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Abstract 
 

Component mode synthesis (CMS) is a well-known model reduction method usually applied 
on large and complex finite element models of hundreds of thousands or even million degrees 
of freedom. The resulting reduced-order model maintains the dynamic behavior of the original 
but requires significantly less time and resources to be analyzed. This thesis presents the 
classic Craig-Bampton CMS technique and two additional methods based on it that consider 
interface reduction at the global and local level. Standard CMS methods cannot be used 
directly in structural dynamics simulations due to the repetitive generation of the reduced-
order model which can be computationally expensive. In this work, three parametrized CMS 
methods are introduced along with an efficient parametrization scheme and an interpolation 
method for approximating interface modes. A novel method for generating support points 
used in the interpolation scheme of interface modes is also presented. If the structure is 
parametrized using the proposed scheme, dramatic computational savings can be achieved 
since the parametrized CMS methods presented here do not require the re-assembling of the 
reduced-order system matrices during the simulation process. The efficiency and accuracy of 
the non-parameterized methods is examined using a high-fidelity finite element model of a 
highway bridge consisting of nearly one million degrees of freedom. The finite element model 
is constructed using COMSOL Multiphysics and all CMS methods are applied using MATLAB 
code originally developed for the purpose of this thesis. 

 

Keywords: Model reduction, Component mode synthesis, Structural dynamics, Finite 
elements, Eigen-analysis, Substructuring, Craig-Bampton method, Interface reduction, 
Parametrization, Parametrized reduced order models, MATLAB, COMSOL Multiphysics 
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Περίληψη 
 

Η μέθοδος σύνθεσης ιδιομορφών (Component mode synthesis: CMS) είναι μια ευρέως 
διαδεδομένη τεχνική μείωσης μοντέλων που συνήθως εφαρμόζεται σε μεγάλα και σύνθετα 
μοντέλα πεπερασμένων στοιχείων εκατοντάδων χιλιάδων ή ακόμη και εκατομμυρίων 
βαθμών ελευθερίας. Το μοντέλο μειωμένης τάξης που προκύπτει διατηρεί τη δυναμική 
συμπεριφορά του αρχικού αλλά απαιτείται σημαντικά λιγότερος χρόνος και πόροι για την 
ανάλυσή του. Αυτή η εργασία παρουσιάζει την κλασική τεχνική Craig-Bampton και δύο 
επιπλέον μεθόδους που βασίζονται σε αυτήν οι οποίες πραγματοποιούν μείωση των 
συνόρων μεταξύ υπό-κατασκευών σε ολικό αλλά και τοπικό επίπεδο. Οι τυπικές μέθοδοι 
CMS δεν μπορούν να χρησιμοποιηθούν απευθείας σε προσομοιώσεις δυναμικής των 
κατασκευών λόγω της ανάγκης για επαναλαμβανόμενη δημιουργία του μοντέλου μειωμένης 
τάξης που μπορεί να είναι υπολογιστικά δαπανηρή. Σε αυτήν την εργασία, εισάγονται τρεις 
παραμετροποιημένες μέθοδοι CMS μαζί με ένα αποτελεσματικό σχήμα παραμετροποίησης 
της κατασκευής και μία μέθοδος παρεμβολής για την προσέγγιση των ιδιομορφών στα 
σύνορα μεταξύ υπό-κατασκευών. Παρουσιάζεται επίσης μια νέα μέθοδος για τη δημιουργία 
σημείων παρεμβολής που χρησιμοποιούνται στο προτεινόμενο σχήμα παρεμβολής των 
συνοριακών ιδιομορφών. Εάν η αρχική κατασκευή παραμετροποιηθεί χρησιμοποιώντας το 
προτεινόμενο σχήμα, μπορεί να επιτευχθεί μεγάλη μείωση του υπολογιστικού φόρτου αφού 
οι παραμετροποιημένες μέθοδοι CMS που παρουσιάζονται εδώ δεν απαιτούν την 
επαναλαμβανόμενη δημιουργία των μητρώων μειωμένης τάξης κατά τη διάρκεια 
προσομοίωσης της κατασκευής. Η αποτελεσματικότητα και η ακρίβεια των τυπικών (μη-
παραμετροποιημένων) μεθόδων εξετάζονται χρησιμοποιώντας ένα αρκετά λεπτομερές 
μοντέλο πεπερασμένων στοιχείων μιας γέφυρας που αποτελείται από σχεδόν ένα 
εκατομμύριο βαθμούς ελευθερίας. Το μοντέλο πεπερασμένων στοιχείων αναπτύσσεται με 
τη χρήση του πακέτου COMSOL Multiphysics και όλες οι μέθοδοι CMS εφαρμόζονται 
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χρησιμοποιώντας κώδικα MATLAB που αναπτύχθηκε ειδικά για τους σκοπούς της 
διπλωματικής εργασίας. 
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1 Introduction 
 

The finite element (FE) method is widely used today in virtually all fields of engineering. It has 
proven especially useful in the analysis of structures, fluids, and solids. The capabilities and 
usefulness of the method is closely related to the computational power of the digital computer 
[1]. Today’s computer hardware allows for large and complex engineering problems to be 
solved relatively quickly using commercial programs that utilize the FE method. 

Such problems require a FE model to be developed which is characterized by – among others 
– the number of finite elements and degrees of freedom. The number of degrees of freedom 
of a FE model greatly impacts the computational demands and time needed to analyze it. For 
many modern, high-fidelity models with hundreds of thousands or millions of degrees of 
freedom, the direct implementation of the FE method is impractical. 

When the model is so large or complex, that it is inefficient to apply the FE method directly on 
it, some form of model reduction must be employed [2]. With model reduction (or model 
order reduction), the number of degrees of freedom of the original FE model is greatly 
reduced and a new, reduced-order model is used in its place. The reduced-order model 
requires less computational resources while it retains the dynamic characteristics of the 
original model. 

Component mode synthesis (CMS), also referred to as dynamic substructuring, is a very 
popular method of model reduction for large structural dynamics problems. It involves 
partitioning of the entire structure into several simpler substructures or components, 
obtaining reduced-order models of the substructures and then assembling a reduced-order 
model of the entire structure [3]. The essential idea is to derive the behavior of the entire 
assembly from its constituents [2]. 

Apart from the case of large or complex models, some occasions where the use of CMS for 
model reduction presents an attractive possibility are: 

• In a structural dynamics simulation where a large number of dynamic re-analyses is 
required. Such problems are Bayesian uncertainty quantification, model updating, 
reliability analysis and so on. Typically, the time to perform a single analysis is large 
(in view of the large number of re-analyses necessary) and the computational effort 
can be excessive [3]. Using CMS greatly reduces the time of a single analysis, and 
consequently, the time-to-solution. 

• In a design situation, where it is “natural” for different parts of a model to be designed 
by different teams independently [4]. For example, the different components of an 
aircraft are designed by different groups which – using CMS – could work only on their 
relevant part (wings, fuselage etc.) of the original structure (the aircraft). 

• In a situation where parallel processing capabilities exist [4]. In such a setting, the 
substructures of the reduced-order model could be analyzed in parallel and great time 
savings could be made. 

• In case experimentally obtained modal data are available for some components, CMS 
gives the possibility of combining modeled components with experimentally 
identified ones [5]. 
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This work focuses on a specific CMS technique: the Craig-Bampton (or Hurty/Craig-Bampton) 
approach [6]. It is one of the most popular CMS techniques in industry and academia [7] and 
mathematically justified as the most “natural” CMS method [4][8]. It makes use of 
substructure eigenproperties (component modes and eigenvalues) to “capture” the dynamic 
behavior of each component and subsequently of the original structure. 

The method is a modification of Hurty’s approach [9], one of the first CMS methods introduced 
in the mid-1960s. Hurty’s method uses three types of component modes: rigid body modes, 
constraint modes, and fixed-interface normal modes. Craig and Bampton essentially simplified 
Hurty’s method by showing that it was not necessary to separately consider the rigid body 
modes [4]. Other classic CMS methods resulting from Hurty’s work are that of Rubin [10] and 
MacNeal [11] in the 1970s. 

Although capable of significant reduction in the number of a component’s internal DOF, the 
Craig-Bampton method does not consider reduction at the interface DOF. The number of 
interface DOF in the original FE model is determined by the FE mesh. If the mesh is fine in the 
interface regions, or if there are many substructures, the reduced-order model may be 
relatively large [3]. In this case, reduction of interface DOF – in addition to internal DOF – can 
be very appealing. 

In this thesis, two techniques for reduction of interface DOF are presented: a method for 
global-level (or system-level) reduction proposed by Castanier et al. [12] and a method for 
local-level reduction based on the work of Hong et al. [13]. 

The global-level method of interface reduction treats all interface DOF together and the 
interface definition plays no role (hence it is called global-level reduction). An eigenvalue 
analysis is performed on the interface partition of the reduced-order matrices to obtain the 
characteristic constraint modes. The downside of such methods is that they generally require 
more support points – compared to local-level methods – to interpolate the interface modes 
in a structural dynamics simulation. This is because the (global) interface necessary depends 
on all model parameters. 

Conversely, the local-level interface reduction method treats each interface independently. 
An eigen-analysis is performed on the partition of the reduced-order matrices corresponding 
to the DOF of each interface to obtain the local interface modes. The basic benefit of such 
methods is that – depending on the interface definition – few support points are needed to 
approximate the interface modes during a simulation. The reason is that every (local) interface 
usually depends on few (not all) model parameters. 

All the above CMS methods produce non-parameterized reduced-order matrices that must be 
reassembled at every sample point of a simulation-based problem. To avoid this 
computationally intensive step, three advanced techniques of model reduction are presented 
here which give parameterized matrices that can be used efficiently in a structural dynamics 
simulation. 

The first parametrized CMS method is based on the classic Craig-Bampton technique and does 
not consider reduction of interface DOF. The other two are based on the global- and local-
level methods of interface reduction already mentioned. These methods make use of an 
interpolation scheme proposed by Goller et al. [14] for the approximation of interface modes 
to avoid a direct interface analysis during the simulation process. 
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The parametrized CMS methods makes use of the parametrization scheme proposed by 
Jensen and Papadimitriou [3] where the mass and stiffness matrix of a component depend 
only on one (or none) model parameter. This type of parametrization is often encountered in 
structural systems modeled by standard finite elements. 

The organization of the thesis is as follows. Chapter 2 introduces some basic theory concerning 
the classic Craig-Bampton CMS method and an improved formulation that takes into account 
the residual normal modes of each component proposed by Jensen et al. [15]. In Chapter 3 
the CMS methods that consider reduction of interface DOF are presented. Theory for 
parametrization of the classic Craig-Bampton method is presented in Chapter 4. In Chapter 5 
the parametrization of the two methods that perform interface reduction is introduced. In 
Chapter 6 the accuracy and efficiency of all non-parameterized CMS methods is examined 
using a large FE model of nearly one million DOF. The conclusions and suggestions for further 
study are presented in Chapter 7. Finally, the Appendix contains a presentation of the MATLAB 
function input.m that controls most aspects of model reduction and a link to the GitHub 
repository that hosts the MATLAB code developed for applying all formulations presented 
here.  
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2 Basic Theory of the Craig-Bampton Method of Component 
Mode Synthesis 

 

Among the most commonly used techniques for CMS is that developed by Craig and Bampton 
[2][6]. The Craig-Bampton method, which is used in the present work, is widely adopted 
because of its superior accuracy, its ease of implementation, and its efficient use of computer 
resources. 

This chapter aims to introduce necessary theory of the Craig-Bampton method of component 
mode synthesis. The chapter is based on the formulations presented in chapter 1 of [3]. 

 

2.1 Structural Model 
 

The models considered are structural dynamical systems with localized non-linearities that 
satisfy the equation of motion 

 

 ( ) ( ) ( ) ( ( ), ( ), ( )) ( )NLt t t t t t t+ + = +Mu Cu Ku f u u y f    (2.1) 

 

where ( ) nt ∈u   denotes the displacement vector, ( )tu  the velocity vector, ( )tu  the 

acceleration vector, ( ( ), ( ), ( ))NL t t tf u u y  the vector of nonlinear restoring forces, ( )ty  the 

vector of a set of variables that describes the state of the nonlinear components, and ( )tf the 

external force vector. The matrices M , C , and K , which are assumed to be symmetric, 
describe the mass, damping, and stiffness, respectively. The evolution of the set of variables 

( )ty  is described through an appropriate nonlinear model that depends on the nature of the 
nonlinearity [3]. 

 

2.2 Substructure Modes 
 

The term substructure modes is used to signify Ritz vectors, or assumed modes, that are used 
as basis vectors in describing the displacement of points within a substructure, or component 
[2]. 

Most applications of component-mode synthesis employ one of two approaches, which may 
be called fixed-interface-mode methods and free-interface-mode methods. The former 
employ fixed-interface normal modes and constraint modes. The latter employ free interface 
normal modes and attachment modes [2]. 

The Craig-Bampton method is a fixed interface technique. In this manner, the dynamic 
behavior of the linear components of the structural system is described by a set of normal 
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modes (eigenvectors) of individual substructures along with a set of constraint modes that 
account for the coupling at each interface where the substructures are connected [3]. 

 

2.2.1 Fixed-Interface Normal Modes 
 

Consider a linear substructure , 1, , ss s N=   having sn  degrees of freedom. The mass 
s ss n n×∈M   and stiffness 

s ss n n×∈K   matrix of the substructure are partitioned as 
follows[3] 

 

 
s s

s ii ib
s s
bi bb

 
=  
 

M M
M

M M
 (2.2) 

 

 
s s

s ii ib
s s
bi bb

 
=  
 

K K
K

K K
 (2.3) 

 

where sN  is the total number of linear substructures, and the indices i  and b  are sets 

containing the internal and boundary DOF, respectively, of substructure s . 

The internal degrees of freedom, which are not shared with any adjacent substructures, are 

kept in the vector ( )
s
ins

i t ∈u  , while all boundary degrees of freedom are kept in the vector

( )
s
bns

b t ∈u  . The boundary degrees of freedom include only those that are in common with 
the interface degrees of freedom of adjacent substructures. Note that the number of internal 
and boundary DOF sum up to the number of total DOF of the substructure s s s

i bn n n= + . 

Component fixed-interface normal modes are obtained by restraining all boundary DOF and 
solving the following eigenproblem 

 , 1, ,s s s s s
ii ii ii ii ii ss N− = =K M 0Φ Φ Λ   (2.4) 

where the matrix s
iiΦ  contains the complete set of s

in  fixed-interface normal modes in its 

columns and s
iiΛ  is the corresponding diagonal matrix containing the eigenvalues (squares of 

the natural frequencies). The fixed interface normal modes are normalized with respect to the 
mass matrix s

iiM , that is 

 sT s s s
ii ii ii ii=M IΦ Φ  (2.5) 

and 

 sT s s s
ii ii ii ii=KΦ Φ Λ  (2.6) 
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where 
s s
i in ns

ii
×∈I   is the identity matrix. 

 

2.2.2 Interface Constraint Modes 
 

The interface constraint modes are defined as the static deformation of the substructure 
when a unit displacement is applied at one coordinate of vector ( )s

b tu  and zero displacement 

at the remaining interface degrees of freedom, while the internal degrees of freedom are 
force free [3][2]. Then, the interface constraint modes matrix is 

 
s s

b

s
n ns ib

s
bb

× 
= ∈ 
 I
Ψ

Ψ   (2.7) 

where 
s s
i bn ns

ib
×∈Ψ   is the interior partition of the interface constrained modes matrix and 

s s
b bn ns

bb
×∈I   is the identity matrix. The interface constrained modes matrix satisfy 

 
s s s s
ii ib ib ib
s s s s
bi bb bb bb

     
=     

     

K K 0
K K I R

Ψ
 (2.8) 

where 
s s
i bn ns

ib
×∈0   is the null matrix, and 

s s
b bn ns

bb
×∈R   is the corresponding matrix of 

interface forces. The interior partition of the interface constrained modes matrix is calculated 
by solving the first block of Eq. (2.8) 

 
1s s s

ib ii ib

−

= −K KΨ  (2.9) 

as a result, the interface constraint modes matrix takes the form 

 
1s s s

s ib ii ib
s s
bb bb

−   −
= =   

    

K K
I I
Ψ

Ψ  (2.10) 

 

2.3 Reduced-order model: Standard formulation 
 

In the standard formulation of the Craig-Bampton method, the reduced-order model includes 
a fraction of the fixed-interface modal coordinates of each substructure and the physical 
interface coordinates. The effect of the residual fixed-interface modal coordinates is 
neglected in the analysis. This section aims to present the derivation of the corresponding 
reduced-order model. 

 

2.3.1 Transformation Matrix 
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The displacement transformation of the Craig-Bampton method is performed through the 
matrix DT  (Craig-Bampton transformation matrix) which utilizes a combination of fixed-

interface normal modes and interface constraint modes. The transformation matrix DT  

relates the vector of physical coordinates of all substructures ( )tu  to the vector of generalized 
coordinates ( )tq  as 

 ( ) ( )Dt t=u T q  (2.11) 

where 

 
( )

( )
( )

i n

I

t
t

t
 

= ∈ 
 

u
u

u
  (2.12) 

in which 

 

1

1

( )
( ) ,

( )

s
i

s

i N
n s

i i i
sN

i

t
t n n

t =

 
 = ∈ = 
 
 

∑
u

u
u
   (2.13) 

is the vector of physical coordinates at the internal DOF of all substructures, 

 

1

1

( )
( ) ,

( )

I
I

I

I N
n l

I I I
lN

I

t
t n n

t =

 
 = ∈ = 
 
 

∑
u

u
u
   (2.14) 

is the vector of physical coordinates at the IN  independent interfaces, where l
In  is the 

number of DOF at the interface l , 

 
1 1, , , ,s s

D

N N
id id ib ib n n

D
×

       = ∈ 
  

T
T

0 I

Φ Φ Ψ Ψ 

 

  (2.15) 

is the Craig-Bampton transformation matrix, where [ ], ,⋅ ⋅  denotes a block diagonal matrix 

having the matrices inside the square brackets as diagonal blocks, 
s s
i idn ns

id
×∈Φ   is the matrix 

containing the s
idn  kept fixed-interface normal modes of substructure s . Note that due to the 

truncation of the complete set of eigenvectors s s
id in n . The number of columns of DT  is 

given by D id In n n= +  in which 
1

sN s
id ids

n n
=

= ∑ . Also, I idn n×∈0   is the null matrix, 

I In n×∈I   is the identity matrix and b In n×∈T   is a transformation matrix consisting of zeros 
and ones that maps the vector ( )I tu  of independent interface coordinates to the vector of 

boundary coordinates of all substructures ( )b tu , that is 

 ( ) ( )b It t=u Tu  (2.16) 

where 
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1

1

( )
( ) ,

( )

s
b

s

b N
n s

b b b
sN

b

t
t n n

t =

 
 = ∈ = 
 
 

∑
u

u
u
   (2.17) 

and where the vector of generalized coordinates is defined as 

 
( )

( )
( )

Dn

I

t
t

t
 

= ∈ 
 

q
u
η

  (2.18) 

where ( )tη  is the vector of kept fixed-interface modal coordinates of all substructures. 

When applying the method using a FE mesh, the vector of boundary coordinates of all 
substructures ( )b tu  can contain repeated entries of nodes which belong to the interface 

between two or more substructures. 

On the other hand, the vector ( )I tu  of independent interface coordinates does not contain 

repeated entries of nodes since each node is associated with a single independent interface. 

The particular structure of the transformation matrix T  depends on the definition of the 
independent interface coordinates ( ), 1, ,l

I It l N=u  . 

The kept fixed-interface normal modes of each substructure s
idΦ  are referred to as dominant 

fixed-interface normal modes. 

 

2.3.2 Reduced-Order Matrices 
 

Given the above formulations, the mass and stiffness matrices of the model referred to the 
vector ( )tu  are given by [3] 

 

1 1

1 1

, , , ,
ˆ

, , , ,

s s

TT
s s

N N
ii ii ib ib

N NT T
ib ib bb bb

        =
       

M M M M T
M

T M M T M M T



 

  

 

 (2.19) 

and 

 

1 1

1 1

, , , ,
ˆ

, , , ,

s s

TT
s s

N N
ii ii ib ib

N NT T
ib ib bb bb

        =
       

K K K K T
K

T K K T K K T



 

  

 

 (2.20) 

The corresponding mass and stiffness matrices of the model referred to the generalized 
coordinates ( )tq  take the form 

 ˆ ˆT
D D D=M T MT  (2.21) 

and 

 ˆ ˆT
D D D=K T KT  (2.22) 
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Executing the previous products yields 

 

1

1 1

ˆ ˆ, ,
ˆ

ˆ ˆ ˆ ˆ, , , ,

s

D D
TT

s s

N
ib ib

n n
D N NT T

ib ib bb bb

×
    = ∈        

I M M T
M

T M M T M M T







  

 

 (2.23) 

and 

 

1

1

, ,
ˆ

ˆ ˆ, ,

s

D D

s

N
id id n n

D NT
bb bb

×
    = ∈
    

0
K

0 T K K T

Λ Λ



 



 (2.24) 

with 

 ˆ T Ts s s s s s
ib id ii ib id ib= +M M MΦ Ψ Φ  (2.25) 

 

 
1ˆ T Ts s s s s s s s

bb ib ib bb ib ii ib bb

−

= + = − +K K K K K K KΨ  (2.26) 

and 

 ( )ˆ , 1, ,
T T Ts s s s s s s s

bb ib ii ib ib ib ib bb ss N= + + + =M M M M MΨ Ψ Ψ   (2.27) 

where id idn n×∈I   is the identity matrix and , 1, ,s
id ss N=Λ   are diagonal matrices 

containing the eigenvalues of the kept (dominant) fixed-interface normal modes for each 
substructure. 

The essence of the method lies in the fact that the dimension of the reduced-order matrices 
can be substantially smaller than the dimension of the unreduced matrices, that is, Dn n . 

The reason for this is the great reduction of the number of kept modes of the reduced model 
compared to the complete set of modes of the unreduced model which results in great 
computational savings. 

 

2.4 Reduced-order model: Improved formulation 
 

In the previous section the standard reduced order model of the Craig-Bampton method has 
been derived. According to the standard method, the vector of physical coordinates at the 
internal degrees of freedom of all substructures ( )i tu  is approximated as 

 1 1( ) , , ( ) , , ( )s sN N
i id id ib ib It t t   = +   u TuΦ Φ η Ψ Ψ 

   (2.28) 

It can be seen that the i idn n−  residual fixed-interface normal modes are not taken into 

account in the approximation. 
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In this improved formulation their effect is explicitly considered which results in more 
accurately constructed reduced-order matrices [3][16]. The derivation of the improved 
reduced-order model is shown below. 

 

2.4.1 Improved Transformation Matrix 
 

The static contribution of the residual fixed-interface normal modes to the response of the 
physical coordinates at the internal degrees of freedom of all substructures ( )i tu  is 

approximated by using static correction [3][16][1] as 

 1 1( ) , , ( ) , , ( ) ( )s sN N
i id id ib ib I ib It t t t   = + −   u Tu FM TuΦ Φ η Ψ Ψ   


   (2.29) 

where F  is a block diagonal matrix containing the residual flexibility matrix of all 
substructures 

 1 , , sN =  F F F  (2.30) 

where for a substructure s  the residual flexibility matrix corresponding to the fixed-interface 
normal modes problem is 

 
1 1 Ts s s s s

ii id id id

− −

= −F K Φ Λ Φ  (2.31) 

and 

 1 , , sN
ib ib ib =  M M M  

  (2.32) 

with 

 
1s s s s s

ib ib ii ii ib

−

= −M M M K K  (2.33) 

Taking into consideration the improved approximation of ( )i tu  in Eq. (2.29) and the definition 

of the vector of physical coordinates of all substructures ( )tu  in Eq. (2.12), it follows that 

 
1 1, , , , ( ) ( )

( )
( ) ( )

s sN N
id id ib ib ib

I I

t t
t

t t
         −   = +      

       

T 0 FM T
u

u u0 00 I

Φ Φ Ψ Ψ η η

 


 



 (2.34) 

From the equation of motion of the undamped free vibration of the linear components of Eq. 
(2.1), the relation between the vector of generalized coordinates ( )tq  and its second 
derivative is 

 1( ) ( )ˆ ˆ
( ) ( )D D

I I

t t
t t

−   
= −   

   
M K

u u
η η



 (2.35) 

Using Eqs. (2.15) and (2.35), Eq. (2.34) can be rewritten in the form 
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 { }
( )

( )
( )D R

I

t
t

t
 

= +  
 

u T T
u
η

 (2.36) 

where 

 1ˆ ˆib
R D D

− 
=  
 

0 FM T
T M K

0 0

 

 (2.37) 

is the transformation matrix that accounts for the contribution of the residual fixed-interface 
normal modes. 

After performing the products, the transformation matrix Dn n
R

×∈T   can be expressed as [3] 

 ( ) ( )1 1T T T
ib I iI iI iI ib I iI iI I

R

− − − − −
 =
  

FM T M M M M FM T M M M KT
0 0

Λ   

 (2.38) 

where 

 1ˆ ˆ, , sNT
I bb bb

 =  M T M M T 

  (2.39) 

 1ˆ ˆ, , sN
iI ib ib

 =  M M M T  (2.40) 

 1 , , sN
id id  Λ = Λ Λ  (2.41) 

and 

 1ˆ ˆ, , sNT
I bb bb

 =  K T K K T 

  (2.42) 

The matrix D R+T T  represents an improved transformation matrix that explicitly 

incorporates the contribution of the substructures’ residual modes into the analysis. 

 

2.4.2 Enhanced Reduced-Order Matrices 
 

The enhanced reduced-order mass matrix ˆ D Dn n
R

×∈M   and stiffness matrix ˆ D Dn n
R

×∈K   

are based on the transformation matrix D R+T T  and are defined as 

 
( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
R D R D R

T T T
D R D D R R R

= + +

= + + +

M T T M T T

M T MT T MT T MT
 (2.43) 

and 

 
( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
R D R D R

T T T
D R D D R R R

= + +

= + + +

K T T K T T

K T KT T KT T KT
 (2.44) 
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Because of the explicit contribution of the residual fixed-interface normal modes through the 

matrix RT  it is expected that the enhanced reduced-order matrices ˆ
RM  and ˆ

RK  are more 

precisely constructed compared to the matrices obtained from the formulation based on 
dominant modes only. 

 

2.4.3 Some Comments on the Use of Residual Fixed-Interface Normal Modes 
 

The use of residual fixed-interface normal modes in the reduced-order model improves the 
approximation of the response [16][15] but not without an added computational cost. The 

residual flexibility matrix for each substructure sF  defined in Eq. (2.31), which is needed in 
the enhanced formulation, has dimension s s

i in n×  and is certainly full [1] (p.867). As a result, 

the computational effort required in the solution of Eq. (2.31) and the storage requirement 

for sF  increase rapidly as the order of s
iiK  becomes large. 

In other words, it can be very computationally expensive to construct the enhanced reduced-
order matrices for big finite element models even though the dimensions of the enhanced 
reduced-order matrices are the same as those of the reduced-order matrices of the standard 
formulation, that is D Dn n× . 
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3 Theory for Interface Reduction in the Craig-Bampton Method 
 

In the previous chapter, the basic theory of the standard Craig-Bampton CMS method was 
presented along with the enhanced formulation that incorporates residual fixed-interface 
normal modes. 

Both the standard and improved formulations do not consider order reduction for the 
interface degrees of freedom. This is clear in Eq. (2.18) which shows that the vector of 
generalized coordinates ( )tq  contains all the physical interface DOF for all substructures in 

the vector ( )I tu  of independent interface coordinates. 

This makes the assembly of substructures into a reduced-order system model relatively simple 
but means that the reduced-order assembly will have as many interface degrees of freedom 
as the full model. When the full-model mesh is highly refined, and/or when the system is 
divided into many subcomponents, this can lead to an unacceptably large system of equations 
of motion. To overcome this, interface reduction methods aim to reduce the size of the Craig-
Bampton model by reducing the number of interface degrees of freedom [7].  

Most of the methods of reducing interface DOF are either global (system-level) or local 
(substructure-level) techniques [7].  

This chapter aims to present one global technique and one local technique proposed in [3]. 

The global-level technique treats all interface DOF together by accessing the whole interface 
partition of the reduced-order matrices at once. 

On the other hand, the local-level method considers each interface separately by accessing 
only the corresponding DOF in the interface partition of the reduced-order matrices 
sequentially (or in parallel). 

 

3.1 Global-Level Interface Reduction 
 

Global-level methods of reducing interface DOF are shown to be orders of magnitude more 
accurate compared to local-level methods because the coupling between all substructures has 
been properly considered [7]. They are also easier to formulate and implement since all 
interfaces are treated as one (global) interface and no interface-selection problems occur (as 
will be seen in the next section with local-level reduction). 

On the other hand, because an eigenvalue analysis must be performed on the whole interface 
partition of the reduced-order matrices at once, the computational cost of such a method may 
be unacceptable for large scale FE models with millions of interface DOF. Another possible 
drawback of this type of interface reduction is found in parameterized FE models (see chapter 
5) concerning the number of support points needed for accurate interpolation of interface 
modes. 

In this section a global-level formulation proposed by [12] is presented which is based on 
derivations present in chapter 1 of [3]. 
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3.1.1 Interface (Characteristic-Constraint) Modes 
 

The reduced-order matrices ˆ
DM  and ˆ

DK  in Eqs. (2.23) and (2.24) can be rewritten 
equivalently as 

 ˆ iI
D T

iI I

 
=  
 

I M
M

M M
 (3.1) 

and 

 ˆ
D

I

 
=  
 

0
K

0 K
Λ

 (3.2) 

where all partitions of the reduced-order matrices are already defined. 

The proposed global-level method of interface reduction uses the so-called characteristic 
constraint modes. They are the eigenvectors corresponding to an eigen-analysis of the 
matrices IM  and IK  (the constraint-mode partitions of the reduced-order matrices), that 
is, 

 I I I I I− =K M 0Υ Υ Ω  (3.3) 

where the matrix I IRn n
I

×∈Υ   contains the truncated set of interface modes and 
IR IRn n

I
×∈Ω   is the diagonal matrix that contains the corresponding eigenvalues. 

The kept interface modes are normalized with respect to IM , satisfying 

 T
I I I I=M IΥ Υ  (3.4) 

and 

 T
I I I I=KΥ Υ Ω  (3.5) 

where IR IRn n
I

×∈I   is the identity matrix. The number of kept modes can be small compared 

to the number of interface DOF of the unreduced model, IR In n , leading to a highly 

reduced model. 

 

3.1.2 Reduced-Order Matrices Based on Dominant Fixed-Interface Modes and Global 
Interface Reduction 

 

The truncated set of interface modes is used to approximate the vector of physical coordinates 
at the IN  independent interfaces ( )I tu , that is, 

 ( ) ( )I It t=u Υ γ  (3.6) 
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where ( ) IRnt ∈γ   are the modal coordinates representing the interface DOF. Using Eq. (3.6), 
the vector of physical coordinates of all substructures ( )tu  can be expressed as  

 ( ) ( ) ( )D I DI I
I

t t t
 

= = 
 

I 0
u T q T q

0 Υ
 (3.7) 

where ( )I tq  is the vector of generalized coordinates 

 
( )

( ) ,
( )

DIn
I DI id IR

t
t n n n

t
 

= ∈ = + 
 

q
η
γ

  (3.8) 

and 

 
1 1, , , ,s s

DI

N N
id id ib ib I n n

DI

I

×
       = ∈ 
  

T
T

0

Φ Φ Ψ Ψ Υ

Υ



 

  (3.9) 

is the transformation matrix that considers the effect of the dominant fixed-interface normal 
modes and interface reduction. 

The reduced-order mass and stiffness matrices corresponding to the vector of generalized 
coordinates ( )I tq , are defined as 

 

ˆ ˆ

DI DI

T
DI DI DI

iI I n n
T T
I iI I

×

=

 
= ∈ 
 

M T MT
I M
M I

Υ
Υ



 (3.10) 

and 

 

ˆ ˆ

DI DI

T
DI DI DI

n n

I

×

=

 
= ∈ 
 

K T KT
0

0
Λ

Ω


 (3.11) 

The dominant fixed-interface normal modes and the characteristic-constraint modes can be 
used to define a reduced-order model with fewer generalized coordinates compared to the 
case without interface reduction, that is, DI Dn n n<  . 

 

3.1.3 Reduced-Order Matrices Based on Residual Fixed-Interface Modes and Global 
Interface Reduction 

 

Taking into account Eq. (3.6) and Eq. (2.35) (using ˆ
DIM  and ˆ

DIK  in place of ˆ
DM  and ˆ

DK , 

respectively), Eq. (2.34) can be rewritten as, 
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( )

1( ) ( )ˆ ˆ( )
( ) ( )

( ) ( )
( ) ( )

( )

ib
D DI DI

I I

DI RI

DI RI I

t t
t

t t

t t
t t

t

−       
= +       

       
   

= +   
   

= +

I 0 I 00 FM T
u T M K

0 00 0

T T

T T q

η η
Υ Υγ γ

η η
γ γ

 

 (3.12) 

Carrying out the corresponding products, the transformation matrix RIT  is written, similar to 

Eq. (2.38), as 

 ( ) ( )1 1

RI

T T T
ib I I iIR iIR iIR ib I I iIR iIR I

− −

=

 − − −
 
  

T

FM T I M M M FM T I M M

0 0

Υ Λ Υ Ω     (3.13) 

where 

 1ˆ ˆ, , sN
iIR ib ib I

 =  M M M TΥ  (3.14) 

The reduced-order mass matrix ˆ DI DIn n
RI

×∈M   and stiffness matrix ˆ DI DIn n
RI

×∈K   that 

consider residual fixed-interface normal modes and interface reduction are derived using Eq. 
(3.12) as 

 
( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
RI DI RI DI RI

T T T
DI RI DI DI RI RI RI

= + +

= + + +

M T T M T T

M T MT T MT T MT
 (3.15) 

and 

 
( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
RI DI RI DI RI

T T T
DI RI DI DI RI RI RI

= + +

= + + +

K T T K T T

K T KT T KT T KT
 (3.16) 

These reduced-order matrices are expected to be more accurately constructed relative to the 
corresponding matrices that consider only dominant fixed-interface normal modes. 
Concerning the computational cost of constructing them, the same comments apply as in 
section 2.4.3 concerning enhanced reduced-order matrices without reduction of interface 
DOF. 

 

3.2 Local-Level Interface Reduction 
 

As already mentioned, local-level interface reduction techniques do not perform an 
eigenvalue analysis on the whole interface partition of the reduced-order matrices. For large 
FE models where such an analysis would be prohibitively expensive computationally, local-
level methods are more attractive than the corresponding global-level methods. 

Apart from the case of large FE models, one might prefer to use local-level methods when 
working with parameterized FE models (e.g. in Bayesian model updating). It will be shown that 
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- in contrast to global-level methods - local-level methods generally require less support points 
in the parameter space to accurately interpolate interface modes in each sample point. This 
translates to less computational time per iteration compared to the global-level techniques. 

This section introduces a local-level method inspired by [13] and transformed to fit in the 
Craig-Bampton framework presented in [3]. 

 

3.2.1 Definition of Interfaces 
 

The local-level interface reduction method presented here treats each interface separately. 
Therefore the definition of interfaces plays an important role in the result of interface 
reduction. 

The definition of interfaces must be made in a way that there occur no distinct interfaces that 
lie on boundaries which share one or more FE nodes. In other words, boundaries that share 
one or more FE nodes should be selected together to define a single interface. This way the 
coupling between interfaces is properly considered. 

To make this point clear, Fig. 3.1 shows a simple 2-D FE model with a coarse quadrilateral 
mesh. Nodes are designated with dots and elements are delimited with thin lines. The model 
is partitioned into four substructures 1S , 2S , 3S  and 4S  with boundaries represented by 

thick lines. It can be seen that boundaries 1 and 2 share a node. 

 

 

In Fig. 3.2, two cases of interface definition of the FE model presented in Fig. 3.1 are shown. 
The figure indicates the different nodes that are associated with the physical coordinates of 
the independent interfaces of the model in vector l

Iu , where l  is the interface number. 

Boundary 2 Boundary 3 

   

Boundary 1 

Common node 

 

Fig. 3.1 Simple 2-D FE model used for clarification of correct interface 
definition. 
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Case (A) represents an incorrect definition of interfaces for local-level reduction. Here, 
interfaces 1 and 2 are distinct interfaces that belong on boundaries 1 and 2, respectively, 
which share a node. This interface definition does not consider the coupling between 
interfaces 1 and 2 and leads to erroneous results. 

Case (B) indicates the correct way to define interfaces. Now interfaces that lie on boundaries 
which share a node are selected together (interfaces 1 and 2 have been merged to interface 
1). 

It must be noted that another possible definition of interfaces would be to define a single 
interface containing all nodes that belong to model boundaries. Although correct, this case 
would yield the same result as using global-level interface reduction. 

 

3.2.2 Local Interface Modes 
 

After defining interfaces according to section 3.2.1, reduction of interface DOF can be 
considered at the local level. 

Let 
l l
I In n

Ill
×∈K   and 

l l
I In n

Ill
×∈M   be the partitions of the interface matrices IK  and IM , 

respectively, associated with the physical coordinates at interface , 1, , Il l N=  , i.e. ( )l
I tu

. The interface modes corresponding to interface l  satisfy the eigenvalue problem 

 Ill Ill Ill Ill Ill− =K M 0Υ Υ Ω  (3.17) 

 

 

  

 

 

 

  

(A) Incorrect Interface Definition (B) Correct Interface Definition 

  

Fig. 3.2 (B) Correct and (A) incorrect definition of interfaces. 
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where 
l l
I IRn n

Ill
×∈Υ   contains the kept l

IRn  local interface modes and 
l l
IR IRn n

Ill
×∈Ω   is the 

diagonal matrix that contains the corresponding eigenvalues. The local interface modes are 
mass normalized, that is 

 T
Ill Ill Ill Ill=M IΥ Υ  (3.18) 

and 

 T
Ill Ill Ill Ill=KΥ Υ Ω  (3.19) 

where 
l l
IR IRn n

Ill
×∈I   is the identity matrix. These modes are used to represent the vector of 

physical coordinates ( )l
I tu  at interface l  in terms of the local interface modal coordinates 

( )
l
IRn

l t ∈γ   in the form 

 ( ) ( )l
I Ill lt t=u Υ γ  (3.20) 

The kept local interface modes for each interface are used to define ILΥ , a matrix similar to 

IΥ  defined in Eq. (3.3) for global-level interface reduction, that is, 

 11 1
, , , II IRL

I I

Nn n l
IL I IN N IRL IRl

n n×
=

 = ∈ =  ∑Υ Υ Υ   (3.21) 

 

3.2.3 Reduced-Order Matrices Based on Dominant Fixed-Interface Modes and Local 
Interface Reduction 

 

The vector of physical coordinates of all substructures can be approximated similarly to Eq. 
(3.7) as 

 ( ) ( ) ( )D IL DIL IL
IL

t t t
 

= = 
 

I 0
u T q T q

0 Υ
 (3.22) 

where ( )IL tq  is the vector of generalized coordinates 

 
( )

( ) , ,
( )

DILn
IL DIL id IRL

L

t
t n n n

t
 

= ∈ = + 
 

q
η
γ

  (3.23) 

( )L tγ  is the vector of local interface modal coordinates of all independent interfaces 

 
1 ( )

( ) ,
( )

IRL

I

n
L

N

t
t

t

 
 = ∈ 
 
 

γ
γ

γ
   (3.24) 

and 
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1 1, , , ,s s

DIL

N N
id id ib ib IL n n

DIL

IL

×
       = ∈ 
  

T
T

0

Φ Φ Ψ Ψ Υ

Υ



 

  (3.25) 

is the transformation matrix that accounts for the effect of the dominant fixed-interface 
normal modes and the local interface normal modes. The corresponding reduced-order 
matrices are defined as 

 

ˆ ˆ

DIL DIL

T
DIL DIL DIL

iI IL n n
T T T
IL iI IL I IL

×

=

 
= ∈ 
 

M T MT
I M
M M

Υ
Υ Υ Υ



 (3.26) 

and 

 

ˆ ˆ

DIL DIL

T
DIL DIL DIL

n n
T
IL I IL

×

=

 
= ∈ 
 

K T KT
0

0 K
Λ

Υ Υ


 (3.27) 

 

3.2.4 Reduced-Order Matrices Based on Residual Fixed-Interface Modes and Local 
Interface Reduction 

 

In the case of local-level interface reduction, the transformation matrix that considers residual 
fixed-interface normal modes becomes 

 ,1 ,2 DILRIL RIL n n
RIL

× 
= ∈ 
 

T T
T

0 0
  (3.28) 

where 

 ( ) 1

,1
T T T

RIL ib IL IL I IL iIRL iIRL iIRL

−
= − −T FM T M M M MΥ Υ Υ Λ   (3.29) 

and 

 ( ) 1

,2
T T T

RIL ib IL IL I IL iIRL iIRL IL I IL

−
= −T FM T M M M KΥ Υ Υ Υ Υ   (3.30) 

with 

 1ˆ ˆ, , sN
iIRL ib ib IL

 =  M M M TΥ  (3.31) 

Taking into consideration the effect of residual fixed-interface normal modes, Eq. (3.22) 
becomes 

 ( )( ) ( )DIL RIL ILt t= +u T T q  (3.32) 

The associated reduced-order mass matrix ˆ DIL DILn n
RIL

×∈M   and stiffness matrix 

ˆ DIL DILn n
RIL

×∈K   change to 
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( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
RIL DIL RIL DIL RIL

T T T
DIL RIL DIL DIL RIL RIL RIL

= + +

= + + +

M T T M T T

M T MT T MT T MT
 (3.33) 

and 

 
( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆ

T
RIL DIL RIL DIL RIL

T T T
DIL RIL DIL DIL RIL RIL RIL

= + +

= + + +

K T T K T T

K T KT T KT T KT
 (3.34) 

The same comments apply as in section 2.4.3 concerning the computational cost of 
constructing the enhanced transformation matrix and consequently the corresponding 
reduced-order matrices 

 

3.2.5 Some Comments on the definition of ( )I tu  and ILΥ  
 

The presented method of local-level interface reduction works well if carefully applied. 

A point that requires special attention is the correct definition of the vector ( )I tu  of physical 

coordinates at the IN  independent interfaces in Eq. (2.14) and the matrix ILΥ  containing the 

truncated set of local interface modes for each independent interface in Eq. (3.21). 

The definition of ( )I tu  influences the matrix T  as can be seen in Eq. (2.16) which in turn 

affects the definition of the constraint-mode partitions of the reduced-order matrices IM  

and IK  in Eqs. (2.39) and (2.42) respectively. 

On the other hand, ILΥ  is a block-diagonal matrix that contains the local interface modes of 

each interface. Since the physical coordinates of all independent interfaces are kept in ( )I tu
, each row of ILΥ  is associated to the same interface DOF as in the corresponding row of 

( )I tu . 

The definition of the reduced-order matrices involves the multiplication of ILΥ  with IM  and 

IK  in Eqs. (3.26) and (3.27) respectively. If ( )I tu  and ILΥ  are not correctly defined (their 

rows do not correspond to the same interface DOF) this multiplication yields erroneous 
results, and the corresponding reduced-order matrices are wrong. 

One way to check that ( )I tu  and ILΥ  are correctly constructed is to take into account the 

mass normalization of the interface modes in Eqs. (3.18) and (3.19) which should give 

 11 , ,
I I

T
IL I IL I IN N ≈  M I IΥ Υ   (3.35) 

and 

 11 , ,
I I

T
IL I IL I IN N ≈  KΥ Υ Ω Ω  (3.36) 
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In case the definition of interfaces changes, one should be careful to update ( )I tu  and ILΥ  

as needed. 
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4 Parametrization of Reduced-Order Models based on Fixed-
Interface Normal Modes 

 

The solution to many dynamic simulation-based problems involving uncertainty requires 
evaluating the response of the modeled system at a large number of samples in the uncertain 
parameter space (of the order of hundreds or thousands). This fact makes such problems 
computationally very demanding especially when the time of a single analysis is significant. 

Obviously, model reduction techniques such as that presented in sections 2 and 3 alleviate 
part of the computational burden by projecting the model to a greatly reduced set of 
generalized coordinates. However, the time-consuming process of calculating the fixed-
interface normal modes and interface constraint modes at each sample point remains. This is 
necessary due to the fact that changes in model parameter values affect the modal 
characteristics and the static response of the structure. This procedure greatly increases 
simulation times, due to the substantial computational overhead that arises at the 
substructure level. 

To avoid reconstructing the reduced-order model at each sample point, an efficient 
parametrization scheme is presented in this chapter. When the reduced-order model is 
parametrized using this scheme, the calculation of the fixed-interface normal modes and 
interface constraint modes at each sample point is completely avoided. With such a 
parametrized model, it is necessary to compute these quantities only once. As a result, even 
greater computational savings can be achieved compared to the non-parametrized reduced-
order model formulation. 

Throughout this chapter, it is assumed that the FE model is parametrized by a set of uncertain 
parameters nθ Ω θ

θ∈ ⊂   which are modeled using a probability density function ( )q θ  that 

indicates the relative plausibility of the possible values of the parameters. The formulations 
presented next are based on chapter 2 of [3]. 

 

4.1 Parametrization Scheme 
 

The original structure is parametrized assuming that the mass and stiffness matrices for each 
linear substructure , 1, , ss s N=  , depend on only one (or none) of the model parameters. 

 

4.1.1 Matrices of substructures that do not depend on model parameters 
 

If a substructure s  does not depend on any model parameter, it belongs to 0S  which is the 

set of substructures that do not depend on the vector of model parameters θ , that is 0s S∈
. In this case, the substructure mass and stiffness matrices are written as 

 s s=M M  (4.1) 
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and 

 s=K K  (4.2) 

Since the mass and stiffness matrix of substructures 0s S∈  are independent of model 

parameters, their fixed-interface normal modes and their interface constraint modes are also 
parameter-independent. This means that the time-consuming process of solving the 
eigenproblem to compute s

iiΦ  in Eq. (2.4) and the linear system to compute s
ibΨ  in Eq. (2.9) 

are performed only once for these substructures. 

 

4.1.2 Matrices of substructures that depend on the model parameter jθ  

 

Let jS  be the set of substructures that depend on the model parameter jθ . For substructures 

js S∈ , the substructure matrices take the general form 

 ( )s s j
jg θ=M M  (4.3) 

and 

 ( )s s j
jh θ=Κ Κ  (4.4) 

where ( )j
jg θ  and ( )j

jh θ  are linear or nonlinear functions of jθ  and the matrices sM  and 
sK  are independent of jθ  obtained from the reference model by setting ( ) 1j

jg θ =  and 

( ) 1j
jh θ = . The partitions of the mass matrix sM  in Eq. (2.2) and the stiffness matrix sK  in 

Eq. (2.3) admit the same parametrization, that is 

 

( )

( )

( )

( )

s s j
ii ii j

s s j
ib ib j

s s j
bi bi j

s s j
bb bb j

g

g

g

g

θ

θ

θ

θ

=

=

=

=

M M

M M

M M

M M

 (4.5) 

and 

 

( )

( )

( )

( )

s s j
ii ii j

s s j
ib ib j

s s j
bi bi j

s s j
bb bb j

h

h

h

h

θ

θ

θ

θ

=

=

=

=

Κ Κ

Κ Κ

Κ Κ

Κ Κ

 (4.6) 

where all matrices with an over-bar are independent of jθ . 

The above parametrization is often encountered in structural FE systems [17][18]. 
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4.1.3 Fixed-Interface Normal Modes and Interface Constraint Modes 
 

Taking into account the parametrization of the mass matrix s
iiM  in Eq. (4.5) and the 

normalization of the fixed-interface normal modes in Eq. (2.5) with respect to that matrix, it 

follows that the matrix of fixed-interface normal modes ,s
ii js S∈Φ  can be written as 

 
1
( )

s s
ii ii j

jg θ
=Φ Φ  (4.7) 

where the matrix s
iiΦ  is independent of the model parameter jθ . 

Next, if the previous parametrization of s
iiM , s

iiK  and s
iiΦ  in the eigenvalue problem (2.4) is 

considered, the diagonal matrix of the corresponding eigenvalues ,s
ii js S∈Λ  allows the 

parametrization 

 
( )
( )

j
js s

ii ii j
j

h
g

θ
θ

=Λ Λ  (4.8) 

where the matrix s
iiΛ  is independent of the model parameter jθ . From the above 

parametrizations of s
iiΦ  and s

iiΛ , it is evident that s
iiΦ  and s

iiΛ  are computed from the 

eigenproblem 

 s s s s s
ii ii ii ii ii− =Κ M 0Φ Φ Λ  (4.9) 

where the mode shapes are mass normalized as 

 
Ts s s s

ii ii ii ii=M IΦ Φ  (4.10) 

and 

 
Ts s s s

ii ii ii ii=ΚΦ Φ Λ  (4.11) 

Concerning the interface constraint modes ,s
ib js S∈Ψ  in Eq. (2.9), it holds that 

 
1 1 1 1

( ) ( )s s s s j s j s s s
ib ii ib ii j ib j ii ib ibh hθ θ

− − − −

= − = − = − =K K Κ Κ Κ ΚΨ Ψ  (4.12) 

where the matrix s
ibΨ  is independent of the model parameter jθ . 

From Eqs. (4.7), (4.8) and (4.12) it is clear that the fixed-interface normal modes and interface 
constraint modes can be estimated for any value of the parameter vector θ  by solving the 
eigenproblem in Eq. (4.9) and the linear system in Eq. (4.12) once. This aspect of the proposed 
parametrization scheme greatly reduces the computational cost since it eliminates the need 
for estimating the above quantities at each step of the simulation process. 
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4.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-
Interface Modes 

 

This section introduces the parametrization of the reduced-order mass and stiffness matrices 
based on dominant fixed-interface normal modes as well as the parametrization of the various 
matrices involved in their definition. 

 

4.2.1 Unreduced Matrices ˆ ( )M θ  and ˆ ( )K θ  
 

If the parametrization of sM  and sK  are taken into account, the mass and stiffness matrix 
of the unreduced model referring to the vector of physical coordinates of all substructures 

( )tu , given in Eqs. (2.19) and (2.20), respectively, take the form 

 

1 1
10 0 10 0

1 1
10 0 10 0

1 1
1 1

1
1

, , , ,
ˆ ( )

, , , ,

, , , ,

, ,

s s

s s

TT
s s

s s

s s

s s

TT
s

s

N N
ii ii N ib ib N

N NT T
ib ib N bb bb N

N N
ii j ii N j ib j ib N j

NT T
ib j ib N j b

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ

        =
       

      
+

 
 

M M M M T
M

T M M T M M T

M M M M T

T M M T M

θ


 

  

 



 

 



1
1 1

( )
, , s

s

n
j

jN
j b j bb N j

g
θ

θ
δ δ=

 
 
    

∑
M T

 (4.13) 

and 

 

1 1
10 0 10 0

1 1
10 0 10 0

1 1
1 1

1
1

, , , ,
ˆ ( )

, , , ,

, , , ,

, ,

s s

s s

TT
s s

s s

s s

s s

TT
s

s

N N
ii ii N ib ib N

N NT T
ib ib N bb bb N

N N
ii j ii N j ib j ib N j

NT T
ib j ib N j b

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ

        =
       

      
+

 
 

K K K K T
K

T K K T K K T

K K K K T

T K K T K

θ


 

  

 



 

 



1
1 1

( )
, , s

s

n
j

jN
j b j bb N j

h
θ

θ
δ δ=

 
 
    

∑
K T

 (4.14) 

where 

 0
0

1 if 
, 1, ,

0 otherwises s

s S
s Nδ

∈
= =


  (4.15) 

and 

 
1 if 

, 1, ,
0 otherwise

j
sj s

s S
s Nδ

∈
= =


  (4.16) 

 

4.2.2 Transformation Matrix ( )DT θ  
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Considering the parametrization of the fixed-interface normal modes s
iiΦ  and the 

independence of interface constraint modes s
ibΨ  on model parameters, the transformation 

matrix DT  defined in Eq. (2.15) can be written as 

 

1 1
10 0

1
1

1

, , , ,
( )

, , 1
( )

s s

s

s

s

N N
id id N ib ib

D

Nn
id j id N j

j
j jg

θ

δ δ

δ δ

θ=

      =  
  

   +  
  

∑

T
T

0 I

0

0 0

Φ Φ Ψ Ψ
θ

Φ Φ



 



 (4.17) 

 

4.2.3 Reduced-Order Matrices ˆ ( )DM θ  and ˆ ( )DK θ  
 

Taking into account all previous parametrizations, the matrices ˆ s
ibM , ˆ s

bbM  and ˆ s
bbK  for 

js S∈  which are used to define ˆ
DM  and ˆ

DK  in Eqs. (2.23) and (2.24) respectively, can be 

written as 

 

ˆˆ ( )

ˆˆ ( )
ˆˆ ( )

s s j
ib ib j

s s j
bb bb j

s s j
bb bb j

g

h

g

θ

θ

θ

=

=

=

M M

K K

M M

 (4.18) 

where 

 

( )

ˆ

ˆ

ˆ

T T

T

T T T

s s s s s s
ib id ii ib id ib

s s s s
bb ib ib bb

s s s s s s s s
bb ib ii ib ib ib ib bb

= +

= +

= + + +

M M M

K K K

M M M M M

Φ Ψ Φ

Ψ

Ψ Ψ Ψ

 (4.19) 

 

Considering the above expansions along with the parametrization of the matrices of 
eigenvalues, the reduced-order mass matrix and stiffness matrix can be expressed as 
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1
10 0

1 1
10 0 10 0

1
1

11
1

ˆ ˆ, ,
ˆ ( )

ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ, ,
(

ˆ ˆ, ,

s

s

TT
s s

s s

s

s

TT
s

s

N
ib ib N

D
N NT T

ib ib N bb bb N

N
n ib j ib N j

j

NTj
ib j ib N j

g
θ

δ δ

δ δ δ δ

δ δ
θ

δ δ=

  
   =  

           
  

   +  
     

∑

I M M T
M

T M M T M M T

0 M M T

T M M 0

θ




  

 









1
1

)

( )ˆ ˆ, , s

s

j

j
jNT

bb j bb N j

g θ
δ δ

   +        

0 0

0 T M M T 



 (4.20) 

and 

 

1
10 0

1
10 0

1
1

1

1
1

, ,
ˆ ( ) ˆ ˆ, ,

( ), ,
( )

( )ˆ ˆ, ,

s
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 (4.21) 

where all terms have been previously defined. 

 

4.3 Some Comments on the Proposed Parametrization Scheme 
 

From Eqs. (4.20) and (4.21) it is evident that the reduced-order mass matrix ˆ ( )DM θ  and 

stiffness matrix ˆ ( )DK θ  are expressed explicitly in terms of the model parameter vector θ  

and other constant matrices. These constant matrices are computed and assembled once and, 
therefore, there is no need this computation to be repeated during the iterations of the 
simulation process [17]. The same fact holds for the transformation matrix ( )DT θ  defined in 

Eq. (4.17). 

Consequently, ˆ ( )DM θ , ˆ ( )DK θ and ( )DT θ  - which are needed to estimate the dynamic 

response of the original unreduced system - can be estimated at each iteration without the 
need to reconstruct them at the substructure level which would require solving a 
computationally intensive eigenproblem and linear system. 

Therefore, the presented parametrization scheme allows for substantial computational 
savings since it avoids (a) re-computing the fixed-interface and constrained modes for each 
component, and (b) assembling the reduced-order matrices from these components [17]. 
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It must be stressed that the efficiency of the above formulation in terms of the number of 
substructure analyses required is based on the assumption that the stiffness and mass 
matrices of the substructures depend only on one (or none) model parameter. For a more 
general case, the normal and constraint modes have to be recomputed in each iteration of 
the simulation process [18]. 
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5 Parametrization of Reduced-Order Models based on Fixed-
Interface Normal Modes and Interface Reduction 

 

In section 4 a parametrization scheme was presented that can be applied on reduced-order 
models constructed using the Craig-Bampton CMS method based on fixed-interface normal 
modes (theory in section 2). This parametrization scheme does not consider reduction of 
interface DOF which can be a problem for FE models with fine meshes and large numbers of 
interface DOF. In this case, it is possible that the interface partition of the vector of generalized 
coordinates dominates the reduced-order model. 

As indicated in section 3, reduction of interface DOF can be considered at the global and at 
the local level. In this section, parametrization schemes that take into account both methods 
of interface reduction are proposed. 

When the parametrized matrices are constructed considering interface reduction, additional 
computational savings can be achieved by reducing the size of the final model even further.  

Firstly, parametrization based on global-level interface reduction is presented followed by the 
corresponding formulations based on local-level reduction. 

 

5.1 Parametrization Based on Global-Level Interface Reduction 
 

This section presents a parametrization scheme which is similar to that of section 4 but takes 
into account global-level interface reduction. The formulations are based on chapter 3 of [3]. 

 

5.1.1 Meta-Model for Global Interface Modes 
 

The parametrization scheme presented in section 4 was based on the assumption that the 
substructure matrices depend on one (or none) model parameter. This assumption does not 

hold for the interface partition IM  and IK  of the reduced-order mass matrix ˆ
DM  and 

stiffness matrix ˆ
DK , respectively. In general, these interface matrices depend on multiple 

model parameters since interface DOF belong on multiple substructures. This means that a 
direct interface analysis should be performed at each iteration to reduce interface DOF. 

To avoid this computationally costly procedure, an interpolation scheme is proposed that 
approximates the global interface modes at each sample point in terms of the model 
parameters. 

 

5.1.1.1 Baseline Information 
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Initially, L  support points are defined in the model parameter space ( , 1, ,m m L=θ  ) and 

the interface matrices IM  and IK  defined in Eqs. (2.39) and (2.42), respectively, are 

assembled at these points considering parametrizations in Eq. (4.18), that is 
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   (5.1) 
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   (5.2) 

where m
jθ  is the j th component of the support point mθ . It is assumed that the support 

points , 1, ,m m L=θ   are distributed around the nominal point 0θ . 

To compute the kept IRn  global interface modes ( ) I IRn nm
I

×∈Υ θ   at each support point mθ
, the associated eigenvalue problems 

 ( ) ( ) ( ) ( ) ( ) , 1, ,m m m m m
I I I I I m L− = =K M 0θ Υ θ θ Υ θ Ω θ   (5.3) 

are solved and the matrix of interface modes is mass-normalized, satisfying 

 ( ) ( ) ( ) , 1, ,T m m m
I I I I m L= =M IΥ θ θ Υ θ   (5.4) 

and 

 ( ) ( ) ( ) ( ), 1, ,T m m m m
I I I I m L= =KΥ θ θ Υ θ Ω θ   (5.5) 

where IR IRn n
I

×∈I   is the identity matrix and ( ) IR IRn nm
I

×∈Ω θ   is the matrix containing the 

corresponding eigenvalues. Additionally, the kept global interface modes 0( )IΥ θ  at the 

nominal point 0θ  are computed. 

 

5.1.1.2 Approximation of Global Interface Modes at a sample point kθ  
 

A linear interpolation of the interface modes ( )m
IΥ θ  at each support point 

, 1, ,m m L=θ   yields the matrix ˆ ( )k
IΥ θ  evaluated at a sample point kθ  as [14] 

 0

1 1

ˆ ( ) (1 ) ( ) ( )
L L

k k k m
I m I m I

m m
ξ ξ

= =

= − +∑ ∑Υ θ Υ θ Υ θ  (5.6) 

where the coefficient k
mξ  represents the contribution of the support point mθ  to the 

simulation point kθ . In order to consider only interpolations, the simulation point kθ  should 
belong to the nθ -dimensional convex hull of the support points. 

The approximate interface modes ( )k
IΥ θ  are defined as a linear combination of the vectors 

in the matrix ˆ ( )k
IΥ θ , that is 
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 ˆ( ) ( ) ( )k k k
I I= QΥ θ Υ θ θ  (5.7) 

where ( ) IR IRn nk ×∈Q θ   is an auxiliary transformation matrix obtained from the solution of 
the reduced eigenproblem 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T k k k k T k k k k k
I I I I I I I   =   K Q M QΥ θ θ Υ θ θ Υ θ θ Υ θ θ Ω θ  (5.8) 

where the matrices ˆ ˆ( ) ( ) ( )T k k k
I I IKΥ θ θ Υ θ  and ˆ ˆ( ) ( ) ( )T k k k

I I IMΥ θ θ Υ θ  are of dimension 

equal to IR IRn n×  which means that the solution of the eigenproblem in Eq. (5.8) generally 

requires minimal computational effort. Note that the interface matrices ( )k
IM θ  and 

( )k
IK θ  evaluated at the sample point kθ  can be computed directly from Eqs. (5.1) and (5.2), 

respectively. 

The solution of the reduced eigenproblem along with Eq. (5.7) provide an approximation of 
the global interface modes ( )k

IΥ θ  at the sample point kθ . Additionally, the reduced 

eigenproblem gives an approximation of the corresponding eigenvalues ( )k
IΩ θ . 

 

5.1.1.3 Determination of Interpolation Coefficients 
 

As mentioned in the previous section, the interpolation coefficients , 1, ,k
m m Lξ =   

represent the contribution of the support points to the new sample point. To obtain them, 
the norm of the difference between the support points , 1, ,m m L=θ   and the simulation 

point kθ  is first minimized, that is 

 1, ,Min m k
m L= −θ θ



 (5.9) 

and the nearest simulation point to kθ  is denoted by { }, 1, ,q q L∈θ  . The corresponding 

interpolation coefficient k
qξ  is obtained by projecting 0k −θ θ  onto 0q −θ θ , which yields 

 
0 0

20

( ) ( )

( )

k T q
k
q q
ξ − −

=
−

θ θ θ θ

θ θ
 (5.10) 

The remaining part of the vector, which is perpendicular to 0q −θ θ , is given by 

 0 0( ) ( )k k k q
qξ= − − −v θ θ θ θ  (5.11) 

This vector is represented as a linear combination of the remaining support points 
, 1, , ,m m L m q= ≠θ   through 

 1 0 1 0 1 0 0, , , , ,k q q L k− + = − − − − v θ θ θ θ θ θ θ θ τ   (5.12) 

where kτ  is given by 
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The (unknown) components of the vector kτ  are obtained as the solution of Eq. (5.12) using 
the singular value decomposition (SVD) method which can be applied to cases of under- and 
over-determined systems of equations. The solution for the coefficients , 1, ,k

m m Lξ =  , 

kept in the vector kξ , are obtained by considering k
qξ  in Eq. (5.10) and kτ  in Eq. (5.13). This 

gives 
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 (5.14) 

The interpolation scheme above guarantees that the approximation is exact in each support 
point. Additionally, the potential time-consuming step of calculating the interface modes is 
performed only once for the support points and the nominal point at the beginning of the 
simulation process. This means that the approximation of interface modes using this method 
generally requires minimal computational time at each sample point. 

If one wishes to increase the accuracy of the interpolation scheme, more support points can 
be added or higher-order interpolations (quadratic, cubic etc.) can be considered. 

 

5.1.1.4 Comments on the Use of Support Points 
 

In this section some general comments and limitations are presented concerning the use of 
support points with parametrized models based on global-level interface reduction. 

 

5.1.1.4.1 General Remarks 
 

It has been stated that support points , 1, ,m m L=θ   are distributed around the nominal 

point 0θ  of the model. The nominal point may correspond to the reference model of the 
structure, or it can be chosen as the mean value of the uncertain model parameters. For the 
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support points, there is not a unique selection method and one can use different approaches 
to generate them. 

For example, the support points can be generated by a number of sampling methods, such as 
random sampling, Latin Hypercube sampling, orthogonal sampling, etc. Also, adaptive 
schemes can be considered, where the nominal point and the support points are updated 
during the simulation process to improve convergence and maintain accuracy. 

In this work emphasis is given on a sampling method based on n -dimensional simplices. 

 

5.1.1.4.2 Limitations Concerning Support Points 
 

Regardless of the technique selected for the generation of support points, it is necessary – as 
stated in section 5.1.1.2 – that each sample point kθ  lies in the convex hull of the support 
points to ensure that only interpolations are made. 

If a sample point kθ  does not belong to the convex hull of the , 1, ,m m L=θ   support 

points, the interface modes ( )k
IΥ θ  are computed directly at that sample point. Next, the 

support points are updated to contain the sample point kθ  and the interface modes ( )k
IΥ θ  

are added to the set of interface modes for the already defined L  support points. This 
procedure increases the number of support points to 1L +  and expands their convex hull so 

that the sample point kθ  lies (marginally) inside it. An increase in the number of support 
points translates to an increase in the time required to perform a single interpolation of 
interface modes at a sample point. 

The number of model parameters nθ  corresponds to the number of dimensions of the model 

parameter space. As nθ  increases, the volume (around the nominal point) that the support 

points have to sample increases exponentially as a result of the “curse of dimensionality”. 

Thus, as the number of model parameters nθ  increases, more support points are needed to 

create a sufficiently large convex hull so that few out-of-hull sample points occur. This 
approach can quickly increase the time required for the approximation of interface modes 
which is directly related to the number of support points used. 

Alternatively, few (but enough to create a nθ -dimensional simplex) and highly scattered 

support points around the nominal point could be generated. This strategy can result in poor 
approximations since the support points might be too far away from the nominal point to 
provide any meaningful accuracy. 

The previous remarks make it clear that parametrization using global-level interface reduction 
might not be practical for models utilizing many uncertain parameters. For such a case, local-
level reduction is a good alternative and is discussed in following sections. 
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5.1.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-Interface 
Modes and Global-Level Interface Reduction 

 

This section presents the parametrization of the transformation matrix and the reduced-order 
mass and stiffness matrices based on dominant modes and global-level interface reduction. It 
is assumed that the matrix ( )IΥ θ  containing the global interface modes and ( )IΩ θ  

containing the corresponding eigenvalues are readily available. They can be approximated 
using the procedure described in the previous section or they can be computed directly 
through an interface analysis. 

 

5.1.2.1 Transformation Matrix ( )DIT θ  

 

The transformation matrix DIT  which takes into account the effect of the dominant fixed-

interface normal modes and global-level interface reduction is defined in Eq. (3.9). In the 
context of parametrized reduced-order models it is defined similarly to Eq. (4.17) as 
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 (5.15) 

 

5.1.2.2 Reduced-Order Matrices ˆ ( )DIM θ  and ˆ ( )DIK θ  

 

The reduced-order mass and stiffness matrices based on dominant modes and global-level 
reduction are defined in Eqs. (3.10) and (3.11), respectively. They are parametrized similarly 
to Eqs. (4.20) and (4.21) as 
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 (5.16) 

and 
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5.1.3 Comments on the Proposed Parametrization Scheme 
 

From Eqs. (5.15), (5.16) and (5.17) it is clear that the matrices DIT , ˆ
DIM  and ˆ

DIK , 

respectively, can be computed directly at a sample point kθ  in terms of some constant 

matrices (given that ( )IΥ θ  and ( )IΩ θ  are already defined) and the functions ( )j
jg θ  and 

( )j
jh θ  at each component j  of the sample point. Therefore, the time required to calculate 

these matrices in each step of the simulation process should be minimal – as was the case for 
the parametrization scheme without interface reduction presented in section 4. 

Although efficient for a small to moderate number of model parameters nθ , this 

parametrization scheme can be impractical when nθ  is large due to the large number of 

support points required to approximate interface modes at a sample point kθ  (see section 
5.1.1.4.2). To overcome this problem, another parametrization scheme based on local-level 
interface reduction is presented in the next sections. 

 

5.2 Parametrization Based on Local-Level Interface Reduction 
 

This section introduces a parametrization scheme based on local-level interface reduction. 
The formulations here are novel. They are motivated by section 3.5 of [3] and further 
developed and implemented by me. 

 

5.2.1 Meta-Model for Local Interface Modes 
 

Local interface modes need to be approximated at each sample point similarly to global modes 
in the previous sections. The main difference is that the modes for every independent 
interface are interpolated separately in contrast to the global modes which treat all interface 
DOF as a single interface. 

Throughout the following sections it is assumed that the interfaces are defined according to 
guidelines presented in section 3.2.1 concerning local-level interface reduction. 

 

5.2.1.1 Baseline Information 
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Initially, L  support points are defined in the model parameter space ( , 1, ,m m L=θ  ) and 

the interface matrices ( )m
IK θ  and ( )m

IM θ  are assembled at these points using Eqs. (5.2) 

and (5.1), respectively. It is assumed that the support points are distributed around the 
nominal point 0θ . 

Let ( )
l l
I In nm

Ill
×∈K θ   and ( )

l l
I In nm

Ill
×∈M θ   be the partitions of ( )m

IK θ  and ( )m
IM θ , 

respectively, at support point , 1, ,m m L=θ   associated with the physical coordinates at 

interface , 1, , Il l N=  , i.e. ( )l
I tu . 

To compute the kept l
IRn  local interface modes ( )

l l
I IRn nm

Ill
×∈Υ θ   at each support point mθ  

and interface l , the associated eigenvalue problems 

( ) ( ) ( ) ( ) ( ) , 1, ,  and 1, ,m m m m m
Ill Ill Ill Ill Ill Im L l N− = = =K M 0θ Υ θ θ Υ θ Ω θ    (5.18) 

are solved and the matrix of local interface modes is mass-normalized, satisfying 

 ( ) ( ) ( ) , 1, ,  and 1, ,T m m m
Ill Ill Ill Ill Im L l N= = =M IΥ θ θ Υ θ    (5.19) 

and 

 ( ) ( ) ( ) ( ), 1, ,  and 1, ,T m m m m
Ill Ill Ill Ill Im L l N= = =KΥ θ θ Υ θ Ω θ    (5.20) 

where 
l l
IR IRn n

Ill
×∈I   is the identity matrix and ( )

l l
IR IRn nm

Ill
×∈Ω θ   is the matrix containing the 

corresponding eigenvalues. Additionally, the kept local interface modes 0( )
l l
I IRn n

Ill
×∈Υ θ   at 

the nominal point 0θ  for each interface , 1, , Il l N=   are computed. 

 

5.2.1.2 Approximation of Local Interface Modes at a sample point kθ  
 

A linear interpolation of the interface modes ( )m
IllΥ θ  for a given interface l  at each support 

point , 1, ,m m L=θ   yields the matrix ˆ ( )k
IllΥ θ  for the given interface evaluated at a 

sample point kθ  as 

 0
, ,

1 1

ˆ ( ) (1 ) ( ) ( ), 1, ,
L L

k k k m
Ill m l Ill m l Ill I

m m
l Nξ ξ

= =

= − + =∑ ∑Υ θ Υ θ Υ θ   (5.21) 

where the coefficient ,
k
m lξ  represents the contribution of the support point mθ  to the 

simulation point kθ  for the interface l . 

In general, the number of parameters related to a given interface l , denoted as ,lnθ , is much 

smaller than the total number of model parameters nθ . Consequently, to consider only 

interpolations for the given interface l , only the ,lnθ  components of kθ  associated with that 

interface must lie in the ,lnθ -dimensional convex hull of the corresponding components of the 
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support points. Section 5.2.1.3 illustrates how to identify the parameters related to each 
interface. 

The approximate interface modes ( )k
IllΥ θ  at a sample point kθ  for a given interface l  are 

defined as a linear combination of the vectors in the matrix ˆ ( )k
IllΥ θ , that is 

 ˆ( ) ( ) ( ), 1, ,k k k
Ill Ill ll Il N= =QΥ θ Υ θ θ   (5.22) 

where ( )
l l
IR IRn nk

ll
×∈Q θ   is an auxiliary transformation matrix corresponding to interface l  

obtained from the solution of the reduced eigenproblem 
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M Q
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 (5.23) 

where the matrices ˆ ˆ( ) ( ) ( )T k k k
Ill Ill IllKΥ θ θ Υ θ  and ˆ ˆ( ) ( ) ( )T k k k

Ill Ill IllMΥ θ θ Υ θ  are of 

dimension equal to l l
IR IRn n× . 

Note that the interface matrices ( )k
IllM θ  and ( )k

IllK θ  for a given interface l  evaluated at 

the sample point kθ  are the partitions of ( )k
IM θ  and ( )k

IK θ , respectively, associated 

with the physical coordinates at interface l . The matrices ( )k
IM θ  and ( )k

IK θ  can be 

computed directly from Eqs. (5.1) and (5.2), respectively. 

The approximated kept local interface modes ( )k
IllΥ θ  at the sample point kθ  for each 

interface , 1, , Il l N=   – defined in Eq. (5.22) – are used to construct the matrix ( )k
ILΥ θ  

as 

 11( ) ( ), , ( ) I IRL

I I

n nk k k
IL I IN N

× = ∈ Υ θ Υ θ Υ θ   (5.24) 

The matrix ( )k
ILΥ θ  takes into account the kept modes of all independent interfaces and is 

similar to the matrix ( )k
IΥ θ  based on global-level interface reduction defined in Eq. (5.7). 

The solution of the reduced eigenproblem in Eq. (5.23) along with Eq. (5.22) for each interface 
, 1, , Il l N=   provide all the terms needed to define the matrix ( )k

ILΥ θ  in Eq. (5.24) 

which is used to approximate the local interface modes at the sample point kθ . 

 

5.2.1.3 Determination of Model Parameters Related to Each Interface 
 

The basic difference between the interpolation method presented here and the one for 
global-level reduction in section 5.1.1.3, is that in this case only the ,lnθ  model parameters 

associated with a given interface l  are taken into account in the determination of 
interpolation coefficients for that interface. 
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The model parameters related to a given interface , 1, , Il l N=   are those that the 

substructures connected to that interface depend on. They are used to define an index set lp  

for each interface l  that holds the ,lnθ  associated model parameters. These index sets can be 

defined in set notation as 

{ }{ }1, , | substructures connected to interface  depend on parameter  , 1, ,l Ip j n l j l Nθ= ∈ = 

 (5.25) 

They are used as subscripts of vectors in the following formulations denoting that only the 
vector elements associated with the parameters contained in the set are considered. 

 

5.2.1.4 Determination of Interpolation Coefficients 
 

As already mentioned, the interpolation coefficients , , 1, ,  and 1, ,k
m l Im L l Nξ = =   

represent the contribution of the support points to the new sample point for a given interface 
l . 

To obtain the interpolation coefficients for a given interface l , the norm of the difference 

between the support points , 1, ,
l

m
p m L=θ   and the simulation point 

l

m
pθ  is first 

minimized, that is 

 1, ,Min , 1, ,
l l

m k
m L p p Il N= − =θ θ



  (5.26) 

and the nearest simulation point to 
l

k
pθ  is denoted by { }, 1, ,

l

q
p q L∈θ  . The 

corresponding interpolation coefficient ,
k
q lξ  is obtained by projecting 0

l l

k
p p−θ θ  onto 

0

l l

q
p p−θ θ , which yields 

 
0 0

, 2
0

( ) ( )
, 1, ,

( )
l l l l

l l

k T q
p p p pk

q l I
q
p p

l Nξ
− −

= =
−

θ θ θ θ

θ θ
  (5.27) 

The remaining part of the vector, which is perpendicular to 0

l l

q
p p−θ θ , is given by 

 0 0
,( ) ( ), 1, ,

l l l l

k k k q
l p p q l p p Il Nξ= − − − =v θ θ θ θ   (5.28) 

This vector is represented as a linear combination of the remaining support points 
, 1, , ,

l

m
p m L m q= ≠θ   through 

 1 0 1 0 1 0 0, , , , , , 1, ,
l l l l l l l l

k q q L k
l p p p p p p p p l Il N− + = − − − − = v θ θ θ θ θ θ θ θ τ    (5.29) 

where k
lτ  is given by 
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1,

1, 1

1,

,

, 1, ,

k
l

k
q lk L

l Ik
q l

k
L l

τ

τ
l N

τ

τ

− −

+

 
 
 
  = ∈ = 
 
 
 
  

τ



 



 (5.30) 

The (unknown) components of the vector k
lτ  are obtained as the solution of Eq. (5.29) using 

the singular value decomposition technique. The interpolation coefficients 

, , 1, ,k
m l m Lξ =   for the given interface l  are kept in the vector k

lξ  and are obtained by 

considering ,
k
q lξ  in Eq. (5.27) and k

lτ  in Eq. (5.30), that is 

 

1,

1,

,

1,

,

, 1, ,

k
l

k
q l

k Lk
l Iq l

k
q l

k
L l

τ

τ
l N

τ

τ

ξ
−

+

 
 
 
 
 

= ∈ = 
 
 
 
 
 

ξ



 



 (5.31) 

If an interface l  connects to substructures that do not depend on model parameters, that is 

lp = ∅


, the vectors associated with the above formulations become empty and the 

equations are ill-defined. In that case, the vector of interpolation coefficients for that interface 

is set to zero 0, ,0 Tk L
l = ∈ξ


  . This is to ensure that Eq. (5.21) yields 
0ˆ ( ) ( )k

Ill Ill=Υ θ Υ θ
 

 which is exact since the modes of interface l  are constant and equal to 

those calculated at the nominal point in each sample point kθ . 

The same comments as in section 5.1.1.3 apply concerning the efficiency of the interpolation 
scheme and potential methods to increase its accuracy. 

 

5.2.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-Interface 
Modes and Local-Level Interface Reduction 

 

This section presents the parameterized transformation matrix and reduced-order mass and 
stiffness matrices based on dominant fixed-interface normal modes and local-level interface 
reduction. It is assumed that the matrix ( )ILΥ θ  containing the local interface modes is already 

available. It can be approximated using the proposed interpolation scheme in section 5.2.1 or 
it can be calculated directly at each sample point. 
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5.2.2.1 Transformation Matrix ( )DILT θ  

 

The transformation matrix DILT  considers the effect of dominant fixed-interface normal 

modes and local-level interface reduction and is defined in Eq. (3.25). In view of the 
parametrization of normal modes in Eq. (4.7) and the definition of matrix ( )ILΥ θ  in Eq. (5.24), 

the transformation matrix ( )DILT θ  can be written similarly to ( )DIT θ  in Eq. (5.15) as 

 

1 1
10 0

1
1

1

, , , , ( )
( )

( )

, , 1
( )

s s

s

s

s

N N
id id N ib ib IL

DIL

IL

Nn
id j id N j

jj jg

θ

δ δ

δ δ

θ=

      =  
  

   +  
  

∑

T
T

0

0

0 0

Φ Φ Ψ Ψ Υ θ
θ

Υ θ

Φ Φ



 



 (5.32) 

 

5.2.2.2 Reduced-Order Matrices ˆ ( )DILM θ  and ˆ ( )DILK θ  

 

The reduced-order mass matrix ˆ
DILM  and stiffness matrix ˆ

DILK  that take into account 

dominant fixed-interface normal modes and interface reduction at the local level are defined 
in Eqs. (3.26) and (3.27), respectively. Considering the parametrizations defined in Eqs. (4.18), 
(4.8) and (5.24), they can be written as 

1
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 
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 (5.33) 

and 
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    

 (5.34) 

 

5.2.3 Comments on the Proposed Parametrization Scheme 
 

This parametrization scheme is similar to that presented in section 5.1 with the basic 
difference that interface reduction is performed at the local level. The desirable property 
resulting from local-level reduction is that only the model parameters associated with each 
interface are considered during the approximation of its modes (see section 5.2.1.3). 

Since the number of related parameters for a given interface is generally much smaller than 
the total number of model parameters, far fewer support points are needed in this scheme 
compared to the one considering global-level reduction. 

This point is made clear in section 5.4. 

 

5.3 Support Points Based on n -dimensional Simplices 
 

Both parametrization methods based on interface reduction require that (all or some of the 
elements of) each sample point nk θ∈θ   lie in the convex hull of the support points used to 
approximate the interface modes (global or local) in each iteration. Since using as few support 
points as possible is of prime interest, it is natural to consider generating support points based 
on n -dimensional simplices where n nθ≤ . 

The formulations presented here are, to my knowledge, novel. 

Initially, a regular simplex in n
  is created with the following properties: 1) it is inscribed in a 

unit hypersphere (the distance of each vertex from the centroid is one) and 2) its centroid is 
0 . The , 1, , 1n

i i n∈ = +t    vertices of the simplex are given by [19] 

 1 3/21 ( 1 1) 1, ,1 , 1, ,T
i in n n i n− −= + − + − =t e    (5.35) 

and 

 1/2
1 1, ,1 T

n n−
+ = −t   (5.36) 
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where ie  is the unit vector in direction i . The corresponding support points 

, 1, , 1m m n= +θ   are centered on 0θ  and are scaled according to the scaling matrix A , 
that is 

 0 , 1, , 1m
m m n= + = +Atθ θ   (5.37) 

where 

 [ ]1 , , na a=A   (5.38) 

is a diagonal matrix that multiplies the j  element of mt  by ja . 

This method is guaranteed to give the minimum number of support points needed in n
 (

1L n= + ) since fewer support points would fail to create a n -dimensional simplex. It is not 
guaranteed, however, that the given support points will create a sufficiently large convex hull 
for each sample point kθ  to lie in – as will be shown next. 

 

5.4 Generation of Support Points for Parametrization Based on Global- and 
Local-Level Interface Reduction 

 

This section illustrates the fact that parametrization based on local-level interface reduction 
generally requires less support points than that based on global-level interface reduction. 

Initially, a simple multi-parameter model is introduced, and support points based on n -
dimensional simplices are generated for both interface reduction methods. 

Next, random sample points are generated, and - for each method and its corresponding 
support points - the frequency of interpolations is measured. 

The interpolation frequency indicates the ability of each set of support points to create a 
sufficiently large convex hull. 

 

5.4.1 Multi-Parameter Model 
 

A simple multi-parameter model used to illustrate the above point is shown in Fig. 5.1. 

 

          

Interface 1 Interface 3 Interface 5 Interface 7 Interface 9 

Interface 2 Interface 4 Interface 6 Interface 8 

Fig. 5.1 Simple multi-parameter model with 10 components and 9 interfaces. 



44 
 

 

It is a rectangle divided into ten components with each component dependent on one model 
parameter. This model has ten parameters ( 10nθ = ), nine interfaces ( 9IN = ) and the 

nominal point 0θ  is chosen at 

 0 101, ,1 T= ∈θ    (5.39) 

 

5.4.2 Support Points Required for Global-Level Reduction 
 

Parametrization based on dominant normal modes and global-level interface reduction 
requires that each sample point nk θ∈θ   lie in the convex hull of the L  support points (see 
section 5.1.1.2). As such, the minimum number of support points is 

 1 10 1 11L nθ= + = + =  (5.40) 

which is equal to the number of vertices needed to create a 10-dimensional simplex. 

Considering Eq. (5.37) with a=A I  and Eq. (5.39), the support points are 

 1, ,1 , 1, ,11Tm
ma m= + =tθ    (5.41) 

where , 1, ,11m m =t   are the vertices of the 10-dimensional simplex defined in Eqs. (5.35) 

and (5.36) with 10n = . The parameter a  scales the support points symmetrically around 0θ
. As a  increases, the convex hull of the support points becomes larger and more sample points 
are expected to lie in it. 

For reference, setting 1a =  yields the following support points 

 

1 2 3 10

1.9756 0.9267 0.9267 0.9267
0.9267 1.9756 0.9267 0.9267
0.9267 0.9267 1.9756 0.9267

, , , ,
0.9267 0.9267 0.9267 0.9267

0.9267 0.9267 0.9267 1.9756

      
      
      
     

= = = =     
     
     
     
      

θ θ θ θ

   

11

0.6838
0.6838
0.6838

,
0.6838

0.6838

  
  
  

   
=   

   
   
   

  

θ



 

 

5.4.3 Support Points Required for Local-Level Reduction 
 

Parametrization based on local-level interface reduction requires that, for a given interface l
,lnθ  model parameters must lie in the convex hull of the support points 

(see section 5.2.1.3). This property reduces the dimension of the problem from nθ  to ,lnθ  for 
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each interface , 1, , Il l N=  . The steps taken to generate support points for the given 

model are illustrated below. 

 

Interface 1 

Interface 1 connects to components 1 and 2 that depend on parameters 1 and 2, respectively. 
Thus, interface 1 associates with parameters 1 and 2 which means that index set 1p  (see Eq. 

(5.25)) is defined as 

 { }1 1, 2p =  (5.42) 

and the number of associated parameters for interface 1 is 

 ,1 2nθ =  (5.43) 

From interface 1, it is required that the elements of the support points defined by { }1 1, 2p =  

(rows 1 and 2) create a simplex of minimum dimension ,1 2nθ = . So at least 

,1 1 2 1 3nθ + = + =  support points are required for interface 1. The elements in rows 1 and 2 

are generated based on a simplex in ,1 2nθ =  . Considering Eq. (5.37) with a=A I  and Eq. 
(5.39), the elements in rows 1 and 2 of the support points are 

 
1

1,1 , 1, 2,3Tm
p ma m= + =tθ  (5.44) 

where , 1, 2,3m m =t  are the vertices of the 2-dimensional simplex defined in Eqs. (5.35) 

and (5.36) with 2n = . The parameter a  scales the elements in rows 1 and 2 of the support 

points symmetrically around 
1

0
pθ . 

For reference, setting 1a =  yields the following elements in rows 1 and 2 of the support 
points 

 1 2 3

1.9659 0.7412 0.2929
0.7412 1.9659 0.2929

? ? ?
, ,

? ? ?

? ? ?

     
     
     
     

= = =     
     
     
     
     

θ θ θ

  

 (5.45) 

where question marks denote that information from more interfaces is needed to determine 
the value of the corresponding elements. 

 

Interface 2 

Interface 2 connects to components 2 and 3 that depend on parameters 2 and 3, respectively. 
Similarly to interface 1, for interface 2 the following hold 
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 { }2 2,3p =  (5.46) 

and 

 ,2 2nθ =  (5.47) 

Following the same process as before, the elements in rows 2 and 3 of the support points are 
defined as 

 
2

1,1 , 1, 2,3Tm
p ma m= + =tθ  (5.48) 

where , 1, 2,3m m =t  are the vertices of the 2-dimensional simplex defined in Eqs. (5.35) 

and (5.36) with 2n = . The parameter a  scales the elements in rows 2 and 3 of the support 

points symmetrically around 
2

0
pθ . 

For reference, setting 1a =  yields the following elements in rows 2 and 3 of the support 
points 

 1 2 3

? ? ?
1.9659 0.7412 0.2929
0.7412 1.9659 0.2929

, ,
? ? ?

? ? ?

     
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     

θ θ θ

  

 (5.49) 

From Eqs. (5.45) and (5.49) it can be seen that both interfaces 1 and 2 determine the value of 
the element in row 2 for the 3 support points. However, the values indicated by the two 
interfaces are different in row 2 for support points 1 ( 0.7412 1.9659≠ ) and 2 (
1.9659 0.7412≠ ). 

One way to solve this incompatibility is to add points 1 and 2 in Eq. (5.49) unchanged as points 
4 and 5, increasing the total number of support points to 5. That way, the following support 
points are defined 

1 2 3 4 5

1.9659 0.7412 0.2929 ? ?
0.7412 1.9659 0.2929 1.9659 0.7412

? ? 0.2929 0.7412 1.9659
, , , ,

? ? ? ? ?

? ? ? ? ?

         
         
         
         

= = = = =         
         
         
         
         

θ θ θ θ θ

    

 

However, swapping support points 1 and 2 in Eq. (5.49) results in an equivalent set of points 
that is fully compatible to the one in Eq. (5.45) since the elements in row 2 of the 
corresponding points are the same. Consequently, the points from Eqs. (5.45) and (5.49) can 
be “merged” in row 2 producing the support points 
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 1 2 3

1.9659 0.7412 0.2929
0.7412 1.9659 0.2929
1.9659 0.7412 0.2929

, ,
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θ θ θ

  

 (5.50) 

Eq. (5.50) shows that the number of support points remains 3 while interfaces 1 and 2 are 
both considered. The swap between points 1 and 2 in Eq. (5.49) is essential to avoid increasing 
the number of support points from 3 to 5. 

The same approach is used in all subsequent interfaces. Table 5.1 summarizes relevant 
information for some interfaces. 

 

Interface 
l  

Index set 

lp  
Number of associated 

parameters ,lnθ  
Minimum number of support points 

for given interface , 1lnθ +  

1 { }1, 2  2  3  

2  { }2,3  2  3  

3  { }3, 4  2  3  

        
9  { }9,10  2  3  

Table 5.1 Information concerning needed support points for each interface of given model. 

 

After considering all interfaces and performing the necessary swaps, the final support points 
needed for local-level reduction (assuming 1a = ) are 

 1 2 3

0.7412 1.9659 0.292
1.9659 0.7412
0.7412 1.9659
1.9659 0.7412
0.7412 1.9659

, ,
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θ θ θ
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.51) 

It can be seen that 3 support points are adequate for the approximation of interface modes in 
parametrized models based on local-level reduction. On the other hand, parametrization 
based on global-level reduction requires at least 11 support points (see section 5.4.2). 
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It must be noted that if the scaling parameter a  was not the same for all model parameters 
(rows of the support points) the “merging” of rows would not be possible. In that case more 
support points would be added. 

The ability to “merge” rows of support points is the big advantage of generating support points 
based on n -dimensional simplices. This property is only utilized by parametrization based on 
local-level interface reduction. 

 

5.4.4 Frequency of Interpolations Between the Two Parametrization Methods 
 

Sections 5.4.2 and 5.4.3 have demonstrated that parametrized models based on local-level 
reduction require less support points than a corresponding model based on global-level 
reduction. In the case of the 10-parameter beam model it was 3 and 11 points for local- and 
global-level reduction, respectively. 

This section investigates the frequency at which sample points lie in the convex hull of the 
support points generated for the two parametrization methods. This is equal to the frequency 
of Interpolations, which can be made only when the sample points lie in the convex hull of the 
support points. 

One hundred random sample points are generated. Each sample point kθ  is normally 

distributed with mean 0 1, ,1 T=θ   and covariance 2 20.05σ =I I , that is 

 0 2( , ), 1, ,100k kσ =Iθ θ   (5.52) 

For the parametrization based on global-level reduction, each sample point must lie in the 
convex hull of the 11 support points defined in Eq. (5.41). 

For the parametrization based on local-level reduction, only the associated model parameters 
for each interface , 1, ,9l l =   indicated in index set lp  (see Table 5.1) must lie in the 

convex hull of the 3 support points generated using the procedure in section 5.4.3. 

Support points generated for both parametrizations depend on the scaling parameter a  
around the nominal point. The results in Fig. 5.2 consider 10 sets of support points (for each 
parametrization) for 10 values of a : 0.1,0.2, ,1a =  . 

Fig. 5.2 clearly shows that parametrization based on local-level interface reduction results in 
much fewer out-of-hull sample points – for the same value of a  – compared to the 
parametrization based on global-level reduction. 

Specifically, for 0.3a ≥ , at least 95% of the sample points lie in the convex hull of the support 
points generated for local-level reduction. Conversely, a  must be at least 0.8  for more than 
50% of the sample points to lie in the convex hull of the support points generated for global-
level reduction. All this while the former parametrization uses 3 support points, and the latter 
uses 11. 
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Fig. 5.2 Frequency of interpolations for both parametrizations and for increasing values of a  

 

5.4.5 Comments on the Two Parametrization Methods 
 

It has been shown that, for the given model, parametrization based on local-level reduction 
requires less support points than the one based on global-level reduction (see sections 5.4.2 
and 5.4.3). At the same time, more sample points lie in the convex hull of the support points 
generated for the former method – even though it requires less support points than the latter 
one (see section 5.4.4). 

It is clear, therefore, that for models with a moderate-to-large number of parameters, 
parametrization based on local-level interface reduction is superior to that based on global-
level reduction in terms of number of needed support points and frequency of interpolations. 
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6 Application 
 

This chapter investigates the computational efficiency and accuracy of the proposed non-
parameterized model reduction techniques. 

A demonstrative FE model is first introduced. It is developed using the commercial program 
COMSOL Multiphysics [20]. 

The CMS techniques presented in chapters 2 and 3 are then applied on the model. For this, 
MATLAB [21] code is used which was developed for the purpose of this thesis. 

 

6.1 FE Model: The Metsovo Bridge 
 

The model used to illustrate the proposed methodologies is based on the Metsovo bridge. The 
bridge is depicted in Fig. 6.1 [17][22]. 

 

 

The Metsovo bridge is located at the section 3.3 of Egnatia Motorway, westwards of Metsovo 
village. It bridges the Metsovitikos river and the corresponding gorge between Metsovo and 
Anilio villages. The bridge has the longest span in Greece among cantilever bridges and one of 
the longest worldwide [22]. 

The total length of the bridge is 537 m. The bridge has 4 spans, of length 44.78 m, 117.87 m, 
235.00 m, 140.00 m and three piers of which pier P1, 45 m high, supports the boxbeam 
superstructure through pot bearings (movable in both horizontal directions), while P2 and P3 
piers (110 m and 35 m, respectively) connect monolithically to the superstructure. The total 
width of the deck is 13.95 m [17]. 

The superstructure is prestressed of single boxbeam section, of height varying from the 
maximum 13.5 m in its support to pier P2 to the minimum 4.00 m in key section. Piers P2 and 
P3 are founded on huge circular Ø12.0 m rock sockets in the steep slopes of the Metsovitikos 
river, in a depth of 25 m and 15 m, respectively [17]. 

Fig. 6.1 Two views of the Metsovo bridge. 
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A longitudinal view of the bridge can be seen in Fig. 6.2 [22]. 

 

 

The FE model of the bridge is constructed using the commercial package COMSOL 
Multiphysics. For this, a CAD model of the bridge is initially made using the available design 
plans, the geometric details, and the material properties of the structure. This model is then 
imported in the COMSOL environment as the geometry of the bridge. 

To simplify the model, the pot bearings are treated as linear structures. To simulate the effect 
of the soil, the foundations and bearings are attached to large soil blocks with fixed 
boundaries. The FE model of the bridge and its division into components is presented in Fig. 
6.3. For demonstration purposes, it is divided into 22 component. 

The nominal values of the relevant material properties are presented in Table 6.1.  

 

Material property Deck and 
bearings 

Piers and 
foundations 

Soil 

Young’s modulus, E [GPa] 37 34 1011 
Poisson’s ratio, ν 0.2 0.2 0.3 
Density, ρ [kg/m3] 2548 2548 1800 

Table 6.1 Nominal values of the material properties of the FE model. 

 

Fig. 6.2 Longitudinal view of the Metsovo bridge. 
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The mesh consists of three-dimensional tetrahedral Lagrange finite elements with quadratic 
discretization. It is created using the “normal” settings concerning element size. This results 
in a model with 168,008 finite elements and 944,613 DOF. Model reduction is well suited for 
this FE model since it consists of nearly one million DOF. 

A typical pier and deck section with their FE mesh can be seen in Fig. 6.4. 

All necessary model data (division into components, mesh connectivity etc.) are then 
transferred to MATLAB environment using the LiveLink module of COMSOL Multiphysics. 
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Close-up of right bearings (in brown) 

Fig. 6.3 FE model of the Metsovo bridge and its components. 
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6.2 Reduced-Order FE Model: No Interface Reduction 
 

In this section, the standard formulation of the Craig-Bampton CMS method is applied to the 
FE model of the bridge (see section 2.3). The reduction is performed only on the internal DOF 
of each component while the interface DOF are kept unreduced. 

 

6.2.1 Number of Kept Fixed-Interface Normal Modes for Each Component 
 

The highest modal frequency that is of interest is denoted as the cutoff frequency cω . It is 

selected to be the 20th modal frequency of the bridge. The lowest 20 modal frequencies 
computed from the unreduced mass and stiffness matrix of the FE model are presented in Fig. 
6.5. 

It can be seen that cω  is approximately 4.5 Hz. 

The kept fixed-interface normal modes of each component (computed using Eq. (2.4)) are all 
those that have a modal frequency less than max cω ρω= , a multiple of the cut-off frequency 

cω . The multiplication factor ρ  controls the number of kept modes per component. Larger 

values of ρ  lead to more retained fixed modes per component. 

The objective is to find the value of ρ  that leads to a maximum fractional error between the 
modal frequencies computed using the complete FE model and the modal frequencies 
computed using the reduced-order model of the order of approximately 10-2 (1%). After trial 
and error, the value of ρ  is found to be 2.5ρ = . 

 

 

Fig. 6.4 Typical deck section (left) and section of highest pier (right) with their FE 
mesh. 
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6.2.2 Results 
 

Fig. 6.6 shows the fractional error for the first 20 modal frequencies for 2.5ρ = . 

 

 

 

Fig. 6.5 Lowest 20 eigenfrequencies of the original (unreduced) FE 
model of the Metsovo bridge. 

Fig. 6.6 Fractional modal frequency error - as a function of 
eigenmode number - between the predictions of the full model and 
the reduced-order model without interface reduction and . 
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It is clear that, for 2.5ρ = , the maximum fractional error is of the order of 10-2 (for the 20th 
eigenfrequency). 

Fig. 6.7 shows the number of internal DOF per component for the full model and for the 
reduced model with 2.5ρ = . The number of internal DOF is reduced more than three orders 
of magnitude in some components. 

 

 

6.3 Reduced-Order FE Model: Global-Level Interface Reduction 
 

Here, reduction of internal as well as interface DOF is considered. The interface reduction is 
performed at the global level where all interfaces are treated as one (see section 3.1). 

The number of kept normal modes for each component is calculated the same way as in the 
previous section, that is, with 2.5ρ = . 

 

6.3.1 Number of Kept Global Interface Modes 
 

The number of kept interface modes is computed similarly to the number of retained fixed-
interface normal modes for each component (see section 6.2.1). 

The kept interface modes (computed using Eq. (3.3)) are all those that have a modal frequency 
less than max cω νω= , a multiple of the cut-off frequency. The multiplication factor ν  controls 

the number of kept interface modes. 

Fig. 6.7 Number of DOF per component of the full and reduced FE 
model of Metsovo bridge for  and no interface reduction. 
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The objective is, again, to find the value of ν  that leads to a maximum fractional error 
between the modal frequencies computed using the complete FE model and the modal 
frequencies computed using the reduced-order model of the order of approximately 10-2 (1%). 
After trial and error, the value of ν  is found to be 2.4ν = . 

 

6.3.2 Results 
 

For 2.4ν = , the fractional error for the first 20 modal frequencies is presented in Fig. 6.8. 
The maximum fractional error is of the order of 10-2 for the 20th eigenfrequency. 

 

 

6.4 Reduced-Order FE Model: Local-Level Interface Reduction 
 

In this section, interface reduction at the local level is applied (see section 3.2). In local-level 
reduction, each interface is treated separately. 

The number of kept normal modes for each component is calculated the same way as in the 
previous two sections, that is, with 2.5ρ = . 

 

6.4.1 Selection of Interfaces 
 

Fig. 6.8 Fractional modal frequency error - as a function of 
eigenmode number - between the predictions of the full model and 
the reduced-order model with global-level interface reduction, 

 and . 
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Since every interface is treated separately, the selection of interfaces impacts the 
computational efficiency of the model reduction technique. There is no “correct” way to select 
interfaces, but some ways are more efficient than others. That is, they require less modes per 
interface to give accurate results. 

Various interface definitions were examined – always taking into consideration the guidelines 
presented in section 3.2.1. The chosen interface selection consists of thirteen interfaces and 
is shown in Fig. 6.9. It arises “normally” since boundaries that are close together are selected 
to form a single interface. Information about adjacent components and the number of DOF 
for each interface is presented in columns two and three of Table 6.3. 

 

 

6.4.2 Number of Kept Local Interface Modes for Each Interface 
 

Two methods are examined to calculate the number of retained modes for each interface. 
One is based on the cutoff frequency cω  and the other is based on solving an optimization 

problem. 

 

6.4.2.1 Number of kept interface modes based on the cutoff frequency cω  
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Fig. 6.9 Selection of interfaces for local-level reduction of the FE model of the Metsovo bridge. 
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This method is similar to that used to calculate the number of kept global interface modes in 
global-level reduction. The kept local interface modes for each interface (computed using Eq. 
(3.17)) are all those that have a modal frequency less than max cω µω= , a multiple of the cut-
off frequency (4.5 Hz). 

The value of the multiplication factor µ  must be such, that the maximum fractional error 
between the modal frequencies computed using the complete FE model and the modal 
frequencies computed using the reduced-order model is of the order of approximately 10-2 
(1%). After trial and error, the value of µ  is found to be 70.5µ = . 

The number of retained modes for each interface using this method is presented in the last 
column of Table 6.3. 

 

6.4.2.2 Number of kept interface modes as a solution to an optimization problem 
 

This method of selecting the number of retained modes per interface uses optimization to 
find a solution. 

The optimization problem consists of thirteen independent variables , 1, 2,...,13i iθ = . Each 
variable is associated with an interface and indicates the number of kept modes for that 
interface. 

The variables can take only integer values between one (the minimum number of kept modes 
for an interface) and an arbitrary upper bound. The upper bound is selected at 100 modes for 
every variable. 

The objective function to be minimized is the sum of the squares of the independent variables, 
that is 

 
2min ( )f

+∈
=

θ
θ θ



 (6.1) 

where 

 1 2 13[ , , , ]Tθ θ θ=θ   (6.2) 

is the vector of independent variables. 

The constraint is that the maximum fractional error between the modal frequencies computed 
using the complete FE model and the modal frequencies computed using the reduced-order 
model is no larger than 10-2 (1%). 

To solve this integer optimization problem, MATLAB’s “ga” function with integer constraints 
was used [23]. It is part of the global optimization toolbox and uses genetic algorithms to solve 
the optimization problem. 

Four runs of the algorithm were performed on a computer with a 64-thread CPU running at 
3.7 GHz and 128 GB of RAM. Because the genetic algorithm is stochastic, the results differed 
a little each time. 
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The number of generations and the time for the algorithm to finish for each run are presented 
in Table 6.2. The results of each run are shown in columns 4 through 7 of Table 6.3. 

 

 Run 1 Run 2 Run 3 Run 4 
Number of generations 249 212 281 269 
Time for completion [hours] 13 11 25 24 
Table 6.2 Number of generations and time for completion for each run of the genetic 
algorithm. 

 

Table 6.3 Information for each interface involved in local-level reduction along with the 
number of kept interface DOF resulting from optimization and use of a cutoff frequency. 

 

6.4.3 Results 
 

The fractional error for the first 20 modal frequencies and the two methods of determining 
the number of kept modes per interface is presented in Fig. 6.10. 

It can be seen that the four optimization runs give very similar results. The cutoff frequency 
method gives smaller fractional errors for the medium modal frequencies but performs the 
same as the other method for the 1st and 20th eigenfrequencies. That is, the maximum 
fractional error for both methods is of the order of 10-2. 

The total number of kept interface modes using optimization (≈300 kept modes) is about 46% 
smaller than that resulting from the use of a cutoff frequency (439 kept modes). This justifies 
the use of optimization as a method to compute the number of retained modes for each 
interface. 

Interface 
number 

Adjacent 
components 

Number 
of DOF 

Number of kept modes 
Using optimization Using a cutoff frequency 

with 70.5µ =  Run 1 Run 2 Run 3 Run 4 
1 15-16-18 450 5 10 10 9 11 
2 14-19 561 1 1 6 8 1 
3 3-13-14-15 1524 28 33 28 28 63 
4 12-13 663 38 38 38 39 37 
5 11-20 3123 1 2 8 12 1 
6 2-10-11-12 2805 59 59 60 59 92 
7 9-10 603 37 37 37 37 36 
8 8-9 603 33 33 33 33 33 
9 7-8 612 23 19 19 21 37 
10 6-21 2259 11 3 1 5 1 
11 1-5-6-7 2112 37 40 40 37 78 
12 4-5 648 22 7 23 11 38 
13 4-17-22 450 4 9 5 5 11 
Total - 16413 299 291 308 304 439 
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6.5 Comparison of methods 
 

The number of DOF associated with the full FE model and the three reduced-order models 
already presented are shown in Table 6.4. When interface reduction is not considered, the 
total number of DOF is reduced by one order of magnitude. With global- and local-level 
interface reduction, the total DOF are reduced by four and three orders of magnitude, 
respectively. 

The last row of the same table shows the time required for the calculation of the 20 lowest 
interface modes for the full model and the reduced-order models. The eigenproblems were 
solved using MATLAB on a computer equipped with a 64-thread CPU running at 3.7 GHz and 
128 GB of RAM. Reduction of internal DOF only, results in a model that can be solved about 
10 times faster than the full model. When interface reduction is considered at the global and 
local level, the time is reduced by approximately four and three orders of magnitude, 
respectively. 

 

Fig. 6.10 Fractional modal frequency error - as a function of eigenmode number - between the 
predictions of the full model and the reduced-order model with local-level interface reduction, 

 and two methods of determining the number of kept modes per interface. 
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Table 6.4 Number of DOF and time to perform an eigenvalue analysis for the full FE model and 
the three reduced-order models of the Metsovo bridge. 

 

Fig. 6.11 shows the fractional error for the first 20 modal frequencies between the full FE 
model of the bridge and the three reduced-order models in Table 6.4. 

When global-level interface reduction is considered, the model behaves very similarly to that 
created without reducing the interface DOF. Both of these methods demonstrate the smallest 
fractional error at the 1st modal frequency. As the eigenfrequency number increases, the error 
also increases, and the maximum fractional error occurs at the 20th modal frequency. The 
close performance of these two methods is observed in [7] where numerical experiments have 
been performed in a cantilevered-plate model, a w-bracket model and a can-beam model. The 
authors attribute the good performance of the global-level method to the proper 
consideration of the coupling between all substructures. 

On the other hand, for local-level reduction, the maximum fractional error occurs at the 1st 
eigenfrequency. It then decreases until the 6th modal frequency and performs similarly to the 
other two CMS methods for the rest modal frequencies. Analogous behavior has been 
observed in [7] for the applications mentioned above and in [17] where the same bridge has 
been analyzed. High accuracy was not expected of the method. As already mentioned, the 
benefits of such a CMS method are: 

• Only the partitions of the reduced-order matrices that correspond to the DOF of each 
interface are analyzed sequentially or in parallel (see Eq. (3.17)). This can be helpful 
for very large FE models with millions of interface DOF. 

• They generally require less support points to approximate interface modes than 
global-level methods (see section 5.4). 

From the above discussion it is clear that each CMS method has its advantages and 
disadvantages. The final decision lies on the user that has to decide which method is better 
suited for the problem at hand. 

 Full 
model 

Reduced-order 
model: No 
interface 
reduction with 

2.5ρ =  

Reduced-order 
model: Global-level 
interface reduction 
with 2.5ρ =  and 

2.4ν =  

Reduced-order model: Local-
level interface reduction 
with 2.5ρ =  and kept 
interface modes given by run 
2 of optimization 

Total Internal DOF 928,200 46 46 46 
Total Interface DOF 16,413 16,413 36 291 
Total DOF 944,613 16,459 82 337 
Time to calculate the 20 lowest 
modal frequencies [sec] 

174 17 <10-2 <10-1 
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Fig. 6.11 Fractional modal frequency error - as a function of eigenmode number - between 
the predictions of the full model and the three reduced-order models presented in Table 
6.4. 
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7 Conclusions 
 

This work provided the theoretical basis for three non-parameterized CMS methods: 

1. The classic Craig-Bampton method without interface reduction  
2. A global-level interface reduction method based on the Craig-Bampton technique 
3. A local-level interface reduction method based on the Craig-Bampton technique 

An improved formulation of the classic Craig-Bampton method has also been presented. It 
takes into consideration the residual normal modes of each component and is expected to 
produce more accurate models compared to the standard formulation of the method. Due to 
excessive computational requirements, this improved formulation has not been presented in 
the application section. 

Moreover, this thesis proposed three parametrized CMS methods that can be used for 
performing structural dynamics simulations. They are the parametrized equivalents of the 
above non-parameterized methods. 

These methods are well suited for simulation-based problems because it has been shown that 
the resulting parametrized reduced-order matrices needed to estimate the dynamic response 
of the original system can be expressed explicitly in terms of model parameters. Therefore, 
the computationally-intensive process of reconstructing them at the substructure level at 
each sample of the simulation process is completely avoided. 

For the two parametrized CMS methods using interface reduction, an efficient interpolation 
scheme has been presented. It involves support points in the parameter space which are used 
to approximate the interface modes at each sample point. Using such a scheme accelerates 
the simulation process since there is no need for a direct interface analysis. 

A novel method for generating support points based on n-dimensional simplices has been 
developed. It proved especially useful in minimizing the number of support points for the 
parametrized CMS method using local-level interface reduction. Also, most of the 
formulations concerning that method are novel since no relevant work on the specific 
technique could be found. 

The three non-parametrized methods have been applied on a large FE model of nearly one 
million DOF. For the first two CMS methods, the number of kept normal modes and interface 
modes was determined using a cutoff frequency. For the third method, optimization using a 
genetic algorithm with integer constraints proved more efficient than using a cutoff 
frequency. The results concerning fractional modal frequency error between the predictions 
of the full model and the reduced-order models created with the three CMS methods seemed 
to agree with similar studies in bibliography. 

There are certainly some interesting open areas that were not covered by this thesis. The 
assessment of the computational efficiency and accuracy of the parametrized CMS methods 
is strongly suggested for a future work. The inclusion of non-linear components in the 
formulations is another interesting topic. In the special case where a structure only exhibits 
localized non-linearities, significant computational efficiency can be obtained using CMS due 
to the restriction of the iterative process to the DOF of the nonlinear substructures. Finally, 
the performance of the improved formulation of the Craig-Bampton method could be 
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examined if more powerful equipment is available or more efficient formulations are 
developed. 
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9 Appendix 
 

Great effort has been put in developing MATLAB code that can be used to apply every 
formulation presented in this thesis. Currently, the code is compatible with FE models created 
with COMSOL Multiphysics. In the future, it may be modified to accept models from other 
commercial FE packages as well. 

In the time of writing, the code is hosted on a GitHub repository under a non-commercial 
license. It can be found using the following link: 

 

https://github.com/FK-MAD/CMS 

 

If for some reason the link does not work or the code is removed, anyone interested can 
contact me on fkatsimalis@gmail.com. 

 

What follows is a presentation of the function input.m that controls most aspects of the code. 
The comments are self-explanatory. 
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  1 %% input
  2 
  3 
  4 % ---parallelization settings---
  5 indata.num_workers=6; % number of workers to use
  6 % ---
  7 
  8 
  9 % ---optimization settings---
 10 indata.num_modes=20; % number of first modes to use in error term between unreduced and reduced 
model
 11 % ---
 12 
 13 
 14 % ---matrix assembly settings---
 15 % method of building the block-diagonal matrices. It might help with very
 16 % big matrices that may not fit in RAM.
 17 % 1 -> use files mats_S_k.mat, read variables in a for-loop and build the block-diagonal 
incrementally
 18 % 2 -> use files mats_S_k.mat, read variables in a for-loop and build the block-diagonal once
 19 % 3 -> use file mats_S.mat and build the block-diagonal once
 20 indata.blkdiag_method=2;
 21 % ---
 22 
 23 
 24 % ---reduction method---
 25 % without parametrization: 1=no interface reduction | 2=global interface reduction | 3=local 
interface reduction
 26 % with parametrization:    4=no interface reduction | 5=global interface reduction | 6=local 
interface reduction
 27 indata.reduction_I=1;
 28 % ---
 29 



 30 
 31 % ---use of static correction---
 32 % 0=without static correction | 1=with static correction
 33 indata.static=0;
 34 % ---
 35 
 36 
 37 % ---kept modes for component groups---
 38 % method of calculating the kept modes
 39 % 0=explicitly using n_id_S | 1=until the target eigenfrequency for each group is reached
 40 indata.eigf.group.method=1; 
 41 
 42 % all vectors have:
 43 % rows=1
 44 % columns>=number of component groups (will run normally if more columns than component groups 
exist)
 45 
 46 % this is used if method=0
 47 indata.n_id_S=50*ones(1,100); % kept fixed-interface normal modes for each group of components 
 48 
 49 % this is used if method=1
 50 r=2.5*ones(1,100); % multiplication constant used to define the target frequency
 51 indata.eigf.group.multiplier=r;
 52 indata.eigf.group.target=r*4.5; % target eigenfrequency (Hz) for each group of components
 53 
 54 % this controls the way modes are searched
 55 indata.eigf.group.max=500*ones(1,100); % maximum allowed number of modes
 56 indata.eigf.group.step=50*ones(1,100); % increase in the number of calculated modes if target is not 
reached
 57 indata.eigf.group.init=50*ones(1,100); % initial number of calculated modes
 58 % ---
 59 
 60 



 61 % ---stored modes for component groups---
 62 % they are computed once and used when updating matrices during
 63 % optimization of r. They should be enough to avoid solving the eigenproblem
 64 % during optimization.
 65 % If you don't want any stored modes select:
 66 % indata.eigf.group.method_store=0 and
 67 % indata.n_id_S_store=0*ones(1,100)
 68 
 69 % everything here works similarly to kept modes (same logic)
 70 
 71 indata.eigf.group.method_store=1; % 0 or 1
 72 
 73 % this is used if method_store=0
 74 indata.n_id_S_store=50*ones(1,100); % large values
 75 
 76 % this is used if method_store=1
 77 indata.eigf.group.target_store=20*4.5*ones(1,100); % large cutoff frequency
 78 
 79 % this controls the way modes are searched
 80 indata.eigf.group.max_store=500*ones(1,100); % large values
 81 indata.eigf.group.step_store=50*ones(1,100); % large values
 82 indata.eigf.group.init_store=50*ones(1,100); % large values
 83 % ---
 84 
 85 
 86 % ---kept modes for interfaces---
 87 % method of calculating the kept modes
 88 % 0=explicitly using n_IR (for global reduction) or n_IR_l (for local reduction) | 1=until the 
target eigenfrequency for each interface is reached
 89 indata.eigf.interface.method=0;
 90 
 91 % all vectors have:
 92 % rows=1



 93 % columns>=number of interfaces (will run normally if more columns than interfaces exist)
 94 
 95 % if global interface reduction is selected:
 96 % only the first element of the target, max, step and init vectors is used
 97 % (there is only one interface)
 98 
 99 % this is used if method=0 and global reduction is selected
100 indata.n_IR=36; % kept interface modes for all interfaces (global reduction)
101 
102 
103 % this is used if method=0 and local reduction is selected
104 indata.n_IR_l=[10,1,33,38,2,59,37,33,19,3,40,7,9]; % kept interface modes for each interface (local 
reduction)
105 
106 % this is used if method=1
107 v=70.5*ones(1,100); % multiplication constant used to define the target frequency
108 indata.eigf.interface.multiplier=v;
109 indata.eigf.interface.target=v*4.5; % target eigenfrequency (Hz) for each interface
110 
111 % this controls the way modes are searched
112 indata.eigf.interface.max=1000*ones(1,100); % maximum allowed number of modes
113 indata.eigf.interface.step=100*ones(1,100); % increase in the number of calculated modes if target 
is not reached
114 indata.eigf.interface.init=100*ones(1,100); % initial number of calculated modes
115 % ---
116 
117 
118 % ---stored modes for interfaces---
119 % they are computed once and used when updating matrices during
120 % optimization of v. They should be enough to avoid solving the eigenproblem
121 % during optimization.
122 % If you don't want any stored modes select:
123 % indata.eigf.interface.method_store=0 and indata.n_IR_l_store=0*ones(1,100)



124 
125 % everything here works similarly to kept modes (same logic)
126 
127 indata.eigf.interface.method_store=0; % 0 or 1
128 
129 % this is used if method_store=0 and global reduction is selected
130 indata.n_IR_store=50; % for global reduction, large value
131 
132 % this is used if method_store=0 and local reduction is selected
133 indata.n_IR_l_store=100*ones(1,100); % for local reduction, large values
134 
135 % this is used if method_store=1
136 indata.eigf.interface.target_store=80*4.5*ones(1,100); % large cutoff frequency
137 
138 % this controls the way modes are searched
139 indata.eigf.interface.max_store=500*ones(1,100); % large values
140 indata.eigf.interface.step_store=100*ones(1,100); % large values
141 indata.eigf.interface.init_store=100*ones(1,100); % large values
142 % ---
143 
144 
145 % ---material properties---
146 % all vectors have:
147 % rows>=number of component groups (will run normally if more columns than component groups exist)
148 % columns=1
149 
150 indata.E=37*10^9*ones(22,1); % Young's modulus [Pa] for each group of components. most groups are 
deck components -> 37 GPa
151 indata.E([6,11,14])=34*10^9; % groups 6, 11 and 14 are piers -> 34 GPa
152 indata.E(18:22)=10^20; % groups 18 through 22 are soil -> 10^11 GPa
153 
154 indata.nu=.2*ones(22,1); % Poisson's ratio. for deck and piers -> 0.2
155 indata.nu(18:22)=.3; % groups 18 through 22 are soil -> 0.3



156 
157 indata.rho=2548*ones(22,1); % density [kg/m^3]. for deck and piers -> 2548 [kg/m^3]
158 indata.rho(18:22)=1800; % groups 18 through 22 are soil -> 1800 [kg/m^3]
159 % ---
160 
161 
162 % ---general parametrization settings---
163 % interpolation scheme used in interpolation of interface modes (global or local reduction)
164 indata.quad_interp=0; % 0=linear interpolation | 1=quadratic interpolation
165 
166 % static correction method
167 indata.invariant=0; % 0=full static correction | 1=invariant assumption
168 
169 
170 % functions of the model parameters -> one entry for each model parameter
171 % func_g applies on mass matrix (see Eq. (2.3))
172 indata.func_g=repmat({@(x) 1},1,22);
173 
174 % func_h applies on stiffnes matrix (see Eq. (2.4))
175 indata.func_h=repmat({@(x) x},1,22);
176 
177 
178 % vectors have:
179 % rows=number of model parameters
180 % columns=1
181 
182 % sample point where reduced matrices are calculated
183 % This is used to test the code. Normally, every sample point is generated
184 % during the stochastic simulation process.
185 indata.theta_k=ones(22,1);
186 
187 % nominal point used in the invariant assumption of static correction. See
188 % page 42 of Book.



189 indata.theta_nom=ones(22,1);
190 
191 % nominal point used in interpolation of interface modes (global or local
192 % reduction). See page 50 of Book.
193 indata.theta_0=ones(22,1);
194 % ---
195 
196 
197 % ---settings concerning support points (if parametrization is used)---
198 % used in interpolation of interface modes (global or local reduction)
199 
200 % 'scatter_theta_l' is the fraction of theta_0 that the support points are
201 % scattered around theta_0 (can be different for each parameter)
202 % e.g. for a model with 2 parameters and theta_0=[1;1]:
203 % scatter_theta_l(1)=.1 -> support of parameter 1=[.9,1.1]
204 % scatter_theta_l(2)=.2 -> support of parameter 2=[.8,1.2]
205 indata.scatter_theta_l=1*ones(length(indata.theta_0),1);
206 
207 % 'simplex' -> for dimension n there are needed n+1 vertices to create the convex hull
208 % 1D -> 2 points -> line segment
209 % 2D -> 3 points -> triangle
210 % 3D -> 4 points -> tetrahedron
211 % 4D -> 5 points -> 5-cell (4-simplex)
212 % ...
213 
214 % 'hypercube' -> for dimension n there are needed 2^n vertices to create the convex hull
215 % 1D -> 2 points -> line segment
216 % 2D -> 4 points -> square
217 % 3D -> 8 points -> cube
218 % 4D -> 16 points -> 4-cube (hypercube,tesseract)
219 % ...
220 
221 % both methods provide as few support points as possible using smart 



222 % merging rules
223 indata.method_theta_l='simplex'; % 'simplex' or 'hypercube'
224 % ---
225 
226 
227 %% pass additional input data to structure "indata"
228 
229 indata.filename=filename;
230 indata.save_dir=save_dir;
231 
232 indata.S_0=S_0; % groups that are independent of model parameters
233 indata.S_j=S_j; % groups that depend of model parameters. cell 1,2,... contains the groups that 
depend on parameter 1,2,...
234 indata.n_theta=length(indata.S_j); % number of parameters. n_theta=length(func_g);
235 
236 indata.group_S=group_S; % grouping of geometrical domains. cell 1,2,... contains the domains that 
make up group 1,2,...
237 indata.n_id=sum(indata.n_id_S); % total number of kept fixed-interface normal modes
238 indata.N_S=length(indata.group_S); % number of groups of components
239 indata.n_IRL=sum(indata.n_IR_l); % total number of kept interface modes using local reduction
240 
241 indata.n_DIL=indata.n_id+indata.n_IRL; % dimension of reduced matrices if local reduction is used
242 indata.n_DI=indata.n_id+indata.n_IR; % dimension of reduced matrices if global reduction is used
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