
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Βελτίωση απόδοσης μεθόδων κρυπτογράφησης με

αξιοποίηση μονάδων GPUs

Διπλωματική Εργασία

Κλαδούχος Δημήτριος

Επιβλέπουσα: Τσομπανοπούλου Παναγιώτα

Βόλος 2021

2

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exploiting GPUs for enhanced

cryptographic performance

Diploma Thesis

Kladouchos Dimitrios

Supervisor: Tsompanopoulou Panagiota

Volos 2021

3

Εγκρίνεται από την Επιτροπή Εξέτασης:

Επιβλέπουσα Τσομπανοπούλου Παναγιώτα

Αναπληρώτρια Καθηγήτρια, Τμήμα Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Αντωνόπουλος Χρήστος

Αναπληρωτής Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Φεύγας Αθανάσιος

Ε.ΔΙ.Π., Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Ημερομηνία έγκρισης: 17-09-2021

4

Ευχαριστίες

Θα ήθελα να ευχαριστήσω θερμά την αναπληρώτρια καθηγήτρια κα.

Τσομπανοπούλου Παναγιώτα για την εξαιρετική συνεργασία και την συμβολή της

στην εκπόνηση της παρούσας διπλωματικής εργασίας καθώς και τους κυρίους

Αντωνόπουλο Χρήστο και Φεύγα Αθανάσιο για την συμμετοχή τους στην επιτροπή

εξέτασης. Ευχαριστώ, φυσικά, την οικογένειά μου για την πολύτιμη στήριξη που μου

παρείχε όλα αυτά τα χρόνια των σπουδών μου ενθαρρύνοντάς με πάντα και

βοηθώντας με να τις συνεχίζω απρόσκοπτα. Τέλος, θα πρέπει να ευχαριστήσω τους

φίλους μου που βρίσκονταν πάντα δίπλα μου, με στήριζαν και βαδίσαμε μαζί σε αυτό

το μεγάλο μονοπάτι στο οποίο αφήνουμε ευτυχισμένες στιγμές και όμορφες

εμπειρίες.

5

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ

ΠΝΕΥΜΑΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων,

δηλώνω ρητά ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά

αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια

αυτής της εργασίας, αποτελεί αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν

προσβάλλει κάθε μορφής δικαιώματα διανοητικής ιδιοκτησίας, προσωπικότητας και

προσωπικών δεδομένων τρίτων, δεν περιέχει έργα/εισφορές τρίτων για τα οποία

απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής

αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές

αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα

σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή

και η σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών

με πλήρη περιγραφή. Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις

νομικές και διοικητικές συνέπειες που δύναται να προκύψουν στην περίπτωση κατά

την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει

διότι είναι προϊόν λογοκλοπής.

Ο Δηλών

Κλαδούχος Δημήτριος

17/09/2021

6

7

ΠΕΡΙΛΗΨΗ

Μετά από χρόνια έρευνας, οι κάρτες γραφικών (GPUs) βρέθηκε ότι θα μπορούσαν να

είναι χρήσιμες σε μεγάλους επιστημονικούς υπολογισμούς, εκτός από την

επεξεργασία γραφικών, λόγω του εξαιρετικά φιλικού για παράλληλη εκτέλεση,

πολυπύρηνου σχεδιασμού τους. Ως αποτέλεσμα, πλέον χρησιμοποιούνται όλο και

περισσότερο στην επιστήμη των υπολογιστών για πολύπλοκους υπολογισμούς και

διαδικασίες γενικότερα έναντι των Κεντρικών Μονάδων Επεξεργασίας (CPUs)

εξαιτίας της υπεροχής τους σε επεξεργαστική ισχύ. Ένα από τα σημαντικότερα

πεδία που οι GPUs μπορούν να είναι εξαιρετικά χρήσιμες είναι η ασφάλεια των

υπολογιστικών συστημάτων και η κρυπτογραφία. Όταν εφαρμόζεται ένας

αλγόριθμος κρυπτογράφησης, εκτός από το να είναι αποτελεσματικός όσον αφορά

την ασφάλεια, η απόδοση της εφαρμογής του είναι κάτι που απασχολεί επίσης. Στην

παρούσα διπλωματική εργασία, παρουσιάζουμε μερικές ενδιαφέρουσες μελέτες

πάνω στην βελτίωση της αποδοτικότητας που οι σύγχρονες κάρτες γραφικών

μπορούν να παρέχουν σε πολύ σημαντικές κρυπτογραφικές εφαρμογές. Δίνουμε

έμφαση στην “παράλληλη” εφαρμογή ευρέως χρησιμοποιούμενων συμμετρικών

αλγορίθμων κρυπτογράφησης και του αλγόριθμου δημοσίου κλειδιού RSA

προγραμματισμένων σε NVIDIA CUDA παρουσιάζοντας μερικές από τις πιο

διακεκριμένες έρευνες που έχουν γίνει σε αυτό το πεδίο μελέτης. Αυτόν τον καιρό, η

υπάρχουσα βιβλιογραφία γίνεται περισσότερο πλήρης και πολλές ενδιαφέρουσες

τεχνικές για βελτίωση της επίδοσης πολλών αλγορίθμων προτείνονται. Τα

πειράματα που παρουσιάζονται οδηγούν στο συμπέρασμα πως υπάρχει σημαντική

βελτίωση στην απόδοση αυτών των αλγορίθμων όταν επιστρατεύεται η εφαρμογή

τους με χρήση GPUs. Εκτός από την παρουσίασή τους, σχολιάζονται επίσης τα

αποτελέσματά τους λεπτομερώς, εξετάζοντας επίσης και το περιθώριο για

περαιτέρω βελτιστοποιήσεις σε κάποιες περιπτώσεις.

Λέξεις-κλειδιά:

GPU, κρυπτογραφία, συμμετρικοί αλγόριθμοι κρυπτογράφησης, αλγόριθμοι δημόσιου

κλειδιού, RSA, απόδοση, αποδοτικότητα, παράλληλη.

8

ABSTRACT

After years of research, Graphic Processing Units (GPUs) were found that could be useful

for heavy scientific computations except for graphics processing due to their highly

parallel-friendly multi-core design. Nowadays, as a result they are increasingly used in

computer science for complex computations and procedures in general over Central

Processing Units (CPUs) because of this superiority in processing power. One of the most

important fields that GPUs can be greatly useful is the security of computer systems and

especially cryptography. When a cipher is implemented except for ensuring security,

performance is an aspect that matters too. In this diploma thesis, we present some

interesting studies on the ciphers efficiency improvement that modern GPUs can provide

for critical cryptographic applications. We focus on parallel implementation of widely used

symmetric-key ciphers and the RSA public-key algorithm programmed in NVIDIA CUDA by

presenting some of the most distinguished research that have been made in that field of

study. These days, the existing literature is becoming more complete and many interesting

techniques for enhancing the performance of the existing ciphers are being proposed. The

experiments presented result in that there is a significant improvement in the

performance of these cryptographic applications when GPUs implementations are

deployed. Except for the presentation of them, these results are finally discussed in detail,

examining the room for further optimizations too in some cases.

Keywords:

GPU, cryptography, symmetric-key ciphers, public-key ciphers, RSA, performance,

efficiency, parallel.

9

TABLE OF CONTENTS

Ευχαριστίες iv

ΠΕΡΙΛΗΨΗ vi

ABSTRACT vιi

TABLE OF CONTENTS viii

CHAPTER 1 3

INTRODUCTION 3

CHAPTER 2 5

THE GPU PROGRAMMING MODEL 5

2.1 NVIDIA GPGPU parallel architecture 5

2.2 GPU memory structure 6

2.3 Kernel execution process and attributes 7

CHAPTER 3 9

SYMMETRIC-KEY BLOCK CIPHERS 9

3.1 The Advanced Encryption Standard (AES) 9

3.1.1 CUDA optimization attempts on ECB and CBC mode 11

3.1.2 Testings based on allocation strategies and granularity 15

3.1.3 An application oriented data structure 21

3.2 Camellia, CAST5, SEED ciphers and throughput-oriented optimization 31

3.2.1 Throughput oriented optimization of Camellia, CAST5 and SEED 32

3.3 An OpenSSL-based optimization attempt and benchmarking issues for few more

symmetric-key block ciphers 36

3.3.1 GPU-Optimized Block Ciphers in the OpenSSL Library 38

3.3.2 OpenSSL benchmarks and how to reproduce them 45

CHAPTER 4 49

PUBLIC-KEY CIPHERS-RSA OPTIMIZATION 49

10

4.1 The RSA cryptosystem 49

4.1.1 The expensive modular operations of RSA 51

4.1.2 Parallelizing RSA modulo function methods 52

4.1.3 An alternative Montgomery approach and programming techniques 64

4.1.4 The Chinese Remainder Theorem in RSA decryption process 67

4.1.5 The Pollard P-1 factoring - An RSA optimization over SSL/TLS protocol 70

CHAPTER 5 73

CONCLUSIONS AND FUTURE WORK 73

REFERENCES 75

11

List of figures

Figure 3.1: Array of Structure, an allocation of plaintext[5] 17

Figure 3.2: Structure of Array, an allocation of plaintext[5] 17

Figure 3.3: Overlapping technique with data transfer and processing[5] 18

Figure 3.4: Optimized AES CTR implementation with and without data transfers[4]23

Figure 3.5: Serialised streams used by each thread for indexing[4] 27

Figure 3.6: Mapping of physical threads to message IDs[4] 28

Figure 3.7: Throughput rates for parallel and serial messages respectively[4] 29

Figure 3.8: Global memory read performance with varying coherence patterns[4] 30

Figure 3.9: The 3-way pipeline strategy 33

Figure 3.10: The CUDA Visual Profiler from the original engine-cuda (up) and the

optimized version of AES-128 ECB (down)[10] 41

Figure 3.11: ECB encryption ciphers comparison with CUDA on one PCB of a GeForce GTX

295 (OpenSSL speed)[10] 45

Figure 4.1: The effect of data input on CPU and GPU for RSA[11] 56

Figure 4.2: Comparison of CPU RSA for small prime numbers with GPU RSA for large prime

numbers[11] 57

Figure 4.3: Speed up factor for test groups 1 and 2[12] 63

Figure 4.4: GPU throughputs of 512-bit modular exponentiation with different

Montgomery approaches[13] 67

List of tables

Table 3.1: Specification of experiment platform 13

Table 3.2: Total cost using streams[2] 15

Table 3.3: Specification of experiment computer 19

Table 3.4:Throughput of each implementation[5] 20

Table 3.5: Specification of experiment computer 35

Table 3.6: Comparison of works on throughputs achieved[7] 35

Table 3.7: Specification of experiment computer 42

Table 3.8: Memory consumption for each cipher decryption process[10] 43

Table 3.9: Κernel performance for ECB encryption process[10] 44

Table 4.1: Specification of experiment computer 55

Table 4.2: GPU implemented RSA for large prime numbers and large value of n (n

= 1005 * 509)[11] 56

Table 4.3: Specification of experiment computer 69

Table 4.4: Speed up factor for test group 1[15] 69

2

CHAPTER 1

INTRODUCTION

Central Processing Units (CPUs) had been for a long time the only units available for

general purpose computing and as a result for large-scale computing too. But along with

the evolution of technology, the “large-scale” meaning changed significantly over the

years and new complex applications with higher computational requirements appeared.

That need led to research for new effective ways to meet those requirements. The best

answer was given by Nvidia in 2007 which introduced a new method which played a

major role in accomplishing what we now call High Performance Computing (HPC). That

was the exploitation of Graphic Processing Units (GPUs) for general purpose computing

(GPGPUs) which was achieved in practice with the use of a new programming language

named CUDA (Compute Unified Device Architecture) used for programming the Nvidia

GPUs. That is why modern programmable GPUs are also called General Purpose ones

(GPGPUs). Thereafter, few more similar functionality languages were created (OpenCL,

OpenACC, C++ AMP, etc.), but still CUDA remains the most commonly used for

professional high performance computing around the world.

GPUs have many important advantages in computing ability over the CPUs. First of all,

GPUs are ideal for parallel processing due to the hundreds of cores they consist of in

comparison with CPUs which have only a few. GPU cores can handle thousands of threads

simultaneously while CPU cores can use a small number of threads per core. Additionally,

CPUs may have low latency but for server environments cluster computing used requires

high hardware investment and consumes a lot of energy. On the contrary, GPUs have

lower power consumption and in terms of performance provide much higher throughput

and bandwidth which is more critical in achieving efficient computing. In general, they

significantly improve the responsiveness and the speed of a wide spectrum of applications

in a large number of market fields such as scientific software, visual processing, neural

networks’ implementation and a range of some critical security applications as of late.

Cryptography is one of these fields, providing confidentiality, privacy preservation,

integrity and authenticity to the users, but it is often time consuming to implement them.

The present diploma thesis is an overview of some remarkable optimization attempts in

3

the most used cryptographic algorithms that have been made so far. Some important

ciphers included among others are AES,DES,RSA etc. All optimizations were implemented

using Nvidia’s CUDA programming language. The ciphers included were parallelized in the

most effective way possible taking advantage of the full functionality of the GPGPUs. The

results show a clear and significant enhancement to the performance of the implemented

ciphers.

The rest of the diploma thesis is organized as follows. Chapter 2 is a roundup of the

functionality and programming capabilities of GPGPUs. Chapters 3 and 4 present the

optimization methods that have been attempted so far in symmetric-key block ciphers

and the most used public-key cipher, the RSA respectively. Chapter 5 presents our

conclusions and discusses future work.

4

CHAPTER 2

THE GPGPU PROGRAMMING MODEL

2.1 NVIDIA GPGPU parallel architecture

The modern GPUs[1] are characterized by their high bandwidth and high throughput,

computing power and energy-efficient functionality. Their key-feature is the massive

multithreading ability which along with the shared control logic across the threads

succeeds to hide the latency during processing.

The most widely used GPUs for general purposes are the Nvidia GPUs. Before analyzing

their architecture, we need to declare the terms we are going to use henceforth. A

program running on the CPU is the host program, GPU is the device and the code which is

going to be executed in the GPU (device code) is called through the kernel launch which

acts as a function that runs on the device. The whole process of a CUDA program

specifically starts with a host program with one or multiple threads running on a CPU

which consists of one or more executable parallel “kernels” ready to be launched from the

suitable host code point.

Nvidia GPGPUs are designed to support a large number of threads which are able to run

simultaneously. But kernels are organized in a specific way and have strict functionality

rules. Before launching a kernel, its size has to be determined. For that reason, the

number of grids, thread blocks and each block’s number of threads needs to be set. The

maximum numbers of these values may differ per GPU according to their specifications.

As for these terms, thread blocks are a programming abstraction which depicts a group of

threads being able to be executed serially or in parallel. A grid is formed by the grouping

of multiple thread blocks. The computing architecture is configured with a group of

streaming multiprocessors (SM) containing 64-128 cores each in most cases, depending

on the architecture. The microarchitecture of the GPU defines the organization of some

elements inside the SMs which schedule, transfer and execute. The occupancy of a GPU

mainly defines its computing capability and of course different architectures to enhance

performance are being tested and applied over the years. In order to comprehend the

computing capability, we mention some critical characteristics of one state of the art

Nvidia GPU. Ampere architecture, is one of the newest Nvidia GPU architectures and the

5

documentation which Nvidia provides for the A100 graphics card which is based on this

architecture, details its characteristics as following: 108 SMs, 64 FP32 cores/SM, 1024

maximum threads/block, 2048 maximum threads/SM, 32 maximum thread blocks/SM

and 164 KB shared memory size/SM. In short, the whole procedure for the processing

through a GPU starts with the work scheduler which distributes CUDA thread blocks to

SMs, the multithreaded SMs schedule and execute the CUDA thread blocks and individual

threads which are assigned to them and then each SM can process multiple concurrent

threads hiding some long-latency loads from DRAM. After a thread block executes its

kernel code, its binded SM resources are released so the work scheduler can assign a new

thread block to those SM.

2.2 GPU memory structure

It is important to declare that each thread block is assigned to and executed on a single

SM. As regards the CUDA supported memory organization of a GPU, the hardware

implementation of memories is the following:

● Per thread memories

○ Local memory, where registers and other thread data are stored when

there are no more SM resources or when it is chosen for a reason. This is

also the memory which array type variables are stored in. It is a memory

that provides slow-speed data access and can be even 150 times slower

than registers or shared memory, which we subsequently mention. The

lifetime of the local memory is the same as that of the thread’s lifetime.

(Read/Write)

○ Registers, which are used for stack variables which are declared in kernels.

Each SM consists of thousands of registers. It is the fastest form of memory

with a lifetime the same as that of the thread’s lifetime. (Read/Write)

● Per thread block memory

○ Shared memory, which is an L1 data cache in which all threads of a thread

block have access, so we have an L1 cache (up to 164KB in Nvidia

A100/Ampere architecture) per SM. So being located inside each SM makes

6

them have very low latency. It is a fast-access memory with a lifetime same

as that of the thread block’s lifetime. (Read/Write)

● Per grid memories

○ Global memory, in which all the essential variables needed from the host

code are transferred to at first place and all of the variables that contain

are accessible from all the thread blocks of the grid. For uncoalesced reads

and writes creates huge application bottlenecks and in general is the

slowest access memory. Its lifetime lasts until the CUDA application is

terminated. Its capacity is about 40GB (Nvidia A100/Ampere architecture)

(Read/Write)

○ Constant memory, in which all the thread blocks of the grid have access. It

is useful for constants that cannot be compiled into the program. It is a

high-speed data access memory with the lifetime of the application which

participates in. (Read/Only)

○ Texture memory is a type of cache memory rarely used for general purpose

computing so it is not of primary importance discussing their functionality.

(Read/Only)

● Combined global and local memory

○ Level 2 cache shared by all the SMs (up to 1MB).[1]

2.3 Kernel execution process and attributes

The basic units of SM managing are called warps, which are responsible for scheduling

and executing threads. Threads in the same warp start at the same time at the same

program address and are executed simultaneously with only one warp being executed

each time. However, when designing a CUDA code we need to have in mind that in fact 16

threads (a half-warp) are executed simultaneously because each 32 threads’ same single

instruction needs two clock cycles to be executed and warp scheduler to issue the next

instruction due to the fact that many instructions are moving through the pipeline at

once. In CUDA the sequence of operations that execute on the device in the order in

which they are issued by the host code is called a stream. CUDA gives programmers the

7

opportunity to interleave different operations from different streams or when possible

run concurrently.

In order to use the asynchronous stream functionality which mentioned above, a memory

mechanism for the host memory is necessary to be used. This is the page-lock memory (or

pinned memory) and has the capability to concurrently execute kernels and memory

transfers eliminating the need for allocating device memory thread blocks. GPUs get the

data they need from the CPU using the Direct Memory Access mechanism (DMA). It is an

effective manner to transfer data to or from the RAM (where the pinned memory is stored

to) without involving the CPU in the whole process and of course not generating any page

fault on the accesses. The other memory design memory characteristic which is very

crucial for effective performance in CUDA programs is the bank conflicts which may be

caused during shared memory access. First of all, let us define how the shared memory is

organized. Supposing the memory has the form of a matrix, each column is a bank and in

Nvidia GPUs there are 16 or 32 banks, in which memory locations are stripped across

them in units of 32 bits. If the threads of a half warp happen to access data that belong to

the same bank we call this phenomenon a bank conflict and has as a result a significant

drop in performance especially if it happens repeatedly. So it is very important for the

programmer to be careful to access different banks in every half-warp execution[1].

8

CHAPTER 3

SYMMETRIC-KEY BLOCK CIPHERS

3.1 The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a widely used and one of the most important

ciphers and is used worldwide in many critical fields. Developed by the Belgians Vincent

Rijmen and Joan Daemen (hence its original name, Rijndael), is an electronic data cipher

created by the U.S. National Institute of Standards and Technology (NIST) in 2001. It is the

first publicly accessible cipher approved by the U.S. National Security Agency (NSA) which

uses it for greatly confidential information.

AES is a block cipher[3], meaning that the algorithm operates on a fixed-length group of

bits which in this case are 128 and can be used with three different available key versions:

a 128-bit sized, a 192-bit and a 256-bit with the internal rounds of the cipher being 10, 12

and 14 in each case respectively. AES encrypts all 128 block bits in one iteration and that is

one reason for the comparably small number of rounds. In general, the algorithm consists

of the following steps, called layers with each layer manipulating all of the 128 data bits:

1. Key Addition Layer A 128-bit key (subkey) which is derived from the original key

through the key scheduler is being XORed to the data path. (The first round

consists only of that layer).

2. Byte Substitution Layer (S-Box) The data path’s elements are non-linearly

transformed through lookup tables using a method based on the mathematical

properties of Galois Fields. The contribution of this layer to the whole procedure is

that it achieves confusion to the data which means that all changes in each state

are spread quickly throughout the data path.

3. Diffusion Layer It contains two sub-layers: the shiftRows layer and the MixColumn

one. This layer is all about the diffusion over the bits being processed. The two

sublayers perform linear operations and are the following:

a. ShiftRows Layer This sublayer is responsible for byte-level data

permutation.

9

b. MixColumn Layer This sublayer executes matrix operations which mix

blocks of four bytes (last round does not make use of it which makes the

whole scheme symmetric).

In the decryption process, since AES does not follow the Feistel structure but still a

symmetric cipher, there must be an inversion in all layers separately which turn out to be

similar to the encryption ones.

As for the implementation of the AES and other block ciphers like DES which will be

discussed later on, there is not a unique way to achieve it but five different modes of

operation. These are the following:

● Electronic Code Book mode (ECB), in which if, for example, the block cipher

encrypts and decrypts in blocks of x bits and the total message size is not a

multiple of x bits, it must be padded so as to be before the encryption process.

Subsequently, the algorithm is applied independently to each block. The main

disadvantage of this mode is that it is highly deterministic i.e. in the case that the

same key is used, the encrypting identical blocks results in identical ciphertext

blocks which does not offer the desirable security levels.

● Cipher Block Chaining mode (CBC), in which every ciphertext block does not

depend only on its own plaintext but on all the previous ones. The result of the

encryption of every block is XORed with the succeeding plaintext block and the

sum is then encrypted producing the next ciphertext block. An important attribute

of this mode is that the procedure becomes random with the help of an

initialization vector (IV) in the beginning of the implementation and is different in

every encryption process in order to avoid repetition.

● Cipher Feedback mode (CFB), which is similar to CBC mode. Assume an with𝑥
0

the role of the IV as used in CBC and with a size of n bits. At first it is being

encrypted and a 128-bit ciphertext is created. Then, the first s bits (

) of the 128 resulted ciphertext bits are XORed with𝑛 > 𝑠 = 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

the message block’s 128 bits and the result of this operation make the s right bits

of while the left n-s bits of are the right n-s bits of and so on.𝑥
1
 𝑥

1
𝑥

0

10

● Output Feedback mode (OFB), which has almost the exact same procedure to CFB

but with the difference that has the result of the s ciphertext bits ensued from𝑥
𝑖

block encryption but before being XORed with the message block. The first𝑥
𝑖−1

n-s bits are ensued from the first n-s bits plaintext block of as well.𝑥
𝑖−1

● Counter mode (CTR). CTR is another mode that handles the block ciphers as

stream ciphers. Every encrypted block is created from a one-time unpredictable

value which is appended to a counter number and then is AES encrypted. The

complete ciphertext block is consequently XORed with the corresponding message

block.

3.1.1 CUDA optimization attempts on ECB and CBC mode

An interesting CUDA optimization model for AES cipher was proposed by Li et al.[2]. Their

implementation focuses specifically on the ECB for encryption and CBC mode for

decryption which are considered some of the most suitable for parallelization. The 128-bit

key version was selected. The encryption scheme is as we described it previously but in

this case the researchers implemented it with an important diversification, which is the

use of T-Boxes. T-Boxes were proposed by Rijndael designers as an alternative method for

faster software implementations [3, p. 115]. The main idea is to combine the functions,

but not the key addition one, to create one look-up table. So the result is four tables, each

consisting of 256 entries. Εach entry consists of 32 bits. These tables are the T-Boxes. The

T-box takes one byte as an input, and creates a 32-bit column vector. Each transformation

round conducts the following computations:

𝑒
𝑗

= 𝑇
0
[𝑎

0,𝑗
] ⊕ 𝑇

1
[𝑎

1,𝑗+1
] ⊕ 𝑇

2
[𝑎

2,𝑗+2
] ⊕ 𝑇

3
[𝑎

3,𝑗+3
] ⊕ 𝑘

𝑗

where a depicts the input per round, is a column from the key used in the stage and𝑘
𝑗

𝑒
𝑗

signifies one column of the round output in relation to the bytes of a. The advantage of

that method is that only four table accesses are enough to get an output of 32 bits of one

round. Hence, only 16 table look-ups are needed to compute one round. The scheme they

worked on is the 128-bit sized key. The experiment is substantially divided into two

11

different ones for encryption and decryption processes. The encryption process

optimization is attempted on the ECB mode which the researchers deem to be more

suitable for parallelization. On the contrary, they try to optimize the CBC mode for

decryption. CBC’s decryption input blocks are immediately available and as a result the

inverse cipher operations used in decryption can be performed in parallel.

As for the memory usage scheme and the granularity of the parallel processing, the

implementation of AES comprehends a 16-byte usage for each thread meaning that each

thread handles a single 16-byte AES block and all blocks are processed concurrently. Due

to the fact that each thread’s computation does not require parallel execution,

synchronization or data sharing among other threads, they can use only their own

registers during processing. So for the ECB encryption, the load of four continuous words

should be done (block of 128 bits) into global memory at first but the fact that the access

pattern of global memory for a single 32-bit word by all threads included into the half

warp is non-sequential and separated creates low bandwidth. A solution to this problem

could be the reorder of the plaintext in host memory before it is transferred to the GPU

global memory. Firstly, each plaintext block is divided into four 32-bit words and storage

be columnar so that different 32-bit words which belong to different blocks are consistent

in host linear memory space. By this way, the half warp’s 16 threads could read these

consistent words from global memory, so the memory coalescence has been succeeded. It

is noteworthy that this reorder process could be done efficiently by loading the data for

encryption from disk files. The CBC decryption process is very similar to the ECB

encryption except from the fact that the previous ciphertext blocks should be XORed with

the decrypted ones so as to recover the plaintext. In order to avoid loading once again the

encrypted blocks from global memory for XORing, the already loaded in registers

ciphertext blocks by each thread can be stored into shared memory for much higher

efficiency when applying the inverse cipher function. Τaking into account that the round

key values and the T-boxes are read-only data and need to be shared among all threads,

the expected option would be to store both those values into the constant memory.

However, because the access of the T-boxes is random (not as the Round Keys), given that

their quick access is very important for the whole encryption process and that they

12

require only 4KB of storage they chose to store them in the shared memory to ensure the

fast access.

The specifications of the environment are listed in Table 3.1 below. Some early results

showed that using 512 threads per block exploits the maximum rate of occupancy of the

streaming multiprocessors and provides the highest possible computational speed, so this

setting was selected as the default one. They also set the shared memory capacity to

48KB and L1 cache to 16KB and enable the ECC check which automatically fixes possible

data errors in RAM.

Table 3.1. Specification of experiment platform

Platform Inspur NF5588

CPU Intel(R) Xeon(R)

E5620@2.4GHz

Memory 24 GB

OS Windows 7(64-bit)

Compiler Visual C++9.0(option –O2)

GPU Accelerator NVIDIA Tesla C2050

GPU Memory 3GB

PCI Bus PCI-E 2.0×16

CUDA Compiler Nvcc Ver4.0

The shared memory which was used in CBC mode decryption from each block is 8KB

deriving from the number of threads per block (512) multiplied by the size of the AES

block which is thread handles (16 Bytes). The SMs of the Nvidia Tesla C2050 which they

13

used in the experiment, are able to have three thread blocks working concurrently. Both

modes in encryption and decryption could make full use of the SMs. The major

achievements of the experiment are coalesced memory access whis previously mentioned

and the high speed grouping of the low latency registers. The highest throughput

achieved is 60GB/s while the theoretical one was 144GB/s and 1.03Tflops computing

capability. Analyzing the whole process we find that computing time is not much in AES.

The reason for the utilization rate being low is mainly the regular random access to the

T-Boxes in shared memory which has as a result a number of bank conflicts to happen. It is

noteworthy that this GPU implementation resulted in a 50 times speedup in comparison

with the Intel Core i7-920 2.66GHz CPU implementation which reached a 1.2Gbps

throughput. As regards the data transfer and processing, at first it is important to hide the

time that these procedures consume by adopting some clever techniques. When studying

a GPU computing capacity we do not want to include the data transfer time to calculate

the throughput but we need to consider and calculate this cost when evaluating the

actual promotion of GPU computing. PCI-E bus is responsible for data transfer between

host and device memory when the GPU is working. PCI-E 2.0x16 which the researchers

used could theoretically provide an 8GB/s throughput but in the experiment was only

about 3GB/s with the time of data transferring being more than the time consumed for

computing. In the experiment, the data transfer time from CPU to GPU is larger than time

of computing. With data transfers taken into account, the maximum throughput observed

is not much, being just 11.3Gbps. As a promising optimization attempt, they used the

stream mechanism which CUDA provides so as to overlap data transfer along with kernel

execution in the decryption process. Table 3.2 shows the different numbers of streams

tested in the experiment along with their impact on the algorithm’s performance for

varying amounts of input data. The cost of pinned memory allocation time is also

depicted. In general and theoretically speaking, the more streams we use the more data

transfers and kernel executions are hidden and as a result the total time cost should be

decreased. However, in practice Table 3.2 shows that after 4 streams or 8 in some cases,

as more streams are used, the time increases. The reason is that except for the stream's

usage cost, the speed of data being transferred through PCI-E bus of the overlapping data

along with the kernel execution decreases significantly as this is ascertained by the Visual

Profiler. The use of the asynchronous stream mechanism requires the usage of page-lock

14

memory and its allocation time cannot be ignored. However, this method is not always a

good idea to be used because the experiment showed that in some cases the decryption

of larger files with this technique used provides lower throughput than smaller files

decrypted with the same technique. The limitation of PCI-E bandwidth makes it

impossible for the actual throughput of the GPU implementation of the AES algorithm to

be significantly increased with even more powerful GPUs. So we understand that the bus’

bandwidth along with the pinned memory cost of allocation are considerable limitations

for every optimization attempt and should be taken into consideration in order to find the

best possible combination of the CUDA existing optimization techniques.

Table 3.2 Total cost using streams[2]

Data

Scales(KB)

0 streams 2 streams 4 streams 8 streams 16 streams

Pined

memory

allocation

time (ms)

256 0.44 0.20 0.19 0.23 0.29 0.30

1024 0.96 0.45 0.43 0.60 0.67 0.31

4096 3.15 2.23 2.10 2.06 2.09 0.93

16384 12.58 6.69 6.12 5.88 7.94 3.36

65536 48.06 35.12 32.83 23.45 31.23 13.12

262144 189.50 140.20 97.03 92.47 124.36 58.5

3.1.2 Testings based on allocation strategies and granularity

Another study about an optimized CUDA AES implementation for maximized throughput

was made by Iwai et al.[5], in which they examined the relation between different

memory allocation strategies for the AES parameters and the parallel processing

15

granularity (the amount of work/computation assigned and performed by a task). The

implementation of the algorithm is the one with the 128 bit size of key and the 10 rounds,

is based on an optimized version of ANSI C source code for cipher which is included in the

OpenSSL library; the open-source toolkit for SSL/TLS protocol and uses the T-Box method

which we described in the previous experiment. The selected mode is the ECB which as

we mentioned before is suitable for parallelization. Important implementation details are

that the round key was generated by CPU once and after that transferred to the GPUs

global memory, the initial text for encryption was made with random value and was

generated by CPU too and the plaintext had a fixed size of 256MB in order to measure the

peak performance of each implementation. Thread blocks were chosen to be 60 along

with a fixed number of threads 512 for all the executions.

A crucial implementation aspect was the computation method of the T-boxes. T-box

consists of 256 entries each of them having 32-bit data. The requirements for each round

are four T-box transformations which are conducted from the shifting operation applying

one T-box. An alternative manner for performing these T-box transformations is by using 4

pre-computed T-boxes but this would be not preferable as it would require four times

more memory space than just one T-box. Four different granularity implementations were

used to test which of them achieves the best throughput in combination with the memory

scheme we will describe. In the first one, each thread was set to handle 16 bytes of data

meaning that is assigned to a single plaintext block which as we know has the same size.

Since the data which are processed in parallel are independent from each other the

advantage of this implementation is that there is no need for synchronization and sharing

data between threads. The second attempt was 8 Bytes/thread and 4 Bytes/thread with

the former needing to employ two threads to encrypt each block and the latter four. In

this case data sharing and synchronization is required. The last method assigned 1 Byte

only to a single thread. The AES encoding algorithm using this study is optimized for 32 bit

processing so we understand that it is better to process AES with a 32 bit operation unit at

least. 1 Byte for a thread is still feasible for the reason that AES has been designed with an

8 bit operation unit and this implementation means that 16 threads are required for each

plaintext block. This granularity does not provide a good performance though, because

the GPU used has a 32 bit operation unit. The memory usage scheme includes the store of

16

the read-only data of T-boxes and Round Keys on constant memory because we need

them to be able to be shared among all threads of the grid. The plaintext storage is the

other element which is crucial for the algorithm’s throughput maximization. At first place

it is stored in the global memory and then is sequentially loaded on shared memory when

encoding is started. This does not happen only in the case of the 16 Byte/thread

granularity in which the whole plaintext and the intermediate values are allocated on

registers. Researchers implemented two different types of memory allocation patterns to

determine the most efficient; the Array of Structure (AoS) and the Structure of Array

(SoA). AoS handles the plaintext as it is while SoA allocates each element of the plaintext

needed into one array. Bank conflict problems emerge in different ways in each case and

the reduction of its occurrences requires better allocation pattern selection for each

implementation. Figure 3.1 and Figure 3.2 show these access patterns of threads to

shared memory in case of the granularity at 8 Bytes/thread.

Figure 3.1: Array of Structure, an allocation of plaintext[5]

17

Figure 3.2: Structure of Array, an allocation of plaintext[5]

Thread block switching which causes a significant overhead can be cut down. Simply

mapping each thread with a plaintext (as usual with most CUDA applications) is the

reason for that. The solution to this problem is reusing the same threads after finishing

encrypting each plaintext by returning to the starting point and continuing to encrypt

other plaintexts again and with this method we accomplish to encrypt a number of

plaintext by using few threads. As for the overhead caused by data transfers it was

encountered using a combination of AES encryption process and overlapping transferring

plaintext and ciphertext both from and to global memory. Figure 3.3 shows this adopted

overlapping technique.

Figure 3.3: Overlapping technique with data transfer and processing[5]

18

Table 3.3 shows the environment in which the experiment was conducted with the GPU

Accelerator being an NVIDIA Geforce GTX 285. Finally, Table 3.4 depicts the results of the

experiment and provides a comparison between different implementation combinations.

All of them applied four T-boxes. Testings before the experiment indicated that this

implementation enhanced the performance compared to one T-box implementation due

to not much computation required and eventually the memory space for four T-boxes did

not affect the performance. Both Structure of Array and Array of Structure allocation

methods were evaluated except for the cases of granularity at 16 Bytes/thread and 1

Byte/thread. In the former granularity case, shared memory to be used for plaintext was

not needed because registers could replace the shared memory and the allocation

registers for plaintext did speed up the performance which the allocation at shared

memory did not because it caused no memory conflicts and also no operations for

memory address computation. The results showed that one of the implementations with

granularity at 16 Bytes/thread achieved the highest 35.2 Gbps throughput. The reason for

that is that in this case no shared memory is required for processing AES encoding

meaning that there is very fast register access and no bank conflicts. No synchronization is

needed too.

Table 3.3. Specification of experiment computer

CPU Core i7 Quad i7-920(2.66GHz)

Memory 6 GB

OS CentOS 5.3

(kernel ver2.6.18)

Compiler gcc ver 4.1.2 (option -O3)

GPU Accelerator NVIDIA Geforce GTX 285

19

GPU Memory 1GB

CUDA Compiler nvcc ver2.3

As for the allocation place selection of the T-boxes, we can see that constant memory

causes a drop in the algorithm's efficiency despite the fact that it gives enhanced access

performance with coherent memory access because the constant memory equips the

cache system. The disadvantage is that T-box transformation provides random access, but

fortunately shared memory can adapt to accessing memory access randomly. So it is

obvious that it is preferable to process T-box transformations in shared memory (some

implementations with specific granularity did not accept allocating T-boxes on the

constant memory). The round key best allocation place decision is a bit more difficult. The

allocation of the round keys on the shared memory proved to be approximately 2% faster

than the allocation of constant memory. Round key access needed coherent memory

access and that is why they almost provided the same throughput. In the other cases

synchronizations, access of shared memory and bank memory conflicts played a major

role in the drop in performance. As for the 8 Byte/thread and 4 Byte/thread, allocating

round keys on constant memory caused less bank memory conflicts than accessing shared

memory contrary to the 16 Byte/thread case. The AoS plaintext allocation implementation

performed about 1.5 times better performance than SoA implementing 4 Byte/thread

granularity. SoA implementation gave twice the bank conflicts than AoS because this one

provided four-way bank conflict. AoS did not perform any bank conflict without T-Box

transformation. As for the granularity of 8 Bytes/thread, the performance divergence was

not significant between SoA and AoS implementation because the memory access pattern

between threads was similar on each implementation. Finally 1 Byte/thread granularity

achieved very low throughput as expected because the implemented algorithm was

created using 8 bit operation which was made from algorithm optimized to 32bit

operation divided into four operations.

Table 3.4 Throughput of each implementation[5]

20

Granularit

y

16

B/th

16

B/th

16

B/th 8 B/th

8

B/th

8

B/th 4 B/th

4

B/th

4

B/th

1

B/th

1

B/th

T-Box

Const

ant

Share

d

Share

d Shared

Share

d

Shar

ed

Share

d

Share

d

Shar

ed

Shar

ed

Shar

ed

Key

Const

ant

Const

ant

Share

d

Consta

nt

Share

d

Cons

tant

Const

ant

Share

d

Cons

tant

Shar

ed

Cons

tant

Memory

Allocation N/A N/A N/A AoS AoS SoA AoS AoS SoA AoS AoS

Throughpu

t (Gbps) 5.0 34.4 35.2 26.9 23.9 23.4 25.3 25.0 17.1 2.9 2.6

3.1.3 An application-oriented data structure

An interesting application simulating strategy for block cipher processing on GPU for AES

was proposed by Harrison and Waldron[4]. The model was a data structure used for

cryptographic representations of client requests. They examined the problems that may

come up from the mapping of this structure to the GPU. The main encryption modes of

operation were analyzed outlining the performance and behavioural implications when

executing them under this model. The implementation of AES is used as an underlying

block encryption algorithm to show the overhead caused by moving from an optimized

hardcoded approach to a generalised one. The key for a good performance of a client

cryptographic application is to be able to map the process elements onto GPUs in a simple

way. The proposed data model is designed in a way to encapsulate cryptographic

functions suitable for GPU usage. The experiment is focused on how the plaintext data

can be mapped to the GPU threading model for both serial and parallel in nature modes

of operation. The objective of the research is to determine the overhead in association

with the data model and its mapping ability and the accent of it is also the issues

emerging from the mixing of modes of operation within only one GPU call. The

characteristics of the proposed model are obvious that make it suitable for types of

applications working on servers which require massive and continuous data encryption

such as high bandwidth media streaming and secure backup/restore.

21

The optimized implementation of AES is in the CTR mode of operation tested on an Nvidia

8800 GTX and based on both single 1 KB and four 1 KB already calculated lookup tables.

The latter’s equations is the same as presented before but the single 1 KB table follows

the equation above:

𝑒
𝑗

= 𝑘
𝑗

⊕ 𝑇
0
[𝑎

0,𝑗
] ⊕ 𝑅𝑜𝑡(𝑇

1
[𝑎

1,𝑗+1
] ⊕ 𝑅𝑜𝑡(𝑇

0
[𝑎

2,𝑗+2
] ⊕ 𝑅𝑜𝑡(𝑇

0
[𝑎

3,𝑗+3
])))

Each thread created computes its input and output address for each block and runs

isolated in a single pass and produces its result. The I/O data mapping model is based on

the idea of using each thread’s global thread environment index as the thread’s offset into

the input and output buffers as follows:

int index = threadIdx.x + (blockIdx.x * blockDim.x);

//blockDim ⟶ number of CUDA blocks within the CUDA grid

//blockId ⟶ the current CUDA block the thread exists within

//threadId ⟶ the current thread index within the CUDA block

uint4 state = pt[index];

ct[index] = state;

As for the CTR mode parallel CUDA implementation, each thread works on a single AES

block independently of other threads mainly for increasing occupancy. The nonce

required is passed through the constant memory to the threads and the counter is

calculated as the offsets above. The rekeying process is made simpler by using only one

key for all data’s encryption with the key schedule generated on the CPU for the reason

that is serial in nature, thus a single thread should be responsible for key schedule

generation. Otherwise the overhead per thread (ie. per data block) during the parallel

process would be significantly high, needing each thread to generate its own schedule.

The storage for the input and the output data was chosen to be the global memory

between this and the texture one because it was proven to provide faster I/O process for

22

input data along with the page lock memory usage. The lookup tables’ access is one of the

main bottleneck reasons so the best memory selection for their storage was examined

between texture, constant and shared memory on both implementations mentioned

before. The tests were conducted for two cases. One with random read memory access

and one with coherent pattern. Constant memory proved to be the best solution for

coherent reads while on the contrary shared memory seems to be by large margin the

best choice for random access reads because it provides many ports. There were some

attempts to improve the effectiveness of shared memory in order to exploit its benefits in

the case of the coherent reads at first by copying a single lookup table 16 times to all the

16 shared memory banks so as to avoid memory conflicts. Although theoretically CUDA

gives that opportunity for whole memory access, in practice this proves to be unfeasible.

The attempts showed that the best solution was the usage of 16 X 1KB tables to save the

last entry. Then, one check if the last entry is being sought and its direct value is used

instead.

In the AES implementation, both types of lookup tables in combination with the GPU

memories. The fastest combination was the Quad Table using shared memory which

requires four tables 1 KB each to be set up within shared memory for each CUDA thread

block of threads running. The implementation which is friendlier to the process above is

256 threads per thread block. The coherent shared memory read of the 1 KB table

underperforms due to the additional operations which need to be done, the additional

check of condition so as to source the last table entry which we mentioned above and the

additional costs for each CUDA thread block memory setup process. Figure 3.4 depicts the

AES CTR mode of operation using the 4 X 1 KB lookup method from which we deduce that

many threads are needed to hide memory read latency. The throughput rate shown both

including (15,423 Mbps) and not (6,914 Mbps) PCI-E bus transfers per kernel execution.

23

Figure 3.4: Optimized AES CTR implementation with and without data transfers[4]

We are now going to introduce the data model the researchers used in order to examine

the problems that arise from mapping symmetric cryptographic services to GPU

implementations alongside with its design strategy and its effect from using on the GPUs.

The fundamental term used in the scheme is payload. Payload in this case indicates a

single grouping of data which contains data for encryption along with its instructions.

Client application who needs to execute a cryptographic process creates and passes the

payload on to a runtime library which subsequently directs it to the appropriate

implementation. One of the most crucial characteristics in which the data model was

based on for its design was the ability to buffer the most possible messages that require a

single stream to be processed in so that GPU could reach its full potential on performance

terms. The grouping of the messages is succeeded by exposing a payload structure to the

user instead of providing an API per message and the increase of the data size by making

possible various cryptographic functions to be included into a single payload. The other

24

crucial design criteria is the avoidance of pointers and the usage of offsets into the data

instead. This is because the pointers pointing data would need to be transferred outside

the client application so the allocated memory address space would be invalid. The

scheme should also be able to allow the user to implement the underlying data and keys

for reuse in a simple manner. The pseudo-code below depict the main data structures

used into the scheme:

struct payload {

unsigned char *data;

unsigned char *keys;

struct payloadDscr *dscr; };

struct payloadDscr {

unsigned int id;

struct keyValue *payloadMode;

unsigned int msgcount;

unsigned int size;

struct msgDscr *msgs;

struct elementDscr *keys; };

struct msgDscr {

struct element dscr *msg;

struct element dscr *iv;

struct element dscr *ad;

struct element dscr *tag;

struct key value **msgMode; };

struct element_dscr {

unsigned int count;

unsigned int offset;

25

unsigned int size; };

The first struct is the main payload data structure and consists of data pointers and keys

together with a payload descriptor structure used for the mapping of the messages to

data and keys using an ID to identify the various payloads in an asynchronous runtime

environment. The service required is defined through payload descriptor or within each

message in a high level due to the variety of frameworks of different hardware devices

that may use the service. The per message lower level description of the required mode is

set into the “msgDscr” structure. The “element_dscr” structure contains size and count

variables as the size may indicate functional differences in the used cipher. An issue that

emerges when implementing a data model like the present is the I/O buffers memory

allocation selection. It is imperative to use the page locked memory which requires

requests to the CUDA library which then returns a pointer to the address needed and can

be used in the calling process. Maximum performance requires page locked memory to be

used by the input and output buffers and reuse of the same buffers as many times

possible. For that reason, clients should be able to ask for input and output buffers so as

to locate the allocated buffers because it is impossible for the implementation to decide

which buffers should be reused independently. Thus, an encapsulating runtime, a

framework like the OpenBSD Cryptographic Framework is required to map the memory

allocation requests with the help of the library defining the hardware that is going to

service the payload. But there are more concerns raised when it is about to bridge the this

data model and particular GPU implementations. The main focus is given to a bridging

layer which is designed to map the model to the specific modes of operation. In order not

to have throughput issues it is important that each thread performs additional accesses,

conditional branches and calculations so as to dereference the dynamic settings that have

been made. These calculations can be counterbalanced with the use of the CPU as a

preprocessor optimising each payload for thread parsing before being dispatched. The

elements of the message descriptor require serializing on the CPU into a form which will

be able to be used by each kernel thread rapidly and independently. As for identification

of the instructions each thread needs, the message ID provides this information so that

threads can directly seek the corresponding instructions. The key descriptor provides the

26

access information for the key schedules and is required to create an independent

schedule stream before serialization. All serialized streams mentioned are then

transferred to GPU and stored into the texture memory which is the most size-flexible

cache memory.

The implementation of the model contains two main processes which have to do with the

message-thread mapping and the mapping between keys and messages. The former is the

Logical Thread Index which is a stream produced while the messages are being serialized

and makes easier locating messages using thread IDs. It is called logical due to the fact

that the thread IDs assigned by the GPU and partially ascertain its physical location into

the unit do not always map directly to the entries into the thread index. Physical ID plays a

major role in balancing work along the GPU multiprocessors by using various assignments.

This is important for serial mode of operation messages when there are not many but

their size is high. The logical thread index stream contains one thread for each message of

serial mode of operation and as many threads as the blocks are for parallel messages. The

logical thread index contains entries which contain only IDs from the logical threads which

start the messages. Figure 3.5 depicts a logical thread index and the connection with the

message descriptor stream.

Figure 3.5: Serialised streams used by each thread for indexing[4]

Rekeying is the second crucial process of the scheme. Since key scheduler is a totally serial

process, it is logical that implementing the scheduler on the CPU instead of the GPU which

is suitable for parallel implementations is a better solution. When the process is

27

completed the payload will be dispatched to the GPU. To guarantee that the keys will be

reused across messages the best way possible researchers chose a hashtable cache to

store the key schedules. Except for efficiency increase, this method is ideal for generating

the smallest key schedule stream possible. When the application from the client side is

generating the stream of the key in order to be included into the payload, it would be

beneficial if the same keys had the same position into the stream. This results in fast

implementation of the key schedule caching which is based on key offsets and not the key

comparison. The whole mapping process between threads and messages and their data

can be summarized into Figure 3.6.

Figure 3.6: Mapping of physical threads to message IDs[4]

With regard to the throughput testings in relation to the implemented modes of

operation, CBC, CFB and OFB modes for encryption were tested serially and CBC, CFB and

CTR for decryption in parallel. Results in Figure 3.7 are based on CTR mode. The

remarkable observation in parallel tested modes is that the performance is getting higher

as the payload size increases. Note that the number of messages is in general equivalent

to the number used within a single payload. This happens because resource occupancy is

higher and memory latency is better hidden. On the other hand we can see that over a

certain message count throughput begins to drop. It is important to mention that same

buffers are reused as mentioned before so as the same key in order to imitate a single

encryption session and that the experiment includes a testing comparing the 512 blocks

28

encryption with and without rekeying. Maximum throughput observed from this in

parallel implemented mode of operation was 5.810 Mbps. The increase in the overhead

when using smaller messages was recorded being 16% for 16384 block sized messages

reaching 45% when using messages with a length of 16 blocks. The reason for this

increase is how the caching of the index stream descriptors behave on the small GPU

texture memories. In the serial mode of operation message encryption the key to

enhanced performance is including many messages within the payload otherwise there

will be not enough threads to create a relatively high occupancy level for the GPU. The

same thread to message mapping method is used and the form of the message descriptor

creates a memory access pattern. Its characteristic is that threads that neighbor each

other access locations of the memory which are separated by the size of the message that

is processed. As shown in Figure 3.7 that pattern’s impact on throughput and note that

the results are based on CBC mode including an OFB CPU implementation for a more

detailed comparison along with the previously mentioned parallel pattern. We observe

that there is performance improvement when grouping blocks into threads which reduces

the overhead for each message, this explains the large serial message count payloads

having better performance than the parallel payloads. These results from the serial

testings should not be compared with the AES optimized implementation as the optimized

algorithm implementation is implicitly parallel.

Figure 3.7: Throughput rates for parallel and serial messages respectively[4]

29

For larger serial messages a bottleneck is created when the number of messages

increases. A possible explanation could be the access pattern. Threads that neighbor each

other inside a CUDA warp use varying memory addresses for their data while message size

increases. An additional separate memory test was conducted in which each thread

performed some reads in sequence from the global memory starting from an offset from

the thread that was previously neighbored to equal the number of the sequential reads.

Figure 3.8 shows these results for varying offsets and reads in sequence in increments of

blocks (16 bytes in this case). For block counts of more than 128 there is a significant drop

in the performance of memory reads as the active threads increase. The reason that

happens could be a combination of L2 cache bottleneck and a limitation of the number of

separate DRAM available pages supported by the controllers of the DRAM resulting in

concurrent reads which reduce coherency.

Figure 3.8: Global memory read performance with varying coherence patterns[4]

The last experiment conducted had to do with the mixing of both the modes of operation

and message sizes used into one payload. This way it may be possible for the client to

group all the serial messages before the payload in a simple manner. The mapping scheme

used will automatically create a group of 32 messages and will distribute them evenly

30

across the thread blocks, which will be evenly assigned to the multiprocessors available by

the library of CUDA. A relevant series of tests which used to depict the effect of various

mixing configurations of serial modes of operation messages across a payload was

conducted for this reason. All of the payload configurations consisted of identical

messages and the only change was the ordering of the messages. The differences

between the scenarios depict the importance of a specific ordering of the encrypted

messages when mixing messages from both types of execution into a single payload. All

payloads used 960 512-block parallel messages, 992 32-block parallel ones and 1024 serial

with some variations in their size. Results help us come to a specific important conclusion

about what client should pay attention to when ordering; the ordering of serial mode of

operation messages belonging to a payload should be their grouping into the device’s

SIMD width to make sure that the slots of the SIMD are occupied; the even spread of

serial groups across the multiprocessors and the size-based ordering of serial messages to

keep no divergent message sizes within the one SIMD grouping.

3.2 Camellia, CAST5, SEED ciphers and throughput-oriented optimization

Camellia is another symmetric key block cipher developed in Japan by Mitsubishi Electric

Corporation and Nippon Telegraph and Telephone Corporation (NTT), the Japanese

telecommunications company which is headquartered in Tokyo in 2001. It is suitable for

both software and hardware implementations and used in low-cost smart cards and even

in high-speed network systems being part of the Transport Layer Security (TLS). It has

been approved by the International Organization for Standardization (ISO), the European

Union's NESSIE project and the Japanese CRYPTREC project. The security level of the

cipher is high enough being similar to the Advanced Encryption Standard concerning also

its processing abilities.

The algorithm encrypts and decrypts with a 128 bit block size and can be used with a key

size of 128, 192 or 256 bit key size. Its structure adopts the Feistel network structure and

the encryption decryption process is completed in 18 or 24 rounds. The encryption

process for an 128-bit key size which is the one we will examine later on is as follows: The

31

part in which data are randomized consists of an 18-round Feistel network structure

which has two function layers after the 6-th and the 12-th round and two 128-bit XOR

operations before the first and the after the last round. The key scheduler generates 18

subkeys for the cipher’s rounds, 4 subkeys for the XOR operations and 4 subkeys for the

function layers. The decryption process as a symmetric algorithm can be done similarly to

the encryption needing only the reversing of the subkeys[6].

CAST5 (also known as CAST-128) is another symmetric-key block cipher used among

others as default cipher in GNU Privacy Guard (GPG) and Pretty Good Privacy (PGP)

software so can be useful not only in encrypting and decrypting texts, e-mails, files, disk

partitions and directories but also in signing. It was created in 1996 by Carlisle Adams and

Stafford Tavares and has been approved for usage in the Communications Security

Establishment by the Government of Canada. The CAST5 cipher functions with blocks

sizing 64 bits and a key its size varies between 40 to 128 bits in 8-bit increment. When the

key size is shorter than 80 bits the algorithm encrypts/decrypts in 12 rounds, otherwise in

16. The structure which is based on is the Feistel again and the main components of the

whole mechanism are the 8 fixed S-Boxes (32-bit each) with four being used in the key

scheduler and the other 4 in the encryption process.

SEED is a block cipher similar to CAST5 developed by the Korea Internet & Security Agency

(KISA) and published in 1998. Each block of the encryption process has a size of 128 bits

so as the key used has. S-Boxes are the key-element in this case too having 8 of 32-bit. The

process is completed in 16 rounds[7].

3.2.1 Throughput oriented optimization of Camellia, CAST5 and SEED

W.-K. Lee et al.[7] conducted research on some other less known but still useful

symmetric-key block ciphers based on the results from previous work on AES. These

ciphers are included in OpenSSL cryptographic library and in particular are Camellia,

CAST5 and SEED. Their implementation was on the highly parallelizable mode of operation

CTR and was based on the algorithm from OpenSSL v1.0.1.h library version adopting a

32

specific parallel implementation scheme which had been proposed and allowed them to

encrypt many blocks even before the plaintext was available. In the experiment, each

kernel of the GPU is responsible to encrypt an 16-Byte block consisting of a 64-bit counter

value and a 64-bit nonce. CPU is responsible for creating the nonce using a

pseudo-random number generator while the counter values with the help of thread

identifier and a master counter only from the CPU. In every encryption process before the

entire set of parallel threads (i.e. blocks for encryption) being launched master counter is

required to be updated. The same master counter value will be assigned to each thread,

which then will be added to its own thread id in order to form a unique value. The

generation process of the counter value process is shown in the pseudo-code below:

nonce = rand()

masterCtr = 0

for i⟵0 to N do //N⟶ total counter blocks to be encrypted

launch NUMTHREAD of GPU threads

//NUMTHREAD⟶maximum thread pools launched in every

//iteration

ctrBlock = (masterCtr + tid) nonce| |

encrypt[ctrBlock]

return from GPU execution

masterCtr += NUMTHREAD

end for

The transfer of the data and the execution of the GPU process can operate in parallel.

While GPU encrypts, the blocks that have just been encrypted are copied back to the CPU

and at the same time CPU will XOR plaintexts with the encrypted counter blocks. So we

understand that a 3-way pipeline strategy is adopted on this implementation. This

strategy is explained in detail in the scheme below:

33

Figure 3.9: The 3-way pipeline strategy

In the memory allocation section, previous work had shown that storing keys and

substitution tables in the shared memory has positive results on performance terms. This

happens because the data for encryption are in most cases random which causes the

random access of the substitution tables to be random too. On the other hand, storing

T-boxes in shared in many cases introduces bank conflicts when we have random access

but this is an issue to be examined in future work. For this reason coalesced access to

global memory is in practice unfeasible if tables are stored in global or constant memory

so that is why the shared memory is the best option with the storage process being

started when kernel is launched so we need to load separate S-boxes and expanded keys

for each thread block as shown below:

if tid < then𝑁
𝑡

table0_shared[tid] = table0_const[tid]

table1_shared[tid] = table1_const[tid]

table2_shared[tid] = table2_const[tid]

table3_shared[tid] = table3_const[tid]

end if

34

With being the number of elements in each S-box and tid the thread identifier which𝑁
𝑡

can be obtained from native instruction supported by CUDA SDK.

The coalescent access in the three algorithms can be succeeded by using a built-in vector

data type which works as an array structure of array. In particular, for Camellia and SEED

they used the int4 data type and for CAST5 the int2 type. This way multiple 32-bit data is

accessed sort of 128-bit or 64-bit reducing multiple memory accesses into one.

The environment of the experiment is illustrated in Table 3.5. A GTX680 GPU is used with

compute capability 3.0 and Kepler architecture based. Shared memory was set to 48KB

and L1 cache to 16KB. High performance in encryption for block ciphers requires the GPU

to be loaded in full with large amounts of data. For the CTR mode the researchers worked

on it is possible to have already encrypt many counter values before the plaintext is

available with this being especially useful for server environments in which the arrival

time of connections cannot be predicted. Hence, their implementation was encrypting

large data blocks of 256 MB based on this assumption.

Table 3.5. Specification of experiment computer

CPU AMD 8 Core(4.4 GHz)

Memory 16 GB

OS Windows 7

GPU Accelerator NVIDIA GTX680

GPU Memory 4 GB

SDK CUDA 6.0

The GPU stream mechanism which we mentioned previously was implemented for the

experiment. The streams used were four. More streams did not improve the overlapping.

The results for the three ciphers throughputs of the present experiment compared to

other previous attempts are depicted in Table 3.6. We observe that high encryption speed

35

can be succeeded with Camellia cipher being the fastest one with 61.1Gbps. The table

includes the experiments with and without taking into consideration data transfers which

as we can see cause a drop in the performance because of the transfer through PCIe.

Table 3.6. Comparison of works on throughputs achieved[7]

Data

Transfers GPU Used Camellia CAST5 SEED

Nishikawa's team

(2012) W/O Tesla C2050 50.6 N/A N/A

Nishikawa's team

(2012) With Tesla C2050 15.9 N/A N/A

J. Gilger’s team

(2012) W/O GTX295 N/A 38.6 41.5

S. Lee's team

(2012) With GTX285 N/A N/A 9.5

Present Work W/O GTX680 61.1 45.53 47.4

Present Work With GTX680 44.9 40.5 38.6

Due to the fact that data transfer process reduces encryption speed that much, it is

imperative to only encrypt blocks in GPU and leave the XOR operation with plaintext later

on in CPU. This has as a result the omission of transferring plaintext to GPU and this way

data transfer bandwidth between CPU and GPU is significantly reduced. To sum up, since

many block ciphers use the substitution tables T-boxes and S-boxes for permutation

processes, which can use the shared memory for storage as we discussed for faster

access. Furthermore, key expansion is a normally fast process, so it can be done entirely in

CPU. The size of the cipher block is normally in multiples of 32-bit, so an effective option is

the usage of the built-in vector data type in order to achieve coalesced memory access

patterns.

36

3.3 An OpenSSL-based optimization attempt and benchmarking issues for few more

symmetric-key block ciphers

DES was the answer of IBM to the first request ever made by the US National Bureau of

Standards (NBS) in 1972 (now called National Institute of Standards and Technology-NIST)

for a standardized cipher in the USA. In the 1970s the need for a commercial use of an

encryption system became urgent and in 1974 a group of cryptographers from IBM

proved to be the most suitable candidate. 1977 was the year when the NBS finally

released all specifications of the finalized version of the cipher as the Data Encryption

Standard (FIPS PUB 46) to the public. DES in the course of time developed some

weaknesses due to the advance of the cryptanalysis methods so time came for an

alternative solution for a cipher with federal use. Its replacement was AES in 1999 which

we dealt with previously. For cases in which someone wanted DES to be implemented, a

newer similar but stronger encryption scheme was proposed; the 3-DES (1995). However,

we are still going to examine its performance optimization room supposing that these

optimizations can be applied on 3-DES.

The DES cipher encrypts in blocks of 64 bits and uses a key of size of 56 bits. The

encryption process is handled in 16 rounds (using different subkeys) of an identical

operation and the structure is Feistel network in which as it happens really only encrypts

and decrypts the half of the input bits in each round while the second one is copied to the

next round as it is. Confusion and diffusion are the core properties of the function the

cipher uses. The main stages of the algorithm are the initial (and final) permutation and

the f-Function. Permutations are applied before the first and after the last round and are

bitwise permutations but in fact do not make the cipher any stronger. The reason of its

existence is not clear but the only logical explanation for is the arrangement of the

plaintext, the ciphertext and bits in a bytewise manner in order to make the fetching of

the data simpler for the 8-bit data busses which were the prevailing register size in the

beginning of the 1970s. The f-Function is the most crucial element for the security of the

cipher. In each round it takes the right half of the previous round’s output and the current

round key as an input. The output of the function is used as an XOR-mask for encrypting

the left half input bits. The function includes the use of E-box, which is used for the

37

permutation purpose. Then, the expansion box is used to increase the diffusion behavior

and finally, eight S-boxes follow which mainly provides the high security level needed for

the cipher[3].

The International Data Encryption Algorithm (IDEA) is another symmetric block cipher

published in 1991 by Lai, Massey, and Murphy as a modification of the Proposed

Encryption Standard (PES) that was published in 1990 by Lai and Massy. PES had been

designed as a replacement for the DES cipher but this did not happen eventually.

However, it was included into Pretty Good Privacy (PGP). The algorithm is patented and

licensed by MediaCrypt which offers a successor cipher called IDEA NXT.

IDEA encrypts in blocks of 64 bits and uses a key of 128. It consists of eight identical

rounds and a final transformation round. The operations conducted are algebraic and

specifically modular addition and modular multiplication[8].

Blowfish is a symmetric-key block cipher which was created in 1993 by the well-known

cryptographer Bruce Schneier who wanted to provide an alternative solution to the DES

and IDEA ciphers and additionally is much faster from those. It is license-free, unpatented

and is available for free usage worldwide. It has proved to be resistant enough to

cryptanalysis. The successor of Blowfish is Twofish which currently Schneier recommends

implementing instead.

The block length is 64 bits and the key’s length can be selected from 32 to 448 bits. It

consists of 16 rounds and follows the feistel network. The key scheduler used is highly

complex and an important characteristic of its structure is the large and key-dependent

S-Boxes that it uses[9].

3.3.1 GPU-Optimized Block Ciphers in the OpenSSL Library

In this section we discuss an optimization attempt for some of the most important

symmetric-key block ciphers. These are AES, DES, Blowfish, Camellia, CAST5 and IDEA

which we have already briefly introduced. These ciphers will be in the form of an OpenSSL

cryptographic engine. OpenSSL is a powerful, commercial-grade, and full-featured toolkit

for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is also a

general-purpose cryptography library. The OpenSSL implementation includes tested CPU

implementations of these algorithms based on which Gilger et al.[10] attempted to

38

optimize using the GPU. It is proved that their GPU implementations can make all these

block ciphers faster by a factor of ten when tested for practical application scenarios.

Paolo Margara’s CUDA project began to establish an Open Source portable library soa as

to be used along with the OpenSSL cryptographic library which provides GPU-optimized

versions of the ciphers included in the standard library. This project was the one that the

algorithms’ optimization attempts presented in this paper were based on. The

implementation of the original project was done as a shared library) and already included

the CUDA AES implementation in ECB and CBC for all key versions. In the experiment were

implemented the following symmetric-key block ciphers:

● AES → Blocksize: 128 bits / Keysize: 128, 192, 256 bits

● DES → Blocksize: 64 bits / Keysize: 64 bits

● Blowfish → Blocksize: 64 bits / Keysize: 128-448 bits

● IDEA → Blocksize: 64 bits / Keysize: 128 bits

● Camellia → Blocksize: 128 bits / Keysize: 128, 192, 256 bits

● CAST5 → Blocksize: 64 bits / Keysize: 128 bits

The modes all the ciphers above were implemented with were ECB for encryption and

decryption and CBC for decryption only. As we have already mentioned CBC mode cannot

be implemented in parallel for encryption. These two were the only block modes available

at the time in OpenSSL packages.

The implementation testing process for the researchers began with the usage of these

which existed within the OpenSSL for CUDA. After ensuring their basic functionality they

began the optimization attempts in order to enhance their performance. They focused on

the register usage per thread, the uncoalesced memory access and divergence issues,

trying a variety of optimization methods, with some of which being compiler-alternative

solutions. The most crucial techniques which the researchers implemented in their

experiments are the following:

● A theoretical programming flexibility was not adopted. Each GPU kernel consisted

of as few parameters as possible meaning that the different modes of operations

were not tested on a single GPU kernel but on one each. The same happened

39

with the different key lengths and many other parameters too. That way a

reduction in register use was succeeded and as result there was a better

utilization of the SMs of the GPU.

● They tried to remove all the uncoalesced memory accesses so as to avoid some

memory transactions. This avoidance of all the non-aligned memory accesses for

the blowfish algorithm was succeeded with the simple change in the key

scheduler which is shown below:

○ __shared__ BF_KEY bs; With BF_KEY structure/

__device__ BF_KEY bsg; misaligned mem copy

if (TX < 18) then

bs.P[TX] = bsg.P[TX];

end if

bs.S[TX] = bsg.S[TX];

bs.S[TX+256] = bsg.S[TX+256];

bs.S[TX+512] = bsg.S[TX+512];

bs.S[TX+768] = bsg.S[TX+768];

○ __shared__ uint32_t bs[1042]; W/O BF_KEY structure/

__device__ uint32_t bsg[1042]; aligned mem copy

bs[TX] = bsg[TX];

bs[TX+256] = bsg[TX+256];

bs[TX+512] = bsg[TX+512];

bs[TX+768] = bsg[TX+768];

if (TX < 18) then

bs[TX+1024] = bsg[TX+1024];

end if

40

In some cases, 32-bit values not dependent on each other were retrieved from

memory into a 64-bit variable and then separated manually, in such a way that

the compiler would generate a single coalesced global load 64-bit instruction and

not two strided global load 32-bit instructions.

● Next aim was to remove the bank conflicts which occur when using the shared

memory. It was a problem that occured in the AES version in the original

engine-cuda codebase. The time saved by avoiding these conflicts can be shown

in Figure 3.10 cannot be ignored. The time spent due to warp serialization is clear

that was a serious problem that needed to be solved.

● Register use was reduced also by a reorder of the statements. An alternative

approach was to reuse variables from different stages of computation.

● Register usage can further be reduced with manual GPU loop unrolling.

● Due to the fact that many ciphers had been designed for Big-Endian CPU

architectures, they thought that it was necessary to modify the key scheduler

and as a result possible endian conversion was avoided.

● They used native integer functions and synchronization. They took advantage of

the preprocessor by using functions which are only available on specific

computing capabilities (such as 24-bit or 32-bit native multiplication).

41

Figure 3.10: The CUDA Visual Profiler from the original engine-cuda (up) and the

optimized version of AES-128 ECB (down)[10]

Table 3.7 depicts the resources used when implementing the various kernels for the

block-ciphers’ decryption experiments as found in nvcc while Table 3.9 the measurements

from the theoretical ECB performance of the algorithms kernels, only including the time

for the execution of the CUDA kernel alone. Register use is in relation with each thread

and there was a count on the shared memory per block and for the whole kernel constant

memory. The modifications made for optimization had to do with the memory transfer

functions, graphics card context (the way it was set up) and the memory allocation and

they did not perform any stage of the key-scheduler on the GPU which was performed by

the CPU instead in order to ensure that the implementation was correctly done by

comparing its output with the CPU from the stock OpenSSL. The benchmark system has

the specifications that are shown in the table below:

Table 3.7 Specification of experiment computer

CPU Core i7 960 (3.20GHz)

Memory 12 GB DDR3 RDIMM

OS CentOS 5.3

(kernel ver2.6.18)

42

HDD Intel X-25 M II SSD (160GB)

Compiler gcc ver 4.4.6

GPU Accelerator NVIDIA Geforce GTX 295 (CC

1.3)

Kernel Linux 3.0.0-17-generic x86_64

CUDA CUDA toolkit 4.1

Driver NVIDIA UNIX x86_64

285.05.33

CUDA Compiler GCC 4.4.6

The GeForce GTX 295 this experiment’s system consists of two independent GPUs on two

different PCBs (printed circuit boards) with each of them being considered as an

independent GPU to the system. The researchers used one of these GPUs for their work.

CPU reference speeds were acquired using OpenSSL v1.0.1 and not the four but the one

CPU core of the system. Theoretical kernel execution speed does not take into account the

transfer time between CPU and GPU, while the measurement of the practical encryption

speed includes these transfers.

Table 3.8. Memory consumption for each cipher decryption process[10]

Cipher Mode Registers Shared Memory

Constant

Memory

AES-128, AES-192,

AES-256 ECB 13/14 4376 bytes 264 bytes

AES-128, AES-192,

AES-256 CBC 15 4384 bytes 264 bytes

Blowfish ECB 10 4176 bytes 8 bytes

Blowfish CBC 12 4184 bytes 8 bytes

43

DES ECB 9 2056 bytes 136 bytes

DES CBC 10 2064 bytes 136 bytes

CAST5 ECB 10 4104 bytes 144 bytes

CAST5 CBC 12 4112 bytes 144 bytes

Camellia ECB 14 4104 bytes 296 bytes

Camellia CBC 14 4112 bytes 296 bytes

IDEA ECB 10 224 bytes 216 bytes

IDEA CBC 12 232 bytes 224 bytes

Table 3.9. Κernel performance for ECB encryption process[10]

Cipher

RND_B

Kernel ms

RND_B

MB/sec

Z_B Kernel

ms Z_B MB/sec Δ

AES-128 2.16 29613 1.36 47021 1.59

AES-192 2.57 24922 1.58 40461 1.62

AES-256 2.97 21572 1.87 34234 1.59

Blowfish 2.12 30249 1.49 43077 1.42

DES 4.14 15460 2.75 23279 1.51

CAST5 2.19 29203 1.54 41519 1.42

Camellia 2.43 26302 1.66 38647 1.47

IDEA 1.75 36512 1.71 37388 01.02

44

In the last table the theoretical performance can be derived from the measured time. The

importance of the payload data is highlighted by measuring the performance with

pseudo-random data (using /dev/urandom) and zero-bytes and the usage of Δ value to

indicate the speed ratio of zero over random bytes. Random bytes are referred to as

RND_B in the table above and zero-bytes as Z_B. The payload data is used to examine the

memory access for specific operations (e.g. in a lookup table). When the payload contains

only uniform bytes, the same memory area will be accessed for each one byte of payload

data, resulting in great performance for constant memory (after being cached after the

first access) but when the data exhibits a certain amount, new memory areas will be

asked for in each request so then shared memory is clearly the best solution.

3.3.2 OpenSSL benchmarks and how to reproduce them

In order to measure the gain from the GPU implemented block ciphers, the researchers

used the OpenSSL speed command, which is used as a scheduler for runs on increasingly

large blocks consisting of zero-byte data and this is how the achieved throughput is

measured. The results derived from the mean value of five consecutive runs and in order

to have an accurate comparison to the CPU only implementation the measured time

includes the transfer of the data from CPU to the GPU, the GPU kernel execution and the

transfer back to host. In Figure 3.11 the results of GPU and CPU benchmarks for ECB of

each cipher are depicted. As the launch of a GPU kernel causes a significant latency along

with the memory transfers the GPU outperforms the CPU implementation only when the

payload data is large enough and in the specific experiment larger than 16KB.

45

Figure 3.11: ECB encryption ciphers comparison with CUDA on one PCB of a GeForce GTX

295 (OpenSSL speed)[10]

We are now going to provide a number of benchmarking details which are required for

the production of reproducible comparable benchmark results and we present an

overview on the details as guidelines for future implementation efforts which can be

valuable not only for the field of cryptography.

● Framework and kernel. For different frameworks, the host operations and

memory transfer time make the actual kernel execution time seem insignificant.

● Structure of payload. The benchmark of the speed of the encryption process is

affiliated with the kind of data being processed. Zero-byte files may provide ease

for generation and reproducibility but they can provide an apparently good result.

46

Block ciphers should be developed not only using zero bytes but also random data,

and all publications should clearly show the source of the payload data. If anything

the storing of read-only lookup tables should be decided after taking into account

the process behaviour with random data.

● Correctness issues. Since GPU programmes are difficult to debug, when

conducting an experiment the cipher’s code should be totally correct. As a result a

combination of key sizes, different keys payload length and structure should be

tested multiple times. A typical reason for an execution failure is the use of a

payload with size not multiple of the thread block configuration.

● Scheduling priorities. There is an option in CUDA that gives the choice of spinning

for waiting on the return of the kernel, which for many repeated small calls can

cause a significant difference. Verification of the method to poll for the GPU kernel

is very important.

● Side effects elimination. When benchmarking, GPUs need to be switched to

compute a specific mode and if any X server runs at the same time it should be

stopped. Benchmarking cryptography means that large blocks of pinned memory

need to be allocated on the host side, so the system’s RAM remaining needs to be

enough. The CPU should only be involved in the execution of the host-thread. It is

imperative to use the GPU driver which is supplied by the vendor in cooperation

with the modern GPU’s framework. Other drivers will possibly work properly too

but will probably perform much worse when used with CUDA.

● Usage of reference implementations. A publicly accessible and already established

CPU implementation of a block cipher should be used when comparing to a GPU

implementation. Some specifications for the CPU we refer to need to be clarified

too. For example, the number of cores used, whether they are used native

instructions customized to suit the CPU platform or special instructions like AES-NI.

In contrast to programs running on CPUs, in GPU programming the application area before

the actual implementation area in which the application runs needs to be carefully

considered beforehand. There are some possible scenarios in which possibly GPU assisted

symmetric-key cryptography could be used in the future and point out the unique

characteristics of each. First of all, it can be used in key breaking methods like dictionary

47

attacks or brute-force ones. This process requires the use of independent threads which

work with a distinct key each and can signal success of the attack using the global memory

of the GPU. Block ciphers that use a large key-dependent S-Box e.g. the Blowfish cipher

will not have the same enhanced performance as other ciphers will do, since the large

schedule elements should be stored in the limited fast memory space for the breaker to

work efficiently. Another usage can be the SSL acceleration. Many websites use the slow

and partial HTTP protocol so GPU cryptography could cheaply accelerate the SSL

operations. Some options to use specific settings GPUs are the following:

● Built in. The server software itself is linked against CUDA or other interface and

directly calls device code to execute the cryptographic operations.

● Library. A more functional solution is a widely used cryptographic library (like

OpenSSL or libgcrypt) which is the initial target for GPU acceleration because all

the software using it would benefit instantly.

● Standalone. A standalone mechanism linked against CUDA which can interact with

the user and the back-end software. This approach is extremely flexible because

this way any changes are not required to be done to the server software and can

be scaled independently of it.

Disk encryption is another critical sector in which GPU cryptography can be used. Disk

encryption acceleration can only be succeeded if the write speed of the disk surpasses the

cryptographic performance of the CPU which is in general not true for modern consumer

systems. Including AES circuitry in CPUs and often directly inside the hard drive shows that

there are plenty of options for securely storing data on devices like these. Last but not

least, operating systems such as the kernel of the Linux OS can exploit the GPU

accelerated cryptography. Kernel cryptography services are crucial for some software and

dm-crypt for disk encryption is an example. These days the usage of GPU from kernel

space requires a search in the CUDA libraries in user space and then a return to the

kernel. These processes require two costly context switches. So we understand that is an

area which needs further investigation for performance enhancement.

48

CHAPTER 4

PUBLIC-KEY CIPHERS-RSA OPTIMIZATION

4.1 The RSA cryptosystem

In 1977, Ronald Rivest, Adi Shamir and Leonard Adleman proposed a scheme which

currently is the most widely used asymmetric cryptographic scheme. This was the RSA

cipher (Rivest–Shamir–Adleman). The algorithm was patented only in the USA until 2000.

RSA has many applications but the most common ones are the encryption of pieces of

data (usually in key transport) and digital signatures/digital certificates. Despite its many

advantages, it is not supposed to replace symmetric ciphers since in many cases is slower

than some of them like AES and we must not forget that performance is also very

important when we need to decide which cipher to implement. This happens because of

the many computations that take place in the cipher and we will briefly present shortly. So

the main purpose of this encryption scheme is to work alongside a symmetric key cipher

and securely exchange a key with it (the key transport we mentioned before). The whole

algorithm’s mechanism is based on the one-way function of the integer factorization

problem which indicates that it may be very easy to compute the multiple of two large

primes but the factoring of the resulting product is very hard to find. Euler has played a

major role in the design of the algorithm since his theorem and his phi function are

fundamental for its function. RSA encryption and decryption process is done in the integer

ring (bit string representing the plaintext is considered to be an element in𝑍
𝑛

) and some modular computations are very important for the cipher.𝑍
𝑛

= {0, 1,..., 𝑛 − 1}

Since the process is done in this integer ring, the binary value of the plaintext and the

ciphertext must be less than n. The encryption and decryption process are shown

below[3]:

Encryption: Given the public key and the plaintext , the encryption(𝑛, 𝑒) = 𝑘
𝑝𝑢𝑏

𝑥

function is the following:

49

𝑦 = 𝑒
𝑘

𝑝𝑢𝑏

(𝑥) ≡ 𝑥𝑒𝑚𝑜𝑑 𝑛

where .𝑥, 𝑦 ∈ 𝑍
𝑛

Decryption: Given the private key and the ciphertext , the decryption𝑑 = 𝑘
𝑝𝑟

𝑦

function is the following:

𝑥 = 𝑑
𝑘

𝑝𝑟

(𝑦) ≡ 𝑦𝑑𝑚𝑜𝑑 𝑛

where .𝑥, 𝑦 ∈ 𝑍
𝑛

We should also mention that the key generation is a very complex process that mainly

uses the greatest common divisor and computes the private key with a modular

computation. This process simplified is shown below:

Output: public key: and private key:𝑘
𝑝𝑢𝑏

= (𝑛, 𝑒) 𝑘
𝑝𝑟

= (𝑑)

1. Selection of two secret large primes p and q (approximately same size but

not too close).

2. Computation of .𝑛 = 𝑝 * 𝑞

3. Computation of .Φ(𝑛) = (𝑝 − 1) * (𝑞 − 1)

4. Selection of the public exponent such that𝑒 ∈ {1, 2,..., Φ(𝑛) − 1}

.𝑔𝑐𝑑(𝑒, Φ(𝑛)) = 1

5. Computation of private key such that𝑑 𝑑 * 𝑒 ≡ 1 𝑚𝑜𝑑 Φ(𝑛)

50

4.1.1 The expensive modular operations of RSA

As we mentioned in the presentation of the algorithm above, RSA uses two different keys

for encryption and decryption. The public key which both parties who take part in the

process know is used for encryption, while for decoding is used the private key. The most

important operations are the modular ones and this is the reason why the whole process

is computationally expensive. In general, if we want to implement an efficient RSA

algorithm, the key size chosen should be small but lamentably, in this case many security

issues arise. This process is called modular exponential and is defined by the equations

below:

(𝑢 + 𝑣) 𝑚𝑜𝑑 𝑚 = ((𝑢 𝑚𝑜𝑑 𝑚) + (𝑣 𝑚𝑜𝑑 𝑚)) 𝑚𝑜𝑑 𝑚

(𝑢 − 𝑣) 𝑚𝑜𝑑 𝑚 = ((𝑢 𝑚𝑜𝑑 𝑚) − (𝑣 𝑚𝑜𝑑 𝑚)) 𝑚𝑜𝑑 𝑚

(𝑢 * 𝑣) 𝑚𝑜𝑑 𝑚 = ((𝑢 𝑚𝑜𝑑 𝑚) * (𝑣 𝑚𝑜𝑑 𝑚)) 𝑚𝑜𝑑 𝑚

There are some different ways that these operations can be operated then they need to

be done repeatedly. The simplest but also naive way to complete them is by performing

e-1 modular multiplications. As we understand, this method is definitely not efficient

because for large plaintext encryption a large amount of modular multiplications are

required. A good example just to understand how expensive this method is, is the case in

which we have g=4, e=10 and m=497. In order to reach to the desirable result (c=403) we

need to apply the following operations:

1. ,𝑒 = 1 𝑐 = 4 𝑚𝑜𝑑 497 = 4

2. ,𝑒 = 2 𝑐 = 4 * 4 𝑚𝑜𝑑 497 = 16 𝑚𝑜𝑑 497 = 16

3. ,𝑒 = 3 𝑐 = 16 * 4 𝑚𝑜𝑑 497 = 64 𝑚𝑜𝑑 497 = 64

.

.

51

.

10. ,𝑒 = 10 𝑐 = 225 * 4 𝑚𝑜𝑑 497 = 900 𝑚𝑜𝑑 497 = 403

A much more effective way to complete the modular exponentiation than the one above

can be used if e is even. In this case the modular exponentiation can be calculated as

and that way reduces the number of multiplications.𝑔𝑒 𝑚𝑜𝑑 𝑚 = (𝑔𝑒/2 * 𝑔𝑒/2) 𝑚𝑜𝑑 𝑚

There are two forms of the algorithm with which it can be implemented, the right-to-left

binary modular exponential and the from left to right binary modular exponential.

Another multiplication algorithm which is similar to the left-to-right binary modular

exponentiation is the left-to-right k-ary exponentiation. The difference here is that in each

iteration more than one bit of the exponent is processed and works even more efficiently

when computations that have been concluded are performed in advance and are used

again and again. The last efficient method for performing these operations is the sliding

window exponential. The interesting thing behind this method is the less

pre-computations needed as compared to the algorithm we just referred to and and as a

result the desirable reduction in the average multiplications number needed for

computation[11].

4.1.2 Parallelizing RSA modulo function methods

In this section we present the structure of the parallelized scheme created by Mahajan

and Singh[11]. In general, the host and device code basically follow the following steps:

1. CPU accepts the values needed for the message and all the key parameters.

2. CPU allocates memory on the CUDA supported available GPU and copies the

values on the device memory.

3. CPU launches the CUDA kernel on the device.

4. GPU encrypts each character of the message using the RSA algorithm using as

many threads as the message’s length.

5. Control is transferred back to the CPU.

6. The results from the GPU are copied and displayed from the GPU.

52

Very large power of numbers are not supported by built in data types hence a special

technique was adopted to achieve the modulo calculation. The adopted principle is the

following:

𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛 ≡ (𝑀𝑒−𝑥 𝑚𝑜𝑑 𝑛 * 𝑀𝑥 𝑚𝑜𝑑 𝑛) 𝑚𝑜𝑑 𝑛

So by iterating over a suitable value of x the desired result is derived.

CUDA Kernel pseudo-codes:

Input: __global__ void rsa(int *num, int *key, int *n, unsigned int *results)

//executed on the device and called from the host

Output: 𝑛𝑢𝑚𝑘𝑒𝑦 𝑚𝑜𝑑 𝑛

Declare int vars: temp, total_threads

i ← threadIdx.x + blockDim.x * blockIdx.x

if () then𝑖 < 𝑡𝑜𝑡𝑎𝑙_𝑡ℎ𝑟𝑒𝑎𝑑𝑠

temp ← mod(num[i], *key, *n)

atomicExch(result[i],temp)

end if

Pointers for variables used because rsa() is executed on the device, so variables must point

to device memory. So memory space on the GPU needs to be allocated.

Input: __device__ long long int mod(int g, int e, int n)

//executed on the device and called from the host

Output: 𝑔𝑒 𝑚𝑜𝑑 𝑛

53

Declare vars: a, ret, size

unsigned int a ← (g%n)*(g%n)

unsigned long long int ret ← 1

float size ← (float)e/2

if () then𝑒 == 0

return (g%n)

end if

else

while (true)

if () then𝑠𝑖𝑧𝑒 > 0. 5

ret ← (ret*a)%n

size ← size-1.0

end if

else if () then𝑠𝑖𝑧𝑒 == 0. 5

ret ← (ret*(g%n))%n

break

end if

else

break

end if

end if

return ret

The integration of CPU and the GPU (host code) basically follows the steps below:

● Checking for the available GPU cards

54

● Creating copies of variables for device and host

● Using cudaMalloc() in order to allocate memory space for device variables

● Setup of the input values

● Copying input values to the device using cudaMemcpy function.

● Launch of the kernel on GPU with the following parameters: rsa<<<num_blocks,

num_threads>>> (dev_num, dev_key, dev_den, dev_res)

● Copying result back to CPU with the cudaMemcpy function

The experiment consists of three parts with the first one the traditional algorithm is

tested on CPU for small prime numbers, the second runs the parallelized CUDA RSA

algorithm on GPU for small prime numbers again and then is compared with the first one.

The last test is on GPU too but in this case for large prime numbers which are not

supported by the built-in data types of the CPU RSA. As regards the test environment, the

algorithms were tested for message values between 0 and 800 supporting the complete

ASCII table this way and for 8-bit key values (the calculation of ciphertext was

implemented in parallel on an array of integers). Table 4.1 provides the specification of

the computer used for the testings:

Table 4.1. Specification of experiment computer

CPU Intel(R) Core(TM)

i3-2370M(2.4GHZ)

Memory 4 GB DDR2(2GHZ)

OS Windows 7

GPU Accelerator Nvidia GeForce GT 630M

GPU Memory 512MB

CUDA CUDA v5.5

55

Figure 4.1 shows the first comparison we mentioned before. It is between the CPU and

GPU implementations for small prime numbers and along with them the actual speedup is

depicted.

Figure 4.1: The effect of data input on CPU and GPU for RSA[11]

The next measurement had to do with the GPU implementation for large numbers of n.

We can see that the relation between the execution time and the amount of the input

data is linear for a certain amount of input. The execution time varies when using

different numbers of thread blocks and threads for data input but the clear observation is

that with the increase of the data size, the execution time will be much shorter according

to the number of threads used. In particular, the data size increase from 1024 to 8192

bytes along with the drop in execution time proves that the more the data size is, the

more the algorithm is parallelized, and the time spent is less. All these details are shown

in Table 4.2.

Table 4.2. GPU implemented RSA for large prime numbers and large value of n (n = 1005 *

509)[11]

56

Data Size (bytes)

Number of

thread blocks Threads/thread block Execution time

256 8 32 6.08

512 16 32 6.52

1024 32 32 6.69

2048 64 32 5.53

4096 128 32 6.58

8192 256 32 6.66

16392 512 32 7.81

32784 1024 32 8.76

The great enhancement in performance caused by GPU acceleration is demonstrated in

Figure 4.2 in which the comparison between CPU implementation for small value of n

(137*131) and GPU implementation for large prime numbers and value of n(1009*509) is

made.

57

Figure 4.2: Comparison of CPU RSA for small prime numbers with GPU RSA for large prime

numbers[11]

Now we are going to present a hybrid scheme for RSA proposed by Fadhil and

Younis[12]for multicore CPUs and GPUs and for variable key size. In order for the

performance enhancement to be highlighted, three different implementations of the

algorithm were conducted and then compared to the existing Crypto++ library’ sequential

implementation. The basis for this optimization attempt is the Montgomery algorithm

which despite being an infrequent algorithm in public-key cryptography, provides

interesting efficiency for modular multiplications and exponentiation operations when the

modulus is large (1024 bits at least). It was designed by Peter Montgomery in 1985. The

algorithm has two parts, the multiplication and the reduction. The multiplication process

is a technique for computing a*b mod n for positive whole numbers a, b, and n. It reduces

the execution time needed in cases in which there are large numbers of multiplications

that need to be conducted using the same modulus n, and with a small number of

multipliers. The key for this method’s success is that it needs a number of multiplications

much less than n by successively squaring and multiplying according to the arrangement

of the bits in the binary expression for n. Something that is crucial for the montgomery

multiplication implementation method is that if in the operation , a and b are𝑎𝑏 𝑚𝑜𝑑 𝑛

less than modulus n we need to declare an extra integer r such that and𝑟 > 𝑛

changing, in essence, the reduction modulo from n to r. As a consequence,𝑔𝑐𝑑(𝑟, 𝑛) = 1

r is just a masking operation. If r is a reduction modulo power of 2 numbers, n should be

not an even but an odd number, in order to satisfy the greatest common divisor

requirement. The computation of MonMul(a,b) is explained in the pseudo-code below:

Montgomery multiplication: ()𝑀𝑜𝑛𝑀𝑢𝑙 (𝑎', 𝑏') = 𝑎' . 𝑏' . 𝑟−1 (𝑚𝑜𝑑 𝑛)

Input: An odd modulus n and a radix

Output: a' .b' .r-1 (mod n)

58

, such that , a supplementary value𝑟 = 2
⌈𝑙𝑜𝑔

2
𝑛⌉

𝑔𝑐𝑑(𝑛, 𝑟 = 1)

, 2 n-residue integers a' and b'.𝑛' = − 𝑛−1 𝑚𝑜𝑑 𝑟

MonMul (a', b')

𝑡: = 𝑎' . 𝑏'

𝑢: = (𝑡 + [𝑡. 𝑛' 𝑚𝑜𝑑 𝑟]. 𝑛) / 𝑟

if () then𝑢 ≥ 𝑛

return (u-n)

else

return u

end if

a and b are numbers that represent the n-residues, which are

.𝑎' = 𝑎 . 𝑟 𝑚𝑜𝑑 𝑛, 𝑏' = 𝑏 . 𝑟 𝑚𝑜𝑑 𝑛

Both integers and n' are calculated, by using the Extended Euclidean algorithm, such𝑟−1

that: .𝑟𝑟−1 − 𝑛𝑛' = 1

The result of the multiplication in the n-residue is: .𝑢' = 𝑎' . 𝑏'. 𝑟−1 𝑚𝑜𝑑 𝑛

The final stage in the procedure is the conversion that needs to be done in order to

transform the result back to the normal residue representation:

𝑢 = 𝑀𝑜𝑛𝑀𝑢𝑙 (𝑢', 1)

The modular exponentiation that uses the Montgomery multiplications in𝑥 = 𝑎𝑒 𝑚𝑜𝑑 𝑁

order to be computed and the algorithm is shown below:

Montgomery Reduction Algorithm:

59

Input: a, e and n

Output: 𝑎' . 𝑏' . 𝑟−1 (𝑚𝑜𝑑 𝑛)

MonExp(a, e, n)

𝑎' = 𝑎 . 𝑟 𝑚𝑜𝑑 𝑛

𝑥' = 1 . 𝑟 𝑚𝑜𝑑 𝑛

for (i = n − 1 to 0)

x' = MonMul(x', x')

if () then𝑒
𝑖

== 1

x' = MonMul(x', a')

end if

end for

x = MonMul(x', 1)

return x

The whole RSA implementation was done for four different forms in order to provide a

better comparison among them. The first was the Crypto++ library algorithm for CPUs

(with a standard 1024-bit key size), the second a sequential one using the Montgomery

method we presented above for CPU again, the third a parallelized one for multithreaded

CPUs and the last one a parallelized one for GPUs (the last three implementations work

for variable key size).

The decision for the type of the variables that is needed for the whole encryption process

is a critical issue when the algorithm’s programme was written. Here we should mention

that the different implementations proposed are implemented using C# programming

language and GPU.net framework. The representation of large numbers as 1024 bits or

higher for the key generation algorithms parameters required the usage of the Biginteger

Class. The main bottleneck of the encryption process is caused by the large size of data so

the ideal scenario in the parallel RSA model implementation would be no dependencies

60

between the data to exist. To succeed this, data had to be divided into smaller pieces with

each piece being calculated by a thread and specifically independently conducting a

modular exponentiation. We only present here the algorithm for the parallel GPU

implementation as this is the point of interest of this diploma thesis:

Parallel RSA pseudo-code for GPU:

Public key {e,n} // Keys Generation

public struct RSA_Public_Key

Private key {d,p,q}

public struct RSA_Secret_Key

Input: Text for encryption

Launcher.SetGridSize (512); // Set kernel launch parameters

Launcher.SetBlockSize (128);

Reduce_GPU (A, n, m, mPrime); // call of the kernel method

Int ThreadId = BlockDimension.X * BlockIndex.X +

ThreadIndex.X;

Int TotalThreads = BlockDimension.X * GridDimension.X;

The evaluation of the performance enhancement was conducted by using the metrics of

the speed up factor. This factor for parallel computation working on p processors is the

ratio , where depicts the execution time needed while performing𝑆
𝑝

=
𝑇

𝑠

𝑇
𝑝

𝑇
𝑠

computation on a single processor and the execution time taken to perform the exact𝑇
𝑝

same computation using p processors. In order to ensure that the speed up factor is fair

for the parallel version, researchers considered the sequential time of their sequential

version. Latency and throughput are two factors that had to be considered in the

61

evaluation process. Taking all the aspects above into account, researchers conducted the

experiment using three test groups:

● Group 1. In this group, the message size is fixed to 760 bits. It was encrypted and

decrypted with a varied key size from 768 to 8192 bits.

● Group 2. In this group, the input messages varied in size that is convenient with

the size of the key used in the encryption process (one byte less than modulus

size).

● Group 3. In this group, the thread block size was selected to vary so as to be

multiple of message size in steps of 50 to 600. This is the test which is crucial in

determining the speed up gain as far as the throughput is concerned.

The specification of the computer used is an Intel Core I7-2670QM(2.20GHz) CPU, a RAM

of 12GB memory space, a NVIDIA GeForce GT630M GPU consisting of 96 cores and an

operating system of Windows 7 Home Premium. In the following figure of tables (Figure

4.3), the first table derives from the implementation of test group 1 and the second from

the test group 2. They depict the speed up factor and specifically is the speed up factor𝑆
1

for the multi-threaded CPU implementation and the factor for the GPU𝑆
2

implementation. The first table has to do with the measurements done for The execution

time in milliseconds for encryption and decryption of 760 bits message length with

different key size while the second table with the latency for encryption/decryption of

varied message size and variant key size. The measurements showed that Crypto++ and

the sequential implementation do not have a significant difference in performance. As

regards the execution time, it seems that the GPU implementation begins to be faster

than the other two when the size of the key is 3072 bits or higher. It was also observed

that the time needed to decrypt a message was more than the encryption time needed.

The reason for this, is that the public exponent e used is smaller than the private

exponent.In general, in the execution time the GPU exceeds the other two

implementations for CPU for all the key sizes; A conclusion we can also reach to by

studying the results is that the GPU is more powerful when undertakes heavy

computations.

62

Figure 4.3: Speed up factor for test groups 1 and 2[12]

Studying the results from test group 3, turns out that the encryption for one message

using a 1024-bit key takes 0.75 ms for the sequential execution and we would expect that

for the same type of execution for 600 messages would be needed 0.75*600=450 ms but

“surprisingly” from the tests of group 3 it was proved to need 1262.272 ms. The obvious

reason for this unexpected latency is more time taken because of the looping overhead.

As regards the multi-thread CPU implementation it can be derived from the results that

for 600 messages a 540 ms execution time would be expected but what happens is an

enhancement in performance with 439.475 ms taken to encrypt the messages because of

the free resources available for the computing process that are occupied by all the

available threads. GPU implementation results give a similar observation. The encryption

of 600 messages is 1.572 times faster. The ability of the GPU to complete heavy

computations with large data is depicted also by the decryption process in which the GPU

implementation is almost 14 times faster and the multithreaded CPU model 2.17 times

faster. The last and very important measurement taken had to do with the throughput

gained from GPU implementation in comparison to the sequential and multithread ones.

The gain from 1024-bit key size was much bigger than from the 2048 bits. For the 1024

bits the gain was approximately 1800 msg/sec while for 2048-bit key approximately

250msg/sec and the reason for that is the overlap of multi-thread operation whenever

the free resources are available for use.

63

4.1.3 An alternative Montgomery approach and programming techniques

A different approach to the existing Montgomery multiplication method for RSA

performance enhancement was presented by Neves and Araujo[13]. In fact, these

methods are not new to the researchers of this field but they had been neglected in the

literature until that time. Except for these Montgomery alterations, the researchers

applied and presented some programming techniques that generally enhance the parallel

performance of the programmes. These mainly were loop unrolling and PTX assembly.

They attempted to exploit the best way possible the provided tools and the hardware

specifications and select algorithms better suited to the architecture. They made their

experiments on the 1024-bit key sized RSA as this is the most common key

implementation and it allowed them to make easier comparisons and draw more exact

conclusions concerning the existing GPU and CPU implementations.

The available tools and hardware were exploited by performing an extended manual

unrolling, using the GPU’s PTX assembly tool directly and they managed to maximize the

register use to the detriment of less threads per thread block. The algorithms selected

that better suited the architecture were three generally untried Montgomery reduction

approaches from which the last two proved to be very effective. Coarsely Integrated

Operand Scanning (CIOS), Finely Integrated Operand Scanning (FIOS) and the Finely

Integrated Product Scanning (FIPS). FIOS and FIPS were more suitable for their purpose

compared to CIOS because both are methods which precisely integrate both reduction

and multiplication in the same loop. A technique in which all of these algorithms were

based on was the Chinese Remainder Theorem (CRT), a theorem that Quisquarter first

implemented in security schemes and according to which we can replace one large

1024-bit (RSA-1024) exponentiation by two smaller 512-bit independent ones. On

mathematical terms, the CRT says that[14] assuming we have two coprime numbers p,q,

the system of two equations and , has always a unique𝑥 = 𝑎 𝑚𝑜𝑑 𝑝 𝑥 = 𝑏 𝑚𝑜𝑑 𝑞

solution for . As a result, the reverse direction we are interested in implies that𝑥 𝑚𝑜𝑑 𝑝𝑞

given a number we can reduce and in order to obtain two𝑥 ∈ 𝒁
𝑝𝑞

𝑥 𝑚𝑜𝑑 𝑝 𝑥 𝑚𝑜𝑑 𝑞

equations of the system’s form above.

64

An important decision that needs to be made when multi-precision arithmetic is about to

be implemented on a specific architecture, has to do with the representation of the

numbers because not all representations can exploit the specific features of each GPU

architecture. In the present experiment researchers where about to choose between the

representation and the one. For the GPU used in the experiment (NVIDIA GT200)232 224

both options had advantages and drawbacks. The representation which equals the232

native word size would allow them to use the available native carry handling instructions

for subtraction and addition but required a waste in the cycles by ignoring that the native

integer multiplication of this specific GPU is 24-bit. On the other hand, the base 224

representation would avoid this waste but the unused 8 bits per word could not be

overlooked. Taking these characteristics into account they decided that the computation

waste caused by the base representation was less “harmful” for performance than the232

storage waste of the base representation so they chose that one. The original224

Montgomery algorithm requires enough storage in order to complete a full 512-bit

multiplication of short-term memory. This is not at all the best possible. A step towards

this direction was done by Koç and his team back in 1996 by introducing a method for

completing the Montgomery multiplication requiring only n+3 words of temporary

storage. They achieved this by interleaving multiplication with reduction and that way

they were able to both reduce the storage needed for processing the words and speed up

the modular multiplication. So let us begin with this implementation of the algorithms,

the CIOS we previously mentioned. This is the most commonly used approach in software

and GPUs. For each word of the modulus, CIOS[13] executes two independent loops: the

one for the multiplication process and the other for the reduction one. In each part, the

product is multiplied by one digit of the multiplicand, and after that reduced very fast,

because the partial product is no more than 32-bit larger than modulus. The drawback of

the method is that CIOS generates long carry lines all over the inner loops that make

instruction-level parallelism really difficult to achieve. The FIOS is a method[13] that

provides a more efficient performance. That is why both multiplication and reduction are

included into the inner loop and this loop is iterated times. The great effect of this𝑠2 − 𝑠

algorithm in performance derives from the fact that overhead and code size in the outer

loop are significantly reduced. The architecture of the processors that this

65

implementation is most suitable for is the RISC one. The only drawback is that it requires

two-word quantities to be added, something that involves the possible spreading of a

carry over to a third word. Instead, we follow a slightly different approach according to

which the need for fast add-with-carry instructions with a redundant representation is

alleviated, where two w-bit words is in fact a (w+1)-bit quantity. The last approach, the

Montgomery by FIPS, creates the most suitable circumstances for high-leveled parallelism.

The outer loop of the FIPS[13] accesses the words of the final product itself and

consequently each word of the product can be calculated individually. This method has

the disadvantage that it requires more add-with-carry instructions, i.e. a third word to

house the resulting carries. Compared to FIOS, FIPS’ code has 2 outer loops, and each one

of them an inner loop that cannot be unrolled because of the dependency with the outer

one. Despite this unrolling problem, the outer loop has a manner of iteration that

provides more implicit parallelism and is possible to take advantage of fully unrolled

implementations. It also performs some varying memory access patterns which hinders

the execution time.

Apart from speeding up the modular multiplication process, the performance can be even

better by reducing the number of multiplications required. It was shown that the sliding

window method[11] provided the least multiplications. As regards the CUDA

implementation, Neves and Araujo assigned each thread to one entire 512-bit

exponentiation. In order to maximize the number of the available registers for each

thread, they initially set the thread block size to 128, something that ultimately led to

poor GPU occupancy. Then, as the recommended thread size was 192, they used this one

and were “equipped” with 84 available registers per thread. They did a few more testings

and they ended up decreasing the sliding-window size to 4 and increasing the thread

block size to 224 threads with 64 threads available then as this combination provided

even better performance. Algorithm’s code alterations could lead to even faster

execution. Loop unrolling as we already mentioned is a technique that always is worth a

try and in this case could have a double effect: avoiding the words index accesses by

storing them in registers and removing the overhead that caused from the loop control

flow. They did these changes manually using PTX assembly tool in the case of performing

32x32-bit wide multiplications and using add-with-carry instructions which are not

available in the C language for CUDA. One of the most effective uses of the inline PTX

66

assembly in the implementation was the operation having 32-bit data as𝑎 × 𝑏 + 𝑐

inputs and 64-bit as output. It is noteworthy that FIPS was less loop unrolling friendly than

FIOS because the former required both inner and outer loop unrolling causing throughput

penalty while the latter was loop-friendlier because of the simple single inner loop it

contains. The performance results after all these techniques are shown in Figure 4.4, in

which we can clearly see that the FIOS approach is the most effective of all. The

performance measurements were taken on a system with an NVIDIA GTX260 GPU.

Figure 4.4: GPU throughputs of 512-bit modular exponentiation with

different Montgomery approaches[13]

4.1.4 The Chinese Remainder Theorem in RSA decryption process

In the previous section we introduced the Chinese Remainder Theorem (CRT) so in this

section we are going to take a closer look at how it is designed and implemented on the

RSA decryption process from the perspective of Younis et al.[15]. The RSA decryption

process complexity strongly depends on the size of the decryption exponent d and the

67

modulus n. RSA-CRT is different from the classic RSA implementation in the decryption

and the key generation procedures. The decryption procedure is as follows:

Supposing p and q two numbers coprime positive integers such that GCD (p, q) ≡ 1.

If a ≡ b (mod p) and a ≡ b (mod q), then a ≡ b (mod p.q)

The recipient knows the primes p and q so the modular operations below can be done by

him:

and𝑑
𝑝

≡ 𝑑 𝑚𝑜𝑑 (𝑝 − 1) 𝑑
𝑞

≡ 𝑑 𝑚𝑜𝑑 (𝑞 − 1)

and𝐶
𝑝

≡ 𝐶 𝑚𝑜𝑑 𝑝 𝐶
𝑞

≡ 𝐶 𝑚𝑜𝑑 𝑞

and𝑀
𝑝

≡ 𝐶
𝑝
𝑑

𝑝
 𝑚𝑜𝑑 𝑝 𝑀

𝑞
≡ 𝐶

𝑞
𝑑

𝑞
 𝑚𝑜𝑑 𝑞

Output: 𝑀 = [((𝑀
𝑞

+ 𝑞 − 𝑀
𝑝
). 𝐴) 𝑚𝑜𝑑 𝑞]. 𝑝 + 𝑀

𝑝

//A ← multiplicative inverse of q determined by the Euclid’s extended

//algorithm

This implementation results in approximately four times faster execution time since

modulus is reduced to half the bit-size of the modulus n meaning that for the

computations smaller numbers are used. p and q are only known to the receiver, so the

CRT decryption can only be exploited by him in order to decrypt a message.

The experiment was conducted on a platform its specifications are shown in Table 4.3. At

first they implemented the sequential version of the RSA algorithm on the CPU with

different key sizes and then recorded the performance and the actual throughput.

Secondly, they executed a parallel version of RSA cipher for multi-core GPU and CPU, and

measured the results again observing the speed up from the CRT implementation for the

decoding process in all these cases. The experiment was separated into two test groups.

The first test group consists of varying size messages convenient with the size of the

encryption key and specifically one byte less than the size of the modulus. The second

group contains a fixed number of messages (600) in order to evaluate the throughput.

Again the message size is one byte less than the size of the modulus. The results showed

68

that decryption time of a message is more than the encryption due to the public exponent

(e) which is smaller than the private exponent (d) as we have already analyzed. CRT is

used to speed up the decoding process because of the less mathematical calculation,

parallelism capability, and for that reason more free resources are available.

Table 4.3. Specification of experiment computer

CPU Core i7-2670QM

(2.20GHz)

CPU Cores (Logical) 8

Memory 12GB

OS Windows 7 64-bit

HDD 750GB

Processor Cores 96

Table 4.4 depicts the performance gain with CRT for the first test group. The speed up

metric is used for that reason with referring to the speed up for multi-core CPUs and𝑆
1

𝑆
2

for the GPUs implementation. For decryption they depict an additional speedup factor 𝑆
0

used for better comparison and referring to the original sequential decryption procedure

of course without using the CRT.

Table 4.4. Speed up factor for test group 1[15]

69

From the table above we infer that the performance enhancement is linearly increased

along with the key length. For encryption, the performance gain is not significant and in

fact for key sizes less than 3072 bits the sequential RSA version should be preferred. In the

without-CRT case the GPU implementation seems to be approximately 23 times faster

even for the small keys. Finally, for the decryption process using the theorem we are most

interested in in this experiment, sequential implementation is approximately 14 times

faster, the CPU 119 and the GPU ~433 times faster so it is enhanced for all three

implementations. The multi-core and many-core units’ implementation provides excellent

performance because of the composition of the parallelism of the processing and the CRT.

As for the throughput evaluation from the test group 2, it decreases as the key length

increases which is caused by extensive computation having to do with the higher

modulus. In general, decryption using CRT always gives a much higher throughput so from

all these results we conclude that the Chinese Remainder Theorem for RSA decryption’s

modular operations should definitely be preferred whenever possible.

4.1.5 The Pollard P-1 factoring - An RSA optimization over SSL/TLS protocol

We have already mentioned that RSA is a cipher that is used as supplementary to

symmetric-key ciphers for secure key exchange or stand alone in digital certificates.

Transactions and e-commerce are some of the critical and widely used sections in

people's online activity. The secure exchange of data via the net is guaranteed through the

Secure Sockets Layer (SSL) and the Transport Layer Security (TLS) which both ensure users

with privacy, integrity, and authentication. However, performance is a significant issue

every time this procedure is implemented. Research has shown that when the protocol is

implemented, 70% of the time spent in the “handshake” stage establishing a secure

70

connection, derives from the RSA implementation. Hence, as we would expect from the

topics we have included in this thesis, a parallelized version of RSA would significantly

make the SSL/TLS protocol “lighter”. An interesting proposition was made by Vargas et

al.[16].

They target the Pollard p-1 factoring which is a technique developed by Pollard back in

1974 and has its basis on the small Fermat’s theorem and is a method for factoring an

integer into its two factors. The method’s steps are the following[17]:

1. Let n be an odd integer that we want it to be factored.

2. Let a = 2 and i = 2.

3. Compute 𝑎 = 𝑎𝑖 𝑚𝑜𝑑 𝑛

4. Compute .𝑑 = 𝑔𝑐𝑑(𝑎 – 1, 𝑛)

5. If 1 < d < n, then d is a factor of n.

6. If d = 1, then set i = i + 1, and go back to step 3.

In the parallelized algorithm of the Pollard factoring[16] the first thing that happens is the

load of the table of the prime numbers to the CPU main memory. Then is transferred to

the GPU and stored in the global memory of the unit so the Kernel is ready to be

launched. Variable a is randomly selected. Once a thread acquires the results of p and q, it

sends them to the GPU memory and then to the CPU one.

For threads to be executed, in the case you need Y times to𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥 * 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥

perform the computation for the whole prime numbers table, in the worst case you have

acquired:

𝑦 = 𝑘
𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥 ×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 = π(𝐵)

𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥 ×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 =

𝐵
𝑙𝑛𝐵×𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥 ×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

71

The algorithmic complexity of the parallelized Pollard's P-1 algorithm is:

𝑂(𝑠 × 𝐵
𝑙𝑛𝐵×𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥 ×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥)

The implementation was tested on a Linux OS for various combinations of the number of

threads according to the RSA key size implementation with the number of threads per

black fixed to 64. In particular the tests among with the results are shown below:[16]

RSA Implementations: | CPU Time | GPU Time |

● RSA-256 → 4 threads, 64 threads/block | 12.47 | 5.13 |

● RSA-512 → 8 threads, 64 threads/block | 18.93 | 4.74 |

● RSA-1024 → 16 threads, 64 threads/block | 22.34 | 5.32 |

● RSA-2048 → 32 threads, 64 threads/block | 28.76 | 6.12 |

● RSA-4096 → 64 threads, 64 threads/block | 32.87 | 4.86 |

● RSA-8192 → 128 threads, 64 threads/block | 34.93 | 4.16 |

● RSA-16392 → 256 threads, 64 threads/block

Comparing these results to previous work with the same experiments using Montgomery

multiplication for the case of 512-bit and 1024-bit seems to be slower than this. It would

not be safe to suppose then that Montgomery is definitely a better option because the

experiments were conducted in different architectures. The only way to confirm that is by

conducting the experiment in the same system.

72

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this diploma thesis we presented some notable research on how to enhance the

performance of symmetric-key block ciphers and the RSA cipher, probably the most

important public-key cipher exploiting the modern GPUs. The results were extremely

encouraging, proving that there is a variety of techniques that can be exploited in order to

make ciphers implementation much faster. In order to decide which of these methods will

be more effective, there are few parameters that should be taken into account because

for example different architectures would benefit not in the same level from the various

implementations. The target of the researchers attempts were mainly the throughput gain

achieved by taking advantage of the variety of the CUDA tools provided and also the

speed up in the computations which are performed when a cipher is implemented by

some parallel programming manual alterations on the code of the ciphers too. Surely, as

the GPGPUs capability increases with the time we can definitely expect even more fast

cryptographic implementations but of course more experiments with the present

technology should be conducted because there is definitely room for even faster

implementations as the variety of different systems architectures combined with the

enormous computing capabilities and programming tools for GPUs create an almost

infinite space for investigation.

73

74

REFERENCES

[1] D.Le, “Towards Microarchitectural Design of Nvidia GPUs — [Part 1]”, Apr. 18,2020.

[Online].Available:https://medium.com/distributed-knowledge/towards-microarchitectur

al-design-of-nvidia-gpus-part-1-abe2fd5d9e52 [Accessed: Sept. 17, 2021].

[2] Q. Li, C. Zhong, K. Zhao, X. Mei and X. Chu, "Implementation and Analysis of AES

Encryption on GPU," 2012 IEEE 14th International Conference on High Performance

Computing and Communication & 2012 IEEE 9th International Conference on Embedded

Software and Systems, 2012, pp. 843-848, doi: 10.1109/HPCC.2012.119.

[3] C. Paar and J. Pelzl, Understanding Cryptography - A Textbook for Students and

Practitioners. Springer, pp.89-90, 115, 124-132, 2010.

[4] O. Harrison and J. Waldron, “Practical Symmetric Key Cryptography on Modern Graphics

Hardware.,” in USENIX Security Symposium, pp. 195–210, 2008.

[5] K. Iwai, T. Kurokawa, and N. Nishikawa, “AES Encryption Implementation on CUDA GPU

and Its Analysis.,” in ICNC, pp. 209–214, 2010.

[6] K.Aoki et al., ”Specification of Camellia-a 128-bit Block Cipher”, Sept. 26,

2001[Online].Available:https://www.cryptrec.go.jp/en/cryptrec_03_spec_cypherlist_files/

PDF/06_01espec.pdf [Accessed: Sept. 17, 2021].

[7] W.-K. Lee, B.-M. Goi, R. C.-W. Phan, and G. S. Poh, “High speed implementation of

symmetric block cipher on GPU.,” in ISPACS, pp. 102–107, 2014.

[8] N.Hoffman, “A simplified IDEA algorithm”,March

2007.[Online].Available:https://www.nku.edu/~christensen/simplified%20IDEA%20algorit

hm.pdf [Accessed: Sept. 17, 2021].

[9] B. Schneier, ”The Blowfish Encryption Algorithm”. [Online].Available:

https://www.schneier.com/academic/blowfish[Accessed: Sept. 17, 2021].

[10] J. Gilger, J. Barnickel, and U. Meyer, “GPU-Acceleration of Block Ciphers in the OpenSSL

Cryptographic Library.,” in ISC, vol. 7483, pp. 338–353, 2012.

[11] S. Mahajan and M. Singh, “Analysis of RSA algorithm using GPU programming.,” CoRR, vol.

abs/1407.1465, 2014.

[12] H. Fadhil and M. I. Younis, “Parallelizing RSA Algorithm on Multicore CPU and GPU.,” in

International Journal of Computer Applications, vol. 87, no.6, pp. 15-22, Febr. 2014. doi:

10.5120/15211-3704.

75

https://medium.com/distributed-knowledge/towards-microarchitectural-design-of-nvidia-gpus-part-1-abe2fd5d9e52
https://medium.com/distributed-knowledge/towards-microarchitectural-design-of-nvidia-gpus-part-1-abe2fd5d9e52
https://www.cryptrec.go.jp/en/cryptrec_03_spec_cypherlist_files/PDF/06_01espec.pdf
https://www.cryptrec.go.jp/en/cryptrec_03_spec_cypherlist_files/PDF/06_01espec.pdf
https://www.nku.edu/~christensen/simplified%20IDEA%20algorithm.pdf
https://www.nku.edu/~christensen/simplified%20IDEA%20algorithm.pdf
https://www.schneier.com/academic/blowfish/

[13] S. Neves and F. Araújo, “On the performance of GPU public-key cryptography.,” in ASAP,

pp. 133–140, 2011.

[14] https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html[Accessed: Sept. 17, 2021].

[15] M.I. Younis, H. Fadhil, Heba & Z. Jawad, (2016). “Acceleration of the RSA Processes based

on Parallel Decomposition and Chinese Remainder Theorem”., in International Journal of

Application or Innovation in Engineering & Management., vol. 5, no.1, pp. 12-23, Jan.

2016.

[16] M. P. Pineda Vargas, R. A. A. Rodriguez and O. J. Salcedo Parra, "Algorithm for the

Optimization of RSA Based on Parallelization over GPU SSL/TLS Protocol," 2017 IEEE

International Conference on Smart Cloud (SmartCloud), pp. 294-297, 2017. doi:

10.1109/SmartCloud.2017.55.

[17] M.S. Lydia, M.A. Budiman, Mohammad and D. Rachmawat, “On using Pollard’s p-1

Algorithm to Factor RPrime RSA Modulus,.” International Conference of Science,

Technology, Engineering, Environmental and Ramification Researches, Jan. 2018.

doi:1895-1899 10.5220/0010083618951899.

76

