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Abstract

In this Thesis, we propose state­of­the­art methods for the task of sound event detection.

Specifically, we develop systems that can automatically detect sound events and their time

boundaries. These systems include artificial neural network architectures based on conform­

ers and residual convolutional recurrent neural networks. Since multiple sound events may

occur simultaneously, we investigate the impact that source separation, as a preprocessing

step, has on our models’ performance. In our work we use all the proposed datasets of the

DCASEChallenge 2021 Task 4. The audio clips that these datasets contain are either recorded

in domestic environments or synthesized to simulate a domestic environment. Finally, we

evaluate our approaches on the public evaluation dataset proposed for the DCASE Challenge

2021 Task 4, outperforming the task’s baseline systems in all scenarios.
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Περίληψη

Σε αυτήν τη διπλωματική, προτείνουμε προηγμένες μεθόδους για το πρόβλημα της ανίχνευ­

σης ηχητικών συμβάντων. Συγκεκριμένα, αναπτύσσουμε συστήματα που μπορούν να ανι­

χνεύσουν με αυτόματο τρόπο ηχητικά γεγονότα και τα χρονικά τους όρια. Αυτά τα συστή­

ματα περιλαμβάνουν αρχιτεκτονικές τεχνητών νευρωνικών δικτύων που βασίζονται σε con­

formers και υπολειπόμενα συνελικτικά επαναλαμβανόμενα νευρωνικά δίκτυα. Δεδομένου

ότι πολλά ηχητικά συμβάντα μπορεί να λάβουν χώρα ταυτόχρονα, διερευνούμε τον αντί­

κτυπο που έχει ο διαχωρισμός πηγής, ως βήμα προεπεξεργασίας, στην απόδοση των μοντέ­

λων μας. Στην εργασία μας χρησιμοποιούμε όλα τα σύνολα δεδομένων που προτείνονται από

το διεθνή διαγωνισμό DCASE 2021 Task 4. Αυτά τα σύνολα δεδομένων περιέχουν ηχητικά

κλιπ που είτε έχουν καταγραφεί σε οικιακά περιβάλλοντα ή έχουν κατασκευαστεί για να προ­

σομοιώσουν ένα οικιακό περιβάλλον. Τέλος, αξιολογούμε τα μοντέλα μας χρησιμοποιώντας

το σύνολο δοκιμής που προτείνεται από τον ίδιο τον διαγωνισμό, ξεπερνώντας τα βασικά

συστήματα σε όλα τα σενάρια.
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Chapter 1

Introduction

1.1 Motivation

In our everyday lives, sound conveys important information. Our auditory perception

is incredibly skilled at separating different sound sources and directing attention to the one

we are interested in. Automatic sound event detection (SED) [5] aims to recognize what is

happening in an audio signal and when it is happening. In other words, its goal is to identify

and classify sound events in a variety of sound classes and to detect the onset and offset time

of each sound event.

Monophonic and polyphonic SED [6] are the two primary types that SED can be cat­

egorized to. Monophonic SED systems can only detect the most prominent sound event at

a time. This is a significant drawback since sound events frequently occur concurrently in

real life. For example, an audio signal captured at a street corner may include automobile

horns, people speaking, sirens, and steadily falling rain, all at the same time. On the other

hand, polyphonic SED aims to detect several sound events concurrently present at any time.

This scenario is more suitable for real­world applications. The number of sound events to be

identified in this scenario might vary between time instances. In this Thesis, we are interested

in the polyphonic SED scenario.

SED is a rapidly growing research area with many applications. Such include noise

monitoring in smart cities [7], where through SED and analysis in noisy data we can achieve

noise pollution reduction. Surveillance [8] is another essential application that enables sys­

tems to classify correctly the sound events, such as screams and shouts in subway trains [9], or

gunshots [10] and to take critical decisions. Smart home environments [11], [12] can optimize

1



2 Chapter 1. Introduction

our life using SED systems. In autonomous driving [13], smart cars should be able to detect

environmental sounds (such as sirens of ambulances) and respond appropriately. Another in­

teresting application is automatic subtitling in different movies or series (e.g., bell ringing),

making the scenario more understandable. Other applications contain health monitoring sys­

tems [14] (e.g., a person falling downstairs) and multimedia information retrieval [15].

It is not surprising that SED has been the topic of several evaluation campaigns in the

literature, including the well­known DCASE Challenges [16]. Recent DCASE Challenges

include the task of ”Sound Event Detection and Separation in Domestic Environments” [1].

The current Thesis presents a proposed set of methods and techniques for this task.

1.2 Thesis contribution

In this Thesis, we investigate the problem of SED in domestic environments by exam­

ining different approaches to detect sound events and their time boundaries. Our approaches

include state­of­the­art artificial neural network architectures and many techniques for data

preprocessing, data augmentation, and data postprocessing. Specifically, our architectures

contain conformer­based neural networks [17] and residual convolutional recurrent neural

networks [3]. Also, we investigate the impact that sound source separation [18], [19] has on

our models’ performance since many studies [20] have shown very promising results. We

present our approaches in detail in the following chapters.

1.3 Related work

Several methods have been developed in recent years to address SED. An early ap­

proach used hidden Markov models (HMMs) [21], where every type of sound event was

modeled by a left­to­right HMM topology with three states. Other approaches used proba­

bilistic component analysis models [22], aiming to detect overlapping acoustic events, mod­

eling the temporal evolution of sound events. Another early approach employed the Hough

transform [23].

More recent approaches though, have been focusing on neural network architectures.

The first networks were feed­forward ones [24], using acoustic features of sound frames

as input in order to categorize acoustic events. The performance of the elementary feed­
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forward neural network was much better in polyphonic situations in contrast to the old HMM

system [25].

Although feed­forward neural networks outperformed HMM systems, these networks

used each input value independently of each other. In order to exploit the dependence between

input values, spectrograms were used. So, convolutional neural networks (CNNs) [26] were

the suitable architectures to exploit this property, treating spectrograms just like images. Some

of these networks were employed to categorize isolated events [27], and others were used to

categorize events of sound mixtures [28].

The drawback of a CNN is that it uses input frames within a limited range at a specific

time. In contrast, a recurrent neural network (RNN) [29] uses input frames with no time­

duration constraints. This fact enables RNNs to exploit more temporal information in order

to provide more accurate predictions. Many approaches to SED employ RNNs [30]. The next

step in the evolution of SED architectures was the combination of CNNs and RNNs, giving

rise to the CRNN network [31], outperforming both CNNs and RNNs alone.

In the meanwhile, many preprocessing and postprocessing techniques were deployed

in order to achieve better results in the SED task. A critical one to polyphonic SED is sound

source separation (SSEP) [18], [19], [32] that is currently included in Task 4 of the DCASE

challenge [1]. Having this mechanism separate sound sources, enables the SED model to

provide more accurate predictions.

The latest approaches in this scientific area include the use of an attention mechanism.

Such architectures with attention layers are the Transformers [33] and the Conformers [4].

Specifically, neural networks based on the combination of CNNs and Transformers have

shown very promising results. CNNs are responsible for capturing the local input context and

the Transformers for capturing global interactions. In a similar way, a Conformer is a neural

module that combines CNNs and Transformers in order to capture both local and global

dependencies. According to [4] the Conformer achieves better results than a neural network

with Transformers and CNNs. This experimental result was confirmed by the winner of the

DCASE Challenge 2020 Task 4 [17].
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1.4 Thesis structure

The rest of this Thesis is organized as follows:

• Chapter 2 describes the datasets we use for our systems development.

• Chapter 3 presents our methods in order to solve the SED problem.

• Chapter 4 describes the experimental framework and the results of our experiments.

• Chapter 5 provides the conclusions of this Thesis, a summary, and directions of future

work.



Chapter 2

Description of DCASE Task 4 Data

In order to solve the problem of SED we used multiple datasets, which were allowed

for the DCASE 2021 challenge Task 4, specifically: DESED [34], SINS [35], TUT­Acoustic­

scenes­2017 [36], and FSD50K [37], while for the problem of SSEP the YFCC100M [38] and

the FUSS [39] datasets were suggested. Details about these datasets are provided in Section

2.1.

All mentioned datasets include audio recordings that follow the (wav) audio file format

standard. These audio recordings were sampled either at 44.1 kHz or at 16 kHz. Also, some of

these datasets contain files with labels. These labels are either weak labels with no timestamps

or strong labels with timestamps. Details about labeling are provided in Section 2.2.

After describing the datasets and their labels in Sections 2.1 and 2.2, respectively, in

Section 2.3 we present the development set that includes the training set and the validation

set. In Section 2.4 we discuss the evaluation set, and in Section 2.5 the data distribution of

the training, validation, and evaluation sets.

5



6 Chapter 2. Description of DCASE Task 4 Data

2.1 Datasets

Table 2.1 below provides useful information about the datasets that are used. As shown in

the table, column one lists the names of the datasets (DESED, SINS, TUT, FUSS, FSD50K,

YFCC100M). Column two tabulates the corresponding subset name if the subset exists. Then,

the subset type is presented, followed by the dataset usage (training/validation/evaluation),

the subset annotations, the event type, and finally the original sampling rate of audio record­

ings.

Table 2.1: Datasets information (Table from [1]).

Dataset Subset Type Usage Annotations
Event Sampling
type frequency

DESED Real:weakly Recorded Training Weak labels(no Target 44.1 kHz
labeled soundscapes timestamps)
Real: Recorded Training No annotations Target 44.1 kHz

unlabeled soundscapes
Real: validation Recorded Validation Strong Labels(with Target 44.1 kHz

soundscapes timestamps)
Real Public Recorded Evaluation Strong labels (with Target 44.1 kHz
evaluation soundscapes timestamps)
Synthetic Isolated events + Training/ Strong labels (with Target 16 kHz
training synthetic validation timestamps)

soundscapes
Synthetic Isolated events + Evaluation Event level labels Target 16 kHz
evaluation backgrounds (no timestamps)

SINS Background Training No annotations N/A 16 kHz
validation

TUT Acoustic scenes 2017, Background Training No annotations N/A 44.1 kHz
development dataset validation
FUSS dataset Isolated events + Training Weak annotations Target and 16 kHz

synthetic validation from FSD50K(no non­target
soundscapes timestamps)

FSD50K dataset Isolated events + Training Weak annotations Target and 44.1 kHz
recorded validation (no timestamps) non­target

soundscapes
YFCC100M dataset Recorded Training No annotations Sound 44.1 kHz

soundscapes validation sources

• DESED dataset

The DESED dataset [34] was designed for the task of SED in domestic environments, con­

taining 10­sec audio clips. These audio clips are separated into two categories. The first
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one contains audio clips recorded in domestic environments, and the second one synthe­

sized data that simulate a domestic environment. Finally, this dataset contains sound events

that belong to the following ten classes: alarm/bell/ringing, blender, cat, dog, dishes, electric

shaver/toothbrush, frying, running water, speech, vacuum cleaner. These are also the classes

that we focus on.

• SINS database

The SINS database [35] contains a one­week continuous recording (approximately 200 hours)

of one person living in a vacation home. The sound events of this dataset were annotated

manually. It is used as a background dataset.

• TUT Acoustic Scenes 2017

TUT Acoustic Scenes 2017 [36] is another background dataset that includes recordings of

different acoustic scenes, such as bus (vehicle’s sound) and train. Each recording is between

3 and 5 minutes long and is split to 10­sec audio clips.

• FSD50K dataset

FSD50K [37] is an open dataset that includes approximately 51k Freesound clips [40]. The

length of each audio clip is between 0.3 and 30 sec. This dataset also contains both labeled

and unlabeled data. The labeled data are manually annotated and belong to one of the 200

AudioSet classes [41].

• Free Universal Sound Separation (FUSS) dataset

The FreeUniversal Sound Separation (FUSS) dataset [39] contains soundmixtures and source­

level references. It is mainly used for the problem of sound source separation. Its audio data

and labels are derived from a subset of the FSD50K dataset. All mixtures last 10 sec and

contain 1 to 4 sound sources. Each mixture contains one background source, which is active

for the whole duration of 10 sec.

• YFCC100M dataset

YFCC100M [38] is a multimedia dataset containing approximately 99.2 million photos and

0.8 million videos. This dataset is related to the task of sound source separation.
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2.2 Labels information

The datasets contain strongly labeled, weakly labeled, and unlabeled data. The structure of

the labeled/annotated data is described analytically below.

2.2.1 Weak annotations

The weak annotations are provided in tab­separated files with the following format [1]:

[filename (string)][tab][event_labels (strings)]

For instance, in annotation:

YL7bzKI26Pek_190.000_200.000.wav Alarm_bell_ringing,Speech

• YL7bzKI26Pek_190.000_200.000.wav is the filename. Indexes 190.000 and 200.000

inform us that this clip lies between 190 and 200 sec of the corresponding Youtube

video.

• Alarm_bell_ringing and Speech are the sound classes that exist within the sound clip.

2.2.2 Strong annotations

The strong annotations are also provided in tab­separated files. Their format is structured in

the following way [1]:

[filename (string)][tab][onset (in sec) (float)][tab][offset (in sec) (float)][tab][event_label (string)]

For example, in annotation:

1000.wav 4.508 5.273 Speech

• 1000.wav is the filename.

• 4.508 is the onset time measured in sec.

• 5.273 is the offset time in sec.

• Speech is the sound class of the corresponding event.
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2.3 Development dataset

In Figure 2.1, we show the development dataset. It is separated into two categories: data for

the SED problem and data for the SSEP problem. In each of these categories, the data are

also separated into training and validation sets. In the SED problem, the training set comprises

real unlabeled data, weakly labeled data, and strongly annotated synthetic data. Instead, the

validation set contains only strongly labeled data. Additionally, in the SSEP problem, there

is the corresponding split into a training and a validation set.

Figure 2.1: Development dataset (figure from [1]).
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2.4 Evaluation dataset

The evaluation dataset is also separated according to the problem of SED or SSEP. In the first

case, the evaluation set contains the public evaluation dataset, the private evaluation dataset,

and the synthetic evaluation dataset. Specifically, the last two datasets are undisclosed in order

to be used by the task coordinators to evaluate the submitted models of each participant. In

our case, we use only the public evaluation dataset. Finally, in the SSEP problem, there is the

corresponding dataset for evaluation purposes.

Figure 2.2: Evaluation dataset (figure from [1]).
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2.5 Data distribution

Table 2.2 shows the data distribution of the training set, validation set, and evaluation set for

DCASE 2021 Challenge Task 4. As presented in the table, DCASE 2021 Challenge Task 4

contains five final datasets: a strongly labeled synthetic dataset, a weakly labeled dataset, an

unlabeled dataset without timestamps, a validation dataset, and a public evaluation dataset.

As shown in Figure 2.1, the weakly labeled, the unlabeled, and the validation datasets were

taken from the Audioset dataset [41]. The validation set was annotated with strong labels,

with timestamps (obtained by human annotators). Instead, the strongly labeled dataset was

generated using Scaper soundscape synthesis and augmentation library [42]. As illustrated in

Figure 2.2, the sound clips of the public evaluation dataset were extracted from YouTube and

Vimeo, containing strong labels with timestamps. The audio clips are 10000, 1578, 14412,

1168, and 692 in the strongly labeled, weakly labeled, unlabeled, validation, and public eval­

uation dataset, respectively. Each audio clip has a maximum duration of 10 sec.

Table 2.2: Data distribution of the training set, validation set, and evaluation set.

Set Dataset
Audio
clips

Training
Strongly labeled dataset 10000

Set
Weakly labeled dataset 1578
Unlabeled dataset 14412

Val set Validation dataset 1168
Eval set Public evaluation dataset 692





Chapter 3

Our Methodology

This chapter presents the methods that we deployed to tackle the problem of SED. Firstly, we

introduce the baseline systems, then the audio preprocessing techniques, and finally the fol­

lowing concepts: the data augmentation technique, the postprocessing technique, the RCRNN

model, the Conformer­based model, the semi­supervised learning technique, the ensemble

learning technique, and SSEP.

3.1 Baseline systems

DCASE challenge proposes two baseline systems. The first one tackles the SED problem,

and the second one tackles the same problem using SSEP as a preprocessing step.

3.1.1 Sound event detection baseline system

The SED baseline system is an improvement of the DCASE 2020 baseline [2]. It uses a

mean­teacher model [43] that contains two submodels: a student model and a teacher model,

both with the same architecture. The student model is the only model that is trained on the

strongly and weakly labeled data. Its loss function (in our case, the binary cross­entropy

(BCE)) is calculated at the clip level for the weakly labeled data and at the frame level for

the strongly labeled data. Instead, the teacher model is not trained, and its weights are the

exponential moving average of the student model’s weights. In the training phase, it takes as

input the same data as the student model but with added Gaussian noise. Its role is to help the

student model get trained through a consistency loss function (in our case, the mean square

error (MSE)) for both strong and weak predictions that come through unlabeled, weakly, and

13
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strongly labeled data. In Figure 3.1 below, this mean­teacher model is shown.

Figure 3.1: Mean­teacher model as the SED baseline (figure from [2]).

The architecture for both student and teacher models is a CRNN. Table 3.1 shows the network

architecture and the hyperparameters of this CRNN. As shown in the table, the input features

of the network are mel­spectrograms with 128 mel bands. The CNN part of the CRNNmodel

is composed of 7 convolutional layers with [16, 32, 64, 128, 128, 128, 128] kernels per layer,

respectively. Each convolutional layer has 3x3 kernels with a stride of 1x1, padding 1x1, and

it is followed by batch normalization, ReLU activation, and an average pooling layer with

[[2,2], [2,2], [1,2], [1,2], [1,2], [1,2], [1,2]] pool sizes per layer, respectively. After finishing

all the convolutional blocks, the 128x156x1­dimensional output is processed by a recurrent

block. The recurrent block is composed of two bidirectional gated recurrent units (BGRUs),

and its role is to capture the temporal context information. The 256x156­dimensional output

is applied to a fully connected layer and then processed by a sigmoid activation function,

resulting in an 156x10­dimensional output related to strong predictions. Then, in a parallel

way, the output of the recurrent block is processed by an attention pooling layer that is the

multiplication between the output of the fully­connected layer with sigmoid activation and the

output of a fully­connected layer with softmax activation, resulting in an 1x10­dimensional

output. This output is related to weak predictions of an audio clip, where 10 indicates the

number of sound event classes that the system detects.
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Table 3.1: The CRNN architecture of the baseline system (modified table from [3]).

Name Layers Output shape
Input

Input: log­mel spectrogram 1×626×128layer
3 × 3, Conv2D, @16,

16×313×64BN, ReLU
2×2 average pooling layer
3 × 3, Conv2D, @32,

32×156×32BN, ReLU
2×2 average pooling layer
3 × 3, Conv2D, @64,

64×156×16BN, ReLU
1×2 average pooling layer

Convolu­ 3 × 3, Conv2D, @128,
128×156×8tional BN, ReLU

block 1×2 average pooling layer
3 × 3, Conv2D, @128,

128×156×4BN, ReLU
1×2 average pooling layer
3 × 3, Conv2D, @128,

128×156×2BN, ReLU
1×2 average pooling layer
3 × 3, Conv2D, @128,

128×156×1BN, ReLU
1×2 average pooling layer

Recurrent
(128 BiGRU cells) ×2 256×156block

Since the network’s outputs are probabilities, thresholding is used, where the threshold value

for a class to be active is set to 0.5. Finally, themodel is trained for 200 epochs using the Adam

optimizer [44], and the best epoch on the validation set is kept. Meanwhile, the learning rate

is set according to the ramp­up strategy, reaching the highest value (0.001) after 50 epochs

(warm­up period). For post­processing a median filter is used on 0.45 sec approximately (or

27 frames using a 16 kHz sampling rate).



16 Chapter 3. Our Methodology

3.1.2 Sound event detection with source separation baseline system

Figure 3.2 below depicts the SED with SSEP baseline system. It consists of two fundamen­

tal blocks. The first block contains a pre­trained SSEP model. In our case, this model is an

”improved time­dilated convolutional network” (TDCN++) [19] and is trained in an unsuper­

vised waywithMixIT on the YFCC100M dataset. More details about this model can be found

in [18]. The second block is responsible for tackling the SED problem. It uses a pre­trained

SED model (in our case, the SED baseline system). This SED model is fine­tuned, taking

the separated data produced from the SSEP model as input. The final predictions arise by en­

sembling the original SED model with the fine­tuned SED model. Ensembling is performed

using the weighted average of the predictions of these two models.

Figure 3.2: The SED+SSEP baseline system (figure from [1]).

3.2 Audio preprocessing

First, we resample the audio clips at 16,000 Hz. Then, we perform the feature extraction tech­

nique. The features that are provided as input to all implementedmodels aremel­spectrograms.

After a number of experiments, we found that the best setup for all of our implemented mod­

els is this with 128 mel bins and frequencies between 0 and 8 kHz. The mel­spectrogram

features are obtained from the Short­time Fourier transform (STFT) calculated on N­sample

windows with 256­sample hop size. In Chapter 4, we present the results of the experiments

that we conducted in order to find the best­performing model, trying different values for pa­

rameter N. Finally, for each mel­bin the mel­spectrograms are normalized using the global
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mean and the standard deviation of the value of the bin.

3.3 Data augmentation

For data augmentation, we used Gaussian noise and mixup [45]. These techniques augment

the input data, making the models more robust against unseen data and help these models

avoid overfitting. The Gaussian noise is added to the normalized mel­spectrogram using a

randomly selected signal­to­noise ratio within the range of 6 and 30 dB. On the other hand,

the mixup technique creates pseudo­data using the following equations:

x̄ = λxi + (1− λ)xj , (3.1)

ȳ = λyi + (1− λ)yj , (3.2)

where (xi, yi) and (xj, yj) are two randomly selected examples from our training set and λ ∈

[0,1]. In our case, we randomly choose the λ value by sampling from a beta distribution with

parameters α = β = 0.2.

3.4 Postprocessing technique

A median window [46] is used in order to postprocess the output data. This window post­

processes the outputs at the frame level. For each class, the output of the network is a probabil­

ity that indicates the chances of detecting the corresponding class. Then, using thresholding,

a detection indicator is calculated: it is set to 0, if the probability is less than 0.5, and 1 other­

wise. Then, median filtering is performed along the time axis to smooth this binary sequence.

This happens in order to avoid false detections. For instance, ”running water” is improbable

to follow the pattern ”detected­notDetected­detected” in three consecutive frames. In order to

select the optimal length (in frames) for this median window, we tried different values (3, 7,

15, 25, 40, 50). In Chapter 4, we present corresponding experiments with these filter lengths.
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3.5 RCRNN model

Our residual convolutional recurrent neural network (RCRNN)was inspired byNam et al. [3].

In contrast to [3], we implemented our neural network without the Convolutional Block At­

tention Module [47] since we observed better results without it. In Figure 3.4 below we de­

pict our architecture. As shown in the figure, the input layer, the recurrent block, and the

prediction block are the same as the baseline model. Instead, the CNN part of our network is

composed of one stem block and five residual convolutional blocks. The stem block consists

of two convolutional blocks with 16 and 32 kernels per block, respectively. Each of these

convolutional blocks has 7x7 kernels with a stride of 1x1, padding 3x3, and it is followed by

batch normalization, ReLU activation, and an average pooling layer with [2,2] pool size. The

structure of the residual convolutional block is presented in Figure 3.3 below. Each residual

convolutional block consists of two convolutional layers, each of them followed by batch

normalization and ReLU activation. Then, after the residual connection, there is an average

pooling layer with [1,2] pool size.

Figure 3.3: The structure of the residual convolutional block (modified figure from [3]).

The downsampler (which is a convolutional layer with 1x1 kernels), as presented in Figure

3.3, is applied to the first two residual convolutional blocks due to differences in the input

and output dimension.
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Figure 3.4: The architecture of our RCRNN model (modified figure from [3]).
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3.6 Conformer­based Model

Our Conformer­based neural network is another architecture that we implemented since it

combines CNNs and Transformers to capture both local and global input information of an

audio sequence in a very efficient way. This network contains three fundamental components:

a CNN, a sequence of Conformer blocks, and a prediction block. The CNN and the prediction

block have the same architecture as the RCRNN neural network. In Figure 3.9 we depict the

structure of the Conformer­based neural network, and in Section 3.6.1we discuss the structure

of a Conformer block.

3.6.1 Conformer block

The Conformer block is responsible for capturing both local and global context input in­

formation. The ”Conformer: Convolution­augmented Transformer for Speech Recognition”

paper by Gulati et al. [4] inspired our implementation. This block includes feed­forward mod­

ules, a multi­head self­attention module, a convolution module, and a normalization layer,

as demonstrated in Figure 3.5. The convolutional module captures the local context informa­

tion of the sound spectrogram, and the multi­head self­attention (MHSA) module captures

the global context information. Also, in the same figure, it can be seen how the modules are

connected. Moreover, if x is the input to the Conformer block, then the output y can be de­

scribed mathematically as follows:

x1 = x+
1

2
FFN(x)

x2 = x1 +MHSA(x1) (3.3)

x3 = x2 + CONV (x2)

y = LayerNorm(x3 +
1

2
FNN(x3))

where FFN is the feed­forward module, MHSA is the multi­head self­attention module, and

CONV is the convolution module.
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Figure 3.5: A Conformer block (figure from [4]).

3.6.1.1 Feed­forward module

The first feed­forward module is placed before the MHSA module and the second one after

the convolution module. This module contains: a normalization layer, two linear layers, a

Swish activation function, and two dropout layers that are used for regularization purposes.

Also, layer normalization is applied after the second feed­forward module, as depicted in

Figure 3.5. Figure 3.6 demonstrates this feed­forward module.

Figure 3.6: The feed­forward module (figure from [4]).
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3.6.1.2 Multi­head self­attention module

The MHSA module uses the relative sinusoidal positional encoding scheme that is described

in [48]. Using this technique, the self­attention module generalizes better on data with differ­

ent input lengths, and the resulting encoder is more robust. Moreover, this module contains

pre­norm residual units [49], [50] and a dropout layer to avoid overfitting. In Figure 3.7 below

we depict this MHSA module.

Figure 3.7: The multi­head self­attention module (figure from [4]).

3.6.1.3 Convolution module

In Figure 3.8 we depict the convolution module that is based on [51]. It starts with a nor­

malization layer and a pointwise convolution with a gated linear unit activation function,

followed by a 1­D depthwise convolution layer and a batch normalization layer to help us

train a very deepmodel. Finally, there is a Swish activation function, a pointwise convolution,

and a dropout layer.

Figure 3.8: The convolution module (figure from [4]).
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Figure 3.9: The architecture of our Conformer­based neural network (modified figure

from [3]).
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3.7 Semi­supervised learning

To further improve the performance of our SED models, exploiting the unlabeled data, we

employed the mean­teacher semi­supervised technique [43] in the same way as the baseline

system. This technique belongs to the semi­supervised learning methods since it uses both

labeled and unlabeled data during training. We described this technique in Section 3.1.1 in

detail. The hyperparameters for this method for all of our implemented models are set as fol­

lows:

Hyperparameter name value

Self­supervised mean­teacher loss Binary cross entropy (BCE)

Consistency criterion Mean square error (MSE)

Consistency cost 2.0

Exponential moving average (EMA) factor 0.999

3.8 Ensemble learning

Ensemble learning [52] is another technique we implemented to improve the performance of

our models further. This method works by fusing different models. In our case, these models

are SEDmodels trained with different hyperparameters. The final predictions of the ensemble

model arise as the average of the predictions of eachmodel. In Chapter 4, we describe in detail

the SEDmodels that compose the ensemble models. Figure 3.14 below illustrates the general

structure of an ensemble model.

Figure 3.10: Ensemble model architecture (modified figure from [1]).
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3.9 Source Separation

The final technique that is used to further improve the performance of our SED models is

SSEP. This technique separates the overlapping sound events making the detection process

easier. We use the same SSEP pre­trained model as the baseline system. The architecture

of the SED system that uses SSEP as a preprocessing step was described in Section 3.1.2.

We use the same architecture, but we apply our implemented RCRNN and Conformer­based

neural network instead of the SED baseline model. SSEP is used by first separating the sound

mixtures and then by applying SED to the isolated soundtracks. The decisions obtained for the

separated sound events may be more accurate than those for the overlapping sound events. In

Chapter 4, we will see that SSEP is a helpful technique for some models, but for some others

it has negative effects.





Chapter 4

Experimental Results

This chapter presents the experimental setup, as well as the software and hardware framework

we used in order to run our experiments, the evaluation metrics, and finally the experiments

we ran in order to tune and evaluate our models.

4.1 Experimental setup

All of our implemented models were trained for 200 epochs using the Adam optimizer [44],

and the best epoch on the validation set was kept. The learning rate was set according to

the ramp­up strategy, reaching the highest value (0.001) after 50 epochs (warm­up period).

The two different self­supervised mean­teacher loss functions for the RCRNN and for the

Conformer­based neural network were the MSE and BCE, respectively. The batch size, after

experiments, was set to 48 for all of our implemented models, containing 12 strongly labeled,

12 weakly labeled, and 24 unlabeled training examples.

4.1.1 Software and hardware framework

The experiments ran on two different Google Colab Pro environments, using either a Tesla

T4 (16 GB), or a Tesla P100­PCIE (16 GB). For storage we used Google Drive (2 TB). All

of our code was written in the python language and run on Google’s Colaboratory. All of

our models were implemented in PyTorch [53], except the SSEP baseline model that was

implemented in TensorFlow [54].

27
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4.2 Evaluation metric

In order to evaluate our models, we used the polyphonic sound detection score (PSDS) [55].

The PSDS is the normalized area under the polyphonic sound detection receiver operating

characteristic (PSD­ROC) curve. Mathematically, it can be described as follows:

PSDS =
1

emax

∫ emax

0

r(e)de , (4.1)

where r(e) is the PSD­ROC curve and emax is the maximum effective false­positive rate

(eFPR) value. The eFPR and effective true­positive rate (eTPR) are defined as:

eFPR : e∗c
△
= R∗

FP,c + αCT
1

|C| − 1

∑
ĉ∈C
ĉ ̸=c

R∗
CT,c,ĉ , (4.2)

eTPR : r(e)
△
= µTP (e)− αST ∗ σTP (e) , (4.3)

where R∗
FP,c is the false positive (FP) rate for the c­th sound class and R∗

CT,c,ĉ is the cross­

trigger (CT) rate. Specifically,R∗
FP,c corresponds to the rate of incorrectly predicting a sound

event type c as ĉ and R∗
CT,c,ĉ is related to the rate of wrongly substituting a sound event type

c as ĉ. Also, αCT is a weighting parameter that represents the effect of CTs over the overall

false detections. In (4.3), the µTP (e) and σTP (e) are the mean and standard deviation of the

true positive (TP) rate across all sound classes, respectively, and αST is another weighting

parameter that controls the instability cost between all sound classes. Mathematically, µTP (e)

and σTP (e) are defined as:

µTP =
1

|C|
∑
c∈C

rTP,c , (4.4)

σTP =

√
1

|C|
∑
c∈C

(rTP,c − µTP )
2 . (4.5)

In order to calculate the values of this score, we use 50 linearly distributed operation points

between 0.01 and 0.99. According to Task 4 of DCASE Challenge 2021, to better understand

the behavior of our models, we evaluated them for two different scenarios that bring out

different system properties.
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4.2.1 Scenario 1

In scenario 1, our system needs to react fast during the process of event detection. High values

of PSDS in this scenario indicate that our system reacts fast upon an event detection (e.g., to

trigger an alarm). A significant characteristic of this scenario is the localization of the sound

event. The PSDS parameters that simulate this scenario are:

• Detection Tolerance criterion (DTC): 0.7

• Ground Truth intersection criterion (GTC): 0.7

• Cost of instability across class (aST ): 1

• Cost of CTs on user experience (aCT ): 0

• Maximum FP rate (emax): 100

4.2.2 Scenario 2

In scenario 2, our system must avoid incorrect class prediction. The reaction time in this

scenario is not so crucial. The PSDS parameters that simulate this scenario are:

• DTC: 0.1

• GTC: 0.1

• aST : 1

• Cross­Trigger Tolerance criterion: 0.3

• aCT : 0.5

• emax: 100
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4.3 Experiments

Multiple experiments have been conducted for tuning and evaluation processes. We used the

development set (training set + validation set) for the tuning process, and for the evaluation

process, we used the public evaluation dataset. The following subsections present the ex­

periments that we conducted to tune the RCRNN and the Conformer­based neural network.

Then, we present the ensemble models and the models that use SSEP as a pre­processing

step. Finally, the fine­tuned models are evaluated using the public evaluation dataset.

4.3.1 RCRNN tuning

The tuning process for the RCRNN aims to enhance the system’s performance using different

hyperparameter values, keeping these that provide the highest PSDS in scenario 1, regardless

of the PSDS in scenario 2.

4.3.1.1 Window size tuning

This experiment aims to find the best STFT window size (in samples). As shown in Table

4.1, we investigate different sizes, such as 256, 512, 1024, 2048, and 4096. It is observed that

the PSDS in scenario 1 for the windows with size 512, 1024, and 2048 is almost the same,

but the window with 2048 samples size achieves the highest PSDS that is equal to 0.356. It

is also the same window size that achieves the highest PSDS in scenario 2.

Table 4.1: PSDS in scenarios 1 and 2 using different window sizes for the RCRNN.

Window size PSDS scenario 1 PSDS scenario 2

256 0.334 0.555

512 0.354 0.564

1024 0.355 0.561

2048 0.356 0.565

4096 0.345 0.548
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4.3.1.2 Median filter length tuning

Having found the best window size for the RCRNN model, in this experiment, we try to find

the best median filter length (in frames). As depicted in Figures 4.1 and 4.2, we investigate

different lengths, such as 3, 7, 15, 25, 40, and 50. In scenario 1, as shown in the first barplot,

the model that achieves the highest PSDS is this with 7 frames median filter length, achieving

a score that is equal to 0.356. Instead, in scenario 2, as illustrated in the second barplot, the

model that achieves the highest PSDS is this with 25 frames median filter length. Since the

tuning process for the RCRNNaims to find the hyperparameter values that achieve the highest

PSDS in scenario 1, the 7­frame median filter is kept.

Figure 4.1: PSDS in scenario 1 using different median filter lengths for the RCRNN.

Figure 4.2: PSDS in scenario 2 using different median filter lengths for the RCRNN.
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4.3.2 Conformer­based neural network tuning

The tuning process of our Conformer­based neural network aims to increase the PSDS in

scenario 2, regardless of the PSDS in scenario 1. Tuning is performed investigating different

hyperparameter values. Our experiments are presented below.

4.3.2.1 Window type tuning

This experiment aims to find the best STFT window type. As shown in Table 4.2, we try the

Hamming, Hanning, Barlett, Blackman, and Kaiser windows. It is observed that the model

with the Blackman window achieves the highest PSDS in scenario 1 (0.194) and the model

with the Hamming window in scenario 2 (0.561). Since the tuning process for the Conformer­

based neural network aims to achieve the highest PSDS in scenario 2, the Hamming window

is kept.

Table 4.2: PSDS in scenarios 1 and 2 using different window types.

Window type PSDS scenario 1 PSDS scenario 2

Hamming 0.189 0.561

Hanning 0.189 0.552

Barlett 0.181 0.542

Blackman 0.194 0.556

Kaiser 0.121 0.559

4.3.2.2 Window size tuning

Knowing that the model with the Hamming window achieves the highest PSDS in scenario

2, in this experiment we try to find the best STFT window size. As with the RCRNN, we try

different sizes, such as 256, 512, 1024, 2048, and 4096. As shown in Table 4.3, in scenario 1

themodel that achieves the highest PSDS is this with a 1024­size window. Instead, in scenario

2, the model with a 512­size window outperforms others. The window with 512 samples is

kept.
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Table 4.3: PSDS in scenarios 1 and 2 using different window sizes for the Conformer­based

neural network.

Window size PSDS scenario 1 PSDS scenario 2

256 0.204 0.525

512 0.209 0.569

1024 0.210 0.566

2048 0.189 0.561

4096 0.192 0.535

4.3.2.3 Median filter length tuning

Having found the best window type and the best window size, in this experiment we inves­

tigate the median filter length. As with the RCRNN, we try different lengths, such as 3, 7,

15, 25, 40, and 50. In scenario 1, as demonstrated in the first barplot (Figure 4.3), the filter

that achieves the highest PSDS is this with 7 frames length, achieving a score that is equal to

0.209. On the other hand, in scenario 2, as presented in the second barplot (Figure 4.4), the

filter that achieves the highest PSDS is this with 40 frames length, achieving a score that is

equal to 0.681. We keep the filter with 40 frames length.

Figure 4.3: PSDS in scenario 1 using different median filter lengths for the Conformer­based

neural network.



34 Chapter 4. Experimental Results

Figure 4.4: PSDS in scenario 2 using different median filter lengths for the Conformer­based

neural network.

4.3.2.4 Number of Conformer blocks tuning

This experiment aims to find a suitable number of Conformer blocks, providing the best

performance in scenario 2. As shown in Table 4.4, firstly, we try only 1 Conformer block,

then 2, and finally 3 Conformer blocks. It is observed that the highest PSDS in both scenarios

is achieved using only one Conformer block. The PSDS in scenario 1 is equal to 0.150 and

in scenario 2 equal to 0.681.

Table 4.4: Tuning the number of Conformer blocks.

Number of Conformer blocks PSDS scenario 1 PSDS scenario 2

1 0.150 0.681

2 0.127 0.678

3 0.111 0.664
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4.3.3 Ensemble models tuning

In this experiment we evaluate the performance of the ensemble models. Table 4.5 presents

the models that participate in each ensemble model, and Table 4.6 shows the parameters of

each ensemble model, the additional number of epochs that the ensemble model fine­tuned,

and the achieved PSDS in scenarios 1 and 2, respectively. Finally, the ensemble model that

provides the highest PSDS in scenario 1 is the ”RCRNNbest+RCRNN1” and in scenario 2 is

the ”Confbest+Conf1”.

Table 4.5: Characteristics of pretrained SED models that participate in ensemble models.

SED model Window type
Window size

(in samples)

Median filter length

(in frames)

RCRNNbest Hamming 2048 7

RCRNN1 Hamming 2048 15

RCRNN2 Hamming 512 7

Confbest Hamming 512 40

Conf1 Hamming 512 25

Conf2 Hamming 512 15

Table 4.6: Performance of ensemble models on validation set in terms of PSDS.

Ensemble model epochs parameters (M) PSDS scenario 1 PSDS scenario 2

RCRNNbest + RCRNN1 17 6.8 0.370 0.586

RCRNNbest + RCRNN2 17 6.8 0.368 0.589

Confbest + Conf1 10 25.6 0.153 0.684

Confbest + Conf2 16 25.6 0.153 0.683
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4.3.4 Models using sound source separation

This experiment presents the impact that SSEP had on our models. As shown in Table 4.7,

there are four models that we are interested in. The ”RCRNNbest” model and the ”Confbest”

model were described in the previous section, and the ”baseline” model in Sections 3.1.1 and

3.2.2. Instead, the ”Confsimple” model is a Conformer­based model that contains a window

with 2048 frames size and a median filter with 7 frames length. As presented in Table 4.7,

SSEP had a positive impact on some models and a negative on others. The highest positive

impact was detected for the ”Confsimple”model in scenario 1 and the highest negative impact

for the ”RCRNNbest” model in scenario 2. In scenario 1, without SSEP, the ”RCRNNbest”

model achieved the highest PSDS (0.356), and with SSEP, the ”baseline” model 0.373. In­

stead, in scenario 2 the ”Confbest” model achieved the highest PSDS with and without SSEP.

Figure 4.5 demonstrates the PSD scores in scenario 2 with and without SSEP for the same

models.

Table 4.7: Models performance with and without source separation.

Model
PSDS scen 1
without SSEP

PSDS scen 1
with SSEP

diff
PSDS scen 2
without SSEP

PSDS scen 2
with SSEP

diff

RCRNNbest 0.356 0.350 ­0.6% 0.565 0.524 ­4.1%
Confbest 0.150 0.173 +2.3% 0.681 0.672 ­0.9%
Confsimple 0.209 0.244 +5.5% 0.569 0.604 +3.5%
baseline 0.342 0.373 +3.1% 0.527 0.549 +2.2%

Figure 4.5: PSDS in scenario 2 with and without source separation.
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4.3.5 Evaluation process

To evaluate our systems, we used both validation and public evaluation datasets. First are

evaluated the best SED models and then the models with SSEP as a preprocessing step.

4.3.5.1 SED evaluation

In Table 4.8 we present the achieved PSDS on the validation and evaluation sets for the

SED models that we implemented. It is observed that ensemble models achieve the highest

score in most cases. On the validation set in scenario 1 the model that achieves the highest

PSDS is the ”RCRNNbest+RCRNN1”, yielding a score equal to 0.370. In scenario 2 on

the same dataset, the ”Confbest+Conf1” model outperforms others with a score of 0.684.

Instead, in scenario 1 on the evaluation set, the model with the highest score is again the

”RCRNNbest+RCRNN1” with a score equal to 0.398. Finally, in scenario 2 on the evaluation

set, the model that outperforms others is the ”Confbest”, providing a score equal to 0.679.

Table 4.8: Performance of SED models on the validation and on the public evaluation dataset

in terms of PSDS.

Validation Set Evaluation Set

SED models scenario 1 scenario 2 scenario 1 scenario 2

RCRNNbest 0.356 0.565 0.384 0.620

Confbest 0.150 0.681 0.135 0.679

RCRNNbest+RCRNN1 0.370 0.586 0.398 0.638

Confbest+Conf1 0.153 0.684 0.134 0.672

baseline 0.342 0.527 0.359 0.596

4.3.5.2 SED + SSEP evaluation

Table 4.9 demonstrates the PSD scores on the validation and evaluation sets for the SED

models that use SSEP as a preprocessing step. The table shows that most models score better

on the evaluation set than on validation. On the validation set, the best model in scenario

1 is the ”baseline” and in scenario 2 the ”Confbest.” Instead, in scenario 1 the model that

achieves the highest PSDS on the evaluation set is the ”RCRNNbest” with a score of 0.396.
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In scenario 2 on the same set, the model that outperforms others is the ”Confbest,” providing

a score equal to 0.670.

Table 4.9: Performance of SED+SSEP models on the validation and on the public evaluation

dataset in terms of PSDS.

Validation Set Evaluation Set

SED+SSEP models scenario 1 scenario 2 scenario 1 scenario 2

RCRNNbest 0.350 0.524 0.396 0.612

Confbest 0.173 0.672 0.150 0.670

Confsimple 0.244 0.604 0.235 0.626

baseline 0.373 0.549 0.393 0.620



Chapter 5

Conclusions

5.1 Summary and conclusions

In this Thesis, we addressed the problem of SED by proposing state­of­the­art solu­

tions for it. These solutions include neural network architectures based on Conformers and

RCRNNs. In order to further improve the performance of our SED models, we implemented

some preprocessing techniques, data augmentation, postprocessing techniques, and ensemble

learning. Preprocessing techniques include downsampling, normalization, and the fundamen­

tal one­source separation. Data augmentation contains mixup and addition of Gaussian noise,

and finally, postprocessing techniques include median filtering.

We evaluated our systems on the public evaluation dataset used in Task 4 of DCASE

Challenge 2021, outperforming the baseline systems in all scenarios.

5.2 Future extensions

Due to the wide area of this research topic, there are many approaches that we did not

explore. First of all, the use of different data augmentation techniques such as time­shifting

and pitch shifting [56] may provide better results. Also, it is possible to jointly train the SED

and SSEP model instead of using SSEP as a preprocessing step. Finally, our models should

be trained on more datasets in order to have more accurate results.
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