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Abstract

We are going through an era -landmark- of technological development and innovation.
Particularly in the field of wireless networks, the spread of the 5th generation network (5G)
and the trend of the ”"Network of Things” (Internet of Things) are expected to radically change
the way the mechanisms are designed and implemented in the cloud. Every day, more and
more “things” are connected to the Internet, resulting in a rapid increase in the volume of
information that travels through the network and is processed by it.

Thus, the problem of the optimal management of the available resources and, at the same
time, of the “fair” load-balancing on them, is becoming of major importance.

The fore-mentioned problem has forced network engineers to update the design of net-
works, moving away from the outdated server-client model, where the server is a central
machine bombarded with user requests. The introduction of virtual machines (VMs, Con-
tainers), but also their control infrastructures, now offer greater flexibility and security in the
management of applications.

This thesis is the design and implementation of an intelligent load balancing mechanism
in the Kubernetes management environment, that can operate both independently and on top
of other Kubernetes mechanisms. Our implementation uses state-of-the-art tools and can be
fully integrated into an operating system, in order to efficiently allocate system resources to
incoming customer requests. Our system can be adapted autonomously based on extensive
measurements taken in the background, in order to change the resource allocation dynami-
cally, in proportion to the system load.

This work presents in detail the tools used and the implementation that took place. For the
evaluation of the proposed solution, the NITOS experimental infrastructure was used, with

large-scale experiments in real environment.



Iepiinyn

AtovOoupe o eToyn -opOSNHLO- TNG TEXVOAOYIKNG ovamTuENG Kot kavotopiog. [dwaitepa
GTOV TOUEN TV OCVPUATOV SIKTO®V, 1) 0140001 TOV d1KTVOV SN¢ Yevids (5G) Ko ) Téion Tov
”Awctoov tov [payudtov” (Internet of Things) mpofAémeton va arlaéovv priikd Tov Tpomo
o106 L0V Kot VAoToInoNg TV punyavicu®v oto cloud. Kabnuepwva, 6ho kot nepiocdtepa
“npdypote’” cvvogovion oto Internet, pe amotéleopa va avchvetor paydaic 0 0YKOS TANpo-
eopiag mov Ta&devet kot doryelpileTot To dikTLO.

Apa, To TpOPAnUa TG PEATIOTNG dloyEiplong TOV JOESIL®Y TOPMV Kal, TOPAAANAQ,
g “dikanag” e&leoppdmnong pOPTOL 6€ aVToLS, kabiotaton TAéov peilovog onpaciog.

AVT6 £xEL OVOYKAGEL TOVG UNYOVIKOVS SIKTV®V VoL EEAIEOVY TOV GYESACUO TOV OIKTVMV,
EEPEVLYOVTAG OO TO ATOPYUMUEVO LOVTELD TOV server-client, 6mov o server ival £va Kev-
TPIKO unyavnpa mov PopPapdiCetor and requests v xpnotodv. H elcoywyn tov eikovikdv
unyavov (VMs, Containers), 0ALQ Kol TOV DTOSOUADV EAEYYOVL OVTMV, TPOGPEPEL TAEOV LLE-
yoAOTtepn eveMéio Kot ac@AAELD OTN SLoEIPIOT TOV EPOPULOYDV.

AVt 1 SIMA®UOTIKY gpyacio omoTeELEL TOV 6YESAGUO Kal TNV LAOTTOINGT evOc EEvmvou
unyovicpov eElcoppodmmons eoptov oto mepaiiov dayeipiong Kubernetes, o omoiog 60-
VOTOL VO AEITOVPYNOEL KOl QVTOVOLO OAAL KOl GE GLUVOLOGUO e GAAOVS UNYAVICHOVS TOV
Kubernetes. H vAomoinon pog ypnoylonolel epyaieio teAevtaiog yeVIAS Kot UTOpEl VoL EVem-
potwbel TAPpG o€ £va AE1TOVPYIKO GVGTNA, LE GKOTO TNV OTOJ0TIKY| 0vABEST] TV TOP®V
TOV GUOTNHLOTOG GE EICEPYOUEVES TN OELS TEAATOV. To cuoTNUO pog propel va Tposapudle-
Tol LTOVOUO PACEL EKTEVOV LETPNCEMV TOV TOUPVEL GTO TAPUGKNVIO, MOTE VO OAAALEL TNV
avaBeon TOpwV SVVOUIKE, OVOAOYIKE LLE TOV POPTO TOV GLGTIIATOG.

X1y gpyacio mapovctaloviol EKTEVAOGS To. PYAAELN TTOL XPTNCLULOTOMONKAY KoL 1) VAOTO1-
non mov paypatoromOnke. [ v amotipnon g mpotetvopevng Aong, ypnooroOnke

N mepapotiky vrodoun NITOS, pe mepdpoto peyding KAILOKOG o€ Tpory LOTIKO TEPIPAALOV.
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Chapter 1

Introduction

Nowadays, a need has emerged for hyperscale and continuous delivery, especially on high
demand. As a result, big enterprises have started to migrate their services from big monolithic
machines to microservices running on cloud. Using containers to deploy microservices, it is

now possible to control and update cloud applications without interrupting their runtime.

Microservices is an architectural design for building a distributed application. They break
an application into independent, loosely-coupled, individually deploy-able services. This ar-
chitecture allows for each service to scale or update without disrupting other services in the
application and enables the rapid, frequent and reliable delivery of large, complex appli-
cations, so that applications can be continuously delivered to end users [[l]]. Deploying a
containerized application in production, usually means hundreds or thousands of containers
running. Controlling and configuring all of those containers can be challenging without a

proper framework.

Kubernetes, also known as K8s, is an open-source system for automating deployment,
scaling, and management of containerized applications. It groups containers that make up
an application into logical units for easy management and discovery [2]. The smallest, most
basic deployable objects in Kubernetes are pods. A Pod is meant to run a single instance of the
application on the cluster. Pods are created usually in groups, called replicas, by a controller,
to run the application.

Such a set of replicated Pods are created and managed by a controller, such as a De-
ployment, capable of scaling the deployment horizontally, changing the number of pods as
necessary [3]. For example, if the incoming requests are too many to be handled by a single

pod, the controller can be configured to increase the number of replicas. A set of related pods

1



2 Chapter 1. Introduction

that have the same set of functions is also called a ”service” and this is what is visible to the
outside world. Every new pod is assigned a new IP address, IP addresses for pods are not
stable; therefore, direct communication between pods is not generally possible. However,
services have their own IP addresses, which are relatively stable; thus, a request from an
external resource is made to a service rather than a pod, and the service then dispatches the
request to an available pod [4].

However, which specific replica of the Deployment, will get to execute the incoming
request?

To answer this question, Kubernetes uses load balancing mechanisms, which redirect the

incoming requests “fairly”” among the replicas using a round-robin algorithm.

1.1 Subject of Thesis

This thesis is the design and implementation of an intelligent load-balancing mechanism,
which can either operate in combination with the K8s inbuilt LoadBalancer or autonomously.
The developed algorithm was formulated by adapting the water filling” method to the sub-
ject’s specific needs and compared with a round-robin load balancer, who was based on the

K8s mechanisms.

1.1.1 Contribution

The thesis contribution can be summarized as follows:

1. A baseline cluster was created and managed through Kubernetes, deploying all the

relevant monitoring and visualization tools.

2. The Kubernetes Horizontal Pod Autoscaler (HPA) was thoroughly examined and was

the basis for the deployment of the first algorithm.

3. Two ancillary services were deployed, a custom DNS resolver and a metrics fetcher,

communicating with the Prometheus monitoring solution.

4. A novel load balancing solution was developed and deployed in the cluster, written
in Python language, enabling the dynamic resource allocation of the requests to the

available service replicas.
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5. All the functionality and logic was embedded in a single container pod, enabling its

portability across different clusters.

6. A thorough comparison of the two algorithms was made and the conclusions were

explained.

1.2 Thesis Structure

Chapter 2 presents the NITOS testbed, used for all the experiments conducted in this
thesis. NITOS nodes also host the entire Kubernetes cluster.

Chapter 3 contains the analysis of concepts like containers, microservices and container
orchestration, as well as a complete breakdown of the Kubernetes environment and its
components.

Chapter [ describes the system setup, that is the essential services that the cluster needs
to function and the tools that we used to monitor the cluster and collect the results.

Chapter [§ presents the theoretical approach of our goal, the development of the two al-
gorithms and of two background services and demonstrates the results of the two algorithms
running.

In Chapter [, all the conclusions and the possible future extensions are discussed.



Chapter 2

Testing Platform

2.1 About NITLAB

NITLAB [5] stands for Network Implementation Testbed Laboratory of the Department
of Electrical and Computer Engineering at University of Thessaly. NITLAB is also affiliated
with the Centre for Research & Technology Hellas (CERTH). The research of the lab focuses
on the design, study and implementation of wireless and wired schemes and their performance
in the real environment. In this context, NITlab has developed a facility named NITOS, which
stands for Network Implementation Testbed using Open Source platforms. NITOS is one of
the facilities of the OneLab Federation and it can also be accessed through the OneLab portal.

NITOS [6] facility currently consists of over 100 operational wireless nodes and is de-
signed to achieve reproducibility of experimentation, while also supporting evaluation of
protocols and applications in real world settings. NITOS facility is geographically separeted
in 3 deployments. The Outdoor one at the exterior of the University of Thessaly (UTH) cam-
pus building, the Indoor one at the basement of the UTH’s building and the Office testbed
deployed at CERTH's office building in Volos.

The control and management of the facility is done using the cOntrol and Management
Framework (OMF) open-source software. Users can perform their experiments by reserving
slices (nodes, access points, base stations or frequency spectrum) of the testbed through the
NITOS scheduler that, together with OMF support, ease of use for experimentation and code
development.

The NITOS platform is open to any researchers who would like to test their protocols in

real-world settings. They are given the opportunity to implement their novel protocols and

4



2.1 About NITLAB 5

Figure 2.1: NITOS Outdoor Testbed

study their behavior in a custom tailor-made environment. NITlab is constantly in the process
of extending its testbed capabilities.

The main experimental components of NITOS are:

+ A wireless experimentation testbed, which consists of 100 powerful nodes (some of
them mobile), that feature multiple wireless interfaces and allow for experimentation

with heterogeneous (Wi-Fi, WIMAX, LTE, Bluetooth) wireless technologies.

* A Cloud infrastructure, which consists of 7 HP blade servers and 2 rack-mounted ones
providing 272 CPU cores, 800 Gb of Ram and 22TB of storage capacity, in total. The
network connectivity is established via the usage of an HP 5400 series modular Open-
flow switch, which provides 10Gb Ethernet connectivity amongst the cluster’s modules

and 1Gb amongst the cluster and GEANT.

» A wireless sensor network testbed, consisting of a controllable testbed deployed in
UTH’s offices, a city-scale sensor network deployed in Volos city and a city-scale mo-
bile sensing infrastructure that relies on bicycles of volunteer users. All sensor plat-
forms are custom, developed by UTH, supporting Arduino firmware and exploit sev-

eral wireless technologies for communication (ZigBee, Wi-Fi, LTE, Bluetooth, IR).

* A Software Defined Radio (SDR) testbed that consists of Universal Software Radio
Peripheral (USRP) devices attached to the NITOS wireless nodes. USRPs allow the
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(/o E

Figure 2.2: NITOS RF Isolated Testbed

researcher to program a number of physical layer features (e.g. modulation), thereby

enabling dedicated PHY layer or cross-layer research.

A Software Defined Networking (SDN) testbed that consists of multiple OpenFlow
technology enabled switches, connected to the NITOS nodes, thus enabling experi-
mentation with switching and routing networking protocols. Experimentation using
the OpenFlow technology can be combined with the wireless networking one, hence

enabling the construction of more heterogeneous experimental scenarios.

The testbed is based on open-source software that allows the design and implemen-
tation of new algorithms, enabling new functionalities on the existing hardware. The
control and management of the testbed is done using the cOntrol and Management
Framework (OMF) open-source software. NITOS supports evaluation of protocols and
applications under real world settings and is also designed to achieve reproducibility

of experimentation.



Chapter 3

Containers and Microservices

3.1 Introduction

It is crucial, for the deeper understanding of the subject of this thesis, that we take a closer

look at what are containers and microservices, as well as the reasons why we need them.

First of all, what are microservices? According to [[7], a microservices architecture splits
the application into multiple services that perform fine-grained functions and are part of your
application as a whole. Each of the microservices will implement a different logical func-
tion for the application. Traditional applications have monolithic architectures where all the
application’s components and functions are in a single instance; microservices break apart

monolithic applications into smaller parts.

Microservices are implemented by using containers. Containers are packages of your
software that include everything that it needs to run, including code, dependencies, libraries,
binaries, and more. Docker and Kubernetes are the most popular frameworks to orchestrate
multiple containers in enterprise environments. Compared to virtual machines (VMs), con-
tainers share the operating system kernel instead of having a full copy of it, such as making
multiple VMs in a single host. Although it’s possible to put microservices into multiple VMs,
containers would be typically used in this case since they take up less space and are faster to

boot up.
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MONOLITHIC AFPLICATION MICROSERVICES APPLICATION

SERVICE B

SERVICE A

Q@ —=3

usem

usem

Figure 3.1: Comparison between monolithic and microservices architectures.

3.2 Container Orchestration

Container orchestration is the automatic process of managing or scheduling the work
of individual containers for applications based on microservices within multiple clusters.
The widely deployed container orchestration platforms are based on open-source versions
like Kubernetes, Docker Swarm or the commercial version from Red Hat OpenShift. The

following diagram demonstrates the container orchestration process.

Application Environment
w/ Multiple Containers

Container Orchestration Software
(Docker, Openshift & Kubernates)

. &

Automate:

dOCker‘ = Configuration \ T

= Provisioning

G |

= Scaling

- Security

OPENSHIFT * Resource allocation

= Load balancing

.
.! = Health monitoring |-

Container orchestration works with tools like Kubernetes and Docker Swarm, with Ku-
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bernetes being our subject of interest. Configurations files tell the container orchestration
tool how to network between containers and where to store logs. The orchestration tool also
schedules deployment of containers into clusters and determines the best host for the con-
tainer. After a host is decided, the orchestration tool manages the lifecycle of the container
based on predetermined specifications. Container orchestration tools work in any environ-

ment that runs containers. [§]

3.3 Diving into Kubernetes

Kubernetes, also known as K8s, is a portable, extensible, open-source platform for man-
aging containerized workloads and services, that facilitates both declarative configuration
and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and

tools are widely available.

Containers are a good way to bundle and run your applications. In a production environ-
ment, you need to manage the containers that run the applications and ensure that there is no
downtime. For example, if a container goes down, another container needs to start operating.
This behaviour needs to be handled by a system. Kubernetes provides you with a framework
to run distributed systems resiliently. It takes care of scaling and failover for your application,

provides deployment patterns, and more.

Kubernetes and its components are presented according to the official Kubernetes Docu-

mentation [9].

3.3.1 Kubernetes Components

A Kubernetes cluster consists of a set of worker machines, called nodes, that run con-
tainerized applications. Every cluster has at least one worker node. The worker node(s) host
the Pods that are the components of the application workload. The control plane manages
the worker nodes and the Pods in the cluster. In production environments, the control plane
usually runs across multiple computers and a cluster usually runs multiple nodes, providing

fault-tolerance and high availability.
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3.3.2 Control Plane Components

The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example, starting up
a new pod when a deployment’s replicas field is unsatisfied). Control plane components can
be run on any machine in the cluster. However, for simplicity, set up scripts typically start
all control plane components on the same machine, and do not run user containers on this

machine.

kube-apiserver

The API server is a component of the Kubernetes control plane that exposes the Kuber-
netes API. The API server is the front end for the Kubernetes control plane. The main imple-
mentation of a Kubernetes API server is kube-apiserver. kube-apiserver is designed to scale
horizontally—that is, it scales by deploying more instances. You can run several instances of

kube-apiserver and balance traffic between those instances.

eted

Consistent and highly-available key value store used as Kubernetes’ backing store for all

cluster data.

kube-scheduler

Control plane component that watches for newly created Pods with no assigned node, and
selects a node for them to run on. Factors taken into account for scheduling decisions include:
individual and collective resource requirements, hardware/software/policy constraints, aftin-

ity and anti-affinity specifications, data locality, inter-workload interference, and deadlines.

kube-controller-manager

A Kubernetes control plane component that embeds cloud-specific control logic. The
cloud controller manager makes possible the linking of the cluster into the cloud provider’s
API, and separates out the components that interact with that cloud platform from components
that only interact with the cluster. The cloud-controller-manager only runs controllers that are

specific to your cloud provider.
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As with the kube-controller-manager, the cloud-controller-manager combines several log-
ically independent control loops into a single binary that you run as a single process. You can
scale horizontally (run more than one copy) to improve performance or to help tolerate fail-
ures.

The following controllers can have cloud provider dependencies:
* Node controller: For checking the cloud provider to determine if a node has been
deleted in the cloud after it stops responding

« controller: For setting up routes in the underlying cloud infrastructure

 Service controller: For creating, updating and deleting cloud provider load balancers

3.3.3 Node Components

Node components run on every node, maintaining running pods and providing the Ku-

bernetes runtime environment.

kubelet

An agent that runs on each node in the cluster. It makes sure that containers are running in
a Pod. The kubelet takes a set of PodSpecs that are provided through various mechanisms and
ensures that the containers described in those PodSpecs are running and healthy. The kubelet

doesn’t manage containers which were not created by Kubernetes.

kube-proxy

Kube-proxy is a network proxy that runs on each node in the cluster, implementing part
of the Kubernetes Service concept. Kube-proxy maintains network rules on nodes. These
network rules allow network communication to the Pods from network sessions inside or
outside of the cluster. Kube-proxy uses the operating system packet filtering layer if there is

one and it’s available. Otherwise, kube-proxy forwards the traffic itself.

Container runtime

The container runtime is the software that is responsible for running containers. Kuber-
netes supports several container runtimes: Docker, containerd, CRI-O, and any implementa-

tion of the Kubernetes CRI (Container Runtime Interface).
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3.3.4 Addons

Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster
features. Because these are providing cluster-level features, namespaced resources for addons

belong within the kube-system namespace.

DNS

While the other addons are not strictly required, all Kubernetes clusters should have clus-
ter DNS, as many examples rely on it. Cluster DNS is a DNS server, in addition to the other
DNS server(s) in your environment, which serves DNS records for Kubernetes services. Con-

tainers started by Kubernetes automatically include this DNS server in their DNS searches.

Web UI (Dashboard)

Dashboard is a general purpose, web-based Ul for Kubernetes clusters. It allows users to

manage and troubleshoot applications running in the cluster, as well as the cluster itself.

<« C A Mnaogaic | 10.64.94.82:30003/#/workloads?namespace=default LA R c B

kubernetes default - Q_  Search L A O

= Workloads

Workloads N Workload Status .
Cron Jobs
Daemon Sets
Deployments
Jobs
Pods

Replica Sets

Replication Controllers

St St Daemon Sets Deployments Pods Replica Sets Stateful Sets
Service N

Ingresses Daemon Sets = -

Services

Name Namespace Labels Pods Created Images
Config and Storage
app: prometheus-node-exporter
CAERS af)p.kuberne(es.io/managed—by: H
: . - e _node- elm
Persistent Volume Claims ) ZL%Tnoeeerawr pometlicushode default 5/5 Zmenths.age S3Wa.y(.)\%/promelheus/nodeexpone

Secrets N 1cﬁa&'.\oprometheus'nodeexponer—

Storage Classes Show all

= 1-1nf1

Figure 3.2: Web UI of a functioning cluster.

Container Resource Monitoring

Container Resource Monitoring records generic time-series metrics about containers in a

central database, and provides a Ul for browsing that data.
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Cluster-level Logging

A cluster-level logging mechanism is responsible for saving container logs to a central

log store with search/browsing interface.

Kubernetes cluster
API zerver

Figure 3.3: A K8s cluster with all the components tied together.
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System Setup

4.1 Cluster Setup

For the Kubernetes cluster setup, we used a permanent VM of the lab as the control plane.
We then configured a "worker” OMF image to load every time on NITOS nodes with all the
proper settings.

Our first task, was to become familiar with the K8s inbuilt load balancer, the HPA.

The HPA [[10] is a Kubernetes mechanism that automatically scales the number of Pods
in a replication controller, deployment, replica set or stateful set based on observed CPU uti-
lization (or, with custom metrics support, on some other application-provided metrics). Note
that Horizontal Pod Autoscaling does not apply to objects that can’t be scaled, for example,
DaemonSets. The Horizontal Pod Autoscaler is implemented as a Kubernetes API resource
and a controller. The resource determines the behavior of the controller. The controller peri-
odically adjusts the number of replicas in a replication controller or deployment to match the
observed metrics such as average CPU utilisation, average memory utilisation or any other
custom metric to the target specified by the user.

We installed the proper Helm Charts and created a simple pod running an apache server
for testing. The HPA by default takes under consideration 2 fundamental metrics: 1) The CPU
utilization and 2) the Memory Consumption. This thesis’ load balancer will work on top of
the HPA, achieving a more intelligent load balancing procedure. We experimented by setting
a threshold of 50% regarding the CPU utilization and sending continuous traffic to the apache
server. As soon as the percentage exceeded the threshold, new replicas were automatically

created. If the traffic suddenly stopped, some of the replicas were deleted. We will use the

14
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HPA later in combination with our own load balancer.

4.2 Monitoring Tools

4.2.1 Prometheus

Prometheus [|11] is an open-source systems monitoring and alerting toolkit originally built
at SoundCloud. Since its inception in 2012, many companies and organizations have adopted
Prometheus, and the project has a very active developer and user community. It is now a
standalone open source project and maintained independently of any company. To emphasize
this, and to clarify the project’s governance structure, Prometheus joined the Cloud Native

Computing Foundation in 2016 as the second hosted project, after Kubernetes.

Features

Prometheus’s main features are:

* a multi-dimensional data model with time series data identified by metric name and

key/value pairs
* PromQL, a flexible query language to leverage this dimensionality
* no reliance on distributed storage; single server nodes are autonomous
* time series collection happens via a pull model over HTTP
* pushing time series is supported via an intermediary gateway
* targets are discovered via service discovery or static configuration

» multiple modes of graphing and dashboarding support

Components

The Prometheus ecosystem consists of multiple components, many of which are optional:
* the main Prometheus server which scrapes and stores time series data

* client libraries for instrumenting application code
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* a push gateway for supporting short-lived jobs
* special-purpose exporters for services like HAProxy, StatsD, Graphite, etc.
* an alertmanager to handle alerts

* various support tools

Service discovery Prometheus
Short-lived alerting . pagerduty
jobs . .
kubernetes file sd
push metrics Alertmanager [~ » Email
at exit +
: discover -
v targets * notify
™ etc
Pushgateway | Prometheus server
. i push
alerts
---------- pull .l Retrieval [--» TSDB [« HTTP
metrics server
PromQL

9 Prometheus
i web Ul
v
Grafana Dat.
Jobs/ Node HDD/SSD ata
————————————————— F N

exporters visualization

and export
Prometheus
-

Figure 4.1: Prometheus Architecture and some of its ecosystem components.

4.2.2 Grafana

Grafana [|12] is an open-source platform for data visualization, monitoring and analysis.
It allows users to create dashboards with panels, each representing specific metrics over a set
time-frame. Every dashboard is versatile, so it could be custom-tailored for a specific project
or any development and/or business needs.

There is a variety of supported data sources for Grafana (Prometheus, MySQL, Postgres
to name just a few) , for each of those, Grafana has a customized query editor and specific

syntax.

Grafana Notions

* A Panel is the basic visualization building block presented per the metrics selected.

Grafana supports graph, singlestat, table, heatmap, and freetext panels, as well as inte-
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gration with official and community-built plugins (like world map or clock) and apps

that could be visualized, too. Each panel can be customized in terms of style and for-

mat; all panels could be dragged, dropped, resized, and rearranged.

* A Dashboard is a set of individual panels arranged on a grid with a set of variables

(like server, application and sensor name). By changing variables, you can switch the

data being displayed in a dashboard (for instance, data from two separate servers). All

dashboards could be customized and sliced and diced depending on the user needs.

Grafana has a large community of contributors and users, so there is a large ecosystem

of ready-made dashboards for different data types and sources.

» Dashboards can utilize annotations to display certain events across panels. When hov-

ering over an annotation, you can get event description and tags, for instance, to track

when server responds with 5xx error code or when the system restarts. This way, it is

easy to correlate with a time, specific event and its consequences in an application and

investigate system behaviour.
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Figure 4.2: Grafana Dashboard with Office Weather Parameters.

4.2.3 Prometheus Adapter
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The Prometheus adapter [[13] is a Kubernetes Aggregation Layer extension and oper-

ates as an extension API server. It knows how to communicate with both Kubernetes and

Prometheus, acting as a translator between the two. The adapter processes the metrics com-

ing from Prometheus as follows:
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 Discovery: it discovers available metrics.
» Association: it determines which kubernetes resource each metric is associated with.
* Naming: it determines how it should expose the metrics in the custom metric API.

* Querying: Finally, it figures out how it should query Prometheus to get the actual num-

bers.

The adapter performs each of the steps for each metric. These steps are formally described

for each metric with a rule:

rules:

- seriesQuery: 'http_requests_total{kubernetes_namespace!="", kubernetes_pod_name!l=""}"

The discovery step is defined by a “’seriesQuery”, which is a query that returns a metric

series definition (not numbers).

rules:

- seriesQuery: 'http requests total{kubernetes namespace!="" kubernetes pod name!=""}"'

resources:
overrides:
kubernetes namespace: {resource: "namespace"}
kubernetes pod name: {resource: "pod"}

The association step maps labels to known resources. It is introduced by the “resources”

keyword, followed by an “overrides” map, where labels are mapped to known resources.

resources: {template: "kubernetes_<<.Resource>>"}

4.3 Thesis Custom Setup

Initially, we had to deploy Prometheus and Grafana on our cluster. For that, we used the
”Prometheus Operator” chart from Helm to avoid two different installations and configu-
rations. However, to link our metrics with the HPA, we had also to deploy the Prometheus
adapter, an extra package for leveraging the metrics collected by Prometheus and using them
to make scaling decisions [14]. After the installation process, the following pods were de-

ployed:



4.3 Thesis Custom Setup 19

» Alertmanager - The Alertmanager handles alerts sent by client applications such as the
Prometheus server. It takes care of deduplicating, grouping, and routing them to the
correct receiver integration such as email, PagerDuty, or OpsGenie. It also takes care

of silencing and inhibition of alerts.
* Prometheus-Adapter

» Kube-State-Metrics - The kube-state-metrics is focused on generating completely new

metrics from Kubernetes’ object state.
* Grafana

* Node Exporter (on every worker node) - The Node Exporter is an ’official’ exporter
that collects technical information from Linux nodes, such as CPU, Disk, Memory

statistics.

* Prometheus-Operator - The Prometheus Operator provides Kubernetes native deploy-

ment and management of Prometheus and related monitoring components.

» Metrics-Server - The Metrics Server collects resource metrics from Kubelets and ex-
poses them in Kubernetes apiserver through Metrics API for use by Horizontal Pod

Autoscaler and Vertical Pod Autoscaler.

Prometheus also exposed some of the basic Kubernetes mechanisms as services, to gain
access to cluster metrics.

At this point, even if the cluster monitoring pods were up and running, there was no access
to Prometheus or Grafana from outside the lab. To overcome this issue, the next step was to
expose Prometheus and Grafana as a NodePort service.

Although each Pod has a unique IP address, those IPs are not exposed outside the cluster
without a Service [[15]. Services allow your applications to receive traffic. Services can be

exposed in different ways by specifying a type in the ServiceSpec:

* ClusterIP (default) - Exposes the Service on an internal IP in the cluster. This type

makes the Service only reachable from within the cluster.

* NodePort - Exposes the Service on the same port of each selected Node in the cluster
using NAT. Makes a Service accessible from outside the cluster using <NodelP>:<NodePort>.

Superset of ClusterIP.
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* LoadBalancer - Creates an external load balancer in the current cloud (if supported)

and assigns a fixed, external IP to the Service. Superset of NodePort.

» ExternalName - Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com)

by returning a CNAME record with its value.
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Figure 4.3: Accessing Prometheus using the NodePort service.
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Intelligent Load-Balancing

5.1 Introduction

Our approach of the problem is consisted of two major parts. The first part is the imple-
mentation of a round-robin load-balancing algorithm, which, knowing the IP addresses of
the copies of the replicas of the application, assigns the incoming requests to each replica.
The number of replicas can be passed as an external parameter, which makes the algorithm
able to function with a variable number of replicas, thus in combination with the automatic
scaling of HPA. The second part is the adaptation of the "Water Filling” [16] method to a
load-balancing algorithm. As in the previous case, this algorithm can also function with a
non-fixed replica set.

What follows is a detailed explanation of both of the approaches, an analysis of the ”Water
Filling” method, the codes of the algorithms and an explanation of some additional Services
that were necessary to be implemented and run in the background to provide the algorithms

with the appropriate data.

5.2 Round-Robin Approach

The round-robin policy is implemented by the following python code:

import os
import sys
import collections

import requests

22
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import time
subnets file = ”IPs.txt”
with open(subnets file, ’r’) as f:
subnets = collections.deque(f.read (). splitlines ())
res = requests.get(”http://” + subnets[0])
print(subnets[0], res)
subnets.rotate (—1)
with open(subnets file, 'w’) as f:
for s in subnets:

f.write ("%s\n” % s)

Code Explanation:

Let’s assume that the file ”IPs.txt” contains the IP addresses of the replicas of the appli-
cation (how this happens will be explained in the final section). At first, a file manipulation
is done to extract each IP in a python-friendly data type, in our case, a list. Then, a GET
request is performed on the first IP, the result is saved and printed and then the list is rotated

by sending the first entry to the end. Finally, the rotated list is saved.

5.3 The ”Water Filling” Method

The water-filling algorithm is a technique used for allocating optimal power among dif-
ferent channels in multicarrier schemes. It provides the optimality for the channels with Ad-
ditive White Gaussian Noise and intersymbol interference (ISI). The algorithm is known as
water filling as we think of the communication medium as if it was some kind of water con-
tainer with a weird kind of shape and having irregular or asymmetrical bottom. Each available
channel is then a portion of the container having its own depth. To allocate power we imag-
ine pouring water into this container. The amount of water depends on the desired maximum
average transmit power. Once the container is full up to the top with water, the maximum
quantity of water is present in the farthest portion of the container. This implies there is al-
location of more power to the channels with the most favorable SNR. The ratio allocation to
each channel varies nonlinearly with the maximum average transmit power. So if we have
a fixed transmit power we can allocate it optimally to the different transmit channels using
water filling algorithm. [[17]

The water-filling problem can be abstracted and generalized into the following problem:
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given P > 0, as the total power or volume of the water; the allocated power and the prop-
agation path gain for the ith channel are given as s; and a; respectively, © = 1...K; and
K is the total number of channels. Let {a;}, be a sorted sequence, which is positive and

monotonically decreasing, find that

max x S log (1 + a;s;)
subjectto: 0 <s;, Vi (1)
Zfil i =P
Since the constraints are that (i) the allocated power to be nonnegative; (ii) the sum of the
power equals P, the problem (1) is called the water-filling (problem) with sum power con-
straint. To find the solution to problem (1), we usually start from the Karush-Kuhn-Tucker
(KKT) conditions of the problem, as a group of the optimality conditions, and derive the

system (2) below from the KKT conditions,

+
S; = (u—%) Jori=1,... K
Zfiysi:P (2)
p>0

where ()" = max{0,z}. u is the water level chosen to satisfy the power sum constraints
with equality (Zfil s; = P). The solution to (2) is referred as a solution of the Conventional
Water Filling problem (1). It can be seen that the implied system (2) has been used to find
the optimal solution. The existence of its Lagrange multipliers and the implication mentioned

above determine that enumeration can be utilized to find the water level p. [[16]

5.3.1 A ”Water Filling” Load-Balancer

Below is presented the mathematical formulation and solution of the problem, based on
the water filling method:
N : Containers
P = (P, P,,..., Py) = Number of requests per container (P;)
fi=1og(1+ i = P)
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We want to maximize
N

> 5P,

i=1

such that

Y Pi<Puw P < P
Alternatively, we can minimize
N
~>_IiP
i=1
such that

N
Y Pi<Puuw P < P

Thus, we have:
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5.4 The ”Water Filling” Approach

The “water filling” - based policy is implemented by the following python code:

import sys

import collections
import requests
import numpy as np
import random

import subprocess

subprocess.call ([ ’bash’, ’config.sh’, sys.argv[1]])

subnets file = ”IPs. txt”
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with open(subnets file, 'r’) as f:

subnets = collections.deque(f.read (). splitlines ())

N = len(subnets) # number of containers
if (N < 1):
exit(—1)
helper = open(”helper.txt”, ”r”)
names = []

ips = []

for line in helper:
if line.strip ():
cols = line.split()
names . append(cols[0])
ips.append(cols[5])
helper.close ()

# creating a dictionary looking like IP:REPLICA

dict = {ips[i]: names[i] for i in range(len(ips))}

t =0

Time = 100000

p = np.zeros ((N, Time))

pm = np.zeros ((N, Time))
pma = np.zeros((1, Time))
lamda = np.zeros((l, Time))
epsilon = 0.01

lamda[0, 0] = 1

reqs = [0, O, 0, O]

gamma = 0

Pav = 5
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for t in range(Time—1):
for i, j in zip(range(N), subnets):

val = dict[j]

gamma_res = requests.get(

"http ://10.64.94.82:30000/api/vl/query?query=(rate (

container memory usage bytes{

pod=~"php—apache—no—hpa.*”,container="",

service="prom—operator —prometheus —o—kubelet”}[Im])) *)

gamma res = gamma_res.json ()

for k, ¢ in zip(gamma res[”data”][”result”], range(N)):

if (k[”’metric”][”pod”] == val):
gamma = float(gamma res[”data”][”result”][c][”value”][1])
break

if (not gamma):
gamma = random .random ()
if ((1/lamda[0, t]) > (1/gamma)):
p[i, t] = max((1/lamda[0, t])—(1/gamma), 0)
else:
pli, t] =0
pmi, t+1] = ((t/(t+1))#pm[i, t1+((1/(t+1)*p[i, t])

for j in range(N):
reqs[j] = plj, t]

min_val = min(reqs)
idx = reqs.index (min_val)
res = requests.get(”http://” + subnets[idx])

print(subnets[idx], res)

pma[0, t+1] = ((t/(t+1))*xpma[0, t])+((1/(t+1))*(np.sum(p[:, t])))
lamda[0, t+1] = lamda[0, t]+epsilon*(np.sum(p[:, t])—Pav)
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subprocess.call ([ ’bash’, ’traffic.sh’]) #different bursts of traffic

Code Explanation:

At first, a subprocess is created to execute the config.sh script (the config.sh and the
traffic.sh script will be explained in the following section). Once again, the file ”IPs.txt”
contains the IP addresses of the replicas of the application. After that, we need to create a
correspondence between each replica’s name and IP. To do that, we need to create a dictionary
in the form of IP:REPLICA. This is done by creating a helping file (helper.txt). For now,
we consider this functionality as a black box to stay on the point. So, the ’dict” dictionary
contains every pair of IP and Replica. Then, some necessary variables need to be initialized
according to the "water filling” method. The ”’p” matrix holds the Processor Allocation values
per Container, The ”pm” matrix holds the Mean Processor Allocation values per Container,
while the ”pma” matrix holds the Mean Processor Allocation values over all Containers.

After the initialization, the main algorithm follows. We execute a query to Prometheus
API, which runs at 10.64.94.82:30000, to obtain the metric ’container memory usage bytes”
for all the replicas and we convert the result to a JSON file. The Python language interprets
this file as a complicated dictionary. At this point, we need to obtain the metric value for the
current replica based on the “dict” dictionary and assign its value to the gamma variable. At
the beginning, this metric may be zero so we assign a random number in (0,1) to gamma.
We then set the p[i,t] value according to the water filling load-balancer, as formulated in the
previous section. The replica that will handle the incoming request, is the min(p[i, t]) value,
meaning that it is the least utilized replica. Finally, the pma and lamda variables are set and

the traffic.sh script is called to create different bursts of traffic for the next loop.

5.5 Background Services

Now, let’s take a look at all the scripts and services that need to run to provide essential

data to our algorithms.

5.5.1 DNS-Resolver Service

It was considered necessary to have a custom DNS Service, which would return all the

IP addresses of the replicas of the application. This DNS was implemented using Flask, as a
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Kubernetes deployment.

The Python Code:

import os
import sys

import socket

from flask import Flask ,redirect, request

app = Flask(_ name )

@app . route (/)

def helper ():
domain = request.args|[”domain _name” ]
ips = socket.gethostbyname ex(domain)

return HELLO HTML. format(ips)

HELLO HTML = »””
<html><body>
Domain Name resolved!<br>
{0}
</body></html>"""

2

if name == "_main__

’ .

app.run(host="0.0.0.0")

The YAML file:

apiVersion: vl
kind: Service
metadata:

name: dns—resolver —service
spec:

selector:

app: dns—resolver
ports:

— protocol: "TCP”
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port: 6000
targetPort: 5000
type: NodePort

apiVersion: apps/vl
kind: Deployment
metadata :
name: dns—resolver
spec:
selector:
matchLabels:
app: dns—resolver
replicas: 1
template :
metadata :

labels:
app: dns—resolver

spec:

containers:

— name: dns—resolver
image: dns—resolver:latest
imagePullPolicy: Never
ports:

— containerPort: 5000

5.5.2 Metrics-Fetcher Service

We implemented a Service that expose all Prometheus metrics to an HTML page, again

using Flask.

The Python Code:

import os

import sys
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import socket

import requests

from flask import Flask ,6redirect, request

app = Flask(_ name )

@app . route (/)
def helper ():

PROMETHEUS = ’http://0.0.0.0:30000/ metrics’
metrics = request.args[”metrics”]

response = requests.get(PROMETHEUS + ’/api/vl/query’,

params={’query ’: metrics})

results = response.json()[ *data’][ result’]
return HELLO HTML. format(response , results)

HELLO HTML = 7~
<html><body>

Metrics fetched!<br>
{0} <br>

{1}
</body></html>"""

if name == " main__”:

app.run(host="0.0.0.0", port=5001)

The YAML file:

apiVersion: vl
kind: Service
metadata:
name: metrics —fetcher —service
spec:

selector:
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app: metrics —fetcher
ports:

— protocol: ”TCP”
port: 6001
targetPort: 5001
type: NodePort

apiVersion:

kind :

apps/vl
Deployment
metadata :

name: metrics —fetcher
spec:

selector:

matchLabels:
app: metrics —fetcher

replicas: 1

template :
metadata:
labels:
app: metrics —fetcher
spec:
containers:
— name: metrics —fetcher
image: metrics —fetcher

imagePullPolicy: Never
ports:

— containerPort: 5001

5.5.3 Secripts

traffic.sh

:latest

This script sends a request to our custom DNS server, retreives the IP addresses of the

replicas and stores them to a file. Then, manipulates the file to extract them in a friendly form
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and stores the desired output to a final file. After we get the IP addresses, we needed to create
different bursts of traffic, so, we did a trick using the date. We extracted the time digit from
the date (e.g. from Sun Sep 19 08:19:05 UTC 2021 would be 08), performed the modulo
operation and set different seconds of sleep based on the result. Finally, the script executes

the python file implementing Round-Robin algorithm.

The Code:

#!/bin/bash

curl 10.64.94.82:30859/?domain_name=$1 > helper. txt
grep —o
LO=9\{1 3V [0 =91V {1 ,3\}\.[0O =91\ {1 ,3\}\.[0O—=9]\{1,3\}"

helper.txt > IPs. txt

while true;
do
dat=$(date +0d”)
res=‘echo ”$((dat % 3))” | be"

if [[ $res —eq 0 ]]
then
secs=0.2

elif [[ S$res —eq 1 1]

then
secs=0.35
else
secs=0.5
fi

sleep $secs
python3 RR script.py

done
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config.sh

The config.sh and traffic.sh mentioned in the water filling load balancer are basically the

forementioned code divided in two parts.

config.sh

#/!/bin/bash

kubectl get pods —o wide | grep ”php—apache—no—hpa” > helper.txt
curl 10.64.94.82:30859/?domain_name=$1 > file . txt

grep —o

LO=9TNV{T L 3NVEN [0 =9IV L3V [0 =9V { L ,3VEN[O 9]\ {1 ,3\}”°

file . txt > IPs. txt

traffic.sh

#/!/bin/bash

dat=$(date +7%H”)
res=‘echo ”$((10#8$dat % 3))” | bc*®
if [[ $res —eq 0 ]]
then
secs=0.2

elif [[ S$res —eq 1 ]]

then
secs=0.35
else
secs=0.5
fi

sleep $secs

5.6 Results

For the sake of the experiment, we considered that the number of replicas is static (4), with

each replica running on a different cluster node. However, the code can be slightly altered to
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function with variable number of replicas. The application running is an Apache Server that
responds with an ”OK!” (Code [200]) message if it receives a request. The duration of the
experiment is about 2 hours and 50 minutes.

The Round-Robin algorithm:

88 Kubernetes / Compute Resources / Workload # <«

default v an default v kload  php-apache-no-hpa v type  deployment v

v CPU Usage

CPU Usag

wszn 1830 18:40 18:50 19:00 19:10 1920 19:30 19:40 19:50 20:00 20:10 2020
— php-apache-no-hpa-67d464f758-bfz9w — php-apacheno-hpa-67d464f758-dxstp — php-apacheno-hpa-67d464f758-fwSm9 — php-apache-no-hpa-67d464f758-xgjmz
> CPU Quota
v Memory Usage
Memory Usage

57 MiB

48 MiB
38 MiB
29 MiB
19 MiB
10 MiB

® 1820 18:40 18:50 19:00 19:10 19:20 19:40 19:50 20:00 20:10 20:20

— php-apacheno-hpa-67d464f758-bfz0w — php-apache-no-hpa-67d464{758-dxstp — php-apache-no-hpa-67d464{758-fwSm9 — php-apache-no-hpa-67d464{758-xgimz

Figure 5.1: RR algorithm performance

The water filling algorithm:

88 Kubernetes / Compute Resources / Workload Results v <

rce  defaultv e defaultv i 10- yPe deployment v

v CPU Usage

CPU Usage

0*

20:20 20:30 20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50 22:00

— php-apacheno-hpa-67d464f758-bfz0w — php-apache-no-hpa-67d464f758-cps8g — php-apache-no-hpa-67d464{758-fwSm9 — php-apache-no-hpa-67d464f758-m4dng

> CPU Quota
v Memory Usage

Memory Usage

20:20 20:30 20:50 21:00 21:10 21:30 21:40 21:50 22:00

143 MiB

— php-apacheno-hpa-67d464f758-bfz0w — php-apache-no-hpa-67d464{758-cps8g — php-apache-no-hpa-67d464{758-fwSm9 — php-apache-no-hpa-67d464f758-m4dng

Figure 5.2: Water Filling algorithm performance
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The Round-Robin algorithm shows a predictable behaviour. The 4 memory shares and the
CPU usage for every replica are perfectly equal. Although it may seem that the Round Robin
is the perfect load-balancer, it may not be the perfect choice. Let’s say that our 4 replicas need
to handle a total of 100 requests. If the load balancer is a RR algorithm, then each replica (each
node) will handle 25 requests. But what will happen if suddenly a 5th node joins the cluster?
Naturally, the RR will continue to assign requests equally between the nodes but, eventually,
that 5th node will have handled fewer requests in total than the other nodes.

Now let’s see why the water filling algorithm is a significantly superior load balancer, as
far as the CPU Usage is concerned. If we zoom in a little bit in the previous screenshots, it is
clear that a greater node utilization is achieved using the water filling load balancer.

Note: If you pay close attention, you will see that a replica crushed and was down for some
time (right after 22:20). This did not messed up the algorithm, which continued to operate

using 3 replicas until the Kubernetes re-started the 4th replica.

88 Kubernetes / Compute Resources / Workload # <«

weiaun e | ustaun e
pod = php-apachenohpa-67d464f758-ma9ng AND pod = php-apache-no-hpa-67d464i758-cps8y  +
v CPU Usage

CPU Usage

18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 2010 20:20

php-apache-no-hpa-67d464f758-bfz9w — php-apacheno-hpa-67d464f758-dxstp — php-apache-no-hpa-67d464f758 fwsm9 — php-apacheno-hpa-67d464f758-xgimz

v CPU Quota

CPU Quota

PHP-apECI e 10-11Pd-0 £ U4041 / 05 14vT1Y

php-apache-no-hpa-67d464f758-cps8g
php-apache-no-hpa-67d464758-bfzow
php-apache-no-hpa-67d464f758-fw5m9
php-apache-no-hpa-67d464f758-dxstp

php-apache-no-hpa-67d464f758-xgjmz

v Memory Usage

Figure 5.3: RR CPU Usage
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88 Kubernetes / Compute Resources / Workload Results v <

default v default v N i php-apache-no-hpa v deployment v

v CPU Usage

CPU Usage

0
21:08 21:10 2112 2114 21:16 2118 21:20 7 21:24 21:26 21:28 21:30 21:32

php-apache-no-hpa-67d464{758-bfz9w — php-apache-no-hpa-67d464f758-cps8g — php-apache-no-hpa-67d464{758-fwsm9

v CPU Quota

php-apache no-hpa-67d464f758-m49ng

CPU Quota

PU Li
php-apache-no-hpa-67d464f758-m49ng . 53.85% 21.54%
php-apache-no-hpa-67d464f758-cps8g 24.33% 9.73%
php-apache-no-hpa-67d464f758-bfzow 42.08% 16.83%
php-apache-no-hpa-67d464f758-fw5m9 51.46% 20.58%

v Memory Usage

Figure 5.4: Water Filling CPU Usage




Chapter 6

Conclusions

6.1 Synopsis and Conclusions

In this thesis, we developed an intelligent load balancing mechanism in the Kubernetes
framework, based on the water filling method. Initially, the problem was formulated and
solved from a mathematical view, which helped us with the precise development of our algo-
rithm. We compared our algorithm to the classic Round Robin, which we also implemented.
By taking advantage of Kubernetes framework capabilities, we considered 4 replicas, running

on different nodes, as a specification capable to prove our hypothesis.

The load-balancing algorithm that we implemented managed to significantly increase the
CPU Utilization of our worker nodes, meaning that more user requests get executed, thus
increasing the overall cluster performance. We also proved that our algorithm was able to
properly handle common Kubernetes errors, like a pod crashing. To monitor our cluster and
collect our results we used the Prometheus and Grafana monitoring tools, which provide

interactive Ul and real-time measurements.

After completing the experiment, we were curious to examine whether the algorithm
that we implemented could be used as an energy-efficient solution. By examining the request
allocation during runtime, we saw that the algorithm’s behaviour was mostly to ’flood”” anode
with requests before moving on the next. That made us realize that if we could, somehow,
deactivate or turn-off the nodes that are not going to be used in the near future, our algorithm
could be considered as an energy-efficient solution. We would expect even better results if

some kind of prediction method was integrated.

38
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6.2 Future Extensions

There are some ideas that are considered as future extensions of our work. A simple, but
interesting, step further would be to alter the code so that the algorithms could operate with
a non-permanent number of replicas. All that needs to be done is periodically send requests
to the DNS server to update the IPs.txt file to inform the algorithm about new replicas. In
this way, our algorithm can be combined with the Kubernetes HPA, by altering the metrics
limits and changing the number of pods while simultaneously performing intelligent load
balancing.

We are also intrigued to find out how our algorithm performs compared to other known
scheduling algorithms like Weighted Round Robin or Priority Scheduling, configured to run

on a Kubernetes cluster.
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