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Abstract

Component mode synthesis (CMS) is a well-known model reduction method usually applied
on large and complex finite element models of hundreds of thousands or even million degrees
of freedom. The resulting reduced-order model maintains the dynamic behavior of the original
but requires significantly less time and resources to be analyzed. This thesis presents the
classic Craig-Bampton CMS technique and two additional methods based on it that consider
interface reduction at the global and local level. Standard CMS methods cannot be used
directly in structural dynamics simulations due to the repetitive generation of the reduced-
order model which can be computationally expensive. In this work, three parametrized CMS
methods are introduced along with an efficient parametrization scheme and an interpolation
method for approximating interface modes. A novel method for generating support points
used in the interpolation scheme of interface modes is also presented. If the structure is
parametrized using the proposed scheme, dramatic computational savings can be achieved
since the parametrized CMS methods presented here do not require the re-assembling of the
reduced-order system matrices during the simulation process. The efficiency and accuracy of
the non-parameterized methods is examined using a high-fidelity finite element model of a
highway bridge consisting of nearly one million degrees of freedom. The finite element model
is constructed using COMSOL Multiphysics and all CMS methods are applied using MATLAB
code originally developed for the purpose of this thesis.

Keywords: Model reduction, Component mode synthesis, Structural dynamics, Finite
elements, Eigen-analysis, Substructuring, Craig-Bampton method, Interface reduction,
Parametrization, Parametrized reduced order models, MATLAB, COMSOL Multiphysics
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Mponyuévecg Texvikec Melwong MovteAwy o€
[MPOCOUOLWOELS AUVOULKAC TwV KATooKEV WV

®dilutnog KatoaAng

Tunua Mnxavoloywv Mnxavikwy, Navemniotrulo Oscoaiiog

ErupAénwv: Ap. Kwotag Naradnuntpiov

KaBnyntng Auvapikng twv Kataokevwv, TuRua Mnxavoloywv Mnyxavikwy, Naveniotnuio
Oeooaliag

MeplAngn

H péBobdog ouvBeong Wlopopdpwv (Component mode synthesis: CMS) elval pia upéwg
Sladebopévn TeXVIKN pelwong povtéAwv mou ouvnBweg epapuoletal o peyala Kol cUVBETa
HMOVTEAQ TEMEPAOCUEVWY OTOLXELWV €KATOVTIASWY XALASWV 1 aKOUn Kol E€KATOPHUPLwV
Babpwv eleuvBepiag. To POVIEAD HELWPEVNC TAENC TOU TipOKUTITEL Slatnpel tn SUVOIKN
oupmnepLPopd Tou apXLkoU aAAG ATMALTETAL ONUAVTIKA ALYOTEPOC XPOVOC KOl TIOPOL yLa TNV
avaAuon tou. Auth n epyacia mopouctdlel tnv kAoolk texvikn Craig-Bampton kot 0o
emumAéov peBdboug mou Paocilovtal oe auTHV OL OMOLEC MpaypaTomoolV Pelwon Twv
OUVOPWV HETOEU UTIO-KATOOKEUWY O OALKO OAAA Kal Tomiko eminedo. Ot TuTiikéC péEBobdol
CMS 68ev umopoulv va xpnotpomolnBolv ameuBeioC 0 MPOCOUOLWOELS SUVOUIKNAG TWV
KATAOKEU WV AOYW TNG avAyKnG yla emavalapBavopevn SnLoupyia ToU LOVTEAOU PELWUEVNG
Ta€ng mou umopel va gival umoAoyLloTika damavnpr. € AUTAV TV €EPYACLa, ELCAYOVTAL TPELG
napapeTpornolnpuéveg péBodot CMS pall Le €va OmOTEAECUATLKO OO TTOPAUETPOTIONONG
NG KOTOOKEUNC Kol pio péBodoc mapepBoAng yla Thv MPooEyylon twv olopopdwy ota
olvopa PeTafL uTO-KaTtaokeuwy. Mapouotldletal emiong pLo véa pEBodog yla tn Snuouvpyia
onUelwv TapeUPOANC TTOU XPNOLUOTOLOUVTOL OTO TIPOTELVOUEVO OXAHUO TIOPEUBOAARC TWV
ouVOpPLOKWVY LSlopopdwy. EAv n apxLKr) KATAOKEUT TIUPAETPOTIOLNOEL XpNOLLOTOLWVTOC TO
TIPOTELVOLEVO OXNIUO, UTopEL va emiteuxBel peyain pelwon tou unohoylotikol pdptou adou
oL TapopeTpomolNuéveg HEBoSol CMS mou mapouctalovral edw 6gv amaltouv Tnv
enavalapBavopevn Snulouvpylad Twv HNTPWWV HEWWHEVNG TAENG Katd Tn OldpKela
pooopoiwong TNG KATAOKEUNG. H amoTEAEOUATIKOTNTA KAl N aKpiBELX TWV TUTILKWV (KNn-
TOPAETPOTIOLNUEVWY) UEBOSWY efetalovtal XPNOLLOTOLWVTAG £VA OPKETA AEMTOUEPES
LOVTEAO TIEMEPACUEVWV OTolXElwv plog yédupag mou amoteAeital amo oxedov Eva
EKATOUUPLO BaBuoug edeubepiag. To LOVTEADO MEMEPACUEVWY OTOLXELWV AVATITUCOETOL UE
™ xpnon tou makétou COMSOL Multiphysics kat OAeg ot péBodol CMS edapuolovral
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xpnolporowwvrag kwdika MATLAB mou oavamtuxbnke ebikd yla Toug oOKomoUG TNG
SUMAWUATLKAG epyaciag.

NE€erg KAelSLA: Meilwon poviélou, 2UvBeon Slopopdwy, AUVOULK TWV KATOOKEUWYV,
Menepaopéva otolyeia, ISlopopdikn avaiuon, Alaipeon og umo-katookeuég, MéBobdog Craig-
Bampton, Meilwon OUVOPLOKWY BaBuwv ehevBeplag, MNapapeTpomnoinon,
Mapapetponotnuévo LOVTEAA HELWHEVNG TAENg, MATLAB, COMSOL Multiphysics
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1 Introduction

The finite element (FE) method is widely used today in virtually all fields of engineering. It has
proven especially useful in the analysis of structures, fluids, and solids. The capabilities and
usefulness of the method is closely related to the computational power of the digital computer
[1]. Today’s computer hardware allows for large and complex engineering problems to be
solved relatively quickly using commercial programs that utilize the FE method.

Such problems require a FE model to be developed which is characterized by — among others
—the number of finite elements and degrees of freedom. The number of degrees of freedom
of a FE model greatly impacts the computational demands and time needed to analyze it. For
many modern, high-fidelity models with hundreds of thousands or millions of degrees of
freedom, the direct implementation of the FE method is impractical.

When the model is so large or complex, that it is inefficient to apply the FE method directly on
it, some form of model reduction must be employed [2]. With model reduction (or model
order reduction), the number of degrees of freedom of the original FE model is greatly
reduced and a new, reduced-order model is used in its place. The reduced-order model
requires less computational resources while it retains the dynamic characteristics of the
original model.

Component mode synthesis (CMS), also referred to as dynamic substructuring, is a very
popular method of model reduction for large structural dynamics problems. It involves
partitioning of the entire structure into several simpler substructures or components,
obtaining reduced-order models of the substructures and then assembling a reduced-order
model of the entire structure [3]. The essential idea is to derive the behavior of the entire
assembly from its constituents [2].

Apart from the case of large or complex models, some occasions where the use of CMS for
model reduction presents an attractive possibility are:

e In a structural dynamics simulation where a large number of dynamic re-analyses is
required. Such problems are Bayesian uncertainty quantification, model updating,
reliability analysis and so on. Typically, the time to perform a single analysis is large
(in view of the large number of re-analyses necessary) and the computational effort
can be excessive [3]. Using CMS greatly reduces the time of a single analysis, and
consequently, the time-to-solution.

e Inadesign situation, where it is “natural” for different parts of a model to be designed
by different teams independently [4]. For example, the different components of an
aircraft are designed by different groups which — using CMS — could work only on their
relevant part (wings, fuselage etc.) of the original structure (the aircraft).

e In a situation where parallel processing capabilities exist [4]. In such a setting, the
substructures of the reduced-order model could be analyzed in parallel and great time
savings could be made.

e In case experimentally obtained modal data are available for some components, CMS
gives the possibility of combining modeled components with experimentally
identified ones [5].



This work focuses on a specific CMS technique: the Craig-Bampton (or Hurty/Craig-Bampton)
approach [6]. It is one of the most popular CMS techniques in industry and academia [7] and
mathematically justified as the most “natural” CMS method [4][8]. It makes use of
substructure eigenproperties (component modes and eigenvalues) to “capture” the dynamic
behavior of each component and subsequently of the original structure.

The method is a modification of Hurty’s approach [9], one of the first CMS methods introduced
in the mid-1960s. Hurty’s method uses three types of component modes: rigid body modes,
constraint modes, and fixed-interface normal modes. Craig and Bampton essentially simplified
Hurty’s method by showing that it was not necessary to separately consider the rigid body
modes [4]. Other classic CMS methods resulting from Hurty’s work are that of Rubin [10] and
MacNeal [11] in the 1970s.

Although capable of significant reduction in the number of a component’s internal DOF, the
Craig-Bampton method does not consider reduction at the interface DOF. The number of
interface DOF in the original FE model is determined by the FE mesh. If the mesh is fine in the
interface regions, or if there are many substructures, the reduced-order model may be
relatively large [3]. In this case, reduction of interface DOF — in addition to internal DOF — can
be very appealing.

In this thesis, two techniques for reduction of interface DOF are presented: a method for
global-level (or system-level) reduction proposed by Castanier et al. [12] and a method for
local-level reduction based on the work of Hong et al. [13].

The global-level method of interface reduction treats all interface DOF together and the
interface definition plays no role (hence it is called global-level reduction). An eigenvalue
analysis is performed on the interface partition of the reduced-order matrices to obtain the
characteristic constraint modes. The downside of such methods is that they generally require
more support points — compared to local-level methods — to interpolate the interface modes
in a structural dynamics simulation. This is because the (global) interface necessary depends
on all model parameters.

Conversely, the local-level interface reduction method treats each interface independently.
An eigen-analysis is performed on the partition of the reduced-order matrices corresponding
to the DOF of each interface to obtain the local interface modes. The basic benefit of such
methods is that — depending on the interface definition — few support points are needed to
approximate the interface modes during a simulation. The reason is that every (local) interface
usually depends on few (not all) model parameters.

All the above CMS methods produce non-parameterized reduced-order matrices that must be
reassembled at every sample point of a simulation-based problem. To avoid this
computationally intensive step, three advanced techniques of model reduction are presented
here which give parameterized matrices that can be used efficiently in a structural dynamics
simulation.

The first parametrized CMS method is based on the classic Craig-Bampton technique and does
not consider reduction of interface DOF. The other two are based on the global- and local-
level methods of interface reduction already mentioned. These methods make use of an
interpolation scheme proposed by Goller et al. [14] for the approximation of interface modes
to avoid a direct interface analysis during the simulation process.



The parametrized CMS methods makes use of the parametrization scheme proposed by
Jensen and Papadimitriou [3] where the mass and stiffness matrix of a component depend
only on one (or none) model parameter. This type of parametrization is often encountered in
structural systems modeled by standard finite elements.

The organization of the thesis is as follows. Chapter 2 introduces some basic theory concerning
the classic Craig-Bampton CMS method and an improved formulation that takes into account
the residual normal modes of each component proposed by Jensen et al. [15]. In Chapter 3
the CMS methods that consider reduction of interface DOF are presented. Theory for
parametrization of the classic Craig-Bampton method is presented in Chapter 4. In Chapter 5
the parametrization of the two methods that perform interface reduction is introduced. In
Chapter 6 the accuracy and efficiency of all non-parameterized CMS methods is examined
using a large FE model of nearly one million DOF. The conclusions and suggestions for further
study are presented in Chapter 7. Finally, the Appendix contains a presentation of the MATLAB
function input.m that controls most aspects of model reduction and a link to the GitHub
repository that hosts the MATLAB code developed for applying all formulations presented
here.



2 Basic Theory of the Craig-Bampton Method of Component
Mode Synthesis

Among the most commonly used techniques for CMS is that developed by Craig and Bampton
[2][6]. The Craig-Bampton method, which is used in the present work, is widely adopted
because of its superior accuracy, its ease of implementation, and its efficient use of computer
resources.

This chapter aims to introduce necessary theory of the Craig-Bampton method of component
mode synthesis. The chapter is based on the formulations presented in chapter 1 of [3].

2.1 Structural Model

The models considered are structural dynamical systems with localized non-linearities that
satisfy the equation of motion

Mii(f) + Cu(t) + Ku(?) = f,, (u(), u(t), y(©)) + () (2.1)

where u(?) e R" denotes the displacement vector, u(¢) the velocity vector, ii(z) the
acceleration vector, f,, (u(¢),u(#),y(¢)) the vector of nonlinear restoring forces, y(¢) the
vector of a set of variables that describes the state of the nonlinear components, and f(¢) the
external force vector. The matrices M, C, and K, which are assumed to be symmetric,

describe the mass, damping, and stiffness, respectively. The evolution of the set of variables
y(¢) is described through an appropriate nonlinear model that depends on the nature of the

nonlinearity [3].

2.2 Substructure Modes

The term substructure modes is used to signify Ritz vectors, or assumed modes, that are used
as basis vectors in describing the displacement of points within a substructure, or component

[2].

Most applications of component-mode synthesis employ one of two approaches, which may
be called fixed-interface-mode methods and free-interface-mode methods. The former
employ fixed-interface normal modes and constraint modes. The latter employ free interface
normal modes and attachment modes [2].

The Craig-Bampton method is a fixed interface technique. In this manner, the dynamic
behavior of the linear components of the structural system is described by a set of normal



modes (eigenvectors) of individual substructures along with a set of constraint modes that
account for the coupling at each interface where the substructures are connected [3].

2.2.1 Fixed-Interface Normal Modes

Consider a linear substructure s,s =1,...,N, having n, degrees of freedom. The mass

M* e R™ and stiffness K* € R"™" matrix of the substructure are partitioned as
follows[3]

M. M;

M= T (2.2)
Mbi Mbb
K. K

KS — ;l ib (2.3)
Kbi Kbb

where N is the total number of linear substructures, and the indices i and b are sets

containing the internal and boundary DOF, respectively, of substructure s .

The internal degrees of freedom, which are not shared with any adjacent substructures, are
kept in the vector u; (¢) € R" , while all boundary degrees of freedom are kept in the vector
u,(t)e R" . The boundary degrees of freedom include only those that are in common with

the interface degrees of freedom of adjacent substructures. Note that the number of internal

and boundary DOF sum up to the number of total DOF of the substructure n’ =n; +n, .

Component fixed-interface normal modes are obtained by restraining all boundary DOF and
solving the following eigenproblem

K@ -M.®'A =0, s=1,...N

s

(2.4)

where the matrix @; contains the complete set of n; fixed-interface normal modes in its

columns and A is the corresponding diagonal matrix containing the eigenvalues (squares of
the natural frequencies). The fixed interface normal modes are normalized with respect to the

mass matrix M, that is

;' M ®D; =T,

ii

(2.5)
and

'K D, = A (2.6)



where I} € R"™*" is the identity matrix.

2.2.2 Interface Constraint Modes

The interface constraint modes are defined as the static deformation of the substructure
when a unit displacement is applied at one coordinate of vector u, () and zero displacement
at the remaining interface degrees of freedom, while the internal degrees of freedom are
force free [3][2]. Then, the interface constraint modes matrix is

WS S S
po=| PleR"™ (2.7)

s
Ibb

where ¥, € R"*" is the interior partition of the interface constrained modes matrix and
I, R" ™ s the identity matrix. The interface constrained modes matrix satisfy
) s s S
Kii Kib qlib — 0ib (2 8)
s s s s :
Kbi Kbb Ibb Rbb

where 0;, € R"™ is the null matrix, and R;, € R®™ is the corresponding matrix of

interface forces. The interior partition of the interface constrained modes matrix is calculated
by solving the first block of Eq. (2.8)

¥ =K K (2.9)

as a result, the interface constraint modes matrix takes the form

v | |-K 'K’
qls =|: lb:|= Ku Ktb (210)

s s
Ibb Ibb

2.3 Reduced-order model: Standard formulation

In the standard formulation of the Craig-Bampton method, the reduced-order model includes
a fraction of the fixed-interface modal coordinates of each substructure and the physical
interface coordinates. The effect of the residual fixed-interface modal coordinates is
neglected in the analysis. This section aims to present the derivation of the corresponding
reduced-order model.

2.3.1 Transformation Matrix



The displacement transformation of the Craig-Bampton method is performed through the
matrix T, (Craig-Bampton transformation matrix) which utilizes a combination of fixed-
interface normal modes and interface constraint modes. The transformation matrix T,
relates the vector of physical coordinates of all substructures u(¢) to the vector of generalized

coordinates q(¢) as

u(t) =T,q(?) (2.11)
where
_ u, (¢)
u(f)=< "' e R” (2.12)
o
in which
u; (1) N
u,(t) = : eR", n = A n (2.13)
u (1) -

is the vector of physical coordinates at the internal DOF of all substructures,
ul (1) .
u, (=< i teR", n,=>n (2.14)
uy’ () -

is the vector of physical coordinates at the N, independent interfaces, where nf is the

number of DOF at the interface /,

TD _ [dii'd,...,dig‘] I:Y’ilb:""qlijl\v/v ]T c R (2.15)

0 I

is the Craig-Bampton transformation matrix, where [,,] denotes a block diagonal matrix

having the matrices inside the square brackets as diagonal blocks, @, R" " s the matrix
containing the n;, kept fixed-interface normal modes of substructure s . Note that due to the

truncation of the complete set of eigenvectors n;, < n;. The number of columns of T, is
. . . Nr n;Xn; . .
given by n, =n, +n; in which n, =)» " n, . Also, 0eR"™ is the null matrix,

I € R is the identity matrixand T € R™" is a transformation matrix consisting of zeros
and ones that maps the vector u,(¢) of independent interface coordinates to the vector of

boundary coordinates of all substructures u, (¢), that is
u, (1) = Tu, (¢) (2.16)

where



u, (1) "
uw(@=< i teR", n,=>n (2.17)

N, s=1
u, (7)

and where the vector of generalized coordinates is defined as

a0
q(?) = {ul (Z)} eR (2.18)

where x(t) is the vector of kept fixed-interface modal coordinates of all substructures.

When applying the method using a FE mesh, the vector of boundary coordinates of all
substructures u, (f) can contain repeated entries of nodes which belong to the interface

between two or more substructures.

On the other hand, the vector u,(¢) of independent interface coordinates does not contain
repeated entries of nodes since each node is associated with a single independent interface.
The particular structure of the transformation matrix T depends on the definition of the

independent interface coordinates ull ), [=1,...,N,.

The kept fixed-interface normal modes of each substructure @, are referred to as dominant

fixed-interface normal modes.

2.3.2 Reduced-Order Matrices

Given the above formulations, the mass and stiffness matrices of the model referred to the
vector u(¢) are given by [3]

A (M., M | (M. M) |T
M=| _ . . _ _ (2.19)
Ty, oMy | T MMy )T
and
K., K K, . . K)|T
K= LK. ) s ] (2.20)

TT[K;,,...,K?’,;} T7[K},.... K} |T

The corresponding mass and stiffness matrices of the model referred to the generalized
coordinates ((#) take the form

M, =T/MT, (2.21)
and

A

K, = T/KT, (2.22)



Executing the previous products yields

) I [ M, N | T
My=| .. T e o |eRY (2.23)
Rl GV I Gl P
and
A [Azld’ "’Ai/c\ilsil 0 %
K, = o L |eRmwm (2.24)
0 T7[K},....K); | T
with
M, =@ MEW:, + &5, M, (2.25)
K, =K, ¥, +K;, =K, K:; K, + K, (2.26)
and

M, = (W5 MG+ M )+ P M, M, s =1 N

s

(2.27)

where I eR"" s the identity matrix and A;,,s=1,...,N, are diagonal matrices

s
containing the eigenvalues of the kept (dominant) fixed-interface normal modes for each
substructure.

The essence of the method lies in the fact that the dimension of the reduced-order matrices
can be substantially smaller than the dimension of the unreduced matrices, thatis, n, < n.

The reason for this is the great reduction of the number of kept modes of the reduced model
compared to the complete set of modes of the unreduced model which results in great
computational savings.

2.4 Reduced-order model: Improved formulation

In the previous section the standard reduced order model of the Craig-Bampton method has
been derived. According to the standard method, the vector of physical coordinates at the
internal degrees of freedom of all substructures u, (¢) is approximated as

u, ()= D). ) |g)+[P),.... ) | Tu, () (2.28)

It can be seen that the n, —n,, residual fixed-interface normal modes are not taken into

account in the approximation.



In this improved formulation their effect is explicitly considered which results in more
accurately constructed reduced-order matrices [3][16]. The derivation of the improved
reduced-order model is shown below.

2.4.1 Improved Transformation Matrix

The static contribution of the residual fixed-interface normal modes to the response of the
physical coordinates at the internal degrees of freedom of all substructures w,(¢) is

approximated by using static correction [3][16][1] as
u,(t)=|®B),... 05 |nO)+|[P),.... ¥ | Tu, () -FM,Ti, () (2.29)

where F is a block diagonal matrix containing the residual flexibility matrix of all
substructures

F= [Fl,...,l_?Nf] (2.30)

where for a substructure s the residual flexibility matrix corresponding to the fixed-interface
normal modes problem is

F =K &4, &, (2.31)

and
M, =|M,,,...M} | (2.32)

with
M, =M, -M;K; K;, (2.33)

Taking into consideration the improved approximation of u, (¢) in Eq. (2.29) and the definition

of the vector of physical coordinates of all substructures u(z) in Eq. (2.12), it follows that

() = (@,....d) | |[¥,.... 0 |T {n(t)}+ 0 -FM,T {ii(t)} (234)
0 I u, () |0 0 i, (0]

From the equation of motion of the undamped free vibration of the linear components of Eq.
(2.1), the relation between the vector of generalized coordinates q(#) and its second

{fi(f) } _ MR, { n() } (2.35)
u, (1) u, (9

Using Egs. (2.15) and (2.35), Eq. (2.34) can be rewritten in the form

derivative is

10



u()={T, +T,} {:((tt))} (2.36)

where

FM, T |~
TR:B olb }M;KD (2.37)

is the transformation matrix that accounts for the contribution of the residual fixed-interface
normal modes.

After performing the products, the transformation matrix T, € R™" can be expressed as [3]

-1

FM,T(M, -M)M, ) Mi4 FM,T(M, -M/M,) K,

T, - (2.38)
0 0
where
M, =T"[M,,.. .M |T (2.39)
M, =| M., M |T (2.40)
A=[A4,,.... A} ] (2.41)
and
K, =1 [K}Jb,...,K%}T (2.42)

The matrix T, +T, represents an improved transformation matrix that explicitly

incorporates the contribution of the substructures’ residual modes into the analysis.

2.4.2 Enhanced Reduced-Order Matrices

Xnp *Np

The enhanced reduced-order mass matrix M, € R and stiffness matrix K, € R"

are based on the transformation matrix T,, + T, and are defined as

~ T ~
M, =(T, +T,) M(T, +T,) 0.43)
=M, + T'MT, + T_MT, + T MT,

and

K, =(T, +T,) K(T, +T,)

N ~ R R (2.44)
=K, +T/KT, + T’ KT, +T!KT,

11



Because of the explicit contribution of the residual fixed-interface normal modes through the
matrix T, it is expected that the enhanced reduced-order matrices M, and K are more

precisely constructed compared to the matrices obtained from the formulation based on
dominant modes only.

2.4.3 Some Comments on the Use of Residual Fixed-Interface Normal Modes

The use of residual fixed-interface normal modes in the reduced-order model improves the
approximation of the response [16][15] but not without an added computational cost. The

residual flexibility matrix for each substructure F* defined in Eqg. (2.31), which is needed in
the enhanced formulation, has dimension nf X nf and is certainly full [1] (p.867). As a result,
the computational effort required in the solution of Eg. (2.31) and the storage requirement

for F* increase rapidly as the order of K, becomes large.

In other words, it can be very computationally expensive to construct the enhanced reduced-
order matrices for big finite element models even though the dimensions of the enhanced
reduced-order matrices are the same as those of the reduced-order matrices of the standard

formulation, thatis n, xn, .

12



3 Theory for Interface Reduction in the Craig-Bampton Method

In the previous chapter, the basic theory of the standard Craig-Bampton CMS method was
presented along with the enhanced formulation that incorporates residual fixed-interface
normal modes.

Both the standard and improved formulations do not consider order reduction for the
interface degrees of freedom. This is clear in Eq. (2.18) which shows that the vector of
generalized coordinates (¢) contains all the physical interface DOF for all substructures in

the vector u, (¢) of independent interface coordinates.

This makes the assembly of substructures into a reduced-order system model relatively simple
but means that the reduced-order assembly will have as many interface degrees of freedom
as the full model. When the full-model mesh is highly refined, and/or when the system is
divided into many subcomponents, this can lead to an unacceptably large system of equations
of motion. To overcome this, interface reduction methods aim to reduce the size of the Craig-
Bampton model by reducing the number of interface degrees of freedom [7].

Most of the methods of reducing interface DOF are either global (system-level) or local
(substructure-level) techniques [7].

This chapter aims to present one global technique and one local technique proposed in [3].

The global-level technique treats all interface DOF together by accessing the whole interface
partition of the reduced-order matrices at once.

On the other hand, the local-level method considers each interface separately by accessing
only the corresponding DOF in the interface partition of the reduced-order matrices
sequentially (or in parallel).

3.1 Global-Level Interface Reduction

Global-level methods of reducing interface DOF are shown to be orders of magnitude more
accurate compared to local-level methods because the coupling between all substructures has
been properly considered [7]. They are also easier to formulate and implement since all
interfaces are treated as one (global) interface and no interface-selection problems occur (as
will be seen in the next section with local-level reduction).

On the other hand, because an eigenvalue analysis must be performed on the whole interface
partition of the reduced-order matrices at once, the computational cost of such a method may
be unacceptable for large scale FE models with millions of interface DOF. Another possible
drawback of this type of interface reduction is found in parameterized FE models (see chapter
5) concerning the number of support points needed for accurate interpolation of interface
modes.

In this section a global-level formulation proposed by [12] is presented which is based on
derivations present in chapter 1 of [3].

13



3.1.1 Interface (Characteristic-Constraint) Modes

A

The reduced-order matrices MD and K, in Egs. (2.23) and (2.24) can be rewritten

. I M,
ol ] 51

il I

. [4 0
K, [ } 52
0 K,

where all partitions of the reduced-order matrices are already defined.

equivalently as

and

The proposed global-level method of interface reduction uses the so-called characteristic
constraint modes. They are the eigenvectors corresponding to an eigen-analysis of the

matrices M, and K, (the constraint-mode partitions of the reduced-order matrices), that

is,
K,) Y, -M,Y, Q2 =0 (3.3)

where the matrix ¥, e R”™" contains the truncated set of interface modes and

2, e R""® js the diagonal matrix that contains the corresponding eigenvalues.
The kept interface modes are normalized with respect to M, , satisfying

Y/ MY, =1, (3.4)
and

Y/K,)Y, =@, (3.5)

where I, € R" is the identity matrix. The number of kept modes can be small compared

to the number of interface DOF of the unreduced model, n, < n,, leading to a highly

reduced model.

3.1.2 Reduced-Order Matrices Based on Dominant Fixed-Interface Modes and Global
Interface Reduction

The truncated set of interface modes is used to approximate the vector of physical coordinates
at the N, independent interfaces u, (¢), that is,

u, () =Y,y (3.6)

14



where y(¢) € R"* are the modal coordinates representing the interface DOF. Using Eq. (3.6),

the vector of physical coordinates of all substructures u(#) can be expressed as

_ I 0
u@) =T, q, () =Tyq, () (3.7)
0 Y,
where (, () is the vector of generalized coordinates
V1)
q,(t)z{ }G]R A (3.8)
y(0)

and

_— (@,....o) | |¥,.... ¥ |TY, - 59)
0 Y

1

is the transformation matrix that considers the effect of the dominant fixed-interface normal
modes and interface reduction.

The reduced-order mass and stiffness matrices corresponding to the vector of generalized
coordinates (, (¢), are defined as

MDI = T;I MTDI

I Mi[YI Ny XN (310)
— ’ ’ c R DI DI
YI Mil I]
and
K, = T;IKTDI
A 0 o (3.12)
— c R DI * DI
0 Q

The dominant fixed-interface normal modes and the characteristic-constraint modes can be
used to define a reduced-order model with fewer generalized coordinates compared to the
case without interface reduction, thatis, n,, <n, <n.

3.1.3 Reduced-Order Matrices Based on Residual Fixed-Interface Modes and Global
Interface Reduction

Taking into account Eq. (3.6) and Eq. (2.35) (using MD] and KDI in place of MD and KD ,

respectively), Eg. (2.34) can be rewritten as,

15



R A P N
0 Y |lr®)) [0 0 0 v, y()

_ n() LT n() (3.12)
"o T o '
= (TDI +TRI)q1 ()

Carrying out the corresponding products, the transformation matrix T, is written, similar to
Eqg. (2.38), as

T, =

RI

T M.

iIR iIR

FM,TY, (1, -M),M,, ) ML 4 FM,TY, (1, -M

0 0

)'1 Q| (3.13)

where
1 TN, |
M, =| M,,...M} |TY, (3.14)

A

The reduced-order mass matrix M, € R""™ and stiffness matrix K, € R that

consider residual fixed-interface normal modes and interface reduction are derived using Eq.
(3.12) as

MR[ = (TDI + Ty, )T M(TD[ + TRI)

. . . . (3.15)
=M,, + T, MT,, + T MT,, + T, MT,,

and

KR] = (TDI + TR] )T K(Tm +TR1)

(3.16)
n - o A
=K,, +T; KT,, + T, KT,, + T; KT,,

These reduced-order matrices are expected to be more accurately constructed relative to the
corresponding matrices that consider only dominant fixed-interface normal modes.
Concerning the computational cost of constructing them, the same comments apply as in
section 2.4.3 concerning enhanced reduced-order matrices without reduction of interface
DOF.

3.2 Local-Level Interface Reduction

As already mentioned, local-level interface reduction techniques do not perform an
eigenvalue analysis on the whole interface partition of the reduced-order matrices. For large
FE models where such an analysis would be prohibitively expensive computationally, local-
level methods are more attractive than the corresponding global-level methods.

Apart from the case of large FE models, one might prefer to use local-level methods when
working with parameterized FE models (e.g. in Bayesian model updating). It will be shown that

16



- in contrast to global-level methods - local-level methods generally require less support points
in the parameter space to accurately interpolate interface modes in each sample point. This
translates to less computational time per iteration compared to the global-level techniques.

This section introduces a local-level method inspired by [13] and transformed to fit in the
Craig-Bampton framework presented in [3].

3.2.1 Definition of Interfaces

The local-level interface reduction method presented here treats each interface separately.
Therefore the definition of interfaces plays an important role in the result of interface
reduction.

The definition of interfaces must be made in a way that there occur no distinct interfaces that
lie on boundaries which share one or more FE nodes. In other words, boundaries that share
one or more FE nodes should be selected together to define a single interface. This way the
coupling between interfaces is properly considered.

To make this point clear, Fig. 3.1 shows a simple 2-D FE model with a coarse quadrilateral
mesh. Nodes are designated with dots and elements are delimited with thin lines. The model

is partitioned into four substructures S, S,, §; and S, with boundaries represented by

thick lines. It can be seen that boundaries 1 and 2 share a node.

Boundary 2 Boundary 3

[ ¢ < ® <1 ® ' ]
S, S, S,
o - - - = - ®
Boundary 1
‘\‘ - ®: L 4 @ 9

Common node

Fig. 3.1 Simple 2-D FE model used for clarification of correct interface
definition.

In Fig. 3.2, two cases of interface definition of the FE model presented in Fig. 3.1 are shown.
The figure indicates the different nodes that are associated with the physical coordinates of

the independent interfaces of the model in vector ui,, where [ is the interface number.

17



u; u u u;
o * * ol * 3 o * ™ * ol * 3
e > 4 < < < 0 C - e <> o (> 0
L ® Lllll[ o e * ® (@ . * ® d = ®
¢ > ] ¢ 0 ]
& d ® (A) Incorrect Interface Definition g i ®  (B) Correct Interface Definition

Fig. 3.2 (B) Correct and (A) incorrect definition of interfaces.

Case (A) represents an incorrect definition of interfaces for local-level reduction. Here,
interfaces 1 and 2 are distinct interfaces that belong on boundaries 1 and 2, respectively,
which share a node. This interface definition does not consider the coupling between
interfaces 1 and 2 and leads to erroneous results.

Case (B) indicates the correct way to define interfaces. Now interfaces that lie on boundaries
which share a node are selected together (interfaces 1 and 2 have been merged to interface
1).

It must be noted that another possible definition of interfaces would be to define a single
interface containing all nodes that belong to model boundaries. Although correct, this case
would yield the same result as using global-level interface reduction.

3.2.2 Local Interface Modes

After defining interfaces according to section 3.2.1, reduction of interface DOF can be
considered at the local level.

1 1 o0
Let K, e R"™ and M,, € R™™ be the partitions of the interface matrices K, and M,

respectively, associated with the physical coordinates at interface [, /=1,...,N,,i.e. ull (1)

. The interface modes corresponding to interface [ satisfy the eigenvalue problem

K,Y,-M,Y,2,=0 (3.17)
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Lol . i . ! ! .
where Y, € R"™* contains the kept 7, local interface modes and £2,, € R"*"* is the

diagonal matrix that contains the corresponding eigenvalues. The local interface modes are
mass normalized, that is

T
Y,M, Y, =1, (3.18)
and

T
Ylll K]ll Y]ll

=0

1

(3.19)

l !
where I,, € R"*** s the identity matrix. These modes are used to represent the vector of
physical coordinates u’, (t) atinterface [ in terms of the local interface modal coordinates

v, ()€ R"* in the form

ulI () =Y,»,) (3.20)

The kept local interface modes for each interface are used to define Y, , a matrix similar to

L’

Y, defined in Eq. (3.3) for global-level interface reduction, that is,

Ny

ny;xn [
YIL :|:Y111""’Y1N,N,:'ER1 IRL’ Nypr =zlz|an (321)

3.2.3 Reduced-Order Matrices Based on Dominant Fixed-Interface Modes and Local
Interface Reduction

The vector of physical coordinates of all substructures can be approximated similarly to Eq.
(3.7) as

I 0
u) =T =T .
u(t) D L) YIL}LL (t) pi i (t) (3.22)

where q,, (¢) is the vector of generalized coordinates

n(t)

y (z)} e R™, npy =y gy (3.23)
L

qd; ()= {
v, (¢) is the vector of local interface modal coordinates of all independent interfaces

7’10)
y, (1) = : e R (3.24)

Pw, ()

and
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_ (@,....o) | [¥,.... P |TY,
0 Y,

e R™ "o (3.25)

is the transformation matrix that accounts for the effect of the dominant fixed-interface
normal modes and the local interface normal modes. The corresponding reduced-order
matrices are defined as

M, = TDT1L MT,,
| MY, e en (3.26)
— . r r I= R DIL ™ DIL
Yy,mM, Y,MY,

and

A

Ky, = TDTIL KT,,

40 - (3.27)
— r c R 'DIL*"DIL
0 YILKIYIL

3.2.4 Reduced-Order Matrices Based on Residual Fixed-Interface Modes and Local
Interface Reduction

In the case of local-level interface reduction, the transformation matrix that considers residual
fixed-interface normal modes becomes

T. T
o O RIL2 | R 378
RIL |: 0 0 ( )
where

T. =-FM.TY, (Y'MY, -M.. M. ) M. A 3.29
RIL,1 - ib IL( IL I~ IL iIRL i]RL) iIRL ( : )

and
T. =FM.TY (Y'MY, -M" M, ) Y KY 3.30
RIL,2 - ib IL IL 17 IL iIRL iIRL IL I~ IL ( : )

with

. N

M,y =M., M) |TY, (3.31)

Taking into consideration the effect of residual fixed-interface normal modes, Eq. (3.22)
becomes

u(r) = (T + Ty )y, (1) (3.32)

The associated reduced-order mass matrix M,, € R"*™" and stiffness matrix

A

K,, € R"™ change to
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~ T ~
MR]L :(TDIL +TR1L) M(TDIL +TR1L) (3 33)
= MDIL + TIZIL MTDIL + TDTIL MTRIL + TI?IL MTR[L
and

KRIL = (TD]L + TR[L )T K (TDIL + TR[L ) (3 34)
T

D T > T 1
- I<D1L + TR]LKTDIL DILKTRIL + TR]LKTRIL
The same comments apply as in section 2.4.3 concerning the computational cost of

constructing the enhanced transformation matrix and consequently the corresponding
reduced-order matrices

3.2.5 Some Comments on the definition of u,(¢) and ¥,

The presented method of local-level interface reduction works well if carefully applied.

A point that requires special attention is the correct definition of the vector u, (¢) of physical

coordinates at the /N, independent interfaces in Eq. (2.14) and the matrix ¥, containing the

truncated set of local interface modes for each independent interface in Eq. (3.21).

The definition of u,(¢) influences the matrix T as can be seen in Eq. (2.16) which in turn
affects the definition of the constraint-mode partitions of the reduced-order matrices M,

and K, in Egs. (2.39) and (2.42) respectively.

On the other hand, ¥, is a block-diagonal matrix that contains the local interface modes of
each interface. Since the physical coordinates of all independent interfaces are kept in u, (¥)

, each row of ¥, is associated to the same interface DOF as in the corresponding row of

u,(?).

The definition of the reduced-order matrices involves the multiplication of ¥, with M, and

K, in Egs. (3.26) and (3.27) respectively. If u,(¢#) and ¥, are not correctly defined (their

rows do not correspond to the same interface DOF) this multiplication yields erroneous
results, and the corresponding reduced-order matrices are wrong.

One way to check that u,(¢) and Y, are correctly constructed is to take into account the

mass normalization of the interface modes in Egs. (3.18) and (3.19) which should give
T
VMY, =100, ] (3.35)
and

ViKY, ~[2,,...2,,| (3.36)
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In case the definition of interfaces changes, one should be careful to update u,(¢) and ¥,

as needed.
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4  Parametrization of Reduced-Order Models based on Fixed-
Interface Normal Modes

The solution to many dynamic simulation-based problems involving uncertainty requires
evaluating the response of the modeled system at a large number of samples in the uncertain
parameter space (of the order of hundreds or thousands). This fact makes such problems
computationally very demanding especially when the time of a single analysis is significant.

Obviously, model reduction techniques such as that presented in sections 2 and 3 alleviate
part of the computational burden by projecting the model to a greatly reduced set of
generalized coordinates. However, the time-consuming process of calculating the fixed-
interface normal modes and interface constraint modes at each sample point remains. This is
necessary due to the fact that changes in model parameter values affect the modal
characteristics and the static response of the structure. This procedure greatly increases
simulation times, due to the substantial computational overhead that arises at the
substructure level.

To avoid reconstructing the reduced-order model at each sample point, an efficient
parametrization scheme is presented in this chapter. When the reduced-order model is
parametrized using this scheme, the calculation of the fixed-interface normal modes and
interface constraint modes at each sample point is completely avoided. With such a
parametrized model, it is necessary to compute these quantities only once. As a result, even
greater computational savings can be achieved compared to the non-parametrized reduced-
order model formulation.

Throughout this chapter, it is assumed that the FE model is parametrized by a set of uncertain
parameters 0 € Q, c R"™ which are modeled using a probability density function ¢(8) that

indicates the relative plausibility of the possible values of the parameters. The formulations
presented next are based on chapter 2 of [3].

4.1 Parametrization Scheme

The original structure is parametrized assuming that the mass and stiffness matrices for each
linear substructure s, s =1,..., N_, depend on only one (or none) of the model parameters.

4.1.1 Matrices of substructures that do not depend on model parameters

If a substructure s does not depend on any model parameter, it belongs to S, which is the

set of substructures that do not depend on the vector of model parameters @, thatis s € S,

. In this case, the substructure mass and stiffness matrices are written as

M =M* (4.1)
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and
K =K* (4.2)

Since the mass and stiffness matrix of substructures s €S, are independent of model

parameters, their fixed-interface normal modes and their interface constraint modes are also
parameter-independent. This means that the time-consuming process of solving the

eigenproblem to compute @; in Eq. (2.4) and the linear system to compute ¥, in Eq. (2.9)

are performed only once for these substructures.

4.1.2 Matrices of substructures that depend on the model parameter 61.

Let Sj be the set of substructures that depend on the model parameter (9j . For substructures

S Sj , the substructure matrices take the general form

M’ =M’g’ (Hj) (4.3)
and

K =K*h’ (9j) (4.4)

where g’ (6,) and h’ (6,) are linear or nonlinear functions of &, and the matrices M* and
K® are independent of Qj obtained from the reference model by setting gj (6’].) =1 and
h’ (6,) =1. The partitions of the mass matrix M" in Eq. (2.2) and the stiffness matrix K* in
Eg. (2.3) admit the same parametrization, that is

M; =M;g’(0))

M;, =M; ¢’ (9)

o= (4.5)
M;, =M, g’ (9,)
M, = MZbgj (Hj)
and
K; =Kh'(0))
Kj, = I_(fhhj (ej)
(4.6)

K, = I_(Zihj (Qj)
K;, = Kthj (9,)

where all matrices with an over-bar are independent of (9]..

The above parametrization is often encountered in structural FE systems [17][18].
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4.1.3 Fixed-Interface Normal Modes and Interface Constraint Modes

Taking into account the parametrization of the mass matrix M in Eq. (4.5) and the
normalization of the fixed-interface normal modes in Eq. (2.5) with respect to that matrix, it

follows that the matrix of fixed-interface normal modes @;, s € S, can be written as
1
V&' ()

where the matrix 5; is independent of the model parameter 6, .

D, =D, (4.7)

Next, if the previous parametrization of M, K’ and @; in the eigenvalue problem (2.4) is
considered, the diagonal matrix of the corresponding eigenvalues A, s € S/ allows the

parametrization

_ W6,
A -

- (4.8)
g’ (9))

where the matrix /_1; is independent of the model parameter 0,. From the above

parametrizations of @ and A, it is evident that @’ and A are computed from the

eigenproblem
K., -M;®, 4, =0 (4.9)
where the mode shapes are mass normalized as
& M.P, =1 (4.10)
and
b, K, ®; = A4, (4.12)
Concerning the interface constraint modes Y’;, S € Sj in Eq. (2.9), it holds that
v, =-K, K, =-K #’ (0)K,'(0,)=-K K}, =¥, (4.12)
where the matrix Y_’fb is independent of the model parameter Qj.

From Eqs. (4.7), (4.8) and (4.12) it is clear that the fixed-interface normal modes and interface
constraint modes can be estimated for any value of the parameter vector @ by solving the
eigenproblem in Eq. (4.9) and the linear system in Eq. (4.12) once. This aspect of the proposed
parametrization scheme greatly reduces the computational cost since it eliminates the need
for estimating the above quantities at each step of the simulation process.
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4.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-
Interface Modes

This section introduces the parametrization of the reduced-order mass and stiffness matrices
based on dominant fixed-interface normal modes as well as the parametrization of the various
matrices involved in their definition.

4.2.1 Unreduced Matrices M(H) and K(H)

If the parametrization of M* and K" are taken into account, the mass and stiffness matrix
of the unreduced model referring to the vector of physical coordinates of all substructures
u(?), given in Egs. (2.19) and (2.20), respectively, take the form

(M5, M5, | [M},6,,...M) 5, , |T

M(H) VoA 7 [ wal Vo =
|:Mlbé‘10’ M, 51\/;0} T [Mbbé‘lO""ﬁMbbsé‘Nso:IT
| M., M8y ] (M5, M5, )T |
* =7 [ wql” N 7 [l N, 5 g](ef)
=T |:Mib§1j7""MibS 51\@,'] T I:Mbbé‘lj’ M, N,]
(4.13)
and
=N, 1 N, 5 =
R [K D15 Kii‘é‘Nso] |:bi5]0’ bi NO T
K(9) = T | 31" =N 7 [ 121 N,
T [Kibé‘lO""’Kibx 51\{)0] T [K 105 Kbb§N0]
_ _ N (4.14)
w| [Kid,.... K)o, ] [K,5,....K}8, |T |
w7 [ 71 N w7 [zl hj(ef)
=T [Kibalj,...,K[bs 5NS,} T7[K},5,....K) 6, ]
where
1 ifses,
5, = Y, s=1..,N, (4.15)
0 otherwise
and
1 ifses,
5. = s=1,...,N, (4.16)
7|0 otherwise’

4.2.2  Transformation Matrix T, ()
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Considering the parametrization of the fixed-interface normal modes @, and the

independence of interface constraint modes ¥, on model parameters, the transformation

matrix T, defined in Eq. (2.15) can be written as
T (0): [51;6‘109-.-,62}51\,‘0] |:¢[1b""3¢[];[5:|T
D 0 I
(4.17)

[ @,6,,... @5, ] 0 1

+n€ ¢ —_—
/Z-; 0 0,2’ 0,

4.2.3 Reduced-Order Matrices MD(ﬁ) and KD(H)

Taking into account all previous parametrizations, the matrices M;,, M,, and K;, for

S € Sj which are used to define MD and KD in Egs. (2.23) and (2.24) respectively, can be

written as
M, =M;,\[2/(0)
K;, =K;,1'(0)) (4.18)
M/S;b = I\L/[Zbgj (9,)
where
M, =& M ¥ + & M,
(4.19)

s s s IS

Kbb - Kib Tib + Kbb

s _(ars" was 1s” \ags 7T NS N S
Mbb - (Wib Mii + Mib )qlib + Wib Mib + Mbb

Considering the above expansions along with the parametrization of the matrices of
eigenvalues, the reduced-order mass matrix and stiffness matrix can be expressed as



T Mihglo""’MihA 5N:0j| T |:Mhh510’ :Mh[:é‘NSO:|
., 0 [ﬁ}ba,_,,...,ﬁgxam_,}f
+Z ~ 2o A T gJ (01) (4.20)
" TT[M:bglj""’MiNbx 5Nvf} 0
0 0
+ ~o & Z - 1876,
0 T [M;lﬁu,... Mfngd}T g()
and
A [AiBgrens AT 5 ] 0
KD(B): ~7 | 1 i N, T
0 T |:Kbbé‘107""Kbl;§Nv0:|T
ny AL _N5 l
N I:Aid51j""’Aid 5NSJ] 0 M (4.21)
0 0]’@)
0 0
- Y = ~ hj(e)
0 TT[K;bélj,...,KbN,ﬁNJT !

where all terms have been previously defined.

4.3 Some Comments on the Proposed Parametrization Scheme

From Egs. (4.20) and (4.21) it is evident that the reduced-order mass matrix MD (@) and

stiffness matrix K, (@) are expressed explicitly in terms of the model parameter vector 6

and other constant matrices. These constant matrices are computed and assembled once and,
therefore, there is no need this computation to be repeated during the iterations of the
simulation process [17]. The same fact holds for the transformation matrix T, (@) defined in

Eq. (4.17).

Consequently, MD @), KD(H) and T, (@) - which are needed to estimate the dynamic

response of the original unreduced system - can be estimated at each iteration without the
need to reconstruct them at the substructure level which would require solving a
computationally intensive eigenproblem and linear system.

Therefore, the presented parametrization scheme allows for substantial computational
savings since it avoids (a) re-computing the fixed-interface and constrained modes for each
component, and (b) assembling the reduced-order matrices from these components [17].

28



It must be stressed that the efficiency of the above formulation in terms of the number of
substructure analyses required is based on the assumption that the stiffness and mass
matrices of the substructures depend only on one (or none) model parameter. For a more
general case, the normal and constraint modes have to be recomputed in each iteration of

the simulation process [18].
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5 Parametrization of Reduced-Order Models based on Fixed-
Interface Normal Modes and Interface Reduction

In section 4 a parametrization scheme was presented that can be applied on reduced-order
models constructed using the Craig-Bampton CMS method based on fixed-interface normal
modes (theory in section 2). This parametrization scheme does not consider reduction of
interface DOF which can be a problem for FE models with fine meshes and large numbers of
interface DOF. In this case, it is possible that the interface partition of the vector of generalized
coordinates dominates the reduced-order model.

As indicated in section 3, reduction of interface DOF can be considered at the global and at
the local level. In this section, parametrization schemes that take into account both methods
of interface reduction are proposed.

When the parametrized matrices are constructed considering interface reduction, additional
computational savings can be achieved by reducing the size of the final model even further.

Firstly, parametrization based on global-level interface reduction is presented followed by the
corresponding formulations based on local-level reduction.

5.1 Parametrization Based on Global-Level Interface Reduction

This section presents a parametrization scheme which is similar to that of section 4 but takes
into account global-level interface reduction. The formulations are based on chapter 3 of [3].

5.1.1 Meta-Model for Global Interface Modes

The parametrization scheme presented in section 4 was based on the assumption that the
substructure matrices depend on one (or none) model parameter. This assumption does not

hold for the interface partition M, and K, of the reduced-order mass matrix MD and

stiffness matrix K ), respectively. In general, these interface matrices depend on multiple

model parameters since interface DOF belong on multiple substructures. This means that a
direct interface analysis should be performed at each iteration to reduce interface DOF.

To avoid this computationally costly procedure, an interpolation scheme is proposed that
approximates the global interface modes at each sample point in terms of the model
parameters.

5.1.1.1 Baseline Information
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Initially, L support points are defined in the model parameter space (", m=1,...,L)and
the interface matrices M, and K, defined in Egs. (2.39) and (2.42), respectively, are

assembled at these points considering parametrizations in Eq. (4.18), that is
M, (0" =T’ [M;,bam,...,m,ﬁ; %JT £ [M;,,al_,,...,m,fﬁ 5NS_].]Tgf(e;") (5.1)
j=1

g

K,(0") =" [K;,,a‘w,...,ﬁ,’f,; 5N30}T+ 3 [K}),@j,...,ﬁjf,; 5st}ihf(a;") (5.2)
=

where 6’]’." is the jth component of the support point 8. It is assumed that the support

points ", m =1,...,L are distributed around the nominal point 6°.

To compute the kept 7, global interface modes ¥,(0™) € R"** at each support point 6"

, the associated eigenvalue problems
K,(0")Y,0")-M,0")Y,(0")2,0")=0, m=1,...,L (5.3)
are solved and the matrix of interface modes is mass-normalized, satisfying
Y,T(ﬂm)M,(ﬁm)Yl(ﬁm)=I,, m=1,...,L (5.4)
and
Y,T(G'”)KI(H’")Y[(H'”):!21(0’"), m=1,...,L (5.5)

where I, € R""* is the identity matrix and £2,(0") € R"*"* is the matrix containing the
corresponding eigenvalues. Additionally, the kept global interface modes Y, (00) at the

nominal point #° are computed.

5.1.1.2 Approximation of Global Interface Modes at a sample point 0"

A linear interpolation of the interface modes Y,(Hm) at each support point

0", m=1,...,L yields the matrix I?, (0") evaluated at a sample point 8% as [14]
R L L
Y, (0 ) ==Y ENY,(0°)+D EY (0") (5.6)
m=1 m=l1

where the coefficient g’:,: represents the contribution of the support point 8" to the

simulation point @*. In order to consider only interpolations, the simulation point 8* should
belong to the 7, -dimensional convex hull of the support points.

The approximate interface modes ¥, (Hk) are defined as a linear combination of the vectors

in the matrix I;] (0"), thatis
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Y,(0")=Y,0")Q(0") (5.7)

where Q(8") € R"**"# is an auxiliary transformation matrix obtained from the solution of

the reduced eigenproblem
(770K, (01)Y,(0") | Qo) = Y] (0" M, (6")Y,(6") |Q(0)2,(8")  (5.8)

where the matrices I}[T 0K, (6" )I;I (0*) and I}f O M, (0" )IA’I (0*) are of dimension
equal to n,, xn, which means that the solution of the eigenproblem in Eq. (5.8) generally
requires minimal computational effort. Note that the interface matrices M,(ﬂk) and
K, (0") evaluated at the sample point 0" can be computed directly from Egs. (5.1) and (5.2),
respectively.

The solution of the reduced eigenproblem along with Eq. (5.7) provide an approximation of
the global interface modes YI(Hk) at the sample point @*. Additionally, the reduced

eigenproblem gives an approximation of the corresponding eigenvalues £, (0") .

5.1.1.3 Determination of Interpolation Coefficients

As mentioned in the previous section, the interpolation coefficients é‘f;, m=1,...,L

represent the contribution of the support points to the new sample point. To obtain them,

the norm of the difference between the support points 8", m =1,..., L and the simulation

point 0" is first minimized, that is

Min

0" — 6" || (5.9)

m=l,...,L |

and the nearest simulation point to 8" is denoted by 7, q e {1,...,L} . The corresponding

interpolation coefficient cf: is obtained by projecting 8* —0° onto 87 —0° , which yields

k oNT (pd _ o
5;‘:(0 —0) 0" -0) (5.10)

(GETR)

The remaining part of the vector, which is perpendicular to 8¢ —8°, is given by
vi=(0"-6")-&1 (07 -0") (5.11)

This vector is represented as a linear combination of the remaining support points
0", m=1,..,L, m#q through

v =[0‘ —0°,...,0"" —0°,0°" -0°,...,0" —00]7" (5.12)

where 7" is given by
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h = L e RY! (5.13)

The (unknown) components of the vector 7" are obtained as the solution of Eqg. (5.12) using
the singular value decomposition (SVD) method which can be applied to cases of under- and

m=1,...,L,
kept in the vector é’k , are obtained by considering é; in Eq. (5.10) and 7* in Eq. (5.13). This

over-determined systems of equations. The solution for the coefficients é‘k

m?

gives

Eh=3gF LeR” (5.14)

The interpolation scheme above guarantees that the approximation is exact in each support
point. Additionally, the potential time-consuming step of calculating the interface modes is
performed only once for the support points and the nominal point at the beginning of the
simulation process. This means that the approximation of interface modes using this method
generally requires minimal computational time at each sample point.

If one wishes to increase the accuracy of the interpolation scheme, more support points can
be added or higher-order interpolations (quadratic, cubic etc.) can be considered.

5.1.1.4 Comments on the Use of Support Points

In this section some general comments and limitations are presented concerning the use of
support points with parametrized models based on global-level interface reduction.

5.1.1.4.1 General Remarks

It has been stated that support points 8", m =1,..., L are distributed around the nominal

point @° of the model. The nominal point may correspond to the reference model of the
structure, or it can be chosen as the mean value of the uncertain model parameters. For the
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support points, there is not a unique selection method and one can use different approaches
to generate them.

For example, the support points can be generated by a number of sampling methods, such as
random sampling, Latin Hypercube sampling, orthogonal sampling, etc. Also, adaptive
schemes can be considered, where the nominal point and the support points are updated
during the simulation process to improve convergence and maintain accuracy.

In this work emphasis is given on a sampling method based on 7 -dimensional simplices.

5.1.1.4.2 Limitations Concerning Support Points

Regardless of the technique selected for the generation of support points, it is necessary — as

stated in section 5.1.1.2 — that each sample point 8* lies in the convex hull of the support
points to ensure that only interpolations are made.

If a sample point 0" does not belong to the convex hull of the 8", m=1,...,L support
points, the interface modes Y, (ék) are computed directly at that sample point. Next, the

support points are updated to contain the sample point 0" and the interface modes Y, (ék)

are added to the set of interface modes for the already defined L support points. This
procedure increases the number of support points to L +1 and expands their convex hull so

that the sample point 0" lies (marginally) inside it. An increase in the number of support
points translates to an increase in the time required to perform a single interpolation of
interface modes at a sample point.

The number of model parameters 7, corresponds to the number of dimensions of the model

parameter space. As 7, increases, the volume (around the nominal point) that the support

points have to sample increases exponentially as a result of the “curse of dimensionality”.

Thus, as the number of model parameters n, increases, more support points are needed to

create a sufficiently large convex hull so that few out-of-hull sample points occur. This
approach can quickly increase the time required for the approximation of interface modes
which is directly related to the number of support points used.

Alternatively, few (but enough to create a n,-dimensional simplex) and highly scattered

support points around the nominal point could be generated. This strategy can result in poor
approximations since the support points might be too far away from the nominal point to
provide any meaningful accuracy.

The previous remarks make it clear that parametrization using global-level interface reduction
might not be practical for models utilizing many uncertain parameters. For such a case, local-
level reduction is a good alternative and is discussed in following sections.
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5.1.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-Interface
Modes and Global-Level Interface Reduction

This section presents the parametrization of the transformation matrix and the reduced-order
mass and stiffness matrices based on dominant modes and global-level interface reduction. It
is assumed that the matrix Y,(@) containing the global interface modes and £,(0)

containing the corresponding eigenvalues are readily available. They can be approximated
using the procedure described in the previous section or they can be computed directly
through an interface analysis.

5.1.2.1  Transformation Matrix T, (8)

The transformation matrix T,, which takes into account the effect of the dominant fixed-

interface normal modes and global-level interface reduction is defined in Eq. (3.9). In the
context of parametrized reduced-order models it is defined similarly to Eq. (4.17) as

(@6, S | [P ) [T, (0)

Y,(0)
N [Eiié‘lj" Dy 51\'.“/‘] 0 !

J=1 0 0 \[gj (9,)

TDI (0) =

(5.15)

5.1.2.2 Reduced-Order Matrices MDI (@) and KDI (9)

The reduced-order mass and stiffness matrices based on dominant modes and global-level
reduction are defined in Egs. (3.10) and (3.11), respectively. They are parametrized similarly
to Egs. (4.20) and (4.21) as

A I [ﬁ;baw,...,ﬁgﬁm}iy, @)
MDI (0) = T ~7 e 1T e NT
Y, T [Mib 510""’Mibs 5]\40} I
. ) (5.16)
" 0 [Mﬁba}i,...,Mf}cSNi}TY,(a)
+Z T v T | vl N T gj(l9j)
=y o)T [M,.,, 5, e ML 5N§J} 0

and
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[ 4805 Ay Sy | 0

K, (0)=
DI 0 ‘Q](a) ( )
5.17
K [4,6,....4)5,,] 0| ©)
=] 0 0/8(6)

5.1.3 Comments on the Proposed Parametrization Scheme

From Egs. (5.15), (5.16) and (5.17) it is clear that the matrices T MDI and KD],

DI’
respectively, can be computed directly at a sample point 0" in terms of some constant

matrices (given that ¥,(0) and £, (@) are already defined) and the functions g’ (6,) and
h’ (6,) at each component j of the sample point. Therefore, the time required to calculate
these matrices in each step of the simulation process should be minimal — as was the case for
the parametrization scheme without interface reduction presented in section 4.

Although efficient for a small to moderate number of model parameters n,, this
parametrization scheme can be impractical when n, is large due to the large number of

support points required to approximate interface modes at a sample point 0" (see section
5.1.1.4.2). To overcome this problem, another parametrization scheme based on local-level
interface reduction is presented in the next sections.

5.2 Parametrization Based on Local-Level Interface Reduction

This section introduces a parametrization scheme based on local-level interface reduction.
The formulations here are novel. They are motivated by section 3.5 of [3] and further
developed and implemented by me.

5.2.1 Meta-Model for Local Interface Modes

Local interface modes need to be approximated at each sample point similarly to global modes
in the previous sections. The main difference is that the modes for every independent
interface are interpolated separately in contrast to the global modes which treat all interface
DOF as a single interface.

Throughout the following sections it is assumed that the interfaces are defined according to
guidelines presented in section 3.2.1 concerning local-level interface reduction.

5.2.1.1 Baseline Information
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Initially, L support points are defined in the model parameter space (8", m=1,...,L)and

the interface matrices K, (0™) and M, (8") are assembled at these points using Egs. (5.2)
and (5.1), respectively. It is assumed that the support points are distributed around the

nominal point 6°.

Let K, (0") € R"" and M, 0")e R"" be the partitions of K,(0") and M,(8"),
respectively, at support point 8", m =1,..., L associated with the physical coordinates at

interface /, [=1,...,N,,ie. u\(?).
To compute the kept 7y, local interface modes ¥, (0") € R at each support point "
and interface /, the associated eigenvalue problems
K,@"Y,@0")-M,@")Y,@")2,0")=0, m=1,..,Land/=1,...,N, (5.18)
are solved and the matrix of local interface modes is mass-normalized, satisfying
Y, (0")M,O0")Y,0")=1,, m=1,.,Landl=1,...,N, (5.19)

and

Y, (0"K,(0")Y,0")=2,0"), m=1,..,Landl=1,...,N, (5.20)

1 1 / !
where I, € R"™" isthe identity matrixand £,,(8") € R"*"=* is the matrix containing the

! !
corresponding eigenvalues. Additionally, the kept local interface modes Y, (0°) e R"™"® at

the nominal point 8° for each interface /, [ = I,...,N, are computed.

5.2.1.2 Approximation of Local Interface Modes at a sample point 0"

A linear interpolation of the interface modes Y, (8™ for a given interface / at each support

point 8", m=1,...,L yields the matrix I}M(Hk) for the given interface evaluated at a

sample point @* as
n L L
Y, (0 ) == &0 DY, (0°)+ Y & ¥, (07), 1=1,...,N, (5.21)
m=1 m=1

where the coefficient fnlil represents the contribution of the support point 8" to the

simulation point 0" for the interface /.

In general, the number of parameters related to a given interface /, denoted as My, , is much
smaller than the total number of model parameters 7n,. Consequently, to consider only
interpolations for the given interface /, only the ny, components of 6" associated with that

interface must lie in the n,, -dimensional convex hull of the corresponding components of the
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support points. Section 5.2.1.3 illustrates how to identify the parameters related to each
interface.

The approximate interface modes ¥, (01‘) at a sample point 0" for a given interface [ are

defined as a linear combination of the vectors in the matrix I;w (0"), thatiis
Y, (0")=Y,(0Q,0", 1=1..N, (5.22)

! /
where Q, (6") e R"**"x s an auxiliary transformation matrix corresponding to interface /

obtained from the solution of the reduced eigenproblem

[ ¥1,(0K,, (017 ,,(0)]Q,0") =

A N (5.23)
|:Y;l (ek )an (ak )lez (0k )] Q, (ak )Qm (ak ), I=L..., N,

where the matrices Y7 (0°)K,, (0°)Y,(0°) and Y (0°)M, (0°)Y,(0") are of

. . ! i
dimension equal to n,, X n,, .

Note that the interface matrices M, (0*) and K, (8") for a given interface / evaluated at
the sample point @* are the partitions of M, (0") and K, (0%), respectively, associated

with the physical coordinates at interface /. The matrices M, (0*) and K, (8") can be
computed directly from Egs. (5.1) and (5.2), respectively.

The approximated kept local interface modes Y, (Hk) at the sample point 8" for each

interface /, [ =1,...,N, —defined in Eq. (5.22) — are used to construct the matrix ¥, 0")

as

Y, (0)=[¥,,(0°),....¥ )y, (05) | e R™™ (5.24)

The matrix ¥, (0*) takes into account the kept modes of all independent interfaces and is

similar to the matrix ¥, (0") based on global-level interface reduction defined in Eq. (5.7).

The solution of the reduced eigenproblem in Eq. (5.23) along with Eq. (5.22) for each interface
[, I=1,...,N, provide all the terms needed to define the matrix ¥, (0%) in Eq. (5.24)

which is used to approximate the local interface modes at the sample point 8*.

5.2.1.3 Determination of Model Parameters Related to Each Interface

The basic difference between the interpolation method presented here and the one for

global-level reduction in section 5.1.1.3, is that in this case only the n,, model parameters

associated with a given interface / are taken into account in the determination of
interpolation coefficients for that interface.
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The model parameters related to a given interface /, [=1,...,N, are those that the
substructures connected to that interface depend on. They are used to define an index set p,
for each interface / that holds the 7,, associated model parameters. These index sets can be

defined in set notation as

D= { Jje {l,...,ne} | substructures connected to interface / depend on parameter j }, [=1,...

(5.25)

They are used as subscripts of vectors in the following formulations denoting that only the
vector elements associated with the parameters contained in the set are considered.

5.2.1.4 Determination of Interpolation Coefficients

As already mentioned, the interpolation coefficients é‘k

m,l

m=1,...,Land/=1,...,N,

represent the contribution of the support points to the new sample point for a given interface

[.

To obtain the interpolation coefficients for a given interface /, the norm of the difference

between the support points 0;, m=1,...,L and the simulation point 0:’ is first
1

minimized, that is

Min

m k
le 01,/

, [=1,...,N, (5.26)

m=1,...,L

and the nearest simulation point to Hllj is denoted by 0; s qe{l,...,L}. The
corresponding interpolation coefficient g‘qkl is obtained by projecting 0;? —02 onto
q 0 . .
ﬂp[ —01)[ , which yields

k _pONTrpas _ po
@, -0,) 0, -0,)

2
o3, -o;)

q,l s Z:L'-':N[ (527)

The remaining part of the vector, which is perpendicular to ﬂz - 02 , is given by

Vi =0, —00)-&,08 —05), 1=1,...,N, (5.28)

P,

This vector is represented as a linear combination of the remaining support points
0;”], m=1,...,L, m# g through

k_|pl _po -1 _p0 patl _ o L o k _

vi=|6), -6y ...00-0) 0 0] ,...00 ~0) |z}, I=1..N, (529)

P P2 P P

where r,k is given by
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) =3 “MieR", [=1,.,N, (5.30)

The (unknown) components of the vector ‘rlk are obtained as the solution of Eq. (5.29) using
the singular value decomposition technique. The interpolation coefficients

§k,l, m=1,...,L for the given interface [ are kept in the vector é‘lk and are obtained by

m

considering é‘;[ in Eq. (5.27) and ‘rlk in Eqg. (5.30), that is
k
T

k
q-1,/
& =1 LeR:, I=1..,N, (5.31)
k
q+1,/

T

T

k
T

If an interface / connects to substructures that do not depend on model parameters, that is
p; = (J, the vectors associated with the above formulations become empty and the
equations are ill-defined. In that case, the vector of interpolation coefficients for that interface

is set to zero é’ik:<0,...,0>reRL. This is to ensure that Eq. (5.21) yields

1}117 0") = Y (0°) which is exact since the modes of interface [ are constant and equal to

those calculated at the nominal point in each sample point 8*.

The same comments as in section 5.1.1.3 apply concerning the efficiency of the interpolation
scheme and potential methods to increase its accuracy.

5.2.2 Parametrization of Reduced-Order Matrices Based on Dominant Fixed-Interface
Modes and Local-Level Interface Reduction

This section presents the parameterized transformation matrix and reduced-order mass and
stiffness matrices based on dominant fixed-interface normal modes and local-level interface

reduction. Itis assumed that the matrix ¥, () containing the local interface modes is already

available. It can be approximated using the proposed interpolation scheme in section 5.2.1 or
it can be calculated directly at each sample point.
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5.2.2.1 Transformation Matrix T, ()

The transformation matrix T,, considers the effect of dominant fixed-interface normal
modes and local-level interface reduction and is defined in Eg. (3.25). In view of the
parametrization of normal modes in Eq. (4.7) and the definition of matrix ¥, (@) in Eq. (5.24),

the transformation matrix T, (#) can be written similarly to T, () in Eq. (5.15) as

T (0) — {[5[1(1510 PR 51']:\1]: 51\/‘0 J [Y_l,-lb yeees Y_’l_];,“ ]TYIL (0)]
DIL

Y, (0) (5.32)
[ dia,) 0 1
0 0]\/2'©)

5.2.2.2  Reduced-Order Matrices MD,L (8) and KD,L @)

A

The reduced-order mass matrix M, and stiffness matrix K, that take into account

dominant fixed-interface normal modes and interface reduction at the local level are defined
in Egs. (3.26) and (3.27), respectively. Considering the parametrizations defined in Egs. (4.18),
(4.8) and (5.24), they can be written as

A I M50 M8, [T, 0)
My, (0) = T gl | gl AN T (AT | ol SN =
VLOT | M5, MY 6, | YEOT | Mys,.. M6, [TV, 0)
., 0 [ﬁﬁb@j,...,ﬁgf@vj}TY,L(a)
2 e, Jg' @)
= || ¥ ()T [M},, 8L S, } 0

0 0
+ [ = . g'9)
0 Y ()T [M}Jb@j,...,Mz; 5N\_]}TY,L O

(5.33)

and
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[/_lilczé‘loa---:‘/_lv‘g‘ré‘i\[\.o] 0

K, (0)= s A
0 Y! (0)F [Kb,ﬁlo,...,K,,,;§N50}TY,L(0)

aw (T 41 N, j
. [4,6,,.....4)5,,] 0 ") 534
= 0 0(g’(0))

0 0
+ s A - h'j(ﬁ,)

0 Y,TL(0)TT[K},bé‘lj,...,Kf,V,j&st}TY,L(H) )

5.2.3 Comments on the Proposed Parametrization Scheme

This parametrization scheme is similar to that presented in section 5.1 with the basic
difference that interface reduction is performed at the local level. The desirable property
resulting from local-level reduction is that only the model parameters associated with each
interface are considered during the approximation of its modes (see section 5.2.1.3).

Since the number of related parameters for a given interface is generally much smaller than
the total number of model parameters, far fewer support points are needed in this scheme
compared to the one considering global-level reduction.

This point is made clear in section 5.4.

5.3 Support Points Based on n-dimensional Simplices

Both parametrization methods based on interface reduction require that (all or some of the

elements of) each sample point 8* € R™ lie in the convex hull of the support points used to
approximate the interface modes (global or local) in each iteration. Since using as few support
points as possible is of prime interest, it is natural to consider generating support points based

on n-dimensional simplices where n < n,.
The formulations presented here are, to my knowledge, novel.

Initially, a regular simplex in R" is created with the following properties: 1) it is inscribed in a
unit hypersphere (the distance of each vertex from the centroid is one) and 2) its centroid is

0.The t, eR", i=1,...,n+1 vertices of the simplex are given by [19]

t,=Vl+n'e,—n?(Jn+1-1)(L...,1)", i=1...,n (5.35)

and

t,, =-n"(..1) (5.36)

n+
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where e, is the unit vector in direction i. The corresponding support points

0", m=1,...,n+1 are centered on #° and are scaled according to the scaling matrix A,
that is

0" =At, +60°, m=1,...,n+1 (5.37)
where
A=[a,...,a,] (5.38)

is a diagonal matrix that multiplies the j element of t, by a.

This method is guaranteed to give the minimum number of support points needed in R”" (
L = n+1) since fewer support points would fail to create a n -dimensional simplex. It is not
guaranteed, however, that the given support points will create a sufficiently large convex hull

for each sample point @* to lie in — as will be shown next.

5.4 Generation of Support Points for Parametrization Based on Global- and
Local-Level Interface Reduction

This section illustrates the fact that parametrization based on local-level interface reduction
generally requires less support points than that based on global-level interface reduction.

Initially, a simple multi-parameter model is introduced, and support points based on n-
dimensional simplices are generated for both interface reduction methods.

Next, random sample points are generated, and - for each method and its corresponding
support points - the frequency of interpolations is measured.

The interpolation frequency indicates the ability of each set of support points to create a
sufficiently large convex hull.

5.4.1 Multi-Parameter Model

A simple multi-parameter model used to illustrate the above point is shown in Fig. 5.1.

Interface 2 Interface 4 Interface 6 Interface 8

’ v v '

Sl S2 S3 S4 SS S6 S7 SS S9 SIO

f f f f f

Interface 1 Interface 3 Interface 5 Interface 7 Interface 9
Fig. 5.1 Simple multi-parameter model with 10 components and 9 interfaces.
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It is a rectangle divided into ten components with each component dependent on one model
parameter. This model has ten parameters (n, =10), nine interfaces (N, =9) and the

nominal point #° is chosen at

0 =(1,...,1Y eR" (5.39)

5.4.2 Support Points Required for Global-Level Reduction

Parametrization based on dominant normal modes and global-level interface reduction

requires that each sample point 0" € R™ lie in the convex hull of the L support points (see
section 5.1.1.2). As such, the minimum number of support points is

L=n,+1=10+1=11 (5.40)
which is equal to the number of vertices needed to create a 10-dimensional simplex.

Considering Eq. (5.37) with A = al and Eq. (5.39), the support points are
0" =at, +(,...,1)", m=1,.,11 (5.41)

where t , m=1,...,11 are the vertices of the 10-dimensional simplex defined in Egs. (5.35)

and (5.36) with 7 = 10. The parameter a scales the support points symmetrically around 6°
. As a increases, the convex hull of the support points becomes larger and more sample points
are expected to lie in it.

For reference, setting a =1 yields the following support points

[1.9756 [0.9267 ] [0.9267 | [0.9267 ] [0.6838 ]
0.9267 1.9756 0.9267 0.9267 0.6838
. 10.9267 , 10.9267 . 1.9756 o 10.9267 . 10.6838
0 = , 0% = , 0= e, 0" = , 0" =
0.9267 0.9267 0.9267 0.9267 0.6838
1 0.9267 | 1 0.9267 | 10.9267 119756 | 0.6838 |

5.4.3 Support Points Required for Local-Level Reduction

Parametrization based on local-level interface reduction requires that, for a given interface /
Ny, model parameters must lie in the convex hull of the support points

(see section 5.2.1.3). This property reduces the dimension of the problem from n, to n,, for
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each interface /, [/ =1,...,N,. The steps taken to generate support points for the given

model are illustrated below.

Interface 1

Interface 1 connects to components 1 and 2 that depend on parameters 1 and 2, respectively.
Thus, interface 1 associates with parameters 1 and 2 which means that index set p, (see Eq.
(5.25)) is defined as

P ={12} (5.42)

and the number of associated parameters for interface 1 is
Ny, = 2 (5.43)
From interface 1, it is required that the elements of the support points defined by p, = {1,2}
(rows 1 and 2) create a simplex of minimum dimension Ny, = 2. So at least

n,, +1=2+1=3 support points are required for interface 1. The elements in rows 1 and 2

are generated based on a simplex in R""' = R?. Considering Eq. (5.37) with A =al and Eq.
(5.39), the elements in rows 1 and 2 of the support points are

0! =at, +(L1), m=12,3 (5.44)

where t , m=1,2,3 are the vertices of the 2-dimensional simplex defined in Egs. (5.35)
and (5.36) with n = 2. The parameter a scales the elements in rows 1 and 2 of the support

points symmetrically around 02} .

For reference, setting a =1 yields the following elements in rows 1 and 2 of the support
points

[1.9659 ] [0.7412] [0.2929 ]
0.7412 1.9659 0.2929
? ? ?
0' = o | 0 = 5 | 0’ = , (5.45)
? ? ?

where question marks denote that information from more interfaces is needed to determine
the value of the corresponding elements.

Interface 2

Interface 2 connects to components 2 and 3 that depend on parameters 2 and 3, respectively.
Similarly to interface 1, for interface 2 the following hold
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p, ={2,3} (5.46)
and
Ny, =2 (5.47)

Following the same process as before, the elements in rows 2 and 3 of the support points are
defined as

0" =at, +(L1), m=123 (5.48)

where t , m=1,2,3 are the vertices of the 2-dimensional simplex defined in Egs. (5.35)
and (5.36) with n = 2. The parameter a scales the elements in rows 2 and 3 of the support

points symmetrically around 022 .

For reference, setting a =1 yields the following elements in rows 2 and 3 of the support
points

? ? ?
1.9659 0.7412 0.2929
. 10.7412 , |1.9659 . 10.2929
o' — . 6= . 0 = (5.49)
? ? ?
? ? ?

From Egs. (5.45) and (5.49) it can be seen that both interfaces 1 and 2 determine the value of
the element in row 2 for the 3 support points. However, the values indicated by the two
interfaces are different in row 2 for support points 1 (0.7412#1.9659) and 2 (
1.9659 = 0.7412).

One way to solve this incompatibility is to add points 1 and 2 in Eq. (5.49) unchanged as points
4 and 5, increasing the total number of support points to 5. That way, the following support
points are defined

[1.9659 ] [0.7412 ] [0.2929 ] ? ?
0.7412 1.9659 0.2929 1.9659 0.7412
1 ? . ? . l02929| . lo7412| o [1.9659
0 = ) 0 = 5 0 = 5 0 = , ﬂ =
? ? ? ? ?
? ? ? ? ?

However, swapping support points 1 and 2 in Eq. (5.49) results in an equivalent set of points
that is fully compatible to the one in Eq. (5.45) since the elements in row 2 of the
corresponding points are the same. Consequently, the points from Egs. (5.45) and (5.49) can
be “merged” in row 2 producing the support points
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[1.9659] [0.7412] [0.2929]
0.7412 1.9659 0.2929
C 19659 |, 07412, [0.2929
o' = .6 = . 0 = (5.50)
? ? ?
9 ? ?

Eqg. (5.50) shows that the number of support points remains 3 while interfaces 1 and 2 are
both considered. The swap between points 1 and 2 in Eq. (5.49) is essential to avoid increasing
the number of support points from 3 to 5.

The same approach is used in all subsequent interfaces. Table 5.1 summarizes relevant
information for some interfaces.

Interface Index set Number of associated Minimum number of support points

[ D, parameters 7, for given interface n,, +1
1 1,2} 2 3
2 {2,3} 2 3
3 {3, 4} 2 3
9 {9,10} % 3

Table 5.1 Information concerning needed support points for each interface of given model.

After considering all interfaces and performing the necessary swaps, the final support points
needed for local-level reduction (assuming a =1) are

[0.7412] [1.9659] [0.2929]
1.9659 0.7412 0.2929
0.7412 1.9659 0.2929
1.9659 0.7412 0.2929
g | O7H2| g | 19659 ] 10.2929 551
1.9659 0.7412 0.2929
0.7412 1.9659 0.2929
1.9659 0.7412 0.2929
0.7412 1.9659 0.2929
| 1.9659 | 0.7412 | 0.2929 |

It can be seen that 3 support points are adequate for the approximation of interface modes in
parametrized models based on local-level reduction. On the other hand, parametrization
based on global-level reduction requires at least 11 support points (see section 5.4.2).
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It must be noted that if the scaling parameter a was not the same for all model parameters
(rows of the support points) the “merging” of rows would not be possible. In that case more
support points would be added.

The ability to “merge” rows of support points is the big advantage of generating support points
based on n -dimensional simplices. This property is only utilized by parametrization based on
local-level interface reduction.

5.4.4  Frequency of Interpolations Between the Two Parametrization Methods

Sections 5.4.2 and 5.4.3 have demonstrated that parametrized models based on local-level
reduction require less support points than a corresponding model based on global-level
reduction. In the case of the 10-parameter beam model it was 3 and 11 points for local- and
global-level reduction, respectively.

This section investigates the frequency at which sample points lie in the convex hull of the
support points generated for the two parametrization methods. This is equal to the frequency
of Interpolations, which can be made only when the sample points lie in the convex hull of the
support points.

One hundred random sample points are generated. Each sample point 0" is normally

distributed with mean 6° = <1,...,1>T and covariance ¢°I = 0.05°I, that is

0" ~N@©,0°1), k=1,..,100 (5.52)

For the parametrization based on global-level reduction, each sample point must lie in the
convex hull of the 11 support points defined in Eq. (5.41).

For the parametrization based on local-level reduction, only the associated model parameters
for each interface /, /=1,...,9 indicated in index set p, (see Table 5.1) must lie in the

convex hull of the 3 support points generated using the procedure in section 5.4.3.

Support points generated for both parametrizations depend on the scaling parameter a
around the nominal point. The results in Fig. 5.2 consider 10 sets of support points (for each
parametrization) for 10 valuesof a: ¢ =0.1,0.2,...,1.

Fig. 5.2 clearly shows that parametrization based on local-level interface reduction results in
much fewer out-of-hull sample points — for the same value of a — compared to the
parametrization based on global-level reduction.

Specifically, for a > 0.3, at least 95% of the sample points lie in the convex hull of the support
points generated for local-level reduction. Conversely, a must be at least 0.8 for more than
50% of the sample points to lie in the convex hull of the support points generated for global-
level reduction. All this while the former parametrization uses 3 support points, and the latter
uses 11.
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Fig. 5.2 Frequency of interpolations for both parametrizations and for increasing values of a

5.4.5 Comments on the Two Parametrization Methods

It has been shown that, for the given model, parametrization based on local-level reduction
requires less support points than the one based on global-level reduction (see sections 5.4.2
and 5.4.3). At the same time, more sample points lie in the convex hull of the support points
generated for the former method — even though it requires less support points than the latter
one (see section 5.4.4).

It is clear, therefore, that for models with a moderate-to-large number of parameters,
parametrization based on local-level interface reduction is superior to that based on global-
level reduction in terms of number of needed support points and frequency of interpolations.

49



6 Application

This chapter investigates the computational efficiency and accuracy of the proposed non-
parameterized model reduction techniques.

A demonstrative FE model is first introduced. It is developed using the commercial program
COMSOL Multiphysics [20].

The CMS techniques presented in chapters 2 and 3 are then applied on the model. For this,
MATLAB [21] code is used which was developed for the purpose of this thesis.

6.1 FE Model: The Metsovo Bridge

The model used to illustrate the proposed methodologies is based on the Metsovo bridge. The
bridge is depicted in Fig. 6.1 [17][22].

o

Fig. 6.1 Two views of the Metsovo bridge.

The Metsovo bridge is located at the section 3.3 of Egnatia Motorway, westwards of Metsovo
village. It bridges the Metsovitikos river and the corresponding gorge between Metsovo and
Anilio villages. The bridge has the longest span in Greece among cantilever bridges and one of
the longest worldwide [22].

The total length of the bridge is 537 m. The bridge has 4 spans, of length 44.78 m, 117.87 m,
235.00 m, 140.00 m and three piers of which pier P1, 45 m high, supports the boxbeam
superstructure through pot bearings (movable in both horizontal directions), while P2 and P3
piers (110 m and 35 m, respectively) connect monolithically to the superstructure. The total
width of the deck is 13.95 m [17].

The superstructure is prestressed of single boxbeam section, of height varying from the
maximum 13.5 m in its support to pier P2 to the minimum 4.00 m in key section. Piers P2 and
P3 are founded on huge circular $12.0 m rock sockets in the steep slopes of the Metsovitikos
river, in a depth of 25 m and 15 m, respectively [17].
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A longitudinal view of the bridge can be seen in Fig. 6.2 [22].
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Fig. 6.2 Longitudinal view of the Metsovo bridge.

The FE model of the bridge is constructed using the commercial package COMSOL
Multiphysics. For this, a CAD model of the bridge is initially made using the available design
plans, the geometric details, and the material properties of the structure. This model is then
imported in the COMSOL environment as the geometry of the bridge.

To simplify the model, the pot bearings are treated as linear structures. To simulate the effect
of the soil, the foundations and bearings are attached to large soil blocks with fixed
boundaries. The FE model of the bridge and its division into components is presented in Fig.
6.3. For demonstration purposes, it is divided into 22 component.

The nominal values of the relevant material properties are presented in Table 6.1.

Material property Deck and Piers and Soil
bearings foundations
Young’s modulus, E [GPa] 37 34 10t
Poisson’s ratio, v 0.2 0.2 0.3
Density, p [kg/m3] 2548 2548 1800

Table 6.1 Nominal values of the material properties of the FE model.
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Close-up of left bearings (in purple)

e mm———

17
Close-up of right bearings (in brown)

20

Fig. 6.3 FE model of the Metsovo bridge and its components.

The mesh consists of three-dimensional tetrahedral Lagrange finite elements with quadratic
discretization. It is created using the “normal” settings concerning element size. This results
in a model with 168,008 finite elements and 944,613 DOF. Model reduction is well suited for
this FE model since it consists of nearly one million DOF.

A typical pier and deck section with their FE mesh can be seen in Fig. 6.4.

All necessary model data (division into components, mesh connectivity etc.) are then
transferred to MATLAB environment using the LiveLink module of COMSOL Multiphysics.
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Fig. 6.4 Typical deck section (left) and section of highest pier (right) with their FE
mesh.

6.2 Reduced-Order FE Model: No Interface Reduction

In this section, the standard formulation of the Craig-Bampton CMS method is applied to the
FE model of the bridge (see section 2.3). The reduction is performed only on the internal DOF
of each component while the interface DOF are kept unreduced.

6.2.1 Number of Kept Fixed-Interface Normal Modes for Each Component

The highest modal frequency that is of interest is denoted as the cutoff frequency @, . It is

selected to be the 20" modal frequency of the bridge. The lowest 20 modal frequencies
computed from the unreduced mass and stiffness matrix of the FE model are presented in Fig.
6.5.

It can be seen that @, is approximately 4.5 Hz.

The kept fixed-interface normal modes of each component (computed using Eq. (2.4)) are all
those that have a modal frequency less than @, = p®,, a multiple of the cut-off frequency
. . The multiplication factor p controls the number of kept modes per component. Larger

values of p lead to more retained fixed modes per component.

The objective is to find the value of p that leads to a maximum fractional error between the

modal frequencies computed using the complete FE model and the modal frequencies
computed using the reduced-order model of the order of approximately 10 (1%). After trial
and error, the value of p isfoundtobe p=2.5.
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Fig. 6.5 Lowest 20 eigenfrequencies of the original (unreduced) FE
model of the Metsovo bridge.

6.2.2 Results

Fig. 6.6 shows the fractional error for the first 20 modal frequencies for p =2.5.
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Fig. 6.6 Fractional modal frequency error - as a function of
eigenmode number - between the predictions of the full model and
the reduced-order model without interface reductionand p =2.5.
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It is clear that, for p = 2.5, the maximum fractional error is of the order of 10 (for the 20
eigenfrequency).

Fig. 6.7 shows the number of internal DOF per component for the full model and for the
reduced model with p = 2.5. The number of internal DOF is reduced more than three orders

of magnitude in some components.
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Fig. 6.7 Number of DOF per component of the full and reduced FE
model of Metsovo bridge for p = 2.5 and no interface reduction.

6.3 Reduced-Order FE Model: Global-Level Interface Reduction

Here, reduction of internal as well as interface DOF is considered. The interface reduction is
performed at the global level where all interfaces are treated as one (see section 3.1).

The number of kept normal modes for each component is calculated the same way as in the
previous section, that is, with p =2.5.

6.3.1 Number of Kept Global Interface Modes

The number of kept interface modes is computed similarly to the number of retained fixed-
interface normal modes for each component (see section 6.2.1).

The kept interface modes (computed using Eq. (3.3)) are all those that have a modal frequency
lessthanw, .. = v@,, a multiple of the cut-off frequency. The multiplication factor v controls

the number of kept interface modes.
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The objective is, again, to find the value of v that leads to a maximum fractional error
between the modal frequencies computed using the complete FE model and the modal
frequencies computed using the reduced-order model of the order of approximately 102 (1%).
After trial and error, the value of v isfoundtobe v =2.4.

6.3.2 Results

For v = 2.4, the fractional error for the first 20 modal frequencies is presented in Fig. 6.8.
The maximum fractional error is of the order of 10 for the 20" eigenfrequency.

103 F

Fractional Error
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12 3 45 6 7 8 9 10111213 141516 17 18 19 20

Eigenfrequency Number

Fig. 6.8 Fractional modal frequency error - as a function of
eigenmode number - between the predictions of the full model and
the reduced-order model with global-level interface reduction,
p=25andv=24.

6.4 Reduced-Order FE Model: Local-Level Interface Reduction

In this section, interface reduction at the local level is applied (see section 3.2). In local-level
reduction, each interface is treated separately.

The number of kept normal modes for each component is calculated the same way as in the
previous two sections, that is, with p =2.5.

6.4.1 Selection of Interfaces
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Since every interface is treated separately, the selection of interfaces impacts the
computational efficiency of the model reduction technique. There is no “correct” way to select
interfaces, but some ways are more efficient than others. That is, they require less modes per
interface to give accurate results.

Various interface definitions were examined — always taking into consideration the guidelines
presented in section 3.2.1. The chosen interface selection consists of thirteen interfaces and
is shown in Fig. 6.9. It arises “normally” since boundaries that are close together are selected
to form a single interface. Information about adjacent components and the number of DOF
for each interface is presented in columns two and three of Table 6.3.

ot

Fig. 6.9 Selection of interfaces for local-level reduction of the FE model of the Metsovo bridge.

6.4.2 Number of Kept Local Interface Modes for Each Interface

Two methods are examined to calculate the number of retained modes for each interface.
One is based on the cutoff frequency @, and the other is based on solving an optimization

problem.

6.4.2.1  Number of kept interface modes based on the cutoff frequency @,
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This method is similar to that used to calculate the number of kept global interface modes in
global-level reduction. The kept local interface modes for each interface (computed using Eq.

(3.17)) are all those that have a modal frequency less than @, , = u®, , a multiple of the cut-

off frequency (4.5 Hz).

The value of the multiplication factor ¢ must be such, that the maximum fractional error

between the modal frequencies computed using the complete FE model and the modal
frequencies computed using the reduced-order model is of the order of approximately 1072
(1%). After trial and error, the value of y is found to be 1 =70.5.

The number of retained modes for each interface using this method is presented in the last
column of Table 6.3.

6.4.2.2  Number of kept interface modes as a solution to an optimization problem

This method of selecting the number of retained modes per interface uses optimization to
find a solution.

The optimization problem consists of thirteen independent variables 8,, i=1,2,...,13.Each

variable is associated with an interface and indicates the number of kept modes for that
interface.

The variables can take only integer values between one (the minimum number of kept modes
for an interface) and an arbitrary upper bound. The upper bound is selected at 100 modes for
every variable.

The objective function to be minimized is the sum of the squares of the independent variables,
that is

min £(0) =6 (6.1)
0cZ
where
0=1[6,,6,,...,6,1 (6.2)

is the vector of independent variables.

The constraint is that the maximum fractional error between the modal frequencies computed
using the complete FE model and the modal frequencies computed using the reduced-order
model is no larger than 102 (1%).

To solve this integer optimization problem, MATLAB’s “ga” function with integer constraints
was used [23]. Itis part of the global optimization toolbox and uses genetic algorithms to solve
the optimization problem.

Four runs of the algorithm were performed on a computer with a 64-thread CPU running at
3.7 GHz and 128 GB of RAM. Because the genetic algorithm is stochastic, the results differed
a little each time.
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The number of generations and the time for the algorithm to finish for each run are presented
in Table 6.2. The results of each run are shown in columns 4 through 7 of Table 6.3.

Run1 Run 2 Run 3 Run 4

Number of generations 249 212 281 269

Time for completion [hours] 13 11 25 24

Table 6.2 Number of generations and time for completion for each run of the genetic

algorithm.
Interface Adjacent Number Number of kept modes
number components of DOF Using optimization Using a cutoff frequency

Run 1 Run 2 Run 3 Run 4 with ¢ =70.5

1 15-16-18 450 5 10 10 9 11
2 14-19 561 1 1 6 8 1
3 3-13-14-15 1524 28 33 28 28 63
4 12-13 663 38 38 38 39 37
5 11-20 3123 1 2 8 12 1
6 2-10-11-12 2805 59 59 60 59 92
7 9-10 603 37 37 37 37 36
8 8-9 603 33 33 33 33 33
9 7-8 612 23 19 19 21 37
10 6-21 2259 11 3 1 5 1
11 1-5-6-7 2112 37 40 40 37 78
12 4-5 648 22 7 23 11 38
13 4-17-22 450 4 9 5 5 11
Total - 16413 299 291 308 304 439

Table 6.3 Information for each interface involved in local-level reduction along with the
number of kept interface DOF resulting from optimization and use of a cutoff frequency.

6.4.3 Results

The fractional error for the first 20 modal frequencies and the two methods of determining
the number of kept modes per interface is presented in Fig. 6.10.

It can be seen that the four optimization runs give very similar results. The cutoff frequency
method gives smaller fractional errors for the medium modal frequencies but performs the
same as the other method for the 1 and 20" eigenfrequencies. That is, the maximum
fractional error for both methods is of the order of 102

The total number of kept interface modes using optimization (=300 kept modes) is about 46%
smaller than that resulting from the use of a cutoff frequency (439 kept modes). This justifies
the use of optimization as a method to compute the number of retained modes for each
interface.
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Fig. 6.10 Fractional modal frequency error - as a function of eigenmode number - between the
predictions of the full model and the reduced-order model with local-level interface reduction,
p = 2.5 and two methods of determining the number of kept modes per interface.

6.5 Comparison of methods

The number of DOF associated with the full FE model and the three reduced-order models
already presented are shown in Table 6.4. When interface reduction is not considered, the
total number of DOF is reduced by one order of magnitude. With global- and local-level
interface reduction, the total DOF are reduced by four and three orders of magnitude,
respectively.

The last row of the same table shows the time required for the calculation of the 20 lowest
interface modes for the full model and the reduced-order models. The eigenproblems were
solved using MATLAB on a computer equipped with a 64-thread CPU running at 3.7 GHz and
128 GB of RAM. Reduction of internal DOF only, results in a model that can be solved about
10 times faster than the full model. When interface reduction is considered at the global and
local level, the time is reduced by approximately four and three orders of magnitude,
respectively.
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Full Reduced-order Reduced-order Reduced-order model: Local-

model model: No model: Global-level level interface

interface interface reduction with p =25 and kept
reduction with with p=2.5 and jnterface modes given by run
p=25 v=24 2 of optimization

Total Internal DOF 928,200 46 46 46

Total Interface DOF 16,413 16,413 36 291

Total DOF 944,613 16,459 82 337

Time to calculate the 20 lowest 174 17 <1072 <10?

modal frequencies [sec]

Table 6.4 Number of DOF and time to perform an eigenvalue analysis for the full FE model and
the three reduced-order models of the Metsovo bridge.

Fig. 6.11 shows the fractional error for the first 20 modal frequencies between the full FE
model of the bridge and the three reduced-order models in Table 6.4.

When global-level interface reduction is considered, the model behaves very similarly to that
created without reducing the interface DOF. Both of these methods demonstrate the smallest
fractional error at the 1°* modal frequency. As the eigenfrequency number increases, the error
also increases, and the maximum fractional error occurs at the 20" modal frequency. The
close performance of these two methods is observed in [7] where numerical experiments have
been performed in a cantilevered-plate model, a w-bracket model and a can-beam model. The
authors attribute the good performance of the global-level method to the proper
consideration of the coupling between all substructures.

On the other hand, for local-level reduction, the maximum fractional error occurs at the 1%
eigenfrequency. It then decreases until the 6" modal frequency and performs similarly to the
other two CMS methods for the rest modal frequencies. Analogous behavior has been
observed in [7] for the applications mentioned above and in [17] where the same bridge has
been analyzed. High accuracy was not expected of the method. As already mentioned, the
benefits of such a CMS method are:

e Only the partitions of the reduced-order matrices that correspond to the DOF of each
interface are analyzed sequentially or in parallel (see Eq. (3.17)). This can be helpful
for very large FE models with millions of interface DOF.

e They generally require less support points to approximate interface modes than
global-level methods (see section 5.4).

From the above discussion it is clear that each CMS method has its advantages and
disadvantages. The final decision lies on the user that has to decide which method is better
suited for the problem at hand.
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Fig. 6.11 Fractional modal frequency error - as a function of eigenmode number - between
the predictions of the full model and the three reduced-order models presented in Table
6.4.



7 Conclusions

This work provided the theoretical basis for three non-parameterized CMS methods:

1. The classic Craig-Bampton method without interface reduction
2. Aglobal-level interface reduction method based on the Craig-Bampton technique
3. Alocal-level interface reduction method based on the Craig-Bampton technique

An improved formulation of the classic Craig-Bampton method has also been presented. It
takes into consideration the residual normal modes of each component and is expected to
produce more accurate models compared to the standard formulation of the method. Due to
excessive computational requirements, this improved formulation has not been presented in
the application section.

Moreover, this thesis proposed three parametrized CMS methods that can be used for
performing structural dynamics simulations. They are the parametrized equivalents of the
above non-parameterized methods.

These methods are well suited for simulation-based problems because it has been shown that
the resulting parametrized reduced-order matrices needed to estimate the dynamic response
of the original system can be expressed explicitly in terms of model parameters. Therefore,
the computationally-intensive process of reconstructing them at the substructure level at
each sample of the simulation process is completely avoided.

For the two parametrized CMS methods using interface reduction, an efficient interpolation
scheme has been presented. It involves support points in the parameter space which are used
to approximate the interface modes at each sample point. Using such a scheme accelerates
the simulation process since there is no need for a direct interface analysis.

A novel method for generating support points based on n-dimensional simplices has been
developed. It proved especially useful in minimizing the number of support points for the
parametrized CMS method using local-level interface reduction. Also, most of the
formulations concerning that method are novel since no relevant work on the specific
technique could be found.

The three non-parametrized methods have been applied on a large FE model of nearly one
million DOF. For the first two CMS methods, the number of kept normal modes and interface
modes was determined using a cutoff frequency. For the third method, optimization using a
genetic algorithm with integer constraints proved more efficient than using a cutoff
frequency. The results concerning fractional modal frequency error between the predictions
of the full model and the reduced-order models created with the three CMS methods seemed
to agree with similar studies in bibliography.

There are certainly some interesting open areas that were not covered by this thesis. The
assessment of the computational efficiency and accuracy of the parametrized CMS methods
is strongly suggested for a future work. The inclusion of non-linear components in the
formulations is another interesting topic. In the special case where a structure only exhibits
localized non-linearities, significant computational efficiency can be obtained using CMS due
to the restriction of the iterative process to the DOF of the nonlinear substructures. Finally,
the performance of the improved formulation of the Craig-Bampton method could be
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examined if more powerful equipment is available or more efficient formulations are
developed.
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9 Appendix

Great effort has been put in developing MATLAB code that can be used to apply every
formulation presented in this thesis. Currently, the code is compatible with FE models created
with COMSOL Multiphysics. In the future, it may be modified to accept models from other
commercial FE packages as well.

In the time of writing, the code is hosted on a GitHub repository under a non-commercial
license. It can be found using the following link:

https://github.com/FK-MAD/CMS

If for some reason the link does not work or the code is removed, anyone interested can
contact me on fkatsimalis@gmail.com.

What follows is a presentation of the function input.m that controls most aspects of the code.
The comments are self-explanatory.
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1 %% input

2

3

4 & ---parallelization settings---

5 indata.num workers=6; % number of workers to use

6 & ——-

7

8

9 % -—-optimization settings---

10 indata.num modes=20; % number of first modes to use in error term between unreduced and reduced¢

model

11 & ——-—

12

13

14 $ -—--matrix assembly settings---

15 % method of building the block-diagonal matrices. It might help with very

16 $ big matrices that may not fit in RAM.

17 % 1 -> use files mats S k.mat, read variables in a for-loop and build the block-diagonal¥

incrementally

18 $ 2 -> use files mats S k.mat, read variables in a for-loop and build the block-diagonal once
19 % 3 -> use file mats S.mat and build the block-diagonal once
20 indata.blkdiag method=2;
21 % ——-
22
23
24 % ---reduction method---
25 % without parametrization: l=no interface reduction | 2=global interface reduction | 3=localV

interface reduction

26

% with parametrization: 4=no interface reduction | 5=global interface reduction | 6=local¥

interface reduction

27
28
29

indata.reduction I=1;

[e)

P S ——



30

31 & ---use of static correction---

32 % 0O=without static correction | 1=with static correction

33 indata.static=0;

34 & ——-

35

36

37 % ---kept modes for component groups---

38 % method of calculating the kept modes

39 % O=explicitly using n id S | l=until the target eigenfrequency for each group is reached

40 indata.eigf.group.method=1;

41

42 % all vectors have:

43 % rows=1

44 % columns>=number of component groups (will run normally if more columns than component groupsv¢
exist)

45

46 % this is used if method=0

47 indata.n_id S=50*ones(1,100); % kept fixed-interface normal modes for each group of components
48

49 % this is used if method=1

50 r=2.5*ones(1,100); % multiplication constant used to define the target frequency

51 indata.eigf.group.multiplier=r;

52 indata.eigf.group.target=r*4.5; % target eigenfrequency (Hz) for each group of components

53

54 % this controls the way modes are searched

o)

55 indata.eigf.group.max=500*ones (1,100); maximum allowed number of modes
56 indata.eigf.group.step=50*ones(1,100);

reached

%
%

increase in the number of calculated modes if target is not¢
57 indata.eigf.group.init=50*ones (1,100); % initial number of calculated modes

58 § —--

59

60



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

-—--stored modes for component groups---

during optimization.

If you don't want any stored modes select:
indata.eigf.group.method store=0 and
indata.n id S store=0*ones (1,100)

o° @ o© o° o o° o°

o\°

indata.eigf.group.method store=1; % 0 or 1

o)

% this is used if method store=0

everything here works similarly to kept modes

indata.n id S store=50*ones(1,100); % large values

% this is used if method store=l

indata.eigf.group.target store=20*4.5*ones(1,100); %

¢

% this controls the way modes are searched

indata.eigf.group.max store=500*ones (1,100);
indata.eigf.group.step store=50*ones (1,100);
indata.eigf.group.init store=50*ones (1,100);

Q

[ —

[¢]

-——kept modes for interfaces---
method of calculating the kept modes

o® o° o©

O=explicitly using n IR (for global reduction)

large
large

o® o o°

large

target eigenfrequency for each interface is reached

89
90
91
92

indata.eigf.interface.method=0;

all vectors have:

0°  o°

rows=1

they are computed once and used when updating matrices during
optimization of r. They should be enough to avoid solving the eigenproblem

(same logic)

large cutoff frequency

values
values
values

or n IR 1 (for local reduction)

l=until theV¢



93

o\°

columns>=number of interfaces (will run normally if more columns than interfaces exist)

94

95 % 1f global interface reduction is selected:

96 $ only the first element of the target, max, step and init vectors is used
97 % (there is only one interface)

98

99 % this is used if method=0 and global reduction is selected

100 indata.n IR=36; % kept interface modes for all interfaces (global reduction)

101

102

103 this is used if method=0 and local reduction is selected

104 indata.n IR 1=[10,1,33,38,2,59,37,33,19,3,40,7,9]; % kept interface modes for each interface (localV
reduction)

105

106 % this is used if method=1

107 v=70.5*ones (1,100); % multiplication constant used to define the target frequency

o\°

108 indata.eigf.interface.multiplier=v;

109 indata.eigf.interface.target=v*4.5; % target eigenfrequency (Hz) for each interface
110

111 % this controls the way modes are searched
112 indata.eigf.interface.max=1000*cones(1,100); % maximum allowed number of modes
113 indata.eigf.interface.step=100*ones(1,100); %

is not reached

114 indata.eigf.interface.init=100*%ones(1,100); % initial number of calculated modes
115 & -—--

increase in the number of calculated modes if targety

116

117

118 % ---stored modes for interfaces---

119 % they are computed once and used when updating matrices during

120 % optimization of v. They should be enough to avoid solving the eigenproblem
121 % during optimization.

122 % If you don't want any stored modes select:

123 % indata.eigf.interface.method store=0 and indata.n IR 1 store=0*ones(1,100)



124
125 % everything here works similarly to kept modes (same logic)

126
127 indata.eigf.interface.method store=0; % 0 or 1
128

129 % this is used if method store=0 and global reduction is selected

130 indata.n IR store=50; % for global reduction, large value

131

132 % this is used if method store=0 and local reduction is selected

133 indata.n IR 1 store=100*ones(1,100); % for local reduction, large values

134

135 % this is used if method store=1

136 indata.eigf.interface.target store=80*4.5*ones(1,100); % large cutoff frequency
137

138 $ this controls the way modes are searched

139 indata.eigf.interface.max store=500*ones (1,100);
140 indata.eigf.interface.step store=100*ones(1,100);
141 indata.eigf.interface.init store=100*ones (1,100)

Q

% large values
large values

%
;5

4

large values

142 % ——-

143

144

145 & ---material properties---

146 $ all vectors have:

147 % rows>=number of component groups (will run normally if more columns than component groups exist)
148 % columns=1

149

150 indata.E=37*10"9*ones (22,1); % Young's modulus [Pa] for each group of components. most groups are«
deck components -> 37 GPa

151 indata.E([6,11,14])=34*10"9; % groups 6, 11 and 14 are piers -> 34 GPa

152 indata.E(18:22)=10720; % groups 18 through 22 are soil -> 10711 GPa

153

154 indata.nu=.2*ones(22,1); % Poisson's ratio. for deck and piers -> 0.2

155 indata.nu(18:22)=.3; % groups 18 through 22 are soil -> 0.3



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

indata.rho=2548*ones (22,1); % density [kg/m"3]. for deck and piers -> 2548 [kg/m"3]
indata.rho (18:22)=1800; % groups 18 through 22 are soil -> 1800 [kg/m"3]

% ——-—-general parametrization settings---

% interpolation scheme used in interpolation of interface modes (global or local reduction)
indata.quad interp=0; % O=linear interpolation | l=quadratic interpolation

% static correction method

indata.invariant=0; % 0=full static correction | l=invariant assumption

functions of the model parameters -> one entry for each model parameter

00 oo

func g applies on mass matrix (see Eg. (2.3))
indata.func g=repmat ({Q(x) 1},1,22);

% func h applies on stiffnes matrix (see Eqgq. (2.4))
indata.func h=repmat ({@(x) x},1,22);

vectors have:
rows=number of model parameters

o® o o©

columns=1

sample point where reduced matrices are calculated
This is used to test the code. Normally, every sample point is generated

o® o o°

during the stochastic simulation process.
indata.theta k=ones(22,1);

% nominal point used in the invariant assumption of static correction. See
% page 42 of Book.



189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

indata.theta nom=ones(22,1);

%
%

nominal point used in interpolation of interface modes (global or local
reduction). See page 50 of Book.

indata.theta O=ones(22,1);

o)

o

o

o°  o°

o® o o© o° o°

---settings concerning support points (if parametrization is used)---
used in interpolation of interface modes (global or local reduction)

'scatter theta 1' is the fraction of theta 0 that the support points are
scattered around theta 0 (can be different for each parameter)

e.g. for a model with 2 parameters and theta 0=[1;1]:
scatter theta 1(1)=.1 -> support of parameter 1=[.9,1.1]
scatter theta 1(2)=.2 -> support of parameter 2=[.8,1.2]

indata.scatter theta l=l1*ones (length(indata.theta 0),1);

o° o o° o° o° o°

o° o o° o° o° o°

o°

'simplex' -> for dimension n there are needed n+l vertices to create the convex hull
1D -> 2 points -> line segment

2D -> 3 points -> triangle

3D -> 4 points -> tetrahedron

4D -> 5 points -> 5-cell (4-simplex)

'hypercube' -> for dimension n there are needed 2”n vertices to create the convex hull
1D -> 2 points -> line segment

2D -> 4 points -> square

3D -> 8 points -> cube

4D -> 16 points -> 4-cube (hypercube, tesseract)

both methods provide as few support points as possible using smart



222 % merging rules

223 indata.method theta l='simplex'; % 'simplex' or 'hypercube'

224 % ——-

225

226

227 %% pass additional input data to structure "indata"

228

229 indata.filename=filename;

230 indata.save dir=save dir;

231

232 indata.S 0=S 0; % groups that are independent of model parameters
233 indata.S j=S Jj; %
depend on parameter 1,2,...

> groups that depend of model parameters. cell 1,2,... contains the groups thatv

234 indata.n theta=length(indata.S j); % number of parameters. n theta=length (func qg);

235

236 indata.group S=group S; % grouping of geometrical domains. cell 1,2,... contains the domains thatv
make up group 1,2,...

237 indata.n id=sum(indata.n id S); % total number of kept fixed-interface normal modes
238 indata.N_ S=length (indata.group S); % number of groups of components

239 indata.n IRL=sum(indata.n IR 1); % total number of kept interface modes using local reduction

240

241 indata.n DIL=indata.n id+indata.n IRL; $ dimension of reduced matrices if local reduction is used

242 indata.n DI=indata.n id+indata.n IR; % dimension of reduced matrices 1f global reduction is used
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