MSc Methodology of Biomedical Research,

Biostatistics and Clinical Bioinformatics

University of Thessaly
Faculty of Medicine

Master thesis

Develop a Software in Python for Classification,
based on Classification And Regression Trees
(CART)

Avantvén Aoyepikov o€ Python ywo Ta&wvounon,
Baocwopévo ota Aévrpa Ta&vopnong kot Hoivopopunong
(CART)

Emmanouilidou Eleni

Three-member Advisory Committee:
Dr Axel Kowald (Supervisor)

Dr Elias Zintzaras

Dr loannis Stefanidis

Academic year
2021

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Abstract

Classification is an important part of data analysis and Classification and Regression
Trees (CARTS) are a popular Machine Learning method for such a task. In this work a
Classification software written in Python programming language is presented, based
on CARTSs. The algorithm splits the nodes in order to minimize the mixing of the
classes in them. In order to split a node it calculates the information gain of all the
possible splits and decides to use the one with the highest score. This function is
executed recursively until the Tree is complete. Then the software offers textual and
graphical visualization of the Classification Tree. The textual form is produced with
Python’s built-in functions, while the graph format with the Graphviz software in
connection with the graphviz package. The software was developed using the
PyCharm IDE, and the Iris flower data set was used in the program’s execution.
CARTs have evolved a lot during years and their potential is great. This algorithm’s
capabilities can be augmented in various ways that were impossible to include in a
thesis of this a length.

Key words:

programming, Python, CART, classification, decision trees,
Classification and Regression Trees, Graphviz

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

MepiAnym

H Toa&woéunon amotedel onpovtikd KOPUATL TNG avaAvong dedopévev Kot ta. Aévtpa
Ta&wounong xat [olwvdpounong (CARTS) eivar pia dnuo@iing pébodog Mnyovikng
Mébnong vy T Olekmepainon oG TETOWS OdKaciag. XE OUTH TNV €pyacia
napovctaletatl éva Aoyiopukd Ta&vounong YPoUUEVO 6T YAMCOH TPOYPOLLLATIGHLOV
Python Baciouévo ota CARTS. O alyopibuoc dwoywpilel Tov kOpPovg dote oe khbe
YOPWOUO. Vo peldveTon 1 vobeio tov kAdoswv. Mo vo ektedéost tov 1davikd
Sayopiopd vroAoyilel Tov deiktn képdovg mAnpoeopiag (information gain) amd kabe
TovO Ol ®PICUO KOl ETAEYEL ALTOV TOL TETLYOIVEL TN UEYOADTEPN TIUN Y0 TOV
delktn. Avt M ovvdpTnon KoAEiTol ovadpPopKd £0G GTOL TO SEVIPO OAOKAN PmOEL.
To Aoylopkd TPOCOEPEL KEWEVIK KOL YPOPIK OmeEWOVIoN] Tov Aévipov
Ta&wvounong otic onoieg meprapfdveror OAn 1 dwdikacio mov akoiovdnOnke. H
KELWWEVIKY] LOPQON TPOKOTTEL pe yprion eviolav ¢ Python, evéd n ypagikn pe xprion
T0v Aoylopkod Graphviz ce ocuvdvooud pe to maxéto graphviz. To Aoyiouikd
avantiydnke pe yprion tov Olokinpopévo Ilepipdirov AvamtvEng PyCharm, kot to
Iris flower data set ypnowomomOnke mC GUVOAO SEGOUEVOV Y1O0L TNV EKTEAEGT] TOV
npoypdppatoc. Tao CARTS €xovv eEehyBel modd péca ota ¥povia Kot ot QLVOTOTNTES
toug givon peydres. Ot duvatodtnteg tov aryopiBuov pog pmopovv vo avEnbovv cto
pHEAAOV pe TTowkiAovg TpOTovg oL givar advvaTo va cuumepiAneBoldy oe o epyacio
avtioToryov peyéboug.

AéEeic Kigowh:

npoypoppatioudc, Python, CART, ta&vounom, 0EvTpo ANyng
amoPdoemv, dvipa ta&vounong kot TaAtvopounone, Graphviz

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

CONTENTS

INErOAUCTION ..., 1
Classification and Regression Trees (CARTS).......c.ccoovovveviiiiiecieeen, 1
Python Programming Language.............cccccovevovoiiericecceeeeeee e, 2

Materials and Methods............c..coooooooiieeeeeeeeee, 3
Integrated Development ENVIFONMENT...............cocooiiiieiccececececeeeeee 3
Classification method................c.ccoooiiiiiiiiic s 3
Graph VISUAHIZAtION...............cooviiiice e 5
The Iris flower data SEt............coooiiiiiiiiiccc 5
Data reading and preparation..............cccocooiiiriieeiceee e, 6

RESUIES ... 7
SOTIWAIE ..o 7
VISUANZALION. ... 12

DISCUSSION ... 14

CONCIUSION ..o, 16

RETEIEINCES. ...t 16

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Introduction

Machine learning (ML) is the field of creating algorithms which make predictions and
decisions based on data and the knowledge derived from them (Podgorelec, Kokol, Stiglic,
& Rozman, 2002). This thesis is focused on the development of a ML algorithm for
Classification of datasets using the Python programming language. Its results are
presented using the Iris flower dataset as an example.

Classification and Regression Trees (CARTS)

Classification and Regression Trees are ML prediction models for classification. They
use sets of data which include 1) predictor variables and ii) the class variable of each
instance. The difference between Classification Trees and Regression Trees is that the
former analyze a finite number of dependent unordered variables, while in the latter
the values have to be continuous or ordered. In this thesis the focus is on
Classification Trees. The Tree construction begins with a parent node including the
training data based on which the Tree will be built. The data space is divided
recursively into child nodes, with each split fitting a prediction model. The result is a
procedure that can be represented as a decision tree and aims to generate child nodes
that have the minimum mixing of classes (Fig.1). The nodes which do not split
anymore are named leaf nodes and classify the data, while the ones that split are
called decision nodes. The training data do not usually include the whole data set,
because part of it is used as testing data set in order to evaluate the goodness of fit of
the Tree. (Loh, 2011)

Classification trees have various
advantages. First of all they are
white-box algorithms, which means
that all the steps of the splitting Parent Node
procedure are revealed. Consequently

they do not only produce classifiers
but also allow insight and question = false A‘questmn—true
understanding of the predictive

structure. ~ Moreover, their Child Node Child Node
representation as a decision tree is

applicable to any number of mixed- (False) (True)
type variables. As for their
comprehensibility, their graphical Fig. 1. Example of a decision tree

form is conceptually clear (Breiman,
Friedman, Stone, & Olshen, 1984).
Attention must be paid to data preparation as CART models do not support missing

values, and unbalanced sets produce biased results.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Python Programming Language

The process of Programming includes writing commands that are executed by the
computer in order to perform a task. Python is a high-level programming language
used to write such instructions. This means that the natural language elements in the
source code of a Python program are converted into bytecode that is then executed by
the Python virtual machine. It is dynamically typed and is characterized by sensitivity
to the difference between uppercase and lowercase. The Python interpreter is freely
distributed with its standard library of packages under the Python Software
Foundation License, and is very popular because of its accessibility and easy-to-learn
syntax. Additionally to the standard library it permits the use of external packages and
modules that can be downloaded, a fact that encourages code reuse and constantly
augments its capabilities. (Python Software Foundation)

Many Decision Tree learning algorithms have already been developed among which:
ID3, C4.5, CART, CHAID, QUEST, GUIDE, CRUISE, and CTREE (Singh & Gupta,
2014). This project is based on the CART algorithm developed in 1984 by Breiman et
al. (Breiman, Friedman, Stone, & Olshen, 1984). Those popular algorithms have
various capabilities that were impossible to develop in the short length of this thesis.
Yet here a comprehensive algorithm is included which can play an important role to
understand the methodology of building a tree and extracting a graphical form of it.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Materials and Methods

The computer used for the project runs on the Windows 10 Pro 64-bit operating
system. The software was written in Python 3.9.0.

Integrated Development Environment

Programming can be more user-friendly by using an Integrated Development
Environment (IDE). IDEs facilitate software development as they combine in a single
software application at least a source code editor, building executables, and
debugging. In this project the Pycharm 2021.2 Community Edition IDE was used.

Classification method

The building of a Classification and Regression Tree begins with a node that contains
the training dataset. In our software the dataset has to have the form of a list of lists.
Each sublist includes the values of the variables (numeric and/or string) and the class
name (string) of an instance, all separated by commas. The class name is always
placed last in the sublist. Two sublists of our list can be seen as an example: [5.1, 3.5,
1.4, 0.2, 'lris-setosa'], [4.9, 3.0, 1.4, 0.2, 'lris-setosa'].

Then the first main step of the algorithm is to look for the best criterion to split the
parent node. If each attribute is considered as a column with values ['SepalLengthCm',
‘SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'], each value of each column is
used to ask a question of the following form:

e For numeric variables:
Is the value of the subject’s attribute > the value we are testing?
e For string variables:
Is the value of the subject’s attribute the same as the value we are testing?

for each subject of the dataset.

Each time the subjects are split in two child nodes based on the result of the question
(True/False), and the success of each split is calculated. In Classification Trees as
success is considered the minimization of the impurity (mixing) in the child nodes. In
our CART method the Gini impurity measurement is used. At each split the Gini
impurity is calculated for the parent node and the two child nodes separately:

c
Ig =1 —z, (Pj2)1
j=1

Where I is the Gini Impurity and p is the proportion of the samples that belong to class ¢ for
a particular node.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

For the nodes in Fig. 2 the impurity is:

e For the Parent Node:

Is PetalWidthCm >= 1.6?
Gmi= 0.444
. _sampls =6 ler =1 2\2 42 =0.444
{'Iris-versicolor': 2, 'Inis-virgmica': 4} G1—+L -~ [(6) + (6)] - Y
True False .
/ \ e For the true Child Node:
Gmni= 0444 Gmi=0.0
samples = 3 samples = 3 leo =1 z 2 4 1y2 = 0.444
{'Inis-versicolor': 2, 'Inis-virgmica': 1} {'Ins-virgmica': 3} G2—4~ [(3) (3)] - Y

e For the false Child Node:

Fig. 2. Part of the Iris flower data set Classification Tree

lea=1-($?=0

In the example above, “samples” equals to the number of instances of the node, ‘Iris-
versicolor’ and ‘Iris-virginica’ are names of different classes. I3 is equal to 0 because
the false Child Node has no mixing of classes. All samples belong to the ‘Iris-
virginica’ class.

The next step is to calculate the impurity decrease for each potential split. For this
reason the Information gain is calculated in the following way:

false

N. N.
IG(Dp;f) = IG(Dp) - %IG(Dtrue) - TIG(Dfalse)

Where f is the question being asked, D, is the dataset of the parent node, Dy is the dataset of

the True child node and Dy in the dataset of the False child node. g is the Gini Impurity of

each node and N is the number of instances in each node (Ny: in the True node, Ngs: in the
False node, N: in the parent node).

For the node in Fig. 2, the information gain is:

Nfaise
L IG3(Dfalse) =

Nrue
: IG(Dtrue) - N

1G(D,,) = I5(Dy) — -
= 0.444 — (E) x 0.444 — (2) x 0 =
= 0.222

Checking all the possible decisions one by one, each time the algorithm finds a higher
information gain it saves it in a variable named max_info_gain, replacing the previous

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

value. After asking all the possible questions the max_info_gain and its corresponding
questions are kept, and the parent node finally splits according to it.

Then the algorithm recursively splits the child nodes following the same algorithm
until the splitting stops in two cases. The first case is when no information gain occurs
from the split (max_info_gain = 0) and the decision node does not split, it becomes a
leaf node. The second case is when the depth of the tree reaches a prefixed value and
has to stop. The depth of the tree is the number of splits a Tree can make before
reaching a leaf node and in our algorithm the limit was set to 4. Setting a depth limit
before the Tree fully grows is called Prepruning. Pruning can also happen after a Tree
is fully grown by subtracting the deepest nodes of it. Pruning and Prepruning help the
algorithm because they produce Trees that do not overfit to the training sample and
can generalize more efficiently.

Graph Visualization

The Classification Tree of the software is visualized in two forms. The first form is
textual using Pythons’ built-in functions.

The second form is graph visualization using the Graphviz software. Graphviz is an
open source software that can be downloaded under the The Common Public License.
The graphviz package was installed and imported in the algorithm. Graphviz takes
descriptions of graphs in simple text language and makes diagrams in various formats,
such as .png or .pdf. It also allows the choice of different colours, fonts, shapes, node
layouts etc for the extracted file (The Graphviz Authors). In our software a directed
graph (Digraph) is created, which means that the nodes of the Tree are connected with
arrows pointing from the parent node to the child node. In order for a graph to be
created, Graphviz needs the description of each node and each edge that connects the
nodes, along with their attributes.

The Iris flower data set

The Iris flower data set is a data set of 150 flowers belonging to three species of the
iris genus: Iris setosa, Iris versicolor and lIris virginica. It includes the measurements
of the sepal length, sepal width, petal length and petal width of 50 flowers of each
species and was introduced as a problem of taxonomy to be addressed with linear
discriminant analysis (Fisher, 1936). The dataset is open sourced, with class
imbalances and no missing values and is conceptually understandable, so it is very
popular as a test sample for many classification techniques in machine learning.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Datareading and preparation

The Iris flower data set was downloaded in as a Comma Separated Values (csv) file in
our software’s directory. Using the csv package from the Python Standard Library, the
file was read as a list of lists named ‘data’, but all the values were considered to be
strings.

reader

In order to give the appropriate format to the file, the first value of each list was

deleted as it was the id of the flower and it was not useful.

list data:
1list [0]

Then a new list was created including only the first list of the file’s lists. This new list
held the headers of the columns. The headers were then deleted from the initial list

because they would interfere with the algorithm.
headers = data[0]
data[0]

The iris data set includes the class names and 4 attributes for each flower which are
numeric. In order to change the string values of the attributes to numeric, the class
names were separated in another list of lists named ‘target values’ and deleted from
the initial list.

target values = []
list data:

target values.append (list[-1])
(List[-11])

All the values of the attributes were appended as floats in another new list of lists
named ‘iris_data’.
iris data =

list data:

iris data list = []

i list:

iris data list.append((1))
iris data.append(iris data list)

Finally the class names were reappended in the list with the numeric values and the
data set was ready for use.

idx, 1 (target values) :

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Results

Software
The algorithm that was developed is the following. First there is the import statement
for the packages used. Then the Functions and the Classes are defined:

Ccsv
random
graphviz

get_unique_numbers(numbers):

list of unique numbers = []
unique numbers = (numbers)
number unique numbers:
list of unique numbers.append (number)
list of unique numbers

numeric data (value):

(value
type counts (rows) :

counts = {}
row TrOwS:
target val = row[-1]
target val counts:
counts [target val] =
counts [target val] +=
counts

instances split(rows, column, unique vals) :

true group, false group = [] []

row TOWS:
numeric data(row[column]) :
criterion = row[column] >= unique vals

criterion = row[column] == unique vals

criterion:
true group.append (row)

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

false group.append (row)
true group, false group

gini impurity (rows) :

gini =
counts = type counts (rows)
value counts:
gini -= (counts[value] / (rows)) **
gini

information gain (left node, right node, parent node) :

((left node) + (right node))
/{ (left node) +

weight left = (left node) /
weight right = (right node)
(right node))
gini impurity (parent node) - gini impurity(left node) *
weight left - gini impurity(
right node) * weight right

unique values for questions (parent node, headers):

unique vals = {}
i (

(parent node[0]) - 1):

vals = []
row parent node:
vals.append(row([i])
unique vals[headers[i]] = get unique numbers (vals)

unique vals

ask best question (parent node) :

max info gain =

ideal key num

ideal val =

ideal key =

question =

unique vals = unique values for questions(parent node, headers)

idx, key (unique vals.keys()):

(unique vals[key])) :

true group, false group = instances split (parent node
idx, unique valsl[key][i])

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

info gain = information gain (true group, false group
parent node)

info gain > max info gain:
max info gain = info gain
ideal key = key
ideal key num = idx
ideal val = unique vals[key] [1]
question = % (ideal key
(ideal val))

max info gain, ideal key, ideal key num, ideal val
question

LeafNode:

(rows) :
.predictions = type counts (rows)
.gini = gini impurity(rows)
.node name = (random. random ())
.len = (rows)

DecisionNode:

(rows, question, true branch, false branch):
.gini = gini impurity(rows)
.predictions = type counts (rows)
.question = question
.true branch true branch
.false branch = false branch
.node name = (random. random ())
.len = (rows)

build tree (parent node, depth) :

name
name +=

depth <
depth +=

LeafNode (parent node)

max info gain, ideal key, ideal key num, ideal val, question =
ask best question(
parent node)

max info gain ==

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

LeafNode (parent node)

true group, false group = instances split(parent node
ideal key num
ideal val)

true branch = build tree (true group

=depth)
ranch = build tree(

se group =depth)

DecisionNode (parent node, question, true branch
false branch)

The next step is to define the functions of the visualization part of the algorithm
(textual and graphical):

print tree (node, spacing=
(node, LeafNode) :
(spacing + node.predictions)
(spacing + + (node.gini))

(node, DecisionNode) :
i + (node.question))
1 node.predictions)
+ + (node.gini))

+)
print tree (node.true branch, spacing +

(spacing +)
print tree (node.false branch, spacing +

graph tree (tree, parent node name, graph, edge label):

tree, LeafNode) :
(=tree.node name

graph.node

10

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

tree.gini
.predictions)

graph.edge (parent node name, tree.node name
=edge label)

DecisionNode) :

=tree.node name

(tree.qu

tree.len, tree. edl

estion tree.gini
“t ions)

)
k >
qrdph edge (parent node name, tree.node name
=edge label)
parent node name = tree.node name

rue branch, parent node name

.false branch, parent node name, graph

After all the Functions and Classes are defined, the dataset has to be read and
prepared to be used in the correct format. The Iris flower data set was saved as a .csv
file in the same directory as the python project. Then, the preparation of the dataset is
the following:

csv.reader (f)
(reader)

target values = []
list data:
target values.append (1i
(list[-1])

iris data = []
list data:
iris data list = []

11

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

i list:
iris data list.append/((1))
iris data.append (iris data list)

idx, i (target values) :

iris data[idx] .append(i)

Finally there is the part of the software which analyzes the dataset, trains the Decision
Tree and visualizes the result using the functions and classes defined at the beginning:

parent node name =

y _tree = build tree(iris data =depth)
(my tree)

= graphviz.Digraph (

)
graph tree (my tree, parent node name, g

(g.source)
g.view ()

12

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Visualization

When we run the program the textual visualization output is the following. Here the
colors of the splitting questions and the True/False answers are different than the
PyCharm output for optical reasons. Each decision node contains i) the question for
its split, ii) the number of instances of each class that the node contains, ii) its Gini
impurity. If the Node has no printed question it means that it is a leaf node.

Is PetalLengthCm >=3.0?
Predict {'lris-setosa': 50, 'lris-versicolor': 50, 'lris-virginica": 50}
The Gini impurity is 0.6666666666666665
--> True:
Is PetalWidthCm>=1.8?
Predict {'Iris-versicolor" 50, 'lris-virginica: 50}
The Gini impurity is 0.5
-->True:
Is PetalLengthCm >= 4.9?
Predict {'lris-versicolor" 1, 'lIris-virginica': 45}
The Gini impurity is 0.04253308128544431
-->True:
Predict {'lris-virginica": 43}
The Gini impurity is 0.0
--> False
Is SepalLengthCm >=6.0?
Predict {'lris-versicolor": 1, 'lIris-virginica'. 2}
The Gini impurity is 0.4444444444444444
-->True:
Predict {'lris-virginica" 2}
The Gini impurity is 0.0
--> False
Predict {'lris-versicolor": 1}
The Gini impurity is 0.0
--> False
Is PetalLengthCm >=5.0?
Predict {'lris-versicolor": 49, 'lIris-virginica': 5}
The Gini impurity is 0.1680384087791495
-->True:
Is PetalWidthCm>= 1.6?
Predict {'lris-versicolor": 2, 'Iris-virginica': 4}
The Gini impurity is 0.4444444444444444
-->True:
Predict {'lris-versicolor": 2, 'Iris-virginica' 1}
The Gini impurity is 0.4444444444444445
--> False
Predict {'lris-virginica": 3}
The Gini impurity is 0.0
--> False
Is PetalWidthCm>=1.7?
Predict {'lris-versicolor': 47, 'lIris-virginica': 1}
The Gini impurity is 0.040798611111111174
-->True:
Predict {'lris-virginica": 1}
The Gini impurity is 0.0
--> False
Predict {'Iris-versicolor" 47}
The Gini impurity is 0.0
--> False
Predict {'Iris-setosa’: 50}
The Gini impurity is 0.0

13

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Using Graphviz the graphic visualization was also possible. A .png file format was
chosen and the extracted file looks as it follows. Decision Nodes are colored light
orange, Leaf Nodes green, and they are all labeled with their Gini impurity (Gini), the
number of instances they include (samples), and the number of instances belonging to
each class. Decision Nodes also include in their label the question that represents the

splitting criterion.

Iris Flower Data Set Classification Tree

Iz PetalLengthCm == 3.07
Gini = 0.666
samples = 150
{ 'Triz-setoga’: 50, 'Tris-versicolor': 50, Trig-virginica': 50}

’%me

Is Petal WidthCm == 1.8?
Gini = 0.5
samples = 100
{'Tris-versicolor": 50, Tris-virginica": 50}

‘/me \alse

W"e

Gini= 0.0
samples = 50
{'Inis-getosa’: 50}

Iz PetalLengthCm == 4.97
Gini = 0.042

samples

{Trig-versicalor”: 1, 'Tris-virginica': 45}

=46

Iz PetalLengthCm == 5.0?
Gini = 0.168
samples = 54
{ Tris-versicolor": 49, 'Tris-virginica': 5}

Gini= 0.0
samples = 43
{Tris-virginica”: 43}

True [False True N‘
¥ 4
Iz SepalLengthCm == 6.0? Is Petal WidthCm == 1.6? Is PetalWidthCm == 1.77
Gini = 0.444 Gini = 0.444 Gini = 0.040

samples =3

{'Iris-versicolor": 1, 'Iris-virguuca': 2}

samples = 6
{'Tris-versicolor”: 2, 'Ins-virginica': 4 }

samples = 48
{'Irig-versicolor": 47, Tris-virginica': 1}

‘Af False /Tlue \al‘se True Nlie
Gini = 0.0 Gini = 0.0 Gini = 0.444 Gini = 0.0 Gini = 0.0 Gini = 0.0

samples = 2
{'Trig-virginica'": 2}

samples =1
{'Iiis-versicolor”: 1}

samples =3

{'Tris-versicolor’: 2, 'Tris-virginica': 1}

samples =3
{'Tiis-virginica”: 3}

samples =1
{'Tuig-virginica': 1}

samples = 47
{'Tiis-versicolor”: 47 }

14

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Discussion

A Classification software was developed including visualization of the classification,
both textually and graphically. The methodology was based on Classification and
Regression Trees. The software was written in Python programming language using
only the language’s built-in functions, except for three cases. The first was in the line
reading the .csv dataset file, where the ‘csv’ package of the Standard Library was
used. Then, the ‘random’ package of the Standard Library was used in the two classes
of the program (LeafNode, DecisionNode) in order to generate a unique name for
each node. The last package that was imported was graphviz in order to use the
Graphviz software for the graph visualization of the Tree. The fact that the
classification algorithm is written in pure Python makes it comprehensible for all
Python users.

A limitation of the method is that it cannot handle missing data. For the Iris flower
data set we made the assumption that no data was missing and it was true, but if the
set has missing values they have to be handled, for example with a deletion or
imputation method, while preparing the dataset. Attention in the dataset preparation
is also important because the “dataset preparation” part of the algorithm can be used
unmodified only for a specific file format, which includes solely numeric variables
except for the class names. Since categorical values can be handled in the
“classification” algorithm, a personalization of the data preparation allows the use of
it. One last point that has to be mentioned is the maximum depth (prepruning), as
depth=4 could be insufficient for big datasets. The depth limit can easily be changed
by changing the “if” statement in the “build_tree” function (if depth < 4), where 4 is
the maximum depth.

A possible next step for this algorithm could be the separation of the data in training
data, which will be used to build the tree, and testing data, which will be used to
assess its predictive accuracy. An evaluation of the accuracy will also permit a more
advanced pruning method, where the depth is chosen by the algorithm based on
accuracy.

15

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Conclusions

Classification and Regression Trees have many advantages and are a popular Machine
Learning method. Our software is focused on classification and can handle both
numeric and string attributes of the dataset with the appropriate preparation of it. The
software can be used in various fields for decision making including health sciences
(for classification, diagnosing etc.). In the present project the Iris flower data set was
used to train a Classification Tree, where the Classifiers were chosen based on the
information gain of each split. The Tree was prepruned at depth = 4 many of the leaf
nodes were pure. The software additionally to choosing the classifiers and splitting
the data also produces visual results of all the steps in the classification process. The
visualization is both textual and graphical using the Graphviz software.

Due to the limited time available for the execution of this project, the original dataset
was not divided in training and testing data. Future development of the algorithm
should include this addition since it opens the way for the assessment of the accuracy
of the Classification Tree, knowledge that is important for its use as a prediction
model.

References

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression trees.
Chapman and Hall, New York.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics, pp. 179-188.

Loh, W.-Y. (2011, January). Classification and Regression Trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, pp. 14 - 23, DOI:10.1002/widm.8.

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002, October). Decision trees: an
overview. Journal of Medical Systems, Kluwer Academic/Plenum Press, pp. Vol. 26,
Num. 5, pp. 445-463.

Singh, S., & Gupta, P. (2014, July). Comparative study ID3, CART and C4.5 Decision Tree
Algorithm: A Survey. International Journal of Advanced Information Science and
Technology (IJAIST), pp. Vol.27, No.27, ISSN: 2319:2682.

Python Software Foundation. (n.d.). Python. Retrieved from python.org

The Graphviz Authors. (n.d.). Graphviz. Retrieved from https://graphviz.org

16

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

