verification at various

stages of the design process. However, modern STA engines are based on numerous

assumptions about the design’s essence, and the nature of Latches combined with

timing mistakes can result in poor quality outcomes.

3.1.1 Latch Loop Breakers

Traditional STA engines operate on the level of directed acyclic graphs. In that

case gate pins are the nodes, timing arcs are the edges of the graph, and sequen-

tial elements represent the boundary points in the analysis. More specifically, the

presence of combination feedback loops in a design may cause the STA engine to

disable these loops in order to reduce the impact of the violation-timing error on cir-

cuit timing validation. When this cycle cutting technique is used, the timing arc or

disabled data point may have an unrealistic transition time, resulting in erroneous

slew propagation in separate timing arcs and inaccurate slew calculation analysis

across cycles. In more detail, as already stated output transition and output delay

are directly dependent on input transition, so by cutting a data arc an unrealistic

delay would be calculated. [2, 8] Figure 3.1 demonstrates cycle cutting and how it

affects delay propagation.
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Figure 3.1: Cycle Cutting

In some cases, designers come up with setting the transition time at the cut point

manually, however that technique still may lead to timing errors. The impact of this

error is also carried to SDF simulation, where incorrect delay values are annotated

and the designer gets a false image of the design. In conclusion, the performance

and results may be completely misleading. [2,8]

Moving on, let’s add some sequential latch logic to the design above as shown

in figure 3.2 to see how cycle cutting affects STA analysis. It is possible to create

sequential loops of transparent latches when latches are spotted in a cyclic design.

These loops would be identified by the industrial tool, which would then construct a

set of latch pins that were involved in the loop. The user may examine the sequential

loop using a specific reporting command, which shows which pins each loop contains

as well as certain unique arguments for each pin. [9]

Figure 3.2: Latch Cycle Cutting

One of the arguments reported for some latch data pins is that a loop breaker is

set on those pins, suggesting that the industrial tool performs cycle cutting through

sequential latch loops as well. In the above case, transition time propagation would
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proceed from G to Q as the D to Q arc is disabled. As in combinational loop cases,

an unrealistic slew and delay value may be computed at the point loop breaker is set

and the worst transition time from D to Q will not be propagated. In some situations

overall circuit timing performance won’t be affected, however, there is a chance that

may lead to erroneous results. Timing analysis failure by cycle cutting is directly

dependent on the nature of the clocks latches are clocked on and in which timing

windows the computation of the delay values is performed. Figure 3.3 demonstrates

three cases of clock waveforms. In the first case, the two phases do not have an

overlap, meaning that each time latches of one phase will launch data and latches

of the second phase will capture data. In more detail, latches clocked on different

phases will not be simultaneously transparent and the delay and slew computation

would be procced from the E to Q window as it seems to be the dominant timing

window, so cycle cutting at D to Q won’t affect timing analysis.

Figure 3.3: Non Overlapping and Overlapping Clock Waveforms

Cases where the clock phases have an overlap as is demonstrated at the second

waveform in figure 3.3 may drive to situations where latches from different phases

would be transparent at the same time. In that case, delay and slew propagation

would proceed from D to Q timing window, thus it is clear that cycle cutting would

affect the whole timing analysis of the circuit in a negative way.

One key example of a latch-based design that cycle cutting would affect neg-

atively timing analysis is Bundled-Data Design. As already stated, Bundled Data

design consists of asynchronous cyclic controllers and the synchronous latch data

path. Cutting the cycles in the asynchronous part would lead to false enable signal

propagation at the data path which indicates a disastrous outcome.

All of the outcomes of the above challenges have been analyzed in detail in the

experimental section.
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3.1.2 Latch Timing Checks

Latches are level-sensitive elements, which means that data propagates over the

whole active enabling window, as previously mentioned in the background section.

So, what if Data toggles very close to Enable as it progresses from one level to the

next? To prevent data propagation problems at the output, setup and hold timing

checks in latches are required, particularly near the closing enable edge. The point

we choose to make the setup check for a latch is critical as it would affect directly

the slack computation. Refreshing our memories, slack is the value that reflects the

connection between AT and RAT. If slack is positive, there was no timing violation

for that pin, and we can raise AT as long as slack is positive at this moment without

propagating a timing mistake. If slack is negative, on the other hand, and we want

our circuit to operate as expected, the path to this pin must accelerate. As it is clear,

slack is a valuable indicator for determining our circuit’s clock parameters. [3]

The industrial tool, on the other hand, suggests that slack may be calculated in

two ways. The first is to look for a setup violation at the closing edge, which indicates

the proper way to latch the data. In the second case, the industrial tool checks the

setup with the worst window between closing and virtual, referred to as the opening

window or virtual window. Figure 3.5 demonstrates the above mentioned.

Figure 3.4: Virtual and Closing Window for Setup Checking

The above calculation may cause an inexperienced designer to have a distorted

view of their work. As previously indicated, margin slack can help the designer in

determining the clock parameter in which the design will operate. Having a much

tighter slack than the slack that will be computed at the closing edge confuses the

designer in such a way that he may not put as much pressure on the clock as he can.

In the experimental section, we summarize the previous, noting how this calculation

impacts the overall overview of the timing analysis.
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3.2 Iterative Constraint Verification Algorithm (ICV)

In this section, we are going to provide a detailed overview of the Static Timing

Analysis algorithm we used as a basis to construct the proposed methodology. Iter-

ative Contraint Verification (ICV) is the approach under examination, and its major

contribution is to properly handle the STA case for latch controlled circuits. [10]

Taking a quick look before digging deeper into the above-mentioned algorithm, we

picked that technique as the core of our work for the following reasons. ICV works

with graph-based circuit transformations each is easily adaptable to the needs of

our STA engine. Furthermore, as we are going to study in detail at the following

lines, the above graph transformation and the iterative nature of that methodology

helped us come up with a methodology that operates in reduced iterations than the

existing methodology without dealing with sequential loops by cycle cutting. Finally,

this approach is ready to be used as long as the latch-based design and clock pa-

rameters are provided, thus it is not dependent on a large number of input resources

to generate the desired results.

3.2.1 Basic Timing Formulations

Latch-controlled circuits are constructed basically of latches separated by com-

binational logic between them. This methodology adopts a simple graph transfor-

mation in order to demonstrate the above relationship. We can refer to that graph

representation as Reduced Timing Graph (RTG) or Latch Graph. The two fundamen-

tal structures of that graph, are the latches which are represented by the nodes of

the RTG, and the edges, which represent the combinational delay between a stage of

one latch to another. Figure 3.6 demonstrates a simple example of RTG [10,11]

Figure 3.5: Reduced Timing Graph

Every path has a starting node and an ending node. We can refer to the succes-

sors of a node as the fanin nodes. Node 1 is the fanin node of the node 2. Note that

in the case of a loop the starting point and the endpoint would be the same, like the

1 → 3 → 2 → 1 loop in the above figure. Furthermore regarding the analysis we

working on, meaning the setup or the hold analysis each of the edges would contain

the related values. In cases of setup analysis, the edges would represent worst-case

combinational delay, and in hold analysis best-case combinational delays would be

stored in the graph’s edges.
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3.2.2 Timing Constraints of Latch-Controlled Circuits

Figure 3.6: Timing Constraints

of Latch-Controlled Circuits Vari-

ables

Before moving to the core part of the al-

gorithm we first need to study the timing con-

straints that are going to be utilized at the pre-

sentation of the algorithms and some fundamen-

tal assumptions regarding the computation of

the related timing values. Figure 3.7 contains

the whole set of variables that this methodol-

ogy uses to perform Latch STA. Timing values

are provided for both best and worst-case anal-

ysis and it is worth mentioning that most of the

values are also mapped in our implementation.

[10]

We investigated the timing nature of latches

being transparent when the enable signal is up

to its active level and when the data must be

latched or not in the background section. We

know that the timing values of latch STA are con-

nected to the fundamental terminologies that are

hidden at the clock’s representation, and most of

them are calculated with respect to the enable signal. The authors refer to the re-

lation between the enable signal and the calculation of the timing values in the

analysis as the local time zone. Having already reviewed the fundamental knowledge

regarding when a latch is transparent and when the data must be latched, is simple

to understand that the local time zone is a hyper set that contains all those termi-

nologies, and indicates the proper timing value calculation. Figure 3.8 demostrates

local time zone between two successive latches j and i [10].

Figure 3.7: Local Time Zone

The edge that activates the latch is referred to as the enabling clock edge ri, and

the edge that closes the latch is referred to as the latching edge in this work. When

the latch is transparent, we indicate the start of the local time zone at the enabling

clock edge, and when data propagation is not feasible, we mark the end of the local

time zone at the latching edge. As previously stated, the latching edge is always the

closing edge concerning the period T . As can be seen in the figure above, there is one

more parameter, Ej i. This parameter, named phase shift, is utilized to transform the

latch clocks’ starting points, in our case clocks j and i. This conversion aligns the

clocks, allowing each arrival time to be calculated according to the local time zone

definition. [10]
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3.2.3 Setup Time Constraints

In the next lines, we’ll focus on the basic setup constraints that this work applies.

In the variables table, setup timing constraints are indicated as the latest values.

[12]

The moment the signal from the launching latch is ready to be delivered at the

capturing latches is referred to as the latest Departure time or Di. There will be two

latest departure times, one for the rise and one for the fall, as is reasonable. The

following formula is used to calculate the above value: [10]

Di = max{Ai , ri}

At each capture latch, Ai stands for the signal’s latest arrival time. Behind the

max condition, it is specified in which timing window the Di will be computed, i.e.,

in the D to Q window or the Enable to Q window. Note that if the data arrives

before the enable signal, propagation will not begin until ri arrives. Using one pair

of latches, one launch latch j, and one capture latch i as an example, the latest

Arrival time can be easily defined. A combinational path must exist between the two

latches, as is obvious. The latest arrival time is defined as the time when the data

signal reaches the capture latch after taking into account the time when data departs

the launching latch and the maximum combination delay between the two latches.

When more than one latches fanin at latch i the maximum combination between

the latest departure time of launching latches and combinational max path must

be taken into account, for computing Ai. Looking into the equation for computing

Ai: [10]

Ai = max
j→i
{Dj + Λj i}

Figure 3.9 demonstrates the application of the equations above on RTG.

Figure 3.8: Ai and Di Computation Example

Data propagation is always accompanied by the necessary conditions to guaran-

tee that no violations occur and that data propagation proceeds normally. We must

ensure that the data or Ai is stable for setup or si time, knowing that the check for
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the data to be latched must be at the latching edge. Taking a look at the condition

for arrival time: [10]

Ai ≤ T − si

We may move on to the following part after examining the necessary timing for-

mulations and variables, where we’ll take a closer look at the proposed literature

latch-controlled based timing algorithm. In the following lines, the Iterative Con-

straint Algorithm (ICV) is described in depth.

3.2.4 Iterative Constraint Verification ICV

The ICV algorithm is an iterative algorithm that works with the latch-controlled

design’s latch graph transformation. The signal propagation is unfolded and the

concept of a simulation-based method is given through this iterative approach. It

efficiently extracts setup timing constraints in a way that ensures that timing values

have converged after a certain number of iterations and allows for the evaluation of

timing violations in the design under timing analysis. Initialization, time constraint

calculation, and constraint verification are the three parts of the ICV algorithm.

Algorithm 1 represents the complete ICV algorithm.

Algorithm 1 Iterative Constraint Verification

1: for each node i in RTG do

2: A0

i = −∞

3: D0

i = ri
4: end for

5: for m = 1 to n do

6: for each node i in RTG do

7: Ami = max
j→i
{Dm−1

j + Λj i}

8: Dmi = max{Ami , ri}
9: end for

10: end for

11: for each node i in RTG do

12: if (Dni , D
n−1

i or Ani > T − si ) then

13: return false
14: end if

15: end for

16: return true

In the initialization part, we set both the Ai and Di at the appropriate value for

each node in the RTG. We set Ai to −∞ as data propagation has not started yet, and

Di at ri as data propagation for each latch would start corresponding to the enable

signal.

The Ai and Di computations are done in the next part, lines 5-10. At each

iteration, the algorithm updates Ai for the relevant latch and then updates Di. This

iterative method is repeated n times, where n is the number of latches in the RTG.

Each iteration may be thought of as a clock cycle in which data is propagated from

launching points to capturing points. Note that each time delay values are updated

incrementally based on the values of the previous iteration.
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Finally, at the remaining lines, there’s constraint verification, which works as

long as delay propagation is complete at the final iteration. Two conditions are

checked for each latch. The second one is simpler since it represents a common

setup check for each latch’s final latest arrival time:

Ai ≤ T − si

The first condition, on the other hand, is more complicated since it examines if

the latest departure times between the two final iterations have different values:

Dni , D
n−1

i

The method concludes whether the latch delay values have converged and indi-

cates that if the latest departure times continue to increase after a specified threshold

of iterations, setup violation will occur frequently from that point forward. In more

detail, the algorithm, as stated in the paper, tests for the presence of a positive loop

in the circuit. The circuit would be unable to function if such a loop exists. The

proof that the presence of a positive loop is destructive for the circuit’s operations is

given as follows:

Let a loop {j0, j1, ...jn − 1, jn} with j0 = jn

For a given m iteration:

Dmjk = max{Amjk , rjk} ⇒ Dmjk ≥ A
m
jk (1)

Amjk = max
jk−1→jk

{Dm−1

jk−1
+ Λjk−1,jk } ⇒ Dm−1

jk−1
+ Λjk−1,jk (2)

From (1) and (2):

Dmjk ≥ A
m
jk ≥ D

m−1

jk−1
+ Λjk−1,jk (3)

Given (3) for a total number of n iterations:

Dnjn ≡ D
n
j0 ≥ D

0

j0 +
∑n
k=1

Λjk−1,jk (4)

Having:

Dnj0 ≥ D
0

j0 +
∑n
k=1

Λjk−1,jk (4)

After n iterations the D of j0 increases by:∑n
k=1

Λjk−1,jk

Therefore, in order to avoid having violation:∑n
k=1

Λjk−1,jk ≤ 0 (5)

ICV, as we can see, functions on the n iteration boundary. Because the biggest

loop would contain all of the latches, we check it at the last iteration to ensure that

there are no positive loops in the RTG. If there is a positive loop in the circuit, the

algorithm will fail. If the delay values do not increase after n iterations, on the other

hand, we may infer that no violation occurred during the timing validation under the

provided environment parameters. On the following pages a scenario of a worst-case

loop is provided, that visualizes also the above proof.
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Consider the following example:

• 4 Latches (n = 4) are connected in a circle.

• Latches {L1, L3} are clocked on φ1 and {L2, L4} on φ2.

• The clocks are non overlapping.

This specific scenario is considered the worst case as all of the latches form the

biggest possible cycle. Figure 3.10.

Figure 3.9: Constraint Verification (A)

All departure times Di are set to T − ri. Recall that each latch has its own time

zone. Figure 3.11.

Figure 3.10: Constraint Verification (B)
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Figures 3.12, 3.13, 3.14, 3.15 demonstrate the update of Di accross iterations.

Consider on that iteration only D1 for Latch1 changed.

Figure 3.11: Constraint Verification (C)

Moving on we have an increase at D2 at second iteration. Figure 3.13.

Figure 3.12: Constraint Verification (D)
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D3 increases next. Figure 3.14.

Figure 3.13: Constraint Verification (E)

Finally we observe a change in D4 value at the last iteration, so what would

happen if we proceed to more iterations? Figure 3.15.

Figure 3.14: Constraint Verification (F)
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At this point we can understand that the final and increased D4 value will in-

crease D1 even more which will lead into a setup violation in the future. Figure

3.16.

Figure 3.15: Constraint Verification (G)

In more detail, we computed D1

1
> D0

1
with D0

4
. If we proceed to a further

iteration and without departure times converge we will have D5

1
= D0

1
+ (D4

4
− D0

4
), as

the cumulative departure time for Latch4 increased from D0

4
→ D4

4
. At this point we

can map
∑n
k=1

Λjk−1,jk ≤ 0 (5) condition into our case, as the cumulative D4 value

across iterations. In conclusion, that increment would increase D1 even more so in

following possible iterations setup violation will occur. One important observation is

that this algorithm checks for setup violation at the final iteration, however it would

be impossible in many cases to detect which latch cause the error as it would be

propagate across iterations.
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Chapter 4

A Latch-based STA Methodology Our

Contribution

At that point in the work, we’ll move on to the implementation section and the

algorithmic contribution, but before, let’s take a quick look at the above. To summa-

rize the important points of the preceding chapters, after studying the appropriate

Latch STA principles and the challenges that typical STA tools face with latch timing

analysis, we identified a latch STA algorithm in the literature that satisfies the re-

quirements of our STA tool. The implementation of the regular ICV began our quest

to provide the functionality of Latch STA in our timer. We gradually uncover some

of the algorithm’s hidden assumptions as well as certain weaknesses. After that,

we come up with Fast ICV as a variation of the current method, which covers all of

the functions of the normal ICV algorithm, with the addition of certain additional

features and the major advantage of operating in less iterations.

4.1 Implementation of ICV

First of all, let’s look at how to put the current algorithm into action. To begin,

we performed the identical procedures as in Algorithm 1, with the exception that we

first updated the latest departure time for each latch, and then we updated the latest

arrival time at each of the capturing latches based on the latest departure time of

the launching latch. Because the algorithms bound delay values independently of

traversal order, the result will not change. We make this adjustment for the sake

of simplicity since we built Latch Graph in such a manner that each node holds its

successors:

Dmlaunch_latch = max{Amlaunch_latch , rlaunch_latch}

Amcapture_latches = max
launch→capture

{Dmlaunch_latch + Λlaunch_latch→capture_latch}

4.1.1 Internal Latch Delay

Following up, according to the paper, the delay equations applied for the latest

values suggest that the latches in the RTG are ideal, meaning they have no internal

delay. To compute the latest departure time and account for the latch’s internal

delay, we must first determine which timing window we will work in. If D → Q is

34



used, the D → Q arc delay must be included in the latest departure time calculation.

If, on the other hand, Enable → Q is the dominant method, the Enable → Q arc

must be taken into account throughout the computation. So the above equation for

departure time would change into:

Dmi = max{Ami + D → Qarc_delay, ri + E → Qarc_delay}

4.1.2 Transition Time Propagation

Although the ICV method performs well and explains the delay propagation

technique in detail, transition time propagation information is not provided in the

current work. In the previous subsection, we stated that based on the timing window

we work in, latch internal delay must be included in the delay calculation. As we

reviewed in the background chapter latch as a sequential element possesses two-

timing arcs the D to Q and the enable to Q timing arcs too. Slew propagation is an

independent procedure that must be taken into account for proper timing analysis.

As with delay, we choose to propagate the worst transition time each time for rising

timing arcs and with respect for falling timing arcs. In respect to the latest arrival

time and the timing window we choose to work in, we compute D to Q transition

time or Enable to out transition time for the latch output pin as we compute latch

latest departure time. Keep in mind that we first update the latest departure time

for the launching latch so the slew that is computed in the current output latch pin

would indicate as a starting point for slew propagation at the capture latches.

We stand for two transition time calculation cases. In the first case when the

Enable to Q timing window is activated we calculate and propagated the slew from

G to Q arc which is dominant. On the other hand, when the D to Q timing window

is activated the D to Q slew must be propagated. When at least one combinational

loop is found in the circuit, most industrial STA engines execute cycle cutting. As a

result of the lack of cycles in the resultant gate pin graph, the disabled arc will have

an unrealistic transition time and will not affect other gate pin slews. This results

in overly optimistic results, as well as timing problems. To compute the proper slew

across cycles before starting the delay and slew propagation across iterations the

first step, to begin with when dealing with overlapping clocks that lead to concurrent

transparent latches and the activation of D to Q timing window is the computation of

an equilibrium cyclic slew for all circuit pins. We introduce the following algorithm

that indicates a worst cyclic equilibrium slew for each one of the circuit gate pins

before ICV starts its operations. Note that this is an iterative procedure that no delay

propagation is required for this step.
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Algorithm 2 Cyclic Equilibrium Slew Computation

Input: Gate Pin Timing Graph G = (V, E, Load(V ), Slew(V )), Slew Threshold slew_delta
Output: Slew Annotated Timing Gate Pin Graph G
1: Slew(V ) = 0; // Initialise Gate Pin Pin Slews to 0 //

2: Q = ∅; // FIFO Queue Q //

3: for (each Primary Input Gate Pin pi in V ) do

4: set_slew(pi, pi_slew_constraint); // Set PI Slew (user-defined) //

5: for (each Successor Gate Pin s in pi →) do

6: enqueue(Q, s); // Add pi Successor Gate Pins to Queue //

7: end for

8: end for

9: while (Q , ∅) do

10: q = dequeue(Q); // next Gate Pin for Slew Computation //

11: slew = calculate_slew(q, get_slew(q →), get_load(q →)); // Compute q Slew, based on

input Slew and output Load //

12: if (|slew − get_slew(q)| < slew_delta) then

13: continue; // Continue to Another Gate Pin from Queue //

14: end if

15: prev_slew = get_slew(q);
16: new_slew = max(prev_slew, slew);
17: set_slew(q, new_slew); // Update Slew Value //

18: for (each Successor Gate Pin s in q →) do

19: enqueue(Q, s); // Add q Successor Gate Pins to Queue //

20: end for

21: end while

Slew propagation begins at the Primary Input PI pins and continues across

the circuit’s timing arcs. The operation is repeated until the slew difference between

consecutive propagation iterations of each pin approaches zero. Algorithm 2 demon-

strates the cyclic slew computation procedure. In the first place, the algorithm takes

as an input the cyclic gate pin timing graph G, and the slew threshold slew_delta
which indicates the minimum slew difference between iterations. G consists of nodes

V (or gate pins), E edges and each node is characterized by the load and slew cal-

culation functions Load(V ) and Slew(V ). The algorithm then does a BFStraversal
with a First In First Out FIFO queue. Slews, for instance, are user-defined. If the

traversal finds an empty queue, no more slew updates are necessary; if the queue

is not empty, the next pin is dequeued, and the new slew is computed and com-

pared to the previous iteration’s value. If the slew value still hasn’t converged, we go

through further iterations and enqueue the successor pins at the FIFO. Finally, the

Algorithm produces as output the cyclic equilibrium slews in Slew(V ). [2,7]
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4.1.3 Iteration Reduction

The technique concludes if the latch delay values have converged and show that

if the latest departure times continue to increase beyond a given threshold of itera-

tions, setup violation will occur frequently from that point forward, as we discussed

in detail in the previous chapter. That technique requires multiple iterations, which

can be time-consuming in circuits where values converge after the first iterations

or for linear circuits where one iteration is usually sufficient. We must clarify that

for each latch, an incremental run must be performed in order to update each de-

lay value depending on the previous iterations’ delay values. Every circuit would

have m iterations, and if n latches synthesize the RTG, the current technique would

necessitate n ∗m incremental runs, resulting in a complexity of O(n2 ∗ (E +V )).

Two key actions were implemented in order to minimize the number of iterations.

The first is a basic adaptation where we update the latest values, and the second is

the variation of Fast ICV that will be discussed in the following chapter. The idea

behind the new adaptation is that if all of the latches’ latest departure timings have

converged, there is no need for more iterations. Taking a brief look at the above

concept:

Algorithm 3 Iteration Reduction

1: for m = 1 to n do

2: D_values_converged = 1

3: for each node i in RTG do

4: Dmi = max{Ami , ri}
5: if Dmi , D

m−1

i then

6: !D_values_converged
7: else

8: continue to next latch

9: end if

10: end for

11: if D_values_converged then

12: break

13: end if

14: end for

We start the iterative procedure by assuming that the delay values have reached

a point of convergence. Then, for each latch, we update the D value; if it is the

same as the previous iteration’s, we move on to the next latch; otherwise, further

iterations are required. There is no need for additional iterations if all of the latest

departure times have converged, therefore we skip the remaining iterations.

4.1.4 Constraint Verification

The constraint verification, which examines if two conditions for each latch are

violated, is the final part of this method. We already analyzed the first condition for

the latest departure time convergence. The second condition is easier to understand

since it reflects a standard setup check for each latch’s final latest arrival time. In

more detail, it is clarified that if the latest arrival time grows enough to be larger

than the latching edge, setup violation has occurred:
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Ai ≤ T − si

However, as discussed in the previous chapter, points setup violates are difficult

to detect over iterations because they are propagated from latch to latch and across

iterations. Every time data arrives at a capture latch, a setup violation might occur,

as we aim to calculate the latest departure time. Despite the fact that the violation

may have happened earlier iterations, the preceding condition checks for setup vio-

lation at the last iteration. This scenario causes extra iterations and makes it more

difficult to discover the point of setup violation.

We noticed that we may identify setup violations from the first iterations when

doing latch STA properly and preventing setup violations. It’s worth mentioning that

the existing method uses ri and Ai to update the latest departure time. We keep

the maximum value between the two, which simply specifies the timing window in

which we will work, i.e. the Enable to Out or Data to Out time window. A setup

check must be performed if the data signal comes after the latching edge, which is

not done in the current method. We perform the following check before updating

latest departure time:

Ai ≤ latching_edge − si

Because the arrival time might grow quickly in the early stages of iterations, we

must verify every time the data signal arrives at a capture latch to avoid incorrectly

calculating the latest departure time. Checking for setup violations in the last iter-

ation will increase execution time and conduct numerous needless computations in

circumstances when there are multiple latches and a setup violation has occurred

at an early step. The Fast ICV variation also has that adaptation.

Finally, we progressively reviewed some of the algorithm’s underlying assump-

tions, as well as some of its drawbacks. Then, as a variant of the existing approach,

we propose Fast ICV, which performs all of the functions of the standard ICV algo-

rithm while adding a few extra characteristics and having the significant benefit of

requiring fewer iterations. We’ll look into Fast ICV in-depth in the next section.

4.2 Implementation of Fast ICV

Implementing the existing ICV algorithm allowed us to gain a deeper understand-

ing of the delay propagation approach used by this algorithm, as well as how the con-

straint verification part impacts the algorithm’s overall performance. That method

also benefited us in identifying some of the algorithm’s underlying assumptions and

drawbacks in terms of delay and transition time propagation. After reviewing the

fundamental latch STA principles and identifying some of the challenges that indus-

trial STA engines face with latch STA, we were able to combine our knowledge with

the existing ICV algorithm to create a methodology that successfully hadles all of the

challenges that industrial tools face while also being more robust than the existing

ICV methodology. The name Fast ICV refers to a variation of the current approach

ICV. This algorithm incorporates all of the aforementioned adaptations of regular

ICV, as well as operates as an adaptation of an industrial tool known as ASP. In the

following lines, we will analyze the entire view of the suggested approach in-depth

and provide a comprehensive picture of this work through an example.
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The Fast ICV algorithm is an iterative technique that works with the latch graph

transformation in latch-controlled designs as regular ICV. It extracts setup timing

constraints quickly in a way that assures that timing values have converged after a

given number of iterations and facilitates for the evaluation of timing violations in

the design under timing analysis, in a faster way than the existing algorithm. The

Fast ICV algorithm has three parts: initialization, time constraint calculation, and

constraint verification. The Fast ICV algorithm is represented by Algorithm 4.

Algorithm 4 Fast Iterative Constraint Verification

1: for each node i in RTG do

2: A0

i = −∞

3: D0

i = ri
4: end for

5: n = clock_num ∗ clock_num
6: D_values_converged = 1 // decide if D values converged //

7: A_values_update = 0 // decide if more updates in delay values required //

8: for m = 1 to n do

9: for each clock_phase in clock_set do

10: for each node i in RTG clocked on clock_phase do

11: Dmi = max{Ami , ri} // Update D for launching latches //

12: if Dmi , D
m−1

i then

13: !D_values_converged
14: !A_values_update
15: else

16: continue to next latch

17: end if

18: end for

19: if A_values_update = 1 then

20: Update Am for all capture latches // Update A for all successor latches of

the current phase //

21: else

22: continue to next clock phase

23: end if

24: end for

25: if D_values_converged then

26: break // no more iterations needed //

27: end if

28: end for

29: for each node i in RTG do

30: if (Dni , D
n−1

i or Ani > T − si ) then

31: return false
32: end if

33: end for

34: return true
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4.2.1 Fast ICV General Overview

When we take a brief look at Algorithm 4, we can see that it has the same three

parts as normal ICV: initialization, time constraint computation, and constraint

verification. The initialization and constraint verification sections are identical to

those found in ICV. Following that, we should emphasize that all of the relevant

changes and adaptations made for normal ICV and reviewed in-depth in the previous

section found adaptation in the implementation of Fast ICV too. In more detail,

accurate STA analysis requires consideration of the latch’s internal delay at the

latest departure time computation, as well as the worst equilibrium slew before the

algorithm’s operations. In the following lines, we’ll look at how this technique differs

from the previous methodology in terms of alternative delay and slew propagation,

and how, with the right modifications, we may get accurate timing results in a

reliable and fast approach.

4.2.2 Delay and Transition Time Propagation

We’ll look at the primary algorithmic computing part in detail in this section.

Regular ICV, to refresh our memory, executes a traversal in one RTG latch at a

time, and for n iterations for all latches. Because each time a launching latch sets

an incremental update run to its corresponding capture latches, this traversal is

thought of as a point-to-point traversal. It’s important to note that running an

incremental run for each latch for n iterations can increment a lot the execution

time of this algorithm. Another disadvantage of this point-to-point traversal may be

seen in the situation below. When two latches combine to join to a third one, we

must save the maximum value of arrival time and slew at the capture latch since the

traversal may overwrite the existing worst-case values. As a result, more memory is

required at each latch to store the previous delay values.

On the other hand, we can identify the fundamental difference between normal

and Fast ICV by looking at lines 9-10 in Algorithm 4. It’s worth noting that this

modification traverses the latches according to the relevant clock phase. But how

does this affect the delay and transition time propagation? Rather than traversing

each latch one at a time, Fast ICV traverses each clock phase or the latches that are

clocked on the same phase. In further detail, this technique bounds latch delays at

the latch group level rather than considering connected latches cartesian product as

in regular ICV. We can consider the first group of latches the launching latches of

one phase, and the second group of latches the capture latches clocked on the rest

of the clock phases. First and foremost, the latest departure time of the launching

latches is updated. Following that, the latest arrival time for all capturing latches

will be updated as stated in lines 11-21 in Algorithm 4. By this grouping procedure

delay and transition time propagation would proceed in a level way, from phase to

phase, and not point-to-point, from latch to latch. This modification affects positively

both execution time and the propagation of the worst values. Keep in mind that

each iteration requires one incremental update run for the latches of one phase to

start propagating to the rest of the phases’ capture latches. Many point-to-point

incremental runs may be avoided in this manner, and the overall iterative method

can be improved in terms of the number of iterations. Following up, another benefit

of level to level propagation is that each iteration ensures that the worst delay and
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slew are propagated from each phase without the need for comparisons between the

latest arrival time produced of latches of the same phase.

As already stated, Fast ICV indicates an iterative procedure that guarantees

delay value convergence after a number of iterations. Working with a different way

of traversal, meaning the level to level procedure, a new upper bound was necessary

for that technique so we could persuade ourselves that we can provide a formal

number of iterations, under that delay values would converge. We define n in this

algorithm as the product of the total phases with itself (line 5). We conclude to

that as the upper bound of iterations as we consider the following scenario as the

worst-case. In a worst-case situation, every phase would launch data to all the other

phases and would capture data from the latches of all the other phases. As it is clear

the number of the corresponding combinations is clocks ∗ clocks.

4.2.3 Iteration Reduction

In order to reduce the number of iterations, two essential steps were taken.

The first is a standard adaptation in which we update the latest departure times if

they have not converged, and the second is the variation of Fast ICV traversing the

latches according to the phase on which they are clocked. The proposed adaption

assumes that after all of the latches’ latest departure times have converged, no

further iterations are required. We had previously looked at this adaptation in the

previous section, so it was simple to adapt it to Fast ICV. We start the iterative

procedure by assuming that the delay values have reached a point of convergence

with D_values_converged (line 6). Then, for each latch, we update the D value; if

it is the same as the previous iteration’s, we move on to the next latch; otherwise,

further iterations are required (lines 11-13, 23-27). The difference with the regular

ICV is that as we work with latch groups, in case the latest Departure times of all

the latches of a phase converge we move to the next clock phase. That manner is

controlled by A_values_update, as more iterations are required if the departure times

of one phase have not converged (line 7, 19-23). We skip the remaining iterations

since there is no need for more iterations if all of the latest departure times of all

phases have converged.

On the other hand, the structure of this method, which includes many latch to

latch delay propagations, at one level traversal to another in each iteration, allows

for quicker results. One important factor is that, regardless of how many latches

join at a capture latch, this method would offer the worst arrival time. Finally, each

delay propagation from a phase to another covers and gives the entire set of data

required by the following phase. The computation of the worst delay value may need

additional iterations in the case of the standard ICV, which traverses one latch at a

time.

4.2.4 Fast ICV Example

We can move on to an example using our STA engine after studying the Fast ICV

algorithm’s implementation. Consider the following circuit of figure 4.1, four latches

form a cycle where the first one and the third one are clocked on phase one and the

second and the fourth one are clocked on phase two. The period of the two clocks is
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both 10ns, and the waveforms are given as {0,5} and {5,10}.

Figure 4.1: Fast ICV Example - Circuit Specification

Figure 4.2 demonstrates the first part of the algorithm each is the initializa-

tion.

Figure 4.2: Fast ICV Example - Initialization

Notice that the Arrival time and the slew values, are initialized in a negative

and at a zero value as the propagation of delay and transition time has not started

42



yet. All of the Departure times are set to the enable clock edge with respect to the

algorithm (lines 1-4).

Figure 4.3 demonstrates the start of the update of the delay values. Notice that

in the first place we create the latch group based on the clock phase. Taking as an

example Latch 3 of phase one we first update the latest departure time based on

the max value of the latest arrival time and the enable clock edge. Keep in mind

that we work in the G to Q timing window so we make use of the latch enable clock

edge value. As it is clear we take into account the internal delay of the latch (G to Q

arc delay) and we propagate at the output pin the appropriate transition time. We

update independently the value for both rise and fall delays, and we work individually

for delay and transition time. We follow the same procedure for Latch 1. After we

update the timing information for the two latches of phase one the appropriate

message is reported, and we can move on to the update of the latest arrival time of

the capture latches. Figure 4.4 represents the delay and slew propagation at the

following phase.

Figure 4.3: Fast ICV Example - Departure Time Update

Figure 4.4: Fast ICV Example - Delay and Slew Propagation
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One incremental update run is performed for all of the capture latches of the

next clock phase. Again for each launching latch propagation would start from both

rise and fall values. Our STA engine reports for the worst timing path to each input

data gate pin of each one of the capture latches. In figure 4.5 we get to obtain the

latest arrival time of the capture latches. This value has been calculated based on

the maximum combinational delay from the output pin of the launching latch to the

input pin of the capture latch. Both the launching latch which is indicated as a

starting point and the combinational delay is reported. For the sake of simplicity,

we’ll bypass the next delay propagation steps because the process is the same for

latches clocked on phase two. Latch 2 and Latch4 would form a group, and their

departure time would be updated accordingly. Following that, an incremental run

would be performed to update the arrival times at phase one’s latches.

Figure 4.5: Fast ICV Example - Arrival Time Update

In figure 4.6 we proceed to the next iteration.

Figure 4.6: Fast ICV Example - Next Iteration
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The algorithm groups the latches depending on the phase they are clocked on

and updates their departure time in the following iteration. Taking a quick look at

these numbers, we can see that the latches’ latest departure times have converged

in both phases. As we saw in the previous section, Fast ICV would not update the

latest arrival time in subsequent iterations in any incremental run. The departure

time values have converged in this example, and our algorithm has not identified

a setup violation, suggesting that we may proceed to the algorithm’s final output

logs.

Looking at figures 4.7 and 4.8, we can see a detailed output log that includes

information on the latest values as well as the worst path analysis. Note that our

tool reports the worst negative slack and the delay values and worst path analysis

is performed for all of the circuit latches. In our case we for simplicity reasons we

present only Latch 4 as it is the latch we the worst negative slack.

Figure 4.7 is the first thing we’ll look at. We may simply observe that this

collection of data comprises no more than all of the relevant data found in the latch

graph for each of the latch nodes. We obtain the latest departure and arrival times,

as well as the enabling clock edge, for each of the nodes. The edges-connections to

the corresponding nodes are then obtained for each node. Note that for each latch

to latch connection, the weight or combination delay for both rise and fall values is

provided for each edge.

Figure 4.7: Fast ICV Example - Delay Values

We get to see the worst path analysis for each of the circuit latches in the final

step. In this analysis, we find the worst slack for each capture latch for rising and

falling starting launching points. The launch latch marks the beginning point, and

as we go through the combination delay, we finally arrive at the proper information

at the capture latch’s input pin.
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Figure 4.8: Fast ICV Example - Worst Paths

4.3 Bundled-Data Design

As already stated in previous chapters, the level of operation for traditional STA

engines is directed acyclic graphs. Gate pins are the nodes in this example, tim-

ing arcs are the graph’s edges, and sequential elements are the analyses’ boundary

points. More precisely, the STA engine may deactivate combinational feedback loops

in a design to decrease the influence of the violation-timing error on circuit timing

validation. The timing arc or disabled data point may have an incorrect transition

time when this cycle cutting approach is utilized, resulting in erroneous slew prop-

agation in different timing arcs and inaccurate slew computation analysis across

cycles.

Bundled-Data Design is a good example of a latch-based design that would be

badly affected by cycle cutting in timing analysis. Bundled Data is made up of

asynchronous cyclic controllers and a synchronous latch data path, as previously

indicated. Cutting the cycles in the asynchronous section would result in erroneous

enable signal propagation in the data path, which would be devastating. In more

detail through this methodology, asynchronous controllers generate the clock signals

for the synchronous data paths, which indicates that Asynchronous Static Timing

Analysis is required for the asynchronous part and STA for the synchronous data

path. So a hybrid methodology is needed in order to perform timing analysis in that

complex form of the circuit without additional timing errors. Before we proceed, we

must refresh our knowledge of all those structural pieces that make up a bundled

data design. We may take a deeper look at the exact essential structures of such a

circuit in the figure below.
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Figure 4.9: Bundled Data Design Structural Parts

As it is clear from the figure above, we would need to follow a separate timing

methodology for the asynchronous controllers’ portion and a different timing ap-

proach for the synchronous data path. The ASTA engine is also implemented and

integrated into the same tool (ASP) as this study. Regarding the ASTA analysis, we

are going to take a brief look at the analysis steps:

• Cyclic Equilibrium Slew Computation: When dealing with combinational

loops in cyclic circuits, a worst or best slew must be established over cycles.

To accomplish so, we use algorithm 2 described above, which runs through

these cycles, annotating a worst or best case slew for each circuit component

until it converges.

• Event Timing Graph (ETG) Construction: Following the cyclic slew computa-

tion, the event graph is built or the user provides it to the engine. ETG is a term

used to define the timing connection between the events in it. The transitions

in the event model are then mapped to netlist module ports.

• ETG T2T Delay Derivation in Netlist: It is worth mentioning that each arc in

ETG demonstrates a timing arc. So at that point, we perform delay annotation

to netlist paths based on ETG Event to event arcs. The computation of the

worst and best path is achieved through STA.

• ETG Period and Critical Cycle(s) Computation: The calculation of the critical

cycle is the final stage in this flow. The critical cycle is the component of timing

analysis that will have the most impact on the circuit since the critical cycle’s

period will directly affect the circuit’s period.

When it comes to the synchronous portion, the controllers give the clock signals,

which Fast ICV may use to execute Latch STA at the latch data path since the clock

periods and waveforms are defined. Most of the controllers (if not all) operate on

the worst-period, but for each sequential stage a different arbitrary clock phase is

produced. Regarding the delay computation part, the process is already defined for

the latch data path. Fast ICV would come up with its iterative procedure to give the

answers regarding the synchronous portion timing analysis.

However, we must keep in mind that this communication between the ASTA

tool and Fast ICV, in which the first one propagates the enable signals from the
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asynchronous portion to the synchronous portion must be performed under specific

circumstances where several conditions must not be violated. In the following steps,

we are going to introduce some timing constraints so the proper timing analysis for

a bundled data design is achieved.

Figure 4.10: Bundled Data Design Timing Constraints

Ctrl1 and Ctrl2 will give produced clocks to Latch1 and Latch2 in the example

above. We must ensure that clock signal propagation proceeds without causing any

setup violations in any of the latches during data propagation. We must confirm

that Path1 will be slower than Path2 since the two latches create a pair of launching

and a capturing latch, and the first one launches data to the second one. In the first

place, the following relative timing constraint must be taken into account:

AtL1 + ∆CL + sL2 < AtL2

At stands for the arrival time at the latches, ∆CL for the combinational delay at

the data path and s for the library setup time. The key factor here is to understand

that the arrival time at the latches is an outcome of the asynchronous part, so if

we want to dig deeper into the above equation we can conclude to the following

equation:

(AtCTRL1 + ∆BUF1) + ∆CL + sL2 < (AtCTRL2 + ∆BUF2)

Both STA and ASTA must contribute to the proper circuit validation so the circuit

can work correctly.

Furthermore, when we generate a clock in this manner, we must ensure that

the generated clock has the necessary properties for a sequential element to function

under it. It is necessary to guarantee that every latch receives a clock pulse with a

width larger than the specified minimum pulse width. The "minimum pulse width

check" ensures that the pulse width is kept to a minimum. By default, all latches in

a design should have a minimum pulse width set in the liberty file.
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Chapter 5

Experimental Methodology

We describe the whole Latch STA flow in this chapter, which can be utilized for

timing validation in Latch-based designs. At this part of this work we also examine

the methodology we followed in order to validate the operations of the Latch STA

procedure, through gate-level simulation and correlate its functionality with the

latch timing verification methodology that is provided by the industrial tool.

5.1 Latch STA Flow

Figure 5.1 demonstrates the whole Latch STA process. Τhe following process

has been applied to produce timing reports at both STA tools, at our tool, and at the

industrial tool.

Figure 5.1: Complete Latch STA Flow
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Coming up with the first step, the user must provide at the engine the appropri-

ate files that demonstrate the circuit, and under which timing technology the design

was constructed, to achieve loading the design successfully. So the user must feed

the engine with a netlist, the technology timing library, and specify the environment

delays through the SDC format. Looking into a brief description of the above:

• Netlist: A netlist is a list of electronic components in a circuit and the nodes

to which they are connected in its most basic form. This file is given in Verilog

(.v) format.

• Technology Timing Library: The technology timing library is represented

through the Liberty file format (.lib). The (.lib) file is an ASCII representa-

tion of the timing and power parameters associated with any cell in particular

semiconductor technology.

• Synopsis Design Constraint (SDC): SDC is a format that specifies the design’s

environment-intent including the timing and the power of the design. SDC

format consists basically of TCL commands. [9]

The following step in both processes is to enable their settings so that the Latch

Static Timing analysis may begin. To do Latch STA analysis on the industrial tool, a

particular variable must be set. [9] On the other hand, after specifying the appropri-

ate periods and waveforms for the different clock phases of the latches, we can use

the Fast ICV algorithm to compute the latch delay values at our engine. Concerning

the above, a specific variable must be set in our tool when the clock phases of the

latches overlap, implying that latches of various clock phases are transparent at the

same time, and the circuit is cyclic. Before the ICV algorithm runs, an equilibrium

cyclic slew is computed for all circuit gate pins when this variable is enabled. The

preceding approach takes into consideration the presence of cycles in the circuit

and computes a convergent equilibrium transition time for all circuit gate pins using

an iterative technique through the cycles. [2] At this point, we must note that the

industrial tool does not take into account the above slew computation. When at least

one combinational loop is found in the circuit, most industrial STA engines execute

cycle cutting. As a result, the disabled data to output latch arc will have wrong slew

and will have no effect on propagating the correct slew at the following pins. This

results in erroneous timing outcomes.

Finally, when the timing tools have completed their computations, we look at

the latch delay values from the tools’ output logs. The extraction of the SDF file is

another operation that should be considered. This file will help us in moving on to

the next phase, the SDF simulation flow, which will give us a clearer validation of

the two-timing engines’ outputs. Let’s take a closer look at what an SDF file is:

• SDF: The Standard Delay Format (SDF) is a timing data description and anal-

ysis format that may be utilized at any stage of the electrical design process. It

bridges the gap between dynamic and static timing analysis. [9]

The flow we maintained in order to perform SDF simulation at our test cases will be

examined in-depth in the next section.
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5.2 SDF Simulation Flow

The approach we used to accomplish the gate-level SDF simulation of latch-

based designs is now outlined in detail. The goal of the gate-level simulation is to

compare our Latch STA engine to the industry tool golden-reference model and to

confirm that our Latch STA approach is successful by using the SDF simulation

procedure to validate our results.

The entire SDF simulation procedure is depicted in Figure 5.2. As previously

stated, the following procedure is used to generate timing data in order to correlate

and verify the operations of Latch STA engines.

Figure 5.2: SDF Simulation Flow

As previously stated, SDF Simulation serves as a link between static and dy-

namic timing analysis. As can be seen at this stage, the extraction of the SDF file

and simulation using it were done individually for both engines in order to correlate

and validate their results. Looking at the first step of the flow, in order to simulate

our gate-level test cases and annotate the delay values and the timing checks of

the SDF file we constructed different Verilog test benches for each one of them. It’s

worth noting that each of the test benches follows a semi-automated method that

generates results without requiring the user to look at the signal waveforms in the

majority of circumstances.

The steps-utilities that we performed using the simulation program to arrive

at the final results are described in the following lines. At the compilation stage,

we must compile the netlist Verilog file, the test bench, and the technology file.

Through this step, the compilation tool performs syntax verification and static se-

mantics checks at the Verilog code. After that comes the elaboration step. The

responsible tool for this task elaborates the design hierarchy and determines signal

connectivity.The back annotation of the delay values provided in the SDF file is also

done at this point. Through the test bench, the simulator reads the SDF file auto-

matically. We gather and examine the simulation flow’s outcomes in the last stage.

We may infer the outcomes of the simulation flow by looking at the waveforms or
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looking at the terminal at the data supplied by the semi-automated measurements

by the test bench.

5.3 Bundled Data Design Experimental Methodology

Moving forward, we’ll go over the complete timing analysis flow for Bundled Data

Design. As previously said, we would follow a separate flow for the asynchronous

part, and because the clock signals are provided by the controllers, Fast ICV may

take these clock signals and execute Latch STA at the latch data path. The ASTA

engine is also implemented and integrated into the same tool (ASP) as this work,

and related publications by current and former engineers who contributed to the

tool’s development detail its development and scientific achievements. Figure 5.3

demonstrates the complete ASTA flow [2,7,13], the files needed in order to perform

ASTA are the same with the STA flow, meaning the Verilog Netlist, the .lef, .lib and the

SDC files. Looking into a brief explanation of the bellow demonstrated steps:

Figure 5.3: ASTA Flow

• Cyclic Equilibrium Slew Computation: A worst or best slew must be deter-

mined across cycles when dealing with combinational loops in cyclic circuits.

To do this, an iterative algorithm performs through these cycles, annotating a

worst or best case slew for each circuit component till it converges.

• Event Timing Graph (ETG) Construction: After cyclic slew computation, the

construction of the event graph takes place or the user provides it to the engine.

Basically, ETG is a concept that describes the timing relationship between the

events in it. After that, event model’s transitions are mapped on netlist module

ports.

• ETG T2T Delay Derivation in Netlist: It is worth mentioning that each arc in

ETG demonstrates a timing arc. So at that point, we perform delay annotation
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to netlist paths based on ETG Event to event arcs. The computation of the

worst and best path is achieved through STA.

• ETG Period and Critical Cycle(s) Computation: The final step of this flow

comes up with the computation of the critical cycle. The critical cycle is the

component of timing analysis that is going to affect the circuit the most, as the

critical cycle’s period will affect directly the period of the whole circuit.

The two engines, namely the ASTA engine and the last STA engine, are ready

to interact as the critical cycle is computed. Since the asynchronous controllers

generate the clocks for the Latch data path, the method is already specified as

long as the enable signals for the synchronous part are available. Fast ICV adapts

instantly to the ASTA flow and begins operating as soon as the ASTA part generates

clocks’ periods.

We may move on to the following chapter after having a close look at the whole

Latch static and dynamic experimental flow. We’ll summarize and examine the

abovementioned in depth in the following chapter as we collect the results of the

latch delay values and the observations we made.
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Chapter 6

Experimental Results

A particular set of test cases has been created to validate the above methodology’s

operations so that we can examine in detail the complete design cases that our

methodology handles effectively and compare its results and performance to the

state-of-the-art STA engine and the existing ICV (Iterative Constraint Verification)

algorithm. The netlist technology is 0.25um IHP. We should point out that we focus

on the nature of the circuit in terms of how the latches’ clock phases are represented,

rather than the number of elements in the circuit because we want to look at the

correct circuit handling, timing propagation, and timing reports in Acyclic, Cyclic,

and the exceptional case of the Bundle Data design. The tables below show the

entire range of our showcases. Linear latch pipelines and classic ring oscillator

cyclic circuits are examples of Acyclic and Cyclic circuits having overlapping and

non-overlapping clocks. The waveforms of the clocks indicate which timing windows

will be active throughout the delay propagation, hence the above clock specification

is critical.

6.1 Latch-Based Design Experimental Results

Tables 6.1 and 6.2 show the results of two acylcic testcases, with latches clocked

on non overlapping and overlapping clocks.

Testcase: latch_pipeline_4stage_and_2phi

Latches: 4 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1

Latch2 0.459586 0.4596 0.459586 0.4596 0.291028 0.2910 0.291028 0.2910

Latch3 5.459586 5.4596 5.459586 5.4596 5.291028 5.2910 5.291028 5.2910

Latch4 0.488274 0.4883 0.488274 0.4883 0.3067 0.3067 0.3067 0.3067

Clock Period (ns): 10 Clocks Waveforms: {0 5} {1 6} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1

Latch2 0.459586 0.4596 0.459586 0.4596 0.291028 0.2910 0.291028 0.2910

Latch3 1.459586 1.4596 1.459586 1.4596 1.291028 1.2910 1.291028 1.2910

Latch4 1.80052 1.8005 1.80052 1.8005 1.821163 1.8212 1.821163 1.8212

Table 6.1: Four Stage Latch Pipeline Case
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Testcase: latch_unconnected_pipelines

Latches: 4 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1

Latch2

Latch3 0.45941 0.4594 0.45941 0.4594 0.273704 0.2737 0.273704 0.2737

Latch4 5.45941 5.4594 5.45941 5.4594 5.273704 5.2737 5.273704 5.2737

Clock Period (ns): 10 Clocks Waveforms: {0 5} {1 6} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1

Latch2

Latch3 0.45941 0.4594 0.45941 0.4594 0.273704 0.2737 0.273704 0.2737

Latch4 1.45941 1.4594 1.45941 1.4594 1.273704 1.2737 1.273704 1.2737

Table 6.2: Two Latch independent Pipelines Case

Table 6.3 demonstrates the results of cyclic Latch circuits, where latches phases

are clocked on non-overlapping clocks.

Testcase: latch_cycle_5stages_ring_enb

Latches: 2 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 5.50679 5.5068 5.50679 5.5068 5.63473 5.6347 5.63473 5.6347

Latch2 0.61181 0.6118 0.61181 0.6118 0.42944 0.4294 0.42944 0.4294

Testcase: latch_cycle_4stage_2phi

Latches: 4 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 5.48827 5.4883 5.48827 5.4883 5.30670 5.3067 5.30670 5.3067

Latch2 0.40885 0.4089 0.40885 0.4089 0.50513 0.5051 0.50513 0.5051

Latch3 5.40885 5.4089 5.40885 5.4089 5.50513 5.5051 5.50513 5.5051

Latch4 0.40885 0.4089 0.40885 0.4089 0.50513 0.5051 0.50513 0.5051

Testcase: latch_join_one_stage

Latches: 4 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 5.48827 5.4883 5.48827 5.4883 5.30670 5.3067 5.30670 5.3067

Latch2 5.48827 5.4883 5.48827 5.4883 5.30670 5.3067 5.30670 5.3067

Latch3 0.79865 0.7986 0.79865 0.7986 0.63851 0.6385 0.63851 0.6385

Latch4 0.79865 0.7986 0.79865 0.7986 0.63851 0.6385 0.63851 0.6385

Testcase: latch_join_two_stages

Latches: 4 Clock Period (ns): 10 Clocks Waveforms: {0 5} {5 10} Number of Clocks: 2

Latest Arrival Rise Time Latest Arrival Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 5.51750 5.5175 5.51750 5.5175 5.68384 5.6838 5.68384 5.6838

Latch2 5.51750 5.5175 5.51750 5.5175 5.68384 5.6838 5.68384 5.6838

Latch3 0.79865 0.7986 0.79865 0.7986 0.63851 0.6385 0.63851 0.6385

Latch4 0.79865 0.7986 0.79865 0.7986 0.63851 0.6385 0.63851 0.6385

Table 6.3: Cyclic Latch Circuits Non-Overlapping Clocks

All of the above designs are simple cyclic showcases that helped us validate

the operations of our methodology. In more detail, a ring oscillator circuit with two

latches, a latch cycle with four latches, and two cases where more than one cycle is

composed in the circuit are demonstrated at the above table. Regarding all cases,

latches are clocked on two different phases alternately.

Because the clocks do not overlap in this scenario, each phase will launch and

capture data without latches from different phases being transparent at the same

time. Delay propagation would proceed from the Enable to Output timing window

rather than the Data to Output timing window as a result of this. So the point in
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that, is that even though cycle cutting occurs, Enable to Output arc is dominant so

the Data to Output arc does not affect slew propagation.

The lines that follow focus on cyclic latch-based designs in which the clocks of

different phases overlap. The 6.4 table has an overview of all of the results; however,

we will go through certain of them in further depth.

Testcase: three_phase_latch_cycle

Latches: 3 Clock Period (ns): 20 Clocks Waveforms: {0 10} {5 12} {14 19} Number of Clocks: 3

Latest Departure Rise Time Latest Departure Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 0.21461 0.2146 0.21461 0.2146 0.35068 0.3507 0.35068 0.3507

Latch2 5.21461 5.2146 5.21461 5.2146 5.35068 5.3507 5.35068 5.3507

Latch3 14.23479 14.2348 14.23479 14.2348 14.36518 14.3652 14.36518 14.3652

Testcase: three_phase_latch_cycle_per_5

Latches: 3 Clock Period (ns): 20 Clocks Waveforms: {0 10} {5 15} {10 20} Number of Clocks: 3

Latest Departure Rise Time Latest Departure Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 0.21461 0.2146 0.21461 0.2146 0.35068 0.3507 0.35068 0.3507

Latch2 5.21461 5.2146 5.21461 5.2146 5.35068 5.3507 5.35068 5.3507

Latch3 10.21461 10.2146 10.21461 10.2146 10.35068 10.3507 10.35068 10.3507

Testcase: two_phase_latch_cycle_d_to_q

Latches: 4 Clock Period (ns): 20 Clocks Waveforms: {0 17} {14 20} Number of Clocks: 2

Latest Departure Rise Time Latest Departure Fall Time

Fast ICV SDF Sim Industrial Industrial Fast ICV SDF Sim Industrial Industrial

Tool Tool Sim Tool Tool Sim

Latch1 Setup Setup 17.0576 0.2639 Setup Setup 17.0761 0.3704

Latch2 Violation Violation 18.2406 0.2696 Violation Violation 19.4531 0.3872

Latch3 At At 17.8765 1.3209 At At 17.4801 3.5396

Latch4 LATCH3 LATCH3 17.8015 13.4149 LATCH3 LATCH3 18.3601 13.2569

Table 6.4: Overlapping Clocks Cases

In cases where the clocks have an overlap, we notice two scenarios. First,

suppose as a reference the second test case in table 6.4. In that case, the waveforms

have the following view as is demonstrated in the following picture 6.2. All clocks

have a period of 20ns and waveform overlap per 5ns.

Figure 6.1: Latch Enable per 5ns

As can be seen in the snapshot, two of them have overlap each time, but the

third will not have overlap with the first. Phase one and Phase two overlap, while

Phase three does not overlap with Phase one. This situation will go on endlessly. So

despite the fact that the clocks overlap, Enable to Output will be the dominant way

of data propagation. In that case cycle cutting would no affect slew and delay, even

if it applied arbitrary on among overlapping phases by the industrial tool.
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Figure 6.2 demonstrates the phases as they were given at the latches in the third

testcase of the table 6.4. In that cases clocks overlap in such a way that the Data

to Output timing window is enabled, meaning that delay and slew computation will

proceed from that window.

Figure 6.2: Overlapping Phases

Given the above clock waveforms, we start examining the analysis performed on

the design demonstrated in figure 6.3. both at our tool and the industrial tool. With

the appropriate command, we get to know that a loop breaker is set at the input pin

of Latch 3, by the industrial timer.

Figure 6.3: Cycle Cutting Testcase

Looking in table 6.4 as demonstrated for Latch3 a setup violation is detected

by our methodology which is not detected by the industrial engine. To validate the

above result mismatch, we proceed to the SDF simulation. As it can be observed

again by table 6.4, in our case SDF timing check annotation indicates that a setup

violation occurs in Latch3, however simulation with the SDF from the industrial

tool violation detection is absent. By setting a loop breaker at Latch3 an unrealistic

value was calculated for both delay and transition time. This unrealistic small value

in slew drives into an erroneous delay annotation in which the setup violation was

never detected. It is worth mentioning that SPICE measurements were performed at
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the circuit under test for further validation. The average relative slew error is 0.3%

and the feedback arc slew relative error was 1.82%.

6.2 ICV vs Fast ICV Iterations

Figure 6.4 shows a comparison of the total number of iterations required by ICV

versus Fast ICV in a set of test scenarios where the latest departure times converge.

Fast ICV, which performs iterations based on clock phases and checks each time

if the latest departure time converges before doing all iterations, requires 2.75 less

iterations than regular ICV in a set of test cases with a range of clock phases and

circuit types.

Figure 6.4: ICV vs ICV Fast Iterations

6.3 Industrial Tool vs Fast ICV Slack Computation

The comparison of slack computation between the industrial tool and Fast ICV

is shown in Figure 6.5. Refreshing our memory, the industrial tool employs two

methods to verify for setup, at the opening and closing edges, as stated in the back-

ground part. Slack computed at the opening edge is tighter than slack computed at

the closing edge, as seen in the graph. This might lead an inexperienced designer to

conclude that there is no room for additional time improvements.
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Figure 6.5: Industrial Tool vs ICV Fast Slack Computation

6.4 Bundled-Data Design Experimental Results

The Bundled-Data design on which we will do time analysis is shown in Figure

6.6. As it is clear this design consists of two asynchronous controllers and a cyclic

synchronous latch data path. The enable signals would be provided by the two

controllers to the respective latches. Only one latch receives the clock signal from

Ctrl2, while the rest of the latches receive it from Ctrl1. The data path consists

of twelve latches in total, where some of the latches of phase one join to the latch

of phase two, and the latch of phase two fan outs at some latches of phase one,

indicating that a cycle is created.

Figure 6.6: Bundled-Data Experiment

59



The asynchronous timing analysis would initially take place on the controllers’

side. Keep in mind that the ETG is constructed and the necessary cyclic slew and

delay annotation is done on it during the early phases of the ASTA flow. Let’s

concentrate on the last section of the ASTA flow, which clarifies the link between the

asynchronous and synchronous portions. The critical cycle and critical period are

computed in the final stage of this flow. The critical cycle is a component of timing

analysis that is built using critical arcs and will have the most impact on the circuit

since the critical cycle’s period will directly affect the circuit’s period. The period of

the critical cycle and the delay values of the components of the controllers that will

provide the enable signals at the latches are of particular interest table 6.5.

ASTA Period (ns) Ctrl1/INV/ZN Ctrl2/INV/ZN

RISE FALL RISE FALL

2.45907 1.9352843 3.0471899 0.7555204 1.9101156

Table 6.5: ASTA Period - Controllers Delay Values

The ASTA period has converged at 2.45907ns and we can obtain the delay val-

ues of the (+) and the (−) controllers’ events that would help us indicate the clock

signals.

Figure 6.7: Bundled-Data Experiment Clock Generation

For proper timing analysis, we must perform two crucial checks while maintain-

ing generated clocks. As these are relative offsets for the occurrence of these events,

the reference edge timing offset and the other edge delay increment value may go

beyond the period value. The adjustment is made by determining the smallest clock

offset among all asynchronously produced clocks and then adjusting all clock edges

by that offset. It’s worth noting that this adjustment is also done to specify a certain

clock reference starting point. To avoid data loss or violations, we must compare

the produced clocks’ pulse width with the library’s minimum clock pulse width, as

discussed in earlier chapters. So, after verifying that the minimum clock pulse width

is not exceeded and after making the necessary clock adjustments, the final clock

waveforms are:

CTRL1_clk {1.1797639 2.2916695}

CTRL2_clk {0.0000000 1.1545953}
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Fast ICV receives these clocks as an input and produces Latch STA in the cir-

cuit’s data path. The method has previously been thoroughly evaluated. The results

of Fast ICV are shown in Table 6.6.

Testcase: Bundled-Data Latch-Based Datapath

Latches: 12 Clock Period (ns): 10 Clocks Waveforms: {0.0000000 1.1545953} {1.1797639 2.2916695}

Number of Clocks: 2 Number of Iterations: 2

Fast ICV

Latest Arrival Rise Time Latest Arrival Fall Time

lat 0.80419 0.92180

lat2 0.811559 0.597173

lat3 1.73291 1.56887

lat21 0.811559 0.597173

lat22 0.811559 0.597173

lat23 0.811559 0.597173

lat24 0.811559 0.597173

lat25 0.811559 0.597173

lat26 0.811559 0.597173

lat27 0.811559 0.597173

lat28 0.811559 0.597173

lat29 0.811559 0.597173

Table 6.6: Bundled-Data Latch Data-Path Fast ICV Outcomes

Finally, we can note that in the data path shown above, Fast ICV performed

in two iterations, but conventional ICV produced accurate results following twelve

iterations.
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Chapter 7

Conclusion

In conclusion, it is clear that this Latch STA approach, Fast ICV, can successfully

perform STA on Synchronous, Cyclic, and Acyclic Latch-based designs, and that it

is significantly correlated with the state-of-the-art industrial STA engine and the

existing ICV algorithm, in terms of quality timing results and execution time. We

need to mention that the combination of this work with the existing ASTA tool could

provide timing analysis on Bundled-Data Latch-Based designs.

More specifically, our methodology comes up with a completely automated flow

that can provide a comprehensive timing report as well as an SDF file that can

be utilized for dynamic simulation, as long as the steps below are followed. After

providing the STA engine with the necessary files, such as the Verilog netilst and

the technology timing library, the next step is to enable the tool’s relevant utilities

based on the circuit type, period, and clock phase waveforms. In cases where the

circuit is acyclic or cyclic with latches clocked on non overlapping clocks, we could let

Fast ICV operate as it is. In a cyclic circuit, however, equilibrium slew computation

and propagation must be enabled in cases where the circuit’s clocks come from

asynchronous elements or the clocks of the latches overlap in such a way that the

Data to Output timing window is active at the same time for latches clocked on at

different clock phases.

Finally, this technique validates that it functions under the core STA principles

in the delay calculation and at the right setup checking by providing and performing

accurate timing checks at this worst-case delay analysis.
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Chapter 8

Future Work

As it is clear, that work proves how important is for a timing engine to perform

efficient Latch STA and after that how useful may prove to use latches as the core

structure of your design as long as proper timing verification can be achieved.

First of all, in order to define a fully-featured STA engine, the existing tool must

handle the best case or hold analysis as a future step. In a similar approach to

the longest analysis, the above methodology may do hold analysis and early delay

propagation. Furthermore extending the proposed methodology to work under mixed

sequential based designs, i.e., designs based on flip-flops and latches, and allowing

latches to be clocked on several clock domains, will significantly increase the tool’s

usability.

Finally, as long as our tool successfully performs latch timing analysis, further

stages can be considered latch-based design applications. As previously stated,

latches operate faster and contribute to better power performance than flip-flops,

therefore converting from flip-flops to latch-based designs would result in improved

performance, and timing validation would not be an issue. [1] The same transfor-

mation may be used in Optimization Loop operations as long as the tool tends to fix

the slack violation, in that case using latches on the flip-flop side may improve the

results faster in a mix design.
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Appendix A

Acronyms

STA Static Timing Analysis

ASTA Asynchronous Static Timing Analysis

EDA Electronic Design Automation

RTL Register Tranfer Level

SDC Synopsys Design Constraint

ICV Iterative Constraint Verification

SDF Standard Delay Format

VLSI Very Large Scale Integration

PBA Path Based Analysis

GBA Graph Based Analysis

AT Arrival Time

RAT Required Arrival Time

NLDM Non-Linear Delay Model

LUT Look Up Table

ETG Event Timing Graph

RTG Reduced Timing Graph

FIFO First In First Out
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