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Aluminum based sacrificial anodes: Composition and electrochemical perform ance

Konstantinos-Panagiotis Liontos 
Department of Mechanical Engineering, University of Thessaly

Supervisor: Dr Anna D. Zervaki

Abstract

Utilization of Sacrificial anodes is the prominent method of providing adequate Ca
thodic Protection for ships and offshore installations, due to their simplicity, structural 
integrity and standalone nature. Aluminum, Zinc and Magnesium sacrificial anodes have 
been developed for commercial use and their application is case-specific. In offshore 
marine applications, Aluminum is almost exclusively used, owing to its low cost, low 
density, high current capacity and the desirable, for the protection of steel structures in 
seawater, operating voltage range. Although Aluminum anodes have desirable proper
ties, Pure Aluminum has the major drawback of rapidly forming a protective layer of 
Al3O2 on its surface when exposed to NaCl solutions, leading to passivation and as a re
sult inadequate protection of the cathode. Therefore, aluminum anodes are alloyed with 
small amounts of elements in order to disturb the formation of the passive oxide film and 
avoid passivation. The way the disturbance of the oxide film is achieved, called activation 
mechanism, varies depending on the composition and the alloying elements. Although 
commercially available Aluminum sacrificial anodes offer adequate protection, the quest 
of improving on specific performance aspects is ongoing with researchers experimenting 
with new materials or conduct studies, from a new perspective, on already proven formu
las with the purpose of improving upon them. In this Thesis, the effect of individual and 
multiple element additions on the electrochemical performance of Aluminum sacrificial 
anodes is investigated.

Keywords: Cathodic Protection, Aluminum sacrificial anodes, Seawater.
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Chapter 1

Introduction

1.1 Thesis scope

The goal of this thesis is to present in a systematic and comprehensive way the effect 
of individual and multiple element additions on the electrochemical performance and 
corrosion behavior of Aluminum sacrificial anodes in seawater solutions.

An extended literature review has been conducted in order to record the results, iden
tify the goals and therefore the motivation of researchers both in the past and in the 
present. The findings presented in this thesis span many decades and are conducted from 
research groups located in different geographic regions with varying backgrounds. The 
diversity of the research groups and their individual approaches on the issue of Cathodic 
protection with the use of sacrificial anodes, lead to the creation a knowledge database 
that covers the issue in a holistic way.

1.2 Thesis structure

This thesis is divided in 5 chapters. The topics covered in the following chapters are 
as follows:

• In Chapter 2 the theory of Galvanic Corrosion and the corrosion control method of 
Cathodic Protection with the use of sacrificial anodes are presented. The parame
ters influencing the magnitude of galvanic corrosion are presented in detail and the 
target values for the operation of sacrificial anodes are discussed.
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Chapter 1 Introduction

• Chapter 3 contains the equations for the design of a Cathodic Protection system. 
The factors that influence the current density requirements and therefore the neces
sary number of anodes are also presented.

• In chapter 4 the findings from the literature review on the effect of individual and 
multiple element additions on the electrochemical performance and corrosion be
havior of aluminum sacrificial anodes is presented

• Chapter 5, as the final chapter, summarizes the findings and outlines the future 
research trends
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Chapter 2

Galvanic corrosion and cathodic 
protection

2.1 Galvanic Corrosion

Galvanic corrosion is an electrochemical form of corrosion that occurs when a metal 
or alloy is electrically coupled to another metal or conducting nonmetal in the same elec
trolyte (either in contact with each other or connected via conductive wire).

The following conditions must all be satisfied for Galvanic corrosion to occur:

1. Two metals/alloys or conducting nonmetals that possess different surface poten
tials.

2. A common electrolyte where the anode and cathode reside.

3. A common electrical path where the anode and cathode are electrically connected 
(either in contact with each other or connected via conductive wire)

If any of these conditions in not met, galvanic corrosion will not occur.

During galvanic coupling:

• corrosion of the less corrosion-resistant (more active) metal increases and the sur
face becomes anodic (Anode)
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Chapter 2 Galvanic corrosion and cathodic protection

• corrosion of the more corrosion-resistant (more noble) metal decreases and the 
surface becomes cathodic (Cathode)

Corrosion occurs due to the formation of electrochemical cells. The electrochemical 
cell is driven by the potential difference between the dissimilar metals of the anode and 
the cathode.

The potential difference creates a current, called galvanic current, the direction of 
which is determined by the corrosion potentials of the coupled metals. The magnitude of 
the galvanic current can be calculated using Kirchhoff’s 2nd law, specifically:

Igalv — (Ec — Ea ) /(R e +  Rm) (2.1)

Where:

• E c: polarized potential of cathode

• Ea: polarized potential of anode

• Re: electrolyte resistance

• Rm: connection resistance

The rate of corrosion is the result of two opposing reactions, an anodic reaction where 
the metal gets oxidized releasing electrons and a cathodic one where Hydrogen gets re
duced removing electrons from the anodic metal. Specifically, the following reactions 
take place in a galvanic couple:

• Oxidation (anodic reaction) that occurs at the Anode: M  ^  M n+ +  ne-

• Reduction (cathodic reaction) that occurs at the cathode and results in Hydrogen 
evolution (gas): 2H  + +  2e-  ^  H 2(t)

In a corrosion cell, (see figure 2.1 metal ions formed from metal oxidation (cations) 
migrate from the anode to the cathode through the electrolyte. The electrons given off 
by this oxidation reaction move from the anode to the cathode through the electrical 
connection. Current flows from the cathode to the anode through the electrical connection 
and from the anode to the cathode in the electrolyte.
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Water line

e
X 0 ? ^  *

Metal M e 4 Metal
anode Me ' cathode
(corroding) OH (inert)

Figure 2.1: Representation of a Galvanic cell. ((Cramer and Covino, 2003))

The galvanic corrosion rate is affected by the following factors:

1. The potential difference between the metals or alloys

The rate of galvanic corrosion depends upon the difference in electrochemical poten
tial of the two metals; the greater the difference, the faster the corrosion of the anodic 
metal will be. A quick way to predict the galvanic relationship of various metals is the 
Galvanic Series. Such a series is a list of freely corroding potentials of various metals and 
alloys in a common electrolyte, arranged in order of potential 2.2. The galvanic series is 
a useful tool for the prediction of the more active metal in a galvanic couple and also the 
separation between the two metals in the galvanic series offers a qualitative indication of 
the probable magnitude of the corrosive rate.

The limitations of the Galvanic series are:

• The rate of corrosion cannot be accurately determined for any given galvanic cou
ple.
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Chapter 2 Galvanic corrosion and cathodic protection

• Some metals/alloys exhibit both an active and passive state, with substantial differ
ence in the potentials of both states (passivation). Some Galvanic Series tables do 
include data for both states.

• The data present in a Galvanic Series are valid strictly for the specific electrolyte 
that the measurements were conducted. Small variations in the composition of the 
electrolyte may cause extended variation on the performance of the metals/alloys 
present on the series.

• Potentials of most metals/alloys are not constant and during extended periods of 
use some variation in the anode's performance is to be expected. The galvanic 
Series does not incorporate time dependent information on the performance of the 
metals/alloys.

2. The nature of the environment - aqueous solutions * •

For the purposes of this master thesis only saline solutions, otherwise designated as 
either natural or artificial “Seawater”, have been investigated. “Natural Seawater” is a 
complex solution of inorganic, organic, and biological components. These components 
mean that solutions sampled directly from the ocean are not easily simulated or repro
duced in the laboratory for corrosion-testing purposes. Furthermore, seawater directly 
sampled from the ocean is exhibiting corrosive behavior different from that of the water 
mass from which it was taken, because the various constituents, such as the living organ
isms and their dissolved organic nutrients, are in balance in the natural environment, a 
balance that changes soon after a seawater sample is isolated from the parent water mass. 
As a result, most researchers create “artificial seawater” solutions according to industry 
standards such as ASTM D1141 or simply NaCl solutions of varying concentrations. The 
major parameters that affect Galvanic Corrosion in natural seawater solutions are:

• Dissolved oxygen content: an increase in dissolved oxygen increases the corrosiv
ity of seawater.

• Sea currents: greater relative speeds between the cathodic structure and the solu
tion lead to a faster stripping of the protective films, coatings and inorganic growth 
(calcareous scale) exposing bare metal and increasing the rate of Galvanic corro
sion.

14



Chapter 2 Galvanic corrosion and cathodic protection

Figure 2.2: Galvanic Series.

• Temperature: an increase in temperature increases the corrosivity of seawater.

• Presence of coatings, marine growth, calcareous scale.

• Salinity: An increase in NaCl contents increases conductivity.

• PH and carbonate content: Both are considered factors which affect the formation 
of calcareous layers. The PH of seawater varies between 7.8-8.4 with lower PH 
values resulting to greater Galvanic corrosion rates.
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Chapter 2 Galvanic corrosion and cathodic protection

3. The cathode/anode surface area ratio and distance within the electrolyte ((Swain, 1996))

Effect of area ratio:

• In a galvanic couple, given a constant current density requirement (A/m2) for the 
protection of the cathodic metal/alloy, an increase in the exposed cathodic surface 
area is translated in a linear current demand increase. The current demand must 
be satisfied by electrons released from the anode. Materials have a set current 
capacity ε (Ah/kg) and as a result, larger cathodic areas that result in increased 
current requirements, increase the rate of dissolution of the anode.

• If the cathode/anode surface ratio is highly unfavorable (cathode surface much 
greater that the anode surface), the anode will be rapidly consumed.

• If the cathode/anode surface ratio is highly favorable (anode surface is equal or 
greater that the cathode surface), the anode consumption rate is greatly reduced.

Effect of Distance:

• The physical distance of the galvanic couple in the common electrolyte is highly 
dependent on the electrolyte's conductivity.

• In highly conductive electrolytes, like seawater, the distance effect is negligible. 
Galvanically coupled materials or structures that are meters apart can still interact 
and the anode will provide sufficient current for the protection of the cathode.

2.2 Cathodic Protection with sacrificial anodes

Cathodic protection (CP) is a method used to protect metals/alloys that would readily 
corrode in their working environment. In essence, a galvanic couple is created by the 
introduction of a more active metal to serve as the anode and the structure to be protected 
as the cathode. Simply put, Cathodic Protection is a Galvanic corrosion process utilized 
in a controlled manner.

Cathodic protection is a corrosion control technique that is not intended to provide 
immunity to the cathode. The sheer number of sacrificial anodes and the current required
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Chapter 2 Galvanic corrosion and cathodic protection

to provide complete immunity to the cathode in any given scenario would be both eco
nomically and operationally unsustainable. The end goal of a well-designed Cathodic 
protection system is to reduce the rate of oxidation to the point that corrosion of the 
cathode becomes negligible without impairing the cathode's functionality.

The active metal introduced is called Sacrificial Anode, since it corrodes, “sacrifices” , 
to protect the cathode. Sacrificial anodes are disposable and have a specific predeter
mined life expectancy. Periodically, sacrificial anodes must be inspected and replaced, 
depending on the specific case, from every few years to decades. ((Norske Veritas, 2010))

2.3 Performance values of sacrificial anodes

The performance of sacrificial anodes is dictated by their current capacity, anodic 
current efficiency and working potential.

Current capacity: The amount of current that 1kg of anode material can produce in 
one hour in steady state conditions. The measurement unit is “Ah/kg” and is symbolized 
as “ε”.

Anodic current efficiency: The ratio of actual current capacity to theoretical current 
capacity. This value is a tool for the performance assessment of an anode against its 
maximum theoretical performance values. The absolute current capacity is the ultimate 
measure of an anode’s performance.

Working potential: The potential of the anode in steady state conditions. Most sacrifi
cial anodes require a “break-in” period, where both current capacity and potential values 
may vary significantly. After this period, both values remain relatively steady for ex
tended periods of time. Towards the end of the anode’s service time, potential will rise to 
more positive values, therefore preemptive replacement is mandatory, periodically, every 
few years depending on the application.

2.3.1 Target values for the CP of steel structures in seawater

• 300mV criterion

17



Chapter 2 Galvanic corrosion and cathodic protection

Steel used in the shipping industry corrodes freely at potentials between -480mV to 
-650 mV against Saturated Calomel Electrode (SCE). Various empirical criteria are ap
plicable for the required shift in potential needed in order to provide adequate Cathodic 
protection, the most prominent one being the 300mV potential Shift criterion. Specifi
cally, the 300mV potential shift criterion, states that the sacrificial anode must shift the 
polarization potential of the formed galvanic couple by at least 300mV to the negative 
direction compared to the free corrosion potential of the cathode.

• The problem of overprotection

Excessively negative potentials, less than -800 mV but especially below -1000 mV 
(SCE), not only surpass the requirements for adequate cathodic protection, but the exces
sive currents may also cause issues due to excessive hydrogen evolution at the cathode. 
Specifically:

1. In cases where high strength steels are involved, the excessive hydrogen may dif
fuse in the metal's crystalline structure causing Stress corrosion cracking and/or 
embrittlement.

2. Dissolution (blistering and/or delamination) of cathode coatings due to the trapped 
hydrogen gas

In conclusion, the potential range necessary to protect steel in seawater typically lies 
between -730 m V  to -950 m V  (SCE), depending on the properties of the cathode. Poten
tial values more negative than -1000 m V  must be avoided due to overprotection concerns.

Important potential type definitions:

• Equilibrium or corrosion potential or open circuit potential (OCP): The potential mea
sured when the test specimen is placed in a solution, without any external electrical 
connections is called open circuit potential. The measurement process of open 
circuit potentials is non-invasive since there is no current flow. The corrosion po
tential is defined as the potential that a sample has when no external current is 
applied. Corrosion potential, equilibrium potential and open circuit potential are 
identical. ((Gamry, 2021)) ((PalmSens, 2021))

• Operating potential or close circuit potential (CCP): The potential that the anode 
material exhibits when coupled with the cathode structure. In well-designed ca
thodic protection systems, the close circuit potential (CCP) and open circuit po
tential (OCP) values are almost equal due to the limited polarization of the anodic
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Chapter 2 Galvanic corrosion and cathodic protection

material. Therefore, the open circuit potential values are generally provided and 
used in all calculations.

• Protection potential: The empirical potential that galvanic corrosion of a specific 
metal that is submerged in a specific electrolyte will practically cease.

• Driving voltage: The potential difference between the anode and the polarized ca
thodic structure. Practically, the driving voltage is the difference between the an
ode's open circuit potential and the required protection potential of the structure.

2.4 Overview of Mg, Zn and Al sacrificial anodes

On the galvanic series there are only three metals with more negative potential than 
steel: Magnesium, Zinc and Aluminum.

Added benefits of these three elements are:

• Commercial availability

• Non-toxic characteristics

• Stable performance and predictable behavior when properly alloyed

• Ease of production (casting)

Magnesium Anodes Pure Magnesium anodes have a very low working potential in 
the region of -1550 m V  (SCE) and as a result are not suitable for the protection of off
shore structures, due to overprotection concerns.

Pure magnesium forms a passive oxide film of Mg(OH )2 in aqueous solutions with
out chlorides. In aqueous solutions with chlorides, the Mg(OH )2 film is damaged and 
the anode quickly deteriorates due to pitting corrosion.

Magnesium anodes are primarily utilized in high resistivity terrains, like buried in 
soil or fresh waters. Additions of aluminum and zinc affect positively the potential and 
current capacities, while impurities such as iron, nickel, copper, and silicon have negative 
effects.

Performance wise, Mg has a low current efficiency of 55% and a theoretical current 
capacity of 1230 Ah/kg
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Zinc Anodes Pure Zinc anodes have a working potential in the region of -1100 m V 
(SCE) and as a result are not suitable for the protection of offshore structures in seawa
ter. Zinc anodes are primarily used in fresh waters and underground installations with 
resistivities higher than 2000 ohm * cm.

Performance wise, Zn has a high current efficiency of 95%, and a theoretical current 
capacity of 820 Ah/kg

Aluminum Anodes Pure Aluminum anodes have a working potential of -1100 m V 
(SCE) but the spontaneous formation of a dense oxide film of Al2O3 in saline solutions 
reduces their potential to -780 m V  (SCE), thus rendering pure aluminum not suitable for 
the protection of offshore structures in seawater.

Aluminum anodes are always alloyed in order to combat passivation and are used in 
low resistivity applications, like seawater.

Alloying pure aluminum with copper and nickel shift the potential in the positive di
rection, while zinc, magnesium, and cadmium decrease passivation and shift the potential 
the positive direction.

The presence of mercury, tin, and indium render aluminum anodes active throughout 
their service life, leading to uniform dissolution.

Performance wise, Aluminum sacrificial anodes have a high current efficiency of 
90%, and a theoretical current capacity of 2960 Ah/kg.

Figure 2.3 summarizes the potential values for Aluminum, Zinc and Magnesium 
based sacrificial anodes.

2.5 First application of Cathodic Protection on Ships

The first ever recorded application of sacrificial anodes took place in 1824 by Sir 
Humphry Davy. Davy was commissioned by the British navy to investigate and identify 
the reasons behind the corrosion of the copper sheeting attached to the wooden ship 
hulls and offer a viable solution. The ship that Davy experimented on was the HMS 
Samarang, an Atholl-class corvette launched in 1822. Copper sheeting was used in order 
to protect the ships from marine life, like barnacles and shipworm, that would attach
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Figure 2.3: Typical potential values for Al, Zn and Mg based anodes ((7b, 2016))

on the ship and cause issues ranging from excessive drag to physical deterioration of 
the wooden structure. Davy, based on his past experience and experimentation with the 
electrochemical properties of materials, proposed the attachment of pieces of tin, zinc and 
iron to the copper sheets. Sn, Zn and Fe are materials used with copper in voltaic batteries 
of the time. The proposed solution worked well, the oxidation of copper had seized, 
but a side effect was the growth of marine life on the copper sheets. The antifouling 
properties offered by the release of copper ions, had stopped as a result of the effective 
protection that zinc provided, leading to the wrong conclusion that the experiment had 
failed, banning the practice for many decades.
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Chapter 3

External factors that affect anode 
performance and CP system service life

This chapter emphasizes on the factors that affect the cathodic current requirements 
throughout the service file of a Cathodic Protection system that utilizes Sacrificial An
odes.

The theoretically calculated service time is influenced by the protective coatings ap
plied on the cathodic structures, the formation of calcareous scale and the ongoing reduc
tion of the anode's mass. As a result, the calculation of a Cathodic Protection system's 
service life is a multivariant and time dependent function. The analytical formulae are 
presented in detail in reference documents ((Norske Veritas, 2010)), ((Committee, 1990)) 
and ((Cramer and Covino, 2003)) with case-specific coefficients for the theoretical cal
culations of CP systems. The analytical formulae are out of the context of this thesis.

3.1 Effect of coatings

Coatings or films are applied to the outer structure of a ship, both below and above 
water line, acting as physical barriers to corrosion. The marine industry's needs are 
constantly evolving and therefore new coating solutions are developed.

There are some prerequisites that must be satisfied by coating products, under devel
opment or in production, in order to be considered for offshore applications, specifically:
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service life

• The ability to serve their protective role for extended periods of time (at least the 
time in between drydocking periods).

• The ability of maintaining a high degree of adhesion to the underlying metallic 
surface, which is achieved via surface treatment.

• The coatings must be non-reactive or minimally reactive with seawater for envi
ronmental reasons (depending on the presence and toxicity of antifouling agents in 
the paint).

• Offer adequate antifouling protection.

• The ability to resist mechanical damage that could possibly expose the underlying 
metal.

• Offer a smooth and sleek finish to reduce drag.

Generally, Cathodic Protection systems using sacrificial anodes, that are not used in 
conjunction with coatings are not efficient solutions. The coatings applied to the metal 
structures reduce the diffusion rate of oxygen and as a result less current is needed to 
polarize the metal cathodically.

Types of coatings: * •

• Non-metallic coatings drastically reduce the Cathodic current demand required for 
the protection of a structure and hence, the required anode weight. For weight- 
sensitive structures with a long design life, the implementation of non-metallic 
coatings in a cathodic protection system is likely to give the most cost-effective 
corrosion control.

• Metallic coatings based on zinc or aluminium can be used in Cathodic protection 
systems but offer no advantage in decreasing the current demand requirements for 
the protection of the coated structures. Zinc-rich coatings are unsuitable for ap
plication with Cathodic protection systems due to their susceptibility to cathodic 
disbandment.

In order to quantify the protective action of coatings on bare metal structures, the coat
ing breakdown factor (fc) is introduced: The coating breakdown factor (fc) describes the 
anticipated reduction in cathodic current density due to the application of an electrically
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insulating coating and is a function of coating properties, operational parameters and 
time. The coating breakdown factor is expressed as:

fc  = a +  b * t (3.1)

where:

• t: the years since coating application.

• a and b: constants that are dependent on coating properties and the environment.

When fc  =  0, the coating is 100% electrically insulating, thus decreasing the ca
thodic current density requirement to zero, while f c  = 1  means that the coating has no 
current reducing properties. In practice, the expected value of fc  lies between 0 and 1, 
partially reducing the current requirements.

3.2 Effects of the formation of calcareous scale and ma
rine life

On offshore applications, organic and/or inorganic growths may develop. In ships 
there should be no such growths present. There are two categories of growths that are of 
interest, calcareous scale and marine life.

• Calcareous Scale

A consequence of Cathodic Protection applications in seawater is the formation of a 
calcareous layer, consisting of calcium carbonate (CaCO3) and magnesium hydroxide 
(Mg(OH)2), on bare metal surfaces 3.1. The thickness is typically of the order of 0.1 
mm, but thicker deposits have been observed. This scale is beneficial since it is protective 
and nonconducting, reducing as a result the cathodic current density required for adequate 
cathodic protection.

The formation of calcareous scales requires a high initial current density in the early 
operational period. Once the calcareous scale is formed, the subsequent current require
ments are reduced.
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The build-up process of calcareous scales is a complex topic. High current densities 
may lead to excessive hydrogen evolution that can rupture the scale exposing bare metal, 
while very low current densities will not promote the formation of calcareous scales in 
the extent necessary for the reduction in current density to be met.

Figure 3.1: SEM image of Calcareous scale.

• Marine life

Plants and living organisms adhere to the protective coating of submerged structures, 
leading to fouling effect 3.2. Fouling effect reduces the diffusion of oxygen to the metal 
surface and at the same time forms an acidic environment due to the biological byproducts 
of the living organisms, leading to increased corrosion and increased drag as a result.

All paints used for the coating of ships and submerged structures have some form of 
antifouling action. In essence these coatings are created to slowly deteriorate releasing 
harmful ingredients rendering the submerged surfaces poisonous for marine life.
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Figure 3.2: Marine life.

3.3 Current density requirements and total current de
mand

The term Current density refers to the cathodic protection current per unit surface area 
(A/m2) required for the adequate protection of a bare metal surface. There are 3 specific 
types of current densities that are of interest (also called design current densities), the 
initial, final and average. Specifically:

• Initial: This is the current density required to effect polarization on the exposed 
bare steel surface. Some rusting and/or millscale on the bare surface is assumed. 
The initial current density is the highest of the three, due to the absence of calcare
ous scales and marine growth. The goal of the initial current density is to form 
calcareous scales on the cathodic surface in a short time period.

• Final: This is the current density required for the protection of the metal surface 
after marine growth and calcareous scales are established. An appropriate final 
current density value will ensure that the potential will remain in the desired region 
throughout the design life of the system.

• Average (or maintenance): This is the current density required for the adequate pro
tection of the system once it has reached its steady state potential. The average
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current density is used to calculate the minimum mass of anode material for the 
protection of the structure for a specified design life.

As sacrificial anodes get consumed, their surface area becomes smaller, increasing 
their anodic resistance. Therefore, sacrificial anodes reach a critical point where they 
can no longer offer adequate cathodic protection. This point is case specific for different 
geometries and is expressed with the utilization factor.

The utilization factor (u) is the % of the initial anode’s mass that can provide adequate 
cathodic protection. When an anode is consumed to its utilization factor, the current ca
pacity delivery becomes unpredictable and the anode itself structurally unstable, creating 
the need for replacement before the entirety of the anode is consumed. Typical values for 
the utilization factor (although highly dependent on the anode’s geometry, proximity to 
the cathodic structure and insert placement) are in the 85% region.

3.3.1 Total current demand calculation

The first step in the design process of cathodic protection systems is the determination 
of the total current demand (Ic) that the sacrificial anodes must provide. ((Swain, 1996))

A cathodic structure may consist of surfaces with different properties and current 
density requirements. The current demand of a single surface is calculated by multiplying 
the individual surface area (Ac) by the relevant design current density (ic) and the coating 
breakdown factor (fc):

Where:

Ic i =  Ac * ic * f c

• Ici: current demand of individual surface (A)

• Ac: total surface area (m2)

• ic: is the relevant current density of the surface (A /m 2).

• fc: coating breakdown factor

(3.2)
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For multiple surfaces with different properties, the total current density is: Ic = 
Icl  +  Ic2 +  Ic 3 ... An example of the anticipated current density requirements for the 
protection of ships is presented in Figure 3.3

Table 5.5 Protective current densities for ships, [from Technical and Research
Report R-21, Fundamentals of Cathodic Protection for Marine 
Service, The Society of Naval Architects and Marine Engineers, 
January 1976]_________________________ ________________

Specific Area Cunent Density, mA/m*

External Hull 22-54

Rudders (Coated and for velocities not exceeding 5 knots. 

Current dem and maybe 3 o r m ore times g reater underway)

490

Propellers [For velocities not exceeding 5 knots. Current 

dem and maybe 3 o r more tim es greater underway)

150 -170

Coated Tanks 11
Segregated Ballast 150

W ashed Cargo /  C lean Ballast 130

Dirty Ballast Tanks ee

Figure 3.3: Current density for various ship components ((Swain, 1996))

3.4 Design process of Cathodic protection systems and 
number of anodes calculation

Properly designed Cathodic Protection systems must provide the necessary current 
demand for the protection of a cathodic structure, throughout the designed service life of 
the system.

The design of Cathodic protection systems that use sacrificial anodes introduce a new 
set of restrictions and challenges. Specifically:

1. Calculation of the number of anodes needed to provide the required total current.

2. Calculation of the total anode mass required to meet the design life requirements.

3. The placement of the anodes on the cathodic structure, in order to provide uniform 
current distribution.
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4. Minimize the adverse effects from the physical presence of the anodes, such as 
drag or increased weight.

5. Ensure the above criteria are met while using anode geometries and sizes that are 
commercially available.

The total number of anodes is calculated separately for the first and second criteria 
and the biggest resulting number of anodes will be used. The following examples assume 
a steady current density, coating breakdown factor and driving voltage.

3.4.1 Current demand criterion

The specific current output (Ια) of a single sacrificial anode is calculated as:

Ια = Δ Ε  /  Ra (3.3)

Where:

• ΔΕ: driving voltage (V)

• Ra: anode resistance (Ohm)

The total current needed for cathodic protection must be provided by the sacrificial 
anodes. Therefore, the total number of anodes (n) is determined by dividing the total 
current needed for cathodic protection (Ic) with the current output of each anode (Ια):

n = Ic/Ia (3.4)

3.4.2 Design Life criterion

The total number of anodes must also be determined by the total mass required for 
the cathodic protection system to achieve a specific service life. The design life of a CP 
system is usually predetermined and application specific. Sacrificial anodes on ships are 
changed with every dry docking of the ship. ((Norske Veritas, 2010))
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For a specific service life, the total anode mass is calculated as:

Ma = (Icm * t f  * 8760)/(u  * ε) (3.5)

Where:

• Ma: anode mass (kg)

• Icm: current withdrawn (A)

• t f : expected years of service (years)

• 8760 is the total number of hours in one year

• u : utilization factor

• ε: current capacity (Ah/kg)

As a result, the number of anodes (n) is determined by dividing the total required 
anodic mass (Ma) with the mass of a single anode (m):

n = M a /m  (3.6)

A properly designed Cathodic Protection system must satisfy both the current demand 
and service life criteria, therefore the total number of anodes will be equal to the highest 
calculated number of anodes from the two criteria.
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Composition and performance of 
Aluminum Sacrificial anodes

Aluminium anodes are attractive options for offshore applications, due to their high 
current capacity, low density, commercial availability, reasonable cost and stand-alone 
nature.

The first step in commercializing aluminum was the invention of the Hall-Heroult 
process in 1886, the major industrial process for aluminum production. The process is 
named after its inventors Charles Martin Hall and Paul Heroult, who simultaneously and 
independently invented it.

Despite its low density and resistance to corrosion, the aluminum produced was not 
suitable for structural applications up until the early 1900s when Alfred Wilm discovered 
the age-hardening process. In the 1930s aluminum was used extensively in structural 
applications but it would take another 30 years for the first application of aluminum as 
sacrificial anode material. The reason for this delay was pure aluminum’s inability to 
readily corrode in saline solutions, due to the formation of a stable protective film, leading 
to passivation.

A milestone study in the performance of aluminum based sacrificial anodes was 
published by Reding and Newport in 1966. Reding and Newport experimented with 
aluminum-based alloys containing up to three different alloying elements from a pool of 
37 elements, creating in total, 2500 unique compositions.

The researchers concluded that elements such as Mg, Zn, Cd, Ga, In, Hg and Sn were 
effective depassivators of aluminum in saline solutions. Elements such as Hg, Cd, Pb
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Table 4.1: Aluminum purity specification ((Lindsay, 2014)).

Designation Aluminum %
Commercial purity 99.5-99.79
High purity 99.8-99.949
Super purity 99.950-99.9959
Extreme purity 99.9960-99.9990
Ultra purity >99.9990

even though proven to be beneficial, pose great threat to harbor and marine ecosystems 
due to their toxicity and therefore systematic efforts have been made for them to be re
placed. The findings of their study are still relevant today and formed the knowledge 
foundation for the numerous studies that have been conducted since. Modern research 
is not targeted exclusively on the discovery of new high-performing compositions, re
searchers are interested in gaining insight on the activation mechanisms of the various 
depassivating elements. Commercially available, environmentally friendly, non-toxic and 
cast friendly elements are the main candidates for the high-performance sacrificial anodes 
that monopolize researcher's resources.

4.1 Alloying elements and impurities

The constituent elements of anode materials, other than the base metal, are either 
deliberate alloying additions or impurities.

• Alloying Elements

Alloying elements are deliberate additions to the base metal during the melting pro
cess. Each alloying element gives specific characteristics to the resulting alloy and the 
percentage of each element is precisely measured.

• Impurities

“Pure” aluminum alloys are classified into categories based on the percentage of im
purity contents, as seen in Table 4.1:
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High purity aluminum exhibits great corrosion behavior, due to the homogeneity of its 
structure. The presence of impurities leads to the formation of local electrochemical cells, 
cathodic areas within the alloy that create heterogeneity, leading to high self-corrosion 
rates and faster corrosion rates overall.

As an example, Iron impurity in Aluminum with a concentration of as little as 0.02% 
can cause a decrease in corrosion resistance of the base metal.

An important aspect in the production of sacrificial anodes is the cost of raw material. 
High purity aluminum is more expensive than commercial purity aluminum and as a 
result a compromise is made between desirable properties and cost. A viable option is 
to choose a commercial purity alloy and combat the adverse effects of impurities with 
specific alloying elements.

4.2 A brief overview of Testing methods and reference 
electrodes

The performance of aluminum-based sacrificial anode alloys is evaluated via electro
chemical testing methods and against specific reference electrodes. The most important 
electrochemical tests are:

• Galvanostatic

• Potentiostatic

• Potentiodynamic and Cyclic Polarization

• Electrochemical Impedance Spectroscopy (EIS)

The methodology of these tests is based on protocols, like the ASTM testing methods. 
This way, the results obtained from different researchers, even many decades apart, are 
relevant and comparable.

In this chapter, information will be provided on the testing methods. The exact testing 
methodology is out of context for this master thesis.
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4.2.1 Reference electrodes

During electrochemical tests, various potentials of the metal specimen under investi
gation are measured against reference electrodes. Since the potential of reference elec
trodes is known, it is possible, once a potential target value is specified for a metal spec
imen against a specific reference electrode, to calculate the exact potential against other 
reference electrodes.

The recommended protection potential values of steel in seawater for various refer
ence electrodes are listed in Table 4.2:

Table 4.2: Protection potential of steel in seawater for various Reference Elec
trodes ((Bardal, 2004)).

Reference Electrode Protection Potential (mV )
Cu/CuSO4 -850
Ag/AgCl/seawater -800
SCE -780
SHE -530
Zn -250

The results obtained from Ag/AgCl/seawater and Saturated Calomel Electrode (SCE) 
are equivalent. In this thesis, all potential values are measured against SCE, unless other
wise noted.

4.2.2 Potentiostatic tests

Electrochemical tests are conducted on small metallic samples (few cm2 surface area), 
submerged in a specific electrolyte. The sample and the solution are as close as possi
ble, if not identical, to their real-world counterparts in an effort to produce an accurate 
simulation model. Electrodes, that are connected to a potentiostat, are inserted in the 
solution.

The potentiostat allows the user to accurately change the applied potential on the 
metal sample (input) and measure the changes in the current value (output) as a function 
of potential.

Potentiostatic tests are also referred as “controlled-potential” polarization. The pro
cess of applying a potential on the sample different than its open circuit potential, is called
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polarization. The data collected are used to model the corrosion behavior of the metal. 
((Gamry, 2021))

4.2.3 Galvanostatic tests

During Galvanostatic testing, a constant current is applied to the sample (input) and 
potential values are recorded (output). The current value applied is calculated by multi
plying the total area of the test sample by a specific current density (measured in A /m 2).

Galvanostatic tests are also referred as “controlled-current” polarization and are used 
in order to investigate of the corrosion of a sample under constant current conditions. 
((Gamry, 2021))

4.2.4 Potentiodynamic tests

Potentiodynamic tests are used to study the corrosion behavior of surfaces. During 
potentiodynamic testing the potential applied to the test sample is swept across a prede
termined potential range, with specific step. For every potential value the corresponding 
current value is recorded via a potentiostat and the final results are plotted in a “potential 
vs current” diagram. ((Gamry, 2021))

Remarks on the distinct regions of the potentiodynamic diagram (Figure 4.1)

• At around -550mV the current drops sharply to a local low. The corresponding po
tential value is the Open Circuit Potential (red box), where the total anodic current 
equals the total cathodic current.

• For potential values above the OCP, oxidation of the metal occurs and the maximum 
corrosion current density (Icp) is reached. The potential corresponding to the Icp 
is called passivation potential (Epass)

• Any Potential increase above the passivation potential, places the metal in the pas
sive region and decreasing current densities are recorded until the passive current 
density (Ip) is reached.

• Any Potential increase (from the Ip corresponding potential), will lead to increased 
current densities attributed to oxygen development or pitting at the surface (transpas
sivity region)
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transition region 
activity region 
cathodic region

1.400  V

lrans|Mssiviiy region

trans

passivity region>  400.0  mV

t.orr
SOO.O mV

I 10.00 μΛ 100.0 μ \ 1 .COO 10.00 πιΛ 100.0 m*

Figure 4.1: Example of a Potentiodynamic diagram ((Gamry, 2021)).

4.2.5 Cyclic polarization method

Both in Cyclic polarization tests and potentiodynamic tests the potential applied is 
swept across a predetermined potential range. The difference between the two test meth
ods is that the potential is swept back to its original value in Cyclic polarization tests. 
((Gamry, 2021))

Both testing methods are used to study the corrosion behavior of surfaces, although 
in the cyclic polarization method, since the sample surface is subjected to changes on the 
initial sweep, during the return to the original potential value the data do not superimpose, 
as seen on Figure 4.2.

4.2.6 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy is a complex and highly sensitive electro
chemical testing method that can identify miniscule differences in the state of the tested 
samples and therefore provide unique insight to researchers. Specifically, EIS makes the 
identification of the influence of different mechanisms possible (i.e. electron transfer re
sistance or double layer capacity) and its high surface sensitivity allows researchers to

36



Chapter 4 Composition and performance of Aluminum Sacrificial anodes

Figure 4.2: Example of Cyclic polarization diagram ((Gamry, 2021)).

observe small changes in the surface of samples that would be otherwise impossible to 
study, such as the effectiveness of coatings. ((PalmSens, 2021))

The testing method comprises of the application of a small sinusoidal potential or 
current of fixed frequency on the test sample, where the response is recorded and the 
impedance is calculated. The same process is repeated for different frequencies and the 
results are plotted on a Nyquist plot. Specific patterns on the Nyquist diagram (Figure 
4.3) correspond to specific corrosion phenomena.
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4.3 Alloying elements and Sacrificial anode compositions

The compositions of commercially available Aluminum sacrificial anodes in the past 
were Al-Zn-In, Al-Zn-Sn and Al-Zn-Hg. Indium, Tin and Mercury are effective de- 
passivators of Aluminum in small concentrations and the resulting alloys have different 
properties. Specifically:

• Mercury activated Aluminum anodes exhibit high current capacities with the ad
verse effect of marine ecosystem pollution.

• Tin activated anodes exhibited inconsistent behavior and required additional heat 
treatment after casting to function properly.

• Indium activated anodes exhibit high electrochemical performance, uniform corro
sion, ease of manufacture and non-polluting properties.

Al-Zn-In alloys are the predominant commercially available anodes for offshore ap
plications, owing to their favorable characteristics. Extensive research has been con
ducted on the identification of the optimal composition and optimal casting parameters 
of Al-Zn-In alloys and their activation mechanisms in Saline solutions.

4.3.1 Effect of individual element additions on the performance of 
Aluminum sacrificial anodes

• Effect of Zinc addition: All Aluminum based sacrificial anodes are practically based 
on the binary Al-Zn system. In Al-Zn alloys, Zinc particles are rejected to inter
dendritic zones or grain boundaries. When the alloy gets polarized, preferential 
dissolution (galvanic corrosion and/or pitting corrosion) will initiate from the re
gions with high Zinc accumulation ((.A, 2018)). Even though high current den
sity values are recorder from Al-Zn anodes, the high rate of corrosion results in 
a mediocre current efficiency ((Monzel and Druschitz, 2014)). Researchers con
cluded that Zinc addition is beneficial in compositions ranging between 0.5wt% 
and 10wt%, resulting in lower potentials and small improvements in current ef
ficiency. Zinc content lower than 0.5wt% has no impact on performance, while 
concentrations greater than 10wt% have no additional benefits.
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• Effect of Indium addition: Dissolved Indium is reduced in localized sites within the 
alloy. Indium must be in true electric contact with the base metal for activation to 
occur efficiently. At the localized Indium containing sites, chloride ion adsorption 
takes place and activation of the anode initiates. The activation mechanism of In
dium containing Aluminum alloys is one of dissolution and redeposition ((Idusuyi 
and Oluwole, 2012)), ((Saremi et al., 2004)). Specifically, this mechanism sug
gests that Indium present in the aluminum anode dissolves and redeposits on the 
corrosion surface, leading to a local increase of Indium concentration and a peri
odic detachment of Indium rich zones from the oxide film, revealing the underlying 
active anode surface. The maximum solid solubility limit of Indium in Aluminum 
is low, at 0.02wt% ((Norris et al., 2000)). Indium additions as low as 0.004 wt% 
have a profound effect on the performance of the anode, leading to high current 
capacities and a shift of the potential to more negative values ((Monzel and Drus- 
chitz, 2014)). In Al-Zn-In alloys, corrosion initiation is located at grain boundaries 
where zones rich in In-Zn are identified. The contribution of Zinc in the activation 
of Al-Zn-In alloys can be attributed to the creation of an unstable oxide layer due to 
the presence of ZnAl2O4 areas on the oxide surface. The oxide layer facilitates the 
diffusion of Indium ions, preferential dissolution of Zinc and Indium accumulation 
at the surface. ((Saremi et al., 2004)) •

• Effect of Gallium addition: Breslin and Carroll ((Breslin and Carroll, 1992)) stud
ied the effects of Gallium both as an alloying element and in the form of ions in 
solution. They concluded that activation of pure aluminium just from gallium ions 
in the solution is difficult and not feasible in the normal operating environment of 
the anodes. The slow deposition rate of gallium on the aluminum's surface means 
that critical activation levels will occur after many days of submergence in the ion- 
containing solution. Gallium, for activation of the anode to be achieved, must be 
present in solid solution to ensure a gallium-enriched surface at all times. The 
presence of gallium in the anode's surface assists chloride adsorption and once a 
sufficient degree of adsorption occurs, dissolution of the anode begins. Despite the 
fact that gallium ions cannot activate pure aluminum, an ion containing solution 
can aid the initial activation of Al-Ga alloys. Gallium content between 0.005wt% 
and 0.3wt% are beneficial for the activation of the anode and also raise its current 
efficiency. Gallium content lower than 0.005% has no impact on the performance 
of the anode, while gallium contents higher than 0.3wt% result in lower current effi
ciencies ((Toda et al., 1971)). Gallium is performing great as a low content addition
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in enhancing the performance of multiple element anodes, but anodes containing 
gallium as a sole element addition are underperforming.

• Effect of Tin addition: Al-Zn-Sn anodes were commercially available in the past 
but have been subsided by the more stable performance-wise Al-Zn-In anodes. An 
added issue with Al-Zn-Sn anodes that increases the production time and cost is 
the requirement for heat treatment after casting ((Crundwell, 2010)). The distri
bution of Tin in the anode, whether on grain boundaries or interdentritic regions, 
and as a result the performance characteristics of the resulting anode, is determined 
by casting parameters ((Saremi et al., 2004)). Researchers suggest that Tin creates 
additional cation vacancies by entering the Aluminum crystal matrix as Sn+4 ions 
((Idusuyi and Oluwole, 2012)). Tin content between 0.05wt% and 1wt% is bene
ficial. Concentrations lower than 0.05wt% increase the anode potential and lower 
the anode current efficiency, while concentrations greater than 1wt% reduce the 
current efficiency of the anode ((Toda et al., 1971)).

• Effect of Bismuth addition: Bismuth addition to a baseline Al-Zn alloy enhances 
the current efficiency of the base alloy. Bismuth addition in Tin containing alloys 
renders the, otherwise necessary, heat treatment non-essential. Another positive 
side effect for Tin containing alloys is that Bismuth expands the aluminum matrix, 
increasing the solubility of Tin in Aluminum ((Idusuyi and Oluwole, 2012)). Ex
periments have shown that the proper Tin to Bismuth quantity ratio is one-to-one. 
Bismuth concentrations greater than 1wt% have the adverse effect of increasing 
the adhesion of corrosion products to the surface of the anode, making the removal 
of the outer oxide film difficult and as a result a reduction of the electrochemical 
performance of the anode is stated ((Toda et al., 1971)).

• Effect of Manganese addition: Manganese is a useful addition in Aluminum alloys 
containing Iron impurity because it counteracts its destructive effects (local cell 
creation) by creating Fe-Mn intermetallic compounds that are not cathodic. Man
ganese has limitations in its ability to counteract the detrimental effects of Iron, 
specifically up to a 0.22wt% Iron concentrations. The proper Manganese to Iron 
ratio is one to one and any excess of Manganese reduces the current capacity and 
increases the potential of the alloy ((Saeri and Keyvani, 2011)).

• Effect of Magnesium addition: Addition of Magnesium in Indium containing al
loys aids the proper distribution of Indium within the Aluminum alloy and also
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refines the grain size, improving the current capacity of the alloy. The adhesion of 
the oxide film to the underlying surface is reduced and as a result the oxide film 
readily dissolves. ((Saeri and Keyvani, 2011))

4.3.2 Effect of multiple element additions on the performance of Alu
minum sacrificial anodes

Gokulram ((.A, 2018)) prepared and experimented with an Al-5%Zn-5%Mg-0.1%Li 
alloy to study the effects of zinc addition on aluminum-based sacrificial anodes.

The alloy exhibited a mediocre current efficiency, a result attributed to the negative 
effects of secondary cathodic reactions within the anode (due to the high impurity con
centrations of Fe and Cu) and also the formation of corrosion products on the corroding 
surface of the anode.

Table 4.3: Electrochemical performance of experimental compositions - Gokul
ram ((.A, 2018)).

P otenta l

type

Z l rren t
R eference

e lectrode
A lloy  designation w t) Analytical com position ( ΐ ί) NaCl solution e (Ah··1 kg) E (mV) e fiiie n ty

A T I n Mg Li

A l- SZn  -  5 M g  -O .lL i Ref 4.6 5.1 O.OR A  STM D1141 1632 -1020 OCR 61.43 5CE

Norris et al ((Norris et al., 2000)) studied the electrochemical performance of com
mercially available Al-Zn-In anodes for the duration of one year. The operating potential 
of the anode remained relatively stable at approximately -1115 m V  throughout the year, 
but the current efficiency steadily dropped from the initial value of 2420 Ah/kg  to 2090 
Ah/kg  at the end of the year. The concentration of Fe and In on the corroding surface 
changes with time, a phenomenon directly attributed to the dissolution and redeposition 
activation mechanism.

Table 4.4: Electrochemical performance of experimental compositions -  Norris 
et al ((Norris et al., 2000)).

Alloy designator) (% wt) Analyttal composition (%) NaCl
solution

ε (Ah· kg) E (mV)
Potenthl

type

Current
eftiienc

y (%)

Reference
electrode

Comment

Al Zn 11 n Fe 5i Cu Ga Ti
Ref 3.5% NaCl 2420 -1115 N/A 82 5CE Startiig values

Ah Zn-ln Ret 4.5 | 0.0185 0.083 0.086 0.0024 0.0082 0.0198 3.5% NaCl 2090 -1115 N,A 70 SC E Values a fe rlye a r
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Flamini and Saidman ((Flamini and Saidman, 2012)) investigated the influence of 
Ga addition in Al-Zn and Al-In alloys. Ga concentrations greater than 2.5wt% in Al- 
Zn-Ga alloys lead to excessively negative potentials, while Ga concentrations greater 
than 0.5wt% in Al-In-Ga alloys have the same effect. The activation of these alloys 
is attributed to an amalgam mechanism. This mechanism requires Ga to be uniformly 
distributed within the alloy.

Table 4.5: Electrochemical performance of experimental compositions -  Flamini 
et al ((Flamini and Saidman, 2012)).

Alloy designator! 
B wt) Analytical compositbn B) NaCl

solurtm e [Afi··1 kg) E (mV) Potental
type

Current
efiiency

B)

Reference
electrode

Al Zn In Ga
Ref 4 0 0 0.5 M N/A -L020 OCR N/A 5CE

Af4Zn-G.5Ga Ref 4 0 0.5 0.5 M N/A -970 CEP N/A SEE
At 4Zn-2.5Ga Ref 4 0 2.5 0.5 M N/A -1260 OCR N/A 5CE
At 4Zn-5Ga Ref 4 0 5 0.5 M N/A -1270 CEP N/A SEE
At0.2ln-0.5Ga Ref- 0 0.2 0.5 0.5 M n7a -1640 OOP n7a 5CE
AI-0.2ln-2.5Ga Ref 0 0.2 2.5 0.5 M N/A -1700 CEP N/A SEE
At0.2ln-5Ga Ref 0 0,2 5 0.5M N/A -1700 OCP N/A 5CE

Baker ((7b, 2016)) created Al-0.1Ga alloys to study and characterize the corrosion 
behavior of the alloy. Tests were carried on the master heat and two subsequent remelts. 
Even though all alloys exhibited desirable potential values and high efficiencies, their 
inconsistent behavior is highly undesirable for commercial applications. The remelted 
alloys had increased nobility of grain boundaries and less inconsistency in their perfor
mance.

Table 4.6: Electrochemical performance of experimental compositions -  Baker 
((7b, 2016)).

ΑΙΙογ designation (?o wt) Analyttal composition f^o)
NaCl

solutbn
ε (Ah··'kg) E (mV)

PotentBl
type

C urrent 
efniency

m

Reference
electrode

A T Zn In Fe Si Sn Cm Ga Hg Bi

AFO.lGa (master heat) Ref 0.002 0.002 0.0092 0.0076 0.002 0.47 0.1 0.002 0.003

A5TM 

D1141 2840 -810 OCP 95.3 5CE

Al-0.1Ga (1st re melt) Ref 0.002 0.002 0.002 0.0078 0.002 0.25 0.1 0.002 0.003
A5TM
D1141 2850 -840 OCP 95.7 5CE

AFO.lGa (2nd remelt) Ref 0.002 0.002 0.002 0.0085 0.002 0.28 0.1 0.002 0.003

ASTM

D1141 2857 -840 OCP 96 5CE

Monzel ((Monzel and Druschitz, 2014)) studied the electrochemical performance of 
Aluminum alloys containing Bi, Ga, In and Zn. The effect of each element in the corro
sion behavior of their respective alloy in descending order is: In, Ga, Zn, Bi.
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Table 4.7: Electrochemical performance of experimental compositions -  Monzel 
((Monzel and Druschitz, 2014)) .

Alloy designation
(9ί w t)

Analytta l composition (96)
NaCl

5olutbn
ε (Ah·'kg) E (mV)

Potenttl
type

Current
efoiency

Reference
electrode

A T Zn In Fe Si Sn Cu Ga Hg EH
Ret 0.002 0 .002 0.04 0 .19 0 .002 0.004 0.002 0 .002 0.003 ASTM D1141 291 -1210|O C P 9 .77 5CE

Al*5.3 ZrvO.OU In Ref 5.32 0.011 0.04 0.02 0.002 0.004 0.002 0.002 0.003 ASTM D1141 2680 • 1320|OCP 93.8 5CE

AI-0.1 Ga Ref 0.002 0 .002 0.04 0 .02 0 .002 0 .005 0.1 0 .002 0.003 ASTM D1141 2800 -1 3 5 o |o C P 99.5 5CE

Ret 0.57 0.002 0.03 0.03 0.002 0.006 0.002 0.002 0.55 ASTM D1141 » -1490]OCP 90.7 SCE
A I-0 .54  Bi R iT 0 .009 0 .002 0.03 0 .02 0 .002 0.006 0.002 0 .002 0 .5 4 ASTM D1141 1700 -1 1 9 o |o C P 57.4 5CE

A12Bi Ref 0.008 0.002 0.01 0.02 0.002 0.003 0.002 0.002 2 ASTM D 1141 2170 -119o]oCP 74.5 SCE
A I-0 .49  Zn Ref 0 .49 0 .002 0 .02 0 .02 0 .002 0.006 0.002 0 .002 0.006 ASTM D1141 2400 -148o|oCP 80.7 SCE

A15.3Zn Ref 5.3 0.002 0.02 0.02 0.002 0.007 0.002 0.002 0.028 ASTM D 1141 2310 -98o|oCP ao.6 SCE
Al-0.004 In Ret 0.002 0.004 0.002 0 .01 0 .002 0.006 0.002 0.003 0.003 ASTM D 1141 2540 -1540 jo C P 5 0 SCE

A ^ l O l f i Ret 0.002 0.01. 0.002 0.01 0.002 0.01 0.002 0.003 0.003 ASTM D1141 2610 -1450|OCP SCE
Al-0.015 In Ret 0 .006 0.015 0 .006 0.01 0 .002 0.004 0.002 0 .002 0.003 ASTM D1141 2710 -145ojoCP 91.1 SCE

Jun-guang et al ((guang HE et al., 2011)) investigated the influence of Ga and Bi 
additions on the performance of a baseline Al-Zn-Sn alloy. The addition of Ga, Bi or both 
in the baseline Al-Zn-Sn alloy alters the microstructure from dendritic crystals to small 
equiaxed crystals. Individual additions of Ga and In create alloys with non-desirable 
corrosion characteristics, while the addition of both elements leads to uniform corrosion 
and high current efficiency.

Table 4.8: Electrochemical performance of experimental compositions -  Jun- 
guang et al ((guang HE et al., 2011)) .

Alloy designaton (% wt) A na lytta l com positon P i)
N a tl

solutbn
e (Ah·'kg) E (mV)

Poterlrhl
type

Current
efoiency

(%)

Reference
electrode

Zn Sn Ga El

AI-7Zn -Q ,lSn Ref 7 0.1 0 0 3.5% NaCl 2139 -947 OCR 76 SCE

AL -_Zn-D. 1S n-0. J B i Ref 7 0.1 0 0.1 S . iV N a ll 2303 -1056 OCR &: SCE

AI-7Zn-Q, 1 Sn-0.01SCa Ref 7 0.1 0.015 0 3.5% NaCl 2729 -1.091 OCR 96 SCE

AL -_Zn-0 .1S n-0. J B i-0 .0 15Ga Ref 7 0.1 0.015 0.1 3.5 V NaC 1 2753 -10&3 OCR 97 SCE

Toda et al ((Toda et al., 1971)) investigated the performance (potential and current 
efficiency) of Aluminum sacrificial anodes containing the elements Zinc, Tin, Bismuth 
and Gallium in varying amounts. The researchers concluded that Zinc addition is ben
eficial in concentrations between 0.5wt% and 10wt%. Zinc content lower than 0.5wt% 
had no impact on the performance, while Zinc content greater than 10wt% does not offer 
improvements.

Mance et al ((Mance A. and A., 1984)) investigated the performance characteristics 
of Al sacrificial anodes with additions of In and Tl. The alloys were created using high 
purity aluminum (5N) and technical purity aluminum (T).

43



Chapter 4 Composition and performance of Aluminum Sacrificial anodes

Table 4.9: Electrochemical performance of experimental compositions -  Toda et 
al ((Toda et al., 1971)).

A llo y  designate)in  

P i  w t )
A n a ly t ia l  c o m p o G itb n  p i )

N aC l

s o lu fb n
e (Ah··1 kg) E (m V )

P o te n fa l

ty p e

C u rre n t

e f ii ie n c y

m

R e fe re n t e 

e le c t ro d e

’ 7 . r ;  < .-%■ Zn Sn Ga

S a m p le  a llo y  1 R e f 6 0 .0 5 0 .0 1 0 .1 N /A N /A -9 9 0 N /A 95 5CE

S am p le  a llo y  1 Ref 0 .5 0 .1 0 .0 1 0 .1 N /A N /A ■1030 N /A 91 5CE

S a m p le  a llo y  3 R e f 6 0 .0 5 0 .0 0 5 0 .0 5 N /A N /A ■1100 N /A 96 5CE

S am p le  a l lo y 4 Ref 6 0 .1 0 .0 1 0 .1 N /A N /A -1 0 9 0 N /A 91 5CE

S a m p le  a llo y  5 R e t 6 0 .1 0 .0 1 0 .0 5 W A N7A -1 1 0 0 N7A 95 5CE

S a m p le  a llo y  6- Ref έ 1 0 .0 6 0 .1 N /A N /A -1 0 5 0 N /A 96 5CE

S a m p le  a llo y  7 R e f 6 1 0 .1 1 N /A N /A -1 0 2 0 N /A 91 5CE

S am p le  a llo y  & Ref 10 0 .1 0 .0 1 0 .1 N /A N /A -1 1 1 0 N /A 96 5CE

S a m p le  a llo y  9 R e f 10 1 0 .1 1 n Z a N7A -1 0 1 0 n T a 97 5CE

S a m p le  a llo y  10 Ref 2 0 ,5 0 .3 0 .5 N /A N /A -1 4 1 0 N /A 7& 5CE

S a m p le  a llo y  11 R e t 6 0 .5 0 .3 0 .5 n Z a N 7 £ -1 4 0 0 N /A 68 5CE

S am p le  a llo y  12 Ref 6 1 0 .3 1 N /A N /A -1 4 6 0 N /A 64 5CE

S a m p le  a llo y  13 R e f 2 1 0 .5 1 N /A N /A -1 5 2 0 N /A 76 5CE

S am p le  a llo y  14 Ref 1 0 .5 1 N /A N /A -1 5 3 0 N /A 75 SCE

S a m p le  a llo y  IS R e t 5 0 .1 0 0 n Z a N 7 £ -1 0 2 0 N /A 55 5CE

S am p le  a llo y  16 Ref 0 0 .2 0 0 N /A N /A -9 4 0 N /A 81 SCE

S a m p le  a llo y  17 R e f 0 0 0 0 .0 5 N /A N /A -6 9 0 N /A 86 SCE

S am p le  a llo y  1& Ref 0 0 0 1 N /A N /A -6 9 0 N /A && SCE

S a m p le  a llo y  19 R e f 0 0 0 .0 0 5 0 n 7a n 7 a ^S t o n 7a 8 5 SCE

S a m p le  a llo y  20 Ref 0 0 0 .2 0 N /A N /A -8 1 0 N /A T l SCE

S a m p le  a llo y  21 R e f 0 0 1 0 N /A N /A -1 2 9 0 N /A 64 SCE

Thallium had no major effects on the properties of the alloys, while the effects of In 
and Tl additions were less noticeable in technical purity aluminum.

Table 4.10: Electrochemical performance of experimental compositions -
((Mance A. and A., 1984)).

A lo y  designatbn t?i wt) Analytta l composition [%) NaCl solutcn e (Ah/kg) E (mV)
Rote nfB 1 

type

Current
efoienty

P i)

Refere nee 
electrode

AΓ In Fe Si T - Cl

A l( 5 N ^ ^ R if 0 0 0 0 0 Natural Seawater N/A -1.610 OCP N/A SCE
A lfS N M H In Ref 0.1 0 0 0 0 Natural Seawater N/A -1750 OCP N/A SCE
ΑΙ(5Ν)-0.2Ιπ Ref 0.2 0 0 0 0 Natural Seawater N/A -1620 OCP N/A 5CE
Al(SN)-Q.2_ l Ref 0 0 0 0.2 0 Natural Seawater N/A -1600 OCP N/A SCE
AI(5N)-0. lln-0.1TI Ret 0,1 0 0 0.1 0 Natural Seawater n7a -1680 OCP n7a SCE
Technical aluminium (T) Ref 0 o W 0.12 0 0.01 Natural Seawater N/A -1350 OCP N/A SCE
AKTJ-O.lln Ret 0,1 <Ϊ2ΪΓ 0.12 0 0.01 Natural Seawater n7a -1440 OCP n7a SCE

AlfTi-O. lln-0 . Π Ref 0.1 0.2& 0.12 0.1 0.01 Natural Seawater N/A -1370 OCP N/A SCE

Xia et al ((Xia et al.))investigated the effect of Sn, Cd and Si additions in a baseline 
Al-Zn-In anode. The additions were proven to be effective depassivators, leading to 
a uniform surface corrosion and improved electrochemical properties, compared to the 
baseline Al-Zn-In anode.
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Table 4.11: Electrochemical performance of experimental compositions -  Xia et 
al ((Xia et al.)).

Alloy designatbn
P i Wt)

Analytta l eompositbn P i)
N a tl

solutbn
e (Ah/kg) E (mV)

Potenrtil
type

Current
efbiency

P i)

Reference
electrode

AΓ Zn In Fs Si 5n Cl Cc
Α Π Ι ζ ! ^ ! ϋ 3 ΐ Γ ^ ^ Ret Ί Γ ϊ ΐΓ 0 .0 3 0.2 0 .0 2 0 0.01 0 3.5% NaCI 2000.6 ■ 1032 OCR 70.7 5CE

AI-6Zn-Q.03ln-Sn Ret k go 0.0 Z 0.21 0.04 0.03 0.02 0 3.50 NaCI 2539.4 ■1099 OCR 5CE

A I-6 Z n -0 .0 3 ln -C d Ret ■£03" 0 .0 3 0 .23 0.01 0 0.01 0 .01 3.5% NaCI 2437.3 ■1113 OCP 65.5 5CE

Al-6Zn-0.03ln-Si Ref 6.0 2 0.03 0.24 0.14 0 0.01 0 3.5% NaCI 2500.4 -10&& OCP 63. a SCE

Pourgharibshahi and Meratian ((Pourgharibshahi and Meratian, 2014)) created and 
tested the effects of Si, Ca and Mg additions in a baseline Al-Zn-In anode. The alloy 
containing Mg-Ca (Alloy IV) exhibited high electrochemical performance, but its non
uniform corrosion renders it not suitable for commercial application. The addition of 
Si (in alloy V) resolved the non-uniform corrosion issue, without significant penalty in 
current capacity. As a result, alloy V satisfies the criteria for commercial application.

Table 4.12: Electrochemical performance of experimental compositions -
Pourgharibshahi et al ((Pourgharibshahi and Meratian, 2014)).

Alloy designatbn w t) A n a ly tta l composition (%) NaCI solutbn ε (A h ’kg) E (mV)
P o te n til

type

Current

eftiiency
Reference
electrode

Al Zn In Si Mg Ca

A l-5 .5Z n -0 .02 ln Ret 5,56 0.046 0.083 0 0 ASTM D1141 1096 -840 OCP N /A Ag/AgCl

A I-5 .5Z n-0 .3S i-0 .02 ln Ref 5.74 0.01? 0.358 0 0 A STM D1141 2025 -970 OCP N /A Ag/AgCI
A I-5 .5 Z n -0 .lC a -0 .0 2 ln Ret 5.35 0.023 0.063 0 0.131 ASTM D 1141 930 -940 OCP N /A Ag/AgCI
A l- 5 .5 }n -0 .iM  g-0. k a  - 0 .o i l  n Ref 5.43 0.013 0.085 0.095 0.114 ASTM D1141 2622 -1120 OCP N /A Ag-AgCI

A l-5 .5Z n -0 .35S i-0 .1M g -0 .1C a-0 .02 ln Ref 5,56 0,016 0.412 0.092 0.126 ASTM D1141 2528 -1110 OCP N /A Ag/AgCl

Farooq et al ((Farooq et al., 2019)) performed electrochemical measurements on an 
Al-Zn alloy created in their laboratory. The performance of the Al-Zn alloy is compared 
to anode compositions acquired from literature.

Barbucci et al ((Barbucci et al., 1997)) studied the corrosion behavior of three distinct 
Al-Zn-Mg alloys with varying annealing times and cooling methods. The morphology of 
the samples showed two distinct phases, phase α consisting of Aluminum (solid solution) 
and a secondary phase τ. The presence of these two phases as well as their volume 
fraction influences the activation of the anodes, with good electrochemical efficiency 
been attributed to good dispersion of τ phase.
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Table 4.13: Electrochemical performance of experimental compositions -  Fa- 
rooq et al ((Farooq et al., 2019)) / Table A.

Alloy designator! w t) Analytta l compositbn 1%)
NaCl

solurbn
e (Ah··1 kg) E (mV)

Potenrtil
type

Current

eftiiency

Pi)

Reference
electrode

“ A T Zh In Zr Ce “ I
A l-Z n -ln / litera ture a lo y  1 Ref 4.325 0.013 0 0 0 N/A N/A -1006 OCP 79 5CE
Al-Zn-ln··' literature alloy 2 Ret 4.431 0.013 0 0.455 0 N/A N/A -1046 OCP 33 SC E

A l-Z n -ln / litera ture a lo y  3 Ref 5.097 0.021 0 0 0 N/A 2300 -975 OCP 77 5CE
A l-Z n -ln / literature a loy  4 Ref 5.097 0.021 0 0 0.03 N/A 2637 -1015 OCP 39 5CE
A l-Z n -ln / litera ture a lo y  5 Ref 5.097 0.021 0 0 0.07 N/A 2545 -1004 OCP 34 5CE
A l-Z n -ln / literature alloy 6 Ref 5.097 0.021 0 0 0.2 N/A 2234 -9 63 OCP 75 SC E
A l-Z n -ln / litera ture alloy 7 Ref 5.097 0.021 0.03 0 0 n7a 2515 -1002 OCP 63 5CE
A l-Z n -ln / literature alloy B Ret 5.097 0.021 0.05 0 0 N/A 2625 -1010 OCP 35 SCE

A l-Z n -ln / litera ture alloy 9 Ref 5.097 0.021 0.2 0 0 N/A 2197 -960 OCP 73 5CE

Table 4.14: Electrochemical performance of experimental compositions -  Fa- 
rooq et al ((Farooq et al., 2019)) / Table B.

A llo y  designator! P i w t) A n a ly tta l co m p o s itb n  P i)
NaCl

so lu tbn
e (Atv'kgj E (mV)

P o ten tiil

type

C urren t

efiiiency

P i)

R eference

e lec trode

“ AT Zn 5n Ga 6i

Al- Zn- 5 n /  litera tu re  a II oy 1 Ret 7 0.1 0 0 N /A 2139 -947 OCP 76 SCE

A l-Z n -S n / lite ra tu re  a lloy  2 Ref 0.1 0 0.1 N /A 2303 -1056 OCP 32 SCE

A l-Z n -S n /lite ra tu re  a lloy  3 Ret 7 0.1 0.015 0 n 7a 2729 -1091 OCP 96 SCE

A l-Z n -S n / lite ra tu re  a lloy  4 Ref 7 0.1 0.015 0.1 N /A 2753 -1033 OCP 97 SCE

Table 4.15: Electrochemical performance of experimental compositions -  Fa
rooq et al ((Farooq et al., 2019)) / Table C.

Alloy designation (% w t) Analyttal compositbn (%)
NaCl

solutbn
e (Ah· kg) E (mV)

Potental
type

Current
efiiiency

Reference
electrode

AT Zn In F-e Si Cu Mn Mg Ti
AbZrHivMg-Ti /lite ra tu re  alloy 1 kef b 0.03 0 o 0 0 1 0.05 N/A 2406 -1233 OCP 5CE
AI-Zn-ln-Mg-Τι /  literature alloy 2 R i f 5 0.03 o 0.1 o 0 1. 0.05 N/A 2701 -1073 OCP 94 3 SCE
Al alloy developed in house Ref 3.1 0 0.35 0.12 0.12 0.025 0.024 0.043 ASTMD1141 2764 -94B OCP 93.3 A£/asci

Bruzzone et al ((Bruzzone et al., 1997)) investigated the effect of Calcium addition in 
Al-In and Al-Zn anodes. Ca proved to be an effective depassivator of aluminum.

He et al ((He et al., 2011)) investigated the influence of precipitates on the perfor
mance of Al-5Zn-0.03In-1Mg-0.05Ti-0.14Si. All samples were solution treated at 470 
°C for one hour and afterwards subjected to individual aging treatments. The charac
teristics of the precipitates in the alloy (shape and size) influence the electrochemical 
performance of the anodes. Specifically, spherical/disk like precipitates and precipitates 
with moderate size were beneficial, while rod like precipitates or small size precipitates 
were detrimental to the anode’s performance.
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Table 4.16: Electrochemical performance of experimental compositions -  Bar- 
bucci et al ((Barbucci et al., 1997)).

Alloy designatbn (?i wt) Analyttal composition (%)
NaCl

solution
ε (Ah·’kg) E (mV)

Potential
type

C urrent 
efiiiency

(%)

Reference
electrode

Comment

Zn

Al-2.5Ma-2.5Zn/1 Ref 2.5 2.5 3% NaCl N/A -1142 OCP N/A 5CE Annealing tme 15 m ins/ Quench cooling

Al-2.5Ma-2.5Zn 2 Ref 2.5 2.5 2% NaCl N/A -1058 OCP N/A SCE Annealing erne 15 hours /  Quench cooling

AJ-2.5Ma-2.5Zn/ 3 Ref 2.5 2.5 3% NaCl N/A -1012 OCP N/A 5CE Annealing tme 15 hours /  Natural cooling

Al-2.5Ma-2.5Zn 4 Ref 2.5 2.5 2% NaCl N/A ■1056 OCP N/A SCE Annealing tine 24 hours Natural cooling

Al-5Me-5Zn/ 5 Ref 5 5 3% NaCl N/A -1150 OCP 68 SCE Annealing tme 1 hou r/ Natural cooling

Al-5Ma-5Zn f Ref 5 5 2 \  NaCl N/A -1037 OCP 69 SCE Annealing tfne 15 hours /  Natural cooling

Al-5Ma-5Zn/ 7 Ref 5 5 3% NaCl N/A -1082 OCP 78 SCE Annealing tine 24 hours /  Natural cooling

Al-5Ma-5Zn 1 Ref 5 5 2 \  NaCl N/A -1069 OCP 73 SCE Annealing tine 24 hours /  Natural cooling

Al-5MR-5Zn/9 Ref 5 5 3% NaCl N/A -1054 OCP 63 SCE Annealing tfne 24 hours /  Natural cooling

AI-~.5Mg-~.5Zn 10 Ref 7.5 7.5 3 \  NaCl N/A ■1186 OCP N/A SCE Annealing tfne 15 mins /  Quench cooling

Al-7.5Ma-7.5Zn. 11 Ref 7.5 7.5 NaCl N/A -1041 OCP N/A SCE Annealing tfne 15 hours/ Quench cooling

Al-~.5Ma-~.5Zn 12 Ref 7.5 7.5 39b NaCl N/A -1072 OCP N/A SCE Annealing tfne 15 hours /  Quench cooling

Al-7.5MR-7.5Zn/ 13 Ref 7.5 7.5 3% NaCl N/A -1038 OCP N/A SCE Annealing tfne 24 hours /  Natural cooling

Table 4.17: Electrochemical performance of experimental compositions -  Bruz- 
zone et al ((Bruzzone et al., 1997)).

A llay  designator! ( f t  w t) A n a ly tta l com pos irb n  ( f t )
NaCl

so lu tbn
e (Ah··1 kg) E (m V)

PotenfBl

type

C urren t

efiiiency

( f t )

Ref ere nc e 

e lec trode

A T Zn In M g Ca

A ^ T C ^ O S Z r ^ ^ ^ Met 3 Ί ί£ " ϋ ϋ 0.7  7 3 ft NaCl N /A -1 0 5 3 OCP 73 SCE

A t  0 .3 2 0 - 4 .2Zn Ref 4.2 0 0 0 .32 3 ft NaCl N /A -1053 OCP 71 SCE

A t  1.3C a -3.731 n R ef 0 3 .7 3 0 1.3 3 ft NaCl N /A -1 142 OCP 75 SCE

A J - 2 .5 M f f - 2 .5 Z n Rsf 2.5 0 2.5 0 Oft NaCl N /A -1135 avg OCP 74 SCE

A I - B M s - B Z n R ef 5 0 5 0 3 ft NaCl N /A - 1043 a vg OCP 31 SCE

A J - 7 .5 M s - 7 .5 Z n Ref 7.5 0 7.5 0 3 ft NaCl N /A -1055 avg OCP 76 SCE

Table 4.18: Electrochemical performance of experimental compositions -  He et 
al ((He etal., 2011)).

Alloy designaton (% w t) Analytta l com positon (%)
NaCl

solutbn
ε (Ah/kg) E (mV)

Potentiil
type

C urrent 

efiiiency 

(%)

Reference
electrode

Comment

AΓ Zn In 5i Mg Ti
Ah 5Zn-0.G3ln- lMg-0.05Ti-0.145i /  T12 ReF 5 0.05 3.5% NaCl 2615 OCP 91.3 5CE Agmgat 120C for24h
Al- 5Zn-0.03ln- lM g -0 .0 5 T i-0 .1 4 5 i/T 1 6 Ret 5 0.03 0.14 1 0.05 3.5 -ft N a d 2434 -fi91 OCP 84.9 SCE Aging at 120C fo r  24h. re-aging at l id C  fo r  30h
Ah 5Zn-0.031 n -  lMg-0,05Ti -0.145 i /  T25 Ret 5 0.03 0.14 1 0.03 3.5% NaCl 2515 -099 OCP 5 0 SCE Aging at 120C for24h, re-aging at 250C for 30h
Al- 5Zn-0.03ln- lM g-0 .05T i-Q .145 i /  T3Q Ref 5 0.03 0.14 1 0.05 3.5% NaCl 2756 -1083 OCP 95.8 SCE Aging at 120C fo r2 4 h . re-aging at 30QC fo r  30h

Ma and Wen ((Ma and Wen, 2009)) experimented with additions of Lanthanum to 
improve the non-uniform corrosion of a baseline Al-Zn-In-Mg-Ti alloy. Out of the four 
samples tested, the alloy containing 0.5wt% La exhibits high current capacity and effi
ciency, as well as more uniform corrosion.

Wen et al ((Wen et al., 2011)) investigated the effect of Silicon addition on the cor
rosion behavior of a baseline Al-Zn-In-Mg-Ti alloy. Two alloys were prepared, one with 
the addition of Si and one without Si for comparison purposes. The addition of silicon 
improved the microstructure, electrochemical performance and corrosion behavior of the
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Table 4.19: Electrochemical performance of experimental compositions -  Ma 
and Wen ((Ma and Wen, 2009)).

Alloy designatbn 
w t)

Analyttal compositbn (%) NaCI solutbn ε (Ah'kg) E (mV)
Potental

type

Current
eftiiency

m

Reference
electrode

AΓ Zn In Fe Si Cu Mg La Ti
Alloy 1 Ret 5.077 0.025 0.001 0.032 0.009 1.009 0 0.047 artfria l seawater 2519 -1077 OCP 5CE
A » o ^ ! Ret 4.933 0.026 0.001 0.024 0.021 0.968 0.285 0.046 artfria l seawater 2493 ■1028 OCP 06 SCE
Alloy 3 Ret 5.019 0.026 0.001 0.051 0.012 0.962 0.492 0.046 artfria l seawater 2515 -1065 OCP 92 SCE
Alloy 4 Ref 4.814 0.023 0.001 0.018 0.015 0.947 0.681 0.048 artfria l seawater 2610 ■1022 OCP 92 SCE

alloy. The Open Circuit Potential took more positive values, closer to the ideal range for 
protection of iron in seawater.

Table 4.20: Electrochemical performance of experimental compositions -  Wen 
et al ((Wen et al., 2011)).

Alloy designatbn (9i w t) A na lytta l com positbn (9i)
NaCI

solutbn
ε (Ah/kg) E !mV)

Po ten ftl
tv'pe

Current
eftiiency

Reference
electrode

Zn In Si Mg Ti

Al-5Zn-0.03ln-lMg-0.05Ti /  alloy 1 Ref 5 0.03 0 1 0.05 3.5% NaCI 2406 -1233 OCP |84 SCE

AI-5Zrv0.03ln-lMq-0.05Ti / alloy 2 Ref 5 0.03 1. 1 0.05 3.5% NaCI 2701 -1073 OCP [943 SCE

Ma and Wen ((Ma and Wen, 2010)) studied the corrosion behavior of an Al-Zn-In- 
Mg-Ti-Mn alloy. The corrosion of the alloy was attributed to mechanisms that varied with 
immersion time. Specifically, at the initial stages of immersion the prevalent corrosion 
mechanism was pitting corrosion. Afterwards, a dissolution-precipitation mechanism 
of In and Zn ions is observed and finally a uniform corrosion of the anode’s surface 
was observed. Similar findings were observed from Ma et al ((Ma et al., 2012)) in the 
corrosion behavior study of an Al-Zn-In-Mg-Ti-Ce alloy, as the initial pitting corrosion 
subsided with time and a dissolution-precipitation mechanism became the prevalent one.

Table 4.21: Electrochemical performance of experimental compositions -  Ma 
and Wen ((Ma and Wen, 2010)).

Alloy designation (9ό wt) Analyttal compositbn (?i) NaCI
solutbn

ε (Ah·'kg) E (mV)
Potentbl

type

Current
eftiiency

(%i

Reference
electrode

A T Zn In Fe Si Cu Mn Mg Ti

Ref 5.02 0.024 0.001 0.062 0.032 0.436 0.904 0.035 3.50% 2539 -1126 OCP 39 SCE

Saeri and Keyvani ((Saeri and Keyvani, 2011)) studied the effects of Magnesium and 
Manganese additions on the performance of an Al-Zn-In baseline alloy. Additions of 
both elements are beneficial up to a specific concentration, specifically Mn addition up to 
0.15wt% and Mg addition up to 2wt%.
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Table 4.22: Electrochemical performance of experimental compositions -  Ma et 
al ((Ma et al., 2012)).

NaC l

soluttin
Potenrtil

type

Current
Reference
electrode

A lo y  designatbn wt) Analytta l compositbn (%) e (Ah··1 kg) E (mV) eftiiency

(%)
a r Zn In Μξ Ce “ i

Ref 5 0.02 1 0.5 0.05 3.50% 2633 -1059 OOP 93.3 5CE

Table 4.23: Electrochemical performance of experimental compositions -  Saeri 
et al ((Saeri and Keyvani, 2011)) / Table A.

A lloy designatbn 

(% w t)
A n a ly tta l com pos itbn  (?i)

NaCl

so lu tbn
ε  (Alv'kgj E (mV)

Patents 1 

type

Current

e fc iency

f t )

Reference

electrode

m m m 1
Zn In Fe Si Cu Me Ti Pb

Anode 1 (Mg) Wet 4.994 0.022 0.152 0.038 0.009 0 0.002 0.04 0.5 m o H 2342 -1086 OCP 78.6 5CE

Anode 2 (Mg) Ref 4 .994 0.022 0.152 o .o ss 0.009 0.5 0.002 0.04 0.5 m o l'L 2497.5 -1095 OCP ao.4 SCE
Anode 3 (Mg) Ref 4 .994 0.022 0.152 0.088 0.009 1 0.002 0.04 0.5 m o l/L 2450.7 -1103 OCP 82.2 5CE

Anoce 4 (Mg) Ref 4.994 0.022 0.152 0.088 0.009 1.5 0 .002 0 .04 2483.3 -1109 OC p 83.3 SCE

Anode 5 (Mg) Ret 4 .994 0.022 0.152 0.088 0.009 2 0.002 0.04 0.5 m o l/L 2421.1 -1098 OCP 3 0 SCE

Anode 6 (Mg) Ref 4.994 0.022 0.152 0.088 0.009 2.5 0.002 0.04 0.5 m o l/L 2380.2 - 1092 OCP 79.8 SCE

Table 4.24: Electrochemical performance of experimental compositions -  Saeri 
et al ((Saeri and Keyvani, 2011)) / Table B.

Alloy designatbn
(% w t)

A n a ly tta l com positbn  (%)
NaCl

so lu tbn
ε (Ah/kg) E (mV)

Po ten ts  

type

C r re r t  
eftiiency

t% )

Reference
electrode

Al Zn In Fe Si Cu M n Ti Pb

Anode 1 (Mn) Ret 4.994 0.022 0.152 0.088 0.009 0.01 0.002 0.04 0.5 m o l/L 2347.1 -1081 OCP 78.7 SCE

Anode 2 (Mn) Ref 4.994 0.022 0.152 0.088 0.009 0.05 0.002 0.04 0.5 m o l/L 2383.3 -1090 OCP 79.9 SCE

Anode 3 (M n) Ret 4.994 0.022 0.152 0.088 0.009 0.1 0.002 0.04 0.5 m o tL 2439.9 -1102 OCP 8L.8 SCE
Anode 4 (Mn) Ref 4.994 0.022 0.152 0 0 8 8 0.00? 0.15 0.002 0.04 0.5 m o l/L 2471.7 -1106 OCP &2.9 SCE

Anode 5 (Mn) Ret 4.994 0.022 0.152 0.088 0.009 0.2 0.002 0.04 0.5 m o l/L 2429.3 -1100 OCP 5 0 SCE
Anode 6 (Mn) Ref 4.994 0.022 0.152 o.o&g. 0.009 0.3 0.002 0.04 0.5 m ol L 2358 U05B- OCP 79.1 SCE

Reference a node Ref 4.994 0.022 0.152 0.088 0.009 0 0.002 0.04 0.5 m o l/L 2308.7 -1079 OCP 77.4 SCE

Shibli et al ((Shibli et al., 2004)) explored the possibility of Al-Zn alloy activation 
with the use of ruthenium dioxide coatings. First, tests were conducted with firing tem
peratures ranging from 300 °C to 1500 °C, followed by tests with varying surface con
centrations of RuO2. The final test was comprised of the optimum surface RuO 2 concen
trations, varying temperatures, and a mild stirring of the solution to simulate water flow. 
The ruthenium oxide covered surface was conductive, catalytically active and yielded 
promising results under full activation.

A similar research, conducted by Shibli and Gireesh ((Shibli and Gireesh, 2003)) 
explored the possibility of Al-Zn alloy activation with the use of iridium dioxide coatings. 
The 1rO 2 covered surface was conductive, catalytically active and yielded promising 
results for coating concentrations greater than 0.175mg/cm2.
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Table 4.25: Electrochemical performance of experimental compositions -  Shibli 
et al ((Shibli et al., 2004)).

Alloy designatbn (% w t)
Analytta l

com po5itbn(% )
NaCI

solutbn
ε (Ah·'kg) E (mV)

Potental
type

Current

efiiiency

m

Reference
electrode

Comm ent

AI-5Zn Table 1 /  Serial N o l Ref 5 3% NaCI 2376 -1015 OCR 79.9 5CE Firing tem perature = 300 C
AI-5Zn Table 1 /  SenaTCo2 Ret s V .  NaCT 2537 -1017 OCR 85.2 5CE Firing tem perature = 400 C

Al-5Zn Table 1 / Serial No3 Ref 5 3% NaCI 2264 -1000 OCR 75.6 5CE Firing tem perature = 450 C
Al-5Zn Table 1 / Serial No4 Ref 5 3 5  NaCI 2212 ■?8? OCR 73.9 SCE Firing tem perature = 1500 C
AI-5Zn Tab le2 / Serial N o l Ref 5 3% NaCI N/A -965 OCR 5372 5CE Surface coverage w ith  Ru02= 0%
/T 5 Z r^ a b le ^ T e n a T N o 2 Ref 5 35  NacI N /A ■1010 OCR 72.2 SCE Surface coverage w ith R u02 =  25 'o
AI-5Zn Ta ble 2 / Serial No3 Ref 5 3% NaCI n7a -1014 OCR 75.4 SCE Surface coverage w ith  Ru02= 50%

AI*5Zn Table 2 /  Serial No4 Ref 5 35  NaCI N /A -1017 OCR 65.2 SCE Surface coverage w ith R u02 =  100^
Al-5Zn Table 3 / Serial N o l Ref 5 3% NaCI 1665 -966 OCR 58 SCE concentratbn=0 /T=30C /  RPM=0
AI-5Zn Table 3 /  Serial No2 Ref 5 35  NacT 244 Ϊ -1016 OCR 3S. 2 5CE concentratbn=0.175 · T=30C 7 RPM=0
AI-5Zn Table 3 / Serial No3 Ref 5 3% NaCI 2153 -1040 OCR 75 SCE c o n c e n tra to r^ . 1 7 5 / T=30C /  RPM=200
A B z r ^ a b le ^ ^ e r ia r a o 4 Ref 5 35  NaCT 24fo - 10&4 OCR 86.4 SCE concentra ton=0.1?5/ Τ=8θ£ /ftP M = 0

Al-5Zn Table 3 / Serial No5 Ref 5 3% NaCI 2425 -1088 OCR 84.5 SCE concentraton=0.175/T=80C  /R PM =200

Table 4.26: Electrochemical performance of experimental compositions -  Shibli 
and Gireesh((Shibli and Gireesh, 2003)).

Alloy designatbn
(% Wt)

Analytta l
com positbn

(%)

NaCI
solutbn

ε (Ah'kg) E (mV)
PotentSl

type

Current
eftiiency

(%)

Reference
electrode

Comment

Al Zn

Al-5Zn Serial N o 1 Ref 5 3% NaCI 1520 -930 OCR 58.5 SCE COATING: Concentratbn of Ir0 2  (mg/cm2) = 0
A l*5Zn Serial N o 2 Ref 5 3?o NaCI 1566 ■990 GCP 60 SCE COATING: Concentratbn of Ir0 2  (mg.'cm2) = 0.0425
AI-5Zn Serial N o 3 Ref 5 3% NaCI 1991 -1000 OCR 76.3 SCE COATING: Concentratbn of Ir0 2  (mg/cm2| = 0.085
AI-5Zn Serial N o 4 Ref 5 3 5  N a c T 2068 ■1005 OCP 79.2 SCE COATING: Concentratbn of I r0 2 (m ^ c m 2 ^ ^ .1 7 5

AI-5Zn Serial N o 5 Ref 5 3% NaCI 2113 -1020 OCP 81 SCE COATING: Concentratbn of Ir0 2  (mg/cm2) = 0.35

Shibli et al ((Shibli et al., 2007)) continued to experiment with metal oxides, in the 
form of alumina (Al2O3) and zinc oxide (ZnO) additions to baseline Al-Zn sacrificial 
anode alloys. The addition of ZnO improved the metallurgical structure and the gal
vanic characteristics during exposure, resulting in improved performance and corrosion 
behavior. On the other hand, the addition of alumina had no significant influence on the 
metallurgical structure and electrochemical performance of the anodes, mainly due to the 
“seeding” of Al2O3 in the oxide layer of the anode. The ZnO particles are promising 
additions and the combination of zinc oxide with elements such as Indium could yield 
even better performance.

Shibli and Gireesh ((Shibli and Gireesh, 2005)) studied the effect of selenium addi
tion to a baseline Al-Zn and Al-Zn-Bi-Sn alloys. Small additions of Se (0.5wt%) as sole 
alloying addition improved the metallographic structure of the anode. The best perform
ing composition was found to be the Al-5Zn-0.1Sn-0.1Se-0.1Bi, a result that is in line 
with the uniform corrosion behavior of the alloy.
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Table 4.27: Electrochemical performance of experimental compositions -  Shibli 
et al ((Shibli et al., 2007)).

Alloy designatbn
P i w t)

Analytta l com positbn

Pi)
NaCl

solutbn
e  (A h 'k g ) E (mV)

Potenrtil
tvpe

Current
efniency

Pi)

Reference
electrode

Comment

Al Zn
51 Ref 5 3?i NaCl 1520 -933 OCR 53.5 5CE AL203 =0 /  ZnO=0 %
52 Ref 5 33i  NaCl 1562 -951 OCR 55.4 5CE AL203 =0.1 · Zn0=0 3«
53 Ref 5 3?i NaCl 1565 -955 OCR 60 5CE AL203 =0.25 /  ZnO=0 %
54 Ref 5 33i  NaCl 1566 -960 OCR 60 5CE AL203 = 0 .5 /  ZnO=0 9i
55 Ref 5 3?i NaCl 2027 -9B3 OCR 73 5CE AL203 =0 /  ZnO=0.1 %
56 Ret 5 3 J: NaCl 207? -991 OCR SC E AL203 =0 TnO-O.25 >i

57 Ref 5 3K  NaCl 2156 -996 OCR S3 5CE AL203 =0 /  ZnO=0.5 %

Table 4.28: Electrochemical performance of experimental compositions -  Shibli 
and Gireesh ((Shibli and Gireesh, 2005)).

A lloy designation P i w t) A na ly tta l co m pos itbn  P i)
NaCl

solu tbn
e (Ah··1 kg) E (mV)

Potental
type

C urrent

efniency

P i)

Reference
e lectrode

Al Zn Sn Se Bi

AP5Zn Table 1 / Serial N o l Ret 5 0 0 0 3% NaCl 1520 -930 OCR 53.5 5CE

Al-5Zn Table 1 /  Serial No2 Ref 5 0 0.1 0 39i NaCl 1324 -1035 OCR 70.2 SCE

AtSZni T a b le 2 / Serial N o l Ref 5 0.1 0 0.1 3% NaCl 1363 -1025 OCP 71.4 5CE

AI-5Zn Table 2 /  Serial No2 Ref 5 0.1 0.01 0.1 NaCl 1914 -1022 OCR 73.4 SCE

AI-5Zn T a b le 2 /  Serial No3 R ef 5 0.1 0.05 0.1 3 K  NaCl 2003 -1050 OCP 7975 SCE

A l-5Zr “ able"!·· Serial N o 4 Ref 5 0.1 0.1 0.1 T T N a T T 2319 -1116 OCP 55.9 SCE

A tS Zn T a b le 2 /S e r ia l NoS Ref 5 0.1 0.5 0.1 3% NaCl 2349 -1120 OCP 90 SCE

Shibli et al ((Shibli et al., 2008)) investigated the effect of cerium oxide on the perfor
mance characteristics and corrosion behavior of a baseline Al-Zn alloy. When CeO2 is 
uniformly distributed in the anode, it effectively suppresses the formation of Al2O3 in the 
surface of the anode. A welcome side effect of Cerium oxide is the antifouling protection 
it offers, due to its biocidal properties.

Table 4.29: Electrochemical performance of experimental compositions -  Shibli 
et al ((Shibli et al., 2008)).

Alloy designatbn Pi w t) Analyttal compositbn (94)
NaCl

solutbn
e (A h 'kg) E (mV)

P o te n tf il

type

Current
efniency

Pi)

Reference
electrode

Comment

Al Zn
SI 1 Ref 5 3?i NaCl N/A -944 OCP 4 4 .4 5CE Ce02= 0 %
SI 2 Ref 5 36i NaCl N/A -953 OCP 3B.4 SCE C eC2= 0.05 %
513 Ref 5 3% NaCl N/A -9S7 OCP 63.9 SCE Ce02= 0 .1  %
SI 4 Ret 5 3··; NaCl N/A -96l OCP 73.6 SCE Ce02= 0.2 3i
515 Ref 5 391 NaCl n7a -9SS OCP 6 Γ 5 SCE Ce02= 0 .5  %
516 Ref 5 36i NaCl N/A -967 OCP 4a. s SCE C eC2= 1 %
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Tsai ((Tsai, 1996)) investigated the electrochemical performance of mainstream Alu
minum sacrificial anode compositions (Al-Zn-In) with variations in Zinc and Indium con
tent. The results are satisfactory for the protection of offshore structures in seawater.

Table 4.30: Electrochemical performance of experimental compositions -  Tsai 
((Tsai, 1996)).

A lloy  designator! 

p i  w t)
A n a ly tia l com position P i) HaCl so lu tbn e (Ah··1 kg) E (mV)

P oten tiil

type

C urrent

efiiiency

P i)

Reference

electrode

A T In In Fe Si

A lloy  1 Ret 3.5 0.01 0.05 0 .04 A5TM D 1141 2590 -1070 CHIP flfl 5CE

A lloy  2 Ref 3.5 0 .03 0.05 0 .04 A  STM D 1141 2620 -1110 CCP a? SC E

A lloy  3 Ret 3.5 0.05 0.05 0 .04 A5TM D 1141 26UO -1130 OOP 91 5CE

A lloy  4 Ref 2 0 .03 0.05 0 .04 ASTNJ D 1141 2 (^ 0 -1110 OCP 91 SCE

A lloy  5 Ref 5 0 .03 0.05 0 .04 A 5TM D 1141 2600 -1100 OOP 69 5CE

Ma et al ((Ma et al., 2009)) experimented with Zinc and Bismuth in an effort to 
create a high-performance Aluminum anode. Increased Bismuth concentrations lead to 
a small positive shift in potentials and improvements in the dissolution process. All 
anodes exhibited good electrochemical performance, but the corrosion mechanism must 
be researched further.

Table 4.31: Electrochemical performance of experimental compositions -  Ma et 
al ((Ma et al., 2009)).

A llo y  d e s ig n a tb n  Pi 
w t)

A n a ly t ta l c o m p o s ito n  [%) N a d  s o lu tb n e (A f /k g ) E (mV)
P o te n ta l

type

C u rre n t

e fb ie n cy

Pi)

R e fe rence

e le c tro d e

A l------- Zn El
Alloy 1 Ret 0.5 0,1 Natural Seawater 2618 -1053 OCP N/A A&'AgCI
A llo y  2 Ref 0.5 o.: N a tu ra l S e a w a te r 2514 -1052 OCP N /A Ag-'AgC 1

Alloy 3 Ref 0.5 0,3 Natural Seawater 2517 -112B OCP N/A Ag/AgCI
A llo y  4 Rsf 0.5 0 .4 N a tu ra l S e a w a te r 2473 -1155 OCP N /A A g A g C I

Alloy 5 Ref 0.5 0,5 Natura 1 Sea water 2457 -1015 OCP n7a Ag/AgCI
A llo y  6 Ref 0.5 5 0.5 N a tu ra l S e a w a te r 2565 ■ m OCP N /A Ae-'AgC 1

Alloy 7 Ref 0.6 0,5 Natural Seawater 2561 -913 OCP N/A Ag/AgCl
A llo y  5 Ret 0 .65 0.5 N a tu ra l S e a w a te r 2534 -907 OCP N /A A g A g C I

Alloy 9 Ret 0.7 0,5 Natural Seawater 2555 -909 OCP n7a Ae/AeCI
A llo y  10 Ref o.a 0.5 N a tu ra l S e a w a te r 2534 -917 OCP N /A Ag-'AgC 1

Saremi et al ((Saremi et al., 2004)) studied the effect of mold and melt tempera
ture in the performance of Al-Zn-In and Al-Zn-In-Mg alloys (table for 4.1 and table for 
4.2). Mold and melt temperatures as well as the solidification process are very impor
tant parameters in the even distribution of alloying elements within the anode and the 
resulting uniform consumption during its service life. The researchers concluded that 
additions of Mg lead to grain refinement in Al-Zn-In alloys, with maximum grain refine
ment achieved at the maximum solid solubility of Mg in Aluminum at room temperature,
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i.e., 2% weight. The improved grain refinement leads to layer by layer dissolution of the 
anode and therefore improved current capacity. ((Saremi et al., 2004))

Table 4.32: Electrochemical performance of experimental compositions -
Sameri et al ((Saremi et al., 2004)) / Table A.

Alloy designation
e%wt)

Analyttal compositbn (%) NaCl
solutbn

ε (Ah· kg) E (mV)
Potenthl

type

C urrent 
efoiency

(K)

Reference
electrode

Comment

AΓ Zn In Fe Si Cu Mg Cd Pb
Ret 5.127 0.023 0.15 0.087 0.008 2 0.002 0.035 0.5 M 2510 -980 N/A 81 5CE Melt/Mold Temp=750/300

AI-5Zn*0.02ln*2Mg Ret 5.127 0.023 0.15 0.087 J.008 2 D.002 0.035 0.5 M 2640 -1010 N/A 85 5CE Melt/Mold Temp=750/350
Al- 5Zrv0.02ln-2Mg Ret 5.127 0.023 0.15 0.087 0.008 2 0.002 0.035 0.5 M 2700 -1030 n7a &S 5CE Melt/Mo Id Ternp=730/300
Al· 5Zn-0.02ln-2Mg Ret 5.127 0.023 0.15 0.087 0.008 2 0.002 0.035 0.5 M 2750 -1045 N/A 90 SCE Melt/Mold Temp=730/350

Table 4.33: Electrochemical performance of experimental compositions -
Sameri et al ((Saremi et al., 2004)) / Table B.

Alloy
designatbn 

(% wt)
Analyttal compositbn (?i)

NaCl
solutbn

ε (Ah'kg) E (mV)
Potenftl

type

Current
eftiency

Reference
electrode

Comment

Α ^ Ζ ι^ Β ϊ ΐη
A T Zn In Fe Si Cu Cd Pb
Ref 5.127 0.023 0.15 0.087 0.008 0.002 0.035 0.5 M |2470 -1010 N/A 78 SCE Melt/Mold Ternp=750/200

Al-S2n-0.02ln Ref 5.127 0.023 0.15 0.087 0.008 0.002 0.035 0.5 M ]2600 -1020 N/A 83 SCE Melt-Mold Temp=750/300
AI-5Zn-0.02ln Ref 5.127 0.023 0.15 0.087 0.008 0.002 0.035 05~M |2620 -1025 nZa 86 SCE Melt/Mold Temp=71Q/350
AP5Zn-0.02ln Ref 5.127 0.023 0.15 0.087 0.008 0.002 0.035 0.5 M |26S2 -1030 N/A 88 SCE Melt/Mold Temp=710· 400

Keyvani et al ((Keyvani et al., 2005)) studied the effect of Casting parameters, namely 
melt temperature and mold temperature, in the performance and structure of Al-Zn-In an
odes. The cooling rate affects greatly the performance of the resulting anode. The optimal 
melt temperature was found to be 710 oC , with a mold temperature of 400C. Generally, 
higher melt and mold temperatures resulted in higher electrochemical performance and 
uniform corrosion due to the homogeneity of alloying elements distribution within the 
alloy.

Sharma et al ((Sharma, 2011)) as part of their research recorder the compositions and 
electrochemical performance of Aluminum sacrificial anodes from various sources. The 
summary of their findings is presented below:
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Table 4.34: Electrochemical performance of experimental compositions -  Key- 
vani et al ((Keyvani et al., 2005)).

Alloy designatbn
(K w tJ

Analytta l compositbn (%)
NaCl

so lu ttn
ε

(Ah/kg)
E (mV)

Potental
type

Current
efttiency

Reference
electrode

Comment

Zn In Fe Si Cu Cd
Anode alloy 1 Ref 5.097 0.021 0.1b 0.088 0.009 0.002 0.04 0.5 M 2308 -1000 OCP N/A 5CE M elt=750 /m old=25

Anode alloy 2 Ref 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2280 ■990 OOP N/A 5CE Melt=710 ■' mold=25
Anode alloy 3 Ret 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2264 ■985 OCP N/A 5CE M elt=670 / mold=25
Anode alloy 4 Ref 5.097 0.021 0.15 o.o 58 0.009 0.002 0.04 0.5 M 2356 ■1010 OCP N/A 5CE N*elt=?5o /  m old=100
Anode alloy 5 Ref 5.097 0.021 0.1b Ο ΟΕΓ 0.5 M 2349 -1005 OCP n7a 5CE Melt=710 /  mold=100

Anode alloy 6 Ref 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2327 -990 OCP N/A 5CE Melt=670 ·■' mold=100
Anode alloy 7 Ret 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2469 -1000 OCP N/A 5CE M e lt"7 5 0 /m o ld "200
Anode alloy 8 RsT 5.097 0.021 O'. 15 00 8 8 0.009 0.002 0.04 0.5 M 2461 -1020 CEP N/A SCE Melt=710 ·■' mold=200
Anode alloy 9 Ret 5.097 0,021 0.15 OOST 0,009 0.002 0.04 0.5 M 2452 -1010 OCP N7A 5CE M elt=670 /  mold=200
Anode alloy 10 ReT 5.097 0.021 0.15 OOli8 0.009 0.002 0.04 0.5 M 2562 -1010 OCP N/A SCE M elt=?$0 / m o ld "300
Anode alloy 11 Ret 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 256a -1030 OCP N/A SCE M e lt=710 / mold=300
Anode alloy 12 Ref 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2561 -1030 OCP N/A SCE M elt"670 /  m o ld "300
Anode alloy 13 Ret 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2578 -1020 OCP N/A SCE M e lt"750 /m o ld= 400
Anode alloy 14 Ret 5.097 0.021 0.15 OOtife 0.009 0.002 0.04 0.5 M 2595 -1040 OCP N/A SCE M e lt"^ i0  mold"4O0
Anode alloy 15 Ref 5.097 0.021 0.15 0.088 0.009 0.002 0.04 0.5 M 2530 -1050 OCP N/A SCE M e lt=670 / mold=400

Table 4.35: Electrochemical performance of experimental compositions -
Sharma et al ((Sharma, 2011)) / Table A.

A lloy

des ignatbn

w t)

A n a ly tta l c o m p o s itb n  (?ό) NaCl so lu tb n e (A tVkgi E (mV)
P o te r r t l

type

C urren t

e ftiien cy

Pfi)

R eference

e lec trode

Al Zn In Fe Si Se

100% Al Ret 0 0 0 0 0 ph"fl N/A -2300 W P N/A 5CE
105% Al Rel 0 0 0 0 0 0.5 M  i  25C N /A "SO) OCP N /A SCE

AI-Zn-ln-Fe-Si Ret 0.013 0.0227 oTiS" 0.04 0 artftia l seawater nTa W P/PP nTa SCE
AI-Zn-ln-Fe-Si Ref 5.014 5 .00053 3 0 .0 4 0 ph=S n / a -730 W P/PP n / a SCE

AP2Zn Ref 2 0 0 0 0 subs, ocean water @300C N/A -925 CP/FP N/A 5CE
Al- 4Zn Ref 4 0 0 0 0 subs, ocean  w a te r  ® 300C N /A -965 CP/FP N /A 5CE

AI-Zn-ln-Fe-Si Ret 4.8 0.0201 0.07 0.04 0 artftia l seawater N/A -1.140 W P/PP N/A SCE
Al-Zn-Se Ret 5 0 0 0 0.1 3% NaCl N /A - 1027 CCP/OCP N /A 5c;e
AI-Zn-ln-Fe-Si Ret 5 0.00003 0.04 0.04 0 artftia l seawater n7a -949 W P/PP n7a 5CE
Al-SZn Ref 5 0 0 0 0 3% NaCl N /A -928 CCP/OCP N /A 5CE

Table 4.36: Electrochemical performance of experimental compositions -
Sharma et al ((Sharma, 2011)) / Table B.

Alloy designatbn (?i w t) A na lytta l com positbn f?o)
NaCl

solutbn
ε (Ah/kg) E (mV)

Potental
type

Current
eftiiency

t% )

Reference
electrode

Al Fe Si Cu Mn Mg t r
Al- Mg-Cu-Fe-Si Ret 0.0007 0.0016 0.039 0 0.0005 0 0.5M @  25C N /A -741 S5CPP N /A SCE

jR S S S i Ret 0.0007 0.0016 0 0 39 o 0.0005 0 1M @ 25C N /A -721 SSCPP N /A SCE

AFMn-Mg-Cu-Fe-Si Ref 0.002 0.002 0.006 1.3 0.001 0 0.1M  @ 25C N/A -691 55CPP N/A 5CE
AhMn-Mg-Cr-Cu-Fe-Si Ref 0.16 0.08 0.04 0.02 2.43 0.23 0.1 M i  25C N /A -681 SSCPP N /A SCE
AF Mg-Cu-Fe-Si Ref 0.0007 0.0016 0.039 0 0.0005 0 0.1M  @  OC n7a -651 SSCPP n7a 5CE
A I-M n -M g -ir-d u -fe -s l Ref 0.48 0.1 0.004 0.0004 0.002 0.1 M l  25C N /A -651 SSCPP N /A SCE

AF Mg-Cu-Fe-Si Ref 0.0007 0.0016 0.039 0 0.0005 0 0.1M  @ 25C N/A -641 SSCPP N/A 5CE

4.4 An overview of activation mechanisms

The focus of Researchers nowadays is on understanding the activation mechanisms, 
i.e. the ways that the various elements disrupt the formation of a stable oxide layer on the 
outer surface of the anode.
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Table 4.37: Electrochemical performance of experimental compositions -
Sharma et al ((Sharma, 2011)) / Table C.

Alloy designs ton
Pi w t)

Analyttal com positbn (94) NaCI solution e (Ah'kgj E (mV)
Potenttl

type

|T> |
 Q

 
£

 
5 

3 
-5

 
3

Reference
electrode

Al Zn Ga
AF0.2Ga Ref 0 0.2 subs, ocean w ater @ 30C N/A -960 CP/FP N/A 5CE
Al· 2ZrrO. 2Ga Ret 2 0.2 subs, ocean w ater @ 30C nTa -900 CP/FP N/A 5CE
AI-42n-0. ZGa Ret 4 0.2 subs, ocean w ater ®  30C N/A CP/FP N/A 5CE
Al-0,5Ga Ref 0 0.5 subs, ocean w ater @ 30C N/A -1.100 CP/FP N/A 5CE
Al- 2Zn-0.SGa Ref 2 0.5 subs, ocean w ater @ 30C N/A -1011 CP/FP N/A SCE
AF4Zm0.5Ga Ref 4 0.5 subs, ocean w ater @ 30C n7a -1003 CP/FP n7a 5CE
a FTgs Ret 1 subs, ocean w ater ϊ  30C N/A - IM S C P, FP N/A SCE
Al· 2Zn- LGa Ref 2 1 subs, ocean w ater @ 30C n7a -1030 CP/FP n7a 5CE
Al-4Zn-lGa Ref 4 1 subs, ocean w ater @ 30C N/A -1024 CP/FP N/A SCE

Table 4.38: Electrochemical performance of experimental compositions -
Sharma et al ((Sharma, 2011)) / Table D.

A llo y  des igna tbn  

w t)
A n a ly tta l co m p o s itb n  (94)

NaCI 

so lu te  n
e fAh·1'kg) E (mV)

P o te n ttil

ty p e

C u rre n t

e fb ie ncy

Pi)

R e ference

e le c tro d e

A l Zi Fe Si 5n - | Ac Ei

Ret υ 0 0 0 .0 2 0 0 0 0 .5 M N /A -8 5 0 OCR N /A 5CE

AFO.OPSr, Rel 0 0 0 0 .0 9 0 0 ΰ 0.5 M N /A -1020 GCP N /A SCE

Al· 5Zn-0. ISn-O . IB  i Ret 5 0 0 0.1 0 0 0.1 3% NaCI n7a -1025 CCP/OCP n7a SCE

Al-Sn-Fe-Si Ref 0 0 .0 0 4 0 .0 0 3 0 0 .1 2 0 0 0.1 H N /A -1341 CCP N /A SCE

AFO. 125n Ret 0 0 0 0 .1 2 0 0 0 0 .1  N N /A -1321 CP N /A SCE

Al- Sn-Fe-Si Rel 0 0 .0 0 4 0 .0 0 3 o 0 .1 2 0 0 0.1 N N /A -1241 ΓΊ ΓΊ T
1

N /A SCE

a F o 2 S ^ o T5b1 0 0.2 0 0 0 .1 6 0 .1  N nT a -1401 CP nTa SCE

AI-0 2Sn-0.012As Ref 0 0 0 0.2 0 0.012 0 0.1 H N /A -1351 CP N /A SCE

Table 4.39: Electrochemical performance of experimental compositions -
Sharma et al ((Sharma, 2011)) / Table E.

A lo y  designatbn
(9b w t)

Analytta l com positbn (94)
NaCI

so lu rtn
e (Alv'kg) E (mV)

Potenttil
type

Current
eftiiency

(%)

Reference
electrode

a R I z St̂ iS ^ ^
Al 5n Mg Zr Sb Ni Co
Ret 0.2 1.1 0 0 0 0 0.1N N/A -1331 CP N /A SCE

ΑΡ0.25Γ,-α0942|· Ref 0.2 0 0.094 0 0 0 0.1 N N/A -1331 C P N /A SCE

AF0.2Sn-0.021Co Ref 0.2 0 0 0 0 0.021 0.1N N/A -1311 CP N/A SCE
At0.2Sn Ref 0.2 0 0 0 0 0 0.5 M N/A -1300 OCP N/A SCE
AF0.25n-0.0455b Ret 0.2 0 0 0.045 0 0 0.1 N W R -1271 CP N /A SCE
AF0.2Sn-0.096Ni Ref 0.2 0 0 0 0.096 0 0.1 N N/A -1201 C P N /A SCE

AFO.ASn Ref 0.4 0 0 0 0 0 0.5 M N/A -1400 OCP N /A SCE

The findings presented on different papers sometimes are inconclusive and different 
activation mechanisms have been assigned to the same element.

In other cases, the proposed mechanisms are not fully understood due to a lack of 
instrumentation or the difficulty of isolating and identifying the effect of a single element 
and as a result a vague estimation on the activation mechanism of an element is given.
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An element that has been adequately researched and its activation mechanisms doc
umented is Gallium. The prevailing activation mechanism theory for gallium is the 
discrete-particle mechanism and can be seen schematically on figure 4.4.

Go f  A1
diffusion diffusion

oxide film
cracking and
thinning

oxide
a

diffusion
Al -Ga
alloy

grain boundary
Gallium remaining after preferential Al dissolution
from ahoy or redeposifed from G a ^  ions

Figure 4.4: Gallium discete particle activation mechanism ((7b, 2016))

Monzel et al ((Monzel and Druschitz, 2014)) recorder and presented the prevailing 
activation mechanism theories for various elements, as can be seen on figure 4.5.

Figure 4.5: Proposed activation mechanisms for various elements. ((Monzel and 
Druschitz, 2014))
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Future trends

Cathodic Protection with the use of sacrificial anodes has been utilized for decades 
and as a result all the processes and components involved are highly optimized, leaving 
only few areas where substantial improvements can be achieved.

55 years have passed since Reding and Newport’s milestone study in the performance 
of aluminum based sacrificial anodes and the research is still ongoing. The trial-and-error 
approach of the past has yielded invaluable knowledge but is unlikely to be the research 
pattern of the future, since many elements have already been exhaustively researched, 
forcing researchers to experiment with unconventional materials, such as metal oxides 
(IRO2, RuO2, CeO2) and rare earth elements (Lanthanum).

The goal of modern studies shifts away from the pursuit of absolute electrochemi
cal performance and focuses on acquiring knowledge on the corrosion mechanisms that 
sacrificial anodes with different compositions exhibit in saline solutions and identify the 
effect of individual and multiple element additions in Aluminum sacrificial anodes. An
other area of interest is the successful elimination of the adverse effects of Aluminum 
impurities, such as Iron and Copper, a prospect that could allow the use of lower purity 
aluminum without performance loss.

Extensive research on the metallurgical aspects of sacrificial anode manufacture, from 
casting and cooling parameters to the proper distribution of alloying elements, has yielded 
promising results and is an area where optimization could lead to better sacrificial anodes 
with a smaller energy and resource footprint.

Nowadays, Al-Zn-In sacrificial anodes are the prevalent option in commercial off
shore applications, owing to their high electrochemical performance, uniform corrosion,
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ease of manufacture and non-toxicity, a status quo that is unlikely to change. Other 
promising compositions must surpass the established Al-Zn-In in every aspect and as a 
result the task to identify a replacement for Al-Zn-In sacrificial anodes is quite an under
take.
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