
MSc Methodology of Biomedical Research,

 Biostatistics and Clinical Bioinformatics

University of Thessaly

Faculty of Medicine

Master thesis

Develop a Software in Python for Classification,

based on Classification And Regression Trees

(CART)

Ανάπηςξη Λογιζμικού ζε Python για Ταξινόμηζη,

βαζιζμένο ζηα Δένηπα Ταξινόμηζηρ και Παλινδπόμηζηρ

(CART)

Emmanouilidou Eleni

Three-member Advisory Committee:
Dr Αxel Kowald (Supervisor)

Dr Elias Zintzaras

Dr Ioannis Stefanidis

Academic year

2021

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Abstract

Classification is an important part of data analysis and Classification and Regression

Trees (CARTs) are a popular Machine Learning method for such a task. In this work a

Classification software written in Python programming language is presented, based

on CARTs. The algorithm splits the nodes in order to minimize the mixing of the

classes in them. In order to split a node it calculates the information gain of all the

possible splits and decides to use the one with the highest score. This function is

executed recursively until the Tree is complete. Then the software offers textual and

graphical visualization of the Classification Tree. The textual form is produced with

Python‟s built-in functions, while the graph format with the Graphviz software in

connection with the graphviz package. The software was developed using the

PyCharm IDE, and the Iris flower data set was used in the program‟s execution.

CARTs have evolved a lot during years and their potential is great. This algorithm‟s

capabilities can be augmented in various ways that were impossible to include in a

thesis of this a length.

Key words:

programming, Python, CART, classification, decision trees,

Classification and Regression Trees, Graphviz

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Περίληψη

Η Ταμηλόκεζε απνηειεί ζεκαληηθό θνκκάηη ηεο αλάιπζεο δεδνκέλσλ θαη ηα Δέληξα

Ταμηλόκεζεο θαη Παιηλδξόκεζεο (CARTs) είλαη κηα δεκνθηιήο κέζνδνο Μεραληθήο

Μάζεζεο γηα ηε δηεθπεξαίσζε κηαο ηέηνηαο δηαδηθαζίαο. Σε απηή ηελ εξγαζία

παξνπζηάδεηαη έλα ινγηζκηθό Ταμηλόκεζεο γξακκέλν ζηε γιώζζα πξνγξακκαηηζκνύ

Python βαζηζκέλν ζηα CARTs. Ο αιγόξηζκνο δηαρσξίδεη ηνπ θόκβνπο ώζηε ζε θάζε

ρώξηζκα λα κεηώλεηαη ε λνζεία ησλ θιάζεσλ. Γηα λα εθηειέζεη ηνλ ηδαληθό

δηαρσξηζκό ππνινγίδεη ηνλ δείθηε θέξδνπο πιεξνθνξίαο (information gain) από θάζε

πηζαλό δηαρσξηζκό θαη επηιέγεη απηόλ πνπ πεηπραίλεη ηε κεγαιύηεξε ηηκή γηα ηνλ

δείθηε. Απηή ε ζπλάξηεζε θαιείηαη αλαδξνκηθά έσο όηνπ ην δέληξν νινθιεξσζεί.

Τν ινγηζκηθό πξνζθέξεη θεηκεληθή θαη γξαθηθή απεηθόληζε ηνπ Δέληξνπ

Ταμηλόκεζεο ζηηο νπνίεο πεξηιακβάλεηαη όιε ε δηαδηθαζία πνπ αθνινπζήζεθε. Η

θεηκεληθή κνξθή πξνθύπηεη κε ρξήζε εληνιώλ ηεο Python, ελώ ε γξαθηθή κε ρξήζε

ηνπ ινγηζκηθνύ Graphviz ζε ζπλδπαζκό κε ην παθέην graphviz. Τν ινγηζκηθό

αλαπηύρζεθε κε ρξήζε ηνπ Οινθιεξσκέλν Πεξηβάιινλ Αλάπηπμεο PyCharm, θαη ην

Iris flower data set ρξεζηκνπνηήζεθε σο ζύλνιν δεδνκέλσλ γηα ηελ εθηέιεζε ηνπ

πξνγξάκκαηνο. Τα CARTs έρνπλ εμειηρζεί πνιύ κέζα ζηα ρξόληα θαη νη δπλαηόηεηέο

ηνπο είλαη κεγάιεο. Οη δπλαηόηεηεο ηνπ αιγνξίζκνπ καο κπνξνύλ λα απμεζνύλ ζην

κέιινλ κε πνηθίινπο ηξόπνπο πνπ είλαη αδύλαην λα ζπκπεξηιεθζνύλ ζε κηα εξγαζία

αληίζηνηρνπ κεγέζνπο.

Λέμεηο Κιεηδηά:

πξνγξακκαηηζκόο, Python, CART, ηαμηλόκεζε, δέληξα ιήςεο

απνθάζεσλ, δέληξα ηαμηλόκεζεο θαη παιηλδξόκεζεο, Graphviz

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

CONTENTS

Introduction .. 1

Classification and Regression Trees (CARTs).. 1

Python Programming Language .. 2

Materials and Methods .. 3

Integrated Development Environment.. 3

Classification method.. 3

Graph Visualization... 5

The Iris flower data set ... 5

Data reading and preparation ... 6

Results .. 7

Software .. 7

Visualization... 12

Discussion ... 14

Conclusion ... 16

References .. 16

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

1

Introduction

Machine learning (ML) is the field of creating algorithms which make predictions and

decisions based on data and the knowledge derived from them (Podgorelec, Kokol, Stiglic,

& Rozman, 2002). This thesis is focused on the development of a ML algorithm for

Classification of datasets using the Python programming language. Its results are

presented using the Iris flower dataset as an example.

Classification and Regression Trees (CARTs)
Classification and Regression Trees are ML prediction models for classification. They
use sets of data which include i) predictor variables and ii) the class variable of each
instance. The difference between Classification Trees and Regression Trees is that the

former analyze a finite number of dependent unordered variables, while in the latter
the values have to be continuous or ordered. In this thesis the focus is on
Classification Trees. The Tree construction begins with a parent node including the
training data based on which the Tree will be built. The data space is divided

recursively into child nodes, with each split fitting a prediction model. The result is a
procedure that can be represented as a decision tree and aims to generate child nodes
that have the minimum mixing of classes (Fig.1). The nodes which do not split
anymore are named leaf nodes and classify the data, while the ones that split are

called decision nodes. The training data do not usually include the whole data set,
because part of it is used as testing data set in order to evaluate the goodness of fit of
the Tree. (Loh, 2011)

Classification trees have various
advantages. First of all they are
white-box algorithms, which means

that all the steps of the splitting
procedure are revealed. Consequently
they do not only produce classifiers
but also allow insight and
understanding of the predictive

structure. Moreover, their
representation as a decision tree is
applicable to any number of mixed-
type variables. As for their

comprehensibility, their graphical
form is conceptually clear (Breiman,

Friedman, Stone, & Olshen, 1984).

Attention must be paid to data preparation as CART models do not support missing

values, and unbalanced sets produce biased results.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

2

Python Programming Language

The process of Programming includes writing commands that are executed by the

computer in order to perform a task. Python is a high-level programming language

used to write such instructions. This means that the natural language elements in the

source code of a Python program are converted into bytecode that is then executed by

the Python virtual machine. It is dynamically typed and is characterized by sensitivity

to the difference between uppercase and lowercase. The Python interpreter is freely

distributed with its standard library of packages under the Python Software

Foundation License, and is very popular because of its accessibility and easy-to-learn

syntax. Additionally to the standard library it permits the use of external packages and

modules that can be downloaded, a fact that encourages code reuse and constantly

augments its capabilities. (Python Software Foundation)

Many Decision Tree learning algorithms have already been developed among which:

ID3, C4.5, CART, CHAID, QUEST, GUIDE, CRUISE, and CTREE (Singh & Gupta,

2014). This project is based on the CART algorithm developed in 1984 by Breiman et

al. (Breiman, Friedman, Stone, & Olshen, 1984). Those popular algorithms have

various capabilities that were impossible to develop in the short length of this thesis.

Yet here a comprehensive algorithm is included which can play an important role to

understand the methodology of building a tree and extracting a graphical form of it.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

3

Materials and Methods

The computer used for the project runs on the Windows 10 Pro 64-bit operating

system. The software was written in Python 3.9.0.

Integrated Development Environment
Programming can be more user-friendly by using an Integrated Development

Environment (IDE). IDEs facilitate software development as they combine in a single

software application at least a source code editor, building executables, and

debugging. In this project the Pycharm 2021.2 Community Edition IDE was used.

Classification method
The building of a Classification and Regression Tree begins with a node that contains

the training dataset. In our software the dataset has to have the form of a list of lists.

Each sublist includes the values of the variables (numeric and/or string) and the class

name (string) of an instance, all separated by commas. The class name is always

placed last in the sublist. Two sublists of our list can be seen as an example: [5.1, 3.5,

1.4, 0.2, 'Iris-setosa'], [4.9, 3.0, 1.4, 0.2, 'Iris-setosa'].

Then the first main step of the algorithm is to look for the best criterion to split the

parent node. If each attribute is considered as a column with values ['SepalLengthCm',

'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'], each value of each column is

used to ask a question of the following form:

 For numeric variables:

Is the value of the subject‟s attribute ≥ the value we are testing?

 For string variables:

Is the value of the subject‟s attribute the same as the value we are testing?

for each subject of the dataset.

Each time the subjects are split in two child nodes based on the result of the question

(True/False), and the success of each split is calculated. In Classification Trees as

success is considered the minimization of the impurity (mixing) in the child nodes. In

our CART method the Gini impurity measurement is used. At each split the Gini

impurity is calculated for the parent node and the two child nodes separately:

 ∑ (
)

,

Where IG is the Gini Impurity and p is the proportion of the samples that belong to class c for

a particular node.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

4

For the nodes in Fig. 2 the impurity is:

 For the Parent Node:

 IG1 =1 - [

 = 0.444

 For the true Child Node:

IG2 = 1 - [

 = 0.444

 For the false Child Node:

IG3 = 1 -

 = 0

In the example above, “samples” equals to the number of instances of the node, „Iris-

versicolor‟ and „Iris-virginica‟ are names of different classes. IG3 is equal to 0 because

the false Child Node has no mixing of classes. All samples belong to the „Iris-

virginica‟ class.

The next step is to calculate the impurity decrease for each potential split. For this

reason the Information gain is calculated in the following way:

 ()

Where f is the question being asked, Dp is the dataset of the parent node, Dtrue is the dataset of

the True child node and Dfalse in the dataset of the False child node. IG is the Gini Impurity of

each node and N is the number of instances in each node (Ntrue: in the True node, Nfalse: in the

False node, N: in the parent node).

For the node in Fig. 2, the information gain is:

 ()

 =

= (

) (

) =

= 0.222

Checking all the possible decisions one by one, each time the algorithm finds a higher

information gain it saves it in a variable named max_info_gain, replacing the previous

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

5

value. After asking all the possible questions the max_info_gain and its corresponding

questions are kept, and the parent node finally splits according to it.

Then the algorithm recursively splits the child nodes following the same algorithm

until the splitting stops in two cases. The first case is when no information gain occurs

from the split (max_info_gain = 0) and the decision node does not split, it becomes a

leaf node. The second case is when the depth of the tree reaches a prefixed value and

has to stop. The depth of the tree is the number of splits a Tree can make before

reaching a leaf node and in our algorithm the limit was set to 4. Setting a depth limit

before the Tree fully grows is called Prepruning. Pruning can also happen after a Tree

is fully grown by subtracting the deepest nodes of it. Pruning and Prepruning help the

algorithm because they produce Trees that do not overfit to the training sample and

can generalize more efficiently.

Graph Visualization

The Classification Tree of the software is visualized in two forms. The first form is

textual using Pythons‟ built-in functions.

The second form is graph visualization using the Graphviz software. Graphviz is an

open source software that can be downloaded under the The Common Public License.

The graphviz package was installed and imported in the algorithm. Graphviz takes

descriptions of graphs in simple text language and makes diagrams in various formats,

such as .png or .pdf. It also allows the choice of different colours, fonts, shapes, node

layouts etc for the extracted file (The Graphviz Authors). In our software a directed

graph (Digraph) is created, which means that the nodes of the Tree are connected with

arrows pointing from the parent node to the child node. In order for a graph to be

created, Graphviz needs the description of each node and each edge that connects the

nodes, along with their attributes.

The Iris flower data set

The Iris flower data set is a data set of 150 flowers belonging to three species of the

iris genus: Iris setosa, Iris versicolor and Iris virginica. It includes the measurements

of the sepal length, sepal width, petal length and petal width of 50 flowers of each

species and was introduced as a problem of taxonomy to be addressed with linear

discriminant analysis (Fisher, 1936). The dataset is open sourced, with class

imbalances and no missing values and is conceptually understandable, so it is very

popular as a test sample for many classification techniques in machine learning.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

6

Data reading and preparation

The Iris flower data set was downloaded in as a Comma Separated Values (csv) file in

our software‟s directory. Using the csv package from the Python Standard Library, the

file was read as a list of lists named „data‟, but all the values were considered to be

strings.

with open('Iris_dataset.csv', newline='') as f:

 reader = csv.reader(f)

 data = list(reader)

In order to give the appropriate format to the file, the first value of each list was

deleted as it was the id of the flower and it was not useful.
for list in data: # deletes the Id of the instances

 del list[0]

Then a new list was created including only the first list of the file‟s lists. This new list

held the headers of the columns. The headers were then deleted from the initial list

because they would interfere with the algorithm.

headers = data[0] # list of columns' headers

del data[0]

The iris data set includes the class names and 4 attributes for each flower which are

numeric. In order to change the string values of the attributes to numeric, the class

names were separated in another list of lists named „target_values‟ and deleted from

the initial list.

target_values = [] # separate the target values because they are str

for list in data:

 target_values.append(list[-1])

 del (list[-1])

All the values of the attributes were appended as floats in another new list of lists

named „iris_data‟.

iris_data = []

for list in data: # str to num

 iris_data_list = []

 for i in list:

 iris_data_list.append(float(i))

 iris_data.append(iris_data_list)

Finally the class names were reappended in the list with the numeric values and the

data set was ready for use.

for idx, i in enumerate(target_values): # iris_data appends target

values again

 iris_data[idx].append(i)

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

7

Results

Software
The algorithm that was developed is the following. First there is the import statement

for the packages used. Then the Functions and the Classes are defined:

import csv

import random

import graphviz

Classification Definitions

def get_unique_numbers(numbers):

 """It takes a group of numbers and creates a list of them with no

duplicate values."""

 list_of_unique_numbers = []

 unique_numbers = set(numbers)

 for number in unique_numbers:

 list_of_unique_numbers.append(number)

 return list_of_unique_numbers

def numeric_data(value):

 """Checks if a value is numeric"""

 return isinstance(value, int) or isinstance(value, float)

def type_counts(rows):

 """Counts the number of instances with each target value in the

node"""

 counts = {}

 for row in rows:

 target_val = row[-1]

 if target_val not in counts:

 counts[target_val] = 0

 counts[target_val] += 1

 return counts

def instances_split(rows, column, unique_vals):

 """Asks all the possible questions.

 Each time splits the rows of a node in true or false based on

the question.

 If true it appends it to the 'true_group',

 else to the 'false_group'"""

 true_group, false_group = [], [] # The instances will be split

in two arrays

 for row in rows:

 if numeric_data(row[column]): # question if numeric

 criterion = row[column] >= unique_vals

 else: # question if str

 criterion = row[column] == unique_vals

 if criterion:

 true_group.append(row)

 else:

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

8

 false_group.append(row)

 return true_group, false_group

def gini_impurity(rows):

 """Calculates the GI = Gini impurity"""

 gini = 1

 counts = type_counts(rows)

 for value in counts: # checks each target value

 gini -= (counts[value] / len(rows)) ** 2

 return gini

def information_gain(left_node, right_node, parent_node):

 """Information Gain (IG) is the reduction of entropy by the

dataset transformation.

 IG = GI(parent node) -

 GI(left child node) weighted -

 GI(right child node) weighted"""

 weight_left = len(left_node) / (len(left_node) + len(right_node))

 weight_right = len(right_node) / (len(left_node) +

len(right_node))

 return gini_impurity(parent_node) - gini_impurity(left_node) *

weight_left - gini_impurity(

 right_node) * weight_right

def unique_values_for_questions(parent_node, headers):

 """Returns a dictionary with keys: the header names, and items:

the unique values of each column."""

 unique_vals = {}

 for i in range(len(parent_node[0]) - 1): # i in number of

characteristics

 vals = []

 for row in parent_node:

 vals.append(row[i])

 unique_vals[headers[i]] = get_unique_numbers(vals)

 # print("The dictionary of unique values for each column is:",

unique_vals)

 return unique_vals

def ask_best_question(parent_node):

 """Asks all the possible questions. Then finds the question with

the highest info gain."""

 max_info_gain = 0

 ideal_key_num = 0

 ideal_val = 0

 ideal_key = ''

 question = ''

 unique_vals = unique_values_for_questions(parent_node, headers)

 for idx, key in enumerate(unique_vals.keys()): # checking column

by column: idx = 0, 1,... and key = column name

 for i in range(len(unique_vals[key])): # check each unique

value of the key

 true_group, false_group = instances_split(parent_node,

idx, unique_vals[key][i])

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

9

 info_gain = information_gain(true_group, false_group,

parent_node)

 # print(info_gain)

 if info_gain > max_info_gain:

 max_info_gain = info_gain

 ideal_key = key

 ideal_key_num = idx

 ideal_val = unique_vals[key][i]

 question = 'Is %s %s %s?' % (ideal_key, '>=',

str(ideal_val))

 # print("The best question is", ideal_key, ">=", ideal_val, "?",

"(Information gain =", max_info_gain, ")")

 return max_info_gain, ideal_key, ideal_key_num, ideal_val,

question

class LeafNode:

 """A leaf node is not split anymore. It classifies data.

 It holds a dictionary with key: the unique target values of

the dataset

 and value: the number of instances of each target value in

the node"""

 def __init__(self, rows):

 self.predictions = type_counts(rows)

 self.gini = gini_impurity(rows)

 self.node_name = str(random.random())

 self.len = len(rows)

class DecisionNode:

 """A decision node is split based on another question.

 It holds a reference to the question and the child nodes that

occur from it."""

 def __init__(self, rows, question, true_branch, false_branch):

 self.gini = gini_impurity(rows)

 self.predictions = type_counts(rows)

 self.question = question

 self.true_branch = true_branch

 self.false_branch = false_branch

 self.node_name = str(random.random())

 self.len = len(rows)

def build_tree(parent_node, depth):

 """It uses a recursive function to create the whole

classification tree"""

 global name

 name += 1

 if depth < 4:

 depth += 1

 else:

 return LeafNode(parent_node)

 max_info_gain, ideal_key, ideal_key_num, ideal_val, question =

ask_best_question(

 parent_node) # Best question for the branch

 if max_info_gain == 0: # If information gain = 0 the instances

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

10

do not split further, we have a leaf node

 return LeafNode(parent_node)

 else:

 true_group, false_group = instances_split(parent_node,

ideal_key_num,

 ideal_val) # If

info gain != 0 -> split (decision node)

 true_branch = build_tree(true_group,

 depth=depth) # the build_tree

function is recursively called to split the true_branch

 false_branch = build_tree(

 false_group, depth=depth) # the build_tree function is

recursively called to split the false_branch

 return DecisionNode(parent_node, question, true_branch,

false_branch)

End of Classification Definitions

The next step is to define the functions of the visualization part of the algorithm

(textual and graphical):

Visualization Definitions

def print_tree(node, spacing=" "): # textual

 if isinstance(node, LeafNode):

 print(spacing + 'Predict', node.predictions)

 print(spacing + 'The Gini impurity is ' + str(node.gini))

 return

 if isinstance(node, DecisionNode):

 print(spacing + str(node.question))

 print(spacing + 'Predict', node.predictions)

 print(spacing + 'The Gini impurity is ' + str(node.gini))

 print(spacing + '--> True:')

 print_tree(node.true_branch, spacing + " ")

 print(spacing + '--> False')

 print_tree(node.false_branch, spacing + " ")

def graph_tree(tree, parent_node_name, graph, edge_label):

 """Produces a graph of the Classification Tree using Graphviz.

 The tree.predictions are used as names for the nodes

 because at least with this dataset they never repeat

themselves."""

 global k

 k += 1

 if isinstance(tree, LeafNode):

 graph.node(name=tree.node_name,

 label='%s %.5s \n %s %s \n %s'%

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

11

 ('Gini =', tree.gini, 'samples =', tree.len,

tree.predictions),

 shape='box', style='filled',

fillcolor='darkseagreen2')

 graph.edge(parent_node_name, tree.node_name,

label=edge_label)

 return

 if isinstance(tree, DecisionNode):

 graph.node(name=tree.node_name,

 label='%s \n %s %.5s \n %s %s \n %s'%

 (tree.question, 'Gini =', tree.gini,

'samples =', tree.len, tree.predictions),

 shape='box', style='filled',

fillcolor='papayawhip')

 if k > 1:

 graph.edge(parent_node_name, tree.node_name,

label=edge_label)

 parent_node_name = tree.node_name

 graph_tree(tree.true_branch, parent_node_name, graph,

edge_label='True')

 graph_tree(tree.false_branch, parent_node_name, graph,

edge_label='False')

 return

End of Visualization Definitions

After all the Functions and Classes are defined, the dataset has to be read and

prepared to be used in the correct format. The Iris flower data set was saved as a .csv

file in the same directory as the python project. Then, the preparation of the dataset is

the following:

Opening and preparing the dataset

with open('Iris_dataset.csv', newline='') as f:

 reader = csv.reader(f)

 data = list(reader)

for list in data: # deletes the Id of the instances

 del list[0]

headers = data[0] # list of columns' headers

del data[0]

target_values = [] # separate the target values because they are str

for list in data:

 target_values.append(list[-1])

 del (list[-1])

iris_data = []

for list in data: # str to num

 iris_data_list = []

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

12

 for i in list:

 iris_data_list.append(float(i))

 iris_data.append(iris_data_list)

for idx, i in enumerate(target_values): # iris_data appends target

values again

 iris_data[idx].append(i)

End of opening and preparing dataset file

Finally there is the part of the software which analyzes the dataset, trains the Decision

Tree and visualizes the result using the functions and classes defined at the beginning:

name = 0

depth = 0

k = 0

parent_node_name = ''

my_tree = build_tree(iris_data, depth=depth)

print_tree(my_tree)

g = graphviz.Digraph(name='Classification Tree', format='png')

g.attr(label='Iris Flower Data Set Classification Tree\n ',

fontsize='34', labelloc='t')

graph_tree(my_tree, parent_node_name, g, edge_label='')

print(g.source)

g.view()

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

13

Visualization
When we run the program the textual visualization output is the following. Here the

colors of the splitting questions and the True/False answers are different than the

PyCharm output for optical reasons. Each decision node contains i) the question for

its split, ii) the number of instances of each class that the node contains, ii) its Gini

impurity. If the Node has no printed question it means that it is a leaf node.

 Is PetalLengthCm >= 3.0?

 Predict {'Iris-setosa': 50, 'Iris-versicolor': 50, 'Iris-virginica': 50}
 The Gini impurity is 0.6666666666666665
 --> True:

 Is PetalWidthCm >= 1.8?
 Predict {'Iris-versicolor': 50, 'Iris-virginica': 50}

 The Gini impurity is 0.5
 --> True:
 Is PetalLengthCm >= 4.9?

 Predict {'Iris-versicolor': 1, 'Iris-virginica': 45}
 The Gini impurity is 0.04253308128544431
 --> True:

 Predict {'Iris-virginica': 43}
 The Gini impurity is 0.0

 --> False
 Is SepalLengthCm >= 6.0?
 Predict {'Iris-versicolor': 1, 'Iris-virginica': 2}

 The Gini impurity is 0.4444444444444444
 --> True:
 Predict {'Iris-virginica': 2}

 The Gini impurity is 0.0
 --> False
 Predict {'Iris-versicolor': 1}

 The Gini impurity is 0.0
 --> False

 Is PetalLengthCm >= 5.0?
 Predict {'Iris-versicolor': 49, 'Iris-virginica': 5}
 The Gini impurity is 0.1680384087791495

 --> True:
 Is PetalWidthCm >= 1.6?
 Predict {'Iris-versicolor': 2, 'Iris-virginica': 4}

 The Gini impurity is 0.4444444444444444
 --> True:

 Predict {'Iris-versicolor': 2, 'Iris-virginica': 1}
 The Gini impurity is 0.4444444444444445
 --> False

 Predict {'Iris-virginica': 3}
 The Gini impurity is 0.0
 --> False

 Is PetalWidthCm >= 1.7?
 Predict {'Iris-versicolor': 47, 'Iris-virginica': 1}

 The Gini impurity is 0.040798611111111174
 --> True:
 Predict {'Iris-virginica': 1}

 The Gini impurity is 0.0
 --> False
 Predict {'Iris-versicolor': 47}

 The Gini impurity is 0.0
 --> False

 Predict {'Iris-setosa': 50}
 The Gini impurity is 0.0

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

14

Using Graphviz the graphic visualization was also possible. A .png file format was

chosen and the extracted file looks as it follows. Decision Nodes are colored light

orange, Leaf Nodes green, and they are all labeled with their Gini impurity (Gini), the

number of instances they include (samples), and the number of instances belonging to

each class. Decision Nodes also include in their label the question that represents the

splitting criterion.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

15

Discussion

A Classification software was developed including visualization of the classification,

both textually and graphically. The methodology was based on Classification and

Regression Trees. The software was written in Python programming language using

only the language‟s built-in functions, except for three cases. The first was in the line

reading the .csv dataset file, where the „csv‟ package of the Standard Library was

used. Then, the „random‟ package of the Standard Library was used in the two classes

of the program (LeafNode, DecisionNode) in order to generate a unique name for

each node. The last package that was imported was graphviz in order to use the

Graphviz software for the graph visualization of the Tree. The fact that the

classification algorithm is written in pure Python makes it comprehensible for all

Python users.

A limitation of the method is that it cannot handle missing data. For the Iris flower

data set we made the assumption that no data was missing and it was true, but if the

set has missing values they have to be handled, for example with a deletion or

imputation method, while preparing the dataset. Attention in the dataset preparation

is also important because the “dataset preparation” part of the algorithm can be used

unmodified only for a specific file format, which includes solely numeric variables

except for the class names. Since categorical values can be handled in the

“classification” algorithm, a personalization of the data preparation allows the use of

it. One last point that has to be mentioned is the maximum depth (prepruning), as

depth=4 could be insufficient for big datasets. The depth limit can easily be changed

by changing the “if” statement in the “build_tree” function (if depth < 4), where 4 is

the maximum depth.

A possible next step for this algorithm could be the separation of the data in training

data, which will be used to build the tree, and testing data, which will be used to

assess its predictive accuracy. An evaluation of the accuracy will also permit a more

advanced pruning method, where the depth is chosen by the algorithm based on

accuracy.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

16

Conclusions

Classification and Regression Trees have many advantages and are a popular Machine

Learning method. Our software is focused on classification and can handle both

numeric and string attributes of the dataset with the appropriate preparation of it. The

software can be used in various fields for decision making including health sciences

(for classification, diagnosing etc.). In the present project the Iris flower data set was

used to train a Classification Tree, where the Classifiers were chosen based on the

information gain of each split. The Tree was prepruned at depth = 4 many of the leaf

nodes were pure. The software additionally to choosing the classifiers and splitting

the data also produces visual results of all the steps in the classification process. The

visualization is both textual and graphical using the Graphviz software.

Due to the limited time available for the execution of this project, the original dataset

was not divided in training and testing data. Future development of the algorithm

should include this addition since it opens the way for the assessment of the accuracy

of the Classification Tree, knowledge that is important for its use as a prediction

model.

References

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression trees.

Chapman and Hall, New York.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of

Eugenics, pp. 179–188.

Loh, W.-Y. (2011, January). Classification and Regression Trees. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, pp. 14 - 23, DOI:10.1002/widm.8.

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002, October). Decision trees: an

overview. Journal of Medical Systems, Kluwer Academic/Plenum Press, pp. Vol. 26,

Num. 5, pp. 445-463.

Singh, S., & Gupta, P. (2014, July). Comparative study ID3, CART and C4.5 Decision Tree

Algorithm: A Survey. International Journal of Advanced Information Science and

Technology (IJAIST), pp. Vol.27, No.27, ISSN: 2319:2682.

Python Software Foundation. (n.d.). Python. Retrieved from python.org

The Graphviz Authors. (n.d.). Graphviz. Retrieved from https://graphviz.org

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 17:26:53 EEST - 18.218.10.25

