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Steady-state isothermal rare�ed gas �ows in long circular channels have been exten-

sively investigated via linear kinetic theory since 1960s, implementing various semi-

analytical and numerical schemes. It is noted that linear kinetic modeling is applicable,

when the local pressure gradient along the tube is small. This condition is satis�ed in

the case of long tubes (e.g. the ratio of the length over the radius to be approximately

larger than 100), resulting to a low speed isothermal �ow even if the overall di�er-

ence between the inlet and outlet pressure is large. Overall it has been demonstrated

that for rare�ed gas �ows in long channels, linear kinetic modeling, as described by

suitable kinetic model equations, may take advantage of all �ow characteristics and

properties and yield very accurate results in the whole range of the Knudsen number

with minimal computational e�ort.

In many applications however, the rare�ed gaseous distribution system consists

not only of a single channel but of many channels accordingly combined to form a

network. Such distribution systems are commonly found in several technological �elds

including vacuum pumping, metrology, industrial aerosol, porous media, and micro-

�uidics. It is pointed out that computational algorithms dedicated to the design of

gas pipe networks (e.g., compressed air, natural gas, etc.) in the viscous regime

are well developed while corresponding tools for the design of gaseous pipe networks

operating under any (e.g. low, medium and high) vacuum conditions are very limited.

In order to achieve this, kinetic results obtained for the rare�ed �ow through each

tube of the network are successfully integrated into a typical network algorithm solving

the whole distribution system. In particular, for channels with L/Dh > 50, where L is

the length and Dh the hydraulic diameter, the channel is considered as long and the

available kinetic conductance results based on the theory of the in�nite long channels

are applied. For channels of moderate length 5 < L/Dh < 50, the end correction

theory is introduced. This theory has been recently successfully implemented to
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de�ne the �ctitious increment length which must be added to the channel length

in order to provide accurate results for the conductance by taking into account the

channel end e�ects. Thus, the kinetic data base has been enriched with the values

of the increment length in terms of the gas rarefaction. Finally, for short channels,

i.e. L/Dh < 5, the above theory is not valid and depending on the local pressure

gradient, extensive simulations based on either linear or non-linear kinetic theory have

been performed to provide a complete set of results for the channel conductance in

terms of gas rarefaction, pressure di�erence and channel length. These simulations

are computationally very expensive.

The complete data base consists of a very dense grid to allow accurate represen-

tation of the operational conditions of an arbitrary gas pipe network. Interpolation

between the available data points is performed by cubic splines for the �ow rates in

the case of long channels, by high order curve �tting for the increment lengths for

the case of channels of moderate length and trilinear interpolation for the �ow rate

in terms of the pressure, length and rarefaction in the case of short channels. Next,

the enriched data base has been successfully integrated into the network algorithm

which is build to cover distribution systems consisting of channels of any length.

The developed Algorithm for Rare�ed gas �ow in Arbitrary Distribution Networks

(ARIADNE) includes �rst the drawing of the network in a graphical environment

and then the formulation and solution of the governing equations describing the

�ow conditions of the distribution system. In the drawing process of the network, the

user, through the developed graphical interface, is capable of providing the input data

including the coordinates of the nodes in a 3D space, the length and the diameter of

the pipe elements, the pressure heads of the �xed-grade nodes and information for

the type of the gas and its properties. Even more, the demands (if any) at the nodes

may also be provided. Once the geometry of the network is �xed, an iterative process

is initiated between the pressure drop equations and the system of mass and energy

conservation equations in order to successfully handle gas pipe networks operating

from the free molecular, through the transition up to the slip and hydrodynamic

regimes.

The feasibility and the e�ectiveness of the developed algorithm is tested by sim-

ulating various distribution systems in the hydrodynamic regime and comparing the

corresponding results with the ones derived by the typical hydrodynamic solver report-
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ing excellent agreement in terms of the mass �ow rate (and the conductance) through

the pipes as well as the pressure heads at the nodes of the network. Further more,

some preliminary comparisons with ITERVAC, (which is a computational tool for the

estimation of the mass �ow through ducts at isothermal conditions in a wide �ow

regime, however, it is based mainly on empirical expressions), for networks consisting

of long channels resulted to very good agreement between the two approaches.

It is hoped that the present work will constitute a signi�cant part of a more

general algorithm which will be used as a signi�cant engineering tool in the design and

optimization of gaseous distribution networks operating under any rare�ed conditions.
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Ανάλυση αραιοποιημένης ροής αερίων σε

δίκτυα σωληνώσεων μέσω κινητικής θεωρίας

Σεραφείμ Γ. Μισδανίτης

Τμήμα Μηχανολόγων Μηχανικών

Πανεπιστήμιο Θεσσαλίας

Σεπτέμβριος 2021

Το θέμα της παρούσας διδακτορικής διατριβής εστιάζει στην ανάπτυξη ενός αλ-

γορίθμου προσομοίωσης δικτύων αερίων υπό αραιοποιημένες συνθήκες μέσω κι-

νητικής θεωρίας. Η περιοχή αυτή είναι γνωστή σαν αραιοποιημένη αεριοδυναμι-

κή (rare�ed gas dynamics) με πολλές τεχνολογικές εφαρμογές εκ των οποίων τα

μικρο-ηλεκτρομηχανολογικά συστήματα και η τεχνολογία κενού να είναι αυτές

που εξελίσσονται με πολύ γρήγορους ρυθμούς. Σημειώνεται ότι ενώ στο συνεχές

όριο, υπολογιστικά πακέτα (αλγόριθμοι) σχεδιασμού δικτύων σωληνώσεων (όπως

δίκτυα συμπιεσμένου αέρα ή φυσικού αερίου, κτλ.) είναι ευρέως διαδεδομένα, α-

ντίστοιχα υπολογιστικά εργαλεία για το σχεδιασμό δικτύων σε συνθήκες χαμηλής

πίεσης (υψηλού, μέτριου ή χαμηλού κενού) είναι αρκετά περιορισμένα. Αξιοποι-

ώντας την πολύχρονη εμπειρία του Εργαστηρίου Φυσικών & Χημικών Διεργασιών

σε αριθμητικές μεθόδους μεσοκλίμακας, στο πλαίσιο της διατριβής αναπτύσσεται

και εφαρμόζεται σύνθετο λογισμικό προσομοίωσης κυκλοφορίας αραιοποιημένων

αερίων σε δίκτυα σωληνώσεων σε όλο το εύρος του αριθμού Knudsen.

Για την υλοποίηση αυτού του εγχειρήματος δημιουργείται εκτενής βάση δεδο-

μένων για πλήρως ανεπτυγμένες και αναπτυσσόμενες ροές μέσα από αγωγούς

μεγάλου, μεσαίου και μικρού μήκους, συμπεριλαμβανομένων των φαινομένων ει-

σόδου/εξόδου στα άκρα των αγωγών. Αυτό επιτυγχάνεται επιλύοντας κινητικές

εξισώσεις με αναβαθμισμένους και παράλληλους αλγορίθμους διακριτών μορια-

κών ταχυτήτων, ενώ η χρήση του λογισμικού υποβοηθείται από ένα γραφικό πε-

ριβάλλον το οποίο αναπτύχθηκε για το σκοπό αυτό.

Η τελική μορφή του αλγορίθμου αποτελείται από α) την εισαγωγή των γεω-

μετρικών χαρακτηριστικών και λειτουργικών χαρακτηριστικών του δικτύου προς

επίλυση, β) τον ορισμό των βρόχων και των ψευδο-βρόχων, γ) τη διαμόρφωση και

επίλυση των εξισώσεων διατήρησης μάζας και ενέργειας, δ) τη βάση δεδομένων

που έχει προκύψει από αποτελέσματα κινητικών εξισώσεων και χρησιμοποιείται
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για την επίλυση των εξισώσεων διατήρησης και ε) τα αποτελέσματα του αλγο-

ρίθμου τα οποία αναφέρονται σε τιμές πίεσης στους κόμβους του δικτύου καθώς

και σε τιμές μαζικής και ογκομετρικής παροχής μέσα από τις σωληνώσεις του

δικτύου.

Πιο συγκεκριμένα, το σύστημα των εξισώσεων το οποίο περιγράφει το δίκτυο

αποτελείται από τις εξισώσεις πτώσης πίεσης σε κάθε έναν από τους αγωγούς του

δικτύου σε συνδυασμό με τις εξισώσεις διατήρησης μάζας σε κάθε έναν από τους

κόμβους του δικτύου. Στην περίπτωση που το δίκτυο είναι πλήρως ορισμένο, οι

εξισώσεις πτώσης πίεσης ανάγονται σε ισοζύγια ενέργειας ανάμεσα στους κλει-

στούς βρόχους του δικτύου και τους ψευδο-βρόχους που ενώνουν κόμβους γνωστών

ιδιοτήτων (π.χ. γνωστές τιμές πίεσης). Το σύστημα των εξισώσεων λύνεται επα-

ναληπτικά έχοντας ως άγνωστο τις τιμές των παροχών υποθέτοντας αρχικά τις

τιμές των πιέσεων στους κόμβους του δικτύου, όπου αυτές δεν είναι από την αρχή

γνωστές. Σε κάθε βήμα, μετά την επίλυση του συστήματος των εξισώσεων, οι

τιμές των πιέσεων ανανεώνονται σύμφωνα με τις τιμές της αδιάστατης παροχής

κάνοντας χρήση των σχέσεων πτώσης πίεσης για κάθε έναν από τους αγωγούς

του δικτύου. Τα βήματα αυτά αποτελούν τον πυρήνα μιας επαναληπτικής δια-

δικασίας η οποία τερματίζεται με την ικανοποίηση του κριτηρίου σύγκλισης το

οποίο εφαρμόζεται στις τιμές των πιέσεων στους κόμβους.

Το υπολογιστικό πακέτο φέρει το όνομα ARIADNE (Algorithm for Rare�ed gas

�ow in Arbitrary Distribution Networks). Η αποτελεσματικότητα και η ακρίβεια

του αλγορίθμου ελέγχθηκε με την προσομοίωση διαφόρων δικτύων σωληνώσε-

ων στο υδροδυναμικό όριο, συγκρίνοντας τα αποτελέσματα με αντίστοιχα που

προκύπτουν από τυπικό αλγόριθμο που βασίζεται στις υδροδυναμικές εξισώσεις

επιστρέφοντας πολύ καλή συμφωνία τόσο στις παροχές των αγωγών, όσο και

στις πιέσεις των κόμβων του δικτύου. Επιπλέον, στην ελεύθερη μοριακή περιοχή

και στην μεταβατική πραγματοποιήθηκαν συγκρίσεις με το λογισμικό ITERVAC,

το οποίο είναι ένας ημι-εμπειρικός αλγόριθμος, επιστρέφοντας πολύ καλή συμφω-

νία. Τέλος, το λογισμικό εφαρμόστηκε στην επίλυση δικτύων που προσεγγίζουν

το σύστημα άντλησης αερίων του αντιδραστήρα σύντηξης ITER.

Με βάση τα παραπάνω η παρούσα διδακτορική διατριβή αναμένεται να απο-

τελέσει τον πυρήνα ενός γενικότερου αλγορίθμου για τη μελέτη ροών αερίων σε

δίκτυα σωληνώσεων σε όλο το εύρος αραιοποίησης.
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1
Introduction and literature review

1.1 General concepts

The importance of gas �ows, in a wide variety of technological applications, is encoun-

tered in daily basis. In most cases, the physics explaining their behavior is adequately

modeled by employing the equations of mass, momentum and energy equilibrium,

combined with the Newton-Fourier-Fick constitutive equations. However, this Navier-

Stokes type formulation, which is subject to the underlying assumption that the gas

must be considered as a continuum medium, fails when the mean free path is com-

parable to a characteristic length of the problem. Such conditions may be present in

gas �ows in su�ciently low pressure or in channels of very small dimensions. In these

cases alternative formulations are needed.

In transport phenomena where the continuum approach fails and the typical

macroscopic equations are not applicable, the gas is considered to be far from lo-

cal thermodynamic equilibrium in a "rare�ed" state and it is required not only to

take into account the molecular nature of the gas, but the intermolecular collisions

taking place as well. In order to properly describe such �ows, concepts derived from

statistical mechanics and kinetic theory of gases need to be involved. Our purpose is

to provide a description of the macroscopic behavior, starting from the microscopic

equations which govern the motion of molecules from which the gas is constituted

[76]. The governing equation in this regime is the Boltzmann equation, which is an

evolution equation of the unknown particle distribution function consisting of seven

independent variables, namely the time, the position vector and the molecular velocity

1
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vector. The Boltzmann equation is nonlinear with a very complex collision term. It

can be solved analytically only for very speci�c situations, while it is commonly solved

numerically after its complex collisions term is substituted by a reliable collision model.

Despite the complexity of the Boltzmann equation, it is important to extend our

studies to such cases, since many emerging technologies would bene�t. Vacuum gas

�ows, for example, are encountered in many applications, ranging from simple pressure

sensors [59] to the maze-like complexity met in vacuum systems of fusion reactors

[26]. Also, the creation of micro- and nanometer-sized devices is very important since

they o�er increased reliability, low cost and high e�ciency [50, 109] in comparison to

their normal-sized counterparts. In addition, high altitude aerodynamics need to be

investigated very carefully for the correct operation and maneuverability of spacecrafts

[39] and satellites [83]. Thus, accurate and computationally e�cient simulations

involving the solution of the Boltzmann equations or alternatively of reliable kinetic

model equations are of high importance in the design, manufacturing and optimization

of many devices involving transport phenomena far from local equilibrium.

1.2 Historical overview and basic principles of ki-

netic theory

The beginning of the statistical approach to the physical description of gases is at-

tributed to Maxwell [90] and Boltzmann [15]. Maxwell was the �rst one to point

out that not all molecules move with the same velocity, but in a random manner.

Then, he proceeded to calculate the distribution of molecular velocities and his �nd-

ings were extended by Boltzmann. The distribution function, describing a gas in local

equilibrium, well-known as the "Maxwellian" (or, more correctly, Maxwell-Boltzmann)

distribution, is a Gaussian according to the local conditions and it is given by

f M (x, ξ, t) = n (x, t)

[
m

2πkBT (x, t)

]3/2
exp

{
−m [ξ − u (x, t)]2

2kBT (x, t)

}
(1.2.1)

Here, f M is the Maxwellian distribution and it is given at physical point x, time

t and for the molecular velocity vector ξ in terms of the local macroscopic prop-

erties of number density n (x, t), macroscopic (bulk) velocity u (x, t) and temper-
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ature T (x, t). The parameter m denotes the molar mass and kB = 1.38065 ×
10−23(kg ·m2)/(K · sec2) is a constant named after Boltzmann.

By further investigating these phenomena, Boltzmann managed to derive an

integro-di�erential equation describing the evolution of molecular velocity distribu-

tion in time and space. This derivation is based on two main assumptions i) only

binary collisions take place (which is true for low densities) and ii) the hypothesis of

"molecular chaos" (stosszahlansatz, assumption about the collision number), accord-

ing to which a two-particle distribution function may be substituted by a product of

two one-particle distribution functions. As a result, the term molecular chaos refers

to the statistical independence of molecules [10]. The Boltzmann equation is

∂f

∂t
+ ξ · ∂f

∂x
+ F · ∂f

∂ξ
= Q

(
f , f

′
)

(1.2.2)

where F is an external force vector and the collision term is given by

Q
(

f , f
′
)

=

∫ ∫ ∫ (
f
′

f
′

∗ − f f∗
)

gbdbdεdξ∗ (1.2.3)

and g = |ξ − ξ∗| represents the relative velocity, b is the impact parameter and ε

determines the azimuthal angle, as de�ned in [31]. The collision term contains the

gain part which refers to the contribution of particles obtaining a velocity in ξ + dξ

after a collision and the loss part which refers to particles with pre-collisional velocities

in ξ + dξ but scattering to other velocity vectors after the collision. Boltzmann also

proved that the Maxwellian distribution is a solution of this equation when the gas is

in local equilibrium. The existence and uniqueness of the solution for the Boltzmann

equation were con�rmed for Hard Sphere molecules in 1910 by Hilbert [48]. Grad [40]

also proved that solving the Boltzmann equation is equivalent of solving the Navier-

Stokes equations, in di�erent, however, time and space scale. Even more, by applying

the appropriate projections, the Boltzmann equation also leads to the conservation

principles.

In the case of hydrodynamic equations, the values of the transport coe�cients,

namely the viscosity, heat conductivity and di�usion coe�cient, are required to obtain

a closed system. The estimation of these values is linked to the determination of the

intermolecular potential. In the case where it is speci�ed, the complete solution of
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the problem can be obtained without the need for the determination of the transport

coe�cients.

In the same works, Boltzmann further investigated these phenomena and for-

mulated the H-Theorem, which practically expresses the irreversibility of physical

processes. The quantity

H =

∞∫
−∞

f log fdξ (1.2.4)

if integrated in the physical space, must always decrease (or remain constant in the

special case of a Maxwellian distribution function). This is directly connected to the

second law of thermodynamics and the entropy increase according to which molecules

tend to approach the equilibrium state, where molecular velocities follow the local

Maxwell distribution, since this is the state of maximum entropy.

By solving the Boltzmann equation for the unknown distribution function, any

quantity of practical interest may be determined by appropriate moments of the dis-

tribution function as follows:

• Number density

n (x, t) =

∞∫
−∞

fdξ (1.2.5)

• Velocity vector

û (x, t) =
1

n (x, t)

∞∫
−∞

ξfdξ (1.2.6)

• Pressure

P (x, t) =
m

3

∞∫
−∞

(ξ − u)2 fdξ (1.2.7)

• Stress tensor

P̂ij (x, t) = m

∞∫
−∞

(ξi − ui) (ξj − uj) fdξ (1.2.8)
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• Temperature

T (x, t) =
m

3kBn (x, t)

∞∫
−∞

(ξ − u)2 fdξ (1.2.9)

• Heat �ux vector

q̂ (x, t) =
m

2

∞∫
−∞

(ξ − u)2 (ξ − u) fdξ (1.2.10)

By taking into account the above described equations, the ideal law of gases

P (x, t) = n (x, t) kBT (x, t) (1.2.11)

is readily deduced and it is valid even in non-equilibrium systems.

During the early 1900s, the subject of gas �ows under low pressure conditions

has driven the interest of many scientists. Knudsen, in 1909, managed to de�ne a

dimensionless number [65], nowadays named after himself, describing the rarefaction

condition of a gas, according to

Kn =
λ

L
(1.2.12)

Here, L is a characteristic dimension of the geometry under consideration or the length

scale of a macroscopic gradient, such as the density, found by L = ρ/ (∂ρ/∂x). Also,

λ is the mean free path of gas molecules, de�ned as the mean distance traveled

by a molecules between two successive collisions. In the case where molecules are

interacting with each other as hard spheres, the mean free path is given by

λ =
1√

2πd2n
(1.2.13)

where d is the molecular diameter and n is the number density. In terms of macro-

scopic quantities, it can also be expressed as

λ =

√
π

2

µυ0
P

(1.2.14)

where P is the pressure, µ the dynamic viscosity of the gas in temperature T and υ0

5

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



1. INTRODUCTION AND LITERATURE REVIEW

is the most probable molecular speed de�ned as

υ0 =

√
2kBT

m
. (1.2.15)

Alternatively, instead of the Knudsen number, the gas rarefaction parameter δ is used.

It is inverse proportional to the Knudsen number and is given by

δ =

√
π

2

L

λ
=

√
π

2

1

Kn
(1.2.16)

In terms of measurable quantities the gas rarefaction parameter is given by

δ =
LP

µυ0
(1.2.17)

The Knudsen number is related to the Mach and Reynolds numbers according to

Kn =

√
γπ

2

Ma

Re
. (1.2.18)

The Knudsen number, Kn (or the gas rarefaction parameter, δ) is used to de�ne

and classify the gas rarefaction levels in four regimes, namely the hydrodynamic, slip,

transitional and free molecular regime. The most widely acceptable boundaries of

these regimes, the borders of which are not that strictly de�ned, are:

• Kn < 10−3 (or δ > 1000): Hydrodynamic regime

The gas may be considered as a continuum medium and the Navier-Stokes

equations may be applied.

• 10−3 < Kn < 10−1 (or 1000 > δ > 10): Slip regime

Non-equilibrium phenomena appear in the boundary regions of the domain. In

particular, velocity slip and temperature jump are observed on the walls.

• 10−1 < Kn < 100 (or 10 > δ > 10−2): Transition regime

Intermolecular collisions are reduced and the distribution function is not of

Maxwellian type. Kinetic theory of gases is employed to simulate the �ow

properties.
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• Kn > 100 (or δ < 10−2): Free molecular regime

The motion of the molecules is described as ballistic and there are no inter-

molecular collisions.

While we move from the continuum regime towards more rare�ed conditions, several

phenomena that may not be "captured" from the classical hydrodynamic equations

can appear. Such phenomena may vary from temperature and velocity jumps or

even secondary �ows due to temperature gradients. In an attempt to overcome this,

appropriate computational tools have to be implemented.

For the limiting case of Kn=0, the Euler equations may be applied. For the cases

where we move down to rarefaction, the Navier-Stokes equations are valid. Their

applicability may be further extended by incorporating velocity slip and temperature

jump boundary conditions [109, 125]. However, only a limited range of rarefaction

(Kn ≤ 0.1) can be simulated.

There have been some attempts of extending the applicability of this approach with

higher-order boundary conditions [27, 62] or by changing the constitutive relations

[72]. The most successful treatment is attributed to Sone with a development of a

hydrodynamic system of equations for rare�ed gas �ows, generated by an asymptotic

expansion of kinetic equations [127]. Also, higher order equation systems have been

considered.

Chapman [21] and Enskog [30] independently described the distribution function

f of molecules in terms of a deviation series from the equilibrium Maxwell distribution,

according to

f = f (0) + Knf (1) + Kn2f (2) + Kn3f (3) + ... (1.2.19)

By replacing this expression in the Boltzmann equation, we obtain a system of integro-

di�erential equations. The zeroth, �rst, second order and third order terms lead to

the Euler, Navier-Stokes, Burnett and super-Burnett equations respectively [126].

However, the solution of the Burnett equations is still considerably limited since they

face severe di�culties with the derivation of suitable boundary conditions and more

important numerical stability [157]. Overall, the Chapman-Enskog analysis, is of

great importance for the kinetic theory since it allowed the derivation of closed form

expressions and the estimation of the transport coe�cients from �rst principles [31].
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1.3 Kinetic models

In order to deal with the signi�cant computational e�ort required for the solution of

the Boltzmann equation several kinetic collision models, that replace the Boltzmann

�ve-fold integral collision operator with simpli�ed expressions, have been proposed.

In general, a collision model should satisfy i) the collision invariants, namely the mass,

momentum and energy invariants, while it should also satisfy ii) the H-Theorem and

iii) provide the correct values for the transport coe�cients.

The BGK model, proposed in [12] and independently in [155], was the �rst model

to appear and has been widely applied, mostly due to its simplicity and e�ectiveness.

It is given by

QBGK = ν
(
f M − f

)
(1.3.1)

where ν is the collision frequency, assumed to be independent of the molecular velocity,

and f M is the local Maxwellian, calculated with the local number density, temperature

and velocity.

The BGK model satis�es the collision invariants and the H-Theorem. Even more,

the provided results are satisfying and in good agreement with the corresponding

one derived by the Boltzmann equation in the whole range of the rarefaction [125].

However, its major drawback is that it cannot provide the correct values for the gas

viscosity and thermal conductivity simultaneously (it provides a Prandlt number Pr =

1 instead of the correct one, which is Pr = 2/3). Therefore, it is well-known that it

cannot accurately tackle �ow con�gurations where mass and heat transfer phenomena

are coupled. In the BGK model, the collision frequency must be multiplied by 3/2

for the solution of heat transfer problems and therefore it is not appropriate for the

simulation of coupled �ow and heat transfer phenomena.

Two more models were produced in the same manner but also keeping higher

moments of the collision term, namely the Shakhov model [113]

QS = ν

{
f M

[
1 +

2

5

m

n (kBT )2
(1− Pr)q · (ξ − u)

(
m(ξ − u)2

2kBT
− 5

2

)]
− f

}
(1.3.2)
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and the Ellipsoidal model [52]

QES = ν Pr

{
f M

[
n

π3/2

√
|A| exp

(
−

3∑
i ,j=1

(ξi − ui) Aij (ξj − uj)

)]
− f

}
(1.3.3)

where

Aij =

[
2kBT δij

m Pr
− 2 (1− Pr) Pij

nm Pr

]−1
(1.3.4)

Pr is the Prandtl number, kB is the Boltzmann constant, m is the molar mass and

δij the Kronecker delta. It can be seen that by substituting Pr = 1 in Eqs. 1.3.2 and

1.3.3 the BGK expression is retrieved.

The S model satis�es the collision invariants and provides the correct value for the

transport coe�cients. However, it has been only proven to satisfy the H-Theorem in

its linearized form. Although, the H-Theorem has not been proven for the S model

it is generally regarded as a reliable model and has been widely used in the literature

providing accurate results in the whole range of the Knudsen number for various �ow

con�gurations.

The ES model satis�es the collision invariants and the H-Theorem and also pro-

vides the correct values for the transport coe�cients [6]. However, it involves a higher

computational cost compared to the BGK and S model equations.

Other models have been proposed in [71, 78, 156]. In the case of mixtures, kinetic

models have been derived by Morse [84], Hamel [45], McCormack [75] and Kosuge

[66]. Their application is more complicated [19, 88] and additional mixture-dependent

information may be required [22, 49].

1.4 Boundary conditions

The implemented kinetic model equations, as well as the Boltzmann equation itself,

in order to return accurate results, have to be accompanied by the proper boundary

conditions (BCs) in order to su�ciently interpret the physics of the �ow in the interface

between �uid and solid. In determining these boundaries, our main concern is the

correlation between the distribution function of particles emitted from the wall f + and

that of particles that come to wall f −. In general, this behaviour can be expressed
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mathematically as [17]

f + = −
∫

ξ′ · n
ξ · n

R (ξ′, ξ) f −(ξ′)d3ξ′ (1.4.1)

where the scattering kernel R (ξ′ → ξ) represents the probability that a gas molecule

with incident velocity ξ′ is scattered from boundary with outgoing velocity ξ. The

hypothesis described for the �rst time was referring in the distribution of the incoming

particles in the �ow. According to that, the particles follow the Maxwell distribution

as de�ned by the properties of the wall [20]. This hypothesis was �rst described by

Maxwell and referred to as di�use scattering boundary condition. However, in high

rare�ed �ows, the results are not always consistent with the corresponding experi-

mental. To deal with this phenomenon, it was considered necessary to amend the

di�usion boundary conditions. Under the amended theory, a percentage α of particles,

re�ects on the wall and continues with the same and symmetrical speed in a plane

perpendicular to the wall. In this case the kernel has the form

Rs (ξ′ → ξ) = δD (ξ′ − ξ + 2 (ξ · n)n) (1.4.2)

where δD denotes the Dirac function and n denotes the unit vector normal to the

boundary facing towards the �ow domain. The coe�cient α is called accommodation

coe�cient and is the percentage of particles that are absorbed by the wall and emitted

according to the properties of the wall while 1 − α is the percentage of particles

re�ected from the wall without interacting with it. This factor is a characteristic

feature of the gas-wall interaction and is obtained from experimental data. Then the

kernel takes the form

R (ξ′ → ξ) = (1− α) δD (ξ′ − ξ + 2n [ξ · n]) + α
m2ξ′ · n

2π(kBTw )2
e
− mξ2

2kBTw (1.4.3)

This amended hypothesis was �rst described by Maxwell [74] and is known as specular

di�use.

The Maxwell boundary conditions are used in the vast majority of the cases. It is

quite easy to use and the results are consistent with the corresponding experimental.

Nevertheless, the way the �uid-wall interaction is treated, from physical aspect, can
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not be described accurately, and there are �ows that result in signi�cant errors. In

such cases other kinds of boundary conditions are used, which in some cases their

application is complex, which o�er greater accuracy [98, 117, 118].

1.5 Numerical methods

As it has been already mentioned, the computational cost required for the solution

of the Boltzmann equation due to the seven dimensions of the distribution function

and the complicated collision integral is still considered prohibitive. Only in the

recent years, some works have appeared in the corresponding literature [67, 93, 121].

However, most of them refer to the linearized form of the Boltzmann equation or they

are limited to hard sphere interaction.

Another simulation method characterized of its increased computational cost is the

method of the Molecular Dynamics. According to this method, the computational

domain is simulated in molecular level and all molecules inside obey the laws of

motion. This method has no approximations, however, due to the enormous amount

of molecules in real conditions, the method is only applicable for problems of very

small dimensions, of the order of a few nanometers, and for very small time intervals.

Moving forward to more computationally e�cient numerical methods, kinetic

model equations are more frequently proposed as methods for simulating rare�ed

�ows. The method is based on solid theoretical background and has been stud-

ied and tested thoroughly in the last decades. The Discrete Velocity (or Discrete

Ordinates) Method (DVM) [54] is one of the most widely used methods and it is

extensively applied in the present work for various conditions using both the linearized

and non-linear kinetic formulations. The method is completely deterministic and the

main concept characterizing it is that only a discrete set of molecular velocities is

examined, chosen in such a manner that a high accuracy of the integration of the

distribution function during the calculation of the bulk quantities is achieved. As a

result, the kinetic equations are discretized in both the physical and molecular velocity

space and solved in an iterative manner for the prede�ned, speci�cally chosen, set of

molecular velocities. Several works making use of this method may be found in the

literature [87, 104, 146]. Not only in the cases where the distribution function can be

linearized in terms of a small parameter [86, 141], but also when the kinetic models

11

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



1. INTRODUCTION AND LITERATURE REVIEW

are in their non-linear form [79, 100].

Apart from the well established and described deterministic methods, a di�erent

method well known for its wide applicability in rare�ed gas �ows is the Direct Sim-

ulation Monte Carlo (DSMC) method. The method, formulated by Bird [13, 35],

is based on the direct simulation of the interaction between computational particles,

each one representing a large number of real molecules. The method allows the study

of the free motion of the simulated particles separately to the study the intermolecular

collisions, all taking place in a small time increment. In the case where the number of

computational particles is large enough, it has been proven [153] that the method is

equivalent of solving the Boltzmann equation itself. Despite the fact that the DSMC

method is well established, simple and its results are characterized by accuracy in

�ows far from the equilibrium state, however, in low speed �ows, the method su�ers

from strong statistical noise. In the recent years, several techniques to face this issue

have been proposed [9, 108] but they are not easily applied.

The DVM and DSMC methods are just two of the numerical methods which

can be found in the literature. Several other numerical methods such as Analyti-

cal Discrete Ordinates [112, 139], Moment [128], Integromoment [149], Variational

[18], Information Preservation [126, 130], Lattice Boltzmann [1, 91] and Extended

hydrodynamics [127] are also e�ective. However, issues such accuracy and complexity

a�ect their range and ease of applicability.

Along with the more advanced numerical methods being proposed, the techno-

logical growth of the last decades gave access to more advanced high performance

computing systems (HPCs) [44]. These systems are characterized by extremely high

computational power that are able to solve hugely complex and demanding problems.

As a result, numerical methods like the ones described here can be implemented even

faster.

Even more, paralellization protocols are further updated and in combination to the

applicability of extended parallelization programming techniques in Graphics Process-

ing Units (GPUs) by the CUDA architecture (Compute Uni�ed Device Architecture)

[32, 64], it is expected that computational techniques will receive an even more in-

creased attention in the near future.
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1.6 Technological �elds with gas �ows far from

local equilibrium

This very same technological growth and today's technology is the basis on which

people who envisioned, from the very beginning, the current technological evolution

in several �elds are proven to be right.

The vision along with the need to reduce the size, weight and energy savings

coupled with increased needs for credibility and proper functioning of conventional-

sized machines led towards the microcosm. The invention of the microscope brought

this need even closer to reality. Smaller and smaller in size devices continued to be

manufactured reaching to a peak with the construction of integrated circuits (l0nm).

Micro-and nano-devices with dimensions less than 100mm are now a reality. This

evolution of technology with applications in micro �uid-dynamics [33], in vacuum

devices [26, 138], in micro-(MEMS) and nano-electro-mechanical systems (NEMS)

[50, 109] and in devices used at high altitudes and in space technology (> 50 Km)

[39, 56] raised the need for better and more detailed understanding of the phenomena

that are developed in such conditions, since in many cases it is quite limited.

Several applications also exist in the emerging �eld of micro�uidics [85]. In the

case of MEMS with moving parts, such as microresonators [11] and comb drive sensors

[70], the damping forces induced by the ambient rare�ed gas can signi�cantly alter

the performance and the sensitivity characteristics. The �ow �eld around micro heat

�ux sensors [92] plays an important role in the accuracy of the device. Flows through

porous media are also considered as rare�ed �ows with many applications in �lters

and membranes [136]. Read-head sliders in hard disk drives can be designed optimally

only if the air �ow in the microgap is simulated properly [62].

The detailed modeling of vacuum pumps [14, 37, 122] and gas separators [131] is

also very important to obtain the maximum e�ciency. Multilayer insulation (MLI) and

blankets, extensively used in numerous applications, consist of several layers of thin

sheets with vacuum conditions between them to ensure that heat is transferred only

through radiation. However, ideal vacuum conditions are not achievable and therefore,

the performance of the insulation in the case of degraded vacuum [129] should be

investigated. Vacuum deposition systems are used for the fabrication of thin-�lm
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materials in the manufacture of integrated circuits, MEMS and nanocomposites [151].

Furthermore, the technological branch of cryogenics [58], requires extended usage of

vacuum facilities.

Application with increased technological interest though are not encountered only

in nano- and micro- dimensions. Large scale applications include the EURO fusion

programme and more speci�cally the thermonuclear fusion reactor ITER, that is cur-

rently under construction in Cadarache, France. This is a promising inter-national

programme for covering future energy needs. Due to the high pumping requirements

and the prevention of certain vacuum conditions [26] (insulation vacuum, low pres-

sure to maintain plasma, fuel pumping, etc.), �ow conditions usually correspond to

the transitional or free molecular ranges. The AIA prototype [53] is a robotic long

reach carrier, able to move inside a fusion reactor and perform various tasks without

deconditioning the torus vessel. One of its most promising features is leak sni�ng in

which it is important to know the characteristics of the rare�ed gas mixture sample

�ow in the umbilicus connecting the sensor tip with the detector. It is important to

note that the present work has been performed within the EURO fusion program.

As far as high altitude aerodynamics is concerned, hypersonic �ows around space

vehicles [29, 39] and satellites [83, 119] are frequently encountered in rare�ed atmo-

spheres particularly during the reentry in the earth's atmosphere. In particular, the

reentry angle for large Mach number is one of the most important parameters. The

DSMC method is frequently employed in such cases and large organizations, including

NASA [69], develop their own code versions of this numerical algorithm [55]. The

numerical study of such phenomena is a very important factor for the development

of new technologies [23, 63]. The construction of microscale propulsion devices such

as mono- and bi-propellant thrusters and resistojets, has also increased the needs for

the accurate simulation and measurement of rare�ed gas �ows [5].

Other applications include the �eld of aerosols [57], chemical vapor deposition

[24] and vacuum metrology [61, 89].

1.7 Network solvers

In many of the applications however, the rare�ed gaseous distribution system imple-

mented in order to achieve the required operational conditions, consists not only of a
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single channel but of many channels accordingly combined to form a network. In the

hydrodynamic regime, computational algorithms dedicated to the hydraulic design

and optimization of gas pipe networks (e.g. compressed air, natural gas, etc.) are

well established and widely available [41, 94, 106]. A typical example is the Pipe2020

computational package that has been under development since 1973 from the Uni-

versity of Kentucky [36, 105]. It analyzes one-dimensional, isothermal �ow for ideal

and non-ideal variable density gases and can accommodate large networks, looped

systems and multiple load and supply points. In addition, several scenarios can be

set up in a single model such as load or supply changes and open or closed valves.

Pipe2020 o�ers an integrated GUI from which the user can provide all the required

input data such as the piping elements length and diameter, pipe �ttings (e.g. bends,

T's, reducers, etc.), node load or supply as well as compressors and fans. For the

simulation of the gas network the linear pressure loss at each tube is taken from the

Darcy-Weisbach equation as

∆P = fD
L

D

ρV 2

2
(1.7.1)

where fD is the Darcy friction factor, L and D are the length and diameter of the

pipe, while ρ and V are the mean density and velocity of the gas inside the pipe. The

Darcy friction factor is calculated from well-known empirical expressions and depends

on the characteristics of the �ow inside the tube. A more detailed approach on both

the estimation of the Darcy friction factor and the derivation of the Darcy-Weisbach

equation are presented in Section 3.4 and Appendix A, respectively.

Following the Pipe2020 software, an in-house Matlab code simulating gas pipe

networks in the hydrodynamic regime has been also developed at the Laboratory of

Transport Phenomena of the University of Thessaly. This software has been imple-

mented in the past in several diploma and master theses [107, 143]. In its current

version, the Matlab algorithm is further updated and employed in the present work

for validation purposes.

Recently, the so-called ITERVAC, a numerical tool for gas network simulations

has been developed at the Karlsruhe Institute of Technology (KIT) for gas network

calculations in the whole range of the Knudsen number [25]. The input data are

provided through a GUI that allows the user to build 2D networks. Then, ITERVAC

uses semi-empirical expressions to determine the mass �ow rates inside a pipe as
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1. INTRODUCTION AND LITERATURE REVIEW

a function of the corresponding pressure drop between the hydrodynamic and free

molecular limits. The expression for the �ow rate is given as

Ṁ = F
π

8

D3
h

υ0

∂P

∂x
(1.7.2)

where Dh is the hydraulic diameter of the tube, υ0 is the most probable velocity and

F is given as a function of four �tting parameters given by

F =
C1

Kn
+ C2 +

C3Kn

C4 + Kn
(1.7.3)

Taking the limit of Eq. 1.7.3 in the viscous regime (Kn→ 0) yields

lim
Kn→0

F =
C1

Kn
= Fvisc ⇒ C1 =

4
√
π

fDRe
(1.7.4)

where fD is the Darcy friction factor and Re is the Reynolds number. A more general

approach is to take

C1 =
Clam√
πD2

h

16

Re

A

fD
(1.7.5)

Then, taking the limit of Eq. 1.7.3 in the free molecular regime (Kn→∞) yields

lim
Kn→∞

F = C2 + C3 = Fmol (1.7.6)

Also, assuming an isothermal Maxwellian distribution inside a circular channel yields

C3 + C4 =
2W√
π

L

D
(1.7.7)

where W is the dimensionless free molecular �ow rate through the circular tube.

Finally, the �tting parameter C4 is taken as a �xed parameter that describes the

beaming e�ects. Values for the four coe�cients are presented for some common tube

cross sections in Table 1.1.

For short channels (L/Dh < 80), C2 and C3 are weighted by a correction factor

while C1 is corrected for end e�ects. The empirical expressions of ITERVAC have been

validated computationally and experimentally. The largest deviation in the viscous and

free molecular regimes is 3% increasing up to 40% in the transition regime.
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Table 1.1: Fitting parameters of Eq. 1.7.3 for channels of various cross sections.

Geometry Clam C2 C3 C4

Circular 1.000 1.116 0.329 1.400
Rectangular (1x1) 1.124 1.486 0.574 1.400
Rectangular (2x1) 1.029 1.666 0.732 1.400
Triangular 1.200 1.340 0.963 1.400

1.8 Dissertation structure and contents

The aim of this dissertation is to numerically investigate gas pipe networks in the

whole range of the Knudsen number. This is achieved by integrating kinetic results

of gas �ow through single channels into a code modeling pipe networks and providing

detailed results concerning the �ow rates and pressures of the network. The contents

of the chapters of the thesis are as follows:

• Chapter 1 presents an introduction in kinetic theory and a short literature re-

view on the Boltzmann equation, the main kinetic model equations and the

associated computational schemes, as well as a description of the technological

�elds and conditions where the implementation of kinetic-type approaches is

needed. It also includes the novelties and the scienti�c contributions of the

present work.

• Chapter 2 provides a description of all pressure driven �ow con�gurations in-

volved in the present work. This includes three main setups, namely the �ow

through a) long, b) moderate and c) short channels of various cross sections.

These �ows are treated based on the linear theory for long and short channels,

when the latter is applicable, as well as end e�ect theories for channels of mod-

erate length and the more general nonlinear approach for short channels. The

corresponding kinetic equations along with the associated formulations are pro-

vided and they are numerically solved to deduce adequate dense kinetic results

to be integrated into the network code. The range of validity of each approach

is also examined.

• Chapter 3 contains a detailed description of the developed Algorithm for Rar-
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1. INTRODUCTION AND LITERATURE REVIEW

e�ed gas �ow in Arbitrary Distribution Networks (ARIADNE). This includes the

basic concepts and de�nitions of a pipe gas network, the graphical interface in

order to introduce the network geometry, the kinetic data base providing the

�ow rates for each pipe element, the mass and pressure balance equations to

model the whole network and above all the computational algorithm integrating

all this information and providing the solution.

• Chapters 4 and 5 are devoted to the validation of the proposed algorithm and

on its implementation in solving certain gas pipe networks of certain complex-

ity. Chapter 4 is devoted to networks consisting of long channels or channels

of moderate length with circular, orthogonal and trapezoidal cross channels.

Results are based on the in�nite capillary and the end e�ect theories. The code

validation and benchmarking is achieved in the viscous regime by comparisons

with typical hydrodynamic solvers and in a wide range of the Knudsen num-

ber by comparisons with the ITERVAC code. Then, various pipe networks are

simulated to demonstrate the e�ectiveness of the code.

• Chapter 5 is devoted to the more general and challenging case of networks

consisting of channels of arbitrary length. Following the code validation several

networks of arbitrary complexity are simulated. This e�ort includes the neutral

gas �ow based on the geometrical characteristics of the ITER divertor pumping

system.

• Chapter 6 includes the main concluding remarks of the Ph.D. thesis. It also

points out several directions and �elds where this work could be extended in

the near future.

1.9 Novelty and scienti�c contributions

The simulation of gas pipe networks in the hydrodynamic regime based on the Navier-

Stokes equations has been extensively investigated by developing several in-house and

commercial codes. This is well expected and understood due to the importance of

gas pipe networks in various technological applications. The corresponding work in

the case of gas pipe networks operating at pressures lower than the atmospheric one
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1.9. Novelty and scienti�c contributions

is very limited, although this type of networks may be found in micro�uidics and

vacuum applications. This is mainly contributed to the complexity of the problem

which requires the merging of expertise in kinetic modeling and pipe networking.

The present Ph.D. thesis �lls exactly this gap and actually is the �rst systematic

and successful scienti�c e�ort in integrating the modeling gas �ows through channels

of various lengths and cross sections under any vacuum conditions in a gas pipe

network solver. Furthermore, ARIADNE, through the developed graphical interface,

is considered to be a complete computational tool capable of simulating any pipe

gas network of arbitrary complexity operating at any pressure from the atmospheric

down to ultra-high vacuum. The software is validated and then is applied to solve

various gas pipe networks including the neutral gas pipe network of the ITER divertor

pumping system which is considered as one of the most complex ones worldwide.
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2
Pressure driven rare�ed gas �ows through

single piping elements

A review of the four main approaches modeling rare�ed gas �ows through channels,

implemented in the present work, is provided. The approaches include the in�nite

capillary and end e�ect theories for long and medium capillaries, as well as the linear

and the nonlinear approach for short capillaries. Furthermore, these methodologies

are organized and presented in a manner which is useful for their implementation in

the present work. In addition, the kinetic data base of the deduced dimensionless

�ow rates in terms of the speci�c �ow con�gurations has been enriched with results

in order to e�ciently support the integrated network code.

2.1 Flows through long capillaries of various cross

sections: The in�nite capillary theory

The main �ow con�guration consists of an upstream and a downstream vessel con-

nected by a channel of length L and cross section having surface A and perimeter Γ .

The hydraulic diameter of the channel is de�ned by:

Dh =
4A′

Γ ′
(2.1.1)

The conditions in the upstream and downstream vessels are characterized by the

pressure and temperature of the gas denoted by (P1, T1) and (P2, T2) respectively.
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2. SINGLE PIPING ELEMENTS

Depending upon the application the reference pressure may be the average pressure

or the pressure of the upstream vessel, while since in this work only pressure driven

�ows are considered the upstream and downstream temperatures are considered as

equal, i.e. T0 = T1 = T2, with T0 denoting the reference temperature.

The main �ow parameter characterizing the rarefaction of the �ow conditions is

the local Knudsen number or the local gas rarefaction parameter, denoted by Kn and

δ respectively, which are de�ned as

Kn =

√
π

2

µυ0
DhP

(2.1.2)

and

δ =
DhP

µυ0
(2.1.3)

where P0 is the local pressure de�ned as the average of the upstream and downstream

pressure conditions i.e. P0 = (P1 + P2)/2, Dh the local hydraulic diameter, µ the

viscosity of the gas and υ0 the most probable molecular velocity. It is seen that the

gas rarefaction is proportional to the inverse Knudsen number. Here, all results are

presented in terms of the gas rarefaction δ.

2.1.1 Flow con�guration

The �ow con�guration presented in this section applies to long channels of arbitrary

cross section. Consider the isothermal �ow of a monatomic gas at a reference temper-

ature T0 through a long channel of length L and hydraulic diameter Dh, connecting

two reservoirs maintained at pressures P1 and P2 respectively, with P1 > P2. The area

and the perimeter of the cross section are denoted by A′ and Γ ′ respectively, while

the hydraulic diameter is given by Dh = 4A′/Γ ′. The reference pressure is de�ned

as P0 = (P1 + P2) /2. The �ow is in the z ′ direction, while x ′ and y ′ are the lateral

coordinates. By taking Dh << L the �ow is considered as fully developed and end

e�ects at the inlet and the outlet of the channel are ignored. In addition pressure

(and density) varies only in the �ow direction z ′ and it remains constant at each cross

section (x ′, y ′) of the channel, i.e. P = P (z ′) ∈ [P1, P2], with z ′ ∈ [0, L].

The �ow is driven by the imposed pressure di�erence ∆P = P1 − P2, while the
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2.1. In�nite capillary theory

dimensionless local pressure gradient is given by

XP =
Dh

P0

dP

dz ′
(2.1.4)

In this fully developed �ow con�guration the only nonzero component of the macro-

scopic (bulk) velocity is the z ′ direction denoted by u′ (x ′, y ′).

The basic parameter of the �ow is the rarefaction parameter de�ned by

δ =
DhP

µ0υ0
∼ 1

Kn
(2.1.5)

where µ0 is the gas viscosity at temperature T0 and υ0 =
√

2RT0 is the most probable

molecular velocity (R = k/m is the gas constant where k is the Boltzmann constant

and m the molecular mass). The rarefaction parameter δ, is inversely proportional

to the Knudsen number (δ = 0 and δ → ∞ correspond to the free molecular and

hydrodynamic limits respectively). The reference rarefaction parameter characterizing

the �ow is given by

δ0 =
DhP0

µ0υ0
∼ 1

Kn0
(2.1.6)

The hydraulic diameter Dh and the molecular velocity υ0 are taken as the char-

acteristic length and velocity respectively. Then, it is convenient to introduce the

dimensionless spatial variables x = x ′/Dh, y = y ′/Dh and z = z ′/Dh, the dimension-

less cross section A = A′/D2
h and perimeter Γ = Γ ′/Dh, as well as the dimensionless

velocity u = ũ/ (υ0XP). Finally, the dimensionless �ow rate is de�ned with regard of

dimensionless quantities according to

G =
2

A

∫
A

u (x , y)dA (2.1.7)

At this point it is important to note that under the assumption of Dh << L the

dimensionless pressure gradient is always much less than one, i.e. XP << 1, even

for large pressure di�erences ∆P . Therefore, the quantity XP is used as a very small

parameter to linearize the �ow equations even at large pressure drops. The analysis

introduced to solve fully developed �ows in long channels is also known as the in�nite

capillary theory.
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2. SINGLE PIPING ELEMENTS

2.1.2 Formulation of the in�nite capillary theory

Since the problem is solved based on kinetic theory the main unknown is the distribu-

tion function which obeys a kinetic equation. It has been shown that fully developed,

isothermal, pressure driven �ows, as the ones described in the previous section, can

be simulated e�ciently by the linearized BGK model equation given by [116]

cx
∂Φ

∂x
+ cy

∂Φ

∂y
+ δ0Φ = δ0u − 1

2
(2.1.8)

subject to Maxwell di�use-specular re�ection boundary condition Φ+ = (1− α) Φ−.

Here, Φ = Φ (x , y , cx , cy ) is the reduced linearized distribution function, cx and cy

the two components of the molecular velocity vector lateral to the �ow direction, δ0

the reference rarefaction parameter and

u (x , y) =
u′

υ0XP
=

1

π

∞∫
−∞

∞∫
−∞

Φ exp
[
−c2

x − c2
y

]
dcxdcy (2.1.9)

is the dimensionless macroscopic velocity. Along the perimeter Γ , the boundary

conditions are Φ+ = (1− α) Φ−, c·n > 0, where Φ+ and Φ− are reduced distributions

representing particles departing and arriving at the wall respectively, c = (cx , cy ) and

n is a unit vector normal to the surface oriented towards the �ow side, while the

parameter α ∈ [0, 1] is the so called tangential momentum accommodation coe�cient

and denotes the portion of the particles re�ecting di�usively from the wall.

A brief description of the computational approach for solving this problem is pre-

sented here in a uni�ed manner covering all various cross sections under consideration.

Eq. 2.1.8 is written in the compact form

D [Φ] + δ0Φ = δ0u − 1

2
(2.1.10)

where

D = cx
∂

∂x
+ cy

∂

∂y
(2.1.11)

is the linear streaming operator acting on Φ. Then, the two component dimensionless
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molecular velocity vector is de�ned by its magnitude ζ and its polar angle θ as

ζ =
√

c2
x + c2

y and θ = tan−1 (cy/cx) (2.1.12)

respectively, where 0 ≤ ζ ≤ ∞ and 0 ≤ θ ≤ 2π (cx = ζ cos θ, cy = ζ sin θ). For each

cross section the operator D may be expressed in a di�erent, more convenient, form

for numerical simulation. Even more, dimensional and dimensionless values for the

estimation of the hydraulic diameter, surface and perimeter for capillaries of various

cross sections may be found in Table 2.1.

In particular, in the case of �ows through circular cross sections, due to the axisym-

metric conditions, the �ow becomes one-dimensional in space, i.e. Φ = Φ (r , ζ, θ),

where r denotes the radial direction and we write [124]

D = ζ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
(2.1.13)

In the case of �ows through orthogonal cross sections, Φ = Φ (x , y , ζ, θ) is a function

of four independent variables and the streaming operator is written in the form [116]

D = ζ

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
(2.1.14)

In the case of triangular and trapezoidal cross sections, again Φ = Φ (x , y , ζ, θ).

However, in order to have a boundary �tted grid it is necessary to write, using the

method of characteristics, the streaming operator as [87]

D = ζ
∂

∂s
(2.1.15)

where s = s (x , y , θ) denotes the direction of the characteristic line, passing from the

point (x , y) and de�ned by the polar angle θ of the molecular velocity vector. This

approach has been shown recently to be very e�cient for triangular and trapezoidal

cross sections [87]. It is concluded that for all cross sections, Eq. 2.1.10 is the

governing equation, with the operator D however, accordingly de�ned.
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Finally, in terms of the polar coordinates the macroscopic velocity is de�ned as:

u (x , y) =
1

π

2π∫
0

∞∫
0

Φ exp
[
−ζ2

]
ζdζdθ (2.1.16)

The kinetic equation 2.1.10 is discretized properly in the molecular velocity and

physical spaces and then its discretized version is solved numerically in an iterative

manner. The discretization in the molecular velocity space for all cross sections

is performed by choosing a suitable set of discrete velocities (ζm, θn), de�ned by

0 ≤ ζm <∞ and 0 ≤ θn ≤ 2π, with m = 1, 2, ..., M and n = 1, 2, ..., N . Introducing

this discretization into Eq. 2.1.10, yields, in the case of rectangular cross sections,

a system of partial di�erential equations while, in the other three cases, systems of

ordinary di�erential equations are deduced. The macroscopic quantities are computed

by numerical integration. More speci�cally, the Gauss-Legengre quadrature is used

in the ζ variable and the trapezoidal rule in the θ variable. The discretization in

the physical space (i.e. the dimensionless area A of the cross section), depends on

the type of cross section. The �ow through a circular channel is one-dimensional in

space and in this case the spatial discretization is trivial. In the case of an orthogonal

channel the elements of the computational grid are orthogonal having an aspect

ratio equal to the aspect ratio of the channel. The kinetic equation is discretized

at the geometrical center of each orthogonal element (i , j), with i = 1, 2, ..., I and

j = 1, 2, ..., J , resulting to a second order di�erence scheme. The computational

grids for the triangular and trapezoidal channels consist of triangular elements. The

implemented numerical scheme is �rst order accurate and therefore a relative large

number of nodes in the physical space is required. Details on this speci�c numerical

scheme are given in [62].

Overall the problem is solved numerically in an iterative manner between the ki-

netic equation for Φ and the integral expression for u. The iterations start by assuming

some initial values for u. Then, in each iteration the system of algebraic equations de-

duced from the discretization of the kinetic equation is solved by a marching scheme.

For each discrete velocity (ζm, θn) the distribution function is computed explicitly

marching through the physical lattice. The marching process starts always from the

boundary and its direction depends upon the polar angle θn. Following this proce-
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2.1. In�nite capillary theory

dure, no matrix inversion is required. Then, based on the estimated distributions the

macroscopic velocity is computed by numerical integration. The new values of u are

plugged back into the kinetic equation and the iterative procedure is ended when

the imposed termination criterion on the convergence of u is satis�ed. Following the

above procedure, supplemented by a reasonable dense grid and an adequate large

set of discrete velocities, we are able to obtain grid independent results with modest

computational e�ort.

2.1.3 Mass �ow rate and axial pressure distribution

The mass �ow rate Ṁ is obtained, based on the computed dimensionless �ow rates

G , in a straightforward manner [125]. In general, the mass �ow rate is given by

integrating over any cross section of the channel according to

Ṁ =

∫
A′

ρ (z ′) u′ (x ′, y ′)dA′ = ρ (z) υ0XpD2
h

∫
A

u (x , y)dA =

=
2P

υ0
XpD2

h

∫
A

u (x , y)dA =
2

υ0

dP

dz ′
D3

h

∫
A

u (x , y)dA =

=
AD3

h

υ0

dP

dz ′
G (2.1.17)

De�ne arbitrarily a new quantity which we will call G ∗ so that

Ṁ =
AD3

h

υ0

∆P

L
G ∗ (2.1.18)

Since due to mass conservation the two expressions of the mass �ow rate must be

equal to each other as:

G
dP

dz ′
= G ∗

(P2 − P1)

L
⇒ G

dP

P2 − P1
= G ∗

dz ′

L
(2.1.19)

From the de�nition of δ and since all quantities other than P remain constant it is

deduced that
dP

P2 − P1
=

dδ

δ2 − δ1
(2.1.20)
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Then,

G
dδ

δ2 − δ1
= G ∗

dz ′

L
⇒ 1

δ2 − δ1

δ2∫
δ1

Gdδ =
G ∗

L

L∫
0

dz ′ ⇒

⇒ G ∗ =
1

δ2 − δ1

δ2∫
δ1

Gdδ (2.1.21)

Now given the dimensional quantities, i.e. the cross section A′, hydraulic diameter

Dh and length L of the channel, the upstream and downstream pressure P1 and P2

respectively, the isothermal �ow temperature T0, the molecular mass m and viscosity

µ0 of the gas, the mass �ow rate Ṁ may be computed. In particular, the kinetic

code for a large set of values for δ covering the range [δ1, δ2] is run to obtain the

corresponding values of G and then G ∗ is found from Eq. 2.1.21. Next, from Eq.

2.1.18 the mass �ow rate is estimated.

The pressure distribution may be also computed by rewriting Eq. 2.1.18 in the

form
dP

dz ′
=

Ṁυ0
AD3

hG (δ)
(2.1.22)

and solving this ordinary di�erential equation, based on a typical integration scheme,

for P = P (z ′), along z ′ ∈ [0, L], with initial condition P (0) = P1. This may be

easily achieved by dividing the channel length z ′ into N intervals of length ∆z ′ and

applying a �rst order Euler scheme to yield the �nite di�erence expression

Pi+1 = Pi + ∆z ′
Ṁυ0

AD3
hG (δi)

, i = 0, 1, ..., N (2.1.23)

with P0 = P (0), which produces the pressure distribution along the channel. Then,

provided that the discretization is dense enough and that the mass �ow rate Ṁ has

been estimated correctly, the downstream pressure P2 at z ′ = L is recovered. It is

obvious that this analysis can be also used in cases where the downstream pressure

is unknown provided that the mass �ow rate is given.

The above described methodology has been implemented in the pipe network

algorithm to compute the mass �ow rates through long channels of various cross
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2.1. In�nite capillary theory

sections. As it is clearly seen the methodology is based on the computation of the

dimensionless �ow rate G versus the gas rarefaction parameter δ. This information

is provided in Tables 2.2 to 2.5 where tabulated values of the dimensionless �ow rate

in terms of the gas rarefaction parameter for long channels of various cross sections

are provided.

2.1.4 Complementary quantities

Other characteristic and commonly used numbers of the �ow are the reference Reynolds

and Mach numbers de�ned as Re = ρ0ū′Dh/µ0 and Ma = ū′/c0 respectively, where,

ρ0 = P0/(RT0) is the reference mass density, c0 =
√
γRT0 is the adiabatic sound

velocity at temperature T0 (γ is the speci�c heat and is equal to 5/3 for a monatomic

gas) and

ū′ =
1

A′

∫
A′

u′ (x ′, y ′)dA′ (2.1.24)

is the mean macroscopic velocity. Then, the reference Reynolds and Mach numbers

are associated to the reference rarefaction parameter, Eq. 2.1.6, according to

δ0 =
1√
2γ

Re

Ma
(2.1.25)

Another quantity of practical interest is the conductance C . Conductance is the

"PV �ow" or "pump PV �ow", i.e. the throughput through any desired pipe element

and it expressed as [60]:

C =
Ṁ

m

R∗T0

∆P
(2.1.26)

with m denoting the molar mass of the gas and R∗ the universal gas constant. The

conductance depends on geometry via the pressure di�erence term and it is always

positive. In ultrahigh and high vacuum is almost independent of pressure, while in

medium and rough vacuum depends on pressure.

In the same context, if we consider a �uid of volume V passing through the intake

port of a pump at time t, then S = dV /dt is the pumping speed, i.e., the volumetric

�ow rate (m3/s) through the intake port of the pump. If the pumping speed is

constant then S = ∆V /∆t.

The "PV �ow" or "pump PV �ow" (or pump throughput) is often more interesting
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in vacuum technology than the mass or weight of a quantity of gas and it embraces

an energy dimension and is given by

QPV =
P × V

t
, (2.1.27)

where P is the pressure in the intake side of the pump and S the pumping speed.

The units of the throughput are in Pam3/s, which is equivalent to Watt. If P and

V are constant at the intake side of the pump, the throughput of the pump can be

expressed as QPV = P × S .

Apart from the conductance and throughput de�ned above, another parameter

characterizing viscous �ows is the friction factor. In the case of internal fully developed

laminar �ows, instead of the friction factor it is more appropriate to estimate the

Poiseuille number of the �ow, which is de�ned as [140]

Po =
8τ̄ ′wDh

µ0ū′
(2.1.28)

Here, τ̄ ′w is the mean wall shear stress, which is estimated by integrating the wall

shear stress τ ′w over the perimeter Γ′, ū′ is the mean macroscopic velocity given by Eq.

2.1.24. It may be useful to note that the Poiseuille number is given as Po = fD ×Re,

where fD is the Darcy friction factor and Re is the Reynolds number of the �ow

based on the hydraulic diameter. The two expressions for the Po number, from a

mathematical point of view, are identical. The dependence of Poiseuille number on

the gas rarefaction for channels of various cross sections has been investigated in

[16, 145, 147].

Since the �ow is fully developed and there is no net momentum �ux in the z ′

direction, the net pressure and the wall shear stress are equated to yield

τ̄ ′w =
A′

Γ ′
dP

dz ′
(2.1.29)

By nondimensionalizing the above expression and using the relation A/Γ = 1/4, it is

easily deduced that

τ̄w =
τ̄ ′w

2P0XP
=

A

2Γ
=

1

8
(2.1.30)

This result is always valid independent of the channel cross section, the rarefaction
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2.2. End e�ect theory

parameter δ0 and the accommodation coe�cient α and therefore it may be used as

a benchmark to test the accuracy of the kinetic calculations.

Then, by introducing Eq. 2.1.29 into Eq. 2.1.28 and implementing Eq. 2.1.6 it

is readily deduced that

Po =
8τ̄w2P0XPDh

µ0ūυ0XP
=

16τ̄wδ0
ū

(2.1.31)

where

ū =
ū′

υ0XP
=

1

A

∫
A

u (x , y)dA (2.1.32)

is the dimensionless mean velocity and it is related to the kinetic coe�cient G given

by Eq. 2.1.7 according to G = 2ū. Finally, substituting Eq. 2.1.30 into Eq. 2.1.31

yields

Po =
2δ0
ū

=
4δ0
G

(2.1.33)

This expression is of major importance and it is valid for any cross section and gas

rarefaction level.

In Table 2.6 tabulated results for the Poiseuille number in terms of the rarefaction

parameter δ for channels of various cross sections, with a constant value of tangential

momentum accommodation coe�cient α = 1, are provided. In all cases the Po num-

ber is monotonically increased with δ0, reaching at large values of δ0 the corresponding

well known analytical results at the hydrodynamic limit (δ0 →∞) [145].

2.2 Flow through circular capillaries of moderate

length: The end e�ect theory

In many practical situations the assumptions of the fully developed �ow are not

applicable. In the case of channels of moderate length and relatively small pressure

drops the so-called end e�ect theory may be implemented to extend the validity of

the in�nite capillary theory to channels of �nite length. More speci�cally, the capillary

length L is corrected by an additional length ∆L related to the end e�ect. Once the

end correction L is known, the �ow rate through the �nite capillary can be calculated

by multiplying the �ow rate for an in�nitely long capillary by L/ (L + ∆L). It is
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2. SINGLE PIPING ELEMENTS

important to note that ∆L depends only on the gas rarefaction parameter and it is

independent of the capillary length.

2.2.1 Flow con�guration and formulation

The end correction approach is well known in viscous �ows [154], while in rare�ed

gas �ows is introduced in [125]. The same idea was also used [3, 4, 114, 135], where

however, the concept was based on computing the pressure gradient in the middle

section of the capillary.

Let us consider the rare�ed �ow of a gas through a tube with length L and radius

R connecting two large reservoirs. The channel is divided into three segments as

seen in Figure 2.1, denoted by the terms "inlet part", "middle part" and "outlet

part". These are distinguished by the transformation of the �ow �eld, which is two-

dimensional in the inlet and outlet parts and one-dimensional in the middle part, which

is characterized by the fully developed �ow conditions. The introduced methodology

is exactly the same for the inlet and outlet regions and therefore we may consider

either of them as shown in Figure 2.2. A cylindrical coordinate system (x , r) with

its origin at the center of the junction between the container and tube is introduced.

The region x > 0 represents the container, while the region x ≤ 0 corresponds to the

tube. The gas �ows from (or into) the long tube in the x direction into (or from) the

in�nitely large container. The interface between the middle and outlet parts is taken

adequately far to ensure that at the cross section (A) the �ow is fully developed.

Also, the size of the container is su�ciently large to ensure that at (D) and (E) the

gas pressure and temperature recovers the reference values P0 and T0.

The expected pressure distribution along the symmetry axis in the case of gas

�ow from the tube towards the container (outer region) is the one shown in Figure

2.3. The reference pressure PR is also shown. The pressure di�erence ∆P = P −PR

in the tube far from the outlet is approaching a constant value, which represents the

pressure jump due to the end e�ect and can be taken into account by adding the

increment ∆L to the tube length. From Figure 2.3 it is readily seen that

∆L = −∆P/ (dP/dx) (2.2.1)

The �ow setup is described by the linearized BGK model equation. More speci�-
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2.2. End e�ect theory

cally, the velocity distribution function f (x .r , c) is linearized as

f (x .r , c) = fR [1 + ξh (x , r , c)] (2.2.2)

where ξ = (1/P0) / (dP/dx) and the reference Maxwellian is

fR (x , c) =
nR (x)

π3/2υ30
exp
(
−c2

)
(2.2.3)

with

nR (x) = PR (x) / (kBT0) (2.2.4)

while PR (x) = P0 for x ≥ 0 and PR (x) = P0 (1 + xξ) for x < 0. Then, the linearized

BGK model equation is given by

cp cos θ
∂h

∂r
− cp sin θ

r

∂h

∂θ
+ cx

∂h

∂x
+ δh = δ

[
ρ + 2c · u + τ

(
c2 − 3

2

)]
+ g (x , cx)

(2.2.5)

where the source term is

g (x , cx) =

{
0 , x > 0

−cx , x 6 0
(2.2.6)

while the perturbed quantities of density, pressure, temperature and velocity are given

by the following moments:

x =
x̂

R
, c =

ξ

υ0
, υ0 =

√
2

kB

m
T0,

ρ (x) =
n (x)− nR

nRXP
, τ (x) =

T (x)− T0

T0XP
, (2.2.7)

p (x) =
P̂ (x)− PR

PRXP
, u (x) =

û (x)

υ0XP

with υ0 =
√

2kBT0/m being the most probable molecular velocity, kB is the Boltz-

mann constant and ρ, τ ,u, p are the perturbations of density, temperature, velocity

and pressure.

Even though this formulation is valid for the outlet part of the channel, it can also
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2. SINGLE PIPING ELEMENTS

be used to model the inlet part by noting that the dimensionless pressure gradient

XP has the opposite sign and thus the �ow direction is reversed. The �nal objective

of this study is to calculate the pressure perturbation at the fully developed cross-

section of the end geometry, which will �nally serve for the correct connection at the

interfaces between the middle and the end parts.

As far as the boundary conditions are concerned, at the free surfaces (D),(E)

incoming molecules conform to the Maxwellian distribution at the local reference

values and therefore the perturbation of the distribution function is zero (h+ = 0).

The impermeability condition (un = 0) is imposed at the walls (D),(E), i.e. h+ = ρw ,

where ρw is a constant which must be adjusted to keep the normal velocity equal

to zero. At the axis of symmetry (x = 0) molecules are re�ected specularly. At the

incoming surface of the channel (A), the distribution function takes the form

cp cos θ
∂hin

∂r
− cp sin θ

r

∂hin

∂θ
+ δhin = δ [ρin + 2cxux ,in] + g (x , cx) (2.2.8)

As a �nal step, the unprojected distribution at the incoming surface (A) can be

retrieved by the expression

hin (r , cp, θ) = 2cxZ (r , cp, θ) + ρin (r) (2.2.9)

and used as incoming boundary conditions. To summarize, the boundary distributions,

denoted by the "plus" superscript, are equal to

h+
wall = ρw , h+

container = 0, h+
channel = hin, h+

center = hspecular (2.2.10)

2.2.2 E�ective length increment and corrected �ow rate

The pressure perturbation at cross-section (A) is the main quantity of interest here.

Its value can be used to determine the entrance/exit pressure and, along with a

well known integration procedure for the fully developed part of the �ow [115], the

complete pressure pro�le along a channel can be obtained. From Figure 2.3 it can be

seen that

δP = P − PR = p (−Ldev , x2) PRXP (2.2.11)
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2.2. End e�ect theory

and

tan−1 φ = −XPPR (2.2.12)

leading to

∆Lout = −p (−Ldev , x2) (2.2.13)

Similarly, when the geometry represents an inlet part (XP > 0) we get

∆Lin = p (−Ldev , x2) (2.2.14)

Thus, we may obtain a very good agreement for the middle part of the complete

channel (which usually is the largest part), if we apply the integration procedure at

a "modi�ed" geometry, where L has been increased by a �ctional ∆Lin at the inlet

and ∆Lout at the outlet. Alternatively, we may get the complete pressure pro�le by

properly combining fully developed and end results during the dimensionalization.

The integration procedure is performed according to

Ṁ = −GFD (δ)
πR3

υ0

dP

dx1
= −G

πR3

υ0

∆P

L
(2.2.15)

where the x1 coordinate takes values in [0, L] and GFD is the fully developed solution

for a channel of in�nite length. The quantity G is a constant, adjusted to obtain this

equality. From Eq. 2.2.15 we get

GFD (δ)
dP

dx1
= G

∆P

L
(2.2.16)

and using the de�nition of the rarefaction parameter

GFD (δ)
dδ

dx1
= G

δin − δout
L

(2.2.17)

If we separate the variables and integrate, we get

1

δin − δout

δout∫
δin

GFD (δ) dδ =
G

L

L∫
0

dx1 (2.2.18)
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2. SINGLE PIPING ELEMENTS

and therefore the expression for G is obtained

G =
1

δin − δout

δout∫
δin

GFD (δ) dδ (2.2.19)

Finally, if we repeat the same procedure shown in the previous paragraph, but this

time taking the end e�ect into account (by changing the integration limits in the

right hand side of Eq. 2.2.18 to −∆Lin and L + ∆Lin) we deduce that

G =
L

L + ∆Lin + ∆Lout

1

δin − δout

δout∫
δin

GFD (δ) dδ (2.2.20)

or in a more simpli�ed way [125]

G (L, δ) =
L

L + ∆Lin + ∆Lout
GFD

(
δin + δout

2

)
(2.2.21)

The geometrical parameters for the end e�ect problem are given in Table 2.7,

based on which, the �ctional length increments ∆L, provide the extra "e�ective"

length and are shown in Table 2.8 for various rarefaction levels. The �ctional length

increments, which are equal to the pressure perturbation found in the end geometry

as shown before, their values becomes smaller for larger δ, showing that the end e�ect

is more important for highly rare�ed �ows. The decrease in ∆L is also steeper for

small δ.

Indicative results for the density perturbation and streamlines are plotted in Figure

2.4 in two dimensional contours for the area close to x = 0 and three values of the

rarefaction parameter δ. Inside the tube (x < 0), the density �eld progressively

becomes one-dimensional, i.e. r is constant in each cross section and the streamlines

are parallel far from x = 0 inside the tube [103].

Moreover, The numerical results obtained in [101, 133] for the complete domain

of the �ow due to a small pressure drop con�rm the linear pressure distribution. It

is more interesting to compare the pressure distribution when its drop is large, e.g.

Pout/Pin = 0.5. In this case, the pressure distributions were calculated for a cylindrical

channel with the length L = 5 and for the rarefaction parameter δ = 1 and 10. The
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2.2. End e�ect theory

results are plotted in Figure 2.5 and compared with those obtained by considering

the complete �ow domain. It can be seen that the pressure distribution is practically

linear and in a good agreement with the exact results for δ = 1. The pressure pro�le

is slightly di�erent from the straight line for δ = 10. In this case, the di�erence

between the two methodologies is larger, but the approximate approach still provides

reasonable results [103].

Finally, a part of the density perturbation �eld is also plotted in Figure 2.6 for

some representative values of δ, namely δ = 0.2, 1, 10. In this two-dimensional plot, it

can be seen that the density perturbation progressively becomes constant along each

cross section as we move far from the channel end. Furthermore, for highly rare�ed

conditions the expansion structure spans to a larger area inside the container in fact

in the longitudinal direction. The dimensionless horizontal velocity ux also displays a

nearly developed velocity pro�le at the left end of the channel, which coincides with

the solution of the fully developed problem at the inlet cross-section. The maximum

value of the macroscopic velocity also seems to behave according to the Knudsen

minimum, taking its smallest value around δ = 1.

The main characteristics of the numerical scheme applied, are similar to the ones

found in previously formulated discrete velocity schemes, such as the one described in

section 2.1.2. The continuum spectrum of the molecular velocity magnitudes cp and

cx are discretized to M values, their values being chosen according to the roots of

the Mth order Legendre polynomial mapped in [0, cp,max ] and [0, cx ,max ] respectively,

while the molecular velocity angles Nθ are uniformly distributed in [0,π] due to the

axisymmetrical properties of the �ow. The distribution functions, bulk quantity �elds

and governing equations are further discretized by a �nite volume scheme in the

physical space to Nx × Nr points.

The discrete velocity method algorithm is then applied. The iterations start by

assuming some initial values for bulk quantity perturbations ρ, u and τu. In the case

of the end-geometry, incoming distributions in cross-section (A) is estimated from

Eq. 2.2.9. According to the marching scheme applied, for each discrete velocity,

the distribution function is computed explicitly through the physical lattice. Then,

based on the estimated distributions, new estimations for the bulk quantities are

calculated. The iterative procedure is ended when the imposed termination criterion

on the convergence of the macroscopic quantities is satis�ed.
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2.3 Flow through circular capillaries of �nite length:

The linear approach

Despite the fact that reliable results for linear fully developed �ows through long

capillaries may be obtained with moderate computational e�ort, however, when the

�ow becomes nonlinear, i.e. in the case of fast �ows through channels of �nite length,

including �ows through slits and ori�ces, the computational e�ort is signi�cantly

increased. In the former case, the �ow is simulated only in one cross section of the

channel and then the mass �ow rate is estimated, while in the case of capillaries of

�nite length, the incoming distribution functions at the entrance and the exit of the

channel are not Maxwellians and therefore adequately large computational domains

must be included before and after the channel to properly impose the boundary

conditions.

2.3.1 Flow con�guration and formulation

However, for the case of the �ow through a capillary of �nite length due to small

pressure di�erences between the upstream and the downstream vessel, i.e. ∆P/P0 �
1, a linear approach may be applied. Due to the small pressure di�erence, we may

linearize the distribution function according to

f (x̂, ξ) = f0 [1 + h (x̂, ξ) ∆P/P0] (2.3.1)

where h (x̂, c) is the perturbation of the distribution function f (x̂, c) from the equi-

librium state at the reference conditions, with ∆P = P̂out − P̂in

f0 = n0/ (2πkBT0)3/2 exp
[
− (ξ − û)2 / (2RT0)

]
(2.3.2)

All quantities are then expressed in dimensionless form as follows:

x =
x̂

L0
, c =

ξ

υ0
, υ0 =

√
2

kB

m
T0,

ρ (x) =
n (x)− n0

n0

P0

∆P
, τ (x) =

T (x)− T0

T0

P0

∆P
, (2.3.3)
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2.3. The linear approach

p (x) =
P̂ (x)− P0

P0

P0

∆P
, u (x) =

û (x)

υ0

P0

∆P

with υ0 being the most probable molecular velocity, kB is the Boltzmann constant

and ρ, τ ,u, p are the perturbations of density, temperature, velocity and pressure and

n0 = P0/ (kBT0). The degree of rarefaction is described by the rarefaction parameter

δ, de�ned here as

δ =
P0L0

µ0υ0
(2.3.4)

where µ0 is the gas viscocity at reference temperature T0.

The BGK model (1.3.1) substitutes the collision term due to its simplicity and the

nearly isothermal properties of this �ow. The kinetic equation becomes

c · ∂h

∂x
= δ

[
ρ + τ

(
c2 − 3

2

)
+ 2c · u− h

]
(2.3.5)

Similarly, the macroscopic quantity perturbations are expressed in terms of the

perturbation h as

ρ =
1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

h exp
(
−c2

)
dc1dc2dc3

u =
1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

hc exp
(
−c2

)
dc1dc2dc3 (2.3.6)

τ =
1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

h

(
2

3
c2 − 1

)
exp
(
−c2

)
dc1dc2dc3

The pressure perturbation is calculated by the ideal gas law, we get p (x) = ρ (x) +

τ (x).

The molecular velocity vector is transformed to cylindrical coordinates and byy

properly acting on the governing equation, we �nally obtain

cp cos θ
∂h

∂r
− cp sin θ

r

∂h

∂θ
+ cx

∂h

∂x
+ δh = δ

[
ρ + τ

(
c2 − 3

2

)
+ 2c · u

]
(2.3.7)

The macroscopic perturbations are expressed by
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ρ =
1

π3/2

∞∫
−∞

2π∫
0

∞∫
0

hcp exp
(
−c2

)
dcpdθdcx (2.3.8)

ur =
1

π3/2

∞∫
−∞

2π∫
0

∞∫
0

h (cp cos θ) cpexp
(
−c2

)
dcpdθdcx (2.3.9)

ux =
1

π3/2

∞∫
−∞

2π∫
0

∞∫
0

hcxcpexp
(
−c2

)
dcpdθdcx (2.3.10)

τ =
1

π3/2

∞∫
−∞

2π∫
0

∞∫
0

h

(
2

3
c2 − 1

)
cpexp

(
−c2

)
dcpdθdcx (2.3.11)

2.3.2 Boundary conditions

The formulation is completed by providing the boundary conditions for h. Molecules

entering from the free surfaces (A),(B),(F),(G) (as shown in Figure 2.7) conform

to a Maxwellian distribution according to the conditions of the corresponding vessel.

Thus, for the left vessel, we have n = nin, T = T0 and û = 0 and therefore the

perturbation from the equilibrium distribution is

h+ = ρin =
nin − n0

n0 (∆P/P0)
=

(P0 + ∆P)− P0

P0 (∆P/P0)
= 1 (2.3.12)

Similarly, it is found that in downstream free surfaces (F),(G), where n = nout ,

T = T0 and û = 0, the perturbation of the incoming distribution is h+ = V + =

X+ = 0.

For the walls (C),(D),(E), the di�use boundary conditions are imposed according

to the impermeability condition (the velocity component normal to the wall must

be equal to zero). Di�use-specular boundary conditions are taken into account by

adjusting the accommodation coe�cient α according to

h+ = αρw + (1− α) h−

and the ρw constants are given by no penetration condition. Finally, at the axis of
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2.3. The linear approach

symmetry (x2 = 0) the molecules are re�ected specularly.

2.3.3 Mass �ow rate

The most important quantity for the practical applications is the mass �ow rate

through the channel, de�ned by

Ṁ =

∫
[mn (x̂)] ûx (x̂) dÂ (2.3.13)

with Â being the channel cross-section. In both cases, the �ow rate is non-dimensionalized

by the analytical free molecular solution (δin = δout = 0) for �ow through a channel

of zero length. This solution can be easily extracted by the method of characteristics

and yields ṀFM = R2
√
π∆P/υ0. Results are presented for the dimensionless �ow

rate

W =
Ṁ

ṀFM

= 4
√
πG (2.3.14)

where

G |x =

1∫
0

ux (x , r) rdr (2.3.15)

is the reduced �ow rate obtained by the simulations. Tabulated results for the �ow

rate WLIN through a tube for various values of the rarefaction parameter δ and di-

mensionless length L/R , based on the linear BGK kinetic model with di�use boundary

conditions are shown in Table 2.9

With respect to the behavior of the macroscopic quantities, for all cases considered

here, the �eld is symmetric around x = L/ (2L0) for any channel length and in the

whole range of the Knudsen number, as expected. Indicative results for the in�uence

of δ is shown in Figures 2.8 and 2.9 for a cylindrical tube of L/L0 = 2 and δ = 0.1, 1

and 10. No signi�cant changes occur for pressure for this length, besides a slightly

larger deviation of pressure in the containers from the equilibrium values as δ is

increased. The axial velocity values are also increased along with δ. The behavior is

similar for the case of a cylindrical tube of L/L0 = 5 and the same δ values, shown

in Figures 2.10 and 2.11. The velocity pro�le in this case seems to develop to a

nearly constant pro�le inside the channel for δ = 10, which implies that the end
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e�ect treatment, as shown in previous section, may be applied under these conditions

to provide results with decent accuracy while avoiding the complete solution of the

problem. For smaller δ or shorter channels, the fully developed �ow characteristics

are not so strong [96].

2.4 Flow through circular capillaries of �nite length:

The non-linear theory

Despite the fact that reliable results for linear fully developed �ows through long

capillaries may be obtained with moderate computational e�ort, however, when the

�ow becomes nonlinear, i.e. in the case of fast �ows through channels of �nite length,

including �ows through slits and ori�ces, the computational e�ort is signi�cantly

increased. In the former case, the �ow is simulated only in one cross section of the

channel and then the mass �ow rate is estimated, while in the case of capillaries of

�nite length, the incoming distribution functions at the entrance and the exit of the

channel are not Maxwellians and therefore adequately large computational domains

must be included before and after the channel to properly impose the boundary

conditions.

2.4.1 Flow con�guration and formulation

Consider the axisymmetric nonisothermal �ow of a monatomic gas through a circular

microchannel of length L and radius R , connecting two reservoirs maintained at

pressures P1 and P2 respectively, with P1 > P2. The walls of the reservoirs and of

the channel as well as of the gas in the container far from the tube are maintained at

reference temperature T0. In the case of capillaries of �nite length, the assumption

of the fully developed �ow, independent of the magnitude of the pressure di�erence,

is not valid and the macroscopic distributions vary both in the radial r̂ and axial

ẑ directions. Furthermore, the end e�ects must be considered and computational

domains in the inlet and outlet of the channel must be added to ensure the proper

implementation of Maxwellian boundary conditions. The �ow con�guration with the

associated numerical grid in the physical space, are shown in Figure 2.12.

This �ow con�guration may be modeled based on the nonlinear BGK model given
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2.4. Non-linear theory

by [80]

ξp cos θ
∂f

∂ r̂
− ξp sin θ

r̂

∂f

∂θ
+ ξz

∂f

∂ẑ
= ν

(
f M − f

)
(2.4.1)

where f = f (r̂ , ẑ , ξp, θ, ξz) is the unknown distribution function, ξ = (ξp, θ, ξz) the

molecular velocity vector, ν the collision frequency and

f M = n
( m

2πkT

)3/2
exp

[
−m(ξ − û)2

2kT

]
(2.4.2)

is the local Maxwellian, while the quantities n, û = û (ûr , ûz) and T denote the

number density, velocity and temperature respectively. The following dimensionless

quantities are introduced:

r =
r̂

R
, z =

ẑ

R
, c =

ξ

υ0
, g =

f υ30
n0

,

ρ =
n

n0
, u =

û

υ0
, τ =

T

T0
, p =

P

P0
(2.4.3)

Then, following a straightforward manipulation, Eq. 2.4.1 is reduced to its dimen-

sionless form given by

cp cos θ
∂g

∂r
− cp sin θ

r

∂g

∂θ
+ cx

∂g

∂x
= δ0ρ

√
τ
(
gM − g

)
(2.4.4)

where g = g (r , z , cp, θ, cz), the Maxwellian

gM =
ρ

(πτ)3/2
exp

[
−(c− u)2

τ

]
(2.4.5)

and the reference rarefaction parameter

δ0 =
P0R

µ0υ0
(2.4.6)

In the derivation of Eq. 2.4.4 the hard sphere molecular model has been applied

assuming that µ ∼
√

T . The bulk quantities are also nondimensionalized leading to
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2. SINGLE PIPING ELEMENTS

the following expressions

ρ = 2

∞∫
0

π∫
0

∞∫
−∞

gcpdczdθdcp (2.4.7)

ur =
2

ρ

∞∫
0

π∫
0

∞∫
−∞

cp cos θgcpdczdθdcp (2.4.8)

uz =
2

ρ

∞∫
0

π∫
0

∞∫
−∞

czgcpdczdθdcp (2.4.9)

τ =
4

3ρ

∞∫
0

π∫
0

∞∫
−∞

[
(cp cos θ − ur )

2 + (cp sin θ)2 + (cz − uz)2
]

gcpdczdθdcp

(2.4.10)

p = ρτ (2.4.11)

The incoming boundary distributions at the open and wall surfaces have a Maxwellian

form according to

g+ =
C

(πτ)3/2
exp

[
−(c− u)2

τ

]
(2.4.12)

where C = 1 at boundaries (A) and (B), C = P2/P1 at boundaries (F) and (G) and

C = ρw at boundaries (C), (D) and (E), while τ = 1. The parameter ρw is de�ned

by the wall no penetration condition. Finally, specular re�ection is imposed along the

center line (H) due to the axial symmetry.

2.4.2 Mass �ow rate

In addition to the macroscopic distributions, a quantity of major importance is the

mass �ow rate de�ned as

Ṁ = 2π

R∫
0

mn (r̂ , ẑ) ûz (r̂ , ẑ)r̂ d r̂ (2.4.13)
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2.4. Non-linear theory

Following common practice, the mass �ow rate is nondimensionalized by the analytical

free molecular solution for �ow through an ori�ce given by ṀFM =
√
πR2P1/υ0 to

yield the dimensionless �ow rate

W =
Ṁ

ṀFM

= 4
√
π

1∫
0

ρ (r , z) uz (r , z)rdr (2.4.14)

Recently, Eq. 2.4.4 with the associated expressions for the macroscopic quantities

and the proper boundary conditions has been numerically solved in a deterministic

manner applying the discrete velocity method in the velocity space and a second

order control volume scheme in the physical space. Since this is a �ve-dimensional

problem the involved computational e�ort is signi�cant. In the next section results are

provided for the �ow rate and the bulk distributions in terms of the three parameters

characterizing the �ow: the reference rarefaction parameter δ0, the microtube aspect

ratio L/R and the pressure ratio P2/P1.

As far the as behavior of the macroscopic quantities is concerned, indicative results

for the density and axial velocity �elds, as well as the streamlines and their dependence

on the tube length is given in Figures 2.13 - 2.14, for L/R = 0, 5, 10, Pout = 0.5 and

δ0 = 10. These cases are chosen here since the di�erences become more apparent, due

to the high rarefaction parameter: as the tube becomes longer, the vortex becomes

smaller, the velocity magnitude drops and the density isolines become nearly vertical

inside the tube. The same characteristics are seen for increasing pressure ratio from

0.1 up to 0.9 in Figures 2.15 - 2.16 for L/R = 1 and δ0 = 2 [96].

For the needs of the present work the DSMC results for �ow through tubes up

to L/R = 10 into vacuum and various pressure ratios, reported in [148] and [150]

respectively, have been introduced. The results in [134], based on the Shakhov model,

have been implemented for �ow through longer tubes with 10 ≤ L/R ≤ 50 into

vacuum. Furthermore, additional results based on the BGK and Shakhov models

have been obtained here, within the aforementioned range of parameters, in order to

have an adequately dense database of the nonlinear �owrates. In all cases modeling is

based on hard sphere molecules with purely di�use gas-surface interaction. As noted

in [8, 34, 111], all approaches provide corresponding results in very good agreement

and therefore using either the DSMC method or the BGK or the Shakhov models
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2. SINGLE PIPING ELEMENTS

to build the �owrate database does not a�ect the concluding remarks concerning

the applicability range of the linear schemes. The implemented DSMC solver is

described in detail in [148, 150]. The solution of the BGK and Shakhov models is

obtained discretizing the physical space by a second order scheme and the molecular

velocity space by the discrete velocity method. This deterministic approach has been

described and successfully applied in several �ow and heat transfer con�gurations

[7, 77, 99, 101, 132]. The introduced numerical error (uncertainty) in the computed

�ow rates is always taken less than 1%. These nonlinear �owrates are used as the

reference ones, in order to investigate the applicability of the linear approaches.

In general, the computational e�ort is increased as δ1 is increased and the gas

�ow becomes less rare�ed as well as the tube aspect ratio L/R is increased. In

the implemented DSMC algorithm the computational e�ort is also increased as the

pressure ratio P2/P1 approaches one, while on the contrary, the convergence speed of

the deterministic discrete velocity codes remains the same at any pressure ratio. In

addition, the DSMC code runs in serial mode, while the deterministic codes are highly

parallelized. The involved computational e�ort depends on the set of �ow parameters

and on the code optimization and for the prescribed accuracy it may vary from few

hours up to several days of CPU time.

The �ow rate W through a tube for various values of the rarefaction parameter

δ0, the pressure ratio P2/P1 and dimensionless length L/R , based on the nonlinear

BGK kinetic model with di�use boundary conditions, is provided in Tables 2.10 and

2.11.

2.5 Range of validity of in�nite, end e�ect and

non-linear theories

Recently, the range of validity of the various linear theories has been investigated

by comparing the �ow rates with the corresponding ones obtained by the nonlinear

approach [142]. Here, a brief review is presented mainly for completeness purposes.

As it has been noted above, the three parameters characterizing pressure driven

�ow through capillaries include the reference rarefaction parameter δ0, the tube aspect

ratio L/R and the pressure ratio P2/P1. It has been computationally con�rmed in
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2.5. Range of validity

[142] that the implementation of a linear approach introduces an error of less than

10%, provided that

δ0

(
L

R

)(
1− P2

P1

)
≤ 1 (2.5.1)

plus some complimentary restrictions. More speci�cally, the implementation of the

in�nite capillary theory without the end e�ect correction will result to a deviation

within ±10% provided that inequality 2.5.1 is ful�lled and L/R ≥ 50. A great

improvement is achieved when the end correction is introduced. The implementation

of the in�nite capillary theory with the end e�ect correction will result to a deviation

within ±10% provided that inequality 2.5.1 is ful�lled and L/R ≥ 20. In addition, the

deviation norm remains ≤ 10% even for L/R = 10 provided that inequality 2.5.1 is

ful�lled, while P2/P1 ≥ 0.1 and δ1 ≥ 10−2. This is exactly the great advantage of the

end e�ect correction, since the range of applicability of the in�nite capillary theory is

signi�cantly enhanced, while the involved computational e�ort remains negligible.

In an attempt to quantify this behavior, the mass �ow rate through a channel of

cylindrical cross section, for a variety of �ow conditions, is evaluated by implement-

ing three di�erent methodologies, as they have been described in previous sections,

namely i) fully developed �ow methodology denoted by ṀFD , ii) results obtained by

using the end e�ect treatment ṀEE and iii) ṀLIN for the case where the complete

geometry is considered in the simulation. It is expected that the ratio of mass �ow

rates, using complete simulation and typical integration with/without end e�ects,

should approach unity as the tube length increases. These ratio values are given in

Table 2.12 for a variety of �ow conditions. It is seen that the maximum discrepancy

for the end e�ect treatment (2%) occurs for highly rare�ed conditions (δ = 0.2).

This is due to the fact that the tube is quite short in comparison to the development

length required to achieve a constant pressure perturbation. However, as δ obtains

values over unity, we observe that the discrepancies drop signi�cantly for the end

e�ect treatment (less than 2 % at all cases examined here), in comparison to the

fully developed �ow simulation (up to 7-19 %). The lowest discrepancies are found

for the extra cases of L/R = 20, executed in the complete geometry to enhance our

trust on this methodology. It is seen that discrepancies in this case drop for both

methods and we reach the conclusion that errors below 1% may be obtained by the

end e�ect simulation if δ ≥ 1 and L/R ≥ 20 are considered [96]
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2. SINGLE PIPING ELEMENTS

It is noted that in the present work, the computed �ow rates are obtained based

on the in�nite capillary theory with the end e�ect correction provided that the above

speci�ed restrictions are ful�lled. Otherwise, the �ow rates are obtained based on the

nonlinear approach. In this latter case the computational e�ort is signi�cant.
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Chapter 2 Tables

Table 2.1: De�nitions of Dh, A′, A, Γ ′, Γ for various channels.

Cross section Dh A′ A = A′/D2
h Γ ′ Γ

Circular D πD2

4
π
4

πD π

Orthogonal 2W×H
W+H

W × H 1
4
H
W

(
1 + W

H

)2
2 (W + H) H

W

(
1 + W

H

)2
Triangular α√

3

√
3
4
α2 3

√
3

4
3α 3

√
3

Trapezoidal 2(B+b)h

B+b+ 2h
sin θ

B+b
2

h 1
8

(1+ b
B
+ h

B
2

sin θ )
2

(1+ b
B ) h

B

B + b + 2h
sin θ

1
2

(1+ b
B
+ h

B
2

sin θ )
2

(1+ b
B ) h

B
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2. SINGLE PIPING ELEMENTS

Table 2.2: Dimensionless �ow rate G in terms of the rarefaction parameter δ, for
channels of circular cross section and specular-di�use boundary conditions (α=1,
0.85 and 0.7).

G
δ α = 1 α = 0.85 α = 0.7

10−3 0.751 1.01 1.39
10−2 0.744 0.999 1.36
0.1 0.715 0.941 1.25
0.3 0.695 0.896 1.18
0.5 0.689 0.879 1.14
1 0.693 0.870 1.12
1.5 0.709 0.879 1.12
2 0.729 0.896 1.13
3 0.777 0.941 1.17
4 0.829 0.992 1.22
5 0.884 1.05 1.28
6 0.940 1.10 1.33
7 0.997 1.16 1.39
8 1.06 1.22 1.45
9 1.11 1.28 1.51
10 1.17 1.34 1.57
11 1.23 1.40 1.63
13 1.35 1.52 1.75
15 1.48 1.64 1.87
20 1.78 1.95 2.18
30 2.40 2.56 2.80
40 3.02 3.19 3.42
50 3.64 3.81 4.04
100 6.76 6.93 7.16
200 13.0 13.2 13.4
500 31.7 31.9 32.1
1000 62.6 63.0 62.8
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Table 2.4: Dimensionless �ow rate G in terms of the rarefaction parameter δ, for
channels of triangular cross section and di�use boundary conditions (α=1).

G

δ
Equilateral Isosceles
φ = 60o φ = 54.74o

10−3 0.927 0.932
10−2 0.916 0.921
0.1 0.872 0.876
0.3 0.841 0.844
0.5 0.831 0.834
1 0.833 0.836
1.5 0.851 0.854
2 0.875 0.878
3 0.931 0.934
4 0.994 0.997
5 1.06 1.06
6 1.13 1.13
7 1.20 1.20
8 1.26 1.27
9 1.34 1.34
10 1.41 1.41
20 2.14 2.14
30 2.88 2.88
40 3.62 3.62
50 4.36 4.37
100 8.05 8.07
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Table 2.5: Dimensionless �ow rate G in terms of the rarefaction parameter δ, for
channels of trapezoidal cross section and di�use boundary conditions (α=1).

G

δ
Isosceles Isosceles b/B = 0.78
φ = 63.43o φ = 54.74o

10−3 0.877 1.02
10−2 0.867 0.999
0.1 0.827 0.925
0.3 0.799 0.864
0.5 0.790 0.836
1 0.793 0.810
1.5 0.809 0.807
2 0.832 0.814
3 0.885 0.841
4 0.944 0.877
5 1.01 0.919
6 1.07 0.962
7 1.13 1.01
8 1.20 1.06
9 1.26 1.10
10 1.33 1.15
20 2.02 1.66
30 2.71 2.18
40 3.40 2.71
50 4.10 3.23
100 7.55 5.85
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Table 2.7: Geometric parameters for the end geometry

δ 0.2 0.4 1 2 4 8 10
Ldev/L0 60 50 40 30 30 20 20
Lright/L0 10 10 12 12 15 15 15

Table 2.8: Length increment ∆Ltube for various values of the rarefaction parameter
δ.

δ 0.005 0.05 0.1 0.2 0.4 0.6 0.8 1 2
∆Ltube 2.22 1.72 1.52 1.33 1.16 1.07 1.01 0.964 0.841

δ 4 6 8 10 ... ∞
∆Ltube 0.735 0.704 0.688 0.682 ... 0.680
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2. SINGLE PIPING ELEMENTS

Table 2.9: Flow rate WLIN through a tube for various values of the rarefaction pa-
rameter δ and dimensionless length L/R , based on the linear BGK kinetic model with
di�use boundary conditions.

WLIN

L/R
δ

0 0.1 1 2 5 10
0 0.999 1.04 1.37 1.72 2.77 4.35
1 0.672 0.696 0.892 1.10 1.70 2.63
5 0.311 0.316 0.373 0.440 0.642 0.988
10 0.191 0.192 0.217 0.251 0.362 0.554
20 0.110 0.108 0.118 0.136 0.195 0.296
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Chapter 2 Tables

Table 2.10: Dimensionless �ow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (1/2).

W

L/R P2/P1
Rarefaction parameter of high pressure chamber (δ1)

0 0.1 0.5 1 2 5 10

0

0.0 1.000 1.014 1.069 1.129 1.221 1.374 1.463
0.1 0.900 0.910 1.000 1.032 1.180 1.350 1.435
0.3 0.700 0.719 0.788 0.862 0.987 1.221 1.366
0.5 0.500 0.509 0.582 0.613 0.778 1.040 1.188
0.7 0.3 0.305 0.354 0.38 0.493 0.717 0.914
0.9 0.1 0.102 0.121 0.14 0.176 0.28 0.432

0.1

0.0 0.953 0.965 1.018 1.074 1.165 1.312 1.404
0.1 0.856 0.869 0.924 0.984 1.08 1.27 1.380
0.3 0.669 0.687 0.752 0.823 0.942 1.171 1.321
0.5 0.475 0.486 0.528 0.583 0.688 0.948 1.150
0.7 0.286 0.292 0.321 0.361 0.436 0.654 0.885
0.9 0.095 0.099 0.114 0.131 0.164 0.246 0.333

0.5

0.0 0.801 0.812 0.855 0.902 0.981 1.117 1.220
0.1 0.721 0.731 0.775 0.826 0.911 1.080 1.200
0.3 0.562 0.577 0.630 0.688 0.786 0.994 1.223
0.5 0.399 0.409 0.444 0.488 0.573 0.796 1.010
0.7 0.241 0.246 0.270 0.300 0.363 0.541 0.762
0.9 0.080 0.083 0.095 0.109 0.135 0.212 0.299

1

0.0 0.672 0.680 0.715 0.754 0.819 0.948 1.062
0.1 0.605 0.613 0.648 0.689 0.761 0.913 1.050
0.3 0.471 0.483 0.525 0.571 0.652 0.834 1.000
0.5 0.336 0.343 0.370 0.405 0.474 0.658 0.866
0.7 0.201 0.205 0.224 0.249 0.298 0.440 0.640
0.9 0.067 0.070 0.080 0.091 0.112 0.170 0.264

2

0.0 0.514 0.52 0.544 0.572 0.62 0.732 0.855
0.1 0.463 0.468 0.493 0.521 0.573 0.699 0.842
0.3 0.36 0.368 0.396 0.428 0.486 0.63 0.795
0.5 0.256 0.26 0.28 0.304 0.351 0.486 0.669
0.7 0.153 0.156 0.17 0.19 0.22 0.319 0.471
0.9 0.051 0.053 0.059 0.066 0.08 0.119 0.176

5

0.0 0.311 0.312 0.322 0.334 0.361 0.436 0.543
0.1 0.279 0.281 0.291 0.304 0.33 0.412 0.529
0.3 0.217 0.22 0.232 0.247 0.275 0.36 0.485
0.5 0.155 0.156 0.163 0.175 0.197 0.271 0.388
0.7 0.093 0.093 0.1 0.106 0.123 0.174 0.263
0.9 0.031 0.031 0.035 0.038 0.044 0.064 0.098
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2. SINGLE PIPING ELEMENTS

Table 2.11: Dimensionless �ow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (2/2).

W

L/R P2/P1
Rarefaction parameter of high pressure chamber (δ1)

20 50 100 200 500 1000 2000

0

0.0 1.512 1.534 1.533 1.529 1.526 1.523 1.522
0.1 1.500 1.510 1.520 1.52 1.52 1.52 1.52
0.3 1.437 1.440 1.450 1.45 1.46 1.46 1.46
0.5 1.300 1.310 1.340 1.35 1.36 1.36 1.36
0.7 1.05 1.09 1.13 1.13 1.15 1.14 1.14
0.9 0.584 0.606 0.628 0.628 0.64 0.634 0.634

0.1

0.0 1.462 1.498 1.508 1.512 1.515 1.515 1.517
0.1 1.45 1.49 1.51 1.51 1.51 1.51 1.51
0.3 1.406 1.420 1.440 1.45 1.45 1.45 1.45
0.5 1.270 1.350 1.370 1.39 1.39 1.39 1.39
0.7 1.030 1.120 1.150 1.16 1.17 1.16 1.16
0.9 0.387 0.421 0.433 0.436 0.44 0.436 0.436

0.5

0.0 1.302 1.383 1.435 1.462 1.484 1.494 1.493
0.1 1.290 1.380 1.430 1.46 1.48 1.49 1.49
0.3 1.267 1.330 1.390 1.43 1.45 1.46 1.46
0.5 1.150 1.280 1.350 1.39 1.41 1.42 1.42
0.7 0.937 1.080 1.150 1.19 1.20 1.20 1.20
0.9 0.367 0.423 0.451 0.466 0.47 0.47 0.47

1

0.0 1.168 1.287 1.358 1.412 1.449 1.456 1.458
0.1 1.160 1.280 1.350 1.41 1.45 1.46 1.46
0.3 1.136 1.24 1.32 1.38 1.42 1.43 1.43
0.5 1.04 1.20 1.29 1.35 1.39 1.40 1.40
0.7 0.831 1.00 1.10 1.16 1.19 1.19 1.19
0.9 0.415 0.499 0.549 0.579 0.594 0.594 0.594

2

0.0 0.974 1.156 1.259 1.339 1.397 1.406 1.404
0.1 0.985 1.15 1.26 1.34 1.39 1.4 1.40
0.3 0.96 1.11 1.23 1.31 1.36 1.37 1.37
0.5 0.864 1.07 1.19 1.28 1.32 1.34 1.34
0.7 0.672 0.884 1.00 1.09 1.13 1.13 1.13
0.9 0.251 0.33 0.373 0.407 0.422 0.422 0.422

5

0.0 0.695 0.917 1.068 1.184 1.271 1.282 1.284
0.1 0.695 0.917 1.068 1.184 1.271 1.282 1.284
0.3 0.663 0.87 1.03 1.15 1.23 1.24 1.23
0.5 0.571 0.828 0.993 1.11 1.18 1.2 1.19
0.7 0.411 0.658 0.814 0.922 0.975 0.98 0.986
0.9 0.164 0.263 0.325 0.368 0.389 0.391 0.393
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Chapter 2 Tables

Table 2.12: Flow rate ratio between the di�erent methodologies implemented for
linear �ow

L/R ṀFD/ṀLIN ṀEE/ṀLIN ṀFD/ṀEE

δ = 0.2 10 1.28 1.02 1.26
δ = 1 10 1.19 1.00 1.19
δ = 2 10 1.17 1.00 1.17
δ = 10 10 1.14 1.01 1.13
δ = 1 20 1.10 1.00 1.09
δ = 10 20 1.07 1.00 1.07
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2. SINGLE PIPING ELEMENTS

Figure 2.1: Division of the channel geometry into three parts
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Chapter 2 Figures

Figure 2.2: Division of the �ow into the inlet, middle and outlet parts
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2. SINGLE PIPING ELEMENTS

Figure 2.3: Indicative pressure distribution along the central axis at the outlet part
to justify constant density perturbation

62

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



Chapter 2 Figures

Figure 2.4: Density distributions and streamlines: (a) δ0 = 0.2, (b) δ0 = 1 and (c)
δ0 = 10
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2. SINGLE PIPING ELEMENTS

Figure 2.5: Pressure distribution along the symmetry axis at L = 5 and Pin/Pout = 0.5
with (a) δ0 = 1 and (b) δ0 = 10; solid line: solution for the complete �ow domain,
dashed line: present solution.
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Chapter 2 Figures

Figure 2.6: Density (left) and horizontal velocity (right) perturbation distributions for
δ = 0.2(up), δ = 1(middle) and δ = 10(below)
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2. SINGLE PIPING ELEMENTS

Figure 2.7: Flow con�guration and coordinate system
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Chapter 2 Figures

Figure 2.8: Pressure perturbation for the tube geometry with L/L0 = 2 and δ = 0.1
(up), δ = 1 (middle), δ = 10 (down)
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2. SINGLE PIPING ELEMENTS

Figure 2.9: Axial velocity for the tube geometry with L/L0 = 2 and δ = 0.1 (up),
δ = 1 (middle), δ = 10 (down)
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Chapter 2 Figures

Figure 2.10: Pressure perturbation for the tube geometry with L/L0 = 5 and δ = 0.1
(up), δ = 1 (middle), δ = 10 (down)
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2. SINGLE PIPING ELEMENTS

Figure 2.11: Axial velocity for the tube geometry with L/L0 = 5 and δ = 0.1 (up),
δ = 1 (middle), δ = 10 (down)
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Chapter 2 Figures

Figure 2.12: Flow con�guration and coordinate system
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2. SINGLE PIPING ELEMENTS

Figure 2.13: Density (up) and axial velocity (middle) contours, as well as streamlines
(down) for the short tube geometry and L/R = 5 , Pout = 0.5, δ0 = 10
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Chapter 2 Figures

Figure 2.14: Density (up) and axial velocity (middle) contours, as well as streamlines
(down) for the short tube geometry and L/R = 10 , Pout = 0.5, δ0 = 10
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2. SINGLE PIPING ELEMENTS

Figure 2.15: Density contour for the short tube geometry and L/R = 1 , δ0 = 2 with
Pout = 0.1 (up), Pout = 0.5 (middle) and Pout = 0.9 (down)
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Chapter 2 Figures

Figure 2.16: Axial velocity contour for the short tube geometry and L/R = 1 , δ0 = 2
with Pout = 0.1 (up), Pout = 0.5 (middle) and Pout = 0.9 (down)
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3
The main algorithm for simulating gas

distribution systems in the whole range of

the Knudsen number

In the previous chapter, steady-state isothermal rare�ed gas �ows in channels of

various lengths and cross sections have been investigated by applying the discrete

velocity and DSMC methods. In the present chapter, the investigation of complex

gaseous distribution systems which consist not only of a single channel but of many

channels accordingly combined to form a network is presented.

Such distribution systems are commonly found in several technological �elds in-

cluding vacuum pumping, metrology, industrial aerosol, porous media, and micro�u-

idics. It is pointed out that computational algorithms dedicated to the design of

gas pipe networks (e.g., compressed air, natural gas, etc.) in the viscous regime are

well developed, while corresponding tools for the design of gaseous pipe networks

operating under any (e.g. low, medium and high) vacuum conditions are very lim-

ited. In the free molecular limit a vacuum system consisting of many elements has

been simulated by converting it �rst into a vacuum circuit network and then to an

analogous electric circuit. This concept is valid when the whole system is under very

high vacuum conditions and intermolecular collisions are negligible. Simulations of

complex gas distribution systems in the transition regime have been performed only

by the ITERVAC code, brie�y presented in section 1.7 of the thesis.
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3. PIPE NETWORK ALGORITHM

3.1 Basic de�nitions

Before considering a generalized set of network equations, it is worthwhile to examine

a speci�c example of a piping network to observe the degree of complexity involved.

A typical pipe network may be considered as a directed linear graph consisting of a

�nite number of pipe sections interconnected in a speci�ed con�guration. Each pipe is

characterized of its length L, diameter D and some roughness. Usually the geometry

of the network is speci�ed and the objective is to compute the �ow quantities, i.e.,

the mass �ow rate (or the conductance) through each tube and the pressure head at

each node. Figure 3.1 shows a relatively simple network consisting of seven pipes and

two pressure reservoirs denoted by numbers 1 and 6, whose pressure values are known.

These two nodes are termed as �xed-grade nodes. Out�ow demands are present at

nodes 3 and 4. Nodes 3 and 4 along with nodes 2 and 5 are called interior nodes or

junction nodes. Flow directions, even though not initially known, are assumed to be

in the directions as shown by the arrows. Let the drop in each piping element i be

designated as F [Mi ] indicating a function of the mass �ow rate of the corresponding

piping element. Then, the system of equations is given as follows:

1. Energy balance for each pipe (seven equations):

P1 − P2 = F [M1] P5 − P3 = F [M5]

P3 − P2 = F [M2] P4 − P5 = F [M6]

P2 − P4 = F [M3] P5 − P6 = F [M7]

P4 − P3 = F [M4]

(3.1.1)

2. Continuity balance for each interior node (four equations):

M1 + M2 −M3 = 0

−M2 + M4 + M5 = Q3

M3 −M4 −M6 = Q4

−M5 + M6 −M7 = 0 (3.1.2)
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3.1. Basic de�nitions

The unknowns are M1, ... , M7, P2, P3, P4 and P5. Thus, there are 11 unknowns and

11 equations to solve simultaneously. Since the energy equations are non-linear, it is

necessary to resort to some type of successive iteration solution. The 11 equations

can be reduced in number by combining the energy equations along special paths.

Let the drop in each piping element i be designated as Wi and therefore Wi = F [Mi ].

For the system under consideration, two closed paths, or interior loops (closed path

formed by adjacent pipes), as shown in Figure 3.2. Flow is considered positive in a

clockwise sense around each loop. Energy balances, written around loops I and II ,

are

−W4 −W3 −W2 = 0

−W5 −W6 + W4 = 0 (3.1.3)

To account for the �ow in pipes 1 and 7, a path can be de�ned along nodes 1, 2, 3,

5 and 6, as shown in Figure 3.2. Then, the energy balance from 1 to 6 is

−W7 + W5 + W2 −W1 = P1 − P6 (3.1.4)

Note that the path energy equation connects two �xed-grade nodes. Such a path

is sometimes termed a pseudo-loop, since an imaginary pipe with in�nite resistance,

or no �ow, can be considered to connect the two reservoirs. The imaginary pipe is

denoted by III in 3.2. Substituting the friction equations into the energy relations

above results in the following reduced set of equations:

−F [M4]− F [M3]− F [M2] = 0

−F [M5]− F [M6] + F [M4] = 0

−F [M7] + F [M5] + F [M2]− F [M1]− P1 + P6 = 0

M1 + M2 −M3 = 0

−M2 + M4 + M5 = Q3

M3 −M4 −M6 = Q4

−M5 + M6 −M7 = 0 (3.1.5)

There are now seven unknowns (M1, ..., M7) and seven equations to solve. The
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3. PIPE NETWORK ALGORITHM

energy relations are non-linear since the loss terms are presented as polynomials with

respect to the discharges. For a well-de�ned network with p pipes, n junction nodes,

l loops and f �xed-grade nodes the following relation holds:

p = n + l + f − 1 (3.1.6)

The former equation derives from Euler's formula for planar graphs [68]. In graph

theory, a graph G = (v , e) is de�ned as a set v of vertices and a set e of edges �

referring to nodes and pipes, respectively, for the network formulation. In the general

case, each edge joins one vertex to another, or starts and ends at the same vertex.

However, in case of network graph representation, self-loops are never present.

According to graph theory, a planar graph is a graph that can be embedded in the

plane, i.e., it can be drawn on the plane in such a way that its edges intersect only

at their endpoints. In other words, it can be drawn in such a way that no edges cross

each other [137]. Such a drawing is called a plane graph or planar embedding of the

graph. A plane graph can be de�ned as a planar graph with a mapping from every

node to a point on a plane, and from every edge to a plane curve on that plane, such

that the extreme points of each curve are the points mapped from its end nodes, and

all curves are disjoint except on their extreme points.

Euler's formula states that if a �nite, connected, planar graph is drawn in the plane

without any edge intersections, and v is the number of vertices, e is the number of

edges and f is the number of faces (regions bounded by edges, including the outer,

in�nitely large region), then

v − e + f = 2. (3.1.7)

In the case of a network, the former equation, taking into account that v = n + f ,

e = p and the fact that one of the faces is the in�nitely large region, transforms into

(n + f )− p + (l + 1) = 2 which is identical to the one described above.

3.2 Pipe network equations

Independent of the �ow regime, the system of equations describing such a network

consists of the pressure drop equations along each pipe element and the mass conser-

vation equations at each node of the network. The pressure drop equations may be
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3.2. Pipe network equations

reduced to a set of the energy balance equations for the closed loops of the network,

which along with the mass conservation equations form a closed set to be solved for

the unknown mass �ow rates. Then, the pressure heads at the nodes are estimated

through the pressure drop equations.

As mentioned above the initial system of equations describing the network consists

of the pressure drop equations along each piping element and the mass conservation

equations at each node of the network. The mass conservation equations may be

expressed as [∑
j

(±)Ṁj − Q

]
i

= 0 (3.2.1)

where the index 1 ≤ i ≤ n denotes each of the n junction nodes of the network, while

the summation index j refers to the pipes connected to the node i , while Q = Qi is

the external demand (if any) at node i . The plus and minus signs are used for �ow

into and out of the node respectively. Moreover, the energy balance equations are

applied in each of the closed loops l of the network described by[∑
j

(±) (∆Pj)

]
k

= 0. (3.2.2)

Here, the summation index j pertains to the pipes that make up a loop, while the

index 1 ≤ k ≤ l , denotes each of the l loops. The plus sign is used if the �ow in

the element is positive in the clockwise sense; otherwise the minus sign is employed.

When there are �xed-grade nodes in the network then, the system of equations for the

mass �ow rates is ampli�ed by the energy balance equation around each pseudo-loop

connecting two �xed-grade nodes according to[∑
j

(±) (∆Pj) + ∆H

]
k

= 0. (3.2.3)

Here, the summation index j pertains to the pipes that make up a pseudo-loop, the

index 1 ≤ m ≤ f − 1, denotes each of the f − 1 pseudo-loops (f is the number of

�xed grade nodes) and ∆H is the di�erence in magnitude of the �xed-grade nodes in

the path ordered in a clockwise fashion across the imaginary pipe in the pseudo-loop.
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3. PIPE NETWORK ALGORITHM

The plus and minus signs follow the same arguments given for Eqs. 3.2.1 and 3.2.2.

Based on the above the �nal system of equations will consist of n+ l + f −1 equations

to be solved for the p unknown mass �ow rates Ṁj . This clearly explains why for a

well de�ned pipe network relation 3.1.6 must be satis�ed.

3.3 Algorithm implementation

The �nal version of the network algorithm is a more complete and versatile version of

the algorithm presented in [81, 82]. The in-house developed Algorithm for Rare�ed

gas �ow In Arbitrary Distribution NEtworks (ARIADNE) (Figure 3.3). Just like,

according to the Greek mythology, Ariadne provided Theseus with a sword and a ball

of thread so that he could retrace his way out of the labyrinth of the Minotaur, in

the present case, ARIADNE, by employing the necessary CPU threads, provides the

numerical solution for the maze-like network of piping elements. In its latest version,

the developed algorithm consists of the following main blocks:

a. The input of geometrical and operational data

b. The de�nition of the unique set of loops and pseudo-loops

c. The formulation and solution of the mass and energy conservation equations

d. The kinetic data base supporting explicitly the solution of the conservation

equations

e. The output data (mainly node pressures and pipe mass �ow rates/conduc-

tances)

In an e�ort to make the drawing of the network to be solved easier for the user and

therefore, all the input data required for the algorithm to be executed easier to be

prepared and managed, a graphical user interface (GUI) has been developed. Once

the network is drawn, Ariadne is employed in order to formulate and solve, based on

solid kinetic principles, the governing equations describing the �ow conditions of the

distribution system. It is noted that the developed algorithm is capable of solving

pipe networks of any complexity.
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3.3. Algorithm implementation

3.3.1 Graphical interface

The application of the interface is based on the idea of utilizing the tools available of

a web page, thus, a web page created and saved locally on the computer is executed

to run the GUI. The main parts of the application consist of:

• An html page, which serves the purpose of the main algorithm.

• The corresponding style sheet �le (CSS) and visual basic script (VBS), which

organize the outline and appearance of the GUI.

• 26 libraries written is javascript to match the requirements of the developed

GUI. These libraries are a combination of already available ones, free distributed

under the GNU General Public License (GPL) and some newly created to match

the needs of the application.

The network is drawn in a way to reproduce as closely as possible the real geometry

of the system under consideration. For the needs of the example network shown in

Figure 3.1, the aforementioned GUI is utilized. The representation of the example

network in the GUI is shown in Figure 3.4. The user is able to draw the desired network

by adding nodes (Figure 3.5) and pipe sections (Figure 3.6) and the corresponding

data, i.e., the coordinates of the nodes in a 3D space, the length and the diameter of

the pipe elements, the pressure heads of the �xed-grade nodes and information for the

type of the gas and its properties (viscosity, most probable molecular velocity, etc.).

The demands or possible leaks, if any, at the nodes may also be provided. During the

pipe drawing procedure, the user is asked to de�ne from which node the pipe starts

(From Node ID) and to which node the pipe ends (To Node ID), indicating at the

same time an initial guess for the �ow direction in each piping element comprising

the network.

As a result, a connectivity matrix for each node and tube of the network is formed

providing all necessary information. For the needs of the example network studied

here, the corresponding connectivity matrix is shown in Table 3.2. This information

may be saved in such a way so that it can be imported again from the GUI itself and

be further manipulated or changed, or even it may be exported as a text �le ful�lling

the needs of an input data �le to be introduced in the main algorithm described in

the following sections.
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3. PIPE NETWORK ALGORITHM

3.3.2 Formulation of kinetic equations

In the case when the Knudsen number characterizing the �ow through the network

is very small and the �ow is in the continuum (or viscous) or slip regimes, then

the pressure drop equations along each channel are given by closed form algebraic

expressions and their integration in the whole algorithm is straightforward. In contrary,

when the �ow is in the transition regime such expressions are not available. This is

a serious pitfall which may be circumvented if the pressure drop will be provided by

solving these channel �ows under any vacuum conditions. The �ow of rare�ed gases

through tubes of various lengths in the whole range of the Knudsen number is a

fundamental problem in rare�ed gas dynamics and has been (and still is) the subject

of many theoretical, computational and experimental investigations. An extended

description of �ows through single piping elements of in�nite, moderate or �nite

length has been presented in Chapter 2.

The proposed methodology of simulating gas distribution systems operating under

rare�ed conditions includes the computed mass �ow rates through single pipe elements

of various lengths via DSMC and discrete velocity kinetic codes, which are stored in

a data base for the needs of the network algorithm.

In general, the pressure driven �ow of a rare�ed gas through a tube of length

L and radius R with the tube inlet and outlet pressures maintained at P1 and P2

respectively (P1 > P2) is prescribed by three dimensionless parameters namely

• the geometrical ratio L/R

• the pressure ratio P2/P1

• the reference Knudsen number (Kn) or alternatively the reference rarefaction

parameter (δ)

The case of a tube much longer than its radius (R/L << 1) with a small pressure

di�erence between the tube inlet and outlet is the most widely considered. It is

tackled by the in�nite capillary theory where the �ow is considered as fully developed,

the pressure varies only in the �ow direction and end e�ects are neglected. Once the

reduced �ow rate G (δ), which is a function only of δ at each cross section, is known,
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the mass �ow rate is obtained by [125]

ṀFD = G ∗
πR3

υ0

P1 − P2

L
(3.3.1)

where

G ∗ =
1

δ1 − δ2

δ2∫
δ1

G (δ)dδ (3.3.2)

is computed by integrating G (δ) between the inlet and outlet rarefaction parameters

δ1 and δ2 respectively accordingly de�ned by the corresponding pressures P1 and P2.

In the network algorithm the reduced �ow rate G (δ) is computed by implementing

the recently introduced interpolation formula [123]

G (δ) =
1.505 + 0.0524δ0.75 ln δ

1 + 0.738δ0.78
+

(
δ

4
+ 1.018

)
δ

1.073 + δ
(3.3.3)

This in�nite length expression interpolates the numerical data based on the solution

of the linear BGK kinetic model equation via the discrete velocity method within the

uncertainty of 0.2% in a wide range of the Knudsen number.

To extend the range of applicability of the in�nite capillary theory, which is com-

putationally very e�cient for very long channels, to channels of moderate length the

end e�ect correction concept is incorporated in the network algorithm. Following the

end e�ect theory the overall reduced �ow rate G ∗, given by Eq. 3.3.2, is revised

according to [102, 103]

G ∗ =
1

(1 + ∆L1/L + ∆L2/L)

1

δ1 − δ2

δ2∫
δ1

G (δ)dδ (3.3.4)

where ∆L1/L and ∆L2/L are the additional lengths at the inlet and outlet of the

channel correcting the real length of the channel by taking into account the end

e�ects. The corrective lengths introduced in the code are provided in [103]. As

pointed out in [102], the consideration of the end e�ect correction, compared to the

case of no end e�ect consideration, will always improve the accuracy of the simulations

and therefore, it is always applied in the network algorithm when ∆L/L > 0.01. The
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3. PIPE NETWORK ALGORITHM

values of G ∗, according to Eq. 3.3.4 are introduced into Eq. 3.3.1 to deduce by

taking into consideration the end e�ects the corrected values of the mass �ow rate

ṀEE .

The great advantage of the in�nite capillary and end e�ect theories is that the

dimensionless solutions solely depend on the gas rarefaction parameter (they do not

depend on L/R and P2/P1). However, they are both based on linear kinetic analysis

and are valid when the Mach number of the �ow is su�ciently small [124]. To satisfy

this requirement and after some extensive numerical experimentation the mass �ow

rate is obtained according to the above analysis provided that L/R ≥ 10 and the inlet

rarefaction parameter δ1 ≤ 100.

In the case of L/R < 10 if the pressure ratio P2/P1 ≥ 0.9, i.e., the pressure

di�erence is small, the �ow is linear even in short tubes and the solution is obtained

by solving the linearized BGK equation in the whole �ow �eld (not just in a cross

section as before) [101]. The mass �ow rate is obtained by

ṀLIN = WLIN

√
πR2 (P1 − P2) /υ0 (3.3.5)

where the dimensionless �ow rate WLIN is computed in terms of L/R and the reference

rarefaction parameter δ (WLIN does not depend on P2/P1). Indicative results of WLIN

are given in [101].

Otherwise, in the case of L/R < 10 with P2/P1 < 0.9 the �ow is considered as

nonlinear and it is tackled based on the DSMC method [148, 150] and on nonlinear

kinetic model equations solved by the discrete velocity method [80, 96, 97, 133, 134].

The mass �ow rate is obtained by

ṀNL = WNL

√
πR2P1/υ0 (3.3.6)

where WNL is the dimensionless nonlinear �ow rate and depends on all three param-

eters (L/R , δ and P2/P1). Then the pressure di�erence between the inlet and the

outlet of the tube is given by

P1 − P2 = P1

(
1− P2

P1

)
=

ṀNLυ0
WNL

√
πR2

(
1− P2

P1

)
(3.3.7)

This case is the most computationally demanding one and extensive computations
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have been performed to prepare an adequate large data base in a wide range of the

involved parameters. Indicative results are reported in Tables 2.10 and 2.11.

In the case of channels with arbitrary cross section the �ow is simulated by convert-

ing the noncircular cross section to an equivalent circular one based on two di�erent

approaches. In the �rst approach the radius of the equivalent circular channel is de-

�ned according to the hydraulic radius concept [16, 145], while in the second one it is

de�ned by equating the areas of the noncircular and circular cross sections (A = Aeq)

[144]. Computational experimentation will be performed (Chapter 4, Section 4.3) to

deduce that in rectangular cross section channels with various aspect ratios, includ-

ing very slender ones, the overall results provided by the latter approach are more

accurate. Since orthogonal channels are very common in the ITER divertor pumping

system, this second approach will be implemented in the simulation of this system

presented in Chapter 5, Section 5.4.

All this information related to the computed mass �ow rates through single tubes,

i.e., Eqs. 3.3.1, 3.3.5 and 3.3.7, is provided through the kinetic data base as an input

to the network algorithm described in the next section.

3.3.3 Programming in Fortran environment

Once the network is drawn in the graphical interface, as it has been described in

sub-section 3.3.1, the resulting input �le is introduced into Ariadne.

Based on the connectivity matrix, formulated through the GUI, an adjacency

matrix for each node of the network is formed. For the sample network shown in

Figure 3.1, the corresponding adjacency matrix is shown in Table 3.1. Then, the

set of loops and pseudo-loops is determined by implementing the well-known depth-

�rst-search (DFS) algorithm [28]. The method for �nding a loop or pseudo-loop in

the network can be visualized as a depth-�rst-search (DFS) traversal of a tree data

structure, as shown in Figure 3.7. In the DFS the search starts at the root and

explores as far as possible into deeper levels along each branch before backtracking,

i.e. before going back to the last explored node from which it was possible to visit a

new branch of the tree.

An explanation of how the search algorithm works is given next. The algorithm

generates a list of nodes that represents a path in the search tree by systematically
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Ai ,j =


0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0


Table 3.1: Adjacency matrix for the sample network of Figure 3.1.

selecting one node at a time from successive levels, until it is not possible to lengthen

it further. When a node is being considered, the forward search part of the algorithm

�rst checks to see if this node is a legal node, and if it is the algorithm next checks

to see if the size of the new path formed is as large or larger than the current largest

path, in which case it is saved. At a given level n of the tree, at most one node

can be selected. Note the initial value of n is 0 which represents the root of the

tree. Following the selection of a node at level n, the algorithm seeks to expand the

clique by adding the next available legal node at level n + 1. After considering all

the nodes in a group at level n + 1, a null node is registered for level n + 1 and an

attempt is made to select a node from level n + 2 without including a node from

level n + 1. A null node is a right-most child for each node and always stores the

value 0. When all possible nodes have been considered that allows movement in a

forward direction away from the root of the tree, then the algorithm backtracks and

tries to expand along a di�erent branch of the tree. When backtracking occurs, the

nodes are removed from the list one at a time until a node is reached from which

the remaining path can be re-expanded or until all possibilities are exhausted. The

length of the longest list (excluding any null node entries) as well as its composition

is maintained. This information is updated, as needed. This process is described in

Algorithms 3.4.1 and 3.4.2.

Once the scanning of the tree data structure is completed, the search algorithm

returns all possible loops and pseudo-loops detected through the traversal process. In

the case of the sample network under consideration, all possible paths are shown in

color code in Figure 3.7. The nodes which indicate the beginning end the ending of

the paths of the closed loops are noted in green, yellow and purple colors respectively,
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while for the case of pseudo-loops, the corresponding nodes are noted with red circles.

For a network of p pipes, n nodes and f �xed pressure nodes the DFS technique is

traversing the network extracting the (f−1) pseudo-loops and l = p−n−(f − 1) loops

which are linearly independent. This approach has been found to be computationally

powerful and e�cient even in networks consisting of thousands of pipes as in the ITER

primary vacuum distribution system simulated in the next section. The identi�ed paths

of the loops and pseudo-loops of the network are stored in separate matrices in order

to be available for the formulation of the conservation equations.

Once the linearly independent loops and pseudo-loops of the network are identi�ed,

the main core of Ariadne is based on an iterative process between the pressure drop

equations and the system of mass and energy conservation equations as these are

described in section 3.2. To sum up the required information, the algebraic system

of balance equations to be solved consists of a) the mass conservation equations at

each node ∑
j

(
±Ṁi ,j

)
± Ṁi = 0, i = 1, ... , n (3.3.8)

b) the energy conservation equations along each closed loop, and∑
j

(±∆Pk,j) = 0, k = 1, ... , l (3.3.9)

c) the energy conservation equations along each pseudo-loop∑
j

(±∆Pm,j) + ∆Pm = 0, m = 1, ... , (f − 1) (3.3.10)

In Eq. 3.3.8 the summation index j refers to all pipes connected to node i , ±Ṁi ,j

denotes the mass �ow rate into or out of node i respectively through pipe j and Ṁi

denotes an external mass �ow rate gain or loss (if any) at node i . In Eqs. 3.3.9

and 3.3.10, the summation index j pertains to the pipes that make up loop k and

pseudo-loop m. Also, ±∆Pk,j and ±∆Pm,j refer to the di�erence between the inlet

and outlet pressure of pipe j (the plus sign is used if the �ow in the pipe is positive

in the clockwise sense or otherwise the minus sign is employed), while ∆Pm is the

di�erence in magnitude of the �xed pressure nodes.
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The pressure di�erence ∆P = P1 − P2 of each pipe element in Eqs. 3.3.9 and

3.3.10 is substituted accordingly from Eqs. 3.3.1 or 3.3.5 or 3.3.7, depending upon

the speci�c geometrical and operational data L/R and P2/P1. The dimensionless

�ow rates G ∗, WLIN and WNL are obtained from the kinetic data base.

For the cases where the �ow is linear, interpolation formulas are introduced for the

deduction of the required values. However, for the case of WNL, which is a function

of three independent variables, namely δ, P2/P1 and L/R , a trilinear interpolation

algorithm has been implemented. In general, the result of trilinear interpolation is

independent of the order of the interpolation steps along the three axes: any other

order, for instance along x , then along y , and �nally along z , produces the same

value. First, the eight corners of a cube that surround our point of interest are

located. These corners have the values W000, W100, W010, W110, W001, W101, W011,

W111. Next, linear interpolation is performed between W000 and W100 to �nd W00,

W001 and W101 to �nd W01, W011 and W111 to �nd W11, W010 and W110 to �nd W10.

In the next step, interpolation is performed between W00 and W10 to �nd W0, W01

and W11 to �nd W1. Finally, in order to calculate the value W , linear interpolation

between W0 and W1 is applied. In practice, a trilinear interpolation is identical to two

bilinear interpolations combined with a linear interpolation. The above operations can

be visualized in Figure 3.8 and the corresponding process is described in Algorithm

3.4.4.

The resulting set of equations, along with Eq. 3.3.8, yield a linear system of

algebraic equations which is solved for the unknowns Ṁi . Once the mass �ow rates are

computed the node pressures are easily deduced from the corresponding equations. An

iteration process between the pressures at the nodes and the mass �ow rates through

the pipes is applied, which is terminated when the convergence criterion imposed on

the pressures is ful�lled. In each iteration the linear algebraic system is solved via

Gauss elimination with partial pivoting, as this is described in Algorithm 3.4.5.

The output data include the pressures Pi , i = 1, ... , n and the mass �ow rates Ṁi ,

i = 1, ... , p at all nodes and pipes respectively of the network, where these quantities

were unknowns. In addition, for each pipe element i = 1, ... , n, the conductance

Ci =
Ṁi

(∆P)i
RgT (3.3.11)
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and the pump throughput or the so-called PV-�ow

Qi =
d(PV )i

dt
= ṀiRgT = ṄiR

∗T (3.3.12)

may be computed. In Eqs. 3.3.11 and 3.3.12, R∗ = 8.314Jmol−1K−1 is the global

gas constant, Rg is the gas constant and Ṅi is the molar �ow rate. These quantities

are of practical interest and characterize the performance of the system.

In summary, Ariadne, in its latest version can handle networks of any geometrical

complexity operating under any vacuum conditions since the kinetic data base has

been accordingly enlarged to include channels of any length in a wide range of the

Knudsen number. It is noted that the iterative process will converge under any initial

conditions provided that all data characterizing the loops and pseudo-loops of the

network are properly given, i.e. the network is well de�ned and Eq. 3.1.6 is satis�ed.

All steps followed are shown in the corresponding �owchart in Figure 3.9.

3.4 Numerical formulation in the viscous regime

To benchmark the present formulation and results this network subject to exactly the

same conditions has been also solved using a typical hydrodynamic solver for gas pipe

networks [107, 143] and a comparison between the results is performed. A gaseous

pipe network in the viscous regime is still described by the same network equations

and the only di�erence is that the pressure drop along each pipe element is obtained

by a corresponding expression based on hydrodynamic principles. For the purposes of

the thesis, the Darcy-Weisbach equation is implemented:

PL = (P1 − P2)j =
M2

j

2(ρm)jA2
j

(
2 ln

P1

P2
+ (fD)j

Lj

Dj

)
(3.4.1)

Here, the index 1 ≤ j ≤ p denotes again each of the p pipes of the network, (ρm)j

is the average value of the mass density and (fD)j is the Darcy friction factor. A

detailed derivation of Eq. 3.4.1 is provided in Appendix A while a more detailed

description about the computation of the proper values of the friction factor is given

in the following section. It is noted that in the present case, the pressure drop along

two points depends on the pressure at the points into consideration. As a result, the

91

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



3. PIPE NETWORK ALGORITHM

pressure drop cannot be evaluated directly as a function of the length, the diameter,

the mass �ow rate and the friction factor, but in the case where the pressures upstream

and downstream the pipe are unknown, an iterative procedure is necessary, increasing

signi�cantly the computational cost.

3.4.1 Estimation of the friction factor

The friction factor for subsonic compressible �ows, which is the case of interest in

the present work, agrees with the relations for the evaluation of the friction factor for

incompressible �ows. On the other hand, for the case of supersonic �ows, the friction

factor is almost the half of the one computed for the case of the uncompressed �ows.

The most convenient and relatively precise approximation method is by means of

the diagram Moody, which plots the dependence of the friction factor on the Reynolds

number of the �ow and the roughness of the pipe. Besides Moody diagram, there are

several analytical expressions that may be used for speci�c regimes of the Reynolds

number. One of the most accurate is the Colebrook expression

1√
f D

= −2 log

( ε
d

3.7
+

2.51

Re
√

f D

)
(3.4.2)

where ε is the roughness of the pipe and d is its diameter. The Colebrook expression

is accurate for Re > 4000, while the major disadvantage is that it requires a Newton

iterative procedure. For this reason, the expression used in the hydrodynamic solver

is the Swamee-Jain which returns essentially the same results with the Colebrook

expression without an iterative process needed. The Swamee-Jain expression is given

by

fD =
1.325[

ln(0.27 ε
d

+ 5.74 1
Re0.9

)
]2 (3.4.3)

which returns accurate results for 5000 < Re < 108 and 10−8 < ε/d < 0.01.

Similar expressions used for the estimation of the friction factor as a function of

Reynolds number are

• fD = 64
Re
, for Re ≤ 2000

• fD = 0.3164
Re1/4

, for 4000 < Re < 105 (deriving from Blasius equation)
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• 1√
fD

= 2 log
(
Re
√

fD
)
− 0.8, for Re > 105 (deriving from Prandtl equation)

• 1√
fD

= 2 log
(
d
ε

)
+ 1.14, for d/ε

Re
√
fD
> 0.005

However, in many occasions, instead of the friction factor, the Poiseuille number

Po = fD × Re (3.4.4)

de�ned as the product of the friction factor times the Reynolds number of the �ow, is

utilized. Over the years, the Poiseuille number has been determined for an extensive

number of �ow con�gurations. As it has been mentioned before, for the cases where

the �ow is in the transition regime or at the free molecular regime, medium and highly

rare�ed �ows, the hydrodynamic equations are not valid and a kinetic approach based

on the Boltzmann equation or reliable kinetic models is required. As described in

Section 2.1.4, the Poiseuille number has been evaluated in the whole range of the

rarefaction for the case of the �ow through a circular tube. By introducing the

required mathematical manipulation, Eq. 3.4.4 results to [140]

fD = 64

/
Re

(
1 +

16σpKn√
π

)
(3.4.5)

where σp is the viscous slip coe�cient, equal to 1.016, and it is computed by solving

the corresponding half-space viscous slip fow setup (or Kramers problem) based on

the linearized BGK model equation [120]. At the hydrodynamic limit, Eq. 3.4.5 is

reduced to the well-known result Po = 64. In principle, it is valid in the slip (or

viscous) regime, but due to its simplicity it may be used, at some extent, in the

transition regime to provide rough estimates. It is reported that the accuracy of Eq.

3.4.5 is about 1.3% for 1/Kn = 20, 3.5%, for 1/Kn = 10 and 8%, for 1/Kn = 5.

As a result, this expression is implemented in the hydrodynamic solver to expand

the validity of the corresponding results in the viscous or even transition regimes.

3.4.2 Formulation of equations for the hydrodynamic solver

Similar to the case of the solver based on kinetic principles, similar formulation is

used for the case of the hydrodynamic solver. For the simulation of a gas network

distribution system where the �ow is compressible, two non-linear systems are formed.
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The �rst one comprises of the pressure drop equations for each of the pipes consisting

the network equal to the number of the piping elements forming the network as

described by Eq. 3.4.1, while the friction factor values are evaluated by making use

of Eq. 3.4.5. The second part of the system to be solved results from the application

of the continuity equation given by Eq. 3.2.1 at each of the nodes of the network

resulting to a set of equations equal to the number of the nodes of the network.

Having de�ned the system of equations for the pressure drop at each of the pipe

elements we can solve it since the number of equations (i+j) matches the number

of unknowns (j pressure values at each of the nodes and i values for the mass �ow

rates at each of the piping elements). As it has already been described for the case

of the kinetic solver, the use of energy balance equations along the closed loops

(Eq. 3.2.2) and the pseudo-loops of the network (Eq. 3.2.3) is implemented as the

least computationally demanding also for the hydrodynamic solver. In this way, an

optimized system of equations describing the network is formed and the number of

non-linear equations to be solved, regarding the mass �ow rates, is decreased from

i equations to l + f − 1. By following a procedure similar to the one described for

the case of the kinetic solver, the system is solved by assuming pressure and density

values and verifying the pressure drop at each piping element through Eqs. 3.4.1 and

3.4.5 in an iterative manner, reducing at the same time the computational cost.

3.4.3 Programming in Matlab environment

An in-house hydrodynamic solver, built in Matlab environment, simulating gas pipe

networks in the hydrodynamic regime has been also developed at the Laboratory of

Transport Phenomena of the University of Thessaly. This software has been imple-

mented in the past in several diploma and master theses [107, 143]. In its current

version, after introducing the slip solution results through the correct estimation of the

friction factor, the Matlab algorithm is further updated and employed in the present

work for validation purposes. The steps followed for the solution of the system of

equations may be described as:

1. Introduce the operational characteristics of the network such as lengths and

diameters of the piping elements as well as number of nodes, pipes, �xed-grade

nodes and the corresponding pressure values, demands at the nodes of the
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network (if any), number of loops and pseudo-loops and �nally the properties

of the gas (viscosity, speci�c heat ratio γ, temperature T , molar mass and

speci�c gas constant R∗.

2. Based on the pressure values at the �xed-grade nodes, assume the initial pres-

sure values at each node of the network and the resulting density values and

initial pressure drop values.

3. Solve the continuity equations along with the equations for the loops and the

pseudo-loops by making use of a Newton iterative procedure. After the system

of equations is solved, the new values of the mass �ow rates are calculated. The

procedure is repeated until the convergence criterion of the applied methodology

is satis�ed. Once this is achieved, the correct values for the mass �ow rates,

based on the initial assumption of the pressure and the density values, are

computed.

4. Compute the new pressure values and densities that satisfy the new values for

the �ow rates computed after the system of equations is solved. Once again, the

system is non-linear since the pressure drop equations depend on the pressure

values. Also in this case, a Newton iterative procedure is implemented.

5. If the convergence criterion for the pressure drops between the iterations is

not satis�ed, the algorithm returns at the 2nd step where the values for the

pressure and the density computed at the previous iteration are used as initial

assumption.

All �ve steps followed are shown in the corresponding �owchart in Figure 3.10.

As it has already been mentioned, for the solution of the resulting non-linear system

of equations, the Gauss-Newton algorithm, embedded in Matlab by making use of

the command "fsolve" is applied.

In order to develop the required algorithm under the Matlab environment for the

analysis of the compressible gas �ow inside the network, 12 subroutines have been

constructed in order to construct the network, solve the system of equations and

present the corresponding results. More speci�cally:
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• Pipeinput.m: Dimensions of piping elements, geometry and topology of the

network (number of nodes, pipes, �xed-grade nodes), physical properties of the

gas running through the network and initial assumptions for the values of the

pressure heads.

• Pipe.m: The basic algorithm where the needed subroutines are called and the

overall iterative procedure for the satisfaction of the convergence criterion.

• Pipefriction.m: Evaluation of the friction factor at each of the piping elements

based on the computed Reynolds and Knudsen numbers where the slip solution

is implemented.

• Pipedensity.m: Evaluation of the average density value at each of the piping

element.

• Loss.m: Evaluation of part of the pressure drop for each piping element.

• Pipeloss.m: Evaluation of the total pressure drop for each piping element based

on the Darcy-Weisbach equation.

• Pipeloop.m: Assign the plus or minus signs at the closed loop and pseudo-loop

equations.

• Pipe�ow.m: Interconnection between the Pipe�owqn.m subroutine and Pipe.m

main algorithm.

• Pipe�owqn.m: The non-linear system of equations formed by the continuity

equations and the ones for the closed and pseudo-loops.

• Pipepr.m: The evaluation of the pressure heads at each of the nodes of the

network based on the total pressure drop.

• Pipeoutput.m: Printing the corresponding results in a �le.

• Pipeplot.m: Schematic representation of the simulated network.

The link between the items described is shown in the corresponding �owchart in Figure

3.11.
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Chapter 3 Algorithms

Algorithm 3.4.1: Pseudo-loop: Algorithm for locating pseudo-loops
in network
Input : The graph G = (v , e) of the network and two of �xed-grade nodes

u and z
Output: A closed path between the two given vertices u and z

1 flag(v , VISITED)
2 S .push(v)
3 if v = z then
4 return S.elements()
5 end
6 for all e ∈ G .incidentEdges(v) do // checking edges

7 if flag(e) = UNEXPLORED then
8 w ← opposite(v , e)
9 if flag(w) = UNEXPLORED then // building the path

10 flag(e, DISCOVERY )
11 S .push(e)
12 pathDFS(G , w , z)
13 S .pop(e)
14 else
15 flag(e, BACK ) // back tracking

16 end

17 end

18 end

19 end
20 return S.pop(v)
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3. PIPE NETWORK ALGORITHM

Algorithm 3.4.2: Loop: Algorithm for locating loops in network

Input : The graph G = (v , e) of the network
Output: stack S of the path between the start vertex and the current vertex

1 flag(v , VISITED)
2 S .push(v)
3 for all e ∈ G .incidentEdges(v) do // checking edges

4 if flag(e) = UNEXPLORED then
5 w ← opposite(v , e)
6 S .push(e)
7 if flag(w) = UNEXPLORED then // building the path

8 flag(e, DISCOVERY )
9 pathDFS(G , w , z)

10 S .pop(e)
11 else
12 T ← newemptystack // forming new stack

13 repeat
14 o ← S .pop()
15 T .push(o)
16 until o = w
17 return T.elements()

18 end

19 end

20 end

21 end
22 return S.pop(v)
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Chapter 3 Algorithms

Algorithm 3.4.3: Find Duplicate: Algorithm for discarding duplicate
loops

Input: A sequence of integers 〈a1, a2, ... , an〉
Output: The index of �rst location with the same value as in a previous

location in the sequence

1 location← 0
2 i ← 2
3 while i ≤ n and location = 0 do
4 j ← 1
5 while j < i and location = 0 do
6 if ai = aj then
7 location← i
8 else
9 j ← j + 1

10 end

11 end
12 i ← i + 1

13 end
14 return location
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3. PIPE NETWORK ALGORITHM

Algorithm 3.4.4: Trilinear: Trilinear Interpolation Algorithm

Input : Values of L/R , δ and P2/P1

Output: Value of the dimensionless �ow rate WNL

1 if (P2/P1min
≤ x ≤ P2/P1max ) and (L/Rmin ≤ y ≤ L/Rmax) and

(δmin ≤ z ≤ δmax) then
2 z1 location← zmax − (z1) // Compute x , y , z for the local tube

3 z0 location← zmin − (z0)
4 y1 location← ymax − (y1)
5 y0 location← ymin − (y0)
6 x1 location← xmax − (x1)
7 x0 location← xmin − (x0)
8 begin // Compute f at 8 corners of the local cube

9 f (x0, y0, z0)
10 f (x0, y0, z1)
11 f (x0, y1, z0)
12 f (x0, y1, z1)
13 f (x1, y0, z0)
14 f (x1, y0, z1)
15 f (x1, y1, z0)
16 f (x1, y1, z1)

17 end
18 begin // Compute dx , dy and dz
19 dx ← (x − x0)/(x1− x0)
20 dy ← (y − y0)/(y1− y0)
21 dz ← (z − z0)/(z1− z0)

22 end
23 begin // Compute weighting factors

24 c0← fx0y0z0
25 c1← fx1y0z0− fx0y0z0
26 c2← fx0y1z0− fx0y0z0
27 c3← fx0y0z1− fx0y0z0
28 c4← fx1y1z0− fx0y1z0− fx1y0z0 + fx0y0z0
29 c5← fx0y1z1− fx0y0z1− fx0y1z0 + fx0y0z0
30 c6← fx1y0z1− fx0y0z1− fx1y0z0 + fx0y0z0
31 c7← fx1y1z1− fx0y1z1− fx1y0z1− fx1y1z0 +

+fx1y0z0 + fx0y0z1 + fx0y1z0− fx0y0z0

32 end
33 g ← c0 + c1 ∗ dx + c2 ∗ dy + c3 ∗ dz + c4 ∗ dx ∗ dy +

+c5 ∗ dy ∗ dz + c6 ∗ dx ∗ dz + c7 ∗ dx ∗ dy ∗ dz // Interpolating

34 end
35 return WNL
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Chapter 3 Algorithms

Algorithm 3.4.5: Gauss: Gauss Elimination Algorithm � Partial Pivoting

Input : System coe�cients de�ned by network characteristics
Output: Values of the Mass �ow rates

1 for i ← 1 to n do // Gaussian Elimination

2 si = 0 // computes array of row maximal elements

3 for j ← 1 to n do
4 si = max(si , |aij |)
5 end
6 pi = i // initialize row pointers to row numbers

7 end
8 for k ← 1 to n − 1 do
9 rmax = 0 // largest scaled column entry

10 for i ← k to n do
11 r = |apik/spi |
12 if r > rmax then
13 rmax = r
14 j = i // row index of largest scaled entry

15 end

16 end
17 temp = pk // exchange row pointers

18 pk = pj

19 pj = temp
20 for i ← k + 1 to n do // perform elimination on submatrix

21 apik = apik/apkk
22 for j = k + 1 to n do
23 api j = api j − apik apk j
24 end

25 end

26 end
27 for k ← 1 to n − 1 do // Forward Elimination

28 for i ← k + 1 to n do
29 bpi = bpi − apik bpk

30 end

31 end
32 for i ← n downto 1 do // Backward Solve

33 s = bpi

34 for j ← i + 1 to n do
35 s = s − api j xj
36 end
37 xi = s/api i
38 end
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3. PIPE NETWORK ALGORITHM

Table 3.2: Connectivity matrix for the sample network of Figure 3.1 as a result from
the drawing in the graphical interface.

Piping Element ID (#) From Node ID (#) To Node ID (#)
1 1 2
2 3 2
3 2 4
4 4 3
5 5 3
6 4 5
7 5 6
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Chapter 3 Figures

Figure 3.1: Example network.
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3. PIPE NETWORK ALGORITHM

Figure 3.2: Example network loops.
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Chapter 3 Figures

Figure 3.3: Logo of the in-house developed algorithm ARIADNE.
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3. PIPE NETWORK ALGORITHM

Figure 3.4: Representation of the sample network in the developed graphical interface.
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Chapter 3 Figures

Figure 3.5: Adding new nodes in a network and de�ning local pressure value or possible
leak/demand values in the developed graphical interface.
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3. PIPE NETWORK ALGORITHM

Figure 3.6: Adding new pipes/edges in a network and de�ning local characteristics of
the piping element in the developed graphical interface.
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Chapter 3 Figures

Figure 3.7: Schematic representation of the graph used for the implementation of the
DFS algorithm.
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Figure 3.8: Schematic representation of trilinear interpolation algorithm.
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Chapter 3 Figures

Figure 3.9: Flowchart for ARIADNE.
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3. PIPE NETWORK ALGORITHM

Figure 3.10: Flowchart for the algorithm developed in Matlab.
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Chapter 3 Figures

Figure 3.11: Flowchart of the subroutine dependencies for the algorithm developed in
Matlab.
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4
Gas distribution systems consisting of

piping elements of long and moderate

length

4.1 Flow characteristics in distribution systems con-

sisting of piping elements with L/D≥5

Linear, fully developed �ows of rare�ed gases through piping elements of various cross

sections have been studied extensively by several deterministic methods, as seen in

previous chapters. This state is characterized by zero velocity in the transversal direc-

tions and constant density at each cross-section, based on the underlying assumption

that the channel is su�ciently long. However, in many practical situations, there are

signi�cant deviations from this behavior near the channel ends, where the assumption

of constant density at each cross-section is not valid and the �ow becomes two- or

three-dimensional. This e�ect is particularly apparent in short channels, even for linear

�ows, and the fully developed pro�le may not be observed at all. Furthermore, even

when the channel is long, the channel end e�ect may be signi�cant in applications

where high accuracy is required.
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

4.2 Benchmarking in networks consisting of cir-

cular pipes

The methodology described in subsection 3.3.2 is applied in three hypothetical net-

works of small, moderate and increased complexity, respectively, while the piping

elements are of circular cross sections. For the networks of small and increased

complexity, the �ow is described by the principles in the hydrodynamic regime in an

attempt to allow a comparison with the corresponding results obtained by the hy-

drodynamic pipe network solver based on the Darcy-Weisbach equation including the

correction of the slip solution for the proper evaluation of the friction factor. For

the third network examined, the results cover a wide range of rarefaction. In this

latter case, the comparison is performed with the corresponding results obtained by

ITERVAC algorithm.

4.2.1 Network of small complexity in the hydrodynamic

regime � A chess-board network

The sample network shown in Figure 4.1, named as "Network 4.2.1/4.5.1", is simu-

lated. The network consists of p = 42 tubes, n = 25 junction nodes {2, 3, ..., 25, 26},
f = 2 �xed-grade nodes {1, 27} and l = 16 loops. Nodes 1 and 27 refer to two

reservoirs, where the pressure is held constant. All tubes are taken to have the same

length and diameter, which are equal to L = 10 m and D = 0.1 m respectively. The

reference temperature is set to T0 = 290.68K. The conveying gas is nitrogen, with

molar mass m = 28.0314 gr/mol, gas constant RN2 = 296.92 J/(kg·K), most proba-
ble molecular velocity υ0 = 415.47 m/s and viscosity µ = 17.3562 µPa·s. Then, the
system of governing equations includes 25 mass conservation equations at the junction

nodes, 16 balance equations for the closed loops and 1 energy balance equation for the

open pseudo-loop formed along the nodes {1, 2, 3, 4, 5, 6, 11, 16, 21, 26, 27}. The total
number of equations of the system is 42 and its solution returns the 42 unknown mass

�ow rates {Ṁ1, Ṁ2, ..., Ṁ42} and the corresponding conductances {C1.C2, ..., C42}.
Then, from the pressure drop equations the pressure heads {P2, ..., P26} are found.

Finally, the pressure distribution along each pipe element of the network may also be

estimated.
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4.2. Networks of circular piping elements

In order to simulate the �ow characteristics at the hydrodynamic regime, the

pressure at nodes 1 and 27 is set equal to P1 = 70 Pa and P27 = 60 Pa. The

corresponding Knudsen numbers are 9.13 × 10−4 and 1.07 × 10−3, which clearly

indicates that the �ow in the network is in the slip (or hydrodynamic) regime. For

generality purposes, demands (or leakages) have been added at nodes 6 and 22, which

are equal to Q6 = 1.40× 10−5 kg/s and Q22 = 2.10× 10−5 kg/s, respectively.

To benchmark the present formulation and results Network 4.2.1, subject to ex-

actly the same conditions, has been also solved using a typical hydrodynamic solver

for gas pipe networks and a comparison between the results is performed. For the

purposes of the present work the Darcy-Weisbach equation combined with the slip

solution for the estimation of the friction factor.

In Table 4.1, the computed Knudsen number and pressure at each node of the

network are tabulated by applying both solvers, while in Table 4.2, the mass �ow rate

and the conductance along each tube of the network are presented. The negative

values at some of the mass �ow rates indicate that the �nal direction of the �ow in

this tube is opposite to the one initially assumed. The total mass �ow in tube 1 is

Ṁ1 = 4.33×10−5 kg/s, while in tube 42 is Ṁ42 = 8.32×10−6 kg/s and, as expected,

the following relation is satis�ed {Ṁ1 = Ṁ42 + Q6 + Q22}.
The agreement between the results based on the hydrodynamic analysis and the

ones based in kinetic theory, shown in Tables 4.1 and 4.2, is excellent. In particular,

the corresponding results of pressure at each node and mass �ow rate in each tube,

agree up to at least two signi�cant �gures.

4.2.2 Network of increased complexity in the hydrodynamic

regime � An ITER-like network

An ITER like network is applied to further validate the present algorithm. Here, the

algorithm makes use of the end e�ect correction principles, extending its validity, in

addition to long channels, to channels of moderate length 5<L/D<50. For demon-

stration purposes, a similar geometry to the one of ITER's lower port region (Figure

4.2) is simulated. The schematic representation of the resulting network, named as

"Network 4.2.2/4.5.2", is shown in the right hand side of Figure 4.3.

The network consists of p = 190 tubes, n = 124 junction nodes, f = 58 �xed-
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

grade nodes and l = 9 loops. From the 58 �xed grade nodes, where the pressure

is held constant, 54 nodes {1, 5, 8, 11, ..., 158, 161} refer to the divertor's entrance

while nodes {167, 172, 177, 182} refer to the four direct pumps located at the ends of
the vacuum ducts connected to the lower part of the torus. For comparison purposes,

all tubes are taken to have the same length and diameter, which are equal to L = 2m

and D = 0.2 m respectively. The reference temperature is set to T0 = 410 K

corresponding to the temperature of the ITER's burn phase scenario. The conveying

gas is helium, with molar mass m = 4.0026 gr/mol, gas constant RHe = 2076.9

J/(kg·K), most probable molecular velocity υ0 = 415.47 m/s and viscosity µ = 24.68

µPa·s.
Then, the system of governing equations includes 124 mass conservation equa-

tions at the junction nodes, 9 energy balance equations for the closed loops and 57

energy balance equation for the open pseudo-loops. The total number of equa-

tions of the system is 190 and its solution returns the 190 unknown mass �ow

rates {Ṁ1, Ṁ2, ..., Ṁ190}. Then, from the pressure drop equations the pressure heads

{P1, ..., P182} are found.
The pressure at the entrance of the divertor for the 54 nodes equals 10Pa while

the pressure at the pumps is equal to 1Pa. The corresponding Knudsen numbers are

1.43 × 10−2 and 1.43 × 10−1 which clearly indicates that the �ow in the network is

in the viscous (or hydrodynamic) regime.

The provided results refer to a part of the simulated network, more speci�cally

for the one shown enlarged in the left hand side of Figure 4.3 and in more detail in

Figure 4.4. The �ow path as well as the pressure at each node and the mass �ow

rate along each tube are shown in Figures 4.5, 4.6(up) and 4.6(down), respectively.

The negative values at some of the mass �ow rates indicate that the �nal direction

of the �ow is opposite to the one initially assumed.

Following the same benchmark procedure, the current network con�guration under

the prescribed �ow conditions is simulated by implementing the hydrodynamic equa-

tion combined with the slip correction for the friction factor. The agreement between

the results based on the hydrodynamic analysis and the ones based in kinetic theory,

shown in Figure 4.6, is very good. In particular, the corresponding results of pressure

at each node have a maximum relative di�erence of 3.84% and the corresponding

di�erence for the mass �ow rate has a maximum value of 2.73%.
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4.2. Networks of circular piping elements

4.2.3 Network of average complexity in the whole range of

the rarefaction � A honeycomb network

A comparison is performed between the kinetic solver and the empirical algorithm

ITERVAC. The comparison refers to a hypothetical network, named as "Network

4.2.3", consisting of p = 22 elements, n = 14 junction nodes, f = 4 �xed-grade nodes

and l = 5 loops. In Figure 4.7, the schematic representation of the simulated network

is shown. For this comparison, all elements have the same length and diameter, which

are equal to L = 5 mm and Dh = 35µm respectively, resulting to a big ratio of

L/Dh and therefore the kinetic analysis is based on the in�nite channel theory. The

conveying gas is argon (Ar) held in ambient temperature. Two indicative simulations

are performed. In the �rst case, the two left reservoirs are held in P1 = 220Pa and

P2 = 210Pa, while the two right reservoirs have a �xed pressure of P17 = 1.20 Pa

and P18 = 1.10 Pa, respectively, resulting to high values of Knudsen number.

In the second scenario for the �ow conditions characterizing the network, all four

pressure values at the entrance and the exit of the network have lower values compared

to the ones of the previous scenario. For the containers playing the role of the entrance

nodes of the network the pressure values are set to P1 = 14 kPa and P2 = 13 kPa,

respectively, while for the exit nodes the pressure values are set to P17 = 120 Pa and

P18 = 110 Pa, leading to a wide range of gas rarefaction and a comparison of the

two approaches in all �ow regimes is performed.

In both simulated scenarios, the system of governing equations includes fourteen

mass conservation equations at nodes {3, 4, ..., 16}, �ve energy balance equations

along the closed loops of three energy balance equations along the opes pseudo-

loops. The total number of equations of the system is 22 and its solution returns the

22 unknown mass �ow rates {Ṁ1, ..., Ṁ22}. Then, from the pressure drop equations,

the pressure heads {P3, ..., P16} are found.
The results are shown in Table 4.3 for the pressure heads [Pa] and Table 4.4 for the

mass �ow rates [kg/s] for the �rst scenario simulated, while for the second scenario,

the corresponding results are provided in Table 4.5 for the pressure values and Table

4.6 for the mass �ow rates, respectively. In both scenarios simulated, the agreement

in the pressure values is excellent, while the deviation in the mass �ow rates does not

exceed 4.3%.
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

4.3 Distribution networks consisting of ducts with

orthogonal and trapezoidal cross section

In the present section, the attention is drawn in the comparison between networks

consisting of non-circular piping elements and the corresponding con�gurations based

on cylindrical elements by employing either the same hydraulic diameter or the same

cross section area.

To demonstrate the feasibility and the e�ectiveness of the proposed methodology

the sample network shown in Figure 4.8 (left) is simulated. "Network 4.3/4.4" consists

of p = 14 tubes, n = 9 junction nodes, f = 2 �xed-grade nodes and l = 4 loops.

Nodes 1 and 11 refer to two reservoirs, where the pressure is held constant. The

micro distribution system is characterized by the availability of introducing demands

at nodes 4 and 8, however, for comparison reasons these two values are set to 0. The

reference temperature is set to T0 = 293.7 K. The conveying gas is argon (Ar), with

molar mass m = 0.039948 kg/mol, gas constant R = 208 J/(kg·K), most probable
molecular velocity υ0 = 347.74 m/s and viscosity µ = 22.7985 µPa·s.

The system of governing equations includes nine mass conservation equations at

nodes {2, 3, ..., 10}, four energy balance equations along the closed loops I , II , III , IV

and one energy balance equation along the open pseudo-loop formed along the nodes

{1, 2, 3, 4, 5, 6, 11}. The total number of equations of the system is 14 and its solution

returns the 14 unknown mass �ow rates {Ṁ1, ..., Ṁ14}. Then, from the pressure drop

equations, the pressure heads {P2, ..., P10} are found.
Two networks of di�erent geometries are simulated. The �rst one refers to a net-

work which consists of rectangular micro-channels with H = 2.00 µm and W = 20.00

µm, leading to an aspect ratio of H/W = 0.1 and, according to the equations shown

in Table 2.1, a hydraulic diameter Dh = 3.63 µm. The second network simulated,

where the micro-distribution system consists of equilateral trapezoidal elements, with

size of big base B = 6.87 µm, small base b = 1.80 µm, height h = 3.60 µm and

acute angle φ = 54.74o , leading to a hydraulic diameter Dh = 3.56 µm. In all cases

considered, the length of the piping elements is kept constant and equal to L = 5.00

mm, while the pressures at both the upstream and downstream reservoirs are �xed

to P1 = 0.125 MPa and P11 = 140 Pa, respectively. Both networks simulated are
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4.3. Networks of orthogonal and trapezoidal piping elements

compared, while keeping the same con�guration, to two additional networks consist-

ing of cylindrical tubes of either the equivalent hydraulic diameter Dh, or the same

cross section area A′. It is noted that for the case of the networks of rectangular and

trapezoidal cross section, all the kinetic coe�cients required for the simulation are

based on the actual data bases for the corresponding geometrical characteristics of

the ducts in the network.

The results are shown in Figure 4.9 and in Tables 4.7 - 4.10 for the rarefaction

parameter, the pressure heads [Pa] and the mass �ow rates [kg/s] for both networks

under consideration. The corresponding results using the hydraulic diameter concept

are also included. The rarefaction parameter covers the range 0.0642 ≤ 1/Kn ≤ 57.33

for the rectangular case and 0.0630 ≤ 1/Kn ≤ 56.28 for the trapezoidal one. The �ow

in the network covers the slip, transition and free molecular regimes. The negative

values at some of the mass �ow rates indicate that the �nal direction of the �ow is

opposite to the one initially assumed. The red arrows shown in Figure 4.8 (right)

indicate the corrected �ow direction obtained after convergence of the code.

Next, we comment on the comparison of the simulated networks with the corre-

sponding ones consisting of cylindrical channels with the equivalent hydraulic diam-

eter. In the case where all channels have the same hydraulic diameter, the friction

factor is the same and therefore the pressure drop is similar. As a result, the rarefac-

tion parameter is close for every node of the network in both geometries simulated.

The relative error between the rectangular channels and the cylindrical ones is less

than 4.11% for the pressure heads. Similar results can be seen for the comparison

between the trapezoidal and the cylindrical channels, where the relative error is less

than 0.09% for the pressure heads. However, in both comparisons, despite the good

agreement between the pressure heads, the comparison with regard to the mass �ow

rate through each of the piping elements of the networks shows that there are sig-

ni�cant di�erences. For the case of the rectangular channels there is a discrepancy

around 220% for the �ow rates and for the case of the trapezoidal channels around

85%.

Moreover, for comparison purposes, the same simulation is performed but, instead

of employing the hydraulic diameter concept, the diameter of the cylindrical channels

introduced is computed on the basis of maintaining the cross section area A′ con-

stant. As a result, for the case of the rectangular channels the diameter used for the
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

simulation is equal to D = 7.14 µm, while for the case of the equilateral trapezoidal

elements, the computer diameter is equal to D = 4.46 µm. In the present scenario

the relative error computed between the rectangular channels and the cylindrical ones

reaches a maximum value of 9.22% for the pressure heads. The increase in the pres-

sure head deviation between the former and the latter comparison is well expected,

since the friction factor is not kept the same in this con�guration. Similar results

can be seen for the comparison between the trapezoidal and the cylindrical channels,

where the relative error is less than 2.29% for the pressure heads, following the same

trend with the rectangular channels. In contrary, in both comparisons, despite the

increased deviation in the pressure head values, the comparison with regard to the

mass �ow rate through each of the piping elements of the networks shows that there

are smaller di�erences. For the case of the rectangular channels there is a discrepancy

around 75.74% for the �ow rates and for the case of the trapezoidal channels around

20.96%.

4.4 Extension to networks consisting of tubes with

various lengths and diameters

The network simulated in this section has the same topological characteristics as the

one described in Figure 4.8 (left). However, the speci�c geometrical characteristics

of each piping element of the network are di�erent to each other. The main goal

here is to demonstrate the solver's generalized applicability in networks consisting of

elements of various lengths and diameters.

As in the network simulated in the previous section, "Network 4.3/4.4" consists

of p = 14 tubes, n = 9 junction nodes, f = 2 �xed-grade nodes and l = 4 loops.

Nodes 1 and 11 refer to two reservoirs, where the pressure is held constant. Once

again, the reference temperature is set to T0 = 293.7 K. The conveying gas is argon

(Ar), with molar mass m = 0.039948 kg/mol, gas constant R = 208 J/(kg·K), most
probable molecular velocity υ0 = 349.54 m/s and viscosity µ = 22.7985 µPa·s.

Since the topological characteristics of the network under consideration remain

the same with the network simulated in the previous section, the system of govern-

ing equations remains unchanged, i.e. nine mass conservation equations at nodes
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4.4. Networks of piping elements with various lengths and diameters

{2, 3, ..., 10}, four energy balance equations along the closed loops I , II , III , IV and

one energy balance equation along the open pseudo-loop formed along the nodes

{1, 2, 3, 4, 5, 6, 11}. The total number of equations of the system is 14 and its solu-

tion returns the 14 unknown mass �ow rates {Ṁ1, ..., Ṁ14}. Then, from the pressure

drop equations, the pressure heads {P2, ..., P10} are found.
However, the geometrical characteristics of each piping element forming the net-

work are not constant. The individual geometrical properties of each of the piping

elements are shown in Table 4.11.

Two simulations are performed. Considering the initial simulation, the pressure at

the upstream reservoir is equal to P1 = 50 kPa, while the pressure at the downstream

reservoir is �xed to P11 = 23 kPa. The pressure values are selected in order for the

rarefaction parameter to cover the range 15.46 ≤ 1/Kn ≤ 62.74, i.e. within the

limits of the hydrodynamic and slip regimes. As a result, a comparison is performed

by implementing the hydrodynamic equation combined with the slip correction for

the friction factor. The agreement between the results based on the hydrodynamic

analysis and the ones based in kinetic theory, shown in Table 4.12, for the rarefaction

parameter and the pressure heads [Pa], and Table 4.13, for the mass �ow rates [kg/s],

is very good. In particular, the corresponding results of pressure at each node have

an agreement of at least three signi�cant �gures and the corresponding di�erence for

the mass �ow rate in each tube has a maximum value of 2.73%.

Based on the good agreement observed in the comparison performed for the case

of the �rst simulation, the second simulation performed covers a wider range of

rarefaction. In order to achieve this, the pressure at the upstream reservoir is equal

to P1 = 50 kPa, while the pressure at the downstream reservoir is �xed to P11 = 0.23

kPa. In this scenario, the rarefaction parameter covers the range 0.26 ≤ 1/Kn ≤
62.74, indicating that gas �owing through the network covers the whole range of

rarefaction. Indicative results for the aforementioned simulation are shown in Tables

4.14 and 4.15 for the rarefaction parameter, the pressure heads [Pa] and the mass

�ow rates [kg/s], respectively, for the network under consideration.

It is noted that piping elements 3 and 4 as well as 7 and 8 have identical mass �ow

rates. This is well expected since at the nodes connecting these elements (nodes 4 and

8 respectively), there is no other connection or a leak/demand present. However, due

to their geometrical characteristics, the pressure drop, and as a result the conductance,
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

in these elements is not identical.

4.5 Complex distribution systems

4.5.1 Network of small complexity in the whole range of

the rarefaction - A chess-board network

To demonstrate the feasibility and the e�ectiveness of the proposed methodology the

sample network shown in Figure 4.1 is simulated.

In the present simulation, the pressure at nodes 1 and 27 is set equal 1 Pa and

10−3 Pa respectively, while the corresponding Knudsen numbers are 0.0639 and 63.9,

which clearly indicates that the �ow in the network covers the slip, transition and free

molecular regimes. Also, the demands at all nodes have been set equal to zero. The

results of the simulation include the computed Knudsen number and pressure at each

node of the network in Table 4.16, as well as the mass �ow rate and the conductance

along each tube of the network in Table 4.17. Again, the negative values at some of

the mass �ow rates indicate that the �nal direction of the �ow in this tube is opposite

to the one initially assumed. The total mass �ow rate which is transferred from node

1 through the network to node 27 is equal to 4.58 × 10−8 kg/s and since there are

no demands or leakages in the network Ṁ1 = Ṁ42. As it is expected, the network

solution, due to the speci�c geometry and data, is symmetric about an axis de�ned

by nodes {2, 8, 14, 20 and 26}.

The present network setup has been also simulated by implementing the typical

hydrodynamic solver resulting to signi�cant discrepancies compared to the corre-

sponding kinetic results throughout the network (pressure heads o� by about 40%

and total mass �ow rate o� by about 100%). It is interesting to note that although

most of the nodes are in the slip regime with only one node (Node 27) in the free

molecular regime the viscous analysis is not applicable.

124

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



4.5. Complex distribution systems

4.5.2 Network of increased complexity in the whole range

of the rarefaction - An ITER-like network

To demonstrate the feasibility and the e�ectiveness of the proposed methodology the

sample network representing the vacuum pumping system of the ITER reactor, shown

in Figure 4.2 is simulated. "Network 4.2.2/4.5.2" consists of p = 190 tubes, n = 124

junction nodes, f = 58 �xed-grade nodes and l = 9 loops. From the 58 �xed grade

nodes, where the pressure is held constant, 54 nodes {1, 5, 8, 11, ... , 158, 161} refer

to the divertor's entrance while nodes {167, 172, 177, 182} refer to the four direct

pumps located at the ends of the vacuum ducts connected to the lower part of the

torus.

For comparison purposes, all tubes are taken to have the same length and di-

ameter, which are equal to L = 2 m and D = 0.2 m respectively. The reference

temperature is set to T0 = 410 K corresponding to the temperature of the ITER's

burn phase scenario. The conveying gas is helium, with molar mass m = 4.0026 gr/-

mol, gas constant R = 2076.9J/(kg·K), most probable molecular velocity υ0 = 415.47

m/s and viscosity µ = 24.68µPa·s.
Then, the system of governing equations includes 124 mass conservation equations

at the junction nodes, 9 energy balance equations for the closed loops and 57 energy

balance equation for the open pseudo-loops. The total number of equations of the

system is 190 and its solution returns the 190 unknown mass �ow rates. Then, from

the pressure drop equations the pressure heads are found.

In this simulation, the pressure referring to the divertor nodes is set equal to 1Pa

while the pressure at the pumps is equal to 10−5 Pa, respectively, resulting to Knudsen

numbers indicating that the �ow in the network covers the early slip, transition and

free molecular regimes. The results of the simulation include the pressure heads at

each node of the network shown in Figure 4.10(up), as well as the mass �ow rate

through each tube of the network in Figure 4.10(down). Again, the negative values

at some of the mass �ow rates indicate that the �nal direction of the �ow in this tube

is opposite to the one initially assumed.
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

4.6 Concluding remarks

The algorithm for the design of steady-state, isothermal, gaseous distribution systems

consisting of long tubes has been extended in order to take into account tubes of

average length. The analysis is based on linear kinetic theory by solving the linearized

BGK equation with di�use boundary conditions in the whole range of the Knudsen

number for the estimation of the dimensionless �ow rates as well as the quanti�cation

of the end e�ect phenomena which cannot be neglected in piping elements of average

length. The drawing of the network is aided by a GUI interface, the output of which is

directly linked to the main iterative algorithm for designing gas pipe networks. More

important the main algorithm successfully integrates linear kinetic results available

from the constructed data bases.

As a result the integrated algorithm may successfully handle gas pipe networks

consisting of long and average tubes of any complexity operating under any vacuum

conditions through all regimes of rarefaction returning all the information needed for

the on-line identi�cation of the �ow conditions inside the network. The e�ectiveness

of the methodology has been demonstrated by solving a similar geometry to the one

of ITER's lower port region, where two operation scenarios are examined based on

the ITER burn phase, resulting to two simulation scenarios, one in the viscous regime

and one in the whole range of the Knudsen number.

It is obvious that the algorithm developed will be useful for ITER like applications

provided that it will be extended to channels of short length. In this, nonlinear kinetic

analysis and DSMC solvers are required increasing the involved computational e�ort.
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Table 4.1: Network 4.2.1 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Pressure [Pa] and Knudsen number at each node of the
network in the slip regime.

Node
Kn

ARIADNE Hydrodynamic Solver
number Pressure [Pa] Pressure [Pa]

1 9.13× 10−4 70.00 70.00
2 9.66× 10−4 66.12 66.13
3 9.97× 10−4 64.13 64.15
4 1.02× 10−3 62.90 62.92
5 1.03× 10−3 61.98 62.00
6 1.05× 10−3 61.05 61.08
7 9.97× 10−4 64.07 64.09
8 1.01× 10−3 63.32 63.33
9 1.02× 10−3 62.58 62.60
10 1.03× 10−3 61.96 61.98
11 1.04× 10−3 61.51 61.54
12 1.02× 10−3 62.72 62.74
13 1.02× 10−3 62.47 62.49
14 1.02× 10−3 62.12 62.14
15 1.03× 10−3 61.77 61.80
16 1.04× 10−3 61.52 61.54
17 1.04× 10−3 61.58 61.61
18 1.04× 10−3 61.71 61.74
19 1.04× 10−3 61.66 61.69
20 1.04× 10−3 61.49 61.51
21 1.04× 10−3 61.28 61.30
22 1.06× 10−3 60.30 60.34
23 1.05× 10−3 61.12 61.15
24 1.04× 10−3 61.34 61.36
25 1.04× 10−3 61.22 61.24
26 1.05× 10−3 60.84 60.85
27 1.07× 10−3 60.00 60.00
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Ṁ
j
[kg/s]

Ṁ
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Table 4.3: Network 4.2.3 - Pressure and Knudsen number at each node of the network
for high values of Kn number � comparison with ITERVAC.

Node
Kn

ARIADNE ITERVAC
number Pressure [Pa] Pressure [Pa]

1 1.43× 10−1 2.20× 102 2.20× 102

2 1.54× 10−1 2.10× 102 2.10× 102

3 1.65× 100 1.74× 102 1.74× 102

4 1.72× 100 1.70× 102 1.70× 102

5 1.80× 100 1.52× 102 1.51× 102

6 1.82× 100 1.50× 102 1.50× 102

7 1.85× 100 1.49× 102 1.49× 102

8 1.98× 100 1.29× 102 1.29× 102

9 2.00× 100 1.28× 102 1.28× 102

10 2.52× 100 8.57× 101 8.56× 101

11 2.54× 100 8.53× 101 8.52× 101

12 3.00× 100 6.42× 101 6.41× 101

13 3.01× 100 6.40× 101 6.40× 101

14 3.02× 100 6.39× 101 6.38× 101

15 3.87× 100 4.28× 101 4.28× 101

16 3.88× 100 4.27× 101 4.27× 101

17 1.67× 102 1.20× 100 1.20× 100

18 1.82× 102 1.10× 100 1.10× 100
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Table 4.4: Network 4.2.3 - Mass �ow rate and conductance at each tube of the
network for high values of Kn number � comparison with ITERVAC.

Tube # From node ARIADNE ITERVAC

[j] to node Ṁj [kg/s] Ṁj [kg/s]

1 1-3 6.12× 10−13 6.25× 10−13

2 2-4 5.35× 10−13 5.47× 10−13

3 3-5 2.97× 10−13 3.04× 10−13

4 3-6 3.15× 10−13 3.22× 10−13

5 4-6 2.59× 10−13 2.64× 10−13

6 4-7 2.76× 10−13 2.82× 10−13

7 5-8 2.97× 10−13 3.04× 10−13

8 6-8 2.76× 10−13 2.82× 10−13

9 6-9 2.94× 10−13 3.00× 10−13

10 7-9 2.76× 10−13 2.82× 10−13

11 8-10 5.77× 10−13 5.90× 10−13

12 9-11 5.70× 10−13 5.82× 10−13

13 10-12 2.88× 10−13 2.94× 10−13

14 10-13 2.90× 10−13 2.96× 10−13

15 11-13 2.84× 10−13 2.90× 10−13

16 11-14 2.86× 10−13 2.92× 10−13

17 12-15 2.88× 10−13 2.94× 10−13

18 13-15 2.86× 10−13 2.92× 10−13

19 13-16 2.88× 10−13 2.94× 10−13

20 14-16 2.86× 10−13 2.92× 10−13

21 15-17 5.74× 10−13 5.86× 10−13

22 16-18 5.73× 10−13 5.86× 10−13
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Table 4.5: Network 4.2.3 - Pressure and Knudsen number at each node of the network
in the whole range of Kn number � comparison with ITERVAC.

Node
Kn

ARIADNE ITERVAC
number Pressure [Pa] Pressure [Pa]

1 1.43× 10−2 1.40× 104 1.40× 104

2 1.54× 10−2 1.30× 104 1.30× 104

3 1.65× 10−2 1.21× 104 1.21× 104

4 1.72× 10−2 1.17× 104 1.17× 104

5 1.80× 10−2 1.12× 104 1.12× 104

6 1.82× 10−2 1.10× 104 1.10× 104

7 1.85× 10−2 1.09× 104 1.09× 104

8 1.98× 10−2 1.02× 104 1.01× 104

9 2.00× 10−2 1.00× 104 1.00× 104

10 2.52× 10−2 7.97× 103 7.95× 103

11 2.54× 10−2 7.91× 103 7.88× 103

12 3.00× 10−2 6.69× 103 6.67× 103

13 3.01× 10−2 6.67× 103 6.64× 103

14 3.02× 10−2 6.65× 103 6.62× 103

15 3.87× 10−2 5.19× 103 5.16× 103

16 3.88× 10−2 5.17× 103 5.14× 103

17 1.67× 100 1.20× 102 1.20× 102

18 1.82× 100 1.10× 102 1.10× 102
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Table 4.6: Network 4.2.3 - Mass �ow rate and conductance at each tube of the
network in the whole range of Kn number � comparison with ITERVAC.

Tube # From node ARIADNE ITERVAC

[j] to node Ṁj [kg/s] Ṁj [kg/s]

1 1-3 1.49× 10−10 1.54× 10−10

2 2-4 1.01× 10−10 1.05× 10−10

3 3-5 6.91× 10−11 7.13× 10−11

4 3-6 7.98× 10−11 8.23× 10−11

5 4-6 4.52× 10−11 4.69× 10−11

6 4-7 5.59× 10−11 5.79× 10−11

7 5-8 6.91× 10−11 7.13× 10−11

8 6-8 5.84× 10−11 6.03× 10−11

9 6-9 6.66× 10−11 6.89× 10−11

10 7-9 5.59× 10−11 5.79× 10−11

11 8-10 1.27× 10−10 1.32× 10−10

12 9-11 1.23× 10−10 1.27× 10−10

13 10-12 6.32× 10−11 6.53× 10−11

14 10-13 6.42× 10−11 6.64× 10−11

15 11-13 6.08× 10−11 6.28× 10−11

16 11-14 6.18× 10−11 6.39× 10−11

17 12-15 6.32× 10−11 6.53× 10−11

18 13-15 6.21× 10−11 6.42× 10−11

19 13-16 6.29× 10−11 6.50× 10−11

20 14-16 6.18× 10−11 6.39× 10−11

21 15-17 1.25× 10−10 1.30× 10−10

22 16-18 1.25× 10−10 1.29× 10−10
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Table 4.7: Network 4.3 - Pressure and Knudsen number at each node of the network
based on rectangular and cylindrical channels with either same Dh or A′.

Node
1/Kn

Rectangular Tube (same Dh) Tube (same A′)
number Pressure [kPa] Pressure [kPa] Pressure [kPa]

1 57.33 125.00 125.00 125.00
2 46.88 102.20 103.11 104.30
3 40.88 89.12 90.53 92.38
4 37.61 82.00 83.66 85.87
5 34.11 74.37 76.30 78.87
6 26.18 57.07 59.52 62.87
7 34.11 74.37 76.30 78.87
8 37.61 82.00 83.66 85.87
9 40.88 89.12 90.53 92.38
10 37.61 82.00 83.66 85.87
11 0.06 0.14 0.14 0.14

133

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55
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Table 4.8: Network 4.3 - Mass �ow rate comparison for each pipe of the network
based on rectangular and cylindrical channels with either same Dh or A′.

Tube # From node Rectangular Tube (same Dh) Tube (same A′)

[j] to node Ṁj [kg/s] Ṁj [kg/s] Ṁj [kg/s]

1 1-2 5.74× 10−12 1.79× 10−12 2.37× 10−11

2 2-3 2.87× 10−12 8.94× 10−13 1.18× 10−11

3 3-4 1.44× 10−12 4.47× 10−13 5.92× 10−12

4 4-5 1.44× 10−12 4.47× 10−13 5.92× 10−12

5 5-6 2.87× 10−12 8.94× 10−13 1.18× 10−11

6 6-7 −2.87× 10−12 −8.94× 10−13 −1.18× 10−11

7 7-8 −1.44× 10−12 −4.47× 10−13 −5.92× 10−12

8 8-9 −1.44× 10−12 −4.47× 10−13 −5.92× 10−12

9 9-2 −2.87× 10−12 −8.94× 10−13 −1.18× 10−11

10 9-10 1.44× 10−12 4.47× 10−13 5.92× 10−12

11 10-5 1.44× 10−12 4.47× 10−13 5.92× 10−12

12 10-7 1.44× 10−12 4.47× 10−13 5.92× 10−12

13 3-10 1.44× 10−12 4.47× 10−13 5.92× 10−12

14 6-11 5.74× 10−12 1.79× 10−12 2.37× 10−11
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Table 4.9: Network 4.3 - Pressure and Knudsen number at each node of the network
based on trapezoidal and cylindrical channels with either same Dh or A′.

Node
1/Kn

Trapezoidal Tube (same Dh) Tube (same A′)
number Pressure [kPa] Pressure [kPa] Pressure [kPa]

1 56.28 125.00 125.00 125.00
2 46.39 103.03 103.06 103.55
3 40.71 90.41 90.46 91.21
4 37.61 83.53 83.58 84.47
5 34.29 76.15 76.20 77.23
6 26.72 59.34 59.40 60.73
7 34.29 76.15 76.20 77.24
8 37.61 83.53 83.58 84.47
9 40.71 90.41 90.46 91.21
10 37.61 83.53 83.58 84.46
11 0.06 0.14 0.14 0.14
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Table 4.10: Network 4.3 - Mass �ow rate comparison for each pipe of the network
based on trapezoidal and cylindrical channels with either same Dh or A′.

Tube # From node Trapezoidal Tube (same Dh) Tube (same A′)

[j] to node Ṁj [kg/s] Ṁj [kg/s] Ṁj [kg/s]

1 1-2 3.07× 10−12 1.66× 10−12 3.89× 10−12

2 2-3 1.54× 10−12 8.31× 10−13 1.95× 10−12

3 3-4 7.69× 10−13 4.16× 10−13 9.73× 10−13

4 4-5 7.69× 10−13 4.16× 10−13 9.73× 10−13

5 5-6 1.54× 10−12 8.31× 10−13 1.95× 10−12

6 6-7 −1.54× 10−12 −8.31× 10−13 −1.95× 10−12

7 7-8 −7.69× 10−13 −4.16× 10−13 −9.73× 10−13

8 8-9 −7.69× 10−13 −4.16× 10−13 −9.73× 10−13

9 9-2 −1.54× 10−12 −8.31× 10−13 −1.95× 10−12

10 9-10 7.69× 10−13 4.16× 10−13 9.73× 10−13

11 10-5 7.69× 10−13 4.16× 10−13 9.73× 10−13

12 10-7 7.69× 10−13 4.16× 10−13 9.73× 10−13

13 3-10 7.69× 10−13 4.16× 10−13 9.73× 10−13

14 6-11 3.07× 10−12 1.66× 10−12 3.89× 10−12
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Table 4.11: Network 4.4 - Geometrical characteristics of each piping element.

Tube # [j] 1 2 3 4 5 6 7
L [µm] 1000 500 700 400 800 300 550

Dh [µm] 20 10 15 10 20 8 7

Tube # [j] 8 9 10 11 12 13 14
L [µm] 1000 300 200 500 900 400 900

Dh [µm] 30 5 5 5 10 8 18
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Table 4.12: Network 4.4 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Pressure [Pa] and Knudsen number at each node of the
network in the slip regime.

Node
1/Kn

ARIADNE Hydrodynamic Solver
number Pressure [kPa] Pressure [kPa]

1 62.74 50.00 50.00
2 35.63 48.67 48.67
3 26.85 38.90 38.90
4 28.41 36.23 36.22
5 20.35 27.80 27.79
6 25.38 26.39 26.38
7 16.53 31.62 31.60
8 43.07 37.10 37.10
9 31.07 37.14 37.13
10 15.46 35.20 35.20
11 25.98 23.00 23.00
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Table 4.13: Network 4.4 - Comparison between ARIADNE and the Hydrodynamic
Solver with respect to the Mass �ow rate and conductance at each tube of the
network in the slip regime.

Tube # From node ARIADNE Hydrodynamic Solver

[j] to node Mj [kg/s] Ṁj [kg/s] Cj [lt/s]

1 1-2 1.95× 10−10 1.97× 10−10 8.94× 10−6

2 2-3 1.71× 10−10 1.73× 10−10 1.07× 10−6

3 3-4 1.41× 10−10 1.43× 10−10 3.22× 10−6

4 4-5 1.41× 10−10 1.43× 10−10 1.02× 10−6

5 5-6 1.48× 10−10 1.50× 10−10 6.44× 10−6

6 6-7 −4.62× 10−11 −4.66× 10−11 5.40× 10−7

7 7-8 −1.84× 10−11 −1.85× 10−11 2.05× 10−7

8 8-9 −1.84× 10−11 −1.85× 10−11 3.36× 10−5

9 9-2 −2.36× 10−11 −2.37× 10−11 1.25× 10−7

10 9-10 5.21× 10−12 5.23× 10−12 1.64× 10−7

11 10-5 7.30× 10−12 7.27× 10−12 6.03× 10−8

12 10-7 2.79× 10−11 2.81× 10−11 4.76× 10−7

13 3-10 2.99× 10−11 3.02× 10−11 4.94× 10−7

14 6-11 1.95× 10−10 1.97× 10−10 3.52× 10−6
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Table 4.14: Network 4.4 - Pressure and Knudsen number at each node of the network
in the whole range of the Kn number.

Node
1/Kn

Pressure
number [kPa]

1 62.74 50.00
2 35.29 48.21
3 23.82 34.51
4 23.89 30.46
5 11.70 15.98
6 12.27 12.76
7 11.93 22.82
8 36.78 31.69
9 26.55 31.74
10 12.64 28.79
11 0.26 0.23
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Table 4.15: Network 4.4 - Mass �ow rate and conductance at each tube of the network
in the whole range of the Kn number.

Tube # From node Ṁj Cj

[j] to node [kg/s] [lt/s]

1 1-2 2.60× 10−10 8.90× 10−6

2 2-3 2.28× 10−10 1.02× 10−6

3 3-4 1.88× 10−10 2.83× 10−6

4 4-5 1.88× 10−10 7.92× 10−7

5 5-6 1.98× 10−10 3.75× 10−6

6 6-7 −6.26× 10−11 3.80× 10−7

7 7-8 −2.49× 10−11 1.72× 10−7

8 8-9 −2.49× 10−11 2.90× 10−5

9 9-2 −3.19× 10−11 1.19× 10−7

10 9-10 7.01× 10−12 1.45× 10−7

11 10-5 1.01× 10−11 4.84× 10−8

12 10-7 3.77× 10−11 3.86× 10−7

13 3-10 4.08× 10−11 4.35× 10−7

14 6-11 2.60× 10−10 1.27× 10−6
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Table 4.16: Network 4.5.1 - Pressure and Knudsen number at each node of the
network in the viscous regime.

Node
Kn

Pressure
number [Pa]

1 6.39× 10−2 1.00
2 7.81× 10−2 8.18× 10−1

3 8.90× 10−2 7.18× 10−1

4 9.74× 10−2 6.56× 10−1

5 1.04× 10−1 6.16× 10−1

6 1.07× 10−1 5.96× 10−1

7 8.90× 10−2 7.18× 10−1

8 9.46× 10−2 6.75× 10−1

9 1.01× 10−1 6.31× 10−1

10 1.07× 10−1 5.96× 10−1

11 1.11× 10−1 5.75× 10−1

12 9.74× 10−2 6.56× 10−1

13 1.01× 10−1 6.31× 10−1

14 1.07× 10−1 5.96× 10−1

15 1.14× 10−1 5.59× 10−1

16 1.20× 10−1 5.33× 10−1

17 1.04× 10−1 6.16× 10−1

18 1.07× 10−1 5.96× 10−1

19 1.14× 10−1 5.59× 10−1

20 1.25× 10−1 5.11× 10−1

21 1.39× 10−1 4.60× 10−1

22 1.07× 10−1 5.96× 10−1

23 1.11× 10−1 5.75× 10−1

24 1.20× 10−1 5.33× 10−1

25 1.39× 10−1 4.60× 10−1

26 1.95× 10−1 3.27× 10−1

27 6.39× 101 1.00× 10−3
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Figure 4.1: Schematic representation of Network 4.2.1/4.5.1.
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Chapter 4 Figures

Figure 4.2: ITER lower port region.
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Chapter 4 Figures

Figure 4.4: Network 4.2.2/4.5.2 - Schematic representation of the simulated network
with a detailed view of one of four vacuum ducts.
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Figure 4.5: Network 4.2.2 - Schematic representation of the simulated network with
the actual �ow direction in the viscous regime.
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Chapter 4 Figures

Figure 4.6: Network 4.2.2 - Pressure values at the nodes (up) and mass �ow rates at
each tube (down) of the network's duct in the viscous regime.
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Figure 4.7: Network 4.2.3 - ITERVAC sample network schematic representation
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Chapter 4 Figures

Figure 4.8: Network 4.3/4.4 - Schematic representation of pipe network showing a)
the initially assumed �ow directions (left) and b) the �ow directions derived after the
completion of the code (right).
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4. NETWORK OF PIPING ELEMENTS WITH L/D≥5

Figure 4.9: Network 4.3 - Rarefaction parameter (top), pressure heads (middle) and
�ow rates (bottom) for a network consisting of rectangular (left) and trapezoidal
(right) channels. The corresponding results with the hydraulic diameter concept are
also shown.

152

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



Chapter 4 Figures

Figure 4.10: Network 4.5.2 - Pressure values at the nodes (left) and mass �ow rates
at each tube (right) of the network's duct in all regimes.
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5
Extension to gas distribution systems

consisting of piping elements of any

diameter and length

5.1 Flow characteristics in distribution systems con-

sisting of piping elements with L/D<5

Apart from the cases where the channel network consists of long piping elements,

the characteristics of which have been described in the previous chapter, the analysis

is extended into networks consisting of piping elements of arbitrary length, diameter

and cross sections. In this latter case, the vertical component of the velocity vector

in not equal to zero and the values of density may vary along the piping element. The

presence of short piping elements in a channel network, even when the �ow may be

described as linear, or even in scenarios where the channel end e�ects play a major role,

a�ects the overall �ow characteristics of the network which are, as a result, described

in more than one dimensions. This analysis is presented and benchmarked in the

present chapter through various test cases covering the whole range of rarefaction.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

5.2 Benchmarking in networks consisting of short

circular pipes

Extensive comparisons between the ARIADNE and ITERVAC have been performed

covering a wide range of simulating scenarios with respect to the geometrical char-

acteristics, the conveying gas and the complexity. Two di�erent networks have been

simulated, named as Network 5.2.1 and 5.2.2, respectively.

5.2.1 Network of minimum complexity in a wide range of

rarefaction - A simpli�ed chess-board network

The sample network 5.2.1 consists of 14 elements, 9 junction nodes and 2 nodes where

the pressure is �xed. In Figure 5.1, the schematic representation of the simulated

network is shown. All elements have the same length and diameter, which are equal

to 0.25 m and 0.1 m respectively, resulting to an L/Dh <5 and therefore the kinetic

analysis is based on the non-linear theory for short channels. The gas selected for

�lling the hypothetical network is helium held at 410 K. In the simulation performed,

the left reservoir is held in P1 = 5 Pa, while the right reservoir has a �xed pressure

of P11 = 10−3 Pa. The selected pressure values result to Knudsen numbers covering

the free molecular and early transition regimes.

The comparison between the algorithms with respect to the pressure at each node

of the network is shown in Table 5.1, while for the mass �ow rate along each tube

is presented in Table 5.2. In general, there is a very good agreement in both the

pressure values and the mass �ow rates, with the corresponding deviation between

the two approaches not exceeding the value of 5.6% for the pressures and 5.4% for

the mass �ow rates.

5.2.2 Network of small complexity in a wide range of rar-

efaction - A chess-board network

By increasing the complexity of the network, the sample network 5.2.2 shown in

Figure 5.2 is simulated. The network consists of 42 elements, 25 junction nodes and

2 nodes where the pressure is �xed. Since the aim of this comparison is to increase
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5.3. Tree network

the complexity of the network, i.e. increasing the number of elements and nodes,

all elements have the same length and diameter, equal to the ones used in sample

network 5.2.1 (L=0.25 m and Dh=0.1 m). For this purpose, all other parameters are

identical to the ones of sample network A. Therefore, the conveying gas is helium at

410K and the pressure values at the �xed grade nodes are P1 = 5 Pa and P27 = 10−3

Pa, respectively.

Once again, very good agreement in both the pressure values and the mass �ow

rates, is observed. The comparison between the algorithms with respect to the pres-

sure at each node of the network is shown in Table 5.3, while for the mass �ow rate

along each tube is presented in Table 5.4. Despite the increase of the network com-

plexity, the corresponding deviation between the two approaches is not exceeding the

value of 4.8% for the pressure heads and 5% for the mass �ow rates. It is noted that

these values which are smaller compared to the ones of sample network 5.2.1 which

is of smaller complexity.

5.3 Extension to networks consisting of tubes of

any diameter and length - A Tree network

The network simulated in this section has the topological characteristics of the net-

work shown in Figure 5.3 which is characterized by piping elements, whose speci�c

geometrical characteristics, are di�erent to each other. In this manner, the solver's

applicability is generalized in networks consisting of elements of various lengths and

diameters simulating simultaneously channels with big, average and small ratio of

L/D.

The simulated network, named as "Network 5.3", consists of p = 29 tubes, n = 20

internal nodes, f = 4 �xed-grade nodes and l = 6 loops. Nodes {1, 9, 23 and 24}

refer to four �xed grade nodes, where the pressure is held constant. For the present

network under investigation, the reference temperature is set to T0 = 293.7K. The

conveying gas is air, with molar mass m = 0.028319 kg/mol, gas constant R = 286.9

J/(kg·K), most probable molecular velocity υ0 = 410.59 m/s and viscosity µ = 18.370

µPa·s.
The geometrical characteristics of each piping element are shown in Table 5.5.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

The system of governing equations includes nine mass conservation equations at the

internal nodes, six energy balance equations along the closed loops and two energy

balance equation along the open pseudo-loops. The total number of equations of the

system is 29 and its solution returns the 29 unknown mass �ow rates {Ṁ1, ..., Ṁ29}.
Then, from the pressure drop equations, the pressure heads {P2, ..., P23} are found.

For the simulation performed, the pressures at the three reservoirs are �xed to

P1 = 0.4 Pa, P9 = 0.01 Pa, P23 = 0.1 Pa and P24 = 0.1 Pa, respectively. Even

more an external demand is present at node 22 equal to 1E − 06kg/s. The results

are shown in Table 5.6 for the rarefaction parameter and the pressure heads [Pa] and

in Table 5.7 for the mass �ow rates [kg/s].

5.4 Modeling of neutral gas �ow in the ITER di-

vertor pumping system

In the present section the latest design of the ITER divertor pumping system is

discussed. The drawings referring to the 2012 design have been delivered to UoThly

in October 2012. The schematic representation of the cryopump positions is shown

in Figure 5.4. As it is seen, ports {4, 6, 10, 12, 16, 18} are �tted with cryo-pumps.

By further analyzing the CATIA schematics and the detailed geometrical char-

acteristics of the divertor region, Figures 5.5 and 5.6, an interpretation of the �ow

path i) inside the divertor and ii) of the lower port region into a set of channels has

been performed. The channels, consisting of various lengths and cross sections, are

interconnected in a prede�ned manner so as to form a network estimating the actual

�ow path.

The analysis is based on the assumption that each of the 54 cassettes is identical

to each other. Based on this assumption, the �ow path inside the region of the

divertor is simulated by 28 channels, the locations of which are shown in Figure 5.7,

as far as the radial gas �ow is concerned. Similar analysis has been implemented for

the simulation of the gas �ow path formed between the divertor and the lower port

regions as it is shown by the assembly picture in Figure 5.8, resulting to a channel

network consisting of 12 channels, which are interconnected with the network of the

divertor path in a prede�ned con�guration. The vacuum ducts are simulated by a
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5.4. The ITER divertor pumping system

network of 6 channels, directly linked to the network formed by the 54 cassettes.

In 6 out of the 54 cassettes and more speci�cally cassettes 11, 17, 29, 35, 47 and

53, corresponding to the lower ports 4, 6, 10, 12, 16 and 18 are connected to the

six cryopumps. A schematic representation of all 6 pumping ducts connected to the

divertor ring is shown in Figure 5.9.

In order to simulate the toroidal �ow of the gas, the interconnection of each of

the 54 cassettes to each other had to be de�ned. For this reason, in the already

described networks for the radial �ow, some extra nodes had to be added in order

for the connections to be simulated. As a result, elements {2, 4, 5, 7, 9, 17, 19, 21,

22, 24, 25 and 26} of Figure 5.7, as well as elements {2, 4, 5, 6, 8, 9} of Figure 5.8

are cut in half in order to host these connections. All of these 12+6=18 channels

have various diameters but same length equal to 20 mm to simulate the distance

between the cassettes. As far as the connection between the cassettes and the pumps

is concerned, this is achieved by directly linking 1 cassette with 1 pump by 8 additional

piping elements representing the geometrical characteristics of the pumping ducts.

A representation of the resulting network, approximating the actual gas �ow path

along the cassette cross-section, is shown in Figure 5.10. The channel �ow con�gu-

rations of the upper and lower parts of the cassette are approximated by 40 and 17

channels of various lengths and diameters, respectively. The upper part, interpreting

the radial �ow inside the divertor, consists of nodes 1 to 41, shown in light blue color.

The radial �ow in the divertor lower part is described by nodes 42 to 60, shown in

yellow. These two regions are interconnected with one main piping element resulting

to a total of 59 channels and 60 nodes per cassette. The 8+1 nodes {1, 13, 18, 21,

28, 41, 59, 60} and {66}, where the pressure must be speci�ed, shown in dark blue,

are provided. Through these 8 nodes the pipe network representing the �ow along a

cassette is open to the torus.

Even more, the 12 nodes {3, 6, 8, 11, 15, 23, 26, 29, 31, 34, 36, 38} for the

divertor path and 6 nodes {43, 46, 48, 50, 53, 55} for the lower region path, shown

in red, represent the position where the connections for the simulation of the toroidal

�ow are located.

Finally, for the case where the cassette is directly linked to one of the 6 cryopump

ducts, shown in grey, the pumping duct network consisting of 6 nodes {61, 62, 63,

64, 65, 66} and 8 pipes used to approximate the gas �ow is also shown in Figure
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

5.10. The resulting geometric characteristics of the piping elements implemented for

the the simulation of the �ow though the divertor and lower port regions are shown

in Table 5.8.

In an attempt to study the �ow inside the divertor and the lower part region, the

case of one cassette directly linked to a cryopump is taken into consideration. Based

on this, 3 di�erent operational scenarios, in collaboration with KIT, have been sim-

ulated, two of which employing deuterium (D2, m=4.0282 gr/mol, µ=15.90 µPa·s)
as conveying gas held at 420 K and a third one with helium (He, m=4.0026 gr/mol,

µ=25.09 µPa·s), held at the same temperature. The di�erent scenarios are employed
by introducing prede�ned pressure values into the �xed grade nodes of the network,

i.e. nodes {1, 13, 18, 21, 28, 41, 59, 60 and 66}.

The input parameters for ARIADNE have been obtained from the B2-EIRENE

output including particle �ux densities, temperatures and pressures of deuterium and

helium atoms and deuterium molecules, respectively [110]. One output from B2-

Eirene is a pressure pro�le along the inner target, the under dome region and along

the outer target. The conversion of this pressure pro�le into input pressure values

from the locations described in Figure 5.11 in the aforementioned nodes for the three

simulated scenarios are described in Table 5.9. Based on these data, the local gas

rarefaction in the network varies in a wide range of the Knudsen number from the

free molecular limit through the transition up to the slip regime.

Indicative results for the �ow through one cassette directly connected to one pump

during the 3 scenarios studied are shown in Tables 5.10 and 5.11 for Scenario A, Tables

5.12 and 5.13 for Scenario B and Tables 5.14 and 5.15 for Scenario C, respectively.

In Figures 5.12 - 5.14, the gas �ow path in the cross-section along a cassette is

shown for all 3 operational scenarios. This �ow pattern is qualitatively the same in

all three pressure scenarios investigated. The gas enters the cassette from the �xed

pressure nodes at the dome and the inner and the outer slots, de�ned by the nodes

{13, 18, 21, 28 and 41}, respectively. One part of the gas remains in the upper

part of the cassette and �ows in opposite directions returning �nally back into the

plasma from the inner and outer divertor arm gaps, nodes 1 and 41, respectively.

Another part of the gas reaches the lower part of the cassette and then is separated

with (depending on the scenario under consideration) one fraction �owing towards

the cryopump and the remaining one returning to the plasma via the outer and inner
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5.5. Concluding remarks

divertor arm gaps de�ned by nodes 59 and 60.

The �ow back into the vacuum vessel is also observed in Figures 5.12 - 5.14 and

is known as back-�ow and has been also observed in previous studies [38, 46, 47].

Since the cassette is directly linked to the vacuum pump, the main part of the of the

gas throughput entering the divertor is pumped towards the pumping port, while the

remaining amount is �owing back into the plasma. The corresponding percentages

vary from 87% to 90% for all scenarios simulated.

Concerning the percentage break down of the throughput entering the divertor it

is noted that, from about 86%, 70% and 95% is entering from the dome area, nodes

19 and 21 for operational Scenarios A, B and C respectively.

5.5 Concluding remarks

A software tool for modeling and simulation of complex gas distribution systems oper-

ating under any vacuum conditions is presented and validated. The code architecture

and structure are similar to the ones applied in the design and optimization of typical

gas pipe networks in the viscous regime, supplemented however, with a robust kinetic

data base to provide the required �ow rates in the whole range of the Knudsen number

depending on the geometrical and operational data of the network.

The present, more advanced and generalized, algorithm includes the kinetic data

base required to take into account �ow rates through channels of any length. Valida-

tion of the updated software is provided by comparison with the corresponding result

provided by ITERVAC for various pressure values and geometrical characteristics for

the networks under consideration.

Furthermore, the feasibility and e�ectiveness of the presented algorithm in sim-

ulating large size gas networks of arbitrary complexity is demonstrated by modeling

the �ow through a cassette of the 2012 ITER torus primary pumping system. Re-

sults of the �ow patterns and paths along the cassette for various dome pressures are

provided.

It is believed that the presented algorithm has a lot of potential in supporting future

design work in large vacuum systems of fusion machines and particle accelerators.
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.1: Network 5.2.1 - Pressure and Knudsen number at each node of the network
for high values of Kn number � comparison with ITERVAC.

Node
Kn

ARIADNE ITERVAC
number Pressure [Pa] Pressure [Pa]

1 1.83× 10−2 5.00 5.00
2 2.32× 10−2 3.96 4.05
3 2.72× 10−2 3.38 3.51
4 2.98× 10−2 3.08 3.23
5 3.33× 10−2 2.76 2.93
6 4.53× 10−2 2.03 2.28
7 3.33× 10−2 2.76 2.93
8 2.98× 10−2 3.08 3.23
9 2.72× 10−2 3.38 3.51
10 2.98× 10−2 3.08 3.23
11 9.19× 101 1.00× 10−3 1.00× 10−3
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Chapter 5 Tables

Table 5.2: Network 5.2.1 - Mass �ow rate and conductance at each tube of the
network for high values of Kn number � comparison with ITERVAC.

Tube # From node ARIADNE ITERVAC

[j] to node Ṁj [kg/s] Ṁj [kg/s]

1 1-2 2.69× 10−6 2.55× 10−6

2 2-3 1.34× 10−6 1.27× 10−6

3 3-4 6.73× 10−7 6.36× 10−7

4 4-5 6.73× 10−7 6.36× 10−7

5 5-6 1.34× 10−6 1.27× 10−6

6 6-7 −1.34× 10−6 −1.27× 10−6

7 7-8 −6.73× 10−7 −6.36× 10−7

8 8-9 −6.73× 10−7 −6.36× 10−7

9 9-2 −1.34× 10−6 −1.27× 10−6

10 9-10 6.73× 10−7 6.36× 10−7

11 10-5 6.73× 10−7 6.36× 10−7

12 10-7 6.73× 10−7 6.36× 10−7

13 3-10 6.73× 10−7 6.36× 10−7

14 6-11 2.69× 10−6 2.55× 10−6
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.3: Network 5.2.2 - Pressure and Knudsen number at each node of the network
for high values of Kn number � comparison with ITERVAC.

Node
Kn

ARIADNE ITERVAC
number Pressure [Pa] Pressure [Pa]

1 1.83× 10−2 5.00 5.00
2 2.22× 10−2 4.13 4.19
3 2.51× 10−2 3.65 3.75
4 2.73× 10−2 3.36 3.47
5 2.90× 10−2 3.17 3.30
6 2.98× 10−2 3.08 3.21
7 3.08× 10−2 2.98 3.12
8 3.30× 10−2 2.78 2.93
9 3.78× 10−2 2.43 2.61
10 5.16× 10−2 1.78 2.02
11 3.78× 10−2 2.43 2.61
12 3.30× 10−2 2.78 2.93
13 3.08× 10−2 2.98 3.12
14 2.98× 10−2 3.08 3.21
15 2.90× 10−2 3.17 3.30
16 2.73× 10−2 3.36 3.47
17 2.51× 10−2 3.65 3.75
18 2.66× 10−2 3.45 3.56
19 2.83× 10−2 3.24 3.37
20 2.98× 10−2 3.08 3.21
21 3.17× 10−2 2.90 3.05
22 3.44× 10−2 2.67 2.83
23 3.17× 10−2 2.90 3.05
24 2.98× 10−2 3.08 3.21
25 2.83× 10−2 3.24 3.37
26 2.98× 10−2 3.08 3.21
27 9.19× 101 1.00× 10−3 1.00× 10−3
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.5: Network 5.3 - Geometrical characteristics of each piping element.

1 2 3 4 5 6 7 8 9 10
L[m] 2.5 2.5 1 0.5 2 2 3 4 6 4

Dh[m] 0.5 0.5 0.4 0.5 0.4 0.5 0.8 0.9 0.4 0.9

11 12 13 14 15 16 17 18 19 20
L[m] 3 6 7 6 7 3 8 10 1 1

Dh[m] 0.8 0.6 0.6 0.4 0.5 0.8 0.6 0.5 0.4 0.4

21 22 23 24 25 26 27 28 29
L[m] 1 2.5 4 3 3 4 3 2.5 5

Dh[m] 0.4 0.5 0.9 0.8 0.8 0.9 0.6 0.5 0.4
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Chapter 5 Tables

Table 5.6: Network 5.3 - Pressure and Knudsen number at each node of the network
in the viscous regime.

Node
Kn

Pressure
number [Pa]

1 3.34× 10−2 4.00× 10−1

2 3.78× 10−2 3.53× 10−1

3 4.75× 10−2 3.02× 10−1

4 5.58× 10−2 2.66× 10−1

5 5.81× 10−2 2.55× 10−1

6 6.46× 10−2 1.83× 10−1

7 4.79× 10−2 1.64× 10−1

8 5.90× 10−2 1.62× 10−1

9 1.67× 100 1.00× 10−2

10 5.71× 10−2 1.67× 10−1

11 6.02× 10−2 1.64× 10−1

12 7.56× 10−2 1.59× 10−1

13 6.32× 10−2 1.76× 10−1

14 9.63× 10−2 1.46× 10−1

15 1.21× 10−1 1.38× 10−1

16 1.20× 10−1 1.29× 10−1

17 3.69× 10−2 2.13× 10−1

18 4.25× 10−2 2.14× 10−1

19 3.72× 10−2 2.11× 10−1

20 4.15× 10−2 2.10× 10−1

21 6.94× 10−2 1.93× 10−1

22 7.28× 10−2 1.84× 10−1

23 1.67× 10−1 1.00× 10−1

24 1.34× 10−1 1.00× 10−1
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Chapter 5 Tables

Table 5.8: Geometric characteristics of the piping elements implemented for the the
simulation of the �ow though the divertor

Tube # From node Length Dh Tube # From node Length Dh

[j] to node [m] [m] [j] to node [m] [m]

1 1-2 0.1075 0.1830 36 36-35 0.0786 0.2236
2 2-3 0.1875 0.1831 37 37-36 0.0786 0.2236
3 3-4 0.1875 0.1831 38 38-37 0.0579 0.0575
4 4-5 0.1214 0.0579 39 39-38 0.0579 0.0575
5 5-6 0.1276 0.1817 40 40-39 0.2135 0.1907
6 6-7 0.1276 0.1817 41 41-40 0.1015 0.0478
7 7-8 0.2598 0.2693 42 60-42 0.2589 0.1274
8 8-9 0.2598 0.2693 43 42-43 0.1875 0.1831
9 9-10 0.1691 0.0816 44 43-44 0.1875 0.1831
10 10-11 0.2000 0.1962 45 44-45 0.3750 0.1831
11 11-48 0.2000 0.1962 46 45-46 0.1276 0.1817
12 12-11 0.2000 0.1962 47 47-46 0.1276 0.1817
13 14-12 0.0942 0.1461 48 48-47 0.2598 0.2693
14 13-14 0.0482 0.0087 49 49-48 0.2598 0.2693
15 15-14 0.1455 0.1461 50 50-49 0.1875 0.1831
16 16-15 0.1455 0.1461 51 51-50 0.1875 0.1831
17 17-16 0.1455 0.1990 52 52-51 0.4000 0.1962
18 23-17 0.5217 0.2784 53 53-52 0.0471 0.0487
19 18-19 0.2410 0.3645 54 54-53 0.0471 0.0487
20 19-20 0.1646 0.2935 55 55-54 0.1456 0.1461
21 21-22 0.2359 0.3000 56 56-55 0.1456 0.1461
22 22-20 0.1646 0.2935 57 57-56 0.0482 0.0087
23 20-23 0.1519 0.2704 58 58-57 0.3750 0.1831
24 24-23 0.5217 0.2784 59 59-58 0.2410 0.3645
25 25-24 0.1652 0.1098 60 43-61 0.4885 0.8215
26 26-25 0.1137 0.1358 61 46-61 0.9770 0.7361
27 27-26 0.1137 0.1358 62 48-61 1.9540 0.6238
28 28-27 0.1042 0.0210 63 61-62 1.0163 1.1125
29 29-27 0.0589 0.0732 64 62-63 1.4768 1.1125
30 30-29 0.0589 0.0732 65 63-64 0.7050 2.2836
31 31-30 0.1231 0.2026 66 64-65 0.7050 2.6974
32 32-31 0.1231 0.2026 67 65-66 0.4000 1.4700
33 33-32 0.1804 0.0929
34 34-33 0.1408 0.2587
35 35-34 0.1408 0.2587
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5. NETWORK OF PIPING ELEMENTS OF ANY LENGTH

Table 5.9: Pressure values at prede�ned positions for each of the 54 cassettes and
the four pumps for the 3 proposed operational scenarios.

Scenario A Scenario B Scenario C
Gas D2 He D2

P1(Pa) 8.250× 10−4 7.740× 10−4 8.120× 10−4

P2(Pa) 3.650 3.890× 10−2 1.500× 101

P3(Pa) 1.852 2.848× 10−2 7.819
P4(Pa) 1.852 2.848× 10−2 7.819
P5(Pa) 1.040× 101 2.770× 10−1 2.360× 101

P6(Pa) 6.760× 10−5 7.010× 10−6 8.820× 10−4

P7(Pa) 6.760× 10−5 7.010× 10−6 8.820× 10−4

Ppump(Pa) 1.000× 10−6 1.000× 10−6 1.000× 10−6
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Table 5.10: Network 5.4.1 - Pressure and Knudsen number at each node of the
network simulating the �ow through the divertor and lower port regions - Scenario A.

Node
Kn

Pressure Node
Kn

Pressure
number [Pa] number [Pa]

1 1.449× 102 8.250× 10−4 36 5.742× 10−2 1.445
2 7.924× 100 1.279× 10−2 37 9.170× 10−2 1.440
3 3.682 2.752× 10−2 38 2.783× 10−1 1.159
4 3.667 4.198× 10−2 39 1.748× 10−1 8.554× 10−1

5 6.079× 10−1 2.547× 10−1 40 1.863× 10−1 8.353× 10−1

6 3.860× 10−1 2.645× 10−1 41 5.739× 103 6.760× 10−5

7 3.001× 10−1 2.742× 10−1 42 5.428× 100 2.202× 10−2

8 2.472× 10−1 2.788× 10−1 43 1.619× 100 2.894× 10−2

9 3.732× 10−1 2.834× 10−1 44 3.397× 100 2.983× 10−2

10 3.508× 10−1 3.807× 10−1 45 3.266× 100 3.114× 10−2

11 2.427× 10−1 3.896× 10−1 46 1.587× 100 3.191× 10−2

12 1.710× 10−1 6.341× 10−1 47 1.197× 100 6.876× 10−2

13 5.843× 10−1 3.650 48 6.305× 10−1 8.665× 10−2

14 1.919× 10−1 9.640× 10−1 49 9.470× 10−1 8.662× 10−2

15 9.699× 10−2 1.310 50 1.171× 100 8.657× 10−2

16 6.678× 10−2 1.611 51 1.131× 100 8.651× 10−2

17 4.532× 10−2 1.715 52 1.753× 100 8.644× 10−2

18 2.748× 10−2 1.852 53 4.453× 100 8.562× 10−2

19 3.061× 10−2 1.842 54 2.247× 100 8.479× 10−2

20 3.555× 10−2 1.826 55 1.500× 100 8.470× 10−2

21 3.339× 10−2 1.852 56 2.833× 100 8.462× 10−2

22 3.401× 10−2 1.838 57 1.140× 103 1.697× 10−4

23 3.759× 10−2 1.790 58 8.418× 102 8.050× 10−5

24 5.329× 10−2 1.794 59 7.530× 102 6.760× 10−5

25 8.259× 10−2 1.830 60 2.082× 102 8.250× 10−4

26 7.412× 10−2 1.844 61 7.730× 10−1 2.915× 10−2

27 1.303× 10−1 1.858 62 8.499× 10−1 1.962× 10−2

28 8.492× 10−2 1.040× 101 63 1.521× 100 7.184× 10−3

29 1.461× 10−1 1.734 64 1.354× 100 5.504× 10−3

30 8.374× 10−2 1.607 65 2.056× 100 4.330× 10−3

31 5.731× 10−2 1.598 66 1.262× 104 1.000× 10−6

32 7.901× 10−2 1.590
33 7.227× 10−2 1.460
34 4.926× 10−2 1.456
35 5.302× 10−2 1.451
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Table 5.11: Network 5.4.1 - Mass �ow rate values for each piping element the network
simulating the �ow through the divertor and lower port regions - Scenario A.

Tube # From node Ṁj Tube From node Ṁj

[j] to node [kg/s] number to node [kg/s]

1 1-2 −8.682× 10−8 36 36-35 −2.399× 10−7

2 2-3 −8.682× 10−8 37 37-36 −2.399× 10−7

3 3-4 −8.682× 10−8 38 38-37 −2.399× 10−7

4 4-5 −8.682× 10−8 39 39-38 −2.399× 10−7

5 5-6 −8.682× 10−8 40 40-39 −2.399× 10−7

6 6-7 −8.682× 10−8 41 41-40 −2.399× 10−7

7 7-8 −8.682× 10−8 42 60-42 −4.111× 10−8

8 8-9 −8.682× 10−8 43 42-43 −4.111× 10−8

9 9-10 −8.682× 10−8 44 43-44 −5.323× 10−9

10 10-11 −8.682× 10−8 45 44-45 −5.323× 10−9

11 11-48 2.573× 10−6 46 45-46 −5.323× 10−9

12 12-11 2.660× 10−6 47 47-46 2.620× 10−7

13 14-12 2.660× 10−6 48 48-47 2.620× 10−7

14 13-14 1.253× 10−8 49 49-48 −3.533× 10−10

15 15-14 2.648× 10−6 50 50-49 −3.533× 10−10

16 16-15 2.648× 10−6 51 51-50 −3.533× 10−10

17 17-16 2.648× 10−6 52 52-51 −3.533× 10−10

18 23-17 2.648× 10−6 53 53-52 −3.533× 10−10

19 18-19 1.432× 10−6 54 54-53 −3.533× 10−10

20 19-20 1.432× 10−6 55 55-54 −3.533× 10−10

21 21-22 1.087× 10−6 56 56-55 −3.533× 10−10

22 22-20 1.087× 10−6 57 57-56 −3.533× 10−10

23 20-23 2.519× 10−6 58 58-57 −3.533× 10−10

24 24-23 1.287× 10−7 59 59-58 −3.533× 10−10

25 25-24 1.287× 10−7 60 43-61 −3.579× 10−8

26 26-25 1.287× 10−7 61 46-61 2.566× 10−7

27 27-26 1.287× 10−7 62 48-61 2.311× 10−6

28 28-27 3.686× 10−7 63 61-62 2.532× 10−6

29 29-27 −2.399× 10−7 64 62-63 2.532× 10−6

30 30-29 −2.399× 10−7 65 63-64 2.532× 10−6

31 31-30 −2.399× 10−7 66 64-65 2.532× 10−6

32 32-31 −2.399× 10−7 67 65-66 2.532× 10−6

33 33-32 −2.399× 10−7

34 34-33 −2.399× 10−7

35 35-34 −2.399× 10−7
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Table 5.12: Network 5.4.2 - Pressure and Knudsen number at each node of the
network simulating the �ow through the divertor and lower port regions - Scenario B.

Node
Kn

Pressure Node
Kn

Pressure
number [Pa] number [Pa]

1 2.445× 102 7.740× 10−4 36 5.991× 100 2.193× 10−2

2 1.869× 102 8.587× 10−4 37 9.630× 100 2.170× 10−2

3 1.663× 102 9.647× 10−4 38 3.074× 101 1.661× 10−2

4 2.276× 102 1.071× 10−3 39 2.057× 101 1.151× 10−2

5 9.326× 101 2.628× 10−3 40 2.235× 101 1.102× 10−2

6 5.943× 101 2.719× 10−3 41 8.759× 104 7.010× 10−6

7 4.633× 101 2.811× 10−3 42 4.785× 102 3.954× 10−4

8 3.816× 101 2.859× 10−3 43 2.763× 102 2.685× 10−4

9 5.760× 101 2.906× 10−3 44 5.830× 102 2.751× 10−4

10 5.738× 101 3.684× 10−3 45 5.657× 102 2.846× 10−4

11 3.963× 101 3.776× 10−3 46 2.760× 102 2.903× 10−4

12 2.511× 101 6.832× 10−3 47 2.072× 102 6.286× 10−4

13 8.678× 101 3.890× 10−2 48 1.075× 102 8.044× 10−4

14 2.573× 101 1.138× 10−2 49 1.615× 102 8.042× 10−4

15 1.198× 101 1.678× 10−2 50 1.996× 102 8.037× 10−4

16 7.680 2.216× 10−2 51 1.928× 102 8.032× 10−4

17 4.986 2.468× 10−2 52 2.989× 102 8.025× 10−4

18 2.829 2.848× 10−2 53 7.589× 102 7.952× 10−4

19 3.169 2.817× 10−2 54 3.828× 102 7.879× 10−4

20 3.709 2.771× 10−2 55 2.554× 102 7.871× 10−4

21 3.437 2.848× 10−2 56 4.827× 102 7.862× 10−4

22 3.525 2.808× 10−2 57 3.882× 104 7.889× 10−6

23 3.986 2.672× 10−2 58 1.506× 104 7.121× 10−6

24 5.579 2.712× 10−2 59 1.149× 104 7.010× 10−6

25 8.134 2.940× 10−2 60 3.512× 102 7.740× 10−4

26 7.089 3.052× 10−2 61 1.355× 102 2.632× 10−4

27 1.211× 101 3.163× 10−2 62 1.536× 102 1.719× 10−4

28 5.046 2.770× 10−1 63 2.771× 102 6.242× 10−5

29 1.393× 101 2.879× 10−2 64 2.498× 102 4.721× 10−5

30 8.206 2.596× 10−2 65 3.843× 102 3.668× 10−5

31 5.657 2.563× 10−2 66 1.998× 104 1.000× 10−6

32 7.857 2.530× 10−2

33 7.411 2.254× 10−2

34 5.079 2.235× 10−2

35 5.497 2.216× 10−2
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Table 5.13: Network 5.4.2 - Mass �ow rate values for each piping element the network
simulating the �ow through the divertor and lower port regions - Scenario B.

Tube # From node Ṁj Tube From node Ṁj

[j] to node [kg/s] number to node [kg/s]

1 1-2 −6.076× 10−10 36 36-35 −2.915× 10−9

2 2-3 −6.076× 10−10 37 37-36 −2.915× 10−9

3 3-4 −6.076× 10−10 38 38-37 −2.915× 10−9

4 4-5 −6.076× 10−10 39 39-38 −2.915× 10−9

5 5-6 −6.076× 10−10 40 40-39 −2.915× 10−9

6 6-7 −6.076× 10−10 41 41-40 −2.915× 10−9

7 7-8 −6.076× 10−10 42 60-42 7.263× 10−10

8 8-9 −6.076× 10−10 43 42-43 7.263× 10−10

9 9-10 −6.076× 10−10 44 43-44 −3.761× 10−11

10 10-11 −6.076× 10−10 45 44-45 −3.761× 10−11

11 11-48 1.962× 10−8 46 45-46 −3.761× 10−11

12 12-11 2.023× 10−8 47 47-46 2.241× 10−9

13 14-12 2.023× 10−8 48 48-47 2.241× 10−9

14 13-14 1.178× 10−10 49 49-48 −3.029× 10−12

15 15-14 2.011× 10−8 50 50-49 −3.029× 10−12

16 16-15 2.011× 10−8 51 51-50 −3.029× 10−12

17 17-16 2.011× 10−8 52 52-51 −3.029× 10−12

18 23-17 2.011× 10−8 53 53-52 −3.029× 10−12

19 18-19 8.977× 10−9 54 54-53 −3.029× 10−12

20 19-20 8.977× 10−9 55 55-54 −3.029× 10−12

21 21-22 7.232× 10−9 56 56-55 −3.029× 10−12

22 22-20 7.232× 10−9 57 57-56 −3.029× 10−12

23 20-23 1.621× 10−8 58 58-57 −3.029× 10−12

24 24-23 3.902× 10−9 59 59-58 −3.029× 10−12

25 25-24 3.902× 10−9 60 43-61 7.640× 10−10

26 26-25 3.902× 10−9 61 46-61 2.204× 10−9

27 27-26 3.902× 10−9 62 48-61 1.738× 10−8

28 28-27 6.817× 10−9 63 61-62 2.034× 10−8

29 29-27 −2.915× 10−9 64 62-63 2.034× 10−8

30 30-29 −2.915× 10−9 65 63-64 2.034× 10−8

31 31-30 −2.915× 10−9 66 64-65 2.034× 10−8

32 32-31 −2.915× 10−9 67 65-66 2.034× 10−8

33 33-32 −2.915× 10−9

34 34-33 −2.915× 10−9

35 35-34 −2.915× 10−9
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Table 5.14: Network 5.4.3 - Pressure and Knudsen number at each node of the
network simulating the �ow through the divertor and lower port regions - Scenario C.

Node
Kn

Pressure Node
Kn

Pressure
number [Pa] number [Pa]

1 1.473× 102 8.120× 10−4 36 1.324× 10−2 6.270
2 1.161 8.728× 10−2 37 2.111× 10−2 6.253
3 5.491× 10−1 1.846× 10−1 38 6.020× 10−2 5.357
4 5.634× 10−1 2.733× 10−1 39 3.441× 10−2 4.345
5 9.713× 10−2 1.594 40 3.619× 10−2 4.299
6 6.273× 10−2 1.628 41 4.398× 102 8.820× 10−4

7 4.956× 10−2 1.660 42 8.728× 10−1 1.369× 10−1

8 4.117× 10−2 1.674 43 2.654× 10−1 1.766× 10−1

9 6.269× 10−2 1.687 44 5.610× 10−1 1.806× 10−1

10 6.240× 10−2 2.140 45 5.448× 10−1 1.867× 10−1

11 4.362× 10−2 2.168 46 2.663× 10−1 1.901× 10−1

12 3.502× 10−2 3.096 47 2.065× 10−1 3.985× 10−1

13 1.422× 10−1 1.500× 10+1 48 1.134× 10−1 4.818× 10−1

14 4.148× 10−2 4.460 49 1.703× 10−1 4.818× 10−1

15 2.200× 10−2 5.774 50 2.104× 10−1 4.815× 10−1

16 1.562× 10−2 6.886 51 2.033× 10−1 4.813× 10−1

17 1.070× 10−2 7.266 52 3.150× 10−1 4.810× 10−1

18 6.510× 10−3 7.819 53 7.995× 10−1 4.769× 10−1

19 7.259× 10−3 7.769 54 4.031× 10−1 4.727× 10−1

20 8.442× 10−3 7.691 55 2.689× 10−1 4.723× 10−1

21 7.909× 10−3 7.819 56 5.080× 10−1 4.720× 10−1

22 8.063× 10−3 7.754 57 1.327× 102 1.458× 10−3

23 8.950× 10−3 7.519 58 7.097× 101 9.548× 10−4

24 1.272× 10−2 7.514 59 5.771× 101 8.820× 10−4

25 2.024× 10−2 7.464 60 2.115× 102 8.120× 10−4

26 1.836× 10−2 7.444 61 1.270× 10−1 1.774× 10−1

27 3.261× 10−2 7.423 62 1.294× 10−1 1.289× 10−1

28 3.742× 10−2 2.360× 10+1 63 2.158× 10−1 5.064× 10−2

29 3.582× 10−2 7.076 64 1.803× 10−1 4.132× 10−2

30 2.003× 10−2 6.717 65 2.556× 10−1 3.484× 10−2

31 1.368× 10−2 6.693 66 1.262× 104 1.000× 10−6

32 1.883× 10−2 6.669
33 1.671× 10−2 6.314
34 1.138× 10−2 6.301
35 1.224× 10−2 6.288
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Table 5.15: Network 5.4.3 - Mass �ow rate values for each piping element the network
simulating the �ow through the divertor and lower port regions - Scenario C.

Tube # From node Ṁj Tube From node Ṁj

[j] to node [kg/s] number to node [kg/s]

1 1-2 −6.520× 10−7 36 36-35 −1.606× 10−6

2 2-3 −6.520× 10−7 37 37-36 −1.606× 10−6

3 3-4 −6.520× 10−7 38 38-37 −1.606× 10−6

4 4-5 −6.520× 10−7 39 39-38 −1.606× 10−6

5 5-6 −6.520× 10−7 40 40-39 −1.606× 10−6

6 6-7 −6.520× 10−7 41 41-40 −1.606× 10−6

7 7-8 −6.520× 10−7 42 60-42 −2.724× 10−7

8 8-9 −6.520× 10−7 43 42-43 −2.724× 10−7

9 9-10 −6.520× 10−7 44 43-44 −2.813× 10−8

10 10-11 −6.520× 10−7 45 44-45 −2.813× 10−8

11 11-48 2.319× 10−5 46 45-46 −2.813× 10−8

12 12-11 2.384× 10−5 47 47-46 1.901× 10−6

13 14-12 2.384× 10−5 48 48-47 1.901× 10−6

14 13-14 6.183× 10−8 49 49-48 −1.995× 10−9

15 15-14 2.378× 10−5 50 50-49 −1.995× 10−9

16 16-15 2.378× 10−5 51 51-50 −1.995× 10−9

17 17-16 2.378× 10−5 52 52-51 −1.995× 10−9

18 23-17 2.378× 10−5 53 53-52 −1.995× 10−9

19 18-19 1.341× 10−5 54 54-53 −1.995× 10−9

20 19-20 1.341× 10−5 55 55-54 −1.995× 10−9

21 21-22 1.084× 10−5 56 56-55 −1.995× 10−9

22 22-20 1.084× 10−5 57 57-56 −1.995× 10−9

23 20-23 2.425× 10−5 58 58-57 −1.995× 10−9

24 24-23 −4.701× 10−7 59 59-58 −1.995× 10−9

25 25-24 −4.701× 10−7 60 43-61 −2.443× 10−7

26 26-25 −4.701× 10−7 61 46-61 1.873× 10−6

27 27-26 −4.701× 10−7 62 48-61 2.128× 10−5

28 28-27 1.136× 10−6 63 61-62 2.291× 10−5

29 29-27 −1.606× 10−6 64 62-63 2.291× 10−5

30 30-29 −1.606× 10−6 65 63-64 2.291× 10−5

31 31-30 −1.606× 10−6 66 64-65 2.291× 10−5

32 32-31 −1.606× 10−6 67 65-66 2.291× 10−5

33 33-32 −1.606× 10−6

34 34-33 −1.606× 10−6

35 35-34 −1.606× 10−6
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Figure 5.1: Schematic representation of the sample network 5.2.1 for the kinetic solver
(left) and ITERVAC (right).
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Figure 5.2: Schematic representation of the sample network 5.2.2 for the kinetic solver
(left) and ITERVAC (right).
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Figure 5.3: Schematic representation of the tree network, Network 5.3.
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Figure 5.4: Schematic representation of the cryopump position for ITER's latest
design.
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Figure 5.5: Catia schematics of the divertor con�guration(2012).
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Figure 5.6: Catia schematics of the divertor and lower port region con�gura-
tions(2012).
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Figure 5.9: Network 5.5 - Schematic representation of the resulting network with a
detailed view of one of the 54 cassettes and the resulting �ow path, based on the
2012 design.
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Figure 5.11: Network 5.5 - Locations of the prede�ned pressure values for each of the
54 cassettes and the four pumps for the 3 proposed operational scenarios.
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Figure 5.12: Network 5.5 - Gas �ow path in the cross-section along a cassette for
operational scenario A.
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Figure 5.13: Network 5.5 - Gas �ow path in the cross-section along a cassette for
operational scenario B.
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Figure 5.14: Network 5.5 - Gas �ow path in the cross-section along a cassette for
operational scenario C.
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6
Summary, �nal remarks and future

perspectives

6.1 Summary and contributions

In the recent years, extensive investigations have been conducted in an attempt to

simulate gas pipe networks in the hydrodynamic regime based on the Navier-Stokes

equations. As a result, several in-house and commercial codes have been developed in

an attempt to understand the physics and the �ow behavior in gas pipe networks ap-

pearing in various technological applications including, but not limited to, compressed

air or natural gas networks. However, the corresponding work for case of gas pipe

networks operating in applications related to vacuum pumping, metrology, industrial

aerosol, porous media, and micro-�uidics is quite limited. This is mainly attributed to

the increased complexity of the problem where kinetic modeling has to be combined

with pipe networking.

The aim of the present thesis is to �ll this gap and constitutes the �rst systematic

and successful scienti�c e�ort in integrating the modeling gas �ows through channels

of various lengths and cross sections under any vacuum conditions in an integrated

gas pipe network solver. Furthermore, ARIADNE, through the developed graphical

interface, is a complete computational tool capable of simulating complex rare�ed gas

�ow con�gurations operating at any pressure from the atmospheric down to ultra-

high vacuum. The algorithm is validated through commercial and in-house developed

algorithms and then is applied to solve various gas pipe networks including the neutral

193

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:58:53 EEST - 3.22.70.55



6. CONCLUSIONS

gas pipe network of the ITER divertor pumping system which is considered as one

of the most complex ones worldwide. A brief review of the subjects investigated in

Chapters 2-5 is provided.

A detailed description of all pressure driven �ow con�gurations involved in the

present work has been presented in Chapter 2. Three main setups, with respect

to channel's length, namely the �ows through a) long, b) moderate and c) short

channels have been employed. These �ows are treated based on the linear theory for

long and short channels, when the latter is applicable, as well as end e�ect theories

for channels of moderate length and the more general nonlinear approach for short

channels. Overall it has been demonstrated that for rare�ed gas �ows in long channels,

linear kinetic modeling, as described by suitable kinetic model equations, may take

advantage of all �ow characteristics and properties and yield very accurate results in

the whole range of the Knudsen number with minimal computational e�ort. For the

case of the non-linear approach, similarly accurate results are acquired, however, the

computational cost in quite increased. The corresponding kinetic equations along with

the associated formulations have been provided and implemented to return adequate

dense kinetic results to be integrated into the network code. Even more, the range

of validity of each approach has also been examined.

Chapter 3 contains a detailed description of the developed Algorithm for Rare�ed

gas �ow in Arbitrary Distribution Networks (ARIADNE). First of all, the kinetic results

obtained for the rare�ed �ow through each tube of the network form a very dense

grid of data in order to allow accurate representation of the operational conditions

of an arbitrary gas pipe network. Interpolation between the available data points is

performed by cubic splines for the �ow rates in the case of long channels, by high

order curve �tting for the increment lengths for the case of channels of moderate

length and trilinear interpolation for the �ow rate in terms of the pressure, length and

rarefaction in the case of short channels.

The developed algorithm includes �rst the drawing of the network in a graphical

environment and then the formulation and solution of the governing equations de-

scribing the �ow conditions of the distribution system. In the drawing process of the

network, the user, through the developed graphical interface, is capable of providing

the input data including the coordinates of the nodes in a 3D space, the length and

the diameter of the pipe elements, the pressure heads of the �xed-grade nodes and
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information for the type of the gas and its properties. Even more, the demands (if

any) at the nodes may also be provided. Once the geometry of the network is �xed,

an iterative process is initiated between the pressure drop equations and the system

of mass and energy conservation equations in order to successfully handle gas pipe

networks operating from the free molecular, through the transition up to the slip and

hydrodynamic regimes.

Additionally, the further upgrade of an in-house hydrodynamic solver, built in

Matlab environment, used for the simulation of gas pipe networks in the hydrodynamic

regime has also been presented. This latter upgrade refers to the extension of the

range of the applicability of the hydrodynamic solver by introducing the formulas for

the correct estimation of the friction factor by making use of slip boundary conditions.

The next two following chapters, namely Chapters 4 and 5, are devoted on the

validation of the proposed algorithm and on its implementation in solving certain

gas pipe networks of certain complexity. Chapter 4 is devoted to networks consist-

ing of long channels or channels of moderate length with circular, orthogonal and

trapezoidal cross channels. Results are based on the in�nite capillary and the end

e�ect theories. The code validation and benchmarking is achieved in the viscous

regime by comparisons with the in-house hydrodynamic solver and in a wide range of

the Knudsen number by comparisons with the ITERVAC code. Several simulations

have been performed with the respect to i) the network's complexity, ii) the Knudsen

number, iii) the piping elements' cross-section, iv) their individual geometrical char-

acteristics (length and diameter) as well as v) the applicability and e�ectiveness in

micro-geometries or in vacuum conditions. The corresponding results with the ones

derived by the updated hydrodynamic solver reported excellent agreement in terms of

the mass �ow rate (and the conductance) through the pipes as well as the pressure

heads at the nodes of the network. Similar results have been obtained for the cases

where the ITERVAC software has been employed.

Last but not least, in Chapter 5 the more general and challenging case of net-

works consisting of channels of arbitrary length have been presented. Following similar

procedure with the one in the previous chapter, several networks of arbitrary complex-

ity have been simulated. Two networks of small and average complexity covering the

whole range of rarefaction have been studied and a comparison has been performed by

implementing the ITERVAC algorithm returning very good agreement. Furthermore,
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the ARIADNE code has been used to demonstrate the e�ectiveness of the presented

algorithm in simulating gas networks of arbitrary complexity and size. This has been

achieved by presenting the results of a network consisting of all possible combina-

tions with respect to the geometrical characteristics of the piping elements forming

it. However, the true capabilities of ARIADNE have been demonstrated by modeling

the 2012 ITER torus primary pumping system. The ITER divertor and lower port

schematics have been translated into a network of piping elements of various lengths

and cross sections. Results of the �ow patterns and paths along the cassette for var-

ious operating scenarios and both qualitative and quantitative results, including the

gas �ow paths through the divertor, as well as the back�ow and pumped throughputs,

have been provided.

It is hoped that the present work will constitute a signi�cant part of a more

general algorithm which will be used as a signi�cant engineering tool in the design and

optimization of gaseous distribution networks operating under any rare�ed conditions.

6.2 Future work

In its present state, ARIADNE constitutes fully integrated software tool, which in

principle can be applied for the simulation, design and optimization of any piping

network, irrespective of geometrical characteristics or pressure conditions. However,

several upgrades may be introduced in the existing software in order to further improve

either its range of applicability or feasibility.

• The developed codes may be further extended to tackle non-isothermal gas

networks, by taking into consideration the gas transport that occurs in the

network due to temperature gradients. In order to achieve this, an equally

dense kinetic data base for all the �ow conditions described in the present

thesis for the case of the pressure driven �ow has to be built. This is a quite

straight-forward task, but with great requirements in time.

• A further addition of elements with speci�c geometrical characteristics that

may appear in networks, may be a further upgrade of the software. Such

elements as bellows or even corners and T-junctions, will require a further

increase of the corresponding data base. However, especially for the case of
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Ts', the formulation of the problem is multi parametric taking into account the

radii of the in�ow-out�ow ducts forming the junction.

• The existing code may be further advanced with the implementation of opti-

mization subroutines for optimal sensor placement and leak detection. One of

the most popular optimization techniques for sensor selection is genetic algo-

rithms. Genetic algorithms that have been developed by John Holland [51] are

search algorithm based on the mechanics of natural selection and natural genet-

ics. Several researchers have proposed methods to select locations of sensors

for structural health monitoring [43], health assessment of aerospace systems

[73] or leak detection and calibration [152].

• Several advancements may be implemented in the numerical methods ARI-

ADNE is making use of. A more sophisticated/parallel solver for the system

of equations formed or even a higher order of interpolating techniques for the

estimation of more accurate values picked from the kinetic data base.

• Finally, apart of the vacuum �ows or micro- geometries, a system of piping

elements may be found in many areas. The further extension of the present

software with respect to its area of applicability, may be the simulation of

respiratory gas �ows. The complex geometry of the bronchial tree, along with

the several studies around the mechanics of respiratory gas �ows [2, 42, 95],

provide a promising basis for the applicability of the developed algorithm.
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A
Derivation of the Darcy-Weisbach equation

As it has already been mentioned, the �ow of the gas inside the network con�guration

is assumed to be isothermal. However, since the Mach number computed in several

cases may be around or even exceed the value of 0.3, the compressible Navier-Stokes

equations are utilized for the formulation of the network solver in the hydrodynamic

regime.

The di�erential equation for continuity is the mathematical formulation of the law

of conservation of mass in a certain point in space and three-dimensional �ow is:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (A.1)

For the case of one-dimensional compressible �ow through a channel of varying

cross sections, from a cross section A1 to a cross section A2, the continuity equation

takes the form

d(ρuA) = 0⇒ ρuA = ct (A.2)

or

ρ1u1A1 = ρ2u2A2 ⇒ Q1 = Q2 (A.3)

The generalized form of the momentum equations where the viscosity is constant

is expressed by

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk
=
∂σij
∂xi

+ ρfi (A.4)

By introducing the constitutive Navier-Stokes equations in the case of one-dimensional
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fully developed �ow, the momentum equation in the x-direction is described by

ρu
du

dz
= −dP

dz
+ ρgx +

d

dx

(
µ

du

dx

)
(A.5)

and for a height di�erence equal to dz

ρudu + dP + ρgdz + dPL = 0 (A.6)

where dPL are the losses due to friction replacing the third term of the equation. For

the case of a cylindrical channel of diameter D and length L, the losses due to friction

are computed by making use of the Darcy-Weisbach equation

dPL = fD
L

d
ρ

u2

2
(A.7)

where fD is the friction factor estimated according to the Reynolds number in following

paragraphs. Based on the momentum Eq. A.6 and for the case of horizontal �ow or

small height di�erences (dz = 0), yields

ρudu + dP + dPL = 0 (A.8)

The isothermal �ow requires constant temperature distribution along the �ow and

an ideal gas is de�ned as a gas which is subject to the constitutive equation:

P = ρR∗T or T =
P

ρR∗
= ct (A.9)

where P is the absolute pressure, ρ is the density, T is the absolute temperature and

R∗ is the speci�c gas constant. After some trivial mathematical manipulation to Eq.

A.9, yields
dP

P
=

dρ

ρ
⇒ dP = P

dρ

ρ
(A.10)

The Mach number (Ma) is given by:

Ma =
u

a
=

u√
γR∗T

=
u√
γ P
ρ

(A.11)
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and by applying the same mathematical manipulation as in the previous equation

ln Ma = ln u− ln(R∗T)⇒ dMa

Ma
=

du

u
(A.12)

The same formulation is applied to the continuity Eq. A.3, which in combination with

Eq. A.12 and assuming a channel of constant cross sections returns

ρuA = ct → dρ

ρ
+

du

u
+

dA

A
= 0⇒ dρ

ρ
= −dMa

Ma
(A.13)

The pressure drop due to friction is evaluated through the Darcy-Weisbach equation

A.7, which for the case of a compressible �ow, by introducing the Mach number and

the speed of sound

a2 = γ
P

ρ
(A.14)

yields

dPL = f
dx

d
ρ

u2

2
= f

dx

d
γ

P

a2

u2

2
= f

dx

d
γP

Ma2

2
(A.15)

By introducing Eqs. A.10 and A.15 into the momentum Eq. A.8 and diving by P

yields

− dMa

Ma
+
ρ

P
u2 du

u
+ f

dx

d
γ

Ma2

2
= 0 (A.16)

By further introducing ρ
P

= 1
R∗T

= γ
γR∗T

= γ
a2

and Eq. A.12 into Eq.A.16 we derive

the x-momentum equation in terms of the Mach number given by

f
dx

d
=

2dMa

γMa3
− 2dMa

Ma
(A.17)

In the case where the �ow is isothermal, the speed of sound a, as a function of

temperature, remains constant and the following relation holds:

Ma1
Ma2

=
u1

u2
=
ρ2
ρ1

=
P2

P1
(A.18)

wherein the �rst ratio is derived from the equation of the speed of sound, the middle

of the constant mass �ow rate and the latter by applying the constitutive equation.

Here, the subscripts 1 and 2 indicate the upstream and downstream �uid properties
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in the direction of the �ow and in this case the entrance and the exit of a pipe,

respectively. The mass �ow rate is given by Ṁ = ρuA and by introducing Eqs. A.14

and A.9 yields

Ṁ = ρuA = Aγ
P

a2

u2

u
= A

γPMa2

u
= A

γMa2ρR∗T

u
(A.19)

and by rearranging for Ma2

Ma2 =
Ṁu

AγρR∗T
(A.20)

By integrating Eq. A.17 between the entrance and the exit of a pipe, denoted by 1

and 2 respectively, we deduce

2∫
1

f

d
dx =

2∫
1

2

γMa3
dMa−

2∫
1

2

Ma
dMa⇒

⇒ f
L

d
=

1

γMa21
− 1

γMa22
− 2 ln Ma2 + 2 ln Ma1 ⇒

⇒ f
L

d
=

1

γMa21
− 1

γMa22
− ln Ma22 + ln Ma21 ⇒

⇒ f
L

d
=

1

γMa21

(
1− Ma21

Ma22

)
− 2 ln

Ma2
Ma1

(A.21)

By properly combining Eqs. A.21 with A.18 and A.20 yields

f
L

d
=

1

γMa21

(
1−

(
P2

P1

)2
)
− 2 ln

P1

P2
⇒

⇒ f
L

d
=

AR∗Tρ1
Mu1

(
1−

(
P2

P1

)2
)
− 2 ln

P1

P2
⇒

⇒ f
L

d
=

AR∗Tρ1(P2
1 − P2

2 )

Mu1p2
1

− 2 ln
P1

P2
⇒

⇒ f
L

d
=

A(P2
1 − P2

2 )

Mu1ρ1R∗T
− 2 ln

P1

P2
⇒

⇒ f
L

d
=

A2(P2
1 − P2

2 )

M2R∗T
− 2 ln

P1

P2
(A.22)
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and by rearranging for the pressure drop equations we deduce

P2
1 − P2

2 =
M2R∗T

A2

(
2 ln

P1

P2
+ f

L

d

)
(A.23)

By assuming the density of the gas inside the pipe as the mean value of the density

between the pipe's ends ρm = (ρ1 +ρ2)/2 and according to the constitutive equation,

the �nal expression for the pressure drop may be derived

PL = P1 − P2 =
M2

2ρmA2

(
2 ln

P1

P2
+ f

L

d

)
(A.24)

which is the basic equation implemented in the hydrodynamic solver for the simulation

of the �ow through a gaseous distribution system. As it seen, Eq. A.24 derives

from the Darcy-Weisbach relation by introducing the necessary formulation for the

compressible �ow. It is noted that in the present case, the pressure drop along two

points depends on the pressure at the points into consideration. As a result, the

pressure drop cannot be evaluated directly as a function of the length, the diameter,

the mass �ow rate and the friction factor, but in the case where the pressures upstream

and downstream the pipe are unknown, an iterative procedure is necessary, increasing

signi�cantly the computational cost.
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B
Tables of kinetic coe�cients

In the present appendix a brief description of all the required kinetic coe�cients

introduced into the ARIADNE code are summed up.

In general, the pressure driven �ow of a rare�ed gas through a tube of length

L and radius R with the tube inlet and outlet pressures maintained at P1 and P2

respectively (P1 > P2) is prescribed by three dimensionless parameters namely, i) the

geometrical ratio L/R , ii) the pressure ratio P2/P1 and iii) the reference Knudsen

number (Kn) or alternatively the reference rarefaction parameter (δ). A review of the

four main approaches modeling rare�ed gas �ows through channels, implemented in

the present work, has been provided in Chapter 2. The approaches include the in�nite

capillary and end e�ect theories for long and medium capillaries, as well as the linear

and the nonlinear approach for short capillaries. Furthermore, these methodologies

are organized and presented in a manner which is useful for their implementation in

the present work.

In particular, for channels with L/Dh > 50, where L is the length and Dh the

hydraulic diameter, the channel is considered as long and the available kinetic con-

ductance results based on the theory of the in�nite long channels are applied. For

channels of moderate length 5 < L/Dh < 50, the end correction theory is introduced.

This theory has been recently successfully implemented to de�ne the �ctitious incre-

ment length which must be added to the channel length in order to provide accurate

results for the conductance by taking into account the channel end e�ects. Thus, the

kinetic data base has been enriched with the values of the increment length in terms

of the gas rarefaction. Finally, for short channels, i.e. L/Dh < 5, the above theory is
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not valid and depending on the local pressure gradient, extensive simulations based

on either linear or non-linear kinetic theory have been performed to provide a com-

plete set of results for the channel conductance in terms of gas rarefaction, pressure

di�erence and channel length. These simulations are computationally very expensive.

The case of a tube much longer than its radius (R/L << 1) with dimensionless

pressure gradient much less than one, i.e. XP << 1, even for large pressure di�erences

∆P , is tackled by the in�nite capillary theory where the �ow is considered as fully

developed. In this scenario, the pressure varies only in the �ow direction and end

e�ects are neglected. Even more, the reduced �ow rate at each cross section G (δ)

is a function only of δ. Tabulated values of the reduced �ow rate G (δ) for various

values of the accommodation coe�cient α are shown in Table B.1.

In order to extend the validity of the in�nite capillary theory from long to medium

tubes, the end e�ect theory is introduced. As described in Section 2.2, the end e�ect

corrections depend only on the rarefaction parameter of the tube inlet and outlet

region and are presented in Table B.2 for completeness purposes.

In the case of a pressure driven �ow with a small pressure di�erence P2/P1 >

0.9, the �ow can be considered linear even for short tubes and thus the linear BGK

model can be implemented. The �ow depends only on the rarefaction parameter

and the geometrical ratio of the tube. The solution of the linear problem provides

the dimensionless �ow rates which are presented for various values of the rarefaction

parameter and dimensionless length in Table B.3

As described in Chapter 2, in the case where L/R ≤ 10 and P2/P1 ≤ 0.9, the �ow

cannot be considered as linear and the problem must be tackled either with the DSMC

method or with suitable nonlinear kinetic models solved by the parallelized discrete

velocity method. The nonlinear �ow depends on all three �ow parameters and the

dimensionless �ow rate for indicative values of the �ow parameters are presented in

Tables B.4 and B.5.
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Table B.1: Kinetic coe�cient G for �ow through circular channels in terms of δ0 and
specular-di�use boundary conditions (α=1, 0.85, 0.7 and 0.5).

G
δ0 α=1 α=0.85 α=0.7 α=0.5
0 0.752 1.02 1.40 2.26

0.001 0.751 1.01 1.39 2.24
0.01 0.744 0.999 1.36 2.17
0.1 0.715 0.941 1.25 1.94
0.2 0.702
0.3 0.695 0.896 1.18 1.79
0.5 0.689 0.879 1.14 1.73
0.6 0.688
1 0.693 0.870 1.12 1.67
1.5 0.709 0.879 1.12 1.66
2 0.729 0.896 1.13 1.66
3 0.777 0.941 1.17 1.70
4 0.829 0.992 1.22 1.74
5 0.884 1.05 1.28 1.79
6 0.940 1.10 1.33 1.85
7 0.997 1.16 1.39 1.91
8 1.06 1.22 1.45 1.97
9 1.11 1.28 1.51 2.02
10 1.17 1.34 1.57 2.08
11 1.23 1.40 1.63 2.14
13 1.35 1.52 1.75 2.27
15 1.48 1.64 1.87 2.39
20 1.78 1.95 2.18 2.70
30 2.40 2.56 2.80 3.32
40 3.02 3.19 3.42 3.94
50 3.64 3.81 4.04 4.56
100 6.76 6.93 7.16 7.68
200 13.0 13.2 13.4 13.9
500 31.7 31.9 32.1 32.6
1000 62.5 62.7 62.9 63.5
. . . . .
∞ 63.0 63.2 63.4 63.9
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Table B.2: Length increment ∆Ltube for various values of the rarefaction parameter
δ.

δ 0.005 0.05 0.1 0.2 0.4 0.6 0.8 1 2
∆Ltube 2.22 1.72 1.52 1.33 1.16 1.07 1.01 0.964 0.841

δ 4 6 8 10 ... ∞
∆Ltube 0.735 0.704 0.688 0.682 ... 0.680

Table B.3: Flow rate WLIN through a tube for various values of the rarefaction pa-
rameter δ and dimensionless length L/R , based on the linear BGK kinetic model with
di�use boundary conditions.

WLIN

L/R
δ

0 0.1 1 2 5 10
0 0.999 1.04 1.37 1.72 2.77 4.35
1 0.672 0.696 0.892 1.10 1.70 2.63
5 0.311 0.316 0.373 0.440 0.642 0.988
10 0.191 0.192 0.217 0.251 0.362 0.554
20 0.110 0.108 0.118 0.136 0.195 0.296
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Table B.4: Dimensionless �ow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (1/2).

W

L/R P2/P1
Rarefaction parameter of high pressure chamber (δ1)

0 0.1 0.5 1 2 5 10

0

0.0 1.000 1.014 1.069 1.129 1.221 1.374 1.463
0.1 0.900 0.910 1.000 1.032 1.180 1.350 1.435
0.3 0.700 0.719 0.788 0.862 0.987 1.221 1.366
0.5 0.500 0.509 0.582 0.613 0.778 1.040 1.188
0.7 0.3 0.305 0.354 0.38 0.493 0.717 0.914
0.9 0.1 0.102 0.121 0.14 0.176 0.28 0.432

0.1

0.0 0.953 0.965 1.018 1.074 1.165 1.312 1.404
0.1 0.856 0.869 0.924 0.984 1.08 1.27 1.380
0.3 0.669 0.687 0.752 0.823 0.942 1.171 1.321
0.5 0.475 0.486 0.528 0.583 0.688 0.948 1.150
0.7 0.286 0.292 0.321 0.361 0.436 0.654 0.885
0.9 0.095 0.099 0.114 0.131 0.164 0.246 0.333

0.5

0.0 0.801 0.812 0.855 0.902 0.981 1.117 1.220
0.1 0.721 0.731 0.775 0.826 0.911 1.080 1.200
0.3 0.562 0.577 0.630 0.688 0.786 0.994 1.223
0.5 0.399 0.409 0.444 0.488 0.573 0.796 1.010
0.7 0.241 0.246 0.270 0.300 0.363 0.541 0.762
0.9 0.080 0.083 0.095 0.109 0.135 0.212 0.299

1

0.0 0.672 0.680 0.715 0.754 0.819 0.948 1.062
0.1 0.605 0.613 0.648 0.689 0.761 0.913 1.050
0.3 0.471 0.483 0.525 0.571 0.652 0.834 1.000
0.5 0.336 0.343 0.370 0.405 0.474 0.658 0.866
0.7 0.201 0.205 0.224 0.249 0.298 0.440 0.640
0.9 0.067 0.070 0.080 0.091 0.112 0.170 0.264

2

0.0 0.514 0.52 0.544 0.572 0.62 0.732 0.855
0.1 0.463 0.468 0.493 0.521 0.573 0.699 0.842
0.3 0.36 0.368 0.396 0.428 0.486 0.63 0.795
0.5 0.256 0.26 0.28 0.304 0.351 0.486 0.669
0.7 0.153 0.156 0.17 0.19 0.22 0.319 0.471
0.9 0.051 0.053 0.059 0.066 0.08 0.119 0.176

5

0.0 0.311 0.312 0.322 0.334 0.361 0.436 0.543
0.1 0.279 0.281 0.291 0.304 0.33 0.412 0.529
0.3 0.217 0.22 0.232 0.247 0.275 0.36 0.485
0.5 0.155 0.156 0.163 0.175 0.197 0.271 0.388
0.7 0.093 0.093 0.1 0.106 0.123 0.174 0.263
0.9 0.031 0.031 0.035 0.038 0.044 0.064 0.098
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APPENDIX B

Table B.5: Dimensionless �ow rate W through short capillaries of cylindrical cross
section vs. rarefaction parameter, pressure ratio and length (2/2).

W

L/R P2/P1
Rarefaction parameter of high pressure chamber (δ1)

20 50 100 200 500 1000 2000

0

0.0 1.512 1.534 1.533 1.529 1.526 1.523 1.522
0.1 1.500 1.510 1.520 1.52 1.52 1.52 1.52
0.3 1.437 1.440 1.450 1.45 1.46 1.46 1.46
0.5 1.300 1.310 1.340 1.35 1.36 1.36 1.36
0.7 1.05 1.09 1.13 1.13 1.15 1.14 1.14
0.9 0.584 0.606 0.628 0.628 0.64 0.634 0.634

0.1

0.0 1.462 1.498 1.508 1.512 1.515 1.515 1.517
0.1 1.45 1.49 1.51 1.51 1.51 1.51 1.51
0.3 1.406 1.420 1.440 1.45 1.45 1.45 1.45
0.5 1.270 1.350 1.370 1.39 1.39 1.39 1.39
0.7 1.030 1.120 1.150 1.16 1.17 1.16 1.16
0.9 0.387 0.421 0.433 0.436 0.44 0.436 0.436

0.5

0.0 1.302 1.383 1.435 1.462 1.484 1.494 1.493
0.1 1.290 1.380 1.430 1.46 1.48 1.49 1.49
0.3 1.267 1.330 1.390 1.43 1.45 1.46 1.46
0.5 1.150 1.280 1.350 1.39 1.41 1.42 1.42
0.7 0.937 1.080 1.150 1.19 1.20 1.20 1.20
0.9 0.367 0.423 0.451 0.466 0.47 0.47 0.47

1

0.0 1.168 1.287 1.358 1.412 1.449 1.456 1.458
0.1 1.160 1.280 1.350 1.41 1.45 1.46 1.46
0.3 1.136 1.24 1.32 1.38 1.42 1.43 1.43
0.5 1.04 1.20 1.29 1.35 1.39 1.40 1.40
0.7 0.831 1.00 1.10 1.16 1.19 1.19 1.19
0.9 0.415 0.499 0.549 0.579 0.594 0.594 0.594

2

0.0 0.974 1.156 1.259 1.339 1.397 1.406 1.404
0.1 0.985 1.15 1.26 1.34 1.39 1.4 1.40
0.3 0.96 1.11 1.23 1.31 1.36 1.37 1.37
0.5 0.864 1.07 1.19 1.28 1.32 1.34 1.34
0.7 0.672 0.884 1.00 1.09 1.13 1.13 1.13
0.9 0.251 0.33 0.373 0.407 0.422 0.422 0.422

5

0.0 0.695 0.917 1.068 1.184 1.271 1.282 1.284
0.1 0.695 0.917 1.068 1.184 1.271 1.282 1.284
0.3 0.663 0.87 1.03 1.15 1.23 1.24 1.23
0.5 0.571 0.828 0.993 1.11 1.18 1.2 1.19
0.7 0.411 0.658 0.814 0.922 0.975 0.98 0.986
0.9 0.164 0.263 0.325 0.368 0.389 0.391 0.393
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