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Abstract

Authorship attribution is the task of identifying the author of a given text. This task is

equivalent to a ”classification problem”, which attempts to attribute a document to an au­

thor from a set of authors. In this Thesis, we performed classification experiments on novels

from the Victorian era. The novels were extracted from GDELT database using several fea­

ture extraction techniques, including Part­of­Speech tag, TF­IDF, N­grams. The classification

techniques applied are Support Vector Machine, Multilayer Perceptron, Logistic Regression,

XGBoost, Bayes, and DistilBert. The main objective of this work is to study the effect of fea­

ture set selection, classification model, and size of the dataset in the implementation of the

authorship attribution task and compare its behavior with state­of­the­art models like Distil­

Bert. The experiments obtained indicate that the size of the dataset plays a significant role

in the performance of the models considered; the classifiers are more important than the fea­

ture selection, while SVM classifiers combined with TF­IDF performed the best, achieving

a remarkable 98% accuracy. The state­of­the­art models did not perform according to our

expectations, but we proposed some ideas for further experimentation and improvements.
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Περίληψη

Το Authorship Attribution ή αλλιώς η απόδοση συγγραφέα ανώνυμων κειμένων αποσκο­

πεί στην αναγνώριση του νόμιμου συγγραφέα ενός κειμένου από ένα σύνολο υποψηφίων

συγγραφέων και αποτελεί πρόβλημα κατηγοριοποιήσης. Σε αυτή τη διατριβή, πραγματοποι­

ήθηκαν πειράματα σε μυθιστορήματα από τη βικτοριανή εποχή. Αυτά τα μυθιστορήματα

εξήχθησαν από τη βάση δεδομένων GDELT χρησιμοποιώντας διάφορες τεχνικές εξαγωγής

χαρακτηριστικών συμπεριλαμβανομένου των Part­of­Speech tag, TF­IDF, N­grams. Οι μέ­

θοδοι ταξινόμησης που χρησιμοποιήθηκαν ειναι οι: Support Vector Machine, Multilayer Per­

ceptron, Logistic Regression, XGBoost, Bayes, and DistilBert. Ο κύριος σκοπός αυτής της

εργασίας ήταν είναι να μελετήσει την επίδραση της επιλογής συνόλου χαρακτηριστικών, του

μοντέλου ταξινόμησης και του μεγέθους του συνόλου δεδομένων στην υλοποίηση της εργα­

σίας απόδοσης συγγραφέα και να συγκρίνει τη συμπεριφορά του με μοντέλα της σύγχρονης

τεχνολογίας όπως το DistilBert. Τα αποτελέσματα που προέκυψαν από τα πειράματα είναι

ότι το μέγεθος του συνόλου δεδομένων παίζει σημαντικό ρόλο στην απόδοση των μοντέλων.

Οι ταξινομητές είναι πιο σημαντικοί από την επιλογή χαρακτηριστικών, ενώ η καλύτερη

ακρίβεια επιτεύχθηκε από τους ταξινομητές SVM σε συνδυασμό με το TF­IDF καθώς πέ­

τυχαν ένα αξιοσημείωτο 98%. Τα σύγχρονα μοντέλα δεν ανταποκρίθηκαν στις προσδοκίες

μας, αλλά προτείνουμε ορισμένες ιδέες για περαιτέρω πειραματισμό και βελτιώσεις.
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Chapter 1

Introduction

Authorship attribution (A.A.) is the process of attempting to identify the true author of

a document or text, given a collection of documents whose authorship is known. A.A. con­

structs a classification problem, for which machine learning techniques are used in order to

solve it. It is important to mention that it differs from text classification. In text classification

only the text context is responsible for the classification process, but in A.A. also the writing

style plays a significant role in classifying the text correctly to the author. The authorship

attribution question [3, 4] is trying to determine the correct author of a given document based

on text samples written by known authors. Pseudepigrapha has falsely attributed works, texts

whose claimed author is not the true author, or a work whose real author attributed it to

a figure of the past [5]. The Shakespeare authorship question argues that a collaborator or

another author wrote the works attributed to Shakespeare. This A.A. problem has troubled

literal scholars since the middle of the 19th century [6, 7, 8, 9, 10]. It is estimated that about

80 authors have cooperated with Shakespeare or be the rightful authors for some of his plays.

The most well recognized are John Fletcher, Sir Francis Bacon, Christopher Marlowe, and

Thomas Kyd. Moreover, some unidentified plays have been attributed to Shakespeare but for

various reasons the authorship is questionable. Some of them are Edward III, The Two Noble

Kinsmen and Pericles, Prince of Tyre. This playgroup is called Shakespeare apocrypha and

has troubled researchers into finding the real author of these plays. A similar question has

been raised for the oldest European literary documents: The Homeric Epics. The Homeric

Question – concerning by whom, when, where and under what circumstances the Iliad and

Odyssey were composed – continues to be debated [11, 12, 13]. This question was stated by

Milman Parry [14], and now most classicists agree that, whether or not there was ever such

1



2 Chapter 1. Introduction

a composer as Homer, the poems attributed to him are to some degree dependent on oral

tradition. Oral tradition was a generations­old technique that was the collective inheritance

of many singer­poets [15].

A problematic field that A.A. has application to is forensic linguistics. It is the case when

the number of suspected writers might be very large, possibly numbering in the many thou­

sands. Also, there is often no guarantee that the true author of an anonymous text is among

the known suspects. Another challenging aspect is when a candidate’s amount of writing

might be very limited, and the untitled text itself might be short [16]. It has various ap­

plications such as social media, fake news, plagiarism, death row statements, and suicide

letters [17, 18, 19, 20].

1.1 Problem Statement

This Thesis will conduct a systematic approach to authorship attribution by performing

experiments on 50 Victorian Era novels extracted from GDELT database. The primary pur­

pose of this survey is to answer the following questions:

• Which data augmentation (feature extraction) techniques benefit the text classification

models for this specific dataset?

• Does the size of the dataset play a significant role in achieving high accuracy?

• Which is more important? The feature set or the classification model?

• Is it better to combine feature extractions or use one solely?

To answer the above questions, we need to a) identify the feature extraction techniques and

the classifiers and b) conduct experiments including both combined feature extractors with

each classifier. We will perform the experiments on the full dataset and in a reduced dataset

of 4500 instances.

1.1.1 Contribution of Thesis

The contribution of the Thesis is summarized as follows:

1. Analysis features versus classifier performance:

Model interpretation is a crucial benefit of feature selection as it reduces the number
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of features in the model and tries to optimize the model performance. The real query,

though, is whether the selection of the features plays a more significant role than the

classifier itself.

2. Feature extraction effect, either augmented or individually used:

There is a variety of feature extraction methods that can be applied to an A.A. task.

There are lexical, semantic, syntactic, and many more approaches can be used. We

address whether it is preferable to use an augmented set of features or to use each one

individually to receive the best possible outcome.

3. State­of­the­art pre­trained model performance in authorship attribution:

Pre trained language models have shown excellent performance in several text classi­

fication tasks, including sentiment analysis, emotion classification, and topic classifi­

cation, but little research has been done on the authorship attribution problem. In this

Thesis, the goal is to extend this research and verify that pre trained model achieves the

best results as proposed in [21, 22].

4. Machine learning classifiers’ accuracy in A.A. tasks:

Most surveys report that SVM is the best classifier for authorship attribution problems.

We apply and compare six algorithms (SVM, MLP, Naive Bayes, Logistic Regression,

Random Forest, and XGBoost) to discover the best classifier for the A.A. problem in

the case of large datasets.

5. Optimal choice of feature selection and classifier:

Different datasets provide different answers to the question: Which are the best fea­

ture extractor and classifier options for A.A. tasks. For the specific large dataset of 50

authors we have selected, we conducted various experiments and applied each feature

extraction technique to every classifier to find the optimal choice.

1.2 Content organization

We organize this Thesis as follows. Chapter 2 discusses related work and authorship at­

tribution’s fields of application. Chapter 3 presents and analyses the feature extraction tech­

niques used for the experiments. Chapter 4 introduces the state of the art pre trained models
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Bert and DistilBert. In Chapter 5, we provide information about the dataset and the clas­

sification methods used in our experiments, and present the performance analysis results.

Finally, Chapter 6 includes the conclusions and remarks on the proposed future work for

further experimentation.



Chapter 2

Related Work

In this Chapter, we present a survey of the various techniques for solving the authorship

attribution problem. Authorship attribution surveys focus on stylometric features to extract

the author’s writing signature and can be applied to several topics. One application of A.A.

that has troubled scholars is around Shakespeare. It is a common belief that in the Eliza bethan

era (1558–1603), authors used to collaborate. From time to time, scholars embrace the view

that Shakespeare did not solely write some of his plays because of his lack of education and

aristocratic sensibility, but other authors were involved in the writing.

On the other hand, most modern day scholars reject this claim, arguing that there is strong

evidence that Shakespeare wrote the plays and poems attributed to him. This conflict has

led to an endless academic debate with unsettling answers. Identifying the real author of the

Shakespearean works is known as the ”Shakespeare authorship question.” Scholars use dif­

ferent techniques in determining Shakespeare’s authorship. Plechac [23] uses Support Vector

Machine (SVM) as a classifier together with rhythmic types to identify writing style, while

Merriam [24] chooses Multilayer Perceptron combined with function words. Boyd [25] uses

Linear discriminant analysis (LDA), Decision Trees (D.T.s), and SVM together with five

types of measures to recognize the authors writing signature. Aljumily [7] uses hierarchical

and non hierarchical clustering together with function words, bi­gram, and tri­grams. How­

ever, these different classification methods and datasets result in contrasting outcomes, and

the results given are inconsistent with each other and can not provide a final answer.

Similar research took place with several books which had a doubtful attribution. One of

them is the 15th Oz book ”The Royal Book of Oz”, which has initially been credited to L.

Frank Baum, the writer of the previous 14 Oz books. However, it was later recognized to be

5



6 Chapter 2. Related Work

written entirely by Ruth Plumly Thompson and Binongo’s statistical analysis using function

words proves that assumption [26]. Gungor experimented with 50­author dataset derived

from the Victorian Era and tested traditional feature extraction methods (bag of words, n­

grams etc) and new techniques like word2Vec [27]. However, it was found that the latter

didn’t outperform traditional ways. ”The Letter to the Hebrews” also has a debated authorship

and using function words, trigram Markov method, and multiple discriminant analysis. It

was discovered that Barnabas was stylistically closer to the writing style than Paul, Matthew,

Mark, Luke, or John [28]. Another survey focuses on the use of alliteration in historical

texts [29]. Alliteration did not provide a suitable feature extractor but improved the total

accuracy when combined with lexical stress and traditional stylistic features. However, the

main problem was that there is no accurate time­period pronunciation dictionary and used

present­day pronunciations of written words.

Another major topic that A.A. finds application to is forensic linguistics. There have been

various cases where some documents could be the key to solve an issue. An example based

on real events is when an employee was fired for a racist email sent from his (open) cubicle,

which he denied sending [3]. The main difference in forensic authorship attribution is that

the document belongs to one or more authors from an available set of authors, or an unknown

author. Social media conceal several digital crimes such as pedophilia and identity theft. In

[17], the problem that arises in social media is the size of the messages. To encounter this,

they computed very low­level lexical statistics and emphasized punctuation, abbreviations,

and character­based signifiers common in Internet culture. They also examined supervised

learning­based methods that are effective for small sample sizes. Specifically, the efficient

classification method was Power Mean SVM (PMSVM). Another approach to identify the

social media author and distinguishing between fake and real tweets was proposed in [30].

The dataset used was streamed from Twitter, with a maximum of three thousand tweets per

author, and consisted of two features, the author and the tweets. They extracted features us­

ing a bag of words and vector space model and tested the classification techniques Logistic

Regression and Naive Bayes where they resulted in 91% and 90% accuracy, respectively.

Moreover, a vast majority of papers focus on fake news detection using several machine

learning methods. Supervised learning algorithms such as KNN, Naive Bayes, Random For­

est, SVM and XGBoost are used in [31] using several feature sets including language, lexi­

cal, psycholinguistic, and semantic features. The dataset consisted of 2282 BuzzFeed news
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articles related to 2016 U.S. election labeled by journalists and enriched with comments asso­

ciated with the news stories and shares and reactions from Facebook users. The experiments

showed that the best classifiers were Random Forest with 85% and XGBoost with 86% ac­

curacy, respectively. In Table 2.1, we summarize the classification methods used and point

to the corresponding reference. .
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Classifier Reference

SVM

[23]

[25]

[27]

[29]

[17]

[31]

MLP
[10]

[29]

Naive

Bayes

[27]

[30]

[31]

Clustering
[7]

[27]

Ensemble

methods

[27]

[31]

LDA [25]

D.T. [25]

PCA [26]

CNN [27]

MDA [28]

Logistic Regression [30]

Random Forest [31]

KNN [31]

Table 2.1: Classification methods used in related work.



Chapter 3

Feature Extraction

The most important task in authorship attribution is to find distinctive features that would

indicate an author’s writing style. There are several types of stylometric features. The main

categories are lexical, character, syntactic, semantic, and application­specific features. This

Thesis will focus on Part­of­Speech tag, which belongs to the syntactic category, lexical fea­

tures, i.e., function words and N­grams, and several vectorizers.

3.1 Part­Of­Speech tag

Dionysius Thrax (c. 100 B.C.) is considered to be the author of the earliest grammatical

text in the Greek language and the first man to distinguish between the eight­word classes:

noun, verb, pronoun, preposition, adverb, conjunction, participle, and article. This set of eight

words has become the basis for descriptions of European languages for the next 2000 years.

Part­of­speech tagging aims at labeling each word with a unique tag that indicates its syn­

tactic role. This technique is essential because authors tend to use similar syntactic patterns

unconsciously thus, we can extract a unique writing signature from each author. Part­of­

speech (POS) tagging is the process of assigning a part­of­speech to each word in a text.

The input is a sequence x1, x2, ..., xn of (tokenized) words and a tagset, and the output is

a sequence y1, y2, ..., yn of tags, each output yi corresponding exactly to one input xi [32].

However, sometimes words may have more than one possible part­of­speech.Consider the

several different uses of the word ”back”:

earnings growth took a back/J.J. seat

a small building in the back/N.N.

9



10 Chapter 3. Feature Extraction

a clear majority of senators back/VBP the bill

Dave began to back/V.B. toward the door

enable the country to buy back/R.P. about debt

I was twenty­one back/R.B. then

POS tagger is responsible for solving this problem of ambiguity and assign the proper tag for

the context.

An important tagset containing corpus tagged sentences is the Penn treebank. The Penn

treebank is perhaps one of the most popular NLP datasets. It operated for eight years (1989­

1996) encompassed a vast array of natural language sources ranging from technical hand­

books to Wall Street Journal articles. The majority of the output of the Penn Treebank con­

sists of POS tagged and syntactically bracketed versions of written texts. In the early years of

the project, bracketing was done using a relatively simple skeletal parse. In later years of the

project, phases made use of a richer predicate­argument bracketing schema using common

parenthesized tree representations. In Penn treebank, parts of speech are generally represented

by placing the tag after each word, delimited by a slash. The table in Figure 3.1 displays the

part­of­speech tags contained in the corpus.

Figure 3.1: Penn treebank POS tags [1].

In this survey the tags we used to distinguish the writing style of an author are verb,
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adjective, adverb, and noun.

3.2 N­grams

The N­gram model is constructed by calculating the frequency of the word sequence in

a corpus text and then estimating the probability. In other words, given a sequence of N­1

words, the N­gram model predicts the words most likely to follow this sequence. A model

that only relies on the frequency of words without looking at previous words is called unigram

(N = 1). Word N­grams are sequences of ”N” adjacent words. If a model only considers the

previous word to predict the current word, then it is called bigram (N = 2). If one considers

the first two words, it is a trigram model (N = 3). Word n­grams have been excessively

used in many NLP applications. Guessing the next word (or word prediction) is an essential

subtask of speech, hand­writing recognition, augmentative communication for the disabled,

and spelling error detection. In such tasks, word identification is difficult because the input

is very noisy and ambiguous. Thus, looking at previous words can give us an important cue

about what the next ones will be. To extract word N­grams text has to be tokenized thus

making the method language­dependent and complicated [33].

Traditional N­grams are sequences of elements as they appear in texts. These elements

can be words, characters, POS tags, or any other elements as they appear one after another in

texts. A standard convention is that “n” in N­grams corresponds to the number of elements

in a sequence [34]. An example of N­grams derived from the dataset used for in this Thesis

is shown in Table 3.1 and shows the unigram, bigram, and trigram for author with I.D. = 1.

1­Gram Occurrence 2­Gram Occurrence 3­Gram Occurrence

would 5004 young man 421 love gone astray 64

saI.D. 4420 sugar princess 295 sugar princess chapter 26

one 3695 marriage bond 265 drew long breath 25

could 3571 new york 241 young miss giddy 25

mr 3142 long time 154 yo fa tt 22

Table 3.1: N­grams for author 1.

Arthur Conan Doyle, e.g. author ”1”, has 16 books registered in the dataset with 1394980
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total words. As we can see, the most used word is ”would” with 5004 occurences. In bigrams

”youngman” is displayed 421 times, while the highest trigram sequence is ”love gone astray”

with 64 occurrences. We used N­grams in TF­IDF, Count Vectorizer, and Hashing Vectorizer,

as explained below.

3.3 TF­IDF

Word frequencies in a document contain important information about the meaning of

a specific linguistic item. A simple way of encoding sentences in numerical form is using

a bag­of­words model, creating dictionaries of word to word­frequency mappings for each

item.

Figure 3.2: Word frequency map.

As we can see in Figure 3.2, this type of vectorization produces a highly sparse vector,

meaning that most of the dictionary values are set to zero; thus, the mere presence of a word

in the vector object is more important than the number of words that it appears in.

However, this mode of vectorization contains a very significant pitfall: Several frequently

occurring words such as pronouns that don’t contain any information significant to class

categorization induce a skewed dataset that will affect our category predictions down the

line. To avoid this, we employ TF­IDF Normalization.
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The statistical measure TF­IDF stands for Term Frequency Inverse Document Frequency,

and it examines how relevant a word is to a document in a collection of documents. This is

accomplished by multiplying two metrics over a group of documents: the number of times

a word appears in the document and the inverse document frequency. In feature extraction

techniques, it is frequently employed as a weight. The equation of TF­IDF is:

TFIDF (t, d,D) = TF (t, d) ∗ IDF (t,D)

where:

(t, d,D): term, a document and the corpus respectively.

T.F.(t, d): the number of times that term t appears in document d.

If a term appears very often across the corpus, it means it does not carry special informa­

tion about a particular document. We need a way to weigh down the effects of too frequently

occurring terms. Also, the terms that occur less in the document can be more relevant. We

need a way to weigh up the effects of less frequently occurring terms. Inverse document

frequency is a numerical measure of how much information a term provides:

IDF (t,D) = log
|D|+ 1

DF (t,D) + 1

where the total number of documents is represented by |D| and the number of documents

that contain the term t is represented by D.F.(t,D).

In our experiments for the computation of TF­IDF, we took into account N­grams with

the range of (1, 3), i.e., unigrams, bigrams, and trigrams.

3.4 Count Vectorizer

Count Vectorizer is used to transform a given text into a vector, based on the frequency

(count) of each word that occurs in the entire text. It creates a matrix in which a column

of the matrix represents each unique word, and each text sample from the document is a

row in the matrix. The value of each cell represents the count of the word in that particular

text sample. Count­Vectorizer counts the number of words occurring more frequently in the

document, which may overshadow the words which occur less frequently but may have more

importance to the document feature [35], this limitation is handled in TF­IDF. An example

of Count Vectorizer is shown in Figure 3.3.
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Figure 3.3: Count Vectorizer example.

It is important to point out that Count Vectorizer does not do the Lemmatization or Stem 

ming automatically. Stemming is the process of reducing a word to its word stem that affixes

to suffixes and prefixes or the roots ofwords known as a lemma. For example, if we stemmed ”

loving” it will produce the result of ” lov”. Lemmatization is the grouping together of different

forms of the same word. In Figure 3.4, there are several examples that indicate the difference

between Stemming and Lemmatization.

Figure 3.4: Stemming vs Lemmatization.
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3.5 Hashing Vectorizer

Hashing vectorizer uses the hashing trick to map the token string name to an integer

index. Conversion of text documents into a matrix is done by this vectorizer where it turns

the documents into a sparse matrix that counts how many times the token appears. Hashing

Vectorizer and Count Vectorizer are meant to do the same thing: convert some text documents

to a matrix of token counts. The difference is that Hashing Vectorizer does not store the

resulting vocabulary (i.e., the unique tokens). Each token in Hashing Vectorizer directly maps

to a column position in a matrix, where its size is pre defined. The benefit of not storing

the vocabulary is that the resulting HashingVectorizer object, when saved, would be much

smaller and thus faster to load back into memory when needed. The downside of doing this is

that it will not be possible to retrieve the actual token given the column position. This would

be especially important in tasks like keyword extraction, where you want to retrieve and use

the actual tokens.





Chapter 4

Pretrained Models

Transfer learning is a machine learning research subject that focuses on storing and trans­

ferring knowledge learned while addressing one problem to a different but related prob­

lem [36]. In this way, the model created for one task can be reused as a starting point for

another task. This model is called pre­trained. Pre­trained language modeling has achieved

state­of­the­art results on various downstream NLP tasks such as sentiment analysis, data

classification, and question answering [37]. As proposed in [38], the typical approach for

pre­trained models consists of three steps:

1. Selection of Source Model.

There is a wide variety of pre­trainedmodels to find an appropriate choice for a specific

classification problem.

2. Reuse Model.

Then use that model as a starting point building another model. Depending on the

modeling technique employed, this could include using all or part of the model.

3. Fine tuning the model.

The model may need to adjust or improve the data based on the input­output available

for the task of interest. This step is not mandatory.

The advantage of implementing this approach is that only a few parameters need to be learned

from scratch.

The Hugging Face transformers package is a popular Python library providing pre­trained

models for several natural language processing (NLP) tasks. These tasks include text classi­

fication, information extraction, question answering, and text generation. Some transformers

17



18 Chapter 4. Pretrained Models

examples are OpenAI’s Generative pre­training Transformer (GPT) [39], Bi­directional En­

coder Representations from Transformers (BERT) [40], DistilBert [41] and Robustly Opti­

mized BERT Pretraining Approach (RoBERTa) [42].

In this Chapter, we introduce the transformers Bert and DistilBert derived from the Hug­

ging Face.

4.1 Bert

BERT(Bidirectional Encoder Representations from Transformers) is a new language rep­

resentation model proposed in [40]. It pre­trains deep bidirectional representations from an

unlabeled text by jointly adjusting all layers of the left and right context. In contrast to the

directional model that reads text input sequentially (from left to right or right to left), the

Transformer encoder reads the entire sequence of words at once. Bert is a transformer model

pre­trained on large corpus from Wikipedia and the Bookcorpus [43] using two training ob­

jectives. The training of Bert is conducted in two phases: pre­training and fine­tuning. In

pre­training, the model is trying to understand the language and there are two main tasks.

The first one is Masked Language Model (MLM). In MLM, Bert takes in sentence with ran­

dom words filled with masks. The goal is to output these mask tokens. The second is Next

Sentence Prediction (NSP). Bert receives two sentences and determines whether the second

sentence follows the first. In other words, it learns the relationship between this two sentences

and could be seen as a ”binary classification” problem. In fine­tuning, the model is trying to

learn a specific task. One or more fully­connected layers are typically added on top of the

final encoder layer [44]. BERT decomposes its input sentences into Token Embeddings, the

WordPiece tokens [45] that have a vocabulary of 30.000 tokens. The use ofWordPieces down­

sizes the vocabulary, and Bert becomes more powerful against out­of­vocabulary words. The

Sentence Embeddings is the sentence number that is encoded into a vector. The Position Em­

beddings is the position of a word within a sentence that is encoded into a vector. These

three vectors are summed together to get an embedding vector that is passed through the

main body of the model. This produces the output representations that are fed to the final,

application­dependent layer, e.g., a classifier [46]. Although out of all the models, BERT

seems to perform very well, it still has some loopholes in its implementation. First of all, it

uses [MASK] token during the pre­training process, but these token are missing from real



4.1 Bert 19

data during the fine tuning phase, which results in a pre­train­finetune discrepancy. Another

weakness of BERT is that it assumes that masked tokens are independent of each other and

are only predicted using unmasked tokens [37]. The architecture of Bert can be seen in Figure

4.1.

Figure 4.1: Bert architecture [2].

There are two versions of Bert: base and large. The difference between them lies in the

number of layers, their hidden size, and the number of attention heads. In this thesis, we used

Bert base with the specifications of 12 layers,768 hidden size, 12 self­attention heads, and

Total Parameters= 110M.

Generally, Transformer­based models that are pre­trained on large datasets achieve state­

of­the­art accuracy for NLP tasks. However, they demand too many resources and a lot of

computation to suit low capability devices.

The model was trained on four cloud TPUs in Pod configuration (16 TPU chips total) for

one million steps with a batch size of 256. The sequence length was limited to 128 tokens

for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a

learning rate of 1e­4, β1 = 0.9 and β2 = 0.999, a weight decay of 0.01, learning rate warmup

for 10,000 steps and linear decay of the learning rate after. When fine­tuned on downstream

tasks, this model achieves the Glue test results shown in Table 4.1.
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MNLI­(m/mm) QQP QNLI SST­2 CoLA STS­B MRPC RTE Average

84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

Table 4.1: Glue test results on Bert.

4.2 DistilBert

DistilBERT is a small, fast, cheap, and light Transformer model trained by distilling

BERT base [41]. Bert­base­uncased has 40% more parameters than DistilBert, runs 60%

faster while preserving over 95% of BERT’s performances as measured on the GLUE lan­

guage understanding benchmark. Knowledge distillation refers to the idea of model compres­

sion by teaching a smaller network, step by step, exactly what to do using a bigger already

trained network. To pass the knowledge from the teacher to the student, cross­entropy over

the soft targets is used. The training loss becomes:

L = −
∑
i

ti ∗ log(si)

where ti is a probability estimated by the teacher and si is the probability estimated by the

student.

Temperature is a hyperparameter that is applied to logits to affect the final probabilities

from the softmax. A low temperature (below 1) makes the model more confident, while a

high temperature (above 1) makes the model less confident. A softmax temperature is used

as follows:

pi =
exp(zi/T )∑
j exp(zj/T )

where T controls the smoothness of the output distribution and zi is the model score for class

i. At training, the same T is applied both to the student and the teacher. At inference, T is set

to 1 to recover a standard softmax.

Bert and the student (DistilBert) have the same basic architecture. However, the token­

type embeddings and the pooler does not exist in DistilBert while the number of layers is

reduced by a factor of 2. Themain purpose is to reduce the layer size. The student is initialized

from the teacher by taking one layer out of two. Finally, DistilBERT is distilled in huge

batches (up to 4K instances per batch) using dynamic masking and without the next sentence

prediction target. DistilBERT was trained on the same corpus as the original BERT model.
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When fine­tuned on downstream tasks, this model achieves theGlue test results are shown

in Table 4.2

MNLI QQP QNLI SST­2 CoLA STS­B MRPC RTE

82.2 88.5 89.2 91.3 51.3 85.8 87.5 59.9

Table 4.2: Glue test results on DistilBert.





Chapter 5

Experiments

5.1 Dataset Information

The GDELT Project is an open platform for research and analysis of global society. Thus

all datasets released by the GDELT Project are available for unlimited and unrestricted use

for any academic, commercial, or governmental use of any kind without a fee. For our ex­

periments, we extracted a dataset1 from the GDELT database consisting of 50 authors that

satisfy the following criteria: English language writing authors, authors who have enough

books available (at least 5), and belong to the 19th century. These requirements were chosen

to decrease the bias and create a reliable dataset. To make the classification problem more

challenging, the first and the last 500 words have been removed to take out specific features

such as the author’s name, the name of the book, and other word­specific features.

Moreover, we chose the top 10.000 words that occurred in the whole 50 authors’ text

data corpus, and we split the entire book into text fragments with 1000 words each. The 50

authors selected are shown in Table 5.1 and in Figure 5.1.The distribution of authors in the

training set, 45 authors in total, can be seen with the x­axis representing the author I.D. and

the y­axis the number of occurrences in the training set. The author with I.D. = 8, i.e., James

Balwin, has the highest number of occurrences with 6914 total, while the lowest belongs to

I.D. = 16, i.e., Rudyard Kipling, with 183 instances. The author list that was not included in

the training set, consists of authors with I.D.s 5 (George Eliot), 7 (Jack London), 31 (Frances

Hodgson Burnett), 47 (Sarah Stickney Ellis), and 49 (Thomas Nelson Page). We added them

to the test set, which finally contained 50 authors.

1https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution

23
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I.D. Author name I.D. Author name

1 Arthur Conan Doyle 26 Bret Harte

2 Charles Darwin 27 Catharine Maria Sedgwick

3 Charles Dickens 28 Charles Reade

4 Edith Wharton 29 Edward Eggleston

5 George Eliot 30 Fergus Hume

6 Horace Greeley 31 Frances Hodgson Burnett

7 Jack London 32 George Moore

8 James Baldwin 33 George William Curtis

9 Jane Austen 34 Helen Mathers

10 John Muir 35 Henry Rider Haggard

11 Joseph Conrad 36 Isabella Lucy Bird

12 Mark Twain 37 Jacob Abbott

13 Nathaniel Hawthorne 38 James Grant

14 Ralph Emerson 39 James Payn

15 Robert Louis Stevenson 40 John Kendrick Bangs

16 Rudyard Kipling 41 John Pendleton Kennedy

17 Sinclair Lewis 42 John Strange Winter

18 Theodore Dreiser 43 Lucas Malet

19 Thomas Hardy 44 Marie Corelli

20 Walt Whitman 45 Oliver Optic

21 Washington Irving 46 Sarah Orne Jewett

22 William Carleton 47 Sarah Stickney Ellis

23 Albert Ross 48 Thomas Anstey Guthrie

24 Anne Manning 49 Thomas Nelson Page

25 Arlo Bates 50 William Black

Table 5.1: Authors list

Finally, the full dataset consists of 93.600 instances, where 53.678 of them belong in

the training set, and 39.922 comprise the test set. The large­scale dataset makes the project

time­consuming and often generates memory and runtime errors. To solve this problem, we
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Figure 5.1: Authors’ distribution in training set. The x­axis represents author I.D. and y­axis

the number of occurrences in training set.

reduced the dataset. We conducted the first experiments on a dataset with 4500 instances

extracting some first impressions on the classifiers. We applied the best of them in the full

dataset where possible.

In Figure 5.2, we can see the word frequency before removing stop words. As we observe,

the most common words do not provide any significant information. Hence we need to apply

text clean­up when using the feature extractors.

5.2 Hyperparameters

GridSearchCV is a function that comes in Scikit­learn’s model selection package. This

function helps to traverse the predefined hyperparameters and adapt the model to the training

set. So, in the end, we can select the best parameters from the listed hyperparameters. Gen­

erally, a hyperparameter is a parameter whose value is used to control the learning process.

Selecting the appropriate hyperparameters for the classifier results in a high accuracy and

success rate. A low learning rate results to ignoring important patterns in the data. While a

high learning rate may result to collisions. Grid search measures the performance using the

”Cross Validation” technique. Cross­validation is mainly used to apply machine learning to

estimate the skill of the machine learning model on unknown data. That is, when used to

predict data that is not used during model training, use a limited number of samples to esti­
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Figure 5.2: Word frequency.

mate the overall expected performance of the model. The general procedure of k­fold Cross

Validation explained in [47] is as follows:

1. Shuffle the dataset in random.

2. Partition the dataset into k equal sized subsamples.

3. For each k subsample:

• Take the subsample as the validation data for the test dataset.

• Take the rest of the subsamples as a training dataset.

• Fit a model on the training set and make an evaluation on test dataset.

• Keep the evaluation score and discard the model.

4. Summarize the evaluation scores of the model.
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5.3 Classification Methods

As mentioned before, authorship attribution is equivalent to a ”classification problem”. It

is important to find the right classifier to provide the best possible accuracy. In this Chapter,

we present the classification methods used for this dataset. We used only supervised learn­

ing techniques, including Support Vector Machine, Gradient Boosting, Logistic Regression,

Artificial Neural Network, Naive Bayes, and Random Forest. We tested each classifier with

different hyperparameters to find the optimal choice.

5.3.1 Support Vector Machine

Support Vector Machine (Figure 5.3) can be used as a classification or regression method,

maintaining in both cases the main concept that characterizes the algorithm which is to draw

a hyperplane of maximum margin.

In the classification case, the task is pretty simple: find the hyperplane that separates the

classes and has maximum margin, i.e., maximum distance from the closest point of each

class, which is where the support vectors are drawn. For new data, the algorithm decides the

class by comparing its position relative to the support vectors. In Regression, the predictions

lie on the hyperplane.

One can add a trade­off parameter to the objective function:

min
1

2
||w||2 + C

∑
|ξi|

where ξ denotes the deviation from the support vector, and tune the hyperparameter C to

match the data’s requirements and achieve higher performance. A higher C value means less

tolerance for the points inside the margin in classification and outside the margin in regres­

sion.

When choosing Radial Basis Function (RBF) as a kernel, the parameters taht are taken

into account are C and gamma. ”C” weigh the misclassification of training samples. A low C

smoothes the decision surface, while a high C aims to correctly classify all training examples.

Gamma defines what will be the influence of a single training example. The larger the gamma,

the closer the other samples must be affected [48]. Grid search tested the following values:

• ’C’: [0.1, 1, 10, 100, 1000]

• ’gamma’: [1, 0.1, 0.01, 0.001, 0.0001]
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Figure 5.3: Support Vector Machine.

• ’kernel’: [’rbf’]

In this specific dataset, GridSearchCV found that the best parameters for SVM are C = 1000,

kernel=”rbf”, random state=0 and gamma = 0.001.

SVM is used as a classification method for authorship attribution problems in [49, 50,

51, 52, 53, 54, 21, 55, 56].

5.3.2 Gradient Boosting

Gradient boosting classifiers are similar to ensemble classifiers. They use a collection of

weak classifiers to make predictions, except that they are trained in succession to improve

upon the false classification the previous classifiers have made.

In gradient boosting, to produce a more accurate estimate of the response variable, the

learning procedure fits new models in a sequential manner. The principle idea behind this

algorithm is to construct the new base­learners that is related to the maximum negative gra­

dient of the loss function associated with the entire ensemble. The choice of the loss function

is up to the researcher, with both a rich variety of loss functions derived so far and with the

possibility of implementing one’s own task­specific loss [57].

The basis for any gradient boosting algorithm is the following: Suppose an imperfect

classifier is trained (e.g. a simple decision tree with low depth), the predicted class values for

a single sample x are
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F0(x) = yp

This weak classifier could be any model, in our case a tree model fitted to minimize a

loss function L(yi, F0(x)). A way to improve upon this classifier would be to calculate the

residuals of these approximations:

h0(x) = y − F0(x)

where y are the ground truth labels, and fit a new model to predict these values, thus

obtaining a more efficient classifier

F1(x) = F0(x) + h0(x)

This can be done for an arbitrary number of steps until we are satisfied with our approx­

imation, in general at the m­th step of approximation:

Fm(x) = Fm−1(x) + hm−1(x)

More accurately, we use a weighted sum of successive predictors

Fm(x) = Fm−1(x) + γm−1h0(x)

Where the γm−1 coefficients are set by performing ”line search” to find the value that

minimizes the aforementioned loss function:

γm = argminγ{
n∑

i=1

[L(yi, Fm−1(xi)− γhm−1(xi)]}

We implemented the gradient boosting classifier using the XGBoost API. XGBoost is

designed for speed and performance and is an applicaion of gradient boosted decision trees.

XGBoost provides a parallel tree boosting that provide a fast and accurate solution for several

data science problems. The same code runs on major distributed environment (Hadoop, SGE,

MPI) and can solve problems beyond billions of examples [58].

We tested the following XGBoost’s hyperparameters:

• ’max depth’: [2,4,6]

• ’n estimators’: [50,100,200]
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Where max depth refers to a tree’s maximum depth. As this value is increased, the model

becomes more comlex and more likely to overfit. N estimators are the number of gradient

boosted trees. Equivalent to the number of boosting rounds. The parameters, finally, used

were max depth = 2 and n­estimators= 200. Some paper examples of Gradient Boosting in

A.A. can be found here [27, 21, 59, 60, 55, 61].

5.3.3 Logistic Regression

A logistic regression model simulates how brain neurons work to make decisions. Essen­

tially stimuli from different nerve endings are aggregated in a neuron that fires only if the

total intensity of the stimulation is significant enough to surpass a certain threshold (Figure

5.4).

Figure 5.4: Logistic Regression

Similarly to the process described previously, an input vector x = [x1, x2, . . . , xn] (stim­

ulus) is applied to a weight vector w to produce a stimulus output:

z = w0x0 + w1x1 + ...+ wnxn

This output is passed through an activation function ϕ(z) that transforms the real number

output to represent a probability between [0, 1]. This function is usually either the sigmoid

function:

ϕ(z) =
1

1 + e−z

Another often used function in Logistic Regression is the reLU function and its derivative,

leaky reLU, boasting simplicity that results in smaller evaluation time.

The final output from the activation function is compared to a threshold value and a de­

cision about the objects class is made
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y = g(z) =

1 if ϕ(z) ≥ 0.5

0 otherwise.

The subsequent model is optimized by maximizing the subsequent likelihood function

L(w) = P (y | x;w) =
n∏

i=1

P
(
y(i) | x(i);w

)
=

n∏
i=1

(
ϕ
(
z(i)

))y(i)(
1− ϕ

(
z(i)

))1−y(i)

,

Which is the same as maximizing log­likelihood:

l(w) = logL(w) =
n∑

i=1

y(i) log

(
ϕ
(
z(i)

))
+
(
1− y(i)

)
log

(
1− ϕ

(
z(i)

))
For better optimization performance, this loss function is amended with an l2 normal­

ization term

J(w) =
m∑
i=1

[
− y(i)log

(
ϕ
(
z(i)

))
−

(
1− y(i)

)
log

(
1− ϕ

(
z(i)

))]
+

λ

2

m∑
j=1

w2
j

The most famous methods to solve the above unconstrained optimization problem are

gradient­based methods, such as batch gradient descent which involves iteratively improv­

ing the model by iteratively setting the weights:

wj := wj + η

n∑
i=1

(
y(i) − ϕ

(
z(i)

))
x
(i)
j

Factoring in the normalization term:

wj := wj + η

n∑
i=1

(
y(i) − ϕ

(
z(i)

))
x
(i)
j − ηλwj

Where η is a parameter called “learning rate”,the value of which corresponds to the “step

size” when progressing towards a final estimation. This procedure iteratively proceeds to a

classifier vector that correctly categorizes each class sample.

The parameter tested for logistic Regression using sklearn’s Grid Search CVwas ”C”with

values (0.0001, 100, 20). Smaller values indicates stronger regularization, as proposed and

in SVM. We discovered that C = 5.26325263157894 is the optimum parameter for logistic

regression. Logistic regression is used in [21, 62, 56, 63, 30]
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5.3.4 Artificial Neural Network

Similar to logistic Regression described before, artificial neural networks simulate bio­

logical neurons firing in tandem to encode information andmake predictions. Each individual

neuron is described by a vector of weights wj where j is the neuron index in the layer. The

neuron outputs, consist of the dot product of the input vector filtered through an activation

function, usually the logistic sigmoid function we discussed previously:

aj = σ(zj) = σ(
D∑
i=1

wjixi + wj0) (5.1)

Where zj is our “activation” dot product plus a bias term zj = wjx + wj0, or if we use

extended vector notation, i.e x′ = [1, x1, x2, . . . ] then zj = [wj, wj0]x
′. We can express the

mapping of input feature vector into layer activations as a matrix multiplication with the

weight matrixW formed by stacking the neuron weight vectors as columns:

a = σ(z = Wx) (5.2)

In feed­forward neural networks layers of neurons are stacked in a sequence in order for

the output of the previous layer to be fed as input to the next one. These networks map any

input vector (stimulus) to an output vector (response) by feeding them through a number of

“hidden layers” as described before (Figure 5.5). In general for the activations at the k­th

layer we derive the following formula:

aL = σ(zL) = σ(wLaL−1)

Each layers weights are fitted to a train set of data vectors in order to learn to make

classifications by a process called backpropagation. As any other machine learning model,

in order to learn to item classification a loss function l(x) needs to be minimized. Assume for

now . In order to do this we use a gradient based optimizer to update the weights iteratively. To

employ this, we need to first calculate the derivative of the loss function with respect to each

layers weights. Suppose that we have an L­layered model with sigmoid activation functions,

the derivative of the loss function with respect to the weights of the last layer (output layer)

is calculated according to the chain rule as:

∂l(x)

∂WL
=

∂aL

∂WL

∂l(x)

∂aL
=

∂zL

∂WL

∂aL

∂zL
∂l(x)

∂aL
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Figure 5.5: Artificial Neural Network Architecture.

If we assume for now that l(x) = 1
2N

∑ N_{i=1}(aL−y)T(aL−y), meaning our loss function

is set to M.S.E. then:

∂l(x)

∂aL
= (aL − y)

∂aL

∂zL
= σ′(zL) = σ(zL)(1− σ(zL))

∂zL

∂WL
= aL−1

And finaly, putting it all together:

∂l(x)

∂WL
= aL−1σ′(zL)(aL − y)

In order to propagate this result backwards we merely have to establish that for the k­th

layer:

∂l(x)

∂ak
=

∂zk+1

∂ak+1

∂ak+1

∂zk+1

∂l(x)

∂ak+1
= W kσ′(zk+1)

∂l(x)

∂ak+1

And:

∂l(x)

∂W k
=

∂zk

∂W k

∂ak

∂zk
∂l(x)

∂ak
= akσ′(zk)

∂l(x)

∂ak
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This means that we can progress backwards calculating the gradients for each function by

applying a matrix multiplication to the previous layer we calculated. The weights are updated

at each step according to the formula:

W k := W k + η
∂l(x)

∂W k

Where η is the learning rate parameter. By this process we set up a hidden state in our

network that allows it to extract hidden features from abstract items of informations and

efficiently classify them to the given categories.

In this project we applied MLP, a class of feedforward artificial neural network , to clas­

sify data. An MLP consists of at least three layers of nodes: an input layer, a hidden layer and

an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear acti­

vation function. MLP can easily handle the non­linear and interactive effects of explanatory

variables. The major drawback of MLP is the interpretation difficulty.

GridSearchCV tested MLP on the following parameters:

• ’activation’: [’tanh’, ’relu’],

• ’solver’: [’lbfgs’,’sgd’, ’adam’],

• ’hidden layer sizes’: [(50,100,50), (100,)]

Where activation is the activation function for the hidden layer: ‘tanh’ (the hyperbolic tan

function) returns f(x) = tanh(x), while ‘relu’ (the rectified linear unit function) returns

f(x) = max(0, x). The solver for weight optimization can be one of three types: ‘lbfgs’

is an optimizer in the family of quasi­Newton methods, ‘sgd’ refers to stochastic gradient

descent and ‘adam’ refers to a stochastic gradient­based optimizer [64]. Finally, in hidden

layer sizes, the ith element represents the number of neurons in the ith hidden layer.

The parameters selected are activation= ’tanh’, alpha= 0.05, hidden layer sizes= (100,)

and solver= ’lbfgs’ were the optimal parameters for MLP. Some examples of MLP in A.A.

are presented in [54, 65, 66, 67, 68]

5.3.5 Naive Bayes

The naive Bayes classifier model derives its name from the 18th century mathematician

and theologian Thomas Bayes who formulated the Bayesian probability model that its based

on.
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Consider a set of object classes Cj, j = 1, . . . , n, given a feature vector of an object

x = (x1, x2, . . . , xn)we are interested in estimating the probability that the certain object

is contained in any class given the features xi i.e P (Cj|x1, x2, . . . , xn),using the bayesian

probability rule we calculate the conditional probability as follows:

P (Cj|x1, x2, . . . , xn) =
P (x1, x2, . . . , xn|Cj)P (Cj)

P (x1, x2, . . . , xn)
=

P (x1, x2, . . . , xn|Cj)P (Cj)∑
i P (x1, x2, . . . , xn|Ci)P (Ci)

The “naivety” of naive bayes is attributed to the following assumption: we assume that

any features xi, xj are statistically independant from each other, that is

P (x1, x2, . . . , xn|Cj)P (Cj)∑
i P (x1, x2, . . . , xn|Ci)P (Ci)

=
P (x1|Cj)P (x2|Cj) . . . P (xn|Cj)P (Cj)∑

i P (x1, x2, . . . , xn|Ci)P (Ci)

The above probability model is combined with a decision rule to make a final decision

about the class that should be selected for x to be classified in. One common rule is to pick the

hypothesis that is most probable; this is known as the maximum a posteriori or MAP decision

rule

argmaxk=1,2,...,n{P (Ck)
n∏

i=1
P (xi|Ck)}

Training a naive bayes model is closely linked to PDF estimation. The probability den­

sities P (xi|Ck) are not known quantities and must be approximated. Several kinds of naive

bayes classifiers exist, each using a different kind of approximation technique for estimating

the underlying pdf. For our model, we settled on multinomial Naive bayes which has been

shown to perform well for nlp tasks. This model assumes that the underlying PDF for each

class is given by the formula:

p(x|Ck) =

∑N
i=1 xi∏N
i=1 xi!

N∏
i=1

pxi
ki

Where pki are the trainable parameters, corresponding to probabilities of feature (word)

i belonging to a document of class k.

According to sklearn documentation, these parameters are estimated during training time

using the formula:

pki =
Nki + α

Nk + nα
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Where:

Nki: Is the total count of occurrences of feature i for class k

Nk: Is the total count of all features for class k$

α ∈ [0, 1]: Is Lidstone’s smoothing parameter used to avoid overfitting

This makes for a relatively efficient yet simple model with a very fast training time. For

this project GaussianNB and MultinomailNB were used. Naive Bayes’ classification method

for solving A.A. problems are proposed in [52, 21, 30, 69, 70, 71]

5.3.6 Random Forest

Random forests are essentially multiple uncorrelated decision trees, that predict using ag­

gregation in case of regression and majority voting in case of classification. In short, decision

trees are built by recursively splitting the data according to a criterion involving its features

that minimizes an error function. In order to avoid correlation between trees, each tree is con­

structed using a random subsample of the original dataset and a random subset of all features

as split criteria.

Random forests tend to have better generalization than decision trees because of the bagging

concept. On the other hand , both decision trees and random forest have high performance

variance depending on the characteristics of the dataset and are susceptible to overfitting ,

thus need careful hyperparameter tuning (Figure 5.6).

Figure 5.6: Random Forest

The hyperparameters grid tested were:

• ’n estimators’: [100, 200, 700, 1000],
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• ’max features’: [’auto’, ’sqrt’, ’log2’],

• ’criterion’ :[’gini’, ’entropy’],

• ’n jobs’: [­1,1]

The number of trees in the forest is n estimators, and the number of features to examine

when looking for the best split is max features. Criterion is the function to measure the quality

of a split, while n jobs is the number of jobs to run in parallel. The parameters selected are n

estimators=1000, criterion = ’gini’, max features = ’auto’and n jobs = ­1.

Random Forest is performed in [54, 21, 61, 72, 73, 74] for A.A..

5.4 Results

We tested the different classifiers with various feature extraction methods. The aim was

to find which data augmentation (feature selection / feature extraction) techniques benefit

the text classification models for the specific dataset and, more importantly, the feature set

or the classifier model. We conducted the first experiments t with a reduced dataset of 4500

instances. To avoid the imbalanced dataset that could lead to disputed results, we selected only

100 rows randomly from every author, where each row was composed of 1000 words. Table

5.2 shows the results for the reduced dataset. The first column shows the feature extractors

used, the second the classification method, and the third the accuracy extracted with the help

of the classification report. TF­IDF was used together with N­grams and the best classifier

was MLP with 89% accuracy followed by SVM with

88% accuracy. N­grams were very time­consuming during calculation and often caused

allocation problems, especially for the large dataset. The TF­IDF, without combined with

other feature extractors, had better results as it achieved accuracies of 92% using SVM and

91% using MLP, respectively. DistilBert and Bert, although we expected to have higher per­

formance due to pre­trained, they managed to achieve accuracies of 74% and 64%, respec­

tively. SVM combined separately with Hashing Vectorizer and N­grams resulted in 83% and

79% accuracy, respectively. Count Vectorizer managed to achieve a 86% score with MLP

while only 62% with SVM combined with N­grams. The first impression on the results from

Table 5.2 is that N­grams not only increase the accuracy but also slows down the computa­

tional process, significantly raising the running time and memory. Moreover, it can be seen
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that the best classifiers are SVM and MLP while the best feature extraction technique is TF­

IDF.

Feature extraction Classifier Accuracy

TF­IDF,

N­grams

Random Forest 78%

SVM 88%

GaussianNB 83%

MLP 89%

XGBoost 73%

TF­IDF

SVM 92%

XGBoost 71%

MLP 91%

Random Forest 70%

GaussionNB 60%

DistilBert

Logistic Regression 73%

SVM 73%

MLP 74%

Bert

Logistic Regression 64%

SVM 62%

MLP 64%

HashingVectorizer, N­grams SVM 79%

HashingVectorizer

SVM 83%

XGBoost 70%

Random Forest 71%

CountVectorizer, N­grams SVM 62%

CountVectorizer

XGBoost 73%

MLP 86%

Random Forest 71%

GaussianNB 58%

SVM 78%

Table 5.2: Reduced dataset results (4500 instances).
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The results for the reduced dataset for POS Tag are shown in Table 5.3.Pipeline consists of

POS tag, TF­IDF transformer, and Count Vectorizer. The highest scores obtained are using

MLP and SVM classifiers, reaching 92%, while the worst classifier is Decision Tree with

30%. TF­IDF has good accuracy for MLP and SVM while producing almost the same result

with XGBoost as the Pipeline. N­grams with TF­IDF and POS Tag surprisingly didn’t result

in a poor score as expected and managed to maintain the high scores of the two previous

feature extractors. Hashing Vectorizer with or without N grams didn’t manage to have desired

scores. Generally, POS Tag is a powerful feature extraction technique reaching high accuracy

with different augmented combinations.

Feature extraction Classifier Accuracy

Pipeline

MLP 92%

SVM 92%

Decision Tree 30%

Logistic Regression 73%

XGBoost 69%

POS tag,

TF­IDF

MLP 92%

SVM 91%

XGBoost 70%

POS tag,

TF­IDF,

N­grams

MLP 92%

SVM 90%

XGBoost 70%

POS tag,

HashingVectorizer

MLP 84%

SVM 83%

XGBoost 66%

POS tag, Hash­

ingVectorizer,

N­grams

MLP 75%

SVM 81%

Table 5.3: Reduced dataset results (4500 instances) with POS Tag.

Taking into consideration the above results, the next step was to apply those feature ex­

traction techniques and classifiers to the full dataset. Due to RAM inadequacy, DistilBert
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was tested on 11146 instances. The results are shown in Table 5.4show that MLP reached the

highest accuracy with 73% score that is not very satisfying. SVM achieved a 72% accuracy,

resulting in a lower score than the one obtained with the smaller dataset of 4500 instances

which did not satisfy our expectation of significant improvement. Random Forest reached

58%, GaussianNB 44%, and XGBoost 61% inadequate accuracies, respectively.

Classifier Accuracy

SVM 72%

MLP 73%

Random Forest 58%

GaussianNB 44%

XGBoost 61%

Table 5.4: DistilBert results for 11146 instances.

The rest of the results for the full dataset are shown in Table 5.5. There is an apparent

improvement in the accuracy even though the dataset is imbalanced. TF­IDF, POS Tag com­

bined with TF­IDF, and Pipeline reached a remarkable 98% accuracy with MLP and SVM.

TF­IDF combined with N­grams in SVM achieved 96% and in XGBoost 93% accuracies,

but further experimentation with the other classifiers was not possible due to memory errors.

Although Hashing Vectorizer didn’t have the best performance in the reduced dataset, in full

dataset it managed to reach 96% with SVM classifier and 91% with XGBoost. N­grams with

Hashing Vectorizer raised memory errors thus, the computation was not possible to be per­

formed. In Count Vectorizer with XGBoost, managed to achieve a 92% accuracy, the best

result obtained with this classifier through the experiments. SVM had a great performance

as it reached 96% accuracy and ranked the best classifier of Count Vectorizer, followed by

MLPwith 95% score. Random Forest didn’t manage to have an increase in score while Gaus­

sianNB reached a disappointing 63% accuracy. However, combined with N grams the result

is still not satisfying as SVM reached only 85% accuracy. In Pipeline, which consists of

POS tag, TF IDF transformer, and Count Vectorizer, the best classifier was found to be SVM

followed again by MLP achieving 98% and 97% scores, respectively. Logistic Regression

noted a great score improvement as it achieved 92% while XGBoost 90%, correspondingly.

Decision Tree andMultinomialNB didn’t manage to improve their performance significantly.
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Feature extraction Classifier Accuracy

TF­IDF

MLP 98%

SVM 98%

XGBoost 91%

TF­IDF,

N­grams

SVM 96%

XGBoost 93%

Hashing

Vectorizer

XGBoost 91%

SVM 96%

Random Forest 58%

POS tag,

TF­IDF

MLP 97%

SVM 98%

XGBoost 90%

GaussianNB 58%

Random Forest 65%

POS,

Hashing

Vectorizer

SVM 96%

MLP 91%

XGBoost 90%

Count Vectorizer, N­grams SVM 85%

Count

Vectorizer

MLP 95%

SVM 96%

Random Forest 69%

GaussianNB 63%

XGBoost 92%

Pipeline

MLP 97%

SVM 98%

Decision Tree 46%

Logistic Regression 92%

XGBoost 90%

MultinomialNB 55%

Table 5.5: Full dataset results.
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Conclusions

This Chapter summarizes the results indicating the best feature extraction method and

the optimal classification technique and answers the questions raised in the introduction.

Furthermore, we will present some ideas for future work.

6.1 Summary

After experimenting and based on the results obtained, the best accuracies were achieved

by: TF­IDF on MLP and SVM classifiers, POS Tag combined with TF­IDF on SVM and

the Pipeline, which consists of POS tag, TF­IDF transformer, and CountVectorizer, on SVM.

If we consider the computational complexity of the algorithms, TF­IDF is the least time­

consuming feature set as the calculation time was only a few minutes while POS tag con­

sumed 7 hours CPU time. It appears that the best feature extraction technique that benefits

the text classification models for this specific dataset is TF­IDF. N­grams was found to be

the most inefficient method when combined with feature extractors as not only did they not

improve the accuracy but also caused a remarkable increase in wall time and several memory

error problems. Little improvement was noticed in feature sets when they were augmented.

To reduce computational time, it is preferable to use feature extractions solely and not com­

bined with other techniques. SVM managed to receive the highest accuracy through all of

the feature sets, achieving from 96% to 98% scores except for Count Vectorizer combined

with N­grams that reached 85% accuracy. Hence, we could conclude that the model is more

important than the feature set. If a feature set was randomly selected, SVM would produce

more or less the same accuracy, but if a classifier was chosen randomly, the result would

43



44 Chapter 6. Conclusions

have a remarkable change.

The dataset size plays a significant part in high accuracy. Almost every classifier was

notably improved when we increased the dataset from 4.500 to 53.678 instances, with the

most considerable difference happening in XGBoost with a 20% score rise.

6.2 Future Work

A future work direction is to use fine tuning on Bert and DistilBert models and to study

the effect of extending fine tuning to language model layers and focus on the different layers

of the language modeling representation proposed in [22]. Moreover, [75] introduces GTP­3,

a pre­trained model for Q.A. answering. It would be interesting to see whether this model can

expand to A.A. tasks and outperform fine­tuning approaches. Furthermore, we could explore

other classification methods like unsupervised learning techniques, e.g., KNN, or automated

machine learning classifiers,e.g., AutoML. The optimal feature set and classifier derived from

this dataset could be used to other corpus to identify optimal machine learning models for

A.A. tasks.
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