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Rarefied gas pipe network analysis via kinetic

theory

Serafeim G. Misdanitis
Department of Mechanical Engineering
University of Thessaly
September 2021

Steady-state isothermal rarefied gas flows in long circular channels have been exten-
sively investigated via linear kinetic theory since 1960s, implementing various semi-
analytical and numerical schemes. It is noted that linear kinetic modeling is applicable,
when the local pressure gradient along the tube is small. This condition is satisfied in
the case of long tubes (e.g. the ratio of the length over the radius to be approximately
larger than 100), resulting to a low speed isothermal flow even if the overall differ-
ence between the inlet and outlet pressure is large. Overall it has been demonstrated
that for rarefied gas flows in long channels, linear kinetic modeling, as described by
suitable kinetic model equations, may take advantage of all flow characteristics and
properties and yield very accurate results in the whole range of the Knudsen number
with minimal computational effort.

In many applications however, the rarefied gaseous distribution system consists
not only of a single channel but of many channels accordingly combined to form a
network. Such distribution systems are commonly found in several technological fields
including vacuum pumping, metrology, industrial aerosol, porous media, and micro-
fluidics. It is pointed out that computational algorithms dedicated to the design of
gas pipe networks (e.g., compressed air, natural gas, etc.) in the viscous regime
are well developed while corresponding tools for the design of gaseous pipe networks
operating under any (e.g. low, medium and high) vacuum conditions are very limited.

In order to achieve this, kinetic results obtained for the rarefied flow through each
tube of the network are successfully integrated into a typical network algorithm solving
the whole distribution system. In particular, for channels with L/Dj, > 50, where L is
the length and D), the hydraulic diameter, the channel is considered as long and the
available kinetic conductance results based on the theory of the infinite long channels
are applied. For channels of moderate length 5 < L/D;, < 50, the end correction

theory is introduced. This theory has been recently successfully implemented to
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define the fictitious increment length which must be added to the channel length
in order to provide accurate results for the conductance by taking into account the
channel end effects. Thus, the kinetic data base has been enriched with the values
of the increment length in terms of the gas rarefaction. Finally, for short channels,
i.e. L/Dy < 5, the above theory is not valid and depending on the local pressure
gradient, extensive simulations based on either linear or non-linear kinetic theory have
been performed to provide a complete set of results for the channel conductance in
terms of gas rarefaction, pressure difference and channel length. These simulations
are computationally very expensive.

The complete data base consists of a very dense grid to allow accurate represen-
tation of the operational conditions of an arbitrary gas pipe network. Interpolation
between the available data points is performed by cubic splines for the flow rates in
the case of long channels, by high order curve fitting for the increment lengths for
the case of channels of moderate length and trilinear interpolation for the flow rate
in terms of the pressure, length and rarefaction in the case of short channels. Next,
the enriched data base has been successfully integrated into the network algorithm
which is build to cover distribution systems consisting of channels of any length.

The developed Algorithm for Rarefied gas flow in Arbitrary Distribution Networks
(ARIADNE) includes first the drawing of the network in a graphical environment
and then the formulation and solution of the governing equations describing the
flow conditions of the distribution system. In the drawing process of the network, the
user, through the developed graphical interface, is capable of providing the input data
including the coordinates of the nodes in a 3D space, the length and the diameter of
the pipe elements, the pressure heads of the fixed-grade nodes and information for
the type of the gas and its properties. Even more, the demands (if any) at the nodes
may also be provided. Once the geometry of the network is fixed, an iterative process
is initiated between the pressure drop equations and the system of mass and energy
conservation equations in order to successfully handle gas pipe networks operating
from the free molecular, through the transition up to the slip and hydrodynamic
regimes.

The feasibility and the effectiveness of the developed algorithm is tested by sim-
ulating various distribution systems in the hydrodynamic regime and comparing the

corresponding results with the ones derived by the typical hydrodynamic solver report-
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ing excellent agreement in terms of the mass flow rate (and the conductance) through
the pipes as well as the pressure heads at the nodes of the network. Further more,
some preliminary comparisons with ITERVAC, (which is a computational tool for the
estimation of the mass flow through ducts at isothermal conditions in a wide flow
regime, however, it is based mainly on empirical expressions), for networks consisting
of long channels resulted to very good agreement between the two approaches.

It is hoped that the present work will constitute a significant part of a more
general algorithm which will be used as a significant engineering tool in the design and

optimization of gaseous distribution networks operating under any rarefied conditions.
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AvdAvon opoloTolnévng pong aeplwv oe

dlkTtval cWANVOoewWV HEow KvnTLkNG Oewplog

Y epapetp . Miodavitne
T Mnyxoavordywv Mnyavikov
MNovemiothulo Osooaloc
Y emtéuPprog 2021

To Béua tne Tapovoac didaktopiknc Siatppric eotidlel oTNV AVATTUEN eV aUA-
yopiBuov mpooopoiwong diktiwv aepiwv uTtd apototoinuévec cuvBfikec péow Ki-
vntikhc Bewplog. H meploxm auty eivall YVwoTh ooV apoloTtolnuéve aeploduvalpL-
k1 (rarefied gas dynamics) pe ToAég TexVoloYLKEC EQOPLOYEG €K TWV OTIOlWV TaL
MLKPO-NAEKTPOUNXLVOAOYLKA CUOTHLATAL KoL 1) TEXVOAOYIOL KEVOU Vo givor otuTég
Tov e€ehiooovton e TOAD Ypfiyopoug pubuoldc. Lnueldveton STl eVd 0TO TUVEXEC
4pto, vtoroyloTikd Takéta (ahydpBuol) oxedioopol diktiwv cwAnvdoewv (dTwg
diktua ovpTeopévou aépa 1| Yuotkol aepiov, KTA.) elvou evpéwe dadedopévar, o
vtioTouyo utoAoyLoTikd epyaeia yial To oxedlaopd Siktiwv o cuvBfKec XoUNATC
mieong (VPnhol, pétpov | yxoundol kevol) eiva apketd Teploplopéve. Alotol-
@VTaC TNV ToAUXpovn euTelpia Tov Epyaotnpiov Duotkmdv & Xnuukav Alepyoolov
oe apluntikéc pebddouc peookiipakac, oto mAaioto Tne dlatpiPric avatiooeTa
ko epappdletan oOvBeTo AoyLopikd TPOoOROIWoNG KUKAOYOPLOG ALPALLOTIOLNILEVGV
aepiwv ot Siktua cwAnvdoewv os dho To evpog Tou aptBuod Knudsen.

Mot TNV VAOTIOINON ALUTOV TOV £YXEPAUATOG dnuiovpyeitan ektevii Bdon dedo-
MEVWV YLl TANPWE OLVETITUYIEVES KOl OLVOLTITUOOOWEVEG POEC MECA ATLO ALY WYOUC
peydAov, peoaiou kol pLkpol WAKOUE, CUUTEPLAALBOVOIEVWY TWV YAWVOUEVWY EL-
0b80ou/e€b68ou ot dkpaL TWV LYWYDV. AUTS ETUTUYXEVETOL ETULAVOVTOLG KWVITIKEG
e€lowoeic pe avoPobulopévouc kol TapdAAnAovg alyopibuouc dlokpLt®dv popLo-
KQOV TUXVTATWVY, evid 1 XpHomn Tou Aoylopikol uttofonBeiton amd éva ypoupikd Te-
pB&Aov to omoio avattoxOnke Yo To okomd auTd.

H tehkh popen tou ahyopiBuov amotedeiton amd o) TNV eloywYN TWV YEW-
METPLKAOV XOPOUKTNPLOTIKOV KO AELTOUPYLKOV XOLPAKTTPLOTIKGOV TOV SLKTVOV TIPOG
eTtiAvon, B) Tov oplopd twv Ppdxwv ko Twv Peudo-Ppdywv, Y) TN doudpypwon ko
emidvon twv elodoewv Statfhpnone pdlog ko evépyetag, §) tn Pdon dedopévwv

Tov éyeL TpokOdeL aTtd ATOTENECUATO KIVNTIKOV EELOMOEWY KAl XPTOLLOTIOLELTOU

xiii
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yiow TV eTiAuoTn Twv e§lodoewy SLaTHPNONG Ko €) TO ATOTENECUATO TOU OLAYO-
piBpov ta omola avapépovtal ot Tiéc Tieomnc otoug kduBouc Tou diktlou kabdc
Ko o€ TULEC MAL{LKTC KO OYKOMETPLKNC TAPOXNS HECK ATd TLC CWANVAOOELS TOV
diktvov.

Mo ouykekpuuéval, To CUOTNUA TWV £ELONOEWV TO OTolo Teptypdyel To dikTvo
amoteAsitan atmd Tic e€Looelc TT®oNg Tieong oe kdbe vy amd Toug Ay wyoUg Tov
BiktOou oe ouvduaopd pe tic e€lowaoeic Sratipnong néloc os kébe évav amd toug
k6uPouc tou dikthou. LTmV TepimTwon Tov To SikTtuo eivo AW oplopévo, oL
e€LoWoelc TTOOoMNC Tieong avdyovtal o€ LoollyLo evEPYELOLC AVELETO OTOUC KAEL-
o1o0¢ Bpdyoug Tou dikTvou ko Toug Peudo-fpdyouc Tov evidvouv KOUPBOVE YVWOTOV
WBothtwyv (T.X. Yvwotéc Tpéc ieong). To cvotnua Twv e§lodoswv AOVETaL ETIO-
VOANTITIKE €XOVTAC WC AYVWOTO TIC TUHEC TWV TIoLpoX®V uTtoBétovTtog apXLkd Tig
TiéC Twv Téoewv oToug kduBoucg tou dikthou, 6Tov autéc dev sivar amtd tTnv apx ™
yvwotéc. Ye k&Be PApa, petd tnv emiduon Tou CLOTHUATOC TwV eElODoEWV, Ol
TULEG TWV TILECEWV OLVOLVEWVOVTOL CURPWVAL E TG TULEC TNG ABLAOTHTNG TTapoX TG
K&VOVTOLC XPNOTN TWV OXECEWV TTWONC Tieonc yia k&Be évav amd Toug aywyoug
Tou diktOou. To BApaTa autd amtoteAoOV TOV TUPTIVOL MLOLG ETEOLVOLATITITLKTC dLot-
Sikatoloc M ool TeppotiCeTon pe TNV LkawvoToinon Tou KpLtnpiov GUYKALONC TO
omoilo epapudleton oTic TIéC TV TLéoewv oToug kduBouc.

To urohoyiotikd Takéto @épet to dvopor ARIADNE (Algorithm for Rarefied gas
flow in Arbitrary Distribution Networks). H amotedeopatikétnto ko 1 akpiPeta
Tou aAyopiBuov eAéyxBnke pe tnv mpooopoiwon Slopdpwv BkTIWV CWANVOOE-
WV 0To LBPOBUVALKS BPLO, CUYKPIVOVTOLC TOL ATLOTEAECHOTOL [E OLVTIOTOLYOL TCOV
TPOKUTITOUVY ATtd TUTILkS adydpLlOuo Tov Paoileto otic vdpoduvayikéc e&looelg
ETUOTPEPOVTOC TOAD KA CULPwVIaL TOOO OTIC TAPOXEC TWV AYWYQV, 600 Kol
oTic Tiéoelg TV KOpPwv tou Siktbov. ETumAéov, otnv eAelBepn popLokn meploxm
Ko oTNV petaBatikt) TpaypatonotiBnkay ovykpioeic pe to Aoyloukd ITERVAC,
To oTolo eiva évoag MuL-euTELpLkdC aAySpLOpoc, eTioTpépovTag oA KoY CULP®-
via. Télog, To Aoylopkd epapudotnke otnv emtilvon Siktowv Tov Tpooeyyifouv
To cUoTNUA dvTAnong aepiwv Tou avtidpaothpa covtnéne ITER.

Me Bdion ta Ttopamdve 1 Ttopovoa ddakTopikt| dtatplPr alvapéveTol va altto-
teNéoel Tov VPNV EVOC YeEVIKOTEPOU aAYOopiBou Yo TN HeAéTn powv aepiwv ot

dikTua cWANVOoEWV o Ao To £0pOC aLpaLOTLOINCNC.

xiv
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Introduction and literature review

1.1 General concepts

The importance of gas flows, in a wide variety of technological applications, is encoun-
tered in daily basis. In most cases, the physics explaining their behavior is adequately
modeled by employing the equations of mass, momentum and energy equilibrium,
combined with the Newton-Fourier-Fick constitutive equations. However, this Navier-
Stokes type formulation, which is subject to the underlying assumption that the gas
must be considered as a continuum medium, fails when the mean free path is com-
parable to a characteristic length of the problem. Such conditions may be present in
gas flows in sufficiently low pressure or in channels of very small dimensions. In these
cases alternative formulations are needed.

In transport phenomena where the continuum approach fails and the typical
macroscopic equations are not applicable, the gas is considered to be far from lo-
cal thermodynamic equilibrium in a "rarefied" state and it is required not only to
take into account the molecular nature of the gas, but the intermolecular collisions
taking place as well. In order to properly describe such flows, concepts derived from
statistical mechanics and kinetic theory of gases need to be involved. Our purpose is
to provide a description of the macroscopic behavior, starting from the microscopic
equations which govern the motion of molecules from which the gas is constituted
[76]. The governing equation in this regime is the Boltzmann equation, which is an
evolution equation of the unknown particle distribution function consisting of seven

independent variables, namely the time, the position vector and the molecular velocity
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vector. The Boltzmann equation is nonlinear with a very complex collision term. It
can be solved analytically only for very specific situations, while it is commonly solved
numerically after its complex collisions term is substituted by a reliable collision model.

Despite the complexity of the Boltzmann equation, it is important to extend our
studies to such cases, since many emerging technologies would benefit. Vacuum gas
flows, for example, are encountered in many applications, ranging from simple pressure
sensors [59] to the maze-like complexity met in vacuum systems of fusion reactors
[26]. Also, the creation of micro- and nanometer-sized devices is very important since
they offer increased reliability, low cost and high efficiency [50, 109] in comparison to
their normal-sized counterparts. In addition, high altitude aerodynamics need to be
investigated very carefully for the correct operation and maneuverability of spacecrafts
[39] and satellites [83]. Thus, accurate and computationally efficient simulations
involving the solution of the Boltzmann equations or alternatively of reliable kinetic
model equations are of high importance in the design, manufacturing and optimization

of many devices involving transport phenomena far from local equilibrium.

1.2 Historical overview and basic principles of ki-

netic theory

The beginning of the statistical approach to the physical description of gases is at-
tributed to Maxwell [90] and Boltzmann [15]. Maxwell was the first one to point
out that not all molecules move with the same velocity, but in a random manner.
Then, he proceeded to calculate the distribution of molecular velocities and his find-
ings were extended by Boltzmann. The distribution function, describing a gas in local
equilibrium, well-known as the "Maxwellian" (or, more correctly, Maxwell-Boltzmann)

distribution, is a Gaussian according to the local conditions and it is given by

3/2 2
% m m[€ —u(x,t)]
f (X, E, t) = n(X, t) {m} exp {— 2kBT (XY t) } (121)

Here, ™ is the Maxwellian distribution and it is given at physical point x, time
t and for the molecular velocity vector £ in terms of the local macroscopic prop-

erties of number density n(x, t), macroscopic (bulk) velocity u(x,t) and temper-

2
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ature T (x,t). The parameter m denotes the molar mass and kg = 1.38065 X
10-23(kg - m?)/(K - sec?) is a constant named after Boltzmann.

By further investigating these phenomena, Boltzmann managed to derive an
integro-differential equation describing the evolution of molecular velocity distribu-
tion in time and space. This derivation is based on two main assumptions i) only
binary collisions take place (which is true for low densities) and ii) the hypothesis of
"molecular chaos" (stosszahlansatz, assumption about the collision number), accord-
ing to which a two-particle distribution function may be substituted by a product of
two one-particle distribution functions. As a result, the term molecular chaos refers

to the statistical independence of molecules [10]. The Boltzmann equation is

of of of ,
E_,_E.&_H:.a_g:()(f,f) (1.2.2)

where F is an external force vector and the collision term is given by

Q (f, f’) - /// (f’ f - fﬂ) gbdbdede, (1.2.3)

and g = |€ — &, | represents the relative velocity, b is the impact parameter and ¢
determines the azimuthal angle, as defined in [31]. The collision term contains the
gain part which refers to the contribution of particles obtaining a velocity in & + d§
after a collision and the loss part which refers to particles with pre-collisional velocities
in & + d€ but scattering to other velocity vectors after the collision. Boltzmann also
proved that the Maxwellian distribution is a solution of this equation when the gas is
in local equilibrium. The existence and uniqueness of the solution for the Boltzmann
equation were confirmed for Hard Sphere molecules in 1910 by Hilbert [48]. Grad [40]
also proved that solving the Boltzmann equation is equivalent of solving the Navier-
Stokes equations, in different, however, time and space scale. Even more, by applying
the appropriate projections, the Boltzmann equation also leads to the conservation
principles.

In the case of hydrodynamic equations, the values of the transport coefficients,
namely the viscosity, heat conductivity and diffusion coefficient, are required to obtain
a closed system. The estimation of these values is linked to the determination of the

intermolecular potential. In the case where it is specified, the complete solution of
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the problem can be obtained without the need for the determination of the transport
coefficients.

In the same works, Boltzmann further investigated these phenomena and for-
mulated the H-Theorem, which practically expresses the irreversibility of physical

processes. The quantity

H= / f log fd§ (1.2.4)

if integrated in the physical space, must always decrease (or remain constant in the
special case of a Maxwellian distribution function). This is directly connected to the
second law of thermodynamics and the entropy increase according to which molecules
tend to approach the equilibrium state, where molecular velocities follow the local
Maxwell distribution, since this is the state of maximum entropy.

By solving the Boltzmann equation for the unknown distribution function, any
quantity of practical interest may be determined by appropriate moments of the dis-

tribution function as follows:

e Number density
n(x,t) = / fdg (1.2.5)
e Velocity vector
1
a(x, t) = - x 1) / Efde (1.2.6)
e Pressure .
P(x t) = g / (& — u)® fd¢ (1.2.7)
e Stress tensor -
ﬁ)ij (x,t)=m / (& — ui) (& — uy) fdE (1.2.8)

4
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e Temperature

m 2
e Heat flux vector
atx ) =5 [ (€ uf (€ ue (1.2.10)

By taking into account the above described equations, the ideal law of gases
P(x,t) =n(x,t)ksT (x,t) (1.2.11)

is readily deduced and it is valid even in non-equilibrium systems.

During the early 1900s, the subject of gas flows under low pressure conditions
has driven the interest of many scientists. Knudsen, in 1909, managed to define a
dimensionless number [65], nowadays named after himself, describing the rarefaction

condition of a gas, according to

Kn = % (1.2.12)

Here, L is a characteristic dimension of the geometry under consideration or the length
scale of a macroscopic gradient, such as the density, found by L = p/ (0p/0x). Also,
A is the mean free path of gas molecules, defined as the mean distance traveled
by a molecules between two successive collisions. In the case where molecules are

interacting with each other as hard spheres, the mean free path is given by

1

where d is the molecular diameter and n is the number density. In terms of macro-

scopic quantities, it can also be expressed as

A= \/TE% (1.2.14)

where P is the pressure, 1 the dynamic viscosity of the gas in temperature T and vg
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is the most probable molecular speed defined as

2kg T
o

(1.2.15)

Vo =

Alternatively, instead of the Knudsen number, the gas rarefaction parameter ¢ is used.

It is inverse proportional to the Knudsen number and is given by

s VL _yrl

= —— 1.2.16
2 A 2 Kn ( )
In terms of measurable quantities the gas rarefaction parameter is given by
LP
5= — (1.2.17)
HUo

The Knudsen number is related to the Mach and Reynolds numbers according to

vy Ma
Kn=,/——. 1.2.18
" 2 Re ( )
The Knudsen number, Kn (or the gas rarefaction parameter, ¢§) is used to define
and classify the gas rarefaction levels in four regimes, namely the hydrodynamic, slip,
transitional and free molecular regime. The most widely acceptable boundaries of

these regimes, the borders of which are not that strictly defined, are:

e Kn <1073 (or § > 1000): Hydrodynamic regime
The gas may be considered as a continuum medium and the Navier-Stokes
equations may be applied.

e 1073 < Kn < 107! (or 1000 > ¢ > 10): Slip regime
Non-equilibrium phenomena appear in the boundary regions of the domain. In
particular, velocity slip and temperature jump are observed on the walls.

e 107! < Kn < 100 (or 10 > ¢ > 1072): Transition regime

Intermolecular collisions are reduced and the distribution function is not of
Maxwellian type. Kinetic theory of gases is employed to simulate the flow

properties.

6
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e Kn > 100 (or § < 1072): Free molecular regime

The motion of the molecules is described as ballistic and there are no inter-

molecular collisions.

While we move from the continuum regime towards more rarefied conditions, several
phenomena that may not be "captured" from the classical hydrodynamic equations
can appear. Such phenomena may vary from temperature and velocity jumps or
even secondary flows due to temperature gradients. In an attempt to overcome this,
appropriate computational tools have to be implemented.

For the limiting case of Kn=0, the Euler equations may be applied. For the cases
where we move down to rarefaction, the Navier-Stokes equations are valid. Their
applicability may be further extended by incorporating velocity slip and temperature
jump boundary conditions [109, 125]. However, only a limited range of rarefaction
(Kn < 0.1) can be simulated.

There have been some attempts of extending the applicability of this approach with
higher-order boundary conditions [27, 62] or by changing the constitutive relations
[72]. The most successful treatment is attributed to Sone with a development of a
hydrodynamic system of equations for rarefied gas flows, generated by an asymptotic
expansion of kinetic equations [127]. Also, higher order equation systems have been
considered.

Chapman [21] and Enskog [30] independently described the distribution function
f of molecules in terms of a deviation series from the equilibrium Maxwell distribution,
according to

f=rO 4 Knf 4+ Kn*f@ 4 Kn®f®) 1 (1.2.19)

By replacing this expression in the Boltzmann equation, we obtain a system of integro-
differential equations. The zeroth, first, second order and third order terms lead to
the Euler, Navier-Stokes, Burnett and super-Burnett equations respectively [126].
However, the solution of the Burnett equations is still considerably limited since they
face severe difficulties with the derivation of suitable boundary conditions and more
important numerical stability [157]. Overall, the Chapman-Enskog analysis, is of
great importance for the kinetic theory since it allowed the derivation of closed form

expressions and the estimation of the transport coefficients from first principles [31].
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1. INTRODUCTION AND LITERATURE REVIEW

1.3 Kinetic models

In order to deal with the significant computational effort required for the solution of
the Boltzmann equation several kinetic collision models, that replace the Boltzmann
five-fold integral collision operator with simplified expressions, have been proposed.
In general, a collision model should satisfy i) the collision invariants, namely the mass,
momentum and energy invariants, while it should also satisfy ii) the H-Theorem and
iii) provide the correct values for the transport coefficients.

The BGK model, proposed in [12] and independently in [155], was the first model
to appear and has been widely applied, mostly due to its simplicity and effectiveness.
It is given by

Qeex = v (M —f) (1.3.1)

where v is the collision frequency, assumed to be independent of the molecular velocity,
and fM is the local Maxwellian, calculated with the local number density, temperature
and velocity.

The BGK model satisfies the collision invariants and the H-Theorem. Even more,
the provided results are satisfying and in good agreement with the corresponding
one derived by the Boltzmann equation in the whole range of the rarefaction [125].
However, its major drawback is that it cannot provide the correct values for the gas
viscosity and thermal conductivity simultaneously (it provides a Prandlt number Pr =
1 instead of the correct one, which is Pr = 2/3). Therefore, it is well-known that it
cannot accurately tackle flow configurations where mass and heat transfer phenomena
are coupled. In the BGK model, the collision frequency must be multiplied by 3/2
for the solution of heat transfer problems and therefore it is not appropriate for the
simulation of coupled flow and heat transfer phenomena.

Two more models were produced in the same manner but also keeping higher

moments of the collision term, namely the Shakhov model [113]

_ ) m 2. m m(€—u)® 5
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1.4. Boundary conditions

and the Ellipsoidal model [52]

QES =vPr {fM [# |A| exp <— Z (g, — U,‘) A,J (fj — Uj))] — f} (133)

ij=1

where

2kgTo; 2(1—Pr)P;] "
Ai = J J 1.3.4
v [ m Pr nm Pr ( )

Pr is the Prandtl number, kg is the Boltzmann constant, m is the molar mass and
0;j the Kronecker delta. It can be seen that by substituting Pr =1 in Eqs. 1.3.2 and
1.3.3 the BGK expression is retrieved.

The S model satisfies the collision invariants and provides the correct value for the
transport coefficients. However, it has been only proven to satisfy the H-Theorem in
its linearized form. Although, the H-Theorem has not been proven for the S model
it is generally regarded as a reliable model and has been widely used in the literature
providing accurate results in the whole range of the Knudsen number for various flow
configurations.

The ES model satisfies the collision invariants and the H-Theorem and also pro-
vides the correct values for the transport coefficients [6]. However, it involves a higher
computational cost compared to the BGK and S model equations.

Other models have been proposed in [71, 78, 156]. In the case of mixtures, kinetic
models have been derived by Morse [84], Hamel [45], McCormack [75] and Kosuge
[66]. Their application is more complicated [19, 88] and additional mixture-dependent
information may be required [22, 49].

1.4 Boundary conditions

The implemented kinetic model equations, as well as the Boltzmann equation itself,
in order to return accurate results, have to be accompanied by the proper boundary
conditions (BCs) in order to sufficiently interpret the physics of the flow in the interface
between fluid and solid. In determining these boundaries, our main concern is the
correlation between the distribution function of particles emitted from the wall £ and

that of particles that come to wall f~. In general, this behaviour can be expressed
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1. INTRODUCTION AND LITERATURE REVIEW

mathematically as [17]

§-n
-

fr= R(¢&)f ()¢ (1.4.1)
where the scattering kernel R (& — £) represents the probability that a gas molecule
with incident velocity &’ is scattered from boundary with outgoing velocity £&. The
hypothesis described for the first time was referring in the distribution of the incoming
particles in the flow. According to that, the particles follow the Maxwell distribution
as defined by the properties of the wall [20]. This hypothesis was first described by
Maxwell and referred to as diffuse scattering boundary condition. However, in high
rarefied flows, the results are not always consistent with the corresponding experi-
mental. To deal with this phenomenon, it was considered necessary to amend the
diffusion boundary conditions. Under the amended theory, a percentage « of particles,
reflects on the wall and continues with the same and symmetrical speed in a plane

perpendicular to the wall. In this case the kernel has the form

R(& = &) =0p(§ —&+2(£-n)n) (1.4.2)

where 0p denotes the Dirac function and n denotes the unit vector normal to the
boundary facing towards the flow domain. The coefficient « is called accommodation
coefficient and is the percentage of particles that are absorbed by the wall and emitted
according to the properties of the wall while 1 — « is the percentage of particles
reflected from the wall without interacting with it. This factor is a characteristic
feature of the gas-wall interaction and is obtained from experimental data. Then the
kernel takes the form

m?¢ - n mg?

R(E =€) =(1—-a)ép(& —€E+2n[¢-n])+ ame‘m (1.4.3)

This amended hypothesis was first described by Maxwell [74] and is known as specular
diffuse.

The Maxwell boundary conditions are used in the vast majority of the cases. It is
quite easy to use and the results are consistent with the corresponding experimental.

Nevertheless, the way the fluid-wall interaction is treated, from physical aspect, can

10
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not be described accurately, and there are flows that result in significant errors. In
such cases other kinds of boundary conditions are used, which in some cases their

application is complex, which offer greater accuracy [98, 117, 118].

1.5 Numerical methods

As it has been already mentioned, the computational cost required for the solution
of the Boltzmann equation due to the seven dimensions of the distribution function
and the complicated collision integral is still considered prohibitive. Only in the
recent years, some works have appeared in the corresponding literature [67, 93, 121].
However, most of them refer to the linearized form of the Boltzmann equation or they
are limited to hard sphere interaction.

Another simulation method characterized of its increased computational cost is the
method of the Molecular Dynamics. According to this method, the computational
domain is simulated in molecular level and all molecules inside obey the laws of
motion. This method has no approximations, however, due to the enormous amount
of molecules in real conditions, the method is only applicable for problems of very
small dimensions, of the order of a few nanometers, and for very small time intervals.

Moving forward to more computationally efficient numerical methods, kinetic
model equations are more frequently proposed as methods for simulating rarefied
flows. The method is based on solid theoretical background and has been stud-
ied and tested thoroughly in the last decades. The Discrete Velocity (or Discrete
Ordinates) Method (DVM) [54] is one of the most widely used methods and it is
extensively applied in the present work for various conditions using both the linearized
and non-linear kinetic formulations. The method is completely deterministic and the
main concept characterizing it is that only a discrete set of molecular velocities is
examined, chosen in such a manner that a high accuracy of the integration of the
distribution function during the calculation of the bulk quantities is achieved. As a
result, the kinetic equations are discretized in both the physical and molecular velocity
space and solved in an iterative manner for the predefined, specifically chosen, set of
molecular velocities. Several works making use of this method may be found in the
literature [87, 104, 146]. Not only in the cases where the distribution function can be

linearized in terms of a small parameter [86, 141], but also when the kinetic models

11

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



1. INTRODUCTION AND LITERATURE REVIEW

are in their non-linear form [79, 100].

Apart from the well established and described deterministic methods, a different
method well known for its wide applicability in rarefied gas flows is the Direct Sim-
ulation Monte Carlo (DSMC) method. The method, formulated by Bird [13, 35],
is based on the direct simulation of the interaction between computational particles,
each one representing a large number of real molecules. The method allows the study
of the free motion of the simulated particles separately to the study the intermolecular
collisions, all taking place in a small time increment. In the case where the number of
computational particles is large enough, it has been proven [153] that the method is
equivalent of solving the Boltzmann equation itself. Despite the fact that the DSMC
method is well established, simple and its results are characterized by accuracy in
flows far from the equilibrium state, however, in low speed flows, the method suffers
from strong statistical noise. In the recent years, several techniques to face this issue
have been proposed [9, 108] but they are not easily applied.

The DVM and DSMC methods are just two of the numerical methods which
can be found in the literature. Several other numerical methods such as Analyti-
cal Discrete Ordinates [112, 139], Moment [128], Integromoment [149], Variational
[18], Information Preservation [126, 130], Lattice Boltzmann [1, 91] and Extended
hydrodynamics [127] are also effective. However, issues such accuracy and complexity
affect their range and ease of applicability.

Along with the more advanced numerical methods being proposed, the techno-
logical growth of the last decades gave access to more advanced high performance
computing systems (HPCs) [44]. These systems are characterized by extremely high
computational power that are able to solve hugely complex and demanding problems.
As a result, numerical methods like the ones described here can be implemented even
faster.

Even more, paralellization protocols are further updated and in combination to the
applicability of extended parallelization programming techniques in Graphics Process-
ing Units (GPUs) by the CUDA architecture (Compute Unified Device Architecture)
[32, 64], it is expected that computational techniques will receive an even more in-

creased attention in the near future.
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1.6 Technological fields with gas flows far from

local equilibrium

This very same technological growth and today's technology is the basis on which
people who envisioned, from the very beginning, the current technological evolution
in several fields are proven to be right.

The vision along with the need to reduce the size, weight and energy savings
coupled with increased needs for credibility and proper functioning of conventional-
sized machines led towards the microcosm. The invention of the microscope brought
this need even closer to reality. Smaller and smaller in size devices continued to be
manufactured reaching to a peak with the construction of integrated circuits (I0nm).

Micro-and nano-devices with dimensions less than 100mm are now a reality. This
evolution of technology with applications in micro fluid-dynamics [33], in vacuum
devices [26, 138], in micro-(MEMS) and nano-electro-mechanical systems (NEMS)
[50, 109] and in devices used at high altitudes and in space technology (> 50 Km)
[39, 56] raised the need for better and more detailed understanding of the phenomena
that are developed in such conditions, since in many cases it is quite limited.

Several applications also exist in the emerging field of microfluidics [85]. In the
case of MEMS with moving parts, such as microresonators [11] and comb drive sensors
[70], the damping forces induced by the ambient rarefied gas can significantly alter
the performance and the sensitivity characteristics. The flow field around micro heat
flux sensors [92] plays an important role in the accuracy of the device. Flows through
porous media are also considered as rarefied flows with many applications in filters
and membranes [136]. Read-head sliders in hard disk drives can be designed optimally
only if the air flow in the microgap is simulated properly [62].

The detailed modeling of vacuum pumps [14, 37, 122] and gas separators [131] is
also very important to obtain the maximum efficiency. Multilayer insulation (MLI) and
blankets, extensively used in numerous applications, consist of several layers of thin
sheets with vacuum conditions between them to ensure that heat is transferred only
through radiation. However, ideal vacuum conditions are not achievable and therefore,
the performance of the insulation in the case of degraded vacuum [129] should be

investigated. Vacuum deposition systems are used for the fabrication of thin-film
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materials in the manufacture of integrated circuits, MEMS and nanocomposites [151].
Furthermore, the technological branch of cryogenics [58], requires extended usage of
vacuum facilities.

Application with increased technological interest though are not encountered only
in nano- and micro- dimensions. Large scale applications include the EURO fusion
programme and more specifically the thermonuclear fusion reactor ITER, that is cur-
rently under construction in Cadarache, France. This is a promising inter-national
programme for covering future energy needs. Due to the high pumping requirements
and the prevention of certain vacuum conditions [26] (insulation vacuum, low pres-
sure to maintain plasma, fuel pumping, etc.), flow conditions usually correspond to
the transitional or free molecular ranges. The AIA prototype [53] is a robotic long
reach carrier, able to move inside a fusion reactor and perform various tasks without
deconditioning the torus vessel. One of its most promising features is leak sniffing in
which it is important to know the characteristics of the rarefied gas mixture sample
flow in the umbilicus connecting the sensor tip with the detector. It is important to
note that the present work has been performed within the EURO fusion program.

As far as high altitude aerodynamics is concerned, hypersonic flows around space
vehicles [29, 39] and satellites [83, 119] are frequently encountered in rarefied atmo-
spheres particularly during the reentry in the earth’s atmosphere. In particular, the
reentry angle for large Mach number is one of the most important parameters. The
DSMC method is frequently employed in such cases and large organizations, including
NASA [69], develop their own code versions of this numerical algorithm [55]. The
numerical study of such phenomena is a very important factor for the development
of new technologies [23, 63]. The construction of microscale propulsion devices such
as mono- and bi-propellant thrusters and resistojets, has also increased the needs for
the accurate simulation and measurement of rarefied gas flows [5].

Other applications include the field of aerosols [57], chemical vapor deposition

[24] and vacuum metrology [61, 89].

1.7 Network solvers

In many of the applications however, the rarefied gaseous distribution system imple-

mented in order to achieve the required operational conditions, consists not only of a
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single channel but of many channels accordingly combined to form a network. In the
hydrodynamic regime, computational algorithms dedicated to the hydraulic design
and optimization of gas pipe networks (e.g. compressed air, natural gas, etc.) are
well established and widely available [41, 94, 106]. A typical example is the Pipe2020
computational package that has been under development since 1973 from the Uni-
versity of Kentucky [36, 105]. It analyzes one-dimensional, isothermal flow for ideal
and non-ideal variable density gases and can accommodate large networks, looped
systems and multiple load and supply points. In addition, several scenarios can be
set up in a single model such as load or supply changes and open or closed valves.
Pipe2020 offers an integrated GUI from which the user can provide all the required
input data such as the piping elements length and diameter, pipe fittings (e.g. bends,
T's, reducers, etc.), node load or supply as well as compressors and fans. For the
simulation of the gas network the linear pressure loss at each tube is taken from the
Darcy-Weisbach equation as

ap— L2V (17.1)

D 2

where fp is the Darcy friction factor, L and D are the length and diameter of the
pipe, while p and V are the mean density and velocity of the gas inside the pipe. The
Darcy friction factor is calculated from well-known empirical expressions and depends
on the characteristics of the flow inside the tube. A more detailed approach on both
the estimation of the Darcy friction factor and the derivation of the Darcy-Weisbach
equation are presented in Section 3.4 and Appendix A, respectively.

Following the Pipe2020 software, an in-house Matlab code simulating gas pipe
networks in the hydrodynamic regime has been also developed at the Laboratory of
Transport Phenomena of the University of Thessaly. This software has been imple-
mented in the past in several diploma and master theses [107, 143]. In its current
version, the Matlab algorithm is further updated and employed in the present work
for validation purposes.

Recently, the so-called ITERVAC, a numerical tool for gas network simulations
has been developed at the Karlsruhe Institute of Technology (KIT) for gas network
calculations in the whole range of the Knudsen number [25]. The input data are
provided through a GUI that allows the user to build 2D networks. Then, ITERVAC

uses semi-empirical expressions to determine the mass flow rates inside a pipe as
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a function of the corresponding pressure drop between the hydrodynamic and free

molecular limits. The expression for the flow rate is given as

. T D3 OP
M=F-"h_—_ 1.7.2
8 vy Ox ( )

where D, is the hydraulic diameter of the tube, vg is the most probable velocity and

F is given as a function of four fitting parameters given by

Cl C C3Kn

F—_L _38n 1.7
kn 27 G Kn (L73)
Taking the limit of Eq. 1.7.3 in the viscous regime (Kn — 0) yields
_ G 4\/7
I(Ir:moF = ﬁ = Fvisc = Cl = ﬁ (174)

where fp is the Darcy friction factor and Re is the Reynolds number. A more general

approach is to take

c _ Com 16 A
' /mD2Refp

Then, taking the limit of Eq. 1.7.3 in the free molecular regime (Kn — o0) yields

(1.7.5)

lim F = C2 + C3 = Fmol (176)

Kn—o00
Also, assuming an isothermal Maxwellian distribution inside a circular channel yields

2W L
LY

where W is the dimensionless free molecular flow rate through the circular tube.

G+G = (1.7.7)

Finally, the fitting parameter C, is taken as a fixed parameter that describes the
beaming effects. Values for the four coefficients are presented for some common tube
cross sections in Table 1.1.

For short channels (L/Dy < 80), G, and G are weighted by a correction factor
while C; is corrected for end effects. The empirical expressions of ITERVAC have been
validated computationally and experimentally. The largest deviation in the viscous and

free molecular regimes is 3% increasing up to 40% in the transition regime.
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Table 1.1: Fitting parameters of Eq. 1.7.3 for channels of various cross sections.

Geometry Clam C2 C3 C4

Circular 1.000 1.116 0.329 1.400
Rectangular (1x1) 1.124 1.486 0.574 1.400
Rectangular (2x1) 1.029 1.666 0.732 1.400
Triangular 1.200 1.340 0.963 1.400

1.8 Dissertation structure and contents

The aim of this dissertation is to numerically investigate gas pipe networks in the
whole range of the Knudsen number. This is achieved by integrating kinetic results
of gas flow through single channels into a code modeling pipe networks and providing
detailed results concerning the flow rates and pressures of the network. The contents

of the chapters of the thesis are as follows:

e Chapter 1 presents an introduction in kinetic theory and a short literature re-
view on the Boltzmann equation, the main kinetic model equations and the
associated computational schemes, as well as a description of the technological
fields and conditions where the implementation of kinetic-type approaches is
needed. It also includes the novelties and the scientific contributions of the

present work.

e Chapter 2 provides a description of all pressure driven flow configurations in-
volved in the present work. This includes three main setups, namely the flow
through a) long, b) moderate and c) short channels of various cross sections.
These flows are treated based on the linear theory for long and short channels,
when the latter is applicable, as well as end effect theories for channels of mod-
erate length and the more general nonlinear approach for short channels. The
corresponding kinetic equations along with the associated formulations are pro-
vided and they are numerically solved to deduce adequate dense kinetic results
to be integrated into the network code. The range of validity of each approach

is also examined.

e Chapter 3 contains a detailed description of the developed Algorithm for Rar-
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efied gas flow in Arbitrary Distribution Networks (ARIADNE). This includes the
basic concepts and definitions of a pipe gas network, the graphical interface in
order to introduce the network geometry, the kinetic data base providing the
flow rates for each pipe element, the mass and pressure balance equations to
model the whole network and above all the computational algorithm integrating

all this information and providing the solution.

e Chapters 4 and 5 are devoted to the validation of the proposed algorithm and
on its implementation in solving certain gas pipe networks of certain complex-
ity. Chapter 4 is devoted to networks consisting of long channels or channels
of moderate length with circular, orthogonal and trapezoidal cross channels.
Results are based on the infinite capillary and the end effect theories. The code
validation and benchmarking is achieved in the viscous regime by comparisons
with typical hydrodynamic solvers and in a wide range of the Knudsen num-
ber by comparisons with the ITERVAC code. Then, various pipe networks are

simulated to demonstrate the effectiveness of the code.

e Chapter 5 is devoted to the more general and challenging case of networks
consisting of channels of arbitrary length. Following the code validation several
networks of arbitrary complexity are simulated. This effort includes the neutral
gas flow based on the geometrical characteristics of the ITER divertor pumping

system.

e Chapter 6 includes the main concluding remarks of the Ph.D. thesis. It also
points out several directions and fields where this work could be extended in

the near future.

1.9 Novelty and scientific contributions

The simulation of gas pipe networks in the hydrodynamic regime based on the Navier-
Stokes equations has been extensively investigated by developing several in-house and
commercial codes. This is well expected and understood due to the importance of
gas pipe networks in various technological applications. The corresponding work in

the case of gas pipe networks operating at pressures lower than the atmospheric one
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is very limited, although this type of networks may be found in microfluidics and
vacuum applications. This is mainly contributed to the complexity of the problem
which requires the merging of expertise in kinetic modeling and pipe networking.
The present Ph.D. thesis fills exactly this gap and actually is the first systematic
and successful scientific effort in integrating the modeling gas flows through channels
of various lengths and cross sections under any vacuum conditions in a gas pipe
network solver. Furthermore, ARIADNE, through the developed graphical interface,
is considered to be a complete computational tool capable of simulating any pipe
gas network of arbitrary complexity operating at any pressure from the atmospheric
down to ultra-high vacuum. The software is validated and then is applied to solve
various gas pipe networks including the neutral gas pipe network of the ITER divertor

pumping system which is considered as one of the most complex ones worldwide.

19

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



Pressure driven rarefied gas flows through

single piping elements

A review of the four main approaches modeling rarefied gas flows through channels,
implemented in the present work, is provided. The approaches include the infinite
capillary and end effect theories for long and medium capillaries, as well as the linear
and the nonlinear approach for short capillaries. Furthermore, these methodologies
are organized and presented in a manner which is useful for their implementation in
the present work. In addition, the kinetic data base of the deduced dimensionless
flow rates in terms of the specific flow configurations has been enriched with results

in order to efficiently support the integrated network code.

2.1 Flows through long capillaries of various cross

sections: The infinite capillary theory

The main flow configuration consists of an upstream and a downstream vessel con-
nected by a channel of length L and cross section having surface A and perimeter I

The hydraulic diameter of the channel is defined by:

4A
[

Dy = (2.1.1)

The conditions in the upstream and downstream vessels are characterized by the

pressure and temperature of the gas denoted by (P, T1) and (Ps, T,) respectively.
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Depending upon the application the reference pressure may be the average pressure
or the pressure of the upstream vessel, while since in this work only pressure driven
flows are considered the upstream and downstream temperatures are considered as
equal, i.e. To = Ty = T,, with Ty denoting the reference temperature.

The main flow parameter characterizing the rarefaction of the flow conditions is
the local Knudsen number or the local gas rarefaction parameter, denoted by Kn and

0 respectively, which are defined as

/T o
and D.p
5= (2.1.3)
HUo

where Py is the local pressure defined as the average of the upstream and downstream
pressure conditions i.e. Py = (Py + P2)/2, Dy the local hydraulic diameter, u the
viscosity of the gas and vy the most probable molecular velocity. It is seen that the
gas rarefaction is proportional to the inverse Knudsen number. Here, all results are

presented in terms of the gas rarefaction .

2.1.1 Flow configuration

The flow configuration presented in this section applies to long channels of arbitrary
cross section. Consider the isothermal flow of a monatomic gas at a reference temper-
ature Ty through a long channel of length L and hydraulic diameter Dy, connecting
two reservoirs maintained at pressures P; and P, respectively, with P; > P,. The area
and the perimeter of the cross section are denoted by A" and I’ respectively, while
the hydraulic diameter is given by D, = 4A’/I’". The reference pressure is defined
as Py = (Py + P2) /2. The flow is in the z’ direction, while x" and y’ are the lateral
coordinates. By taking D, << L the flow is considered as fully developed and end
effects at the inlet and the outlet of the channel are ignored. In addition pressure
(and density) varies only in the flow direction z’ and it remains constant at each cross
section (X', y") of the channel, i.e. P = P (Z') € [Py, P,], with 2/ € [0, L].

The flow is driven by the imposed pressure difference AP = P; — P,, while the
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dimensionless local pressure gradient is given by

_Dyap

Xp — —"
PP, dz

(2.1.4)
In this fully developed flow configuration the only nonzero component of the macro-
scopic (bulk) velocity is the z’ direction denoted by v’ (X', y’).

The basic parameter of the flow is the rarefaction parameter defined by
D,P 1

~— 2.15
MoV Kn ( )

5=

where j1q is the gas viscosity at temperature Ty and vy = /2R Ty is the most probable
molecular velocity (R = k/m is the gas constant where k is the Boltzmann constant
and m the molecular mass). The rarefaction parameter 9, is inversely proportional
to the Knudsen number (§ = 0 and § — oo correspond to the free molecular and
hydrodynamic limits respectively). The reference rarefaction parameter characterizing
the flow is given by

~ DuPy 1

~ (2.1.6)

)
°7 hovo  Kng

The hydraulic diameter D, and the molecular velocity vy are taken as the char-
acteristic length and velocity respectively. Then, it is convenient to introduce the
dimensionless spatial variables x = x’' /Dy, y = y' /Dy and z = 2’/ Dy, the dimension-
less cross section A = A’/D? and perimeter ' = "'/ Dy, as well as the dimensionless
velocity u = i/ (voXp). Finally, the dimensionless flow rate is defined with regard of

dimensionless quantities according to

G- %/u(x,y)dA (2.1.7)

A

At this point it is important to note that under the assumption of D, << L the
dimensionless pressure gradient is always much less than one, i.e. Xp << 1, even
for large pressure differences AP. Therefore, the quantity Xp is used as a very small
parameter to linearize the flow equations even at large pressure drops. The analysis
introduced to solve fully developed flows in long channels is also known as the infinite

capillary theory.
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2.1.2 Formulation of the infinite capillary theory

Since the problem is solved based on kinetic theory the main unknown is the distribu-
tion function which obeys a kinetic equation. It has been shown that fully developed,
isothermal, pressure driven flows, as the ones described in the previous section, can
be simulated efficiently by the linearized BGK model equation given by [116]
oo 9L 1
C— +¢,— + 0P = dou — = 2.1.8
ox Yy TP TN (2.18)
subject to Maxwell diffuse-specular reflection boundary condition &+ = (1 — o) ®~.
Here, ® = & (x,y, ¢\, ¢,) is the reduced linearized distribution function, ¢, and ¢,
the two components of the molecular velocity vector lateral to the flow direction, d

the reference rarefaction parameter and

o oo
/
u(x,y)= UOL;P = % / / ®exp [—c; — ;] dcdc, (2.1.9)
“00 00

is the dimensionless macroscopic velocity. Along the perimeter I, the boundary
conditions are ®* = (1 — &) ®~, c-n > 0, where ®* and ¢~ are reduced distributions
representing particles departing and arriving at the wall respectively, ¢ = (¢, ¢,) and
n is a unit vector normal to the surface oriented towards the flow side, while the
parameter a € [0, 1] is the so called tangential momentum accommodation coefficient
and denotes the portion of the particles reflecting diffusively from the wall.

A brief description of the computational approach for solving this problem is pre-

sented here in a unified manner covering all various cross sections under consideration.

Eq. 2.1.8 is written in the compact form

1
where 5 5
D: Cxa—i—cya—y (2111)

is the linear streaming operator acting on ®. Then, the two component dimensionless
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2.1. Infinite capillary theory

molecular velocity vector is defined by its magnitude ¢ and its polar angle 6 as

(=4/c2+c2 and f=tan"" (¢ /c) (2.1.12)

respectively, where 0 < ¢ < ooand 0 < 6 < 27 (¢, = (cosb, ¢, = (sinf). For each
cross section the operator D may be expressed in a different, more convenient, form
for numerical simulation. Even more, dimensional and dimensionless values for the
estimation of the hydraulic diameter, surface and perimeter for capillaries of various
cross sections may be found in Table 2.1.

In particular, in the case of flows through circular cross sections, due to the axisym-
metric conditions, the flow becomes one-dimensional in space, i.e. ® = & (r,(,0),

where r denotes the radial direction and we write [124]

0 sinf 0

In the case of flows through orthogonal cross sections, ® = ® (x, y, ¢, 0) is a function

of four independent variables and the streaming operator is written in the form [116]

0 0
D = 0— + sinf— 2.1.14
C(cos e + sin 8y> ( )
In the case of triangular and trapezoidal cross sections, again ® = & (x,y,(,0).
However, in order to have a boundary fitted grid it is necessary to write, using the

method of characteristics, the streaming operator as [87]
0
D=(— 2.1.15
2 (2115)

where s = s(x, y, #) denotes the direction of the characteristic line, passing from the
point (x, y) and defined by the polar angle 6 of the molecular velocity vector. This
approach has been shown recently to be very efficient for triangular and trapezoidal
cross sections [87]. It is concluded that for all cross sections, Eq. 2.1.10 is the

governing equation, with the operator D however, accordingly defined.
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2. SINGLE PIPING ELEMENTS

Finally, in terms of the polar coordinates the macroscopic velocity is defined as:

27
0

The kinetic equation 2.1.10 is discretized properly in the molecular velocity and

u(x,y)=

3| =

/¢exp [—¢%]¢dcdd (2.1.16)
0

physical spaces and then its discretized version is solved numerically in an iterative
manner. The discretization in the molecular velocity space for all cross sections
is performed by choosing a suitable set of discrete velocities ((y, 6,), defined by
0<(n<ocand0<0,<2r, withm=1,2,..., Mand n=1,2,..., N. Introducing
this discretization into Eq. 2.1.10, yields, in the case of rectangular cross sections,
a system of partial differential equations while, in the other three cases, systems of
ordinary differential equations are deduced. The macroscopic quantities are computed
by numerical integration. More specifically, the Gauss-Legengre quadrature is used
in the { variable and the trapezoidal rule in the 6 variable. The discretization in
the physical space (i.e. the dimensionless area A of the cross section), depends on
the type of cross section. The flow through a circular channel is one-dimensional in
space and in this case the spatial discretization is trivial. In the case of an orthogonal
channel the elements of the computational grid are orthogonal having an aspect
ratio equal to the aspect ratio of the channel. The kinetic equation is discretized
at the geometrical center of each orthogonal element (7, ), with i = 1,2, ...,/ and
J = 1,2,...,J, resulting to a second order difference scheme. The computational
grids for the triangular and trapezoidal channels consist of triangular elements. The
implemented numerical scheme is first order accurate and therefore a relative large
number of nodes in the physical space is required. Details on this specific numerical
scheme are given in [62].

Overall the problem is solved numerically in an iterative manner between the ki-
netic equation for ® and the integral expression for u. The iterations start by assuming
some initial values for u. Then, in each iteration the system of algebraic equations de-
duced from the discretization of the kinetic equation is solved by a marching scheme.
For each discrete velocity ((m,0,) the distribution function is computed explicitly
marching through the physical lattice. The marching process starts always from the

boundary and its direction depends upon the polar angle #,. Following this proce-
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2.1. Infinite capillary theory

dure, no matrix inversion is required. Then, based on the estimated distributions the
macroscopic velocity is computed by numerical integration. The new values of u are
plugged back into the kinetic equation and the iterative procedure is ended when
the imposed termination criterion on the convergence of u is satisfied. Following the
above procedure, supplemented by a reasonable dense grid and an adequate large
set of discrete velocities, we are able to obtain grid independent results with modest

computational effort.

2.1.3 Mass flow rate and axial pressure distribution

The mass flow rate M is obtained, based on the computed dimensionless flow rates
G, in a straightforward manner [125]. In general, the mass flow rate is given by

integrating over any cross section of the channel according to

i1 = [ 0(@)0 ¢y = p(2)euX,0F [ ulxy)ah =

A A
2P 2 dP
= U—OXpDﬁ/u(x,y)dA: U_OEDE/U(X'y)dA:
A A
AD} dP
_ AP A - 2.1.17
vy dz’ ( )

Define arbitrarily a new quantity which we will call G* so that

_ AD} AP

M G* 211
o L (2.1.18)

Since due to mass conservation the two expressions of the mass flow rate must be
equal to each other as:
P2 — Pl) dP % dZ,

P
d G*( =G G

ar S 2.1.19
dZI L P2 — P]_ L ( )

From the definition of ¢ and since all quantities other than P remain constant it is

deduced that
dP do

Py— P 6— 0

(2.1.20)
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2. SINGLE PIPING ELEMENTS

Then,

9 L
! 1 *
G4 % /@h%/ﬁ#
0

0, — 0, L 5y — 01
01
7
G* = Gdé 2.1.21
- @—&/ (21.21)
01

Now given the dimensional quantities, i.e. the cross section A’, hydraulic diameter
Dy, and length L of the channel, the upstream and downstream pressure P; and P,
respectively, the isothermal flow temperature Ty, the molecular mass m and viscosity
Lo of the gas, the mass flow rate M may be computed. In particular, the kinetic
code for a large set of values for ¢ covering the range [d1, J3] is run to obtain the
corresponding values of G and then G* is found from Eq. 2.1.21. Next, from Eq.
2.1.18 the mass flow rate is estimated.

The pressure distribution may be also computed by rewriting Eq. 2.1.18 in the

form )
dP Muyg

& = AD°C () (2.1.22)
and solving this ordinary differential equation, based on a typical integration scheme,
for P = P(Z'), along Zz’ € [0, L], with initial condition P(0) = P;. This may be
easily achieved by dividing the channel length z’' into N intervals of length Az’ and
applying a first order Euler scheme to yield the finite difference expression

Muyg

Py = P+ Af -0
SRl Yo e TN P

i=01,..,N (2.1.23)
with Py = P (0), which produces the pressure distribution along the channel. Then,
provided that the discretization is dense enough and that the mass flow rate M has
been estimated correctly, the downstream pressure P, at z/ = L is recovered. It is
obvious that this analysis can be also used in cases where the downstream pressure
is unknown provided that the mass flow rate is given.

The above described methodology has been implemented in the pipe network

algorithm to compute the mass flow rates through long channels of various cross
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2.1. Infinite capillary theory

sections. As it is clearly seen the methodology is based on the computation of the
dimensionless flow rate G versus the gas rarefaction parameter §. This information
is provided in Tables 2.2 to 2.5 where tabulated values of the dimensionless flow rate
in terms of the gas rarefaction parameter for long channels of various cross sections

are provided.

2.1.4 Complementary quantities

Other characteristic and commonly used numbers of the flow are the reference Reynolds
and Mach numbers defined as Re = po' Dy /110 and Ma = @' /¢y respectively, where,
po = Po/(RTy) is the reference mass density, co = v/YR Ty is the adiabatic sound
velocity at temperature Ty (7 is the specific heat and is equal to 5/3 for a monatomic

gas) and
1

A

A/

-/

u (X, y ) dA (2.1.24)

is the mean macroscopic velocity. Then, the reference Reynolds and Mach numbers

are associated to the reference rarefaction parameter, Eq. 2.1.6, according to
Jo = ——mns (2.1.25)

Another quantity of practical interest is the conductance C. Conductance is the
"PV flow" or "pump PV flow", i.e. the throughput through any desired pipe element
and it expressed as [60]: .

M R* T,
" m AP
with m denoting the molar mass of the gas and R* the universal gas constant. The

(2.1.26)

conductance depends on geometry via the pressure difference term and it is always
positive. In ultrahigh and high vacuum is almost independent of pressure, while in
medium and rough vacuum depends on pressure.

In the same context, if we consider a fluid of volume V passing through the intake
port of a pump at time t, then S = dV//dt is the pumping speed, i.e., the volumetric
flow rate (m3/s) through the intake port of the pump. If the pumping speed is
constant then S = AV//At.

The "PV flow" or "pump PV flow" (or pump throughput) is often more interesting
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2. SINGLE PIPING ELEMENTS

in vacuum technology than the mass or weight of a quantity of gas and it embraces

an energy dimension and is given by

PxV

Qov = —— (2.1.27)

where P is the pressure in the intake side of the pump and S the pumping speed.
The units of the throughput are in Pam®/s, which is equivalent to Watt. If P and
V are constant at the intake side of the pump, the throughput of the pump can be
expressed as Qpy = P x S.

Apart from the conductance and throughput defined above, another parameter
characterizing viscous flows is the friction factor. In the case of internal fully developed
laminar flows, instead of the friction factor it is more appropriate to estimate the

Poiseuille number of the flow, which is defined as [140]

_ 87,,Dy

Po —
pot’

(2.1.28)
Here, 7, is the mean wall shear stress, which is estimated by integrating the wall
shear stress 7., over the perimeter [, T is the mean macroscopic velocity given by Eq.
2.1.24. It may be useful to note that the Poiseuille number is given as Po = fp x Re,
where fp is the Darcy friction factor and Re is the Reynolds number of the flow
based on the hydraulic diameter. The two expressions for the Po number, from a
mathematical point of view, are identical. The dependence of Poiseuille number on
the gas rarefaction for channels of various cross sections has been investigated in
[16, 145, 147].

Since the flow is fully developed and there is no net momentum flux in the Z/

direction, the net pressure and the wall shear stress are equated to yield

,  AdP

= —— 2.1.2
v [ d7 ( %)

al

By nondimensionalizing the above expression and using the relation A/[" = 1/4, it is

easily deduced that
7! A 1
Tw = o= — = 2.1.
™ 2P Xe 2T 8 (2.1.30)

This result is always valid independent of the channel cross section, the rarefaction
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2.2. End effect theory

parameter dp and the accommodation coefficient o and therefore it may be used as
a benchmark to test the accuracy of the kinetic calculations.

Then, by introducing Eq. 2.1.29 into Eq. 2.1.28 and implementing Eq. 2.1.6 it
is readily deduced that

_ 87,2PXpDy 167,00

p _ 2.1.31
© ,uol_IU()Xp u ( )
where
u= u —l/u(x )dA (2.1.32)
N UoXp N A Y o
A

is the dimensionless mean velocity and it is related to the kinetic coefficient G given
by Eq. 2.1.7 according to G = 2u. Finally, substituting Eq. 2.1.30 into Eq. 2.1.31
yields

20, 40,
=== 2.1.33

This expression is of major importance and it is valid for any cross section and gas

Po

rarefaction level.

In Table 2.6 tabulated results for the Poiseuille number in terms of the rarefaction
parameter ¢ for channels of various cross sections, with a constant value of tangential
momentum accommodation coefficient o = 1, are provided. In all cases the Po num-
ber is monotonically increased with dg, reaching at large values of §q the corresponding

well known analytical results at the hydrodynamic limit (0o — oo) [145].

2.2 Flow through circular capillaries of moderate

length: The end effect theory

In many practical situations the assumptions of the fully developed flow are not
applicable. In the case of channels of moderate length and relatively small pressure
drops the so-called end effect theory may be implemented to extend the validity of
the infinite capillary theory to channels of finite length. More specifically, the capillary
length L is corrected by an additional length AL related to the end effect. Once the
end correction L is known, the flow rate through the finite capillary can be calculated

by multiplying the flow rate for an infinitely long capillary by L/ (L + AL). It is

31

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



2. SINGLE PIPING ELEMENTS

important to note that AL depends only on the gas rarefaction parameter and it is

independent of the capillary length.

2.2.1 Flow configuration and formulation

The end correction approach is well known in viscous flows [154], while in rarefied
gas flows is introduced in [125]. The same idea was also used [3, 4, 114, 135], where
however, the concept was based on computing the pressure gradient in the middle
section of the capillary.

Let us consider the rarefied flow of a gas through a tube with length L and radius
R connecting two large reservoirs. The channel is divided into three segments as
seen in Figure 2.1, denoted by the terms "inlet part", "middle part" and "outlet
part". These are distinguished by the transformation of the flow field, which is two-
dimensional in the inlet and outlet parts and one-dimensional in the middle part, which
is characterized by the fully developed flow conditions. The introduced methodology
is exactly the same for the inlet and outlet regions and therefore we may consider
either of them as shown in Figure 2.2. A cylindrical coordinate system (x, r) with
its origin at the center of the junction between the container and tube is introduced.
The region x > 0 represents the container, while the region x < 0 corresponds to the
tube. The gas flows from (or into) the long tube in the x direction into (or from) the
infinitely large container. The interface between the middle and outlet parts is taken
adequately far to ensure that at the cross section (A) the flow is fully developed.
Also, the size of the container is sufficiently large to ensure that at (D) and (E) the
gas pressure and temperature recovers the reference values Py and Ty.

The expected pressure distribution along the symmetry axis in the case of gas
flow from the tube towards the container (outer region) is the one shown in Figure
2.3. The reference pressure Pg is also shown. The pressure difference AP = P — Pg
in the tube far from the outlet is approaching a constant value, which represents the
pressure jump due to the end effect and can be taken into account by adding the

increment AL to the tube length. From Figure 2.3 it is readily seen that
AL =—AP/(dP/dx) (2.2.1)

The flow setup is described by the linearized BGK model equation. More specifi-
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2.2. End effect theory

cally, the velocity distribution function f (x.r, c) is linearized as
f(x.r,c)="1r[l+Eh(x,r, c) (2.2.2)

where £ = (1/P,) / (dP/dx) and the reference Maxwellian is

m@£%=%%%ﬂpkf) (2.2.3)
with
nr (x) = Pr(x) / (ke To) (22.4)

while Pg (x) = Py for x > 0 and Pg (x) = Py (1 + x&) for x < 0. Then, the linearized
BGK model equation is given by

Oh  cpsin 6’% oh

3

_ N — B 2__
cpcosﬁar p aa+CXax+5h 5{p+2c U+T(C 2)}+g(x,cx)
(2.2.5)

where the source term is
0O , x>0

X, Cx) = 2.2.6
g (x, &) {_Q <0 (2.2.6)

while the perturbed quantities of density, pressure, temperature and velocity are given

by the following moments:

X [k
X = i' c: év UOI 2—BT0,
R Vo m

_ n(x)—nR' r(x) = T(x)— TO,

2.2.
pi) ==~ X (22.7)
P(x)—Pr _a(x)
p(X) B PRXP U= UOXP

with vy = \/2kg To/m being the most probable molecular velocity, kg is the Boltz-
mann constant and p, 7, u, p are the perturbations of density, temperature, velocity
and pressure.

Even though this formulation is valid for the outlet part of the channel, it can also
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2. SINGLE PIPING ELEMENTS

be used to model the inlet part by noting that the dimensionless pressure gradient
Xp has the opposite sign and thus the flow direction is reversed. The final objective
of this study is to calculate the pressure perturbation at the fully developed cross-
section of the end geometry, which will finally serve for the correct connection at the
interfaces between the middle and the end parts.

As far as the boundary conditions are concerned, at the free surfaces (D),(E)
incoming molecules conform to the Maxwellian distribution at the local reference
values and therefore the perturbation of the distribution function is zero (h™ = 0).
The impermeability condition (u, = 0) is imposed at the walls (D),(E), i.e. h™ = p,,
where p,, is a constant which must be adjusted to keep the normal velocity equal
to zero. At the axis of symmetry (x = 0) molecules are reflected specularly. At the

incoming surface of the channel (A), the distribution function takes the form

Ohi, % sin @ Oh;,

or r o0 + 5hin =4 [pin + 2Cxux,in] + g (X, CX) (228)

Cp cos 0

As a final step, the unprojected distribution at the incoming surface (A) can be

retrieved by the expression
hin (r, 5, 0) = 2¢,Z (1, ¢y, 0) + pin () (2.2.9)

and used as incoming boundary conditions. To summarize, the boundary distributions,

denoted by the "plus" superscript, are equal to
h;all = Pw, h:rontainer = 0' hj;vannel = hi”' h;:ntef = hspecular (2210)

2.2.2 Effective length increment and corrected flow rate

The pressure perturbation at cross-section (A) is the main quantity of interest here.
Its value can be used to determine the entrance/exit pressure and, along with a
well known integration procedure for the fully developed part of the flow [115], the
complete pressure profile along a channel can be obtained. From Figure 2.3 it can be

seen that
0P = P — Pg = p(—Lgev, x2) PrXp (2.2.11)
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2.2. End effect theory

and
tan ' ¢ = —XpPg (2.2.12)

leading to
ALy = —p(—Lgev, %2) (2.2.13)

Similarly, when the geometry represents an inlet part (Xp > 0) we get
AL,‘n =p (_LdeV1 X2) (2214)

Thus, we may obtain a very good agreement for the middle part of the complete
channel (which usually is the largest part), if we apply the integration procedure at
a "modified" geometry, where L has been increased by a fictional AL;, at the inlet
and AL, at the outlet. Alternatively, we may get the complete pressure profile by
properly combining fully developed and end results during the dimensionalization.
The integration procedure is performed according to
TR®dP  _7R3AP

M= —Grp () ——=—G

2.2.15
Vo Xm Vo L ( )

where the x; coordinate takes values in [0, L] and Ggp is the fully developed solution
for a channel of infinite length. The quantity G is a constant, adjusted to obtain this
equality. From Eq. 2.2.15 we get

dP AP
Grp (9) ol G- (2.2.16)

and using the definition of the rarefaction parameter

dod 5in - 6out
— =G——F— 221
Gep (9) . G T ( 7)
If we separate the variables and integrate, we get
§out L
! G(&M—G/w (2.2.18)
6in - 5out P B L ' o
in 0
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and therefore the expression for G is obtained

6OU!‘
1
G=—— [ Gep(6)dd (2.2.19)
5in - 5out

6in
Finally, if we repeat the same procedure shown in the previous paragraph, but this
time taking the end effect into account (by changing the integration limits in the
right hand side of Eq. 2.2.18 to —AL;, and L + AL;,) we deduce that

5out
L 1
G = Gep (0) dd 222
L+ ALin + ALout“ 5in - 5out i ( ) ( O)
Sin
or in a more simplified way [125]
L 6in + 5out
G (L )= G, _— 2221
(L0) = T AL, + Alow FD( 2 ) (2:2:21)

The geometrical parameters for the end effect problem are given in Table 2.7,
based on which, the fictional length increments AL, provide the extra "effective"
length and are shown in Table 2.8 for various rarefaction levels. The fictional length
increments, which are equal to the pressure perturbation found in the end geometry
as shown before, their values becomes smaller for larger 0, showing that the end effect
is more important for highly rarefied flows. The decrease in AL is also steeper for
small 0.

Indicative results for the density perturbation and streamlines are plotted in Figure
2.4 in two dimensional contours for the area close to x = 0 and three values of the
rarefaction parameter §. Inside the tube (x < 0), the density field progressively
becomes one-dimensional, i.e. r is constant in each cross section and the streamlines
are parallel far from x = 0 inside the tube [103].

Moreover, The numerical results obtained in [101, 133] for the complete domain
of the flow due to a small pressure drop confirm the linear pressure distribution. It
is more interesting to compare the pressure distribution when its drop is large, e.g.
Pout/Pin = 0.5. In this case, the pressure distributions were calculated for a cylindrical

channel with the length L = 5 and for the rarefaction parameter § = 1 and 10. The
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2.2. End effect theory

results are plotted in Figure 2.5 and compared with those obtained by considering
the complete flow domain. It can be seen that the pressure distribution is practically
linear and in a good agreement with the exact results for 6 = 1. The pressure profile
is slightly different from the straight line for 6 = 10. In this case, the difference
between the two methodologies is larger, but the approximate approach still provides
reasonable results [103].

Finally, a part of the density perturbation field is also plotted in Figure 2.6 for
some representative values of 4, namely 6 = 0.2, 1, 10. In this two-dimensional plot, it
can be seen that the density perturbation progressively becomes constant along each
cross section as we move far from the channel end. Furthermore, for highly rarefied
conditions the expansion structure spans to a larger area inside the container in fact
in the longitudinal direction. The dimensionless horizontal velocity u, also displays a
nearly developed velocity profile at the left end of the channel, which coincides with
the solution of the fully developed problem at the inlet cross-section. The maximum
value of the macroscopic velocity also seems to behave according to the Knudsen
minimum, taking its smallest value around 6 = 1.

The main characteristics of the numerical scheme applied, are similar to the ones
found in previously formulated discrete velocity schemes, such as the one described in
section 2.1.2. The continuum spectrum of the molecular velocity magnitudes ¢, and
¢ are discretized to M values, their values being chosen according to the roots of
the Mth order Legendre polynomial mapped in [0, ¢y max] and [0, ¢x max] respectively,
while the molecular velocity angles Ny are uniformly distributed in [0, 7] due to the
axisymmetrical properties of the flow. The distribution functions, bulk quantity fields
and governing equations are further discretized by a finite volume scheme in the
physical space to N, x N, points.

The discrete velocity method algorithm is then applied. The iterations start by
assuming some initial values for bulk quantity perturbations p, u and 7u. In the case
of the end-geometry, incoming distributions in cross-section (A) is estimated from
Eq. 2.2.9. According to the marching scheme applied, for each discrete velocity,
the distribution function is computed explicitly through the physical lattice. Then,
based on the estimated distributions, new estimations for the bulk quantities are
calculated. The iterative procedure is ended when the imposed termination criterion

on the convergence of the macroscopic quantities is satisfied.
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2.3 Flow through circular capillaries of finite length:

The linear approach

Despite the fact that reliable results for linear fully developed flows through long
capillaries may be obtained with moderate computational effort, however, when the
flow becomes nonlinear, i.e. in the case of fast flows through channels of finite length,
including flows through slits and orifices, the computational effort is significantly
increased. In the former case, the flow is simulated only in one cross section of the
channel and then the mass flow rate is estimated, while in the case of capillaries of
finite length, the incoming distribution functions at the entrance and the exit of the
channel are not Maxwellians and therefore adequately large computational domains
must be included before and after the channel to properly impose the boundary

conditions.

2.3.1 Flow configuration and formulation

However, for the case of the flow through a capillary of finite length due to small
pressure differences between the upstream and the downstream vessel, i.e. AP/Py <
1, a linear approach may be applied. Due to the small pressure difference, we may

linearize the distribution function according to
f(%,&) =1h[l+h(R &) AP/P (2.3.1)

where h (%, c) is the perturbation of the distribution function f (X, c) from the equi-

librium state at the reference conditions, with AP = P, — P,
fy = no/ (2mks To)¥/? exp [— (& —a)’)/ (2RTO)} (2.3.2)

All quantities are then expressed in dimensionless form as follows:

X [k
x:il c:él UO: 2—BT0,
LO Vo m

. _T(X)—TOPO
P =" e T =T A

(2.3.3)
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2.3. The linear approach

_P(x)— Py Py _G(x) P
P = ap YW= 2

with vy being the most probable molecular velocity, kg is the Boltzmann constant

and p, 7, u, p are the perturbations of density, temperature, velocity and pressure and
no = Po/ (kg To). The degree of rarefaction is described by the rarefaction parameter

0, defined here as
Pl

Hovo
where 1 is the gas viscocity at reference temperature T.
The BGK model (1.3.1) substitutes the collision term due to its simplicity and the

J

(2.3.4)

nearly isothermal properties of this flow. The kinetic equation becomes

oh , 3
c-&—é[p—m'(c—i)—kk-u—h] (2.3.5)

Similarly, the macroscopic quantity perturbations are expressed in terms of the

perturbation h as

[c < Je oluNe o]

1
p:m///hexp(—cz) dcideydes

—00 —00 —O0

1 o D x
u= T/z/ / /hcexp (—=c?) dardedes (2.3.6)
T

—00 —00 —OO

1 (e e olNe o) 2
T=—5 / / / h (§c2 — 1> exp (—02) dadcdc
T

The pressure perturbation is calculated by the ideal gas law, we get p (x) = p(x) +
7 (x).
The molecular velocity vector is transformed to cylindrical coordinates and byy

properly acting on the governing equation, we finally obtain

oh  cpsinf Oh Oh B » 3
CpCOSQE— p %+cxa+(5h_(5{p+7(c—§)+2c~u} (2.3.7)

The macroscopic perturbations are expressed by
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00 21 oo
= [ [ [ reon ) e 239
“0 0 0
0o 21 oo
W;lp ///h ¢y cosb) coexp (—c )dcdech (2.3.9)
"0 0 0
0o 21 oo
:%///h cecpexp (—c*)dcydbdc, (2.3.10)
“50 0 0
0o 21 oo
7Ti/z ///h( c —1> cpexp (—c?)dcydbdc, (2.3.11)
“50 0 0

2.3.2 Boundary conditions

The formulation is completed by providing the boundary conditions for h. Molecules
entering from the free surfaces (A),(B),(F),(G) (as shown in Figure 2.7) conform
to a Maxwellian distribution according to the conditions of the corresponding vessel.
Thus, for the left vessel, we have n = n;,, T = Ty and & = 0 and therefore the

perturbation from the equilibrium distribution is

nip, — No _(P0+AP)—P0

h" = pin = no (AP/Py) Py (AP/Py)

=1 (2.3.12)

Similarly, it is found that in downstream free surfaces (F),(G), where n = ng,,
T = Ty and G = 0, the perturbation of the incoming distribution is h™ = VT =
Xt =0.

For the walls (C),(D),(E), the diffuse boundary conditions are imposed according
to the impermeability condition (the velocity component normal to the wall must
be equal to zero). Diffuse-specular boundary conditions are taken into account by
adjusting the accommodation coefficient v according to

h" =apw +(1—a)h”

and the p,, constants are given by no penetration condition. Finally, at the axis of
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2.3. The linear approach

symmetry (xo = 0) the molecules are reflected specularly.

2.3.3 Mass flow rate

The most important quantity for the practical applications is the mass flow rate

through the channel, defined by
W = / [mn (%)] & (%) dA (2.3.13)

with A being the channel cross-section. In both cases, the flow rate is non-dimensionalized
by the analytical free molecular solution (;, = dour = 0) for flow through a channel
of zero length. This solution can be easily extracted by the method of characteristics
and yields Mgy = R2\/mAP/vy. Results are presented for the dimensionless flow
rate .

M

W=—=4y7G (2.3.14)
FM

where
1

G|, = / uy (x, r) rdr (2.3.15)
0

is the reduced flow rate obtained by the simulations. Tabulated results for the flow
rate Wy through a tube for various values of the rarefaction parameter ¢ and di-
mensionless length L/R, based on the linear BGK kinetic model with diffuse boundary

conditions are shown in Table 2.9
With respect to the behavior of the macroscopic quantities, for all cases considered
here, the field is symmetric around x = L/ (2L,) for any channel length and in the
whole range of the Knudsen number, as expected. Indicative results for the influence
of § is shown in Figures 2.8 and 2.9 for a cylindrical tube of L/Ly =2 and § =0.1,1
and 10. No significant changes occur for pressure for this length, besides a slightly
larger deviation of pressure in the containers from the equilibrium values as ¢ is
increased. The axial velocity values are also increased along with §. The behavior is
similar for the case of a cylindrical tube of L/Ly = 5 and the same § values, shown
in Figures 2.10 and 2.11. The velocity profile in this case seems to develop to a

nearly constant profile inside the channel for 6 = 10, which implies that the end
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effect treatment, as shown in previous section, may be applied under these conditions
to provide results with decent accuracy while avoiding the complete solution of the
problem. For smaller § or shorter channels, the fully developed flow characteristics

are not so strong [96].

2.4 Flow through circular capillaries of finite length:

The non-linear theory

Despite the fact that reliable results for linear fully developed flows through long
capillaries may be obtained with moderate computational effort, however, when the
flow becomes nonlinear, i.e. in the case of fast flows through channels of finite length,
including flows through slits and orifices, the computational effort is significantly
increased. In the former case, the flow is simulated only in one cross section of the
channel and then the mass flow rate is estimated, while in the case of capillaries of
finite length, the incoming distribution functions at the entrance and the exit of the
channel are not Maxwellians and therefore adequately large computational domains
must be included before and after the channel to properly impose the boundary

conditions.

2.4.1 Flow configuration and formulation

Consider the axisymmetric nonisothermal flow of a monatomic gas through a circular
microchannel of length L and radius R, connecting two reservoirs maintained at
pressures P; and P, respectively, with P; > P,. The walls of the reservoirs and of
the channel as well as of the gas in the container far from the tube are maintained at
reference temperature Ty. In the case of capillaries of finite length, the assumption
of the fully developed flow, independent of the magnitude of the pressure difference,
is not valid and the macroscopic distributions vary both in the radial 7 and axial
2 directions. Furthermore, the end effects must be considered and computational
domains in the inlet and outlet of the channel must be added to ensure the proper
implementation of Maxwellian boundary conditions. The flow configuration with the
associated numerical grid in the physical space, are shown in Figure 2.12.

This flow configuration may be modeled based on the nonlinear BGK model given
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2.4. Non-linear theory

by [80]
of Epsint 87‘

¢, cos 9? - =v (" —f) (2.4.1)

fz

where f = f(7,2,&,,0,&,) is the unknown dlstrlbutlon function, & = (£,,0,&;) the

molecular velocity vector, v the collision frequency and

B m \3/2 m(¢ — b)°
= n<27rkT> P [_T] (24.2)

is the local Maxwellian, while the quantities n, &t = & (@,, 0,) and T denote the

number density, velocity and temperature respectively. The following dimensionless

quantities are introduced:

7 4 RS fug
r_R’ Z_R, C—UO, £~ no
n 1] T P
L 243
p no " Vo T TO P Po ( )

Then, following a straightforward manipulation, Eq. 2.4.1 is reduced to its dimen-

sionless form given by

og Cpsinf 8g 3g
o cosz98r g T, = dopV/7 (" — &) (2.4.4)

where g = g (r, z, ¢,, 0, ¢;), the Maxwellian

2
YRR I I () (2.45)
(77'7')3/2 T
and the reference rarefaction parameter
PR
8o = — (2.4.6)
HoVo

In the derivation of Eq. 2.4.4 the hard sphere molecular model has been applied

assuming that g ~ +/T. The bulk quantities are also nondimensionalized leading to
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the following expressions

o0

p—2///gcpdczd9dcp (2.4.7)
0 0 —o0
o/

¢, cosfgc,dc,dfdc, (2.4.8)

b|l\7
T\:n
\ﬁ 8\8

> [ [T
;/ /ngcpdczdedcp (2.4.9)
0 —00
4 0o T 00 i | 2 2
:3_p/// [(c,,cos@—ur) + (cpsinf) +(cz—uz)]gcpdczd0dcp
0 —00
(2.4.10)
p=rT (2.4.11)

The incoming boundary distributions at the open and wall surfaces have a Maxwellian

form according to

g = ¢ exp [— (e u)2] (2.4.12)

7T7')3/2 T

where C =1 at boundaries (A) and (B), C = P,/P; at boundaries (F) and (G) and
C = pw at boundaries (C), (D) and (E), while 7 = 1. The parameter p,, is defined
by the wall no penetration condition. Finally, specular reflection is imposed along the

center line (H) due to the axial symmetry.

2.4.2 Mass flow rate

In addition to the macroscopic distributions, a quantity of major importance is the
mass flow rate defined as

R
M = 27T/mn (7,2) 0, (F, 2)Pd? (2.4.13)
0
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2.4. Non-linear theory

Following common practice, the mass flow rate is nondimensionalized by the analytical
free molecular solution for flow through an orifice given by Mgy = VTR?P; Jug to

yield the dimensionless flow rate

W:

. 1
M :4ﬁ/p(r,z) uy (r, z)rdr (2.4.14)
Mem /

Recently, Eq. 2.4.4 with the associated expressions for the macroscopic quantities
and the proper boundary conditions has been numerically solved in a deterministic
manner applying the discrete velocity method in the velocity space and a second
order control volume scheme in the physical space. Since this is a five-dimensional
problem the involved computational effort is significant. In the next section results are
provided for the flow rate and the bulk distributions in terms of the three parameters
characterizing the flow: the reference rarefaction parameter &g, the microtube aspect
ratio L/R and the pressure ratio P,/P;.

As far the as behavior of the macroscopic quantities is concerned, indicative results
for the density and axial velocity fields, as well as the streamlines and their dependence
on the tube length is given in Figures 2.13 - 2.14, for L/R =0, 5, 10, P,,; = 0.5 and
0o = 10. These cases are chosen here since the differences become more apparent, due
to the high rarefaction parameter: as the tube becomes longer, the vortex becomes
smaller, the velocity magnitude drops and the density isolines become nearly vertical
inside the tube. The same characteristics are seen for increasing pressure ratio from
0.1 up to 0.9 in Figures 2.15 - 2.16 for L/R =1 and 0y = 2 [96].

For the needs of the present work the DSMC results for flow through tubes up
to L/R = 10 into vacuum and various pressure ratios, reported in [148] and [150]
respectively, have been introduced. The results in [134], based on the Shakhov model,
have been implemented for flow through longer tubes with 10 < L/R < 50 into
vacuum. Furthermore, additional results based on the BGK and Shakhov models
have been obtained here, within the aforementioned range of parameters, in order to
have an adequately dense database of the nonlinear flowrates. In all cases modeling is
based on hard sphere molecules with purely diffuse gas-surface interaction. As noted
in [8, 34, 111], all approaches provide corresponding results in very good agreement
and therefore using either the DSMC method or the BGK or the Shakhov models
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to build the flowrate database does not affect the concluding remarks concerning
the applicability range of the linear schemes. The implemented DSMC solver is
described in detail in [148, 150]. The solution of the BGK and Shakhov models is
obtained discretizing the physical space by a second order scheme and the molecular
velocity space by the discrete velocity method. This deterministic approach has been
described and successfully applied in several flow and heat transfer configurations
[7, 77, 99, 101, 132]. The introduced numerical error (uncertainty) in the computed
flow rates is always taken less than 1%. These nonlinear flowrates are used as the
reference ones, in order to investigate the applicability of the linear approaches.

In general, the computational effort is increased as ¢; is increased and the gas
flow becomes less rarefied as well as the tube aspect ratio L/R is increased. In
the implemented DSMC algorithm the computational effort is also increased as the
pressure ratio P,/P; approaches one, while on the contrary, the convergence speed of
the deterministic discrete velocity codes remains the same at any pressure ratio. In
addition, the DSMC code runs in serial mode, while the deterministic codes are highly
parallelized. The involved computational effort depends on the set of flow parameters
and on the code optimization and for the prescribed accuracy it may vary from few
hours up to several days of CPU time.

The flow rate W through a tube for various values of the rarefaction parameter
do, the pressure ratio P,/P; and dimensionless length L/R, based on the nonlinear
BGK kinetic model with diffuse boundary conditions, is provided in Tables 2.10 and
2.11.

2.5 Range of validity of infinite, end effect and

non-linear theories

Recently, the range of validity of the various linear theories has been investigated
by comparing the flow rates with the corresponding ones obtained by the nonlinear
approach [142]. Here, a brief review is presented mainly for completeness purposes.
As it has been noted above, the three parameters characterizing pressure driven
flow through capillaries include the reference rarefaction parameter g, the tube aspect

ratio L/R and the pressure ratio P,/P;. It has been computationally confirmed in
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[142] that the implementation of a linear approach introduces an error of less than

10%, provided that
L P,
do(z)(1-5) =1 (2.5.1)

plus some complimentary restrictions. More specifically, the implementation of the
infinite capillary theory without the end effect correction will result to a deviation
within +10% provided that inequality 2.5.1 is fulfilled and L/R > 50. A great
improvement is achieved when the end correction is introduced. The implementation
of the infinite capillary theory with the end effect correction will result to a deviation
within £10% provided that inequality 2.5.1 is fulfilled and L/R > 20. In addition, the
deviation norm remains < 10% even for L/R = 10 provided that inequality 2.5.1 is
fulfilled, while P,/P; > 0.1 and §; > 1072. This is exactly the great advantage of the
end effect correction, since the range of applicability of the infinite capillary theory is
significantly enhanced, while the involved computational effort remains negligible.

In an attempt to quantify this behavior, the mass flow rate through a channel of
cylindrical cross section, for a variety of flow conditions, is evaluated by implement-
ing three different methodologies, as they have been described in previous sections,
namely i) fully developed flow methodology denoted by Mep, ii) results obtained by
using the end effect treatment Mgg and iii) M,y for the case where the complete
geometry is considered in the simulation. It is expected that the ratio of mass flow
rates, using complete simulation and typical integration with/without end effects,
should approach unity as the tube length increases. These ratio values are given in
Table 2.12 for a variety of flow conditions. It is seen that the maximum discrepancy
for the end effect treatment (2%) occurs for highly rarefied conditions (6 = 0.2).
This is due to the fact that the tube is quite short in comparison to the development
length required to achieve a constant pressure perturbation. However, as § obtains
values over unity, we observe that the discrepancies drop significantly for the end
effect treatment (less than 2 % at all cases examined here), in comparison to the
fully developed flow simulation (up to 7-19 %). The lowest discrepancies are found
for the extra cases of L/R = 20, executed in the complete geometry to enhance our
trust on this methodology. It is seen that discrepancies in this case drop for both
methods and we reach the conclusion that errors below 1% may be obtained by the
end effect simulation if § > 1 and L/R > 20 are considered [96]
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It is noted that in the present work, the computed flow rates are obtained based
on the infinite capillary theory with the end effect correction provided that the above
specified restrictions are fulfilled. Otherwise, the flow rates are obtained based on the

nonlinear approach. In this latter case the computational effort is significant.
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Table 2.1: Definitions of Dy, A, A, I", I for various channels.

Cross section Dy, A A=A/D? r r
Circular D ”TDZ T wD T

Orthogonal QWxH s LH (14 W) (W H)  H (14 W)?

W+H H
i a V3,2 3v3
Triangular 7 T . 3a 3V3
b, h 2 )2 b, h 2 )2
- 2(B+b)h Bibp 1 (+g+8529) B 2h 1 (+E+8s)
Trapezoidal BibrZ 2 5 (1+8) % +b+255 3 (172)%
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Table 2.2: Dimensionless flow rate G in terms of the rarefaction parameter ¢, for
channels of circular cross section and specular-diffuse boundary conditions (a=1,

0.85 and 0.7).
G
0 a=1 «a=08 «a=07
1073 0.751 1.01 1.39
1072 0.744  0.999 1.36
0.1 0.715 0.941 1.25
0.3 0.695 0.896 1.18
0.5 0.689 0.879 1.14
1 0.693  0.870 1.12
15 0.709  0.879 1.12
2 0.729  0.896 1.13
3 0.777  0.941 1.17
4 0.829 0.992 1.22
5 0.884 1.05 1.28
6 0.940 1.10 1.33
7 0.997 1.16 1.39
8 1.06 1.22 1.45
9 1.11 1.28 1.51
10 1.17 1.34 1.57
11 1.23 1.40 1.63
13 1.35 1.52 1.75
15 1.48 1.64 1.87
20 1.78 1.95 2.18
30 2.40 2.56 2.80
40 3.02 3.19 3.42
50 3.64 3.81 4.04
100 6.76 6.93 7.16
200 13.0 13.2 13.4
500 31.7 31.9 32.1
1000 62.6 63.0 62.8
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Table 2.4: Dimensionless flow rate G in terms of the rarefaction parameter ¢, for
channels of triangular cross section and diffuse boundary conditions (a=1).

G
5 Equilateral Isosceles
¢ =60°  ¢=5474°
103 0.927 0.932
1072 0.916 0.921
0.1 0.872 0.876
0.3 0.841 0.844
0.5 0.831 0.834
1 0.833 0.836
15 0.851 0.854
2 0.875 0.878
3 0.931 0.934
4 0.994 0.997
5 1.06 1.06
6 1.13 1.13
7 1.20 1.20
8 1.26 1.27
9 1.34 1.34
10 141 1.41
20 2.14 2.14
30 2.88 2.88
40 3.62 3.62
50 4.36 4.37
100 8.05 8.07
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Table 2.5: Dimensionless flow rate G in terms of the rarefaction parameter ¢, for
channels of trapezoidal cross section and diffuse boundary conditions (a=1).

G
5 Isosceles Isosceles b/B = 0.78
¢ = 63.43° ¢ = b4.74°
1073 0.877 1.02
1072 0.867 0.999
0.1 0.827 0.925
0.3 0.799 0.864
0.5 0.790 0.836
1 0.793 0.810
1.5 0.809 0.807
2 0.832 0.814
3 0.885 0.841
4 0.944 0.877
5 1.01 0.919
6 1.07 0.962
7 1.13 1.01
8 1.20 1.06
9 1.26 1.10
10 1.33 1.15
20 2.02 1.66
30 2.71 2.18
40 3.40 2.71
50 4.10 3.23
100 7.55 5.85

Institutional Repository - Library & Information Centre - University of Thessaly

16/06/2024 16:58:53 EEST - 3.22.70.55

53



2. SINGLE PIPING ELEMENTS

Table 2.6: The Poiseuille number in terms of the rarefaction parameter &g for channels of various cross sections, with a=1.

Po

0o  Circular

Orthogonal (v = H/W)

vy=1 ~4=05 5=01 ~=001

Triangular
Equilateral  Isosceles

¢ = 60° ¢ = 54.74°

Trapezoidal
Isosceles Isosceles
b/B=05 b/B=0.78
¢ =63.43° ¢ =54.74°

10~3 0.00533
10~2 0.0538
0.1 0.560
0.5 290

1 5.77

2 11.0

3 15.4

4 19.3

5 22.6

6 25.5

7 28.1

8 30.3

9 32.3
10 34.0
20 449
30 50.0
40 53.0
50 549
100 59.1
oo 64.0

0.00478 0.00464 0.00367 0.00248
0.0483 0.0469 0.0376 0.0272
0.504 0.492 0.416 0.356

2.62 2.59 2.39 2.30
5.21 5.17 5.02 4.99
9.88 9.91 10.2 10.4
13.9 14.0 14.9 15.4
17.3 17.6 19.2 20.0
20.3 20.7 23.1 24.1
22.8 23.5 26.5 27.9
25.1 25.9 29.7 31.3
27.0 28.0 32.5 34.4
28.8 29.9 35.1 37.3
30.4 31.7 37.4 39.9
39.9 42.4 52.8 57.2
445 47.6 60.7 66.4
47.1 50.6 65.5 71.9
48.8 52.6 68.7 75.7
52.6 57.1 76.0 84.3
56.9 62.2 84.7 94.7

0.00431 0.00429

0.0437 0.0434
0.458 0.456
241 2.40
4.80 4.78
9.14 9.11
12.9 12.8
16.1 16.0
18.9 18.8
21.3 21.2
23.4 23.3
25.3 25.2
27.0 26.8
28.4 28.3
37.4 37.4
41.7 41.6
442 442
459 45.8
49.7 49.6
53.3 -

0.00456 0.00393

0.0461 0.0400
0.483 0.432
2.53 2.40
5.05 4.94
9.62 9.83
13.6 14.3
16.9 18.2
19.8 21.8
22.4 25.0
247 27.8
26.7 30.3
28.5 32.6
30.0 34.7
39.7 48.3
443 55.0
47.0 59.1
48.8 61.9
52.9 68.4
- 74.6
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Table 2.7: Geometric parameters for the end geometry

) 02 04 1 2 4 8 10
Lgew/Lo 60 50 40 30 30 20 20
Lyignt/Lo 10 10 12 12 15 15 15

Table 2.8: Length increment AL, for various values of the rarefaction parameter

5.

5 0.005 005 01 02 04 06 08 1 2
Algp 222 172 152 133 116 107 101 0964 0.841
§ 4 6 8 10 ..

Alyse 0735 0.704 0688 0.682 .. 0.680
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Table 2.9: Flow rate W,y through a tube for various values of the rarefaction pa-
rameter § and dimensionless length L/R, based on the linear BGK kinetic model with
diffuse boundary conditions.

Wi
)

0 0.1 1 2 5 10
0 0999 104 137 172 277 435
1 0672 069 0.892 1.10 1.70 2.63
5 0311 0316 0.373 0.440 0.642 0.988
10 0.191 0.192 0.217 0.2561 0.362 0.554
20 0.110 0.108 0.118 0.136 0.195 0.296

L/R
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Table 2.10: Dimensionless flow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (1/2).

1%
Rarefaction parameter of high pressure chamber (6;)

Lk Po/Py 0 0.1 0.5 1 2 5 10
0.0 1.000 1.014 1.069 1.129 1.221 1.374 1.463
0.1 0.900 0.910 1.000 1.032 1.180 1.350 1.435
0 0.3 0.700 0.719 0.788 0.862 0.987 1.221 1.366
0.5 0.500 0509 0582 0613 0778 1.040 1.188
0.7 0.3 0.305 0.354 0.38 0.493 0.717  0.914
0.9 0.1 0.102 0.121 0.14 0.176 0.28 0.432
0.0 0.953  0.965 1.018 1.074  1.165 1.312 1.404
0.1 0.856 0.869 0.924 0.984 1.08 1.27 1.380
01 0.3 0.669 0.687 0.752 0.823 0.942 1.171 1.321
' 0.5 0.475 0.486 0528 0583 0.688 0948 1.150
0.7 0.2866 0.292 0321 0.361 0436 0.654 0.885
0.9 0.095 0.099 0.114 0.131 0.164 0.246 0.333
0.0 0.801 0.812 0.855 0.902 0.981 1.117  1.220
0.1 0.721 0.731  0.775 0.826  0.911 1.080  1.200
05 0.3 0562 0577 0630 0.688 0.786 0.994 1.223
' 0.5 0399 0409 0444 0488 0573 0796 1.010
0.7 0.241 0.246 0.270 0300 0.363 0541 0.762
0.9 0.0860 0.083 0.095 0.109 0.135 0.212 0.299
0.0 0.672 0.680 0.715 0.754 0.819 0948 1.062
0.1 0.605 0.613 0.648 0.689 0.761 0913 1.050
1 0.3 0.471 0483 0525 0571 0.652 0.834 1.000
0.5 0336 0343 0370 0405 0474 0.658 0.866
0.7 0.201 0.205 0.224 0.249 0.298 0.440 0.640
0.9 0.067 0.070 0.080 0.091 0.112 0.170 0.264
0.0 0.514 0.52 0.544  0.572 0.62 0.732  0.855
0.1 0.463 0.468 0.493 0521 0573 0.699 0.842
5 0.3 0.36 0368 0.396 0.428 0.486 0.63 0.795
0.5 0.256 0.26 0.28 0.304 0.351 0.486  0.669
0.7 0.153 0.156 0.17 0.19 0.22 0.319 0.471
0.9 0.0561 0.0563 0.059 0.066 0.08 0.119 0.176
0.0 0311 0312 0322 0334 0361 0436 0.543
0.1 0.279 0.281 0.291 0.304 0.33 0.412 0.529
5 0.3 0.217 0.22 0.232 0.247  0.275 0.36 0.485
0.5 0.155 0.156 0.163 0.175 0.197 0.271  0.388
0.7 0.093  0.093 0.1 0.106 0.123 0.174  0.263
0.9 0.031 0.031 0.035 0.038 0.044 0.064 0.098
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2. SINGLE PIPING ELEMENTS

Table 2.11: Dimensionless flow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (2/2).

7%
Rarefaction parameter of high pressure chamber (4;)
LIk Po/Py 20 50 100 200 500 1000 2000
0.0 1512 1534 1533 1529 1526 1523 1522
0.1 1.500 1.510 1520 152 1.52 1.52 1.52
0 0.3 1.437  1.440 1450  1.45 1.46 1.46 1.46
0.5 1.300 1.310 1340 1.35 1.36 1.36 1.36
0.7 1.05 1.09 1.13 1.13 1.15 1.14 1.14
0.9 0584 0.606 0628 0628 0.64 0634 0.634
0.0 1.462 1498 1508 1512 1515 1515 1517
0.1 1.45 1.49 1.51 1.51 1.51 1.51 1.51
01 0.3 1.406  1.420 1.440  1.45 1.45 1.45 1.45
' 0.5 1.270  1.350 1.370  1.39 1.39 1.39 1.39
0.7 1.030 1.120 1.150 1.16 1.17 1.16 1.16
0.9 0387 0.421 0433 0436 044 0436 0.436
0.0 1.302 1383 1435 1462 1484 1494 1493
0.1 1.200 1.380 1.430  1.46 1.48 1.49 1.49
05 0.3 1.267 1330 1390 1.43 1.45 1.46 1.46
' 0.5 1.150 1.280 1.350  1.39 1.41 1.42 1.42
0.7 0937 1.080 1.150 1.19 1.20 1.20 1.20
0.9 0367 0.423 0451 0466  0.47 0.47 0.47
0.0 1.168 1.287 1.358 1412 1449 1456 1.458
0.1 1.160 1.280 1.350  1.41 1.45 1.46 1.46
. 0.3 1136 1.24 1.32 1.38 1.42 1.43 1.43
0.5 1.04 1.20 1.29 1.35 1.39 1.40 1.40
0.7 0.831  1.00 1.10 1.16 1.19 1.19 1.19
0.9 0.415 0499 0549 0579 0594 0594 0.594
0.0 0974 1.156 1259 1339 1397 1406 1.404
0.1 0985 1.15 1.26 1.34 1.39 1.4 1.40
) 0.3 0.96 1.11 1.23 1.31 1.36 1.37 1.37
0.5 0.864  1.07 1.19 1.28 1.32 1.34 1.34
0.7 0.672 0.884  1.00 1.09 1.13 1.13 1.13
0.9 0251 033 0373 0407 0422 0422 0422
0.0 0.695 0917 1.068 1.184 1271 1282 1.284
0.1 0.695 0917 1.068 1.184 1271 1282 1.284
. 0.3 0.663  0.87 1.03 1.15 1.23 1.24 1.23
0.5 0571 0.828 0993 1.11 1.18 1.2 1.19
0.7 0.411 0.658 0814 0922 0975 098  0.986
0.9 0.164 0263 0325 0368 0389 0391 0.393
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Chapter 2 Tables

Table 2.12: Flow rate ratio between the different methodologies implemented for

linear flow

L/R MFD/MLIN MEE/MLIN MFD/MEE

0=0.2
0=1
0=2
0=10
0=1
0=10

10
10
10
10
20
20

1.28
1.19
1.17
1.14
1.10
1.07

1.02
1.00
1.00
1.01
1.00
1.00

1.26
1.19
1.17
1.13
1.09
1.07
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Figure 2.1: Division of the channel geometry into three parts
60

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



Chapter 2 Figures

Lrighl
NCya
L, @ P=P, . L,
| T=% |
———————————— F——— ! L
N .

Figure 2.2: Division of the flow into the inlet, middle and outlet parts
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Figure 2.3: Indicative pressure distribution along the central axis at the outlet part
to justify constant density perturbation
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4 3

Figure 2.4: Density distributions and streamlines: (a) dp =
0o =10
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Figure 2.5: Pressure distribution along the symmetry axis at L = 5 and P;,/ P, = 0.5
with (a) 0o = 1 and (b) do = 10; solid line: solution for the complete flow domain,
dashed line: present solution.
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o
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Figure 2.6: Density (left) and horizontal velocity (right) perturbation distributions for
9 = 0.2(up), 6 = 1(middle) and § = 10(below)
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Figure 2.7: Flow configuration and coordinate system
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Figure 2.8: Pressure perturbation for the tube geometry with L/Ly =2 and 6 = 0.1
(up), 6 =1 (middle), § = 10 (down)
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Figure 2.9: Axial velocity for the tube geometry with L/Ly = 2 and 6 = 0.1 (up),
d =1 (middle), 6 = 10 (down)
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Figure 2.10: Pressure perturbation for the tube geometry with L/Ly =5 and 6 = 0.1
(up), 6 =1 (middle), § = 10 (down)
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Figure 2.11: Axial velocity for the tube geometry with L/Ly =5 and 6 = 0.1 (up),
d =1 (middle), 6 = 10 (down)
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Figure 2.12: Flow configuration and coordinate system
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Figure 2.13: Density (up) and axial velocity (middle) contours, as well as streamlines
(down) for the short tube geometry and L/R =5, Py, = 0.5, 6o = 10
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Figure 2.14: Density (up) and axial velocity (middle) contours, as well as streamlines
(down) for the short tube geometry and L/R =10, P,,; = 0.5, 6o = 10
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Figure 2.15: Density contour for the short tube geometry and L/R =1, &y = 2 with
Pou: = 0.1 (up), Pour = 0.5 (middle) and P,,; = 0.9 (down)
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Figure 2.16: Axial velocity contour for the short tube geometry and L/R =1, o =2
with P, = 0.1 (up), Poyr = 0.5 (middle) and P,,; = 0.9 (down)
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The main algorithm for simulating gas
distribution systems in the whole range of

the Knudsen number

In the previous chapter, steady-state isothermal rarefied gas flows in channels of
various lengths and cross sections have been investigated by applying the discrete
velocity and DSMC methods. In the present chapter, the investigation of complex
gaseous distribution systems which consist not only of a single channel but of many
channels accordingly combined to form a network is presented.

Such distribution systems are commonly found in several technological fields in-
cluding vacuum pumping, metrology, industrial aerosol, porous media, and microflu-
idics. It is pointed out that computational algorithms dedicated to the design of
gas pipe networks (e.g., compressed air, natural gas, etc.) in the viscous regime are
well developed, while corresponding tools for the design of gaseous pipe networks
operating under any (e.g. low, medium and high) vacuum conditions are very lim-
ited. In the free molecular limit a vacuum system consisting of many elements has
been simulated by converting it first into a vacuum circuit network and then to an
analogous electric circuit. This concept is valid when the whole system is under very
high vacuum conditions and intermolecular collisions are negligible. Simulations of
complex gas distribution systems in the transition regime have been performed only
by the ITERVAC code, briefly presented in section 1.7 of the thesis.
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3. PIPE NETWORK ALGORITHM

3.1 Basic definitions

Before considering a generalized set of network equations, it is worthwhile to examine
a specific example of a piping network to observe the degree of complexity involved.
A typical pipe network may be considered as a directed linear graph consisting of a
finite number of pipe sections interconnected in a specified configuration. Each pipe is
characterized of its length L, diameter D and some roughness. Usually the geometry
of the network is specified and the objective is to compute the flow quantities, i.e.,
the mass flow rate (or the conductance) through each tube and the pressure head at
each node. Figure 3.1 shows a relatively simple network consisting of seven pipes and
two pressure reservoirs denoted by numbers 1 and 6, whose pressure values are known.
These two nodes are termed as fixed-grade nodes. Outflow demands are present at
nodes 3 and 4. Nodes 3 and 4 along with nodes 2 and 5 are called interior nodes or
junction nodes. Flow directions, even though not initially known, are assumed to be
in the directions as shown by the arrows. Let the drop in each piping element i be
designated as F[M,] indicating a function of the mass flow rate of the corresponding

piping element. Then, the system of equations is given as follows:

1. Energy balance for each pipe (seven equations):

Pl—PQZF[Ml] P5—P3:F[M5]
P; — P, = F[M;] Py — Ps = F[ M)
(3.1.1)
Py — Py = F[M;] Ps — Ps = F[M;]
P4 - P3 == F[M4]
2. Continuity balance for each interior node (four equations):
Ml + M2 — M3 =0
M+ My +Ms = @
My — My —Ms = Q4
—Ms +Msg—M; = 0 (3.1.2)
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3.1. Basic definitions

The unknowns are My, ... , My, P>, P3, P, and Ps. Thus, there are 11 unknowns and
11 equations to solve simultaneously. Since the energy equations are non-linear, it is
necessary to resort to some type of successive iteration solution. The 11 equations
can be reduced in number by combining the energy equations along special paths.
Let the drop in each piping element i be designated as W; and therefore W; = F[M,].
For the system under consideration, two closed paths, or interior loops (closed path
formed by adjacent pipes), as shown in Figure 3.2. Flow is considered positive in a
clockwise sense around each loop. Energy balances, written around loops / and /I,

are

—W4— W3— W2:O
—Ws — W+ W, =0 (3.1.3)

To account for the flow in pipes 1 and 7, a path can be defined along nodes 1, 2, 3,
5 and 6, as shown in Figure 3.2. Then, the energy balance from 1 to 6 is

—W7+W5+W2—W1:P1—P6 (314)

Note that the path energy equation connects two fixed-grade nodes. Such a path
is sometimes termed a pseudo-loop, since an imaginary pipe with infinite resistance,
or no flow, can be considered to connect the two reservoirs. The imaginary pipe is
denoted by /Il in 3.2. Substituting the friction equations into the energy relations

above results in the following reduced set of equations:

—F[Ma] — F[Ms] — F[M,] = 0
—F[Ms] — F[Me] + F[Ms] = 0
—F[M;] + F[Ms] + F[My] — F[M1] — P1+Ps = 0
My +M,—M; = 0
My, +My+Ms = @
My —My—Ms = Qu

—Ms+ Mg —M; = 0 (3.1.5)

There are now seven unknowns (M, ..., M7) and seven equations to solve. The
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3. PIPE NETWORK ALGORITHM

energy relations are non-linear since the loss terms are presented as polynomials with
respect to the discharges. For a well-defined network with p pipes, n junction nodes,

I loops and f fixed-grade nodes the following relation holds:
p=n+/+f-1 (3.1.6)

The former equation derives from Euler’'s formula for planar graphs [68]. In graph
theory, a graph G = (v, e) is defined as a set v of vertices and a set e of edges —
referring to nodes and pipes, respectively, for the network formulation. In the general
case, each edge joins one vertex to another, or starts and ends at the same vertex.
However, in case of network graph representation, self-loops are never present.

According to graph theory, a planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way that its edges intersect only
at their endpoints. In other words, it can be drawn in such a way that no edges cross
each other [137]. Such a drawing is called a plane graph or planar embedding of the
graph. A plane graph can be defined as a planar graph with a mapping from every
node to a point on a plane, and from every edge to a plane curve on that plane, such
that the extreme points of each curve are the points mapped from its end nodes, and
all curves are disjoint except on their extreme points.

Euler's formula states that if a finite, connected, planar graph is drawn in the plane
without any edge intersections, and v is the number of vertices, e is the number of
edges and f is the number of faces (regions bounded by edges, including the outer,
infinitely large region), then

V—e+f=2 (3.1.7)

In the case of a network, the former equation, taking into account that v = n+f,
e = p and the fact that one of the faces is the infinitely large region, transforms into
(n+f)— p+(/+ 1) = 2 which is identical to the one described above.

3.2 Pipe network equations

Independent of the flow regime, the system of equations describing such a network
consists of the pressure drop equations along each pipe element and the mass conser-

vation equations at each node of the network. The pressure drop equations may be
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3.2. Pipe network equations

reduced to a set of the energy balance equations for the closed loops of the network,
which along with the mass conservation equations form a closed set to be solved for
the unknown mass flow rates. Then, the pressure heads at the nodes are estimated
through the pressure drop equations.

As mentioned above the initial system of equations describing the network consists
of the pressure drop equations along each piping element and the mass conservation
equations at each node of the network. The mass conservation equations may be

expressed as

> (E)M; - Q] =0 (3.2.1)
J i

where the index 1 < i < n denotes each of the n junction nodes of the network, while
the summation index j refers to the pipes connected to the node i, while Q = Q; is
the external demand (if any) at node /. The plus and minus signs are used for flow
into and out of the node respectively. Moreover, the energy balance equations are

applied in each of the closed loops I of the network described by

> (H)(aP)| =o. (3.2.2)

J

k

Here, the summation index j pertains to the pipes that make up a loop, while the
index 1 < k </, denotes each of the / loops. The plus sign is used if the flow in
the element is positive in the clockwise sense; otherwise the minus sign is employed.
When there are fixed-grade nodes in the network then, the system of equations for the
mass flow rates is amplified by the energy balance equation around each pseudo-loop

connecting two fixed-grade nodes according to

— 0. (3.2.3)

> () (AP) + AH

Jj

Here, the summation index j pertains to the pipes that make up a pseudo-loop, the
index 1 < m < f — 1, denotes each of the f — 1 pseudo-loops (f is the number of
fixed grade nodes) and AH is the difference in magnitude of the fixed-grade nodes in

the path ordered in a clockwise fashion across the imaginary pipe in the pseudo-loop.
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3. PIPE NETWORK ALGORITHM

The plus and minus signs follow the same arguments given for Eqs. 3.2.1 and 3.2.2.
Based on the above the final system of equations will consist of n+/+f —1 equations
to be solved for the p unknown mass flow rates /\/IJ This clearly explains why for a

well defined pipe network relation 3.1.6 must be satisfied.

3.3 Algorithm implementation

The final version of the network algorithm is a more complete and versatile version of
the algorithm presented in [81, 82]. The in-house developed Algorithm for Rarefied
gas flow In Arbitrary Distribution NEtworks (ARIADNE) (Figure 3.3). Just like,
according to the Greek mythology, Ariadne provided Theseus with a sword and a ball
of thread so that he could retrace his way out of the labyrinth of the Minotaur, in
the present case, ARIADNE, by employing the necessary CPU threads, provides the
numerical solution for the maze-like network of piping elements. In its latest version,

the developed algorithm consists of the following main blocks:

a. The input of geometrical and operational data
b. The definition of the unique set of loops and pseudo-loops
c. The formulation and solution of the mass and energy conservation equations

d. The kinetic data base supporting explicitly the solution of the conservation

equations

e. The output data (mainly node pressures and pipe mass flow rates/conduc-

tances)

In an effort to make the drawing of the network to be solved easier for the user and
therefore, all the input data required for the algorithm to be executed easier to be
prepared and managed, a graphical user interface (GUI) has been developed. Once
the network is drawn, Ariadne is employed in order to formulate and solve, based on
solid kinetic principles, the governing equations describing the flow conditions of the
distribution system. It is noted that the developed algorithm is capable of solving

pipe networks of any complexity.
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3.3. Algorithm implementation

3.3.1 Graphical interface

The application of the interface is based on the idea of utilizing the tools available of
a web page, thus, a web page created and saved locally on the computer is executed

to run the GUI. The main parts of the application consist of:

e An html page, which serves the purpose of the main algorithm.

e The corresponding style sheet file (CSS) and visual basic script (VBS), which
organize the outline and appearance of the GUI.

e 26 libraries written is javascript to match the requirements of the developed
GUI. These libraries are a combination of already available ones, free distributed
under the GNU General Public License (GPL) and some newly created to match

the needs of the application.

The network is drawn in a way to reproduce as closely as possible the real geometry
of the system under consideration. For the needs of the example network shown in
Figure 3.1, the aforementioned GUI is utilized. The representation of the example
network in the GUI is shown in Figure 3.4. The user is able to draw the desired network
by adding nodes (Figure 3.5) and pipe sections (Figure 3.6) and the corresponding
data, i.e., the coordinates of the nodes in a 3D space, the length and the diameter of
the pipe elements, the pressure heads of the fixed-grade nodes and information for the
type of the gas and its properties (viscosity, most probable molecular velocity, etc.).
The demands or possible leaks, if any, at the nodes may also be provided. During the
pipe drawing procedure, the user is asked to define from which node the pipe starts
(From Node ID) and to which node the pipe ends (To Node ID), indicating at the
same time an initial guess for the flow direction in each piping element comprising
the network.

As a result, a connectivity matrix for each node and tube of the network is formed
providing all necessary information. For the needs of the example network studied
here, the corresponding connectivity matrix is shown in Table 3.2. This information
may be saved in such a way so that it can be imported again from the GUI itself and
be further manipulated or changed, or even it may be exported as a text file fulfilling
the needs of an input data file to be introduced in the main algorithm described in

the following sections.
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3. PIPE NETWORK ALGORITHM

3.3.2 Formulation of kinetic equations

In the case when the Knudsen number characterizing the flow through the network
is very small and the flow is in the continuum (or viscous) or slip regimes, then
the pressure drop equations along each channel are given by closed form algebraic
expressions and their integration in the whole algorithm is straightforward. In contrary,
when the flow is in the transition regime such expressions are not available. This is
a serious pitfall which may be circumvented if the pressure drop will be provided by
solving these channel flows under any vacuum conditions. The flow of rarefied gases
through tubes of various lengths in the whole range of the Knudsen number is a
fundamental problem in rarefied gas dynamics and has been (and still is) the subject
of many theoretical, computational and experimental investigations. An extended
description of flows through single piping elements of infinite, moderate or finite
length has been presented in Chapter 2.

The proposed methodology of simulating gas distribution systems operating under
rarefied conditions includes the computed mass flow rates through single pipe elements
of various lengths via DSMC and discrete velocity kinetic codes, which are stored in
a data base for the needs of the network algorithm.

In general, the pressure driven flow of a rarefied gas through a tube of length
L and radius R with the tube inlet and outlet pressures maintained at P; and P,

respectively (P; > P,) is prescribed by three dimensionless parameters namely
e the geometrical ratio L/R
e the pressure ratio P,/P;

e the reference Knudsen number (Kn) or alternatively the reference rarefaction

parameter ()

The case of a tube much longer than its radius (R/L << 1) with a small pressure
difference between the tube inlet and outlet is the most widely considered. It is
tackled by the infinite capillary theory where the flow is considered as fully developed,
the pressure varies only in the flow direction and end effects are neglected. Once the

reduced flow rate G (9), which is a function only of ¢ at each cross section, is known,
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the mass flow rate is obtained by [125]

. 7TR3 Pl — P2
Mep = GF—— 3.3.1
FD " 1 ( )
where
17
G* = G (6)dd 3.3.2
s [ 60 (332)
01

is computed by integrating G (0) between the inlet and outlet rarefaction parameters
01 and 0, respectively accordingly defined by the corresponding pressures P; and P».
In the network algorithm the reduced flow rate G (4) is computed by implementing

the recently introduced interpolation formula [123]

G () (3.3.3)

~ 1.505 4 0.05245°7 In § (5 ) 0
N 4

° . 1018) 2
11 0.738507 +L1018) o737

This infinite length expression interpolates the numerical data based on the solution
of the linear BGK kinetic model equation via the discrete velocity method within the
uncertainty of 0.2% in a wide range of the Knudsen number.

To extend the range of applicability of the infinite capillary theory, which is com-
putationally very efficient for very long channels, to channels of moderate length the
end effect correction concept is incorporated in the network algorithm. Following the
end effect theory the overall reduced flow rate G*, given by Eq. 3.3.2, is revised
according to [102, 103]

02

! 1

o G (5)ds 3.3.4

(1+AL1/L+AL2/L)51—52/ ) 334
01

where AL;/L and AL,/L are the additional lengths at the inlet and outlet of the
channel correcting the real length of the channel by taking into account the end
effects. The corrective lengths introduced in the code are provided in [103]. As
pointed out in [102], the consideration of the end effect correction, compared to the
case of no end effect consideration, will always improve the accuracy of the simulations
and therefore, it is always applied in the network algorithm when AL/L > 0.01. The
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3. PIPE NETWORK ALGORITHM

values of G*, according to Eq. 3.3.4 are introduced into Eq. 3.3.1 to deduce by
taking into consideration the end effects the corrected values of the mass flow rate
Mee.

The great advantage of the infinite capillary and end effect theories is that the
dimensionless solutions solely depend on the gas rarefaction parameter (they do not
depend on L/R and P,/P;). However, they are both based on linear kinetic analysis
and are valid when the Mach number of the flow is sufficiently small [124]. To satisfy
this requirement and after some extensive numerical experimentation the mass flow
rate is obtained according to the above analysis provided that L/R > 10 and the inlet
rarefaction parameter §; < 100.

In the case of L/R < 10 if the pressure ratio P,/P; > 0.9, i.e., the pressure
difference is small, the flow is linear even in short tubes and the solution is obtained
by solving the linearized BGK equation in the whole flow field (not just in a cross

section as before) [101]. The mass flow rate is obtained by

Mun = Wunv/aR? (Py — P) [ (3.3.5)

where the dimensionless flow rate W,y is computed in terms of L/R and the reference
rarefaction parameter § (W, y does not depend on P,/P;). Indicative results of Wy
are given in [101].

Otherwise, in the case of L/R < 10 with P,/P; < 0.9 the flow is considered as
nonlinear and it is tackled based on the DSMC method [148, 150] and on nonlinear
kinetic model equations solved by the discrete velocity method [80, 96, 97, 133, 134].
The mass flow rate is obtained by

My. = Wiiv/TR2Py Jug (3.3.6)

where W)y, is the dimensionless nonlinear flow rate and depends on all three param-
eters (L/R, § and P,/P;). Then the pressure difference between the inlet and the
outlet of the tube is given by

P2 MNLUO P2
Pp—P,=P[1—-—=)=—""2" (1—-_-= 3.3.7
R ( P1> Wi /7 R2 < P1> (337)

This case is the most computationally demanding one and extensive computations
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have been performed to prepare an adequate large data base in a wide range of the
involved parameters. Indicative results are reported in Tables 2.10 and 2.11.

In the case of channels with arbitrary cross section the flow is simulated by convert-
ing the noncircular cross section to an equivalent circular one based on two different
approaches. In the first approach the radius of the equivalent circular channel is de-
fined according to the hydraulic radius concept [16, 145], while in the second one it is
defined by equating the areas of the noncircular and circular cross sections (A = Agy)
[144]. Computational experimentation will be performed (Chapter 4, Section 4.3) to
deduce that in rectangular cross section channels with various aspect ratios, includ-
ing very slender ones, the overall results provided by the latter approach are more
accurate. Since orthogonal channels are very common in the ITER divertor pumping
system, this second approach will be implemented in the simulation of this system
presented in Chapter 5, Section 5.4.

All this information related to the computed mass flow rates through single tubes,
i.e., Egs. 3.3.1, 3.3.5 and 3.3.7, is provided through the kinetic data base as an input

to the network algorithm described in the next section.

3.3.3 Programming in Fortran environment

Once the network is drawn in the graphical interface, as it has been described in
sub-section 3.3.1, the resulting input file is introduced into Ariadne.

Based on the connectivity matrix, formulated through the GUI, an adjacency
matrix for each node of the network is formed. For the sample network shown in
Figure 3.1, the corresponding adjacency matrix is shown in Table 3.1. Then, the
set of loops and pseudo-loops is determined by implementing the well-known depth-
first-search (DFS) algorithm [28]. The method for finding a loop or pseudo-loop in
the network can be visualized as a depth-first-search (DFS) traversal of a tree data
structure, as shown in Figure 3.7. In the DFS the search starts at the root and
explores as far as possible into deeper levels along each branch before backtracking,
i.e. before going back to the last explored node from which it was possible to visit a
new branch of the tree.

An explanation of how the search algorithm works is given next. The algorithm

generates a list of nodes that represents a path in the search tree by systematically
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010000
101100
A _|oro1 10
“Tlo11010
001101
000010

Table 3.1: Adjacency matrix for the sample network of Figure 3.1.

selecting one node at a time from successive levels, until it is not possible to lengthen
it further. When a node is being considered, the forward search part of the algorithm
first checks to see if this node is a legal node, and if it is the algorithm next checks
to see if the size of the new path formed is as large or larger than the current largest
path, in which case it is saved. At a given level n of the tree, at most one node
can be selected. Note the initial value of n is 0 which represents the root of the
tree. Following the selection of a node at level n, the algorithm seeks to expand the
clique by adding the next available legal node at level n + 1. After considering all
the nodes in a group at level n+ 1, a null node is registered for level n+ 1 and an
attempt is made to select a node from level n + 2 without including a node from
level n + 1. A null node is a right-most child for each node and always stores the
value 0. When all possible nodes have been considered that allows movement in a
forward direction away from the root of the tree, then the algorithm backtracks and
tries to expand along a different branch of the tree. When backtracking occurs, the
nodes are removed from the list one at a time until a node is reached from which
the remaining path can be re-expanded or until all possibilities are exhausted. The
length of the longest list (excluding any null node entries) as well as its composition
is maintained. This information is updated, as needed. This process is described in
Algorithms 3.4.1 and 3.4.2.

Once the scanning of the tree data structure is completed, the search algorithm
returns all possible loops and pseudo-loops detected through the traversal process. In
the case of the sample network under consideration, all possible paths are shown in
color code in Figure 3.7. The nodes which indicate the beginning end the ending of

the paths of the closed loops are noted in green, yellow and purple colors respectively,
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3.3. Algorithm implementation

while for the case of pseudo-loops, the corresponding nodes are noted with red circles.

For a network of p pipes, n nodes and f fixed pressure nodes the DFS technique is
traversing the network extracting the (f—1) pseudo-loops and | = p—n—(f — 1) loops
which are linearly independent. This approach has been found to be computationally
powerful and efficient even in networks consisting of thousands of pipes as in the ITER
primary vacuum distribution system simulated in the next section. The identified paths
of the loops and pseudo-loops of the network are stored in separate matrices in order
to be available for the formulation of the conservation equations.

Once the linearly independent loops and pseudo-loops of the network are identified,
the main core of Ariadne is based on an iterative process between the pressure drop
equations and the system of mass and energy conservation equations as these are
described in section 3.2. To sum up the required information, the algebraic system
of balance equations to be solved consists of a) the mass conservation equations at
each node

3 (i/\'/l,-d) £ M =0 i=1..n (3.3.8)
J

b) the energy conservation equations along each closed loop, and

> (£AP) =0, k=1,.,1 (3.3.9)

J

c) the energy conservation equations along each pseudo-loop

> (£APn) + AP, =0, m=1,.,(f-1) (3.3.10)

J

In Eq. 3.3.8 the summation index j refers to all pipes connected to node i, j:l\'/l,-,j
denotes the mass flow rate into or out of node i respectively through pipe j and M;
denotes an external mass flow rate gain or loss (if any) at node i. In Egs. 3.3.9
and 3.3.10, the summation index j pertains to the pipes that make up loop k and
pseudo-loop m. Also, APy ; and £AP,,; refer to the difference between the inlet
and outlet pressure of pipe j (the plus sign is used if the flow in the pipe is positive
in the clockwise sense or otherwise the minus sign is employed), while AP, is the

difference in magnitude of the fixed pressure nodes.
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3. PIPE NETWORK ALGORITHM

The pressure difference AP = P; — P, of each pipe element in Egs. 3.3.9 and
3.3.10 is substituted accordingly from Egs. 3.3.1 or 3.3.5 or 3.3.7, depending upon
the specific geometrical and operational data L/R and P,/P;. The dimensionless
flow rates G*, W,y and W), are obtained from the kinetic data base.

For the cases where the flow is linear, interpolation formulas are introduced for the
deduction of the required values. However, for the case of Wy, which is a function
of three independent variables, namely 4, P,/P; and L/R, a trilinear interpolation
algorithm has been implemented. In general, the result of trilinear interpolation is
independent of the order of the interpolation steps along the three axes: any other
order, for instance along x, then along y, and finally along z, produces the same
value. First, the eight corners of a cube that surround our point of interest are
located. These corners have the values Wyoo, Wigo, Woio, Wito, Woo1, Wior, Woi,
Wii1. Next, linear interpolation is performed between Wgoo and Wigo to find Who,
Woo1 and Wip; to find Wo1, Whi1 and Wiqq to find Wip, Woio and Wiqp to find Wip.
In the next step, interpolation is performed between Woo and Wig to find Wy, W
and Wi, to find W;. Finally, in order to calculate the value W, linear interpolation
between W, and W is applied. In practice, a trilinear interpolation is identical to two
bilinear interpolations combined with a linear interpolation. The above operations can
be visualized in Figure 3.8 and the corresponding process is described in Algorithm
3.4.4.

The resulting set of equations, along with Eq. 3.3.8, yield a linear system of
algebraic equations which is solved for the unknowns M;. Once the mass flow rates are
computed the node pressures are easily deduced from the corresponding equations. An
iteration process between the pressures at the nodes and the mass flow rates through
the pipes is applied, which is terminated when the convergence criterion imposed on
the pressures is fulfilled. In each iteration the linear algebraic system is solved via
Gauss elimination with partial pivoting, as this is described in Algorithm 3.4.5.

The output data include the pressures P;, i = 1, ..., n and the mass flow rates M;,

i=1,...,p at all nodes and pipes respectively of the network, where these quantities
were unknowns. In addition, for each pipe element / =1, ..., n, the conductance
M.
Ci=-—-R,T 3.3.11
(aP), (3341
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3.4. Algorithm in the viscous regime

and the pump throughput or the so-called PV-flow

d(PV),
dt

Qi = = MR, T = N;R*T (3.3.12)
may be computed. In Egs. 3.3.11 and 3.3.12, R* = 8.314Jmol 'K~ is the global
gas constant, R, is the gas constant and N; is the molar flow rate. These quantities
are of practical interest and characterize the performance of the system.

In summary, Ariadne, in its latest version can handle networks of any geometrical
complexity operating under any vacuum conditions since the kinetic data base has
been accordingly enlarged to include channels of any length in a wide range of the
Knudsen number. It is noted that the iterative process will converge under any initial
conditions provided that all data characterizing the loops and pseudo-loops of the
network are properly given, i.e. the network is well defined and Eq. 3.1.6 is satisfied.

All steps followed are shown in the corresponding flowchart in Figure 3.9.

3.4 Numerical formulation in the viscous regime

To benchmark the present formulation and results this network subject to exactly the
same conditions has been also solved using a typical hydrodynamic solver for gas pipe
networks [107, 143] and a comparison between the results is performed. A gaseous
pipe network in the viscous regime is still described by the same network equations
and the only difference is that the pressure drop along each pipe element is obtained
by a corresponding expression based on hydrodynamic principles. For the purposes of

the thesis, the Darcy-Weisbach equation is implemented:

2

P = (P~ Py), = Z(pA:—J)J-AJ? (2In % + (fD)J-LL)—JJ) (3.4.1)
Here, the index 1 < j < p denotes again each of the p pipes of the network, (pm);
is the average value of the mass density and (fp); is the Darcy friction factor. A
detailed derivation of Eq. 3.4.1 is provided in Appendix A while a more detailed
description about the computation of the proper values of the friction factor is given
in the following section. It is noted that in the present case, the pressure drop along

two points depends on the pressure at the points into consideration. As a result, the
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pressure drop cannot be evaluated directly as a function of the length, the diameter,
the mass flow rate and the friction factor, but in the case where the pressures upstream
and downstream the pipe are unknown, an iterative procedure is necessary, increasing

significantly the computational cost.

3.4.1 Estimation of the friction factor

The friction factor for subsonic compressible flows, which is the case of interest in
the present work, agrees with the relations for the evaluation of the friction factor for
incompressible flows. On the other hand, for the case of supersonic flows, the friction
factor is almost the half of the one computed for the case of the uncompressed flows.

The most convenient and relatively precise approximation method is by means of
the diagram Moody, which plots the dependence of the friction factor on the Reynolds
number of the flow and the roughness of the pipe. Besides Moody diagram, there are
several analytical expressions that may be used for specific regimes of the Reynolds

number. One of the most accurate is the Colebrook expression

1 £ 251
= 2log [ =L + ) 3.4.2
Vo & (3-7 Revfp ( )

where ¢ is the roughness of the pipe and d is its diameter. The Colebrook expression

is accurate for Re > 4000, while the major disadvantage is that it requires a Newton
iterative procedure. For this reason, the expression used in the hydrodynamic solver
is the Swamee-Jain which returns essentially the same results with the Colebrook

expression without an iterative process needed. The Swamee-Jain expression is given

by
1.325
fo = 5 (3.4.3)
[In(0.275 + 5.74=%5))]

which returns accurate results for 5000 < Re < 10® and 1078 < ¢/d < 0.01.
Similar expressions used for the estimation of the friction factor as a function of

Reynolds number are

o fp= %, for Re < 2000

o fp = 830%, for 4000 < Re < 10° (deriving from Blasius equation)
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. \/% = 2log (Rev/fp) — 0.8, for Re > 10° (deriving from Prandtl equation)

1 d d/e
[ ﬁ = 2|Og (;) + 114, fOI’ Wg > (0.005

However, in many occasions, instead of the friction factor, the Poiseuille number
Po = fp X Re (3.4.4)

defined as the product of the friction factor times the Reynolds number of the flow, is
utilized. Over the years, the Poiseuille number has been determined for an extensive
number of flow configurations. As it has been mentioned before, for the cases where
the flow is in the transition regime or at the free molecular regime, medium and highly
rarefied flows, the hydrodynamic equations are not valid and a kinetic approach based
on the Boltzmann equation or reliable kinetic models is required. As described in
Section 2.1.4, the Poiseuille number has been evaluated in the whole range of the
rarefaction for the case of the flow through a circular tube. By introducing the

required mathematical manipulation, Eq. 3.4.4 results to [140]

160,Kn
fr=64/Rel1 P 3.45
> /(* ﬁ) (3.45)

where 0, is the viscous slip coefficient, equal to 1.016, and it is computed by solving

the corresponding half-space viscous slip fow setup (or Kramers problem) based on
the linearized BGK model equation [120]. At the hydrodynamic limit, Eq. 3.4.5 is
reduced to the well-known result Po = 64. In principle, it is valid in the slip (or
viscous) regime, but due to its simplicity it may be used, at some extent, in the
transition regime to provide rough estimates. It is reported that the accuracy of Eq.
3.4.5 is about 1.3% for 1/Kn = 20, 3.5%, for 1/Kn = 10 and 8%, for 1/Kn = 5.
As a result, this expression is implemented in the hydrodynamic solver to expand

the validity of the corresponding results in the viscous or even transition regimes.

3.4.2 Formulation of equations for the hydrodynamic solver

Similar to the case of the solver based on kinetic principles, similar formulation is
used for the case of the hydrodynamic solver. For the simulation of a gas network

distribution system where the flow is compressible, two non-linear systems are formed.
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The first one comprises of the pressure drop equations for each of the pipes consisting
the network equal to the number of the piping elements forming the network as
described by Eq. 3.4.1, while the friction factor values are evaluated by making use
of Eq. 3.4.5. The second part of the system to be solved results from the application
of the continuity equation given by Eq. 3.2.1 at each of the nodes of the network
resulting to a set of equations equal to the number of the nodes of the network.
Having defined the system of equations for the pressure drop at each of the pipe
elements we can solve it since the number of equations (i+j) matches the number
of unknowns (j pressure values at each of the nodes and i values for the mass flow
rates at each of the piping elements). As it has already been described for the case
of the kinetic solver, the use of energy balance equations along the closed loops
(Eq. 3.2.2) and the pseudo-loops of the network (Eq. 3.2.3) is implemented as the
least computationally demanding also for the hydrodynamic solver. In this way, an
optimized system of equations describing the network is formed and the number of
non-linear equations to be solved, regarding the mass flow rates, is decreased from
i equations to / + f — 1. By following a procedure similar to the one described for
the case of the kinetic solver, the system is solved by assuming pressure and density
values and verifying the pressure drop at each piping element through Egs. 3.4.1 and

3.4.5 in an iterative manner, reducing at the same time the computational cost.

3.4.3 Programming in Matlab environment

An in-house hydrodynamic solver, built in Matlab environment, simulating gas pipe
networks in the hydrodynamic regime has been also developed at the Laboratory of
Transport Phenomena of the University of Thessaly. This software has been imple-
mented in the past in several diploma and master theses [107, 143]. In its current
version, after introducing the slip solution results through the correct estimation of the
friction factor, the Matlab algorithm is further updated and employed in the present
work for validation purposes. The steps followed for the solution of the system of

equations may be described as:

1. Introduce the operational characteristics of the network such as lengths and
diameters of the piping elements as well as number of nodes, pipes, fixed-grade

nodes and the corresponding pressure values, demands at the nodes of the
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network (if any), number of loops and pseudo-loops and finally the properties
of the gas (viscosity, specific heat ratio 7, temperature T, molar mass and

specific gas constant R*.

2. Based on the pressure values at the fixed-grade nodes, assume the initial pres-
sure values at each node of the network and the resulting density values and

initial pressure drop values.

3. Solve the continuity equations along with the equations for the loops and the
pseudo-loops by making use of a Newton iterative procedure. After the system
of equations is solved, the new values of the mass flow rates are calculated. The
procedure is repeated until the convergence criterion of the applied methodology
is satisfied. Once this is achieved, the correct values for the mass flow rates,
based on the initial assumption of the pressure and the density values, are

computed.

4. Compute the new pressure values and densities that satisfy the new values for
the flow rates computed after the system of equations is solved. Once again, the
system is non-linear since the pressure drop equations depend on the pressure

values. Also in this case, a Newton iterative procedure is implemented.

5. If the convergence criterion for the pressure drops between the iterations is
not satisfied, the algorithm returns at the 2nd step where the values for the
pressure and the density computed at the previous iteration are used as initial

assumption.

All five steps followed are shown in the corresponding flowchart in Figure 3.10.

As it has already been mentioned, for the solution of the resulting non-linear system
of equations, the Gauss-Newton algorithm, embedded in Matlab by making use of
the command "fsolve" is applied.

In order to develop the required algorithm under the Matlab environment for the
analysis of the compressible gas flow inside the network, 12 subroutines have been
constructed in order to construct the network, solve the system of equations and

present the corresponding results. More specifically:
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e Pipeinput.m: Dimensions of piping elements, geometry and topology of the
network (number of nodes, pipes, fixed-grade nodes), physical properties of the
gas running through the network and initial assumptions for the values of the

pressure heads.

e Pipe.m: The basic algorithm where the needed subroutines are called and the

overall iterative procedure for the satisfaction of the convergence criterion.

e Pipefriction.m: Evaluation of the friction factor at each of the piping elements
based on the computed Reynolds and Knudsen numbers where the slip solution

is implemented.

e Pipedensity.m: Evaluation of the average density value at each of the piping

element.
e Loss.m: Evaluation of part of the pressure drop for each piping element.

e Pipeloss.m: Evaluation of the total pressure drop for each piping element based
on the Darcy-Weisbach equation.

e Pipeloop.m: Assign the plus or minus signs at the closed loop and pseudo-loop

equations.

e Pipeflow.m: Interconnection between the Pipeflowgn.m subroutine and Pipe.m

main algorithm.

e Pipeflowgn.m: The non-linear system of equations formed by the continuity

equations and the ones for the closed and pseudo-loops.

e Pipepr.m: The evaluation of the pressure heads at each of the nodes of the

network based on the total pressure drop.
e Pipeoutput.m: Printing the corresponding results in a file.
e Pipeplot.m: Schematic representation of the simulated network.

The link between the items described is shown in the corresponding flowchart in Figure
3.11.
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Chapter 3 Algorithms

Algorithm 3.4.1: PSEUDO-LOOP:  Algorithm for locating pseudo-loops
in_network

Input : The graph G = (v, e) of the network and two of fixed-grade nodes
uand z
Output: A closed path between the two given vertices v and z

flag(v, VISITED)

S.push(v)

if v=2zthen

| return S.elements()

end

for all e € G.incidentEdges(v) do // checking edges
if flag(e) = UNEXPLORED then

w < opposite(v, e)

if flag(w) = UNEXPLORED then // building the path
flag(e, DISCOVERY)

S.push(e)

pathDFS(G, w, z)

S.pop(e)

else

| flag(e, BACK) // back tracking
end

end

end

end

return S.pop(v)
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Algorithm 3.4.2: Loopr:

Algorithm for locating loops in network

1
2

Input : The graph G = (v, e) of the network

Output: stack S of the path between the start vertex and the current vertex

flag(v, VISITED)
S.push(v)

3 for all e € G.incidentEdges(v) do

4

O o N o O«

10
11
12
13
14
15
16
17
18
19
20
21
2

N

if flag(e) = UNEXPLORED then
w < opposite(v, e)
S.push(e)
if flag(w) = UNEXPLORED then
flag(e, DISCOVERY')
pathDFS(G, w, z)
S.pop(e)
else
T < newemptystack
repeat
o < S.pop()
T .push(o)
until o = w
return T.elements()
end
end
end
end
return S.pop(v)

// checking edges

// building the path

// forming new stack
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Chapter 3 Algorithms

Algorithm 3.4.3: FIND DUPLICATE: Algorithm for discarding duplicate
loops

Input: A sequence of integers (a1, as, ..., an)
Output: The index of first location with the same value as in a previous
location in the sequence

1 location <+ 0

204+ 2

3 while / < n and location = 0 do
4 | j+1

5 | whilej < i and location =0 do
6 if aj = aj then

7 \ location < i

8 else

9 | j—j+1

10 end

11 | end

12 i<—i+1
13 end

return Jocation

o
H
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3. PIPE NETWORK ALGORITHM

Algorithm 3.4.4: TRILINEAR: Trilinear Interpolation Algorithm

Input : Values of L/R, § and P,/P;
Output: Value of the dimensionless flow rate Wy,

1 If (P2/P1min S X S P2/P1max) and (L/Rm,'n S y S L/Rmax) and

(5min S 4 S 6max) then

2 | z1 location - zmax — (z1) // Compute x,y,z for the local tube
3 | z0 location <— zmin — (z0)

4 | yl location < ymax — (y1)

5 | yO0 location < ymin — (y0)

6 | x1 location <— xmax — (x1)

7 | x0 location <— xmin — (x0)

8 | begin // Compute f at 8 corners of the local cube
9 f(x0, y0, z0)

10 f(x0,y0, z1)

11 f(x0, y1, z0)

12 f(x0, y1, z1)

13 f(x1, y0, z0)

14 f(x1, y0, z1)

15 f(x1,y1, z0)

16 f(x1,y1,z1)

17 | end

18 | begin // Compute dx,dy and dz
19 dx < (x — x0)/(x1 — x0)

20 dy < (v —y0)/(y1 — y0)

21 dz < (z — z0)/(z1 — z0)
22 | end
23 | begin // Compute weighting factors
24 c0 + x0y0z0

25 cl < fx1y0z0 — fx0y0z0

26 c2 + fx0y1z0 — fx0y0z0

27 c3 « fx0y0z1 — fx0y0z0

28 c4 + fx1yl1z0 — fx0y1z0 — fx1y0z0 + fx0y0z0

29 c5 + x0ylz1 — fx0y0z1 — fx0y1z0 + fx0y0z0

30 c6 < fx1y0z1 — fx0y0z1 — fx1y0z0 + fx0y0z0

31 c7 + fxlylzl — x0y1z1 — fx1y0z1 — fx1y1z0 +

+1fx1y0z0 4 fx0y0z1 + fx0y1z0 — fx0y0z0
32 | end
33 | g« c0+clxdx+c2*xdy+c3*dz+ cd*xdxx*dy+
+chxdyxdz+ coxdx*xdz+ c7Txdxxdy*dz // Interpolating

34 end

35 return Wy,
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Chapter 3 Algorithms

Algorithm 3.4.5: GAUSS: Gauss Elimination Algorithm — Partial Pivoting

1

O 0 N O Rs W N

W W W W W W W NN N DN DN NDNDMNDNDDND e e e e e e e e
A R WN = O © 0N O O B WN RO W OO NSO OGO & WN =

37
38

Input : System coefficients defined by network characteristics

Output: Values of the Mass flow rates

for i+ 1tondo

for j< 1tondo
\ s; = max(s;, |aj|)
end

end

for k< 1ton—1do

Fmax = 0

for i +— k to ndo

r= |apik/spi‘

if r > . then
Fax =
j=i

end

end

temp = pi

Pk = Pj

p;j = temp

for i< k+1tondo
dpik = aPik/aPkk
forj=k+1tondo

‘ dpij = dp;j — dpik Apyj
end
end
end
for k< 1ton—1do
for i< k+1tondo
‘ bPi = be — dpik bPk
end
end
for i < n downto 1 do
S = bPi
for j< i+1tondo
s anx
end
X = $/ap,i
end

// Gaussian Elimination

si=0 // computes array of row maximal elements

pi=1 // initialize row pointers to row numbers

// largest scaled column entry

// row index of largest scaled entry

// exchange row pointers

// perform elimination on submatrix

// Forward Elimination

// Backward Solve
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3. PIPE NETWORK ALGORITHM

Table 3.2: Connectivity matrix for the sample network of Figure 3.1 as a result from
the drawing in the graphical interface.

Piping Element ID (#)  From Node ID (#)  To Node ID (#)

1 1 2
2 3 2
3 2 4
4 4 3
5 5 3
6 4 5
7 5 6
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Chapter 3 Figures

Figure 3.1: Example network.
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3. PIPE NETWORK ALGORITHM
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Figure 3.2: Example network loops.

104

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55
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PN

riddne
4

Figure 3.3: Logo of the in-house developed algorithm ARIADNE.
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3. PIPE NETWORK ALGORITHM

Network Generator -8

Figure 3.4: Representation of the sample network in the developed graphical interface.
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L5} Network Generator - o IEE

Figure 3.5: Adding new nodes in a network and defining local pressure value or possible
leak/demand values in the developed graphical interface.
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3. PIPE NETWORK ALGORITHM

Network Generator

MNew Edge X

NodeId 1: v
NodeId 2: o~

Hydraulic Diameter:
Temo:

| _owee_| |_swe_|

Figure 3.6: Adding new pipes/edges in a network and defining local characteristics of
the piping element in the developed graphical interface.
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Figure 3.7: Schematic representation of the graph used for the implementation of the

DFS algorithm.
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3. PIPE NETWORK ALGORITHM
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Figure 3.8: Schematic representation of trilinear interpolation algorithm.
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Identify loops
of network

lteration index
t=1

!

Assume pressure heads
at the nodes B,

v

Compute rarefaction
parameter &, at the nodes

Compute dimensionless flow
rate G;* at each tube t=t+1
Form and solve system of mass and energy
conservation equations to find Af

Update the values of the
pressure heads P,

ABS(P*1-P) < ¢

Figure 3.9: Flowchart for ARIADNE.
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3. PIPE NETWORK ALGORITHM

ﬁput: d L ey T.MB, W/

Iteration index
t=1

.

| Assume: P, M; |

[t

Compute all required quantities: t=t+1
Rey f, Uy pmy Ap

v

Compute flow rate M; at
each piping element

¢ t=t+1%

ABS(M/t*38-Mf) < =

Solve pressure drop equations to compute
P; for each piping element

Mo

ABS(PI-PY) < £

Figure 3.10: Flowchart for the algorithm developed in Matlab.
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Figure 3.11: Flowchart of the subroutine dependencies for the algorithm developed in
Matlab.
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Gas distribution systems consisting of
piping elements of long and moderate

length

4.1 Flow characteristics in distribution systems con-

sisting of piping elements with L/D>5

Linear, fully developed flows of rarefied gases through piping elements of various cross
sections have been studied extensively by several deterministic methods, as seen in
previous chapters. This state is characterized by zero velocity in the transversal direc-
tions and constant density at each cross-section, based on the underlying assumption
that the channel is sufficiently long. However, in many practical situations, there are
significant deviations from this behavior near the channel ends, where the assumption
of constant density at each cross-section is not valid and the flow becomes two- or
three-dimensional. This effect is particularly apparent in short channels, even for linear
flows, and the fully developed profile may not be observed at all. Furthermore, even
when the channel is long, the channel end effect may be significant in applications

where high accuracy is required.
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

4.2 Benchmarking in networks consisting of cir-

cular pipes

The methodology described in subsection 3.3.2 is applied in three hypothetical net-
works of small, moderate and increased complexity, respectively, while the piping
elements are of circular cross sections. For the networks of small and increased
complexity, the flow is described by the principles in the hydrodynamic regime in an
attempt to allow a comparison with the corresponding results obtained by the hy-
drodynamic pipe network solver based on the Darcy-Weisbach equation including the
correction of the slip solution for the proper evaluation of the friction factor. For
the third network examined, the results cover a wide range of rarefaction. In this

latter case, the comparison is performed with the corresponding results obtained by
ITERVAC algorithm.

4.2.1 Network of small complexity in the hydrodynamic

regime — A chess-board network

The sample network shown in Figure 4.1, named as "Network 4.2.1/4.5.1", is simu-
lated. The network consists of p = 42 tubes, n = 25 junction nodes {2, 3, ..., 25,26},
f = 2 fixed-grade nodes {1,27} and / = 16 loops. Nodes 1 and 27 refer to two
reservoirs, where the pressure is held constant. All tubes are taken to have the same
length and diameter, which are equal to L =10 m and D = 0.1 m respectively. The
reference temperature is set to To = 290.68K. The conveying gas is nitrogen, with
molar mass m = 28.0314 gr/mol, gas constant Ry, = 296.92 J/(kg-K), most proba-
ble molecular velocity vy = 415.47 m/s and viscosity u = 17.3562 pPa-s. Then, the
system of governing equations includes 25 mass conservation equations at the junction
nodes, 16 balance equations for the closed loops and 1 energy balance equation for the
open pseudo-loop formed along the nodes {1, 2, 3,4, 5, 6,11, 16, 21, 26, 27}. The total
number of equations of the system is 42 and its solution returns the 42 unknown mass
flow rates {Ml, M,, ..., M42} and the corresponding conductances {C;. G, ..., Cpn}.
Then, from the pressure drop equations the pressure heads {P,, ..., P»s} are found.
Finally, the pressure distribution along each pipe element of the network may also be
estimated.
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4.2. Networks of circular piping elements

In order to simulate the flow characteristics at the hydrodynamic regime, the
pressure at nodes 1 and 27 is set equal to P, = 70 Pa and P,; = 60 Pa. The
corresponding Knudsen numbers are 9.13 x 10~% and 1.07 x 1073, which clearly
indicates that the flow in the network is in the slip (or hydrodynamic) regime. For
generality purposes, demands (or leakages) have been added at nodes 6 and 22, which
are equal to Qs = 1.40 x 107° kg/s and Qx» = 2.10 x 107° kg/s, respectively.

To benchmark the present formulation and results Network 4.2.1, subject to ex-
actly the same conditions, has been also solved using a typical hydrodynamic solver
for gas pipe networks and a comparison between the results is performed. For the
purposes of the present work the Darcy-Weisbach equation combined with the slip
solution for the estimation of the friction factor.

In Table 4.1, the computed Knudsen number and pressure at each node of the
network are tabulated by applying both solvers, while in Table 4.2, the mass flow rate
and the conductance along each tube of the network are presented. The negative
values at some of the mass flow rates indicate that the final direction of the flow in
this tube is opposite to the one initially assumed. The total mass flow in tube 1 is
M, = 4.33x 1075 kg/s, while in tube 42 is M,, = 8.32x 1076 kg/s and, as expected,
the following relation is satisfied {M; = My, + Qs + Qn2}.

The agreement between the results based on the hydrodynamic analysis and the
ones based in kinetic theory, shown in Tables 4.1 and 4.2, is excellent. In particular,
the corresponding results of pressure at each node and mass flow rate in each tube,

agree up to at least two significant figures.

4.2.2 Network of increased complexity in the hydrodynamic

regime — An ITER-like network

An ITER like network is applied to further validate the present algorithm. Here, the
algorithm makes use of the end effect correction principles, extending its validity, in
addition to long channels, to channels of moderate length 5<L/D<50. For demon-
stration purposes, a similar geometry to the one of ITER's lower port region (Figure
4.2) is simulated. The schematic representation of the resulting network, named as
"Network 4.2.2/4.5.2", is shown in the right hand side of Figure 4.3.

The network consists of p = 190 tubes, n = 124 junction nodes, f = 58 fixed-
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

grade nodes and / = 9 loops. From the 58 fixed grade nodes, where the pressure
is held constant, 54 nodes {1,5,8, 11, ...,158,161} refer to the divertor's entrance
while nodes {167,172, 177,182} refer to the four direct pumps located at the ends of
the vacuum ducts connected to the lower part of the torus. For comparison purposes,
all tubes are taken to have the same length and diameter, which are equal to L = 2m
and D = 0.2 m respectively. The reference temperature is set to To = 410 K
corresponding to the temperature of the ITER’s burn phase scenario. The conveying
gas is helium, with molar mass m = 4.0026 gr/mol, gas constant Ry. = 2076.9
J/(kg-K), most probable molecular velocity vg = 415.47 m/s and viscosity p = 24.68
uPa-s.

Then, the system of governing equations includes 124 mass conservation equa-
tions at the junction nodes, 9 energy balance equations for the closed loops and 57
energy balance equation for the open pseudo-loops. The total number of equa-
tions of the system is 190 and its solution returns the 190 unknown mass flow
rates {Ml, My, ..., Mlgo}. Then, from the pressure drop equations the pressure heads
{P41, ..., P1gy} are found.

The pressure at the entrance of the divertor for the 54 nodes equals 10Pa while
the pressure at the pumps is equal to 1Pa. The corresponding Knudsen numbers are
1.43 x 1072 and 1.43 x 107! which clearly indicates that the flow in the network is
in the viscous (or hydrodynamic) regime.

The provided results refer to a part of the simulated network, more specifically
for the one shown enlarged in the left hand side of Figure 4.3 and in more detail in
Figure 4.4. The flow path as well as the pressure at each node and the mass flow
rate along each tube are shown in Figures 4.5, 4.6(up) and 4.6(down), respectively.
The negative values at some of the mass flow rates indicate that the final direction
of the flow is opposite to the one initially assumed.

Following the same benchmark procedure, the current network configuration under
the prescribed flow conditions is simulated by implementing the hydrodynamic equa-
tion combined with the slip correction for the friction factor. The agreement between
the results based on the hydrodynamic analysis and the ones based in kinetic theory,
shown in Figure 4.6, is very good. In particular, the corresponding results of pressure
at each node have a maximum relative difference of 3.84% and the corresponding

difference for the mass flow rate has a maximum value of 2.73%.
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4.2. Networks of circular piping elements

4.2.3 Network of average complexity in the whole range of

the rarefaction — A honeycomb network

A comparison is performed between the kinetic solver and the empirical algorithm
ITERVAC. The comparison refers to a hypothetical network, named as "Network
4.2.3", consisting of p = 22 elements, n = 14 junction nodes, f = 4 fixed-grade nodes
and / = 5 loops. In Figure 4.7, the schematic representation of the simulated network
is shown. For this comparison, all elements have the same length and diameter, which
are equal to L = 5 mm and D, = 35um respectively, resulting to a big ratio of
L/Dy, and therefore the kinetic analysis is based on the infinite channel theory. The
conveying gas is argon (Ar) held in ambient temperature. Two indicative simulations
are performed. In the first case, the two left reservoirs are held in P; = 220Pa and
P, = 210Pa, while the two right reservoirs have a fixed pressure of P;; = 1.20 Pa
and Pig = 1.10 Pa, respectively, resulting to high values of Knudsen number.

In the second scenario for the flow conditions characterizing the network, all four
pressure values at the entrance and the exit of the network have lower values compared
to the ones of the previous scenario. For the containers playing the role of the entrance
nodes of the network the pressure values are set to P; = 14 kPa and P, = 13 kPa,
respectively, while for the exit nodes the pressure values are set to P;7 = 120 Pa and
P1g = 110 Pa, leading to a wide range of gas rarefaction and a comparison of the
two approaches in all flow regimes is performed.

In both simulated scenarios, the system of governing equations includes fourteen
mass conservation equations at nodes {3,4,...,16}, five energy balance equations
along the closed loops of three energy balance equations along the opes pseudo-
loops. The total number of equations of the system is 22 and its solution returns the
22 unknown mass flow rates {Ml, Mzz}. Then, from the pressure drop equations,
the pressure heads {Ps, ..., P1g} are found.

The results are shown in Table 4.3 for the pressure heads [Pa] and Table 4.4 for the
mass flow rates [kg/s] for the first scenario simulated, while for the second scenario,
the corresponding results are provided in Table 4.5 for the pressure values and Table
4.6 for the mass flow rates, respectively. In both scenarios simulated, the agreement
in the pressure values is excellent, while the deviation in the mass flow rates does not
exceed 4.3%.
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

4.3 Distribution networks consisting of ducts with

orthogonal and trapezoidal cross section

In the present section, the attention is drawn in the comparison between networks
consisting of non-circular piping elements and the corresponding configurations based
on cylindrical elements by employing either the same hydraulic diameter or the same
cross section area.

To demonstrate the feasibility and the effectiveness of the proposed methodology
the sample network shown in Figure 4.8 (left) is simulated. "Network 4.3/4.4" consists
of p = 14 tubes, n = 9 junction nodes, f = 2 fixed-grade nodes and |/ = 4 loops.
Nodes 1 and 11 refer to two reservoirs, where the pressure is held constant. The
micro distribution system is characterized by the availability of introducing demands
at nodes 4 and 8, however, for comparison reasons these two values are set to 0. The
reference temperature is set to To = 293.7 K. The conveying gas is argon (Ar), with
molar mass m = 0.039948 kg/mol, gas constant R = 208 J/(kg-K), most probable
molecular velocity vg = 347.74 m/s and viscosity u = 22.7985 puPa-s.

The system of governing equations includes nine mass conservation equations at
nodes {2, 3, ..., 10}, four energy balance equations along the closed loops /, /I, III, IV
and one energy balance equation along the open pseudo-loop formed along the nodes
{1,2,3,4,5,6,11}. The total number of equations of the system is 14 and its solution
returns the 14 unknown mass flow rates {Ml, M14}. Then, from the pressure drop
equations, the pressure heads {P, ..., P;o} are found.

Two networks of different geometries are simulated. The first one refers to a net-
work which consists of rectangular micro-channels with H = 2.00 um and W = 20.00
um, leading to an aspect ratio of H/W = 0.1 and, according to the equations shown
in Table 2.1, a hydraulic diameter D, = 3.63 um. The second network simulated,
where the micro-distribution system consists of equilateral trapezoidal elements, with
size of big base B = 6.87 um, small base b = 1.80 um, height h = 3.60 um and
acute angle ¢ = 54.74°, leading to a hydraulic diameter D, = 3.56 um. In all cases
considered, the length of the piping elements is kept constant and equal to L = 5.00
mm, while the pressures at both the upstream and downstream reservoirs are fixed
to Py = 0.125 MPa and P;; = 140 Pa, respectively. Both networks simulated are
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4.3. Networks of orthogonal and trapezoidal piping elements

compared, while keeping the same configuration, to two additional networks consist-
ing of cylindrical tubes of either the equivalent hydraulic diameter Dy, or the same
cross section area A’. It is noted that for the case of the networks of rectangular and
trapezoidal cross section, all the kinetic coefficients required for the simulation are
based on the actual data bases for the corresponding geometrical characteristics of
the ducts in the network.

The results are shown in Figure 4.9 and in Tables 4.7 - 4.10 for the rarefaction
parameter, the pressure heads [Pa] and the mass flow rates [kg/s] for both networks
under consideration. The corresponding results using the hydraulic diameter concept
are also included. The rarefaction parameter covers the range 0.0642 < 1/Kn < 57.33
for the rectangular case and 0.0630 < 1/Kn < 56.28 for the trapezoidal one. The flow
in the network covers the slip, transition and free molecular regimes. The negative
values at some of the mass flow rates indicate that the final direction of the flow is
opposite to the one initially assumed. The red arrows shown in Figure 4.8 (right)
indicate the corrected flow direction obtained after convergence of the code.

Next, we comment on the comparison of the simulated networks with the corre-
sponding ones consisting of cylindrical channels with the equivalent hydraulic diam-
eter. In the case where all channels have the same hydraulic diameter, the friction
factor is the same and therefore the pressure drop is similar. As a result, the rarefac-
tion parameter is close for every node of the network in both geometries simulated.
The relative error between the rectangular channels and the cylindrical ones is less
than 4.11% for the pressure heads. Similar results can be seen for the comparison
between the trapezoidal and the cylindrical channels, where the relative error is less
than 0.09% for the pressure heads. However, in both comparisons, despite the good
agreement between the pressure heads, the comparison with regard to the mass flow
rate through each of the piping elements of the networks shows that there are sig-
nificant differences. For the case of the rectangular channels there is a discrepancy
around 220% for the flow rates and for the case of the trapezoidal channels around
85%.

Moreover, for comparison purposes, the same simulation is performed but, instead
of employing the hydraulic diameter concept, the diameter of the cylindrical channels
introduced is computed on the basis of maintaining the cross section area A’ con-

stant. As a result, for the case of the rectangular channels the diameter used for the
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

simulation is equal to D = 7.14 um, while for the case of the equilateral trapezoidal
elements, the computer diameter is equal to D = 4.46 um. In the present scenario
the relative error computed between the rectangular channels and the cylindrical ones
reaches a maximum value of 9.22% for the pressure heads. The increase in the pres-
sure head deviation between the former and the latter comparison is well expected,
since the friction factor is not kept the same in this configuration. Similar results
can be seen for the comparison between the trapezoidal and the cylindrical channels,
where the relative error is less than 2.29% for the pressure heads, following the same
trend with the rectangular channels. In contrary, in both comparisons, despite the
increased deviation in the pressure head values, the comparison with regard to the
mass flow rate through each of the piping elements of the networks shows that there
are smaller differences. For the case of the rectangular channels there is a discrepancy
around 75.74% for the flow rates and for the case of the trapezoidal channels around
20.96%.

4.4 Extension to networks consisting of tubes with

various lengths and diameters

The network simulated in this section has the same topological characteristics as the
one described in Figure 4.8 (left). However, the specific geometrical characteristics
of each piping element of the network are different to each other. The main goal
here is to demonstrate the solver's generalized applicability in networks consisting of
elements of various lengths and diameters.

As in the network simulated in the previous section, "Network 4.3/4.4" consists
of p = 14 tubes, n = 9 junction nodes, f = 2 fixed-grade nodes and / = 4 loops.
Nodes 1 and 11 refer to two reservoirs, where the pressure is held constant. Once
again, the reference temperature is set to To = 293.7 K. The conveying gas is argon
(Ar), with molar mass m = 0.039948 kg/mol, gas constant R = 208 J/(kg-K), most
probable molecular velocity vg = 349.54 m/s and viscosity p = 22.7985 pPa-s.

Since the topological characteristics of the network under consideration remain
the same with the network simulated in the previous section, the system of govern-

ing equations remains unchanged, i.e. nine mass conservation equations at nodes
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4.4. Networks of piping elements with various lengths and diameters

{2,3, ..., 10}, four energy balance equations along the closed loops /, /I, 1ll, 1V and
one energy balance equation along the open pseudo-loop formed along the nodes
{1,2,3,4,5,6,11}. The total number of equations of the system is 14 and its solu-
tion returns the 14 unknown mass flow rates {I\/l1 M14}. Then, from the pressure
drop equations, the pressure heads { P, ..., P1o} are found.

However, the geometrical characteristics of each piping element forming the net-
work are not constant. The individual geometrical properties of each of the piping
elements are shown in Table 4.11.

Two simulations are performed. Considering the initial simulation, the pressure at
the upstream reservoir is equal to P; = 50 kPa, while the pressure at the downstream
reservoir is fixed to Pi; = 23 kPa. The pressure values are selected in order for the
rarefaction parameter to cover the range 15.46 < 1/Kn < 62.74, i.e. within the
limits of the hydrodynamic and slip regimes. As a result, a comparison is performed
by implementing the hydrodynamic equation combined with the slip correction for
the friction factor. The agreement between the results based on the hydrodynamic
analysis and the ones based in kinetic theory, shown in Table 4.12, for the rarefaction
parameter and the pressure heads [Pa], and Table 4.13, for the mass flow rates [kg/s],
is very good. In particular, the corresponding results of pressure at each node have
an agreement of at least three significant figures and the corresponding difference for
the mass flow rate in each tube has a maximum value of 2.73%.

Based on the good agreement observed in the comparison performed for the case
of the first simulation, the second simulation performed covers a wider range of
rarefaction. In order to achieve this, the pressure at the upstream reservoir is equal
to P; = 50 kPa, while the pressure at the downstream reservoir is fixed to P;; = 0.23
kPa. In this scenario, the rarefaction parameter covers the range 0.26 < 1/Kn <
62.74, indicating that gas flowing through the network covers the whole range of
rarefaction. Indicative results for the aforementioned simulation are shown in Tables
4.14 and 4.15 for the rarefaction parameter, the pressure heads [Pa] and the mass
flow rates [kg/s], respectively, for the network under consideration.

It is noted that piping elements 3 and 4 as well as 7 and 8 have identical mass flow
rates. This is well expected since at the nodes connecting these elements (nodes 4 and
8 respectively), there is no other connection or a leak/demand present. However, due

to their geometrical characteristics, the pressure drop, and as a result the conductance,
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

in these elements is not identical.

4.5 Complex distribution systems

4.5.1 Network of small complexity in the whole range of

the rarefaction - A chess-board network

To demonstrate the feasibility and the effectiveness of the proposed methodology the
sample network shown in Figure 4.1 is simulated.

In the present simulation, the pressure at nodes 1 and 27 is set equal 1 Pa and
1073 Pa respectively, while the corresponding Knudsen numbers are 0.0639 and 63.9,
which clearly indicates that the flow in the network covers the slip, transition and free
molecular regimes. Also, the demands at all nodes have been set equal to zero. The
results of the simulation include the computed Knudsen number and pressure at each
node of the network in Table 4.16, as well as the mass flow rate and the conductance
along each tube of the network in Table 4.17. Again, the negative values at some of
the mass flow rates indicate that the final direction of the flow in this tube is opposite
to the one initially assumed. The total mass flow rate which is transferred from node
1 through the network to node 27 is equal to 4.58 x 1078 kg/s and since there are
no demands or leakages in the network M, = My,. As it is expected, the network
solution, due to the specific geometry and data, is symmetric about an axis defined
by nodes {2, 8, 14, 20 and 26}.

The present network setup has been also simulated by implementing the typical
hydrodynamic solver resulting to significant discrepancies compared to the corre-
sponding kinetic results throughout the network (pressure heads off by about 40%
and total mass flow rate off by about 100%). It is interesting to note that although
most of the nodes are in the slip regime with only one node (Node 27) in the free

molecular regime the viscous analysis is not applicable.
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4.5.2 Network of increased complexity in the whole range

of the rarefaction - An ITER-like network

To demonstrate the feasibility and the effectiveness of the proposed methodology the
sample network representing the vacuum pumping system of the ITER reactor, shown
in Figure 4.2 is simulated. "Network 4.2.2/4.5.2" consists of p = 190 tubes, n = 124
junction nodes, f = 58 fixed-grade nodes and / = 9 loops. From the 58 fixed grade
nodes, where the pressure is held constant, 54 nodes {1, 5, 8, 11, ..., 158, 161} refer
to the divertor’s entrance while nodes {167, 172, 177, 182} refer to the four direct
pumps located at the ends of the vacuum ducts connected to the lower part of the
torus.

For comparison purposes, all tubes are taken to have the same length and di-
ameter, which are equal to L = 2 m and D = 0.2 m respectively. The reference
temperature is set to To = 410 K corresponding to the temperature of the ITER's
burn phase scenario. The conveying gas is helium, with molar mass m = 4.0026 gr/-
mol, gas constant R = 2076.9J/(kg-K), most probable molecular velocity vy = 415.47
m/s and viscosity ;1 = 24.68uPa-s.

Then, the system of governing equations includes 124 mass conservation equations
at the junction nodes, 9 energy balance equations for the closed loops and 57 energy
balance equation for the open pseudo-loops. The total number of equations of the
system is 190 and its solution returns the 190 unknown mass flow rates. Then, from
the pressure drop equations the pressure heads are found.

In this simulation, the pressure referring to the divertor nodes is set equal to 1Pa
while the pressure at the pumps is equal to 10~° Pa, respectively, resulting to Knudsen
numbers indicating that the flow in the network covers the early slip, transition and
free molecular regimes. The results of the simulation include the pressure heads at
each node of the network shown in Figure 4.10(up), as well as the mass flow rate
through each tube of the network in Figure 4.10(down). Again, the negative values
at some of the mass flow rates indicate that the final direction of the flow in this tube

is opposite to the one initially assumed.
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

4.6 Concluding remarks

The algorithm for the design of steady-state, isothermal, gaseous distribution systems
consisting of long tubes has been extended in order to take into account tubes of
average length. The analysis is based on linear kinetic theory by solving the linearized
BGK equation with diffuse boundary conditions in the whole range of the Knudsen
number for the estimation of the dimensionless flow rates as well as the quantification
of the end effect phenomena which cannot be neglected in piping elements of average
length. The drawing of the network is aided by a GUI interface, the output of which is
directly linked to the main iterative algorithm for designing gas pipe networks. More
important the main algorithm successfully integrates linear kinetic results available
from the constructed data bases.

As a result the integrated algorithm may successfully handle gas pipe networks
consisting of long and average tubes of any complexity operating under any vacuum
conditions through all regimes of rarefaction returning all the information needed for
the on-line identification of the flow conditions inside the network. The effectiveness
of the methodology has been demonstrated by solving a similar geometry to the one
of ITER's lower port region, where two operation scenarios are examined based on
the ITER burn phase, resulting to two simulation scenarios, one in the viscous regime
and one in the whole range of the Knudsen number.

It is obvious that the algorithm developed will be useful for ITER like applications
provided that it will be extended to channels of short length. In this, nonlinear kinetic

analysis and DSMC solvers are required increasing the involved computational effort.
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Chapter 4 Tables

Table 4.1: Network 4.2.1 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Pressure [Pa] and Knudsen number at each node of the
network in the slip regime.

Node Kn ARIADNE Hydrodynamic Solver
number Pressure [Pa] Pressure [Pa]
1 0.13x 1074 70.00 70.00
2 9.66 x 10~* 66.12 66.13
3 9.97 x 107* 64.13 64.15
4 1.02 x 1073 62.90 62.92
5 1.03 x 1073 61.98 62.00
6 1.05 x 1073 61.05 61.08
7 9.97 x 10~* 64.07 64.09
8 1.01 x 1073 63.32 63.33
9 1.02 x 1073 62.58 62.60
10 1.03 x 1073 61.96 61.98
11 1.04 x 1073 61.51 61.54
12 1.02 x 1073 62.72 62.74
13 1.02 x 1073 62.47 62.49
14 1.02 x 1073 62.12 62.14
15 1.03 x 1073 61.77 61.80
16 1.04 x 1073 61.52 61.54
17 1.04 x 1073 61.58 61.61
18 1.04 x 1073 61.71 61.74
19 1.04 x 1073 61.66 61.69
20 1.04 x 1073 61.49 61.51
21 1.04 x 1073 61.28 61.30
22 1.06 x 103 60.30 60.34
23 1.05 x 1073 61.12 61.15
24 1.04 x 1073 61.34 61.36
25 1.04 x 1073 61.22 61.24
26 1.05 x 1073 60.84 60.85
27 1.07 x 1073 60.00 60.00
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.2: Network 4.2.1 - Comparison between ARIADNE and the Hydrodynamic Solver with respect to the Mass flow
rate and conductance at each tube of the network in the slip regime.

Tube # From node ARIADNE Ivd.ﬂo%:m_,:mn G Tube # From node ARIADNE IE.S%:man G
1] tonode M, [kg/s] M, [kg/s] [x10%1t/s]  []] tonode M, [kg/s] M, [kg/s] [x10? It/s]

1 1-2 43.33 43.50 9.06 22 15-14 -3.55 -3.57 8.25
2 2-3 21.31 21.43 8.67 23 16-15 -2.54 -2.55 8.21
3 3-4 12.81 12.88 8.46 24 17-12 -0.12 -0.16 8.28
4 4-5 9.49 9.52 8.32 25 18-13 -7.74 -1.77 8.27
5 5-6 9.35 9.36 8.20 26 19-14 -4.66 -4.69 8.25
6 7-2 -22.19 -22.07 8.67 27 15-20 2.92 2.95 8.21
7 3-8 8.52 8.55 8.49 28 16-21 2.43 2.48 8.18
8 9-4 -3.33 -3.53 8.36 29 17-18 -1.29 -1.27 8.21
9 10-5 -0.15 -0.16 8.26 30 19-18 -0.47 -0.50 8.22
10 6-11 -4.65 -4.63 8.17 31 20-17 -1.81 -1.84 8.20
11 7-8 7.88 7.91 8.48 32 20-21 2.05 2.08 8.18
12 8-9 7.64 7.67 8.38 33 22-17 -12.81 -12.86 8.12
13 10-9 -6.31 -6.33 8.30 34 23-18 -5.98 -5.99 8.18
14 11-10 -4.55 -4.56 8.23 35 24-19 -3.33 -3.35 8.19
15 12-7 -0.14 -0.14 8.44 36 25-20 -2.68 -2.71 8.17
16 8-13 8.76 8.79 8.38 37 21-26 4.48 4.56 8.14
17 0-14 4.66 4.69 8.31 38 23-22 8.15 8.13 8.09
18 10-15 1.91 1.93 8.24 39 24-23 2.17 2.14 8.16
19 11-16 -0.10 -0.07 8.20 40 25-24 -1.16 -1.21 8.16
20 12-13 2.54 2.55 8.34 41 26-25 -3.84 -3.93 8.13
21 13-14 3.55 3.58 8.30 42 26-27 8.32 8.49 8.05
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Table 4.3: Network 4.2.3 - Pressure and Knudsen number at each node of the network
for high values of Kn number — comparison with ITERVAC.

Node Kn ARIADNE ITERVAC
number Pressure [Pa]  Pressure [Pa]
1 1.43 x 107! 2.20 x 102 2.20 x 102
2 1.54 x 107! 2.10 x 102 2.10 x 102
3 1.65 x 10° 1.74 x 102 1.74 x 102
4 1.72 x 10° 1.70 x 107 1.70 x 10?
5 1.80 x 10° 1.52 x 102 1.51 x 102
6 1.82 x 10° 1.50 x 102 1.50 x 102
7 1.85 x 10° 1.49 x 10? 1.49 x 102
8 1.98 x 10° 1.29 x 102 1.29 x 102
9 2.00 x 10° 1.28 x 102 1.28 x 10
10 2.52 x 10° 8.57 x 10! 8.56 x 10!
11 2.54 x 10° 8.53 x 10! 8.52 x 101
12 3.00 x 10° 6.42 x 10! 6.41 x 10!
13 3.01 x 10° 6.40 x 10* 6.40 x 10?
14 3.02 x 10° 6.39 x 10* 6.38 x 10*
15 3.87 x 10° 4.28 x 10! 4.28 x 101
16 3.88 x10° 427 x 10! 4.27 x 10
17 1.67 x 102 1.20 x 10° 1.20 x 10°
18 1.82 x 102 1.10 x 10° 1.10 x 10°
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.4: Network 4.2.3 - Mass flow rate and conductance at each tube of the

network for high values of Kn number — comparison with ITERVAC.

Tube #  From node  ARIADNE ITERVAC
i tonode M [kg/s] M, [kg/s]
1 1-3 6.12 x 10713 6.25 x 10713
2 2-4 5.35 x 10713 547 x 10713
3 3-5 297 x 1073  3.04x 10713
4 3-6 3.15 x 1073 322x 10713
5 4-6 259 x 10713 264 x 10713
6 4-7 276 x 10713 282 x 10713
7 5-8 297 x 10713 3.04 x 10713
8 6-8 276 x 1071 282x 10713
9 6-9 294 x 1073  3.00x 10713
10 7-9 276 x 107 282 x 10713
11 8-10 577 x 10713 590 x 10713
12 0-11 570 x 10713 582 x 10713
13 10-12 288 x 1071 2094 x 10713
14 10-13 290 x 1073 296 x 10713
15 11-13 284 x 10713 290x 10713
16 11-14 2.86 x 10713 202 x 10713
17 12-15 2.88x 10713 204 x 10713
18 13-15 286 x 107 292 x 10713
19 13-16 288 x 10712 2094 x 10713
20 14-16 286 x 1071 292 x 10713
21 15-17 574 x 107 586 x 10713
22 16-18 573 x 10713 586 x 10713
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Table 4.5: Network 4.2.3 - Pressure and Knudsen number at each node of the network
in the whole range of Kn number — comparison with ITERVAC.

Node Kn ARIADNE ITERVAC
number Pressure [Pa]  Pressure [Pa]
1 1.43 x 1072 1.40 x 10* 1.40 x 10*
2 1.54 x 1072 1.30 x 10* 1.30 x 10*
3 1.65 x 1072 1.21 x 10* 1.21 x 10*
4 1.72 x 1072 1.17 x 10* 1.17 x 10*
5 1.80 x 1072 1.12 x 10* 1.12 x 104
6 1.82 x 1072 1.10 x 10* 1.10 x 10*
7 1.85 x 1072 1.09 x 10* 1.09 x 10*
8 1.98 x 1072 1.02 x 10* 1.01 x 10*
9 2.00 x 1072 1.00 x 10* 1.00 x 10*
10 2.52 x 1072 7.97 x 103 7.95 x 103
11 2.54 x 1072 7.91 x 103 7.88 x 103
12 3.00 x 1072 6.69 x 103 6.67 x 103
13 3.01 x 1072 6.67 x 103 6.64 x 103
14 3.02 x 1072 6.65 x 103 6.62 x 103
15 3.87 x 1072 5.19 x 103 5.16 x 103
16 3.88 x 1072 5.17 x 103 5.14 x 103
17 1.67 x 10° 1.20 x 102 1.20 x 102
18 1.82 x 10° 1.10 x 102 1.10 x 102
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.6: Network 4.2.3 - Mass flow rate and conductance at each tube of the
network in the whole range of Kn number — comparison with ITERVAC.

Tube #  From node  ARIADNE ITERVAC
i tonode M [kg/s] M, [kg/s]
1 1-3 1.49 x 10710 1.54 x 10710
2 2-4 1.01 x 1071 1.05 x 10710
3 3-5 6.91 x 10711  7.13x 107"
4 3-6 7.98 x 10711 823 x 10711
5 4-6 452 x 10711 469 x 1071
6 4-7 559 x 1071 579 x 10~
7 5-8 6.91 x 10711 7.13 x 10711
8 6-8 5.84 x 10711 6.03 x 1011
9 6-9 6.66 x 10711 6.89 x 10~
10 7-9 5.59 x 10711 579 x 10711
11 8-10 1.27 x 10710 1.32 x 10710
12 0-11 1.23x 10710 127 x 10710
13 10-12 6.32 x 10711 653 x 1071
14 10-13 6.42 x 10711 6.64 x 10711
15 11-13 6.08 x 10711  6.28 x 10711
16 11-14 6.18 x 10711 6.39 x 10711
17 12-15 6.32 x 10711 653 x 10711
18 13-15 6.21 x 10711 6.42x 1071
19 13-16 6.29 x 10711 6.50 x 10~
20 14-16 6.18 x 10711 6.39 x 10~ 11
21 15-17 1.25 x 10710 1.30 x 10710
22 16-18 1.25 x 10710 1.29 x 10710
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Table 4.7: Network 4.3 - Pressure and Knudsen number at each node of the network
based on rectangular and cylindrical channels with either same Dy, or A’.

Node 1/Kn Rectangular ~ Tube (same Dy)  Tube (same A')
number Pressure [kPa] ~ Pressure [kPa] Pressure [kPa]
1 57.33 125.00 125.00 125.00
2 46.88 102.20 103.11 104.30
3 40.88 89.12 90.53 92.38
4 37.61 82.00 83.66 85.87
5 34.11 74.37 76.30 78.87
6 26.18 57.07 59.52 62.87
7 34.11 74.37 76.30 78.87
8 37.61 82.00 83.66 85.87
9 40.88 89.12 90.53 92.38
10 37.61 82.00 83.66 85.87
11 0.06 0.14 0.14 0.14
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Table 4.8: Network 4.3 - Mass flow rate comparison for each pipe of the network
based on rectangular and cylindrical channels with either same Dy, or A’.

Tube #  From node Rectangular Tube (same D,)  Tube (same A’)

i to node M; [ke/s] M; [ke/s] M; [ke/s]

1 1-2 5.74 x 10712 1.79 x 10712 237 x 10711
2 2-3 2.87 x 10712 8.94 x 10713 1.18 x 10~ 11
3 3-4 1.44 x 10712 447 x 10713 5.92 x 1012
4 4-5 1.44 x 10712 4.47 x 10713 5.92 x 10712
5 5-6 2.87 x 10712 8.94 x 10713 1.18 x 10~ 11
6 6-7 —2.87 x 10712 —8.94 x 10713 —1.18 x 10711
7 7-8 —1.44 x 10712 —4.47 x 10713 —5.92 x 10712
8 8-9 —1.44 x 10712 —4.47 x 10713 —5.02 x 10712
9 9-2 —2.87 x 10712 —8.94 x 10713 —1.18 x 10711
10 9-10 1.44 x 10712 4.47 x 10713 5.92 x 10712
11 10-5 1.44 x 10712 447 x 10713 5.92 x 10712
12 10-7 1.44 x 10712 447 x 10713 5.92 x 10712
13 3-10 1.44 x 10712 447 x 10713 5.92 x 10712
14 6-11 5.74 x 10712 1.79 x 10712 237 x 1071
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Table 4.9: Network 4.3 - Pressure and Knudsen number at each node of the network
based on trapezoidal and cylindrical channels with either same D), or A’

Node 1/Kn Trapezoidal Tube (same D,)  Tube (same A’)
number Pressure [kPa] ~ Pressure [kPa] Pressure [kPa]

1 56.28 125.00 125.00 125.00
2 46.39 103.03 103.06 103.55
3 40.71 90.41 90.46 91.21
4 37.61 83.53 83.58 84.47
5 34.29 76.15 76.20 77.23
6 26.72 59.34 59.40 60.73
7 34.29 76.15 76.20 77.24
8 37.61 83.53 83.58 84.47
9 40.71 90.41 90.46 91.21
10 37.61 83.53 83.58 84.46
11 0.06 0.14 0.14 0.14
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.10: Network 4.3 - Mass flow rate comparison for each pipe of the network
based on trapezoidal and cylindrical channels with either same D), or A’

Tube #  From node Trapezoidal Tube (same D,)  Tube (same A’)

[i] to node M; [kg/s| M; [kg/s| M; Tkg/s]

1 1-2 3.07 x 10712 1.66 x 10712 3.89 x 10712
2 2-3 1.54 x 10712 8.31 x 10713 1.95 x 10712
3 3-4 7.69 x 10713 4.16 x 10713 9.73 x 10713
4 4-5 7.69 x 10713 4.16 x 10713 9.73 x 10713
5 5-6 1.54 x 10712 8.31 x 10713 1.95 x 10712
6 6-7 —1.54 x 10712 —831x1078®  —-1.95x 1072
7 7-8 —7.69 x 10713 —4.16 x 107  —9.73 x 10713
8 8-9 —7.60 x 10713 —416x 107  —9.73 x 10713
9 9-2 —1.54 x 10712 —831x10°18  —195x 1012
10 9-10 7.69 x 10713 4.16 x 10713 0.73 x 10713
11 10-5 7.69 x 10713 4.16 x 10713 0.73 x 10713
12 10-7 7.69 x 10713 416 x 10713 0.73 x 10713
13 3-10 7.69 x 10713 4.16 x 10713 0.73 x 10713
14 6-11 3.07 x 10712 1.66 x 10712 3.89 x 10712
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Table 4.11: Network 4.4 - Geometrical characteristics of each piping element.

Tube #[]] 1 2 3 4 5 6 7
L[um] 1000 500 700 400 800 300 550
Dy[um] 20 10 15 10 20 8 7

Tube #[j] 8 9 10 11 12 13 14
L[um] 1000 300 200 500 900 400 900
Dy[um] 30 5 5 5 10 8 18
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.12: Network 4.4 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Pressure [Pa] and Knudsen number at each node of the
network in the slip regime.

Node 1/Kn ARIADNE Hydrodynamic Solver
number Pressure [kPa] Pressure [kPa]
1 62.74 50.00 50.00
2 35.63 48.67 48.67
3 26.85 38.90 38.90
4 28.41 36.23 36.22
5 20.35 27.80 27.79
6 25.38 26.39 26.38
7 16.53 31.62 31.60
8 43.07 37.10 37.10
9 31.07 37.14 37.13
10 15.46 35.20 35.20
11 25.98 23.00 23.00
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Table 4.13: Network 4.4 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Mass flow rate and conductance at each tube of the
network in the slip regime.

Tube #  From node ARIADNE Hydrodynamic Solver

[l tonode M, [ke/s] M [ke/s) G [it/s

1 1-2 1.95 x 10710 1.97 x 1071 894 x 107°
2 2-3 1.71 x 10710 1.73 x 1070 1.07 x 107°
3 3-4 1.41 x 10710 143 x 10710 322 x10°°
4 4-5 1.41 x 10710 143 x 1071  1.02 x10°°
5 5-6 1.48 x 10710 1.50 x 10710 6.44 x 107°
6 6-7 —4.62 x 10711 —4.66 x 1071 540 x 1077
7 7-8 —1.84 x 10711 —1.85x 107 2.05x 1077
8 3-9 —1.84 x 1071 —-1.85x 107" 336 x107°
9 9-2 —2.36 x 1071 —237x 107 1.25x 1077
10 9-10 5.21 x 10712 523 x 10712 1.64 x 1077
11 10-5 7.30 x 10712 7.27 x 10712 6.03 x 10°8
12 10-7 2.79 x 10711 281 x 1071t 476 x 1077
13 3-10 2.99 x 10711 3.02x 1071 494 x 1077
14 6-11 1.95 x 10710 1.97 x 10710 352 x 10°°
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.14: Network 4.4 - Pressure and Knudsen number at each node of the network
in the whole range of the Kn number.

Node Pressure
number 1/Kn [kPa]
1 62.74 50.00
2 35.29 48.21
3 23.82 3451
4 23.89 30.46
5 11.70 15.98
6 12.27 12.76
7 11.93 22.82
8 36.78 31.69
9 26.55 31.74
10 12.64 28.79
11 0.26 0.23
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Chapter 4 Tables

Table 4.15: Network 4.4 - Mass flow rate and conductance at each tube of the network

in the whole range of the Kn number.

Tube #  From node M G

[i] to node [kg/s] [It/s]

1 1-2 2.60 x 10719 890 x 10°°
2 2-3 228 x 10719 1.02x 10°°
3 3-4 1.88 x 10710 283 x 107°
4 4-5 1.88 x 10710 7.92 x 107
5 5-6 1.98 x 1071 375 x 10°°
6 6-7 —6.26 x 1071 3.80 x 1077
7 7-8 —249x 107" 1.72x 1077
8 8-9 —2.49x 107" 290 x 1075
9 9-2 —-3.19x 107" 1.19x 107"
10 9-10 7.01 x 107" 145 x 1077
11 10-5 1.01 x 10711 484 x 1078
12 10-7 3.77 x 10711 3.86 x 1077
13 3-10 4.08 x 107 435x 1077
14 6-11 260 x 1071 127 x10°°
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Table 4.16: Network 4.5.1 - Pressure and Knudsen number at each node of the
network in the viscous regime.

Node Kn Pressure
number [Pa]

1 6.39 x 1072 1.00

2 781 x107%2 8.18 x 1071
3 890 x 1072 7.18 x 1071
4 9.74 x 1072 6.56 x 107!
5 1.04 x 107!  6.16 x 107!
6 1.07 x 100! 5.96 x 10!
7 890 x 1072 7.18 x 1071
8 9.46 x 1072  6.75 x 1071
9 1.01 x 100! 6.31 x 10!
10 1.07 x 100 596 x 10!
11 1.11 x 107! 575 x 107!
12 9.74 x 1072  6.56 x 1071
13 1.01 x 107! 6.31 x 10!
14 1.07 x 1001 596 x 10!
15 1.14 x 1001 559 x 1071
16 1.20 x 107! 533 x 10!
17 1.04 x 107! 6.16 x 107!
18 1.07 x 1001 596 x 10!
19 1.14 x 1001 559 x 10!
20 1.25x 1071 5.11x 10!
21 1.39 x 107! 4.60 x 10!
22 1.07 x 1071 5.96 x 10!
23 1.11 x 107 575 x 10!
24 1.20 x 1001 533 x 10!
25 139 x 1001 460 x 107!
26 1.95 x 1071 3.27 x 107!
27 6.39 x 100  1.00 x 1073
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5
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Figure 4.1: Schematic representation of Network 4.2.1/4.5.1.
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Chapter 4 Figures

Figure 4.2: ITER lower port region.
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Chapter 4 Figures

Figure 4.4: Network 4.2.2/4.5.2 - Schematic representation of the simulated network
with a detailed view of one of four vacuum ducts.
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Figure 4.5: Network 4.2.2 - Schematic representation of the simulated network with
the actual flow direction in the viscous regime.
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Figure 4.6: Network 4.2.2 - Pressure values at the nodes (up) and mass flow rates at
each tube (down) of the network’s duct in the viscous regime.
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4. NETWORK OF PIPING ELEMENTS WITH L/D>5

Figure 4.7: Network 4.2.3 - ITERVAC sample network schematic representation
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Chapter 4 Figures

Figure 4.8: Network 4.3/4.4 - Schematic representation of pipe network showing a)
the initially assumed flow directions (left) and b) the flow directions derived after the
completion of the code (right).
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Figure 4.9: Network 4.3 - Rarefaction parameter (top), pressure heads (middle) and
flow rates (bottom) for a network consisting of rectangular (left) and trapezoidal
(right) channels. The corresponding results with the hydraulic diameter concept are
also shown.
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Figure 4.10: Network 4.5.2 - Pressure values at the nodes (left) and mass flow rates
at each tube (right) of the network’s duct in all regimes.
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Extension to gas distribution systems
consisting of piping elements of any

diameter and length

5.1 Flow characteristics in distribution systems con-

sisting of piping elements with L/D<5

Apart from the cases where the channel network consists of long piping elements,
the characteristics of which have been described in the previous chapter, the analysis
is extended into networks consisting of piping elements of arbitrary length, diameter
and cross sections. In this latter case, the vertical component of the velocity vector
in not equal to zero and the values of density may vary along the piping element. The
presence of short piping elements in a channel network, even when the flow may be
described as linear, or even in scenarios where the channel end effects play a major role,
affects the overall flow characteristics of the network which are, as a result, described
in more than one dimensions. This analysis is presented and benchmarked in the

present chapter through various test cases covering the whole range of rarefaction.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

5.2 Benchmarking in networks consisting of short

circular pipes

Extensive comparisons between the ARIADNE and ITERVAC have been performed
covering a wide range of simulating scenarios with respect to the geometrical char-
acteristics, the conveying gas and the complexity. Two different networks have been

simulated, named as Network 5.2.1 and 5.2.2, respectively.

5.2.1 Network of minimum complexity in a wide range of

rarefaction - A simplified chess-board network

The sample network 5.2.1 consists of 14 elements, 9 junction nodes and 2 nodes where
the pressure is fixed. In Figure 5.1, the schematic representation of the simulated
network is shown. All elements have the same length and diameter, which are equal
to 0.25 m and 0.1 m respectively, resulting to an L/D;, <5 and therefore the kinetic
analysis is based on the non-linear theory for short channels. The gas selected for
filling the hypothetical network is helium held at 410 K. In the simulation performed,
the left reservoir is held in P; = 5 Pa, while the right reservoir has a fixed pressure
of P11 = 1073 Pa. The selected pressure values result to Knudsen numbers covering
the free molecular and early transition regimes.

The comparison between the algorithms with respect to the pressure at each node
of the network is shown in Table 5.1, while for the mass flow rate along each tube
is presented in Table 5.2. In general, there is a very good agreement in both the
pressure values and the mass flow rates, with the corresponding deviation between
the two approaches not exceeding the value of 5.6% for the pressures and 5.4% for

the mass flow rates.

5.2.2 Network of small complexity in a wide range of rar-
efaction - A chess-board network
By increasing the complexity of the network, the sample network 5.2.2 shown in

Figure 5.2 is simulated. The network consists of 42 elements, 25 junction nodes and

2 nodes where the pressure is fixed. Since the aim of this comparison is to increase
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5.3. Tree network

the complexity of the network, i.e. increasing the number of elements and nodes,
all elements have the same length and diameter, equal to the ones used in sample
network 5.2.1 (L=0.25 m and D,=0.1 m). For this purpose, all other parameters are
identical to the ones of sample network A. Therefore, the conveying gas is helium at
410K and the pressure values at the fixed grade nodes are P; = 5 Pa and P,; = 1073
Pa, respectively.

Once again, very good agreement in both the pressure values and the mass flow
rates, is observed. The comparison between the algorithms with respect to the pres-
sure at each node of the network is shown in Table 5.3, while for the mass flow rate
along each tube is presented in Table 5.4. Despite the increase of the network com-
plexity, the corresponding deviation between the two approaches is not exceeding the
value of 4.8% for the pressure heads and 5% for the mass flow rates. It is noted that
these values which are smaller compared to the ones of sample network 5.2.1 which

is of smaller complexity.

5.3 Extension to networks consisting of tubes of

any diameter and length - A Tree network

The network simulated in this section has the topological characteristics of the net-
work shown in Figure 5.3 which is characterized by piping elements, whose specific
geometrical characteristics, are different to each other. In this manner, the solver's
applicability is generalized in networks consisting of elements of various lengths and
diameters simulating simultaneously channels with big, average and small ratio of
L/D.

The simulated network, named as "Network 5.3", consists of p = 29 tubes, n = 20
internal nodes, f = 4 fixed-grade nodes and / = 6 loops. Nodes {1, 9, 23 and 24}
refer to four fixed grade nodes, where the pressure is held constant. For the present
network under investigation, the reference temperature is set to T = 293.7K. The
conveying gas is air, with molar mass m = 0.028319 kg/mol, gas constant R = 286.9
J/(kg-K), most probable molecular velocity vy = 410.59 m/s and viscosity 1+ = 18.370
uPa-s.

The geometrical characteristics of each piping element are shown in Table 5.5.

157

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

The system of governing equations includes nine mass conservation equations at the
internal nodes, six energy balance equations along the closed loops and two energy
balance equation along the open pseudo-loops. The total number of equations of the
system is 29 and its solution returns the 29 unknown mass flow rates {Ml Mzg}.
Then, from the pressure drop equations, the pressure heads {P,, ..., P»3} are found.

For the simulation performed, the pressures at the three reservoirs are fixed to
P, = 0.4 Pa, Py = 0.01 Pa, P,3 = 0.1 Pa and Py, = 0.1 Pa, respectively. Even
more an external demand is present at node 22 equal to 1E — 06kg/s. The results
are shown in Table 5.6 for the rarefaction parameter and the pressure heads [Pa] and
in Table 5.7 for the mass flow rates [kg/s].

5.4 Modeling of neutral gas flow in the ITER di-

vertor pumping system

In the present section the latest design of the ITER divertor pumping system is
discussed. The drawings referring to the 2012 design have been delivered to UoThly
in October 2012. The schematic representation of the cryopump positions is shown
in Figure 5.4. As it is seen, ports {4, 6, 10, 12, 16, 18} are fitted with cryo-pumps.

By further analyzing the CATIA schematics and the detailed geometrical char-
acteristics of the divertor region, Figures 5.5 and 5.6, an interpretation of the flow
path i) inside the divertor and ii) of the lower port region into a set of channels has
been performed. The channels, consisting of various lengths and cross sections, are
interconnected in a predefined manner so as to form a network estimating the actual
flow path.

The analysis is based on the assumption that each of the 54 cassettes is identical
to each other. Based on this assumption, the flow path inside the region of the
divertor is simulated by 28 channels, the locations of which are shown in Figure 5.7,
as far as the radial gas flow is concerned. Similar analysis has been implemented for
the simulation of the gas flow path formed between the divertor and the lower port
regions as it is shown by the assembly picture in Figure 5.8, resulting to a channel
network consisting of 12 channels, which are interconnected with the network of the

divertor path in a predefined configuration. The vacuum ducts are simulated by a
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5.4. The ITER divertor pumping system

network of 6 channels, directly linked to the network formed by the 54 cassettes.
In 6 out of the 54 cassettes and more specifically cassettes 11, 17, 29, 35, 47 and
53, corresponding to the lower ports 4, 6, 10, 12, 16 and 18 are connected to the
six cryopumps. A schematic representation of all 6 pumping ducts connected to the
divertor ring is shown in Figure 5.9.

In order to simulate the toroidal flow of the gas, the interconnection of each of
the 54 cassettes to each other had to be defined. For this reason, in the already
described networks for the radial flow, some extra nodes had to be added in order
for the connections to be simulated. As a result, elements {2, 4, 5, 7, 9, 17, 19, 21,
22, 24, 25 and 26} of Figure 5.7, as well as elements {2, 4, 5, 6, 8, 9} of Figure 5.8
are cut in half in order to host these connections. All of these 124+6=18 channels
have various diameters but same length equal to 20 mm to simulate the distance
between the cassettes. As far as the connection between the cassettes and the pumps
is concerned, this is achieved by directly linking 1 cassette with 1 pump by 8 additional
piping elements representing the geometrical characteristics of the pumping ducts.

A representation of the resulting network, approximating the actual gas flow path
along the cassette cross-section, is shown in Figure 5.10. The channel flow configu-
rations of the upper and lower parts of the cassette are approximated by 40 and 17
channels of various lengths and diameters, respectively. The upper part, interpreting
the radial flow inside the divertor, consists of nodes 1 to 41, shown in light blue color.

The radial flow in the divertor lower part is described by nodes 42 to 60, shown in
yellow. These two regions are interconnected with one main piping element resulting
to a total of 59 channels and 60 nodes per cassette. The 8+1 nodes {1, 13, 18, 21,
28, 41, 59, 60} and {66}, where the pressure must be specified, shown in dark blue,
are provided. Through these 8 nodes the pipe network representing the flow along a
cassette is open to the torus.

Even more, the 12 nodes {3, 6, 8, 11, 15, 23, 26, 29, 31, 34, 36, 38} for the
divertor path and 6 nodes {43, 46, 48, 50, 53, 55} for the lower region path, shown
in red, represent the position where the connections for the simulation of the toroidal
flow are located.

Finally, for the case where the cassette is directly linked to one of the 6 cryopump
ducts, shown in grey, the pumping duct network consisting of 6 nodes {61, 62, 63,
64, 65, 66} and 8 pipes used to approximate the gas flow is also shown in Figure

159

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

5.10. The resulting geometric characteristics of the piping elements implemented for
the the simulation of the flow though the divertor and lower port regions are shown
in Table 5.8.

In an attempt to study the flow inside the divertor and the lower part region, the
case of one cassette directly linked to a cryopump is taken into consideration. Based
on this, 3 different operational scenarios, in collaboration with KIT, have been sim-
ulated, two of which employing deuterium (D,, m=4.0282 gr/mol, 1=15.90 uPa-s)
as conveying gas held at 420 K and a third one with helium (He, m=4.0026 gr/mol,
p©=25.09 uPa-s), held at the same temperature. The different scenarios are employed
by introducing predefined pressure values into the fixed grade nodes of the network,
i.e. nodes {1, 13, 18, 21, 28, 41, 59, 60 and 66}.

The input parameters for ARIADNE have been obtained from the B2-EIRENE
output including particle flux densities, temperatures and pressures of deuterium and
helium atoms and deuterium molecules, respectively [110]. One output from B2-
Eirene is a pressure profile along the inner target, the under dome region and along
the outer target. The conversion of this pressure profile into input pressure values
from the locations described in Figure 5.11 in the aforementioned nodes for the three
simulated scenarios are described in Table 5.9. Based on these data, the local gas
rarefaction in the network varies in a wide range of the Knudsen number from the
free molecular limit through the transition up to the slip regime.

Indicative results for the flow through one cassette directly connected to one pump
during the 3 scenarios studied are shown in Tables 5.10 and 5.11 for Scenario A, Tables
5.12 and 5.13 for Scenario B and Tables 5.14 and 5.15 for Scenario C, respectively.

In Figures 5.12 - 5.14, the gas flow path in the cross-section along a cassette is
shown for all 3 operational scenarios. This flow pattern is qualitatively the same in
all three pressure scenarios investigated. The gas enters the cassette from the fixed
pressure nodes at the dome and the inner and the outer slots, defined by the nodes
{13, 18, 21, 28 and 41}, respectively. One part of the gas remains in the upper
part of the cassette and flows in opposite directions returning finally back into the
plasma from the inner and outer divertor arm gaps, nodes 1 and 41, respectively.
Another part of the gas reaches the lower part of the cassette and then is separated
with (depending on the scenario under consideration) one fraction flowing towards

the cryopump and the remaining one returning to the plasma via the outer and inner
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divertor arm gaps defined by nodes 59 and 60.

The flow back into the vacuum vessel is also observed in Figures 5.12 - 5.14 and
is known as back-flow and has been also observed in previous studies [38, 46, 47].
Since the cassette is directly linked to the vacuum pump, the main part of the of the
gas throughput entering the divertor is pumped towards the pumping port, while the
remaining amount is flowing back into the plasma. The corresponding percentages
vary from 87% to 90% for all scenarios simulated.

Concerning the percentage break down of the throughput entering the divertor it
is noted that, from about 86%, 70% and 95% is entering from the dome area, nodes

19 and 21 for operational Scenarios A, B and C respectively.

5.5 Concluding remarks

A software tool for modeling and simulation of complex gas distribution systems oper-
ating under any vacuum conditions is presented and validated. The code architecture
and structure are similar to the ones applied in the design and optimization of typical
gas pipe networks in the viscous regime, supplemented however, with a robust kinetic
data base to provide the required flow rates in the whole range of the Knudsen number
depending on the geometrical and operational data of the network.

The present, more advanced and generalized, algorithm includes the kinetic data
base required to take into account flow rates through channels of any length. Valida-
tion of the updated software is provided by comparison with the corresponding result
provided by ITERVAC for various pressure values and geometrical characteristics for
the networks under consideration.

Furthermore, the feasibility and effectiveness of the presented algorithm in sim-
ulating large size gas networks of arbitrary complexity is demonstrated by modeling
the flow through a cassette of the 2012 ITER torus primary pumping system. Re-
sults of the flow patterns and paths along the cassette for various dome pressures are
provided.

It is believed that the presented algorithm has a lot of potential in supporting future

design work in large vacuum systems of fusion machines and particle accelerators.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.1: Network 5.2.1 - Pressure and Knudsen number at each node of the network
for high values of Kn number — comparison with ITERVAC.

Node Kn ARIADNE ITERVAC
number Pressure [Pa]  Pressure [Pa]
1 1.83 x 1072 5.00 5.00
2 2.32 x 1072 3.96 4.05
3 2.72 x 1072 3.38 3.51
4 2.98 x 1072 3.08 3.23
5 3.33 x 1072 2.76 2.93
6 4.53 x 1072 2.03 2.28
7 3.33 x 1072 2.76 2.93
8 2.98 x 1072 3.08 3.23
9 2.72 x 1072 3.38 3.51
10 2.98 x 1072 3.08 3.23
11 9.19 x 10! 1.00 x 1073 1.00 x 1073
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Chapter 5 Tables

Table 5.2: Network 5.2.1 - Mass flow rate and conductance at each tube of the
network for high values of Kn number — comparison with ITERVAC.

Tube #  From node ARIADNE ITERVAC
[i] to node M; [kg/s] M; [kg/s]
1 1-2 2.69 x 107° 2.55 x 107
2 2-3 1.34 x 10°° 1.27 x 107°
3 3-4 6.73 x 10~/ 6.36 x 10~/
4 4-5 6.73x 107" 6.36 x 107’
5 5-6 1.34 x 10°° 1.27 x 107°
6 6-7 ~134x107® —1.27x10°°
7 7-8 —6.73x 1077 —6.36 x 1077
8 8-9 —6.73x 107"  —6.36 x 107
9 9-2 ~134x107°® —127x10°°
10 9-10 6.73 x 1077 6.36 x 10~
11 10-5 6.73 x 1077 6.36 x 1077
12 10-7 6.73 x 1077 6.36 x 10~
13 3-10 6.73 x 10~/ 6.36 x 1077
14 6-11 2.69 x 107° 2.55 x 107°
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.3: Network 5.2.2 - Pressure and Knudsen number at each node of the network

for high values of Kn number — comparison with ITERVAC.

Node Kn ARIADNE ITERVAC
number Pressure [Pa]  Pressure [Pa]
1 1.83 x 1072 5.00 5.00
2 2.22 x 1072 4.13 4.19
3 2.51 x 1072 3.65 3.75
4 2.73 x 1072 3.36 3.47
5 2.90 x 1072 3.17 3.30
6 2.98 x 1072 3.08 3.21
7 3.08 x 1072 2.98 3.12
8 3.30 x 1072 2.78 2.93
9 3.78 x 1072 2.43 2.61
10 5.16 x 1072 1.78 2.02
11 3.78 x 1072 2.43 2.61
12 3.30 x 1072 2.78 2.93
13 3.08 x 1072 2.98 3.12
14 2.98 x 1072 3.08 3.21
15 2.90 x 1072 3.17 3.30
16 2.73 x 1072 3.36 3.47
17 2561 x 1072 3.65 3.75
18 2.66 x 1072 3.45 3.56
19 2.83 x 1072 3.24 3.37
20 2.98 x 1072 3.08 3.21
21 3.17 x 1072 2.90 3.05
22 3.44 x 1072 2.67 2.83
23 3.17 x 1072 2.90 3.05
24 2.98 x 1072 3.08 3.21
25 2.83 x 1072 3.24 3.37
26 2.98 x 1072 3.08 3.21
27 9.19 x 10! 1.00 x 1073 1.00 x 1073
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.5: Network 5.3 - Geometrical characteristics of each piping element.

1 2 3 4 5 6 7 8 9 10
[fm 25 25 1 05 2 2 3 4 6 4
DJm 05 05 04 05 04 05 08 09 04 09

11 12 13 14 15 16 17 18 19 20
fml 3 6 7 6 7 3 8 10 1 1
Difm] 08 06 06 04 05 08 06 05 04 04

21 22 23 24 25 26 27 28 29
m 1 25 4 3 3 4 3 25 5
Dyfm] 04 05 09 08 08 09 06 05 04
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Chapter 5 Tables

Table 5.6: Network 5.3 - Pressure and Knudsen number at each node of the network

in the viscous regime.

Node Kn Pressure
number [Pa]
1 3.34x 1072  4.00 x 1071
2 3.78 x 1072 3.53 x 107!
3 475 %1072 3.02x 1071
4 558 x 1072 2.66 x 101
5 581 x 1072 255 x 1071
6 6.46 x 1072 1.83 x 1071
7 479 x 1072 1.64 x 1071
8 5.90 x 1072  1.62 x 107!
9 1.67 x 10°  1.00 x 1072
10 571 x 1072 1.67 x 1071
11 6.02 x 1072 1.64 x 1071
12 756 x 1072 1.59 x 1071
13 6.32 x 1072  1.76 x 1071
14 063 x 1072 1.46 x 1071
15 121 x107! 1.38x 101!
16 120 x 107t 1.29 x 107!
17 3.69 x 1072  2.13x 107!
18 425 x 1072 214 x 1071
19 3.72x 1072 211 x 101
20 415 x 1072 2.10 x 1071
21 6.94 x 1072 1.93 x 107!
22 728 x 1072 1.84 x 1071
23 1.67 x 100! 1.00 x 107!
24 1.34 x 1071 1.00 x 107!
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.7: Network 5.3 - Mass flow rate and conductance at each tube of the network in the viscous regime.

Tube #  From node M G Tube From node M; G

[i] to node [kg/s] [It/s] number to node [kg/s] [It/s]

1 1-2 8.21 x 107 1.52 x 10* 16 6-13 297 x 107°  4.10 x 10*
2 2-3 8.21 x 107® 1.37 x 10* 17 13-14 1.99 x 107® 5.69 x 103
3 3-4 498 x 107°® 1.22 x 10* 18 3-18 323 x107° 3.20 x 103
4 4-5 498 x 107 3.92 x 10* 19 14-15 8.22 x 1077 8.29 x 103
5 5-6 498 x 107 5.89 x 103 20 14-16 1.66 x 107®  8.25 x 103
6 6-10 2.01 x 107® 1.12 x 10* 21 15-16 8.22 x 1077 8.07 x 103
7 10-7 1.30 x 107®  3.89 x 10* 22 16-24 248 x107°% 7.42x 103
8 7-8 1.30 x 107 4.56 x 10* 23 17-18 —8.79 x 107" 553 x 10*
9 8-9 250 x 107®  1.42 x 103 24 19-17 —8.79 x 107" 4.62 x 10*
10 10-11 1.42x107°  4.61 x 10* 25 20-18 —2.35x107% 461 x 10*
11 11-8 1.20 x 107%  3.85 x 10* 26 19-20 8.79 x 1077  5.47 x 10*
12 11-12 487 x 107" 7.48 x 103 27 20-21 323 x107°% 1.61 x 10*
13 13-10 7.19x 1077  6.70 x 103 28 22-21 —1.00 x 107®  9.59 x 103
14 13-11 259 x 1077 1.88 x 103 29 21-23 223 x107® 2.08 x 103
15 12-14 487 x 107" 3.31 x 10°
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Chapter 5 Tables

Table 5.8: Geometric characteristics of the piping elements implemented for the the

simulation of the flow though the divertor

Tube # From node Length Dy Tube # From node Length Dy
[i] to node [m] [m] [1] to node [m] [m]
1 1-2 0.1075 0.1830 36 36-35 0.0786 0.2236
2 2-3 0.1875 0.1831 37 37-36 0.0786 0.2236
3 3-4 0.1875 0.1831 38 38-37 0.0579 0.0575
4 4-5 0.1214 0.0579 39 39-38 0.0579 0.0575
5 5-6 0.1276 0.1817 40 40-39 0.2135 0.1907
6 6-7 0.1276 0.1817 41 41-40 0.1015 0.0478
7 7-8 0.2598 0.2693 42 60-42 0.2589 0.1274
8 8-9 0.2598 0.2693 43 42-43 0.1875 0.1831
9 9-10 0.1691 0.0816 44 43-44 0.1875 0.1831
10 10-11 0.2000 0.1962 45 44-45 0.3750 0.1831
11 11-48 0.2000 0.1962 46 45-46 0.1276 0.1817
12 12-11 0.2000 0.1962 47 47-46 0.1276 0.1817
13 14-12 0.0942 0.1461 48 48-47 0.2598 0.2693
14 13-14 0.0482 0.0087 49 49-48 0.2598 0.2693
15 15-14 0.1455 0.1461 50 50-49 0.1875 0.1831
16 16-15 0.1455 0.1461 51 51-50 0.1875 0.1831
17 17-16 0.1455 0.1990 52 52-51 0.4000 0.1962
18 23-17 0.5217 0.2784 53 53-52 0.0471 0.0487
19 18-19 0.2410 0.3645 54 54-53 0.0471 0.0487
20 19-20 0.1646 0.2935 55 55-54 0.1456 0.1461
21 21-22 0.2359 0.3000 56 56-55 0.1456 0.1461
22 22-20 0.1646 0.2935 57 57-56 0.0482 0.0087
23 20-23 0.1519 0.2704 58 58-57 0.3750 0.1831
24 24-23 0.5217 0.2784 59 59-58 0.2410 0.3645
25 25-24 0.1652 0.1098 60 43-61 0.4885 0.8215
26 26-25 0.1137 0.1358 61 46-61 0.9770 0.7361
27 27-26 0.1137 0.1358 62 48-61 1.9540 0.6238
28 28-27 0.1042 0.0210 63 61-62 1.0163 1.1125
29 29-27 0.0589 0.0732 64 62-63 1.4768 1.1125
30 30-29 0.0589 0.0732 65 63-64 0.7050 2.2836
31 31-30 0.1231 0.2026 66 64-65 0.7050 2.6974
32 32-31 0.1231 0.2026 67 65-66 0.4000 1.4700
33 33-32 0.1804 0.0929
34 34-33 0.1408 0.2587
35 35-34 0.1408 0.2587
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.9: Pressure values at predefined positions for each of the 54 cassettes and
the four pumps for the 3 proposed operational scenarios.

Scenario A Scenario B Scenario C
Gas D, He D,
P1(Pa) 8.250 x 107* 7.740 x 10~* 8.120 x 10~*
P,(Pa) 3.650 3.890 x 1072 1.500 x 101
P3(Pa) 1.852 2.848 x 1072 7.819
P4(Pa) 1.852 2.848 x 1072 7.819
Ps(Pa) 1.040 x 10 2.770 x 107 2.360 x 10!
Ps(Pa) 6.760 x 107> 7.010 x 10® 8.820 x 10~*
P (Pa) 6.760 x 107> 7.010 x 107®  8.820 x 10~*

a
Poump(Pa)  1.000 x 107°  1.000 x 107®  1.000 x 107°
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Chapter 5 Tables

Table 5.10: Network 5.4.1 - Pressure and Knudsen number at each node of the
network simulating the flow through the divertor and lower port regions - Scenario A.

Node Kn Pressure Node Kn Pressure

number [Pa] number [Pa]
1 1.449 x 102 8.250 x 10~* 36 5.742 x 102 1.445
2 7.924 x 10°  1.279 x 1072 37 9.170 x 1072 1.440
3 3.682 2.752 x 1072 38 2.783 x 1071 1.159
4 3.667 4.198 x 102 39 1.748 x 107!  8.554 x 10!
5 6.079 x 10~1 2.547 x 101! 40 1.863 x 107! 8.353 x 10!
6 3.860 x 1071 2.645 x 1071 41 5.739 x 103  6.760 x 107°
7 3.001 x 107t 2.742 x 107! 42 5.428 x 10°  2.202 x 1072
8 2.472 x 1071 2.788 x 1071 43 1.619 x 10° 2.894 x 1072
9 3.732 x 1071 2.834 x 1071 44 3.397 x 10°  2.983 x 1072
10 3.508 x 10~1 3.807 x 101 45 3.266 x 10° 3.114 x 102
11 2.427 x 1071 3.896 x 1071 46 1.587 x 10° 3.191 x 1072
12 1.710 x 107! 6.341 x 107! 47 1.197 x 10° 6.876 x 1072
13 5.843 x 1071 3.650 48 6.305 x 10~1  8.665 x 1072
14 1.919 x 107! 9.640 x 107! 49 9.470 x 101 8.662 x 1072
15 9.699 x 1072 1.310 50 1.171 x 10°  8.657 x 1072
16 6.678 x 1072 1.611 51 1.131 x 10° 8.651 x 1072
17 4532 x 1072 1.715 52 1.753 x 10°  8.644 x 1072
18 2.748 x 1072 1.852 53 4.453 x 10° 8.562 x 1072
19 3.061 x 1072 1.842 54 2.247 x 10°  8.479 x 102
20 3.555 x 1072 1.826 55 1.500 x 10° 8.470 x 1072
21 3.339 x 1072 1.852 56 2.833 x 10°  8.462 x 1072
22 3.401 x 102 1.838 57 1.140 x 10>  1.697 x 1074
23 3.759 x 102 1.790 58 8.418 x 10> 8.050 x 107°
24 5.329 x 102 1.794 59 7.530 x 10>  6.760 x 107°
25 8.259 x 1072 1.830 60 2.082 x 10> 8.250 x 10~*
26 7.412 x 1072 1.844 61 7.730 x 1071 2.915 x 102
27 1.303 x 107! 1.858 62 8.499 x 1071 1.962 x 1072
28 8.492 x 1072  1.040 x 10! 63 1.521 x 10° 7.184 x 1073
29 1.461 x 1071 1.734 64 1.354 x 10° 5.504 x 1073
30 8.374 x 1072 1.607 65 2.056 x 10°  4.330 x 1073
31 5.731 x 1072 1.598 66 1.262 x 10*  1.000 x 10~
32 7.901 x 1072 1.590
33 7.227 x 1072 1.460
34 4.926 x 1072 1.456
35 5.302 x 1072 1.451
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.11: Network 5.4.1 - Mass flow rate values for each piping element the network
simulating the flow through the divertor and lower port regions - Scenario A.

Tube #  From node M Tube  From node I\/IJ

[] to node [kg/s] number  to node [kg/s]

1 1-2 —8.682 x 108 36 36-35 —2.399 x 10~
2 2-3 —8.682 x 1078 37 37-36 —2.399 x 10~
3 3-4 —8.682 x 1078 38 38-37 —2.399 x 10~/
4 4-5 —8.682 x 1078 39 39-38 —2.399 x 10~
5 5-6 —8.682 x 1078 40 40-39 —2.399 x 10~
6 6-7 —8.682 x 107® 41 41-40 —2.399 x 10~7
7 7-8 —8.682 x 1078 42 60-42 —4.111 x 1078
8 8-9 —8.682 x 107® 43 42-43 —4.111 x 1078
9 9-10 —8.682 x 1078 44 43-44 —5.323 x 107°
10 10-11 —8.682 x 1078 45 44-45 —5.323 x 107°
11 11-48 2.573 x 107° 46 45-46 —5.323 x 107°
12 12-11 2.660 x 107° 47 47-46 2.620 x 10~
13 14-12 2.660 x 107° 48 48-47 2.620 x 107
14 13-14 1.253 x 1078 49 49-48 —3.533 x 10710
15 15-14 2.648 x 107° 50 50-49 —3.533 x 10710
16 16-15 2.648 x 107° 51 51-50 —3.533 x 1010
17 17-16 2.648 x 107° 52 52-51 —3.533 x 1010
18 23-17 2.648 x 107° 53 53-52 —3.533 x 10710
19 18-19 1.432 x 107° 54 54-53 —3.533 x 10710
20 19-20 1.432 x 107° 55 55-b4 —3.533 x 10710
21 21-22 1.087 x 107° 56 56-b5 —3.533 x 1010
22 22-20 1.087 x 107° 57 57-56 —3.533 x 1010
23 20-23 2.519 x 107 58 58-57 —3.533 x 1010
24 24-23 1.287 x 1077 59 59-58 —3.533 x 10710
25 25-24 1.287 x 1077 60 43-61 —3.579 x 10°8
26 26-25 1.287 x 1077 61 46-61 2.566 x 1077
27 27-26 1.287 x 1077 62 48-61 2.311 x 107°
28 28-27 3.686 x 1077 63 61-62 2.532 x 107°
29 29-27 —2.399 x 10~ 64 62-63 2.532 x 107°
30 30-29 —2.399 x 10~ 65 63-64 2.532 x 107°
31 31-30 —2.399 x 10~ 66 64-65 2.532 x 107°
32 32-31 —2.399 x 10~ 67 65-66 2.532 x 107°
33 33-32 —2.399 x 10~

34 34-33 —2.399 x 10~/

35 35-34 —2.399 x 10~
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Chapter 5 Tables

Table 5.12: Network 5.4.2 - Pressure and Knudsen number at each node of the
network simulating the flow through the divertor and lower port regions - Scenario B.

Node Kn Pressure Node Kn Pressure
number [Pa] number [Pa]

1 2.445 x 10> 7.740 x 10~* 36 5.991 x 10° 2.193 x 1072
2 1.869 x 10° 8.587 x 107* 37 9.630 x 10° 2.170 x 1072
3 1.663 x 10° 9.647 x 1074 38 3.074 x 10! 1.661 x 1072
4 2.276 x 10> 1.071 x 1073 39 2.057 x 10! 1.151 x 1072
5 0.326 x 10! 2.628 x 1073 40 2.235 x 101 1.102 x 1072
6 5.943 x 10!  2.719 x 1073 41 8.759 x 10* 7.010 x 10°°
7 4633 x 10! 2.811 x 1073 42 4.785 x 10> 3.954 x 10~*
8 3.816 x 10! 2.859 x 1073 43 2.763 x 10> 2.685 x 10~*
9 5.760 x 10!  2.906 x 1073 44 5.830 x 10> 2.751 x 10~*
10 5.738 x 10!  3.684 x 1073 45 5.657 x 10> 2.846 x 10~*
11 3.963 x 10! 3.776 x 1073 46 2.760 x 10> 2.903 x 10~*
12 2511 x 10! 6.832 x 1073 47 2.072 x 10> 6.286 x 10~*
13 8.678 x 10!  3.890 x 1072 48 1.075 x 10> 8.044 x 10~
14 2.573 x 10! 1.138 x 1072 49 1.615 x 10> 8.042 x 10~
15 1.198 x 10 1.678 x 1072 50 1.996 x 10> 8.037 x 10~
16 7.680 2.216 x 1072 51 1.928 x 102 8.032 x 10~
17 4.986 2.468 x 1072 52 2.989 x 10> 8.025 x 10~*
18 2.829 2.848 x 1072 53 7.589 x 10> 7.952 x 10~*
19 3.169 2.817 x 1072 54 3.828 x 10> 7.879 x 10~*
20 3.709 2.771 x 1072 55 2.554 x 10° 7.871 x 10~*
21 3.437 2.848 x 1072 56 4.827 x 10> 7.862 x 10~*
22 3.525 2.808 x 1072 57 3.882 x 10* 7.889 x 10°°
23 3.986 2.672 x 1072 58 1.506 x 10* 7.121 x 107°
24 5.579 2.712 x 1072 59 1.149 x 10* 7.010 x 107°
25 8.134 2.940 x 1072 60 3.512 x 10> 7.740 x 10~*
26 7.089 3.052 x 102 61 1.355 x 102 2.632 x 10~
27 1.211 x 10 3.163 x 1072 62 1.536 x 102 1.719 x 10~
28 5.046 2.770 x 1071 63 2771 x 10> 6.242 x 107°
29 1.393 x 10 2.879 x 1072 64 2.498 x 10° 4.721 x 107°
30 8.206 2.596 x 1072 65 3.843 x 10> 3.668 x 107°
31 5.657 2.563 x 1072 66 1.998 x 10* 1.000 x 10~°
32 7.857 2.530 x 1072

33 7.411 2.254 x 1072

34 5.079 2.235 x 1072

35 5.497 2.216 x 1072
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.13: Network 5.4.2 - Mass flow rate values for each piping element the network
simulating the flow through the divertor and lower port regions - Scenario B.

Tube #  From node M Tube  From node M

] to node [kg/s] number  to node [kg/s]

1 1-2 —6.076 x 10710 36 36-35 —2.915 x 107°
2 2-3 —6.076 x 10710 37 37-36 —2.915 x 107°
3 3-4 —6.076 x 10710 38 38-37 —2.915 x 107°
4 4-5 —6.076 x 10710 39 39-38 —2.915 x 107°
5 5-6 —6.076 x 10710 40 40-39 —2.915 x 107°
6 6-7 —6.076 x 1071 41 41-40 —2.915 x 107°
7 7-8 —6.076 x 10°1° 42 60-42 7.263 x 10710
8 8-9 —6.076 x 10710 43 42-43 7.263 x 10710
9 9-10 —6.076 x 10710 44 43-44 —3.761 x 10~
10 10-11 —6.076 x 10710 45 44-45 —3.761 x 101
11 11-48 1.962 x 1078 46 45-46 —3.761 x 10~
12 12-11 2.023 x 108 47 47-46 2.241 x 107°
13 14-12 2.023 x 1078 48 48-47 2.241 x 107°
14 13-14 1.178 x 10710 49 49-48 —3.029 x 10~ %2
15 15-14 2.011 x 1078 50 50-49 —3.029 x 10712
16 16-15 2.011 x 1078 51 51-50 —3.029 x 10712
17 17-16 2.011 x 1078 52 52-51 —3.029 x 10712
18 23-17 2.011 x 108 53 53-52 —3.029 x 10712
19 18-19 8.977 x 107° 54 54-53 —3.029 x 10712
20 19-20 8.977 x 10~° 55 55-54 —3.029 x 10712
21 21-22 7.232 x 107° 56 56-55 —3.029 x 10712
22 22-20 7.232 x 107° 57 57-56 —3.029 x 10712
23 20-23 1.621 x 1078 58 58-57 —3.029 x 10712
24 24-23 3.902 x 1079 59 59-58 —3.029 x 10712
25 25-24 3.902 x 107° 60 43-61 7.640 x 10710
26 26-25 3.902 x 107° 61 46-61 2.204 x 1079
27 27-26 3.902 x 107° 62 48-61 1.738 x 108
28 28-27 6.817 x 107° 63 61-62 2.034 x 1078
29 20-27 —2.915 x 107° 64 62-63 2.034 x 108
30 30-29 —2.915 x 107° 65 63-64 2.034 x 108
31 31-30 —2.915 x 107° 66 64-65 2.034 x 108
32 32-31 —2.915 x 107° 67 65-66 2.034 x 108
33 33-32 —2.915 x 107°

34 34-33 —2.915 x 10~°

35 35-34 —2.915 x 107°
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Chapter 5 Tables

Table 5.14: Network 5.4.3 - Pressure and Knudsen number at each node of the
network simulating the flow through the divertor and lower port regions - Scenario C.

Node Kn Pressure Node Kn Pressure

number [Pa] number [Pa]
1 1.473 x 10> 8.120 x 10~ 36 1.324 x 1072 6.270
2 1.161 8.728 x 1072 37 2.111 x 1072 6.253
3 5491 x 1071 1.846 x 10! 38 6.020 x 1072 5.357
4 5634 x 1071 2733 x 107! 39 3.441 x 1072 4.345
5 0.713 x 1072 1.594 40 3.619 x 1072 4.299
6 6.273 x 1072 1.628 41 4398 x 10> 8.820 x 10~*
7 4.956 x 1072 1.660 42 8.728 x 1071 1.369 x 1071
8 4.117 x 1072 1.674 43 2.654 x 1071 1.766 x 107!
9 6.269 x 102 1.687 44 5610 x 10°1  1.806 x 107!
10 6.240 x 1072 2.140 45 5.448 x 1071 1.867 x 1071
11 4.362 x 1072 2.168 46 2.663 x 1071 1.901 x 107!
12 3.502 x 1072 3.096 47 2.065 x 1071 3.985 x 107!
13 1.422 x 107! 1.500 x 10*! 48 1.134 x 10!  4.818 x 107!
14 4.148 x 1072 4.460 49 1.703 x 10! 4.818 x 1071
15 2.200 x 1072 5.774 50 2.104 x 107 4815 x 107!
16 1.562 x 102 6.886 51 2.033 x 107! 4813 x 107!
17 1.070 x 102 7.266 52 3.150 x 107! 4.810 x 107!
18 6.510 x 1073 7.819 53 7.995 x 1071 4.769 x 1071
19 7.259 x 1073 7.769 54 4.031 x 1071 4.727 x 1071
20 8.442 x 1073 7.691 55 2.689 x 107 4723 x 107!
21 7.909 x 1073 7.819 56 5.080 x 107! 4.720 x 1071
22 8.063 x 1073 7.754 57 1.327 x 10> 1.458 x 1073
23 8.950 x 1073 7.519 58 7.097 x 101 9.548 x 10~*
24 1.272 x 1072 7.514 59 5.771 x 10!  8.820 x 10~*
25 2.024 x 1072 7.464 60 2.115 x 10°  8.120 x 10~*
26 1.836 x 1072 7.444 61 1.270 x 1071 1.774 x 1071
27 3.261 x 1072 7.423 62 1.294 x 107! 1.289 x 10!
28 3.742 x 1072 2.360 x 107! 63 2.158 x 1071 5.064 x 1072
29 3.582 x 1072 7.076 64 1.803 x 1071 4.132 x 1072
30 2.003 x 1072 6.717 65 2.556 x 1071 3.484 x 1072
31 1.368 x 102 6.693 66 1.262 x 10*  1.000 x 10~
32 1.883 x 1072 6.669
33 1.671 x 102 6.314
34 1.138 x 102 6.301
35 1.224 x 102 6.288
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.15: Network 5.4.3 - Mass flow rate values for each piping element the network
simulating the flow through the divertor and lower port regions - Scenario C.

Tube # From node I\/IJ Tube  From node I\/IJ

1] to node [kg/s] number  to node [kg/s]

1 1-2 —6.520 x 10~ 36 36-35 —1.606 x 10~°
2 2-3 —6.520 x 10~ 37 37-36 —1.606 x 10~°
3 3-4 —6.520 x 10~ 38 38-37 —1.606 x 10°°
4 4-5 —6.520 x 10~ 39 39-38 —1.606 x 10°°
5 5-6 —6.520 x 10~ 40 40-39 —1.606 x 107°
6 6-7 —6.520 x 107" 41 41-40 —1.606 x 10~°
7 7-8 —6.520 x 10~ 42 60-42 —2.724 x 1077
8 8-9 —6.520 x 10~ 43 42-43 —2.724 x 10~
9 0-10 —6.520 x 10~ 44 43-44 —2.813 x 1078
10 10-11 —6.520 x 1077 45 44-45 —2.813 x 1078
11 11-48 2.319 x 107° 46 45-46 —2.813 x 1078
12 12-11 2.384 x 107° 47 47-46 1.901 x 10°°
13 14-12 2.384 x 1075 48 48-47 1.901 x 107°
14 13-14 6.183 x 1078 49 49-48 —1.995 x 10~°
15 15-14 2.378 x 1075 50 50-49 —1.995 x 10~°
16 16-15 2.378 x 107° 51 51-50 —1.995 x 10~°
17 17-16 2.378 x 107° 52 52-51 —1.995 x 10~°
18 23-17 2.378 x 107° 53 53-52 —1.995 x 10~°
19 18-19 1.341 x 107° 54 54-53 —1.995 x 10~°
20 19-20 1.341 x 107° 55 55-54 —1.995 x 10~°
21 21-22 1.084 x 107° 56 56-55 —1.995 x 10~°
22 22-20 1.084 x 107° 57 57-56 —1.995 x 10~°
23 20-23 2.425 x 107° 58 58-57 —1.995 x 10~°
24 24-23 —4.701 x 10~ 59 59-58 —1.995 x 10~°
25 25-24 —4.701 x 10~ 60 43-61 —2.443 x 10~
26 26-25 —4.701 x 107 61 46-61 1.873 x 107°
27 27-26 —4.701 x 10~ 62 48-61 2.128 x 107°
28 28-27 1.136 x 107° 63 61-62 2.201 x 107°
29 29-27 —1.606 x 107° 64 62-63 2.291 x 1075
30 30-29 —1.606 x 10°° 65 63-64 2.291 x 1075
31 31-30 —1.606 x 10°° 66 64-65 2201 x 107>
32 32-31 —1.606 x 107° 67 65-66 2.291 x 107°
33 33-32 —1.606 x 10~°

34 34-33 —1.606 x 10°°

35 35-34 —1.606 x 10°°
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Figure 5.1: Schematic representation of the sample network 5.2.1 for the kinetic solver
(left) and ITERVAC (right).
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Figure 5.2: Schematic representation of the sample network 5.2.2 for the kinetic solver
(left) and ITERVAC (right).
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Chapter 5 Figures

Figure 5.3: Schematic representation of the tree network, Network 5.3.
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Figure 5.4: Schematic representation of the cryopump position for ITER's latest
design.
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Chapter 5 Figures

Figure 5.5: Catia schematics of the divertor configuration(2012).
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Figure 5.6: Catia schematics of the divertor and lower port region configura-
tions(2012).
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Figure 5.8: Schematic representation of the network channel configuration for the simulation of the radial gas flow between
the divertor and the lower port regions.

184

Institutional Repository - Library & Information Centre - University of Thessaly

16/06/2024 16:58:53 EEST - 3.22.70.55



Chapter 5 Figures

O L) J iy
A ¥ {J M
-
= - ] -
g A0
" &
o 0
L] L
0 o F g
. » -,
o - el - .
L] L) iy
# . .
a q 5
L]
- ‘-
) -
Clar, ]
Ch =
ey e
- -
Ol Ol
- o
£} il
) 0
[ o
. -
b4 s
]
) - l.
w 0
& » l‘
= a 0
- []
L O O O
"ol []
T o G
& L]
o =
--_ _.-
& - Yy L
o ) » i
'l-. - i . 'y !

Figure 5.9: Network 5.5 - Schematic representation of the resulting network with a

detailed view of one of the 54 cassettes and the resulting flow path, based on the
2012 design.
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Figure 5.10: Network 5.5 - Schematic representation of the resulting network with a detailed view of one of the 54 cassettes
and the resulting flow path, based on the 2012 design.

186

Institutional Repository - Library & Information Centre - University of Thessaly

16/06/2024 16:58:53 EEST - 3.22.70.55



Chapter 5 Figures

Figure 5.11: Network 5.5 - Locations of the predefined pressure values for each of the
54 cassettes and the four pumps for the 3 proposed operational scenarios.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Figure 5.12: Network 5.5 - Gas flow path in the cross-section along a cassette for
operational scenario A.
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Chapter 5 Figures

Figure 5.13: Network 5.5 - Gas flow path in the cross-section along a cassette for
operational scenario B.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Figure 5.14: Network 5.5 - Gas flow path in the cross-section along a cassette for
operational scenario C.
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Summary, final remarks and future

perspectives

6.1 Summary and contributions

In the recent years, extensive investigations have been conducted in an attempt to
simulate gas pipe networks in the hydrodynamic regime based on the Navier-Stokes
equations. As a result, several in-house and commercial codes have been developed in
an attempt to understand the physics and the flow behavior in gas pipe networks ap-
pearing in various technological applications including, but not limited to, compressed
air or natural gas networks. However, the corresponding work for case of gas pipe
networks operating in applications related to vacuum pumping, metrology, industrial
aerosol, porous media, and micro-fluidics is quite limited. This is mainly attributed to
the increased complexity of the problem where kinetic modeling has to be combined
with pipe networking.

The aim of the present thesis is to fill this gap and constitutes the first systematic
and successful scientific effort in integrating the modeling gas flows through channels
of various lengths and cross sections under any vacuum conditions in an integrated
gas pipe network solver. Furthermore, ARIADNE, through the developed graphical
interface, is a complete computational tool capable of simulating complex rarefied gas
flow configurations operating at any pressure from the atmospheric down to ultra-
high vacuum. The algorithm is validated through commercial and in-house developed

algorithms and then is applied to solve various gas pipe networks including the neutral
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6. CONCLUSIONS

gas pipe network of the ITER divertor pumping system which is considered as one
of the most complex ones worldwide. A brief review of the subjects investigated in
Chapters 2-5 is provided.

A detailed description of all pressure driven flow configurations involved in the
present work has been presented in Chapter 2. Three main setups, with respect
to channel’s length, namely the flows through a) long, b) moderate and c) short
channels have been employed. These flows are treated based on the linear theory for
long and short channels, when the latter is applicable, as well as end effect theories
for channels of moderate length and the more general nonlinear approach for short
channels. Overall it has been demonstrated that for rarefied gas flows in long channels,
linear kinetic modeling, as described by suitable kinetic model equations, may take
advantage of all flow characteristics and properties and yield very accurate results in
the whole range of the Knudsen number with minimal computational effort. For the
case of the non-linear approach, similarly accurate results are acquired, however, the
computational cost in quite increased. The corresponding kinetic equations along with
the associated formulations have been provided and implemented to return adequate
dense kinetic results to be integrated into the network code. Even more, the range
of validity of each approach has also been examined.

Chapter 3 contains a detailed description of the developed Algorithm for Rarefied
gas flow in Arbitrary Distribution Networks (ARIADNE). First of all, the kinetic results
obtained for the rarefied flow through each tube of the network form a very dense
grid of data in order to allow accurate representation of the operational conditions
of an arbitrary gas pipe network. Interpolation between the available data points is
performed by cubic splines for the flow rates in the case of long channels, by high
order curve fitting for the increment lengths for the case of channels of moderate
length and trilinear interpolation for the flow rate in terms of the pressure, length and
rarefaction in the case of short channels.

The developed algorithm includes first the drawing of the network in a graphical
environment and then the formulation and solution of the governing equations de-
scribing the flow conditions of the distribution system. In the drawing process of the
network, the user, through the developed graphical interface, is capable of providing
the input data including the coordinates of the nodes in a 3D space, the length and

the diameter of the pipe elements, the pressure heads of the fixed-grade nodes and
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6.1. Summary and contributions

information for the type of the gas and its properties. Even more, the demands (if
any) at the nodes may also be provided. Once the geometry of the network is fixed,
an iterative process is initiated between the pressure drop equations and the system
of mass and energy conservation equations in order to successfully handle gas pipe
networks operating from the free molecular, through the transition up to the slip and
hydrodynamic regimes.

Additionally, the further upgrade of an in-house hydrodynamic solver, built in
Matlab environment, used for the simulation of gas pipe networks in the hydrodynamic
regime has also been presented. This latter upgrade refers to the extension of the
range of the applicability of the hydrodynamic solver by introducing the formulas for
the correct estimation of the friction factor by making use of slip boundary conditions.

The next two following chapters, namely Chapters 4 and 5, are devoted on the
validation of the proposed algorithm and on its implementation in solving certain
gas pipe networks of certain complexity. Chapter 4 is devoted to networks consist-
ing of long channels or channels of moderate length with circular, orthogonal and
trapezoidal cross channels. Results are based on the infinite capillary and the end
effect theories. The code validation and benchmarking is achieved in the viscous
regime by comparisons with the in-house hydrodynamic solver and in a wide range of
the Knudsen number by comparisons with the ITERVAC code. Several simulations
have been performed with the respect to i) the network’s complexity, /i) the Knudsen
number, iii) the piping elements’ cross-section, iv) their individual geometrical char-
acteristics (length and diameter) as well as v) the applicability and effectiveness in
micro-geometries or in vacuum conditions. The corresponding results with the ones
derived by the updated hydrodynamic solver reported excellent agreement in terms of
the mass flow rate (and the conductance) through the pipes as well as the pressure
heads at the nodes of the network. Similar results have been obtained for the cases
where the ITERVAC software has been employed.

Last but not least, in Chapter 5 the more general and challenging case of net-
works consisting of channels of arbitrary length have been presented. Following similar
procedure with the one in the previous chapter, several networks of arbitrary complex-
ity have been simulated. Two networks of small and average complexity covering the
whole range of rarefaction have been studied and a comparison has been performed by
implementing the ITERVAC algorithm returning very good agreement. Furthermore,
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the ARIADNE code has been used to demonstrate the effectiveness of the presented
algorithm in simulating gas networks of arbitrary complexity and size. This has been
achieved by presenting the results of a network consisting of all possible combina-
tions with respect to the geometrical characteristics of the piping elements forming
it. However, the true capabilities of ARIADNE have been demonstrated by modeling
the 2012 ITER torus primary pumping system. The ITER divertor and lower port
schematics have been translated into a network of piping elements of various lengths
and cross sections. Results of the flow patterns and paths along the cassette for var-
ious operating scenarios and both qualitative and quantitative results, including the
gas flow paths through the divertor, as well as the backflow and pumped throughputs,
have been provided.

It is hoped that the present work will constitute a significant part of a more
general algorithm which will be used as a significant engineering tool in the design and

optimization of gaseous distribution networks operating under any rarefied conditions.

6.2 Future work

In its present state, ARIADNE constitutes fully integrated software tool, which in
principle can be applied for the simulation, design and optimization of any piping
network, irrespective of geometrical characteristics or pressure conditions. However,
several upgrades may be introduced in the existing software in order to further improve

either its range of applicability or feasibility.

e The developed codes may be further extended to tackle non-isothermal gas
networks, by taking into consideration the gas transport that occurs in the
network due to temperature gradients. In order to achieve this, an equally
dense kinetic data base for all the flow conditions described in the present
thesis for the case of the pressure driven flow has to be built. This is a quite

straight-forward task, but with great requirements in time.

e A further addition of elements with specific geometrical characteristics that
may appear in networks, may be a further upgrade of the software. Such
elements as bellows or even corners and T-junctions, will require a further

increase of the corresponding data base. However, especially for the case of
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Ts', the formulation of the problem is multi parametric taking into account the

radii of the inflow-outflow ducts forming the junction.

e The existing code may be further advanced with the implementation of opti-
mization subroutines for optimal sensor placement and leak detection. One of
the most popular optimization techniques for sensor selection is genetic algo-
rithms. Genetic algorithms that have been developed by John Holland [51] are
search algorithm based on the mechanics of natural selection and natural genet-
ics. Several researchers have proposed methods to select locations of sensors
for structural health monitoring [43], health assessment of aerospace systems
[73] or leak detection and calibration [152].

e Several advancements may be implemented in the numerical methods ARI-
ADNE is making use of. A more sophisticated/parallel solver for the system
of equations formed or even a higher order of interpolating techniques for the

estimation of more accurate values picked from the kinetic data base.

e Finally, apart of the vacuum flows or micro- geometries, a system of piping
elements may be found in many areas. The further extension of the present
software with respect to its area of applicability, may be the simulation of
respiratory gas flows. The complex geometry of the bronchial tree, along with
the several studies around the mechanics of respiratory gas flows [2, 42, 95],

provide a promising basis for the applicability of the developed algorithm.
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Derivation of the Darcy-Weisbach equation

As it has already been mentioned, the flow of the gas inside the network configuration
is assumed to be isothermal. However, since the Mach number computed in several
cases may be around or even exceed the value of 0.3, the compressible Navier-Stokes
equations are utilized for the formulation of the network solver in the hydrodynamic
regime.

The differential equation for continuity is the mathematical formulation of the law
of conservation of mass in a certain point in space and three-dimensional flow is:

dp 0 B
i 5(pu) =0 (A1)

For the case of one-dimensional compressible flow through a channel of varying
cross sections, from a cross section A; to a cross section A,, the continuity equation
takes the form

d(puA) =0 = puA = ct (A.2)

or
p1u1Ar = parAry = Q1 = Q1 (A.3)

The generalized form of the momentum equations where the viscosity is constant

is expressed by 5 5 5
LIJ' UJ' Uij
— — = = f: A4
Poe TG =g T (A.4)

By introducing the constitutive Navier-Stokes equations in the case of one-dimensional
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APPENDIX A

fully developed flow, the momentum equation in the x-direction is described by

w_ o d(a o
pudz_ dz PEx dx 'udx '

and for a height difference equal to dz
pudu + dP + pgdz 4+ dP; =0 (A.6)

where dP,; are the losses due to friction replacing the third term of the equation. For

the case of a cylindrical channel of diameter D and length L, the losses due to friction
are computed by making use of the Darcy-Weisbach equation

L u?

dP, = fp—p— A7

L DdP > (A.7)

where fp is the friction factor estimated according to the Reynolds number in following

paragraphs. Based on the momentum Eq. A.6 and for the case of horizontal flow or

small height differences (dz = 0), yields
pudu + dP + dP; =0 (A.8)
The isothermal flow requires constant temperature distribution along the flow and

an ideal gas is defined as a gas which is subject to the constitutive equation:

P
P = oR*T T=——=ct A9
P or Re c (A.9)
where P is the absolute pressure, p is the density, T is the absolute temperature and

R* is the specific gas constant. After some trivial mathematical manipulation to Eq.

A.9, yields
dP dp dp
T_9 gp=p2 A.10
P ) (A.10)
The Mach number (Ma) is given by:
u u u
Ma=-= = A1l
TaT VRT [p (A1)
p
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A. The Darcy-Weisbach equation

and by applying the same mathematical manipulation as in the previous equation

dMa  du
InMa =Inu—In(R*T —_— = — A.12
nMa =Inu— In(R*T) = Ma y (A.12)

The same formulation is applied to the continuity Eq. A.3, which in combination with
Eq. A.12 and assuming a channel of constant cross sections returns
dp du dA dp dMa

pu c%p+u+A 0:>p Ma (A.13)

The pressure drop due to friction is evaluated through the Darcy-Weisbach equation
A.7, which for the case of a compressible flow, by introducing the Mach number and
the speed of sound

a’ = 75 (A.14)

yields

2 2 2
dP, = f% u — f%fyﬁu_ - f%fyPM—a (A.15)

d 2 d a2 d 2
By introducing Eqs. A.10 and A.15 into the momentum Eq. A.8 and diving by P
yields
dMa  p ,du dx Ma®
“Ma TRY T, gy =0 (A1)
By further introducing £ = % = ~1R+T = % and Eq. A.12 into Eq.A.16 we derive

the x-momentum equation in terms of the Mach number given by

dx 2dMa 2dMa
f— = — A.17
d ~yMa3 Ma ( )
In the case where the flow is isothermal, the speed of sound a, as a function of
temperature, remains constant and the following relation holds:

Mal ﬂ . & P2

Bt — — A.18
Ma, U P1 P, ( )

wherein the first ratio is derived from the equation of the speed of sound, the middle
of the constant mass flow rate and the latter by applying the constitutive equation.

Here, the subscripts 1 and 2 indicate the upstream and downstream fluid properties
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in the direction of the flow and in this case the entrance and the exit of a pipe,

respectively. The mass flow rate is given by M = puA and by introducing Egs. A.14
and A.9 yields

: P u? B AfyPMa2 B A’yMasz*T

M = puA — Av— = A.19
pu s » , (A.19)
and by rearranging for Ma? '
Mu
Ma? = ——— A.20
T ART (A-20)

By integrating Eq. A.17 between the entrance and the exit of a pipe, denoted by 1
and 2 respectively, we deduce

2f‘ 2 2 2 2
—dx= | ——dMa— | —dM
/ddx /fyMa3d a /Mad a=
1 1 1
L 1 1

= f—

=——————2InM 2InMa; =
d ~yMa? ~yMa3 nMaz + 2in May

L1 1
= f-= M2 T Ma In Ma3 + In Maj =
L 1 M82 M32
o= (1-2L) —2In—2 A21
7T a2 ( Mag) " Mas (A21)

By properly combining Egs. A.21 with A.18 and A.20 yields

L 1 P,\ 2 P
Fo——— (122 —2ln - =
d ’Y'V'a§< (P1)> "P,

L AR Tp A% Py
T 1—(=2) | -2mn=2 =
= d MUl ( (P1)> nP2

L AR*Tpi(P? — P3) P
Fo Y
~ Murp? P,
LOAP-P) P
S U Wil VA Y
TG T MapRT R
L A(P2— P2) P,
fo="—21 2 _2|n— A.22
Td T TMRRT "P, (A-22)
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A. The Darcy-Weisbach equation

and by rearranging for the pressure drop equations we deduce

M?R*T P L

P2 P2 = Sy

(A.23)
By assuming the density of the gas inside the pipe as the mean value of the density
between the pipe’s ends p,,, = (p1+p2)/2 and according to the constitutive equation,

the final expression for the pressure drop may be derived

2
PL=P - Py = # (2 In % + f%) (A.24)
which is the basic equation implemented in the hydrodynamic solver for the simulation
of the flow through a gaseous distribution system. As it seen, Eq. A.24 derives
from the Darcy-Weisbach relation by introducing the necessary formulation for the
compressible flow. It is noted that in the present case, the pressure drop along two
points depends on the pressure at the points into consideration. As a result, the
pressure drop cannot be evaluated directly as a function of the length, the diameter,
the mass flow rate and the friction factor, but in the case where the pressures upstream
and downstream the pipe are unknown, an iterative procedure is necessary, increasing

significantly the computational cost.
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Tables of kinetic coefficients

In the present appendix a brief description of all the required kinetic coefficients
introduced into the ARIADNE code are summed up.

In general, the pressure driven flow of a rarefied gas through a tube of length
L and radius R with the tube inlet and outlet pressures maintained at P; and P,
respectively (P; > P;) is prescribed by three dimensionless parameters namely, i) the
geometrical ratio L/R, ii) the pressure ratio P,/P; and iii) the reference Knudsen
number (Kn) or alternatively the reference rarefaction parameter (§). A review of the
four main approaches modeling rarefied gas flows through channels, implemented in
the present work, has been provided in Chapter 2. The approaches include the infinite
capillary and end effect theories for long and medium capillaries, as well as the linear
and the nonlinear approach for short capillaries. Furthermore, these methodologies
are organized and presented in a manner which is useful for their implementation in
the present work.

In particular, for channels with L/D, > 50, where L is the length and D, the
hydraulic diameter, the channel is considered as long and the available kinetic con-
ductance results based on the theory of the infinite long channels are applied. For
channels of moderate length 5 < L/Dj, < 50, the end correction theory is introduced.
This theory has been recently successfully implemented to define the fictitious incre-
ment length which must be added to the channel length in order to provide accurate
results for the conductance by taking into account the channel end effects. Thus, the
kinetic data base has been enriched with the values of the increment length in terms

of the gas rarefaction. Finally, for short channels, i.e. L/D, < 5, the above theory is
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not valid and depending on the local pressure gradient, extensive simulations based
on either linear or non-linear kinetic theory have been performed to provide a com-
plete set of results for the channel conductance in terms of gas rarefaction, pressure
difference and channel length. These simulations are computationally very expensive.

The case of a tube much longer than its radius (R/L << 1) with dimensionless
pressure gradient much less than one, i.e. Xp << 1, even for large pressure differences
AP, is tackled by the infinite capillary theory where the flow is considered as fully
developed. In this scenario, the pressure varies only in the flow direction and end
effects are neglected. Even more, the reduced flow rate at each cross section G (0)
is a function only of 4. Tabulated values of the reduced flow rate G (4) for various
values of the accommodation coefficient v are shown in Table B.1.

In order to extend the validity of the infinite capillary theory from long to medium
tubes, the end effect theory is introduced. As described in Section 2.2, the end effect
corrections depend only on the rarefaction parameter of the tube inlet and outlet
region and are presented in Table B.2 for completeness purposes.

In the case of a pressure driven flow with a small pressure difference P,/P; >
0.9, the flow can be considered linear even for short tubes and thus the linear BGK
model can be implemented. The flow depends only on the rarefaction parameter
and the geometrical ratio of the tube. The solution of the linear problem provides
the dimensionless flow rates which are presented for various values of the rarefaction
parameter and dimensionless length in Table B.3

As described in Chapter 2, in the case where L/R < 10 and P,/P; < 0.9, the flow
cannot be considered as linear and the problem must be tackled either with the DSMC
method or with suitable nonlinear kinetic models solved by the parallelized discrete
velocity method. The nonlinear flow depends on all three flow parameters and the
dimensionless flow rate for indicative values of the flow parameters are presented in
Tables B.4 and B.5.
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B. Kinetic coefficients

Table B.1: Kinetic coefficient G for flow through circular channels in terms of ¢y and

specular-diffuse boundary conditions (a=1, 0.85, 0.7 and 0.5).

G

do a=1 «a=085 «a=0.7 «a=05
0 0.752 1.02 1.40 2.26
0.001 0.751 1.01 1.39 2.24
0.01 0.744 0.999 1.36 2.17
0.1 0.715 0.941 1.25 1.94

0.2 0.702
0.3 0.695 0.896 1.18 1.79
0.5 0.689 0.879 1.14 1.73

0.6 0.688
1 0.693 0.870 1.12 1.67
1.5 0.709 0.879 1.12 1.66
2 0.729 0.896 1.13 1.66
3 0.777 0.941 1.17 1.70
4 0.829 0.992 1.22 1.74
5 0.884 1.05 1.28 1.79
6 0.940 1.10 1.33 1.85
7 0.997 1.16 1.39 1.91
8 1.06 1.22 1.45 1.97
9 1.11 1.28 1.51 2.02
10 1.17 1.34 1.57 2.08
11 1.23 1.40 1.63 2.14
13 1.35 1.52 1.75 2.27
15 1.48 1.64 1.87 2.39
20 1.78 1.95 2.18 2.70
30 2.40 2.56 2.80 3.32
40 3.02 3.19 3.42 3.94
50 3.64 3.81 4.04 456
100  6.76 6.93 7.16 7.68
200 13.0 13.2 13.4 13.9
500 31.7 31.9 32.1 32.6
1000 625 62.7 62.9 63.5
00 63.0 63.2 63.4 63.9
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Table B.2: Length increment AL, for various values of the rarefaction parameter

5.

5 0005 005 01 02 04 06 08 1 2
Al,p. 222 172 152 133 116 1.07 1.0l 00964 0.841
5 4 6 8 10 .. o

Aluse 0735 0.704 0688 0.682 .. 0.680

Table B.3: Flow rate W,y through a tube for various values of the rarefaction pa-
rameter § and dimensionless length L/R, based on the linear BGK kinetic model with
diffuse boundary conditions.

Wi
)

0 0.1 1 2 5 10
0 0999 104 137 172 277 435
0.672 0696 0.892 110 1.70 2.63
0.311 0.316 0.373 0.440 0.642 0.988
10 0.191 0.192 0.217 0.2561 0.362 0.554
20 0.110 0.108 0.118 0.136 0.195 0.296

L/R

Tl =
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B. Kinetic coefficients

Table B.4: Dimensionless flow rate W through short capillaries of cylindrical cross

section vs. rarefaction parameter, pressure ratio and length (1/2).

1%
Rarefaction parameter of high pressure chamber (6;)

Lk Po/Py 0 0.1 0.5 1 2 5 10
0.0 1.000 1.014 1.069 1.129 1.221 1.374 1.463
0.1 0.900 0.910 1.000 1.032 1.180 1.350 1.435
0 0.3 0.700 0.719 0.788 0.862 0.987 1.221 1.366
0.5 0.500 0509 0582 0613 0778 1.040 1.188
0.7 0.3 0.305 0.354 0.38 0.493 0.717  0.914
0.9 0.1 0.102 0.121 0.14 0.176 0.28 0.432
0.0 0.953  0.965 1.018 1.074  1.165 1.312 1.404
0.1 0.856 0.869 0.924 0.984 1.08 1.27 1.380
01 0.3 0.669 0.687 0.752 0.823 0.942 1.171 1.321
' 0.5 0.475 0.486 0528 0583 0.688 0948 1.150
0.7 0.2866 0.292 0321 0.361 0436 0.654 0.885
0.9 0.095 0.099 0.114 0.131 0.164 0.246 0.333
0.0 0.801 0.812 0.855 0.902 0.981 1.117  1.220
0.1 0.721 0.731  0.775 0.826  0.911 1.080  1.200
05 0.3 0562 0577 0630 0.688 0.786 0.994 1.223
' 0.5 0399 0409 0444 0488 0573 0796 1.010
0.7 0.241 0.246 0.270 0300 0.363 0541 0.762
0.9 0.0860 0.083 0.095 0.109 0.135 0.212 0.299
0.0 0.672 0.680 0.715 0.754 0.819 0948 1.062
0.1 0.605 0.613 0.648 0.689 0.761 0913 1.050
1 0.3 0.471 0483 0525 0571 0.652 0.834 1.000
0.5 0336 0343 0370 0405 0474 0.658 0.866
0.7 0.201 0.205 0.224 0.249 0.298 0.440 0.640
0.9 0.067 0.070 0.080 0.091 0.112 0.170 0.264
0.0 0.514 0.52 0.544  0.572 0.62 0.732  0.855
0.1 0.463 0.468 0.493 0521 0573 0.699 0.842
5 0.3 0.36 0368 0.396 0.428 0.486 0.63 0.795
0.5 0.256 0.26 0.28 0.304 0.351 0.486  0.669
0.7 0.153 0.156 0.17 0.19 0.22 0.319 0.471
0.9 0.0561 0.0563 0.059 0.066 0.08 0.119 0.176
0.0 0311 0312 0322 0334 0361 0436 0.543
0.1 0.279 0.281 0.291 0.304 0.33 0.412 0.529
5 0.3 0.217 0.22 0.232 0.247  0.275 0.36 0.485
0.5 0.155 0.156 0.163 0.175 0.197 0.271  0.388
0.7 0.093  0.093 0.1 0.106 0.123 0.174  0.263
0.9 0.031 0.031 0.035 0.038 0.044 0.064 0.098
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Table B.5: Dimensionless flow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (2/2).

7%
Rarefaction parameter of high pressure chamber (4;)
LIk Po/Py 20 50 100 200 500 1000 2000
0.0 1512 1534 1533 1529 1526 1523 1522
0.1 1.500 1.510 1520 152 1.52 1.52 1.52
0 0.3 1.437  1.440 1450  1.45 1.46 1.46 1.46
0.5 1.300 1.310 1340 1.35 1.36 1.36 1.36
0.7 1.05 1.09 1.13 1.13 1.15 1.14 1.14
0.9 0584 0.606 0628 0628 0.64 0634 0.634
0.0 1.462 1498 1508 1512 1515 1515 1517
0.1 1.45 1.49 1.51 1.51 1.51 1.51 1.51
01 0.3 1.406  1.420 1.440  1.45 1.45 1.45 1.45
' 0.5 1.270  1.350 1.370  1.39 1.39 1.39 1.39
0.7 1.030 1.120 1.150 1.16 1.17 1.16 1.16
0.9 0387 0.421 0433 0436 044 0436 0.436
0.0 1.302 1383 1435 1462 1484 1494 1493
0.1 1.200 1.380 1.430  1.46 1.48 1.49 1.49
05 0.3 1.267 1330 1390 1.43 1.45 1.46 1.46
' 0.5 1.150 1.280 1.350  1.39 1.41 1.42 1.42
0.7 0937 1.080 1.150 1.19 1.20 1.20 1.20
0.9 0367 0.423 0451 0466  0.47 0.47 0.47
0.0 1.168 1.287 1.358 1412 1449 1456 1.458
0.1 1.160 1.280 1.350  1.41 1.45 1.46 1.46
. 0.3 1136 1.24 1.32 1.38 1.42 1.43 1.43
0.5 1.04 1.20 1.29 1.35 1.39 1.40 1.40
0.7 0.831  1.00 1.10 1.16 1.19 1.19 1.19
0.9 0.415 0499 0549 0579 0594 0594 0.594
0.0 0974 1.156 1259 1339 1397 1406 1.404
0.1 0985 1.15 1.26 1.34 1.39 1.4 1.40
) 0.3 0.96 1.11 1.23 1.31 1.36 1.37 1.37
0.5 0.864  1.07 1.19 1.28 1.32 1.34 1.34
0.7 0.672 0.884  1.00 1.09 1.13 1.13 1.13
0.9 0251 033 0373 0407 0422 0422 0422
0.0 0.695 0917 1.068 1.184 1271 1282 1.284
0.1 0.695 0917 1.068 1.184 1271 1282 1.284
. 0.3 0.663  0.87 1.03 1.15 1.23 1.24 1.23
0.5 0571 0.828 0993 1.11 1.18 1.2 1.19
0.7 0.411 0.658 0814 0922 0975 098  0.986
0.9 0.164 0263 0325 0368 0389 0391 0.393
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