
i

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

360-DEGREE VIDEO LIVESTREAMING OVER WIRED AND

WIRELESS LINK IN VIRTUAL REALITY ENVIRONMENT

Diploma Thesis

Dallas Dimitrios

Supervisor: Korakis Athanasios

Volos 2021

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΖΩΝΤΑΝΗ ΡΟΗ ΒΙΝΤΕΟ 360 ΜΟΙΡΩΝ ΜΕΣΩ ΕΝΣΥΡΜΑΤΟΥ ΚΑΙ

ΑΣΥΡΜΑΤΟΥ ΣΥΝΔΕΣΜΟΥ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΕΙΚΟΝΙΚΗΣ

ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ

Διπλωματική Εργασία

Δάλλας Δημήτριος

Επιβλέπων: Κοράκης Αθανάσιος

Βόλος 2021

iii

Approved by the Examination Committee:

Supervisor Korakis Athanasios

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly

Member Argyriou Antonios

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly

Member Bargiotas Dimitrios

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly

Date of approval: 22/09/2021

iv

ACKNOWLEDGMENTS

Five years ago, writing my own thesis seemed impossible to me. As I am about to graduate,

this belief has disappeared. Therefore I dedicate this document to my family, for always

being there for me, for always supporting me both emotionally and financially so that I can

walk my own path from now on.

I would like to thank deeply my supervisor Professor Korakis Athanasios, for giving me the

opportunity to follow my field of interest and for his constant guidance and support on the

implementation of this project.

Special thanks to all my fellow coworkers at NITlab and especially to Theodosiou Georgios

for helping me surpassing obstacles and providing feedback on this project.

v

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

11 points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference is

included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because it

is a product of plagiarism.

The Declarant

Dallas Dimitrios

22/09/2021

vi

ABSTRACT

This thesis intends to examine three major technologies and the various ways they can be

combined to improve multimedia applications and fulfill their emerging needs in

tomorrow’s society. These technologies are the spherical or 360o video, multimedia

livestreaming and Virtual Reality environments.

The technical background is described in detail in the beginning of this document, followed

by demonstrating implementations of 360o livestreaming and 360o VR livestreaming.

Hardware equipment used is a 360o camera, Ricoh THETA V, and some virtual reality

headsets, HTC Vive and VR Box. Software was selected through research regarding

livestreaming protocols, namely RTMP and MJPEG, and VR functionality, namely YouTube

platform, Unity game engine, WebXR Device API and A-Frame web framework. For browser

approaches, a Reverse Proxy server was implemented as part of their distributed

architecture.

vii

ΠΕΡΙΛΗΨΗ

Η παρούσα πτυχιακή εργασία, η οποία έχει γραφτεί στην Αγγλική γλώσσα, σκοπεύει να

εξετάσει τρεις κύριες τεχνολογίες και τους ποικίλους τρόπους που μπορούν να

συνδυαστούν για να βελτιώσουν τις εφαρμογές πολυμέσων και να καλύψουν τις

μελλοντικές τους ανάγκες που θα προκύψουν από την πρόοδο της κοινωνίας. Οι

αναφερόμενες τεχνολογίες είναι το «σφαιρικό βίντεο» ή «βίντεο 360 μοιρών», η ζωντανή

μετάδοση πολυμέσων και τα περιβάλλοντα Εικονικής Πραγματικότητας.

Το τεχνικό υπόβαθρο περιγράφεται αναλυτικά στην αρχή του συγκεκριμένου εγγράφου

και ακολουθείται από την επίδειξη υλοποιήσεων ζωντανής ροής βίντεο 360ο και ζωντανής

ροής βίντεο 360ο σε περιβάλλον εικονικής πραγματικότητας. Ο υλικός εξοπλισμός που

χρησιμοποιήθηκε είναι μία κάμερα 360o, η Ricoh THETA V, και κάποια γυαλιά εικονικής

πραγματικότητας, το HTC Vive και το VR Box. Το λογισμικό επιλέχθηκε ερευνώντας

πρωτόκολλα ζωντανής μετάδοσης πολυμέσων, αναφορικά το RTMP και το MJPEG, και την

λειτουργικότητα εικονικής πραγματικότητας, αναφορικά η πλατφόρμα YouTube, η

παιχνιδομηχανή Unity, η διεπαφή WebXR και η δομή A-Frame για φυλλομετρητές. Για τις

προσεγγίσεις των φυλλομετρητών, υλοποιήθηκε ένας διακομιστής αντίστροφης

μεσολάβησης ως κομμάτι της αρχιτεκτονικής τους.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS... iv

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS v

ABSTRACT ... vi

ΠΕΡΙΛΗΨΗ ..vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES...xi

CHAPTER 1: INTRODUCTION.. 1

1.1: A blend of advanced technology .. 1

1.2: Applications... 1

1.3: Motivation... 1

CHAPTER 2: TECHNICAL BACKGROUND .. 3

2.1: Video ... 3

2.1.1: Characteristics of video streams .. 3

2.1.2: Video Compression .. 5

2.2: 360o video ... 9

2.2.1: 360o cameras .. 9

2.2.2: Map projections ... 12

2.2.3: Video display .. 13

2.3: Livestreaming .. 15

2.3.1: Background procedure ... 15

2.3.2: Types of Livestreaming Communication .. 16

2.3.3: Streaming Protocols ... 18

2.4: Virtual Reality .. 27

2.4.1: Categories... 27

ix

2.4.2: Hardware .. 29

2.4.3: Software ... 30

CHAPTER 3: IMPLEMENTATIONS ... 33

3.1: Describing Ricoh THETA V ... 33

3.1.1: Characteristics .. 34

3.1.2: Ricoh Desktop Application ... 34

3.1.3: Plug-ins ... 34

3.1.4: THETA Web API v2.1... 35

3.1.5: Wi-Fi modes ... 35

3.1.6: THETA Smartphone Application ... 35

3.2: Bridged Wireless Access Point .. 37

3.3: Equirectangular and non-VR livestream solutions ... 39

3.3.1: OBS webcam .. 39

3.3.2: VLC capturing RTSP .. 40

3.3.3: MJPEG with spherical navigation ... 42

3.4: YouTube livestreaming with RTMP ... 43

3.4.1: OBS redirecting to YouTube ... 43

3.4.2: Wireless Live Streaming Plug-in ... 44

3.4.3: VR features ... 45

3.4.4: Conclusion .. 45

3.5: Unity livestreaming with webcam .. 46

3.5.1: Inverse sphere technique ... 47

3.5.2: Skybox technique ... 49

3.5.3: Conclusion .. 50

3.6: Unity livestreaming with MJPEG decoding ... 51

3.6.1: THETA Web API functionality ... 51

x

3.6.2: MJPEG decoding in C# .. 52

3.6.3: Conclusion .. 56

3.7: Browser livestreaming with Reverse Proxy Server ... 57

3.7.1: Apache HTTP Server ... 57

3.7.2: Reverse Proxy Server.. 57

3.7.3: WebXR in Unity WebGL.. 63

3.7.4: A-Frame .. 74

3.7.5: Conclusion .. 78

CHPATER 4: CONCLUSION ... 79

4.1: Summary ... 79

4.2: Future work ... 79

BIBLIOGRAPHY ... 80

xi

 LIST OF FIGURES

Figure 1: Visualization of frame rate with 24 and 60 frames per second 3

Figure 2: Most popular and common resolutions in comparison with each other 4

Figure 3: Various aspect ratios for different monitor types .. 4

Figure 4: Visual comparison of intra-frame and inter-frame compression 6

Figure 5: Two-dimensional DCT frequencies from the JPEG DCT ... 7

Figure 6: Human vision horizontal FOV ... 9

Figure 7: Rigged 360o camera system, GoPro Omni .. 10

Figure 8: Insta360 Pro 2 ... 11

Figure 9: Panono 360 with 36 lenses ... 11

Figure 10: Handheld device, Insta360 One X .. 11

Figure 11: Mobile phone accessory, Insta360 Nano ... 11

Figure 12: Cube mapping texture regions for a skybox... 12

Figure 13: Equirectangular panorama with directional tile mapping 13

Figure 14: Equirectangular panorama in spherical projection .. 13

Figure 15: TCP vs UDP comparison for transport layer applications 19

Figure 16: HLS directs the player to different streams and chunks of data within them ... 23

Figure 17: Course of actions in the MPEG-DASH protocol .. 24

Figure 18: Protocols comparison for streaming latency and interactivity continuum 26

Figure 19: Inside a VR headset playing VR Rush Hour: Austin .. 27

Figure 20: AR in gaming, Pokémon GO.. 28

Figure 21: AR applicated in smart eyewear ... 28

Figure 22: Industrial worker using MR headset Microsoft's HoloLens 29

Figure 23: Degrees of Freedom in a 3D space ... 29

Figure 24: Difference between a 3-DoF headset and 6-DoF headset 30

Figure 25: SteamVR runtime with room setup .. 32

Figure 26: Ricoh THETA V .. 33

Figure 27: HTC Vive headset .. 33

Figure 28: VR Box for smartphones ... 33

Figure 29: THETA V components ... 34

Figure 30: Creating Video Capture Device in OBS ... 40

xii

Figure 31: Devices from UVC v2.0.0 and equirectangular USB live preview in OBS 40

Figure 32: VLC 4.0.0 steps to opening a URL stream ... 41

Figure 33: Equirectangular 1920x960 livestream from THETA RTSP Streaming Plug-in 41

Figure 34: Cropped spherical RTSP livestream from Device WebAPI Plug-in 42

Figure 35: MJPEG livestream with spherical navigation ... 42

Figure 36: OBS setting for YouTube streaming ... 43

Figure 37: OBS and YouTube livestream side by side.. 44

Figure 38: Wireless Live Streaming Plug-in default dashboard ... 45

Figure 39: Creating an inverse sphere in Blender 2.79b environment 48

Figure 40: Inverse sphere technique setup in Unity ... 49

Figure 41: Skybox technique setup in Unity .. 49

Figure 42: Unity Livestreaming with MJPEG decoding .. 55

Figure 43: XAMPP Control Panel for Apache control .. 57

Figure 44: Reverse Proxy server diagram .. 58

Figure 45: UntiyWebRequest architecture .. 65

Figure 46:Reverse Proxy Server pseudo-MJPEG livestream in Unity with WebXR 73

Figure 47: Livestreaming in browser with Unity WebGL and WebXR 73

Figure 48: Equirectangular livestream from reverse proxy server in browser 75

Figure 49: MJPEG livestreaming in browser using A-Frame.. 78

1

CHAPTER 1: INTRODUCTION

1.1: A blend of advanced technology

From the beginning of time, humans always wanted to communicate with each other, as

direct as possible. This need, once covered by a simple letter, has grown through the years

leading to video chats over mobile phones. Living in the 21st century, human needs push

technologies to advance, but also technologies inspire some of these needs.

Telecommunication and network technologies have reached levels that offer real-time

communication and interaction. Audiovisual media have evolved in such ways that special

multi-lens cameras, called 360o cameras, allow spherical video capturing in combination

with spatial audio. At the same time, a new type of technology emerged, that being Virtual

Reality, which changes the user’s optical view thus letting him into a simulated experience.

Now all of the above can be combined to offer a 360o video livestream in Virtual Reality.

1.2: Applications

The need for a service like that can be established from a variety of applications. Video

chatrooms, teleconferences and virtual tours have already made their first steps. Further

down the line we could see journalistic coverage, industry inspection, or even robot

teleoperation for health and surgical purposes. All of the technologies composing 360o

video livestreaming in VR are considered state-of-the-art technologies and are expected to

evolve tremendously in the years to come.

1.3: Motivation

The idea for this thesis’ subject has occurred from a partnership work for an undergraduate

lesson. The concept of the assignment was to be able to remotely navigate an Unmanned

Ground Vehicle (UGV) through VR.

This, simple as it may sounds, sets some conditions that need to be followed. Livestream

video should be from a 360o camera to offer an immersive VR experience to the user. The

UGV should be able to move freely everywhere, so the livestreaming should be transmitted

wirelessly, either from the UGV’s microcontroller or the camera device directly. And lastly,

the livestream feed should be as close to real-time as it could be, because immediate

teleoperation requires instantaneous reflexes to the environment changing.

2

All those requirements led to the “immersive wireless real-time livestreaming” direction

and composed the central axis around which the research for this thesis was conducted.

3

CHAPTER 2: TECHNICAL BACKGROUND

2.1: Video

Video is the technology that captures moving images electronically. Those moving images

are actually just a series of still images that change so fast that our eye perception makes

us think that the image is moving.

Analog video represents moving visual images in the form of analog signals. It is created in

a video camera by scanning an electron beam across a phosphor.

Digital video is, in simple words, moving images in rapid succession in the form of encoded

digital data, and not analog information like a continuous signal. Digital video can be easily

shared, copied, and stored, with the data quality not degraded. It can also be distributed

with multicast in case of streaming.

2.1.1: Characteristics of video streams

• Frame rate

It is the number of still images (or frames) recorded per unit of time of video. Usually

frame rate is expressed in frames per second (fps) and ranges from six or eight fps for

old mechanical cameras to 120+ fps for new professional cameras. Most video cameras

record at 30 fps.

Figure 1: Visualization of frame rate with 24 and 60 frames per second

• Resolution

Pixels are called the tiny picture elements that compose each frame when it is recorded.

An image’s resolution is basically expressing the amount of pixels the image is

composed of. Usually expressed by multiplication of horizontal pixels by vertical pixels:

4

640x480 means 640 pixels wide, by 480 pixels tall. The most popular resolutions in

today’s video streams are 640x320, 1024x512 and 1920x960.

Figure 2: Most popular and common resolutions in comparison with each other

• Aspect ratio

The width and height of video screens and video elements have a proportional

relationship called aspect ratio. The most common aspect ratios are rectangular, like

16:9, which is about 1.78:1.

Figure 3: Various aspect ratios for different monitor types

• Bit rate

Bit rate is a measurement for the information content from a digital video stream. For

uncompressed videos, bit rate corresponds to the quality of given video because bit

rate is proportional to every property affecting video quality. When transmitting video,

bit rate is an important factor because the transmission link must be capable of

supporting it in the first place. Additionally, bit rate is important for the storage of a

5

video because the video size is proportional to the bit rate and the duration. In order

to greatly reduce the bit rate while having little effect on quality, video compression

techniques are used.

2.1.2: Video Compression

Uncompressed video offers maximum quality, with the cost of a very high data rate. The

most effective ways to compress video streams are reducing spatial and temporal

redundancy with a group of pictures, meaning that they register the differences between

the parts of single frame (spatial reduction) or between successive frames.

The most common modern compression standards are those developed by the Motion

Picture Experts Group (MPEG). MPEG-1, in 1991, was designed to compress VHS-quality

video and after twelve years in 2003 H.264/MPEG-4 AVC was developed, which has become

the most widely used video coding standard for AVCHD, mobile phones and Internet.

• Video Coding Formats & Video Codecs

A video coding format is the way in which digital video content is represented when

stored or transmitted. It typically uses a standardized video compression algorithm.

A specific software or hardware implementation, consisting of an encoder and a

decoder, capable of compression or decompression, respectively, to/from a specific

video coding format is called a video codec. Codecs are very important for streaming

media. There are codecs for data (PKZIP), still images (JPEG, PNG), audio (MP3) and of

course video (MPEG-4/H.264).

• Lossless & Lossy Compression

Codecs are divided into two kinds, those being lossless and lossy. Lossless codecs, upon

decompression, reproduce the same exact file as the original. Some lossless video

codecs can’t compress video to data rates low enough for streaming.

One the other hand, lossy codecs produce a facsimile of the original file upon

decompression, but not the original file. This kind of codecs has one immutable trade-

6

off. The lower the data rate, the less the decompressed file resembles the original file.

In simpler words, more compression equals more quality lost.

• Intra-frame & Inter-frame

Now, more specifically for lossy compression technologies, they use two types of

compression: intra-frame and inter-frame. The intra-frame type is essentially a

compression applied on still images (or told frames) of the video, in which each frame

is compressed without reference to any other frame. An example of this type of video

compression is Motion-JPEG (explained below).

The inter-frame type, on the contrary, uses redundancies between frames to compress

video. If, for example, the background image in a video remains static between frames,

the inter-frame techniques store this static information once (in a keyframe) and then

store only the changing information in subsequent frames (delta frames). These

techniques are much more efficient than intra-frame because they leverage redundant

information between frames. But inter-frame compression complicates because it

copies data from one frame to another, if the original frame is lost in transmission, the

following frames cannot be reconstructed properly.

Figure 4: Visual comparison of intra-frame and inter-frame compression

• Motion-JPEG

As it was mentioned before, Motion-JPEG (MJPEG) is a lossy type of video compression

and, more accurately, belongs to the intra-frame type. It functions according to JPEG

image compression, which stands for “Joint Photographic Experts Group”.

7

It is a standard image format for containing lossy and compressed image data which is

based on the discrete cosine transform (DCT). This mathematical operation converts

each frame of the video source from the spatial (2D) domain into the frequency domain.

A perceptual model based loosely on the human psychovisual system discards high-

frequency information, e.g., sharp transitions in intensity and color hue.

In simpler words, when an image is saved as a JPEG some of the data of the original

image is discarded to reduce the file size down to just around 10% of their

uncompressed file size.

The compression procedure compares every 8 by 8 block of pixels to a linear

combination of 64 standard patterns. Each of those 64 patterns has weight contributing

to the 8 by 8 block of pixels. The patterns with higher frequency (more checkerboard-

like) have their respective weights lowered depending on the JPEG quality setting. This

results in a smaller file size.

Figure 5: Two-dimensional DCT frequencies from the JPEG DCT

Returning to the MJPEG, it is an intraframe-only compression scheme. Each video frame

of a digital video sequence is compressed individually as JPEG image. The MJPEG

standard is being widely used by IP cameras, webcams, web browsers, media players,

and streaming servers. MJPEG has one clear advantage to everything else and that is

that it works in any browser.

8

Modern interframe video formats, such as H.264/MPEG-4 AVC, achieve compression

ratios of 1:50 or better, but MJPEG limits its efficiency to 1:20 or lower because of its

lack of interframe prediction. MJPEG also takes 5-20x the processing power of H.264,

so it is usually limited to low resolution or HD cameras or cameras with lower FPS rates.

The image quality of MJPEG is directly affected from each video frame's spatial

complexity, meaning frames with large smooth transitions compress well and are more

likely to hold their original details. MJPEG compressed video is also insensitive to

motion complexity. It is neither hindered by highly random motion, nor helped by the

absence of motion which are two opposite extremes commonly used to test interframe

video formats.

9

2.2: 360o video

360-degree (360o) videos, also known as immersive videos or spherical videos, are a fairly

recent technology in which omnidirectional cameras, or a collection of cameras are used

to construct a spherical capture of a space, rather than the rectangular capture. The

perspectives of the cameras are stitched together to generate an immersive experience for

viewers to experience, placing the viewer within the context of a scene or event rather than

presenting them as an outside observer. Playback on normal flat display resembles a

panorama view and it is common to give the viewer the ability to control the orientation of

the scene and viewing direction.

2.2.1: 360o cameras

One could record a 360o video using either a rig combining multiple cameras or using a

dedicated omnidirectional camera [1] which embeds multiple camera lenses. Both ways

record overlapping angles simultaneously.

• Field of view

Field of view (FOV) is the observable area a person can see through its eyes or via an

optical device. In the case of optical devices, FOV describes the angle through which

the devices can pick up electromagnetic radiation and allows for coverage of an area

rather than a single focused point. In VR, as covered below, a large FOV is essential to

getting an immersive, life-like experience.

In human vision, there are two monocular FOVs stitched together by the brain to form

one binocular FOV. Individually, horizontal FOV is about 135 degrees and vertical FOV

is just over 180 degrees. The binocular FOV is necessary for depth perception and gives

about 114 degrees of horizontal view.

Figure 6: Human vision horizontal FOV

10

• Image/video stitching

To solve the FOV limitations of typical images, stitching technology emerged. Multiple

overlapping images are stitched together to generate a larger image with wider FOV.

To produce seamless results, nearly exact overlaps between images and identical

exposures are typically required.

Further extending image stitching, comes the video stitching. Selected frames of

original videos are stitched together by performing image stitching algorithms to

generate a stitching template. The subsequent frames of the video are stitched

according to the generated template. Footage from two or more separate video

streams are usually combined to result to 360o video. The areas of overlap between the

lenses that have been stitched together, called “stitch lines” , are clearly meant to be

continuous, though they appear as disconnected lines. This process is commonly

performed either by computer software or by built-in camera software that can analyze

common features and synchronize and link the different lenses’ feeds together. The

only area that cannot be viewed is the view toward the camera support.

• Camera systems

There are mainly two categories of 360o camera systems; those who consist of multiple

wide-view action cameras installed within a frame and those who are containing

multiple camera lenses, connected internally in a single camera device. The first

category includes rigs such as GoPro's Omni and Odyssey (which consist of multiple

GoPro HERO models). These camera systems generally do not perform the video

stitching internally, thus not supporting livestreaming. Each camera records its separate

video file in its own memory card and the user must stitch and synchronize the video

files after the recording.

Figure 7: Rigged 360o camera system, GoPro Omni

11

The second category cameras can be divided in two more branches; one with

cameras consisting of three or more lenses, providing with higher definitions but at

a value cost, and one with cameras of exactly two lenses (dual-lens cameras)

covering 180o hemispheres each. Widely known examples of the former are devices

like the professional Insta360 Pro 2 (8K definition) and Panono 360 (with up to 36

camera lenses).

Figure 8: Insta360 Pro 2

Figure 9: Panono 360 with 36 lenses

Finally, the most widely and financially accessible kind of 360o camera systems, the

dual-lens cameras, can be either handheld or mobile phones’ accessories. Handheld

examples are the Ricoh THETA V (described extensively in CHAPTER 3) and the

Insta360 One X. The accessory type is represented by devices like Insta360 Air and

Insta360 Nano, connected with USB Type-C adapters or Lightning connector.

Figure 10: Handheld device, Insta360 One X

Figure 11: Mobile phone accessory, Insta360 Nano

12

2.2.2: Map projections

For image segments that have been taken from the same point in space, stitched images

can be arranged using one of various map projections [2]. A globe's surface is flattened into

a plane in order to make a map. Map projections inevitably distort the sphere surface in

some extent and in a variety of ways. Therefore, different map projections exist in order to

preserve some properties of the sphere-like body at the expense of other properties.

• Cube mapping

In cube mapping the image is projected onto the six sides of a cube and is either stored

as six separate square textures or unfolded into six regions of a single texture. Each

cube face showing 90-degree by 90-degree area of the panorama having such a

distortion so when wrapped together the whole environment appear as a sphere. Cube

mapping is preferred over sphere mapping because it eliminates many problems such

as image distortion, viewpoint dependency, and computational inefficiency. That is why

cube mapping is used greatly used for applications like constructing skybox images.

Figure 12: Cube mapping texture regions for a skybox

• Equirectangular/Spherical

In equirectangular projection or spherical projection the stitched image shows a 360°

horizontal by 180° vertical field of view. Panoramas in this technique are perceived as

though the image is wrapped into the inside surface of a sphere. In a 2D plane,

13

horizontal lines appear curved, while vertical lines remain vertical in the front, right,

back and left directions.

Figure 13: Equirectangular panorama with directional tile mapping

Equirectangular projection is the typical format for 360o video and is either monoscopic

(one image directed to both eyes) or stereoscopic (two distinct images directed

individually to each eye). The main difference between equirectangular and spherical

projection is that the former refers to the panorama view and the later refers to the

view occurring when these panoramas are wrapped on the inside surface of a sphere.

Figure 14: Equirectangular panorama in spherical projection

2.2.3: Video display

360o videos are typically viewed via personal computers, mobile devices, or dedicated

head-mounted displays.

The most common format for computer display is the equirectangular one. Usually, viewing

the video via personal computer, meaning the screen display only, might not give to the

14

user the ability to interact with the view. Even if the center of the equirectangular

projection can be rotated, it probably will not be possible to change the map projection to

a spherical one. When possible, users can navigate around the view by clicking and dragging

on the screen if the video projection displays only a FOV of the whole map.

On smartphones, internal sensors such as the gyroscope can also be used to pan the video

based on the orientation of the device. Taking advantage of this behavior, stereoscope-

style enclosures for smartphones (such as Google Cardboard, Samsung Gear VR or VR Box)

can be used to view 360o videos in an immersive format, much like to virtual reality. The

phone display is viewed through lenses contained within the enclosure, as opposed to

virtual reality headsets that contain their own dedicated displays.

Software applications are very crucial for this part of the 360o video distribution. These are

the “middleware” that provide us, the viewers, the video stitching, the map projection or

the 360o navigation. Some of them are listed below:

• VideoLAN VLC

VLC is an open-source multimedia player with cross-platform compatibility. The VLC

framework is perfect for most audiovisual media because of the multiple supported

media codecs, video formats and streaming protocols. The media player supports 360o

photos, panoramas and in Windows and Mac computers it is able to play spherical video

formats. The video can be rotated with the mouse or the arrow keys on the keyboard.

Unfortunately, VLC does not fully support 360o livestreaming videos.

• YouTube

YouTube is an American social media platform used for online video sharing. The

platform took a major leap with 360o video coverage and have multiple ways to display

and navigate in it. One can use a mouse to click and drag the picture to look around in

the desktop mode. If the personal computer is connected to a high-end HMD, then the

view can be redirected to the immersive VR lenses of the HMD. On mobile phone, there

are also two possible ways to display the video. The basic one is a single view; one can

tap and drag on the phone screen, similarly with the desktop view, or simply look

around utilizing the gyroscope sensor. The second one needs a cardboard or a VR Box

so that that the phone is inserted into the low-cost headset for a VR experience.

15

2.3: Livestreaming

There is a difference between streaming and livestreaming. Streaming is a way to transmit,

deliver and playback a completed video file, often from a remote storage location. By

transmitting a few seconds of the file at a time, the client devices do not have to download

the entire video to play it. Livestreaming, on the other hand, is when the streamed video is

broadcasted over the Internet in real time, without first being recorded and stored. Today,

TV broadcasts, video game streams, and social media video can all be livestreamed.

Therefore, the difference between the two is the creation time and storing of the content

in relation to being relayed to the receiver.

2.3.1: Background procedure

The typical procedure, or steps, taken behind the scenes in a livestream is starting with the

video, followed by the compression, encoding, segmentation, content delivery network

(CDN) distribution and caching, decoding and concludes with the video playback.

• Video capture

Starting a livestream, one thing is crucial; raw video data, captured by either a camera

or a screen recording application. This visual information is then represented as digital

data to be processed on the next steps.

• Compression & encoding

The data is compressed by removing redundant visual information. Commonly,

intraframe compression is applied which does not let identical parts to re-render for

any subsequent frames. Encoding is the process of converting the livestreaming video

data into an interpretable digital format, widely recognized from a variety of devices.

Compression and encoding usually come hand in hand with software as video codes,

like H.264, VP9 and AV1.

• Segmentation

On most occasions, video files are far bigger than common images or text files, contain

more digital information and take longer when being transmitted. The video data is

divided into segments, a few seconds per chunk, before being sent. This part of the

livestream process is called segmentation.

• CDN distribution & caching

16

This step of the process is not mandatory if only the livestream flow is for a real-time

peer-to-peer (P2P) connection. If that is not the case, then a Content Distribution

Network (CDN) should mediate in order to maintain high quality with minimal latency

while serving the stream to multiple viewers in different locations. Basically, a CDN is a

distributed network of servers that serve content on behalf of an origin server, cutting

down its workload. These servers will also cache each segment of the livestream and

most viewers will get the livestream from the CDN cache instead of from the origin

server. Even though the cached data is a few seconds behind, the livestream closer to

real-time, because it cuts down on round-trip time (RTT) to and from the origin server.

• Decoding & video playback

After the distribution of the livestream segment, the server is done working on his part.

The rest of the procedure is up to the user device to receive, decode, and decompress

the segmented video data. Finally, a media player on the user's device interprets the

data as visual information.

2.3.2: Types of Livestreaming Communication

The world nowadays has become far more comfortable with video communications in

plenty aspects of daily life. From one-to-one talks to mass lectures, there are a lot of events

with live videos. But a livestream video can be comprehended with multiple different

definitions according to the application of the specific requirements a live event should

have.

There are two ways of categorizing livestream events: One is by determining the number

of the participants of the event, the other being by determining the delay which those

participants will have on their livestream. But those two are not irrelevant with one

another, and the participant-based categorization comes under the delay-based

dichotomy.

Real-time communication:

Real-time communications, or more accurately “near real-time", usually match with one-

to-one and many-to-many streaming applications, where minimum latency is mandatory

for QoE. The benefit of real-time communications is there is no delay with the livestream

17

with low quality. The downsides are that it is not adaptive to the end viewer’s bandwidth,

so low bandwidth end devices will often get a bad experience of the video, maybe sound

or pixilation problems.

• One-to-One

This subcategory of livestreaming is application specific and not for general use.

Basically, it is a one-way video data stream from a single camera to a single viewer

application. Providing sound can be optional for a wide variety of applications. Servers

or CDNs mediate only if there is a need for reverse proxying, link extension or data

caching and saving. But the majority of one-to-one video stream are either utilizing

physical links (like USB cables) or carried out over Local Area Network (LAN) making use

of private links. Some examples of this subcategories are local Webcam applications,

real-time device control and closed-circuit television (CCTV).

• Many-to-Many

Mainly referring to face-to-face video chats and online conferences with more than two

users, featuring both image and sound. A common limitation is that it can typically only

support a small number of concurrent people on the call, for example the small

hundreds, especially when everyone is using a shared internet connection. This type of

livestreams serves the need of reducing the physical distance between the users, so it

is usually managed by companies acting as CDNs.

Non-real time (NRT) communication or Broadcast:

Non-real time communications or Broadcasts, respectively, go hand in hand with one-to-

many streaming events in which the viewers can tolerate with the small delay produced

after the processing of the CDN. Not to be confused with pre-recorded video-on-demand

streaming.

• One-to-Many

One-to-many livestreaming is mainly referred to as “Broadcast” and represents events

like presentations, premiers, sports coverage. The benefits of broadcast are that they

can support a very large number of concurrent video recipients, for example many tens

or hundreds of thousands of people, watching the webcast at the same time. This is

because of the adaptive bitrate technology which adapts to the bandwidth of the

18

recipient, meaning even low bandwidth devices get a good viewing experience. The

downside is that the stream needs processing before it can be viewed. This processing

will generate a delay of about 20-30 seconds between the presenter and the viewer.

2.3.3: Streaming Protocols

Α protocol, in the network and telecommunications field, is a set of rules defining the way

data travels from one system to another. When these rules are distinguished in layers and

stack up on top of one another, they form a protocol stack. Each layer can focus on a

specific function and cooperate with the other layers. Each layer above the foundation adds

complexity.

Video streaming protocols focus on delivering multimedia data (video and/or audio). A

video streaming protocol sends chunks of content from one device to another. The way

these chunks are reassembled into playable content on the other end is also defined by the

protocol. Each individual chunk usually contains compressed video, compressed audio, and

metadata such as subtitles, timing info, etc, and how this content is stored while streamed

is defined by the transport format. Both sending and receiving device must support the

same protocol. These protocols usually sit in the top three layers of the Open System

Interconnection (OSI) model, namely application, presentation, and session layers.

Checking a quick background of the transport layer is necessary to understand the

foundations on which the streaming protocols are residing on:

• Transmission Control Protocol (TCP)

TCP operates with a three-way handshake on initialization. The connection starts with

the client requesting the server for a handshake, the server responds, and the client

acknowledges the response. TCP maintains a session between either end, so it is quite

reliable when it comes to packet loss and ordering.

• User Datagram Protocol (UDP)

UDP, does not require a handshake to transport data. It does not take in concern any

bandwidth constrains, providing in that way higher transmission speed but with higher

19

risk for packet loss. It is common for UDP to corrupt the data on route because it does

not support error handling.

Figure 15: TCP vs UDP comparison for transport layer applications

Traditional Streaming Protocols:

These older protocols were made to support low-latency streaming. Such speed is achieved

by transmitting the data using a firehose approach (a large number of messages are

broadcast rapidly, repetitively, and continuously) rather than requiring local download or

caching. They are no longer the tool of choice for viewer-facing delivery and are not natively

supported on most endpoints (browsers, mobile devices and computers). Nevertheless,

traditional streaming protocols are still highly useful as ingest formats. In other words, they

are no longer used for showing video, but they are used from broadcasters for transporting

live streams from source to the media server. From there they can transcode it into an

HTTP-based technology for multi-device delivery as part of a larger streaming workflow

• Real-Time Messaging Protocol (RTMP)

The RTMP specification was developed by Adobe at the dawn of streaming. The

protocol could transport audio and video data between a dedicated streaming server

and the Adobe Flash Player, reliably and efficiently. Adaptive bitrate streaming

eventually edged RTMP out. As Flash began to be phased out over recent years, RTMP

remained a useful format for encoding and ingesting video feeds but declined in

relevance as a way for delivery.

20

RTMP runs over TCP, so it establishes and maintains communication between an RTMP

Client and an RTMP Server for fast, and reliable data transmission. It breaks a

multimedia stream into fragments with their size usually being debatable between the

two communicating ends. Large fragment sizes can cause delays in write-operations

and very small fragments can increase the load on the CPU, yet small fragment sizes

could carry less payload than the bandwidth supports.

There are several variants of the RTMP specification which are worth mentioning:

o RTMPS

RTMPS is simply RTMP over a TLS/SSL connection. Setting up RTMPS is

considered complicated, but it guarantees a level of security. Livestreaming to

platforms like Facebook Live needs an RTMPS source.

o RTMPT

RTMPT is the use of RTMP with encapsulation within HTTP requests. This allows

RTMP messages to pass through firewalls, and the message that is encapsulated

can be either RTMP Proper, RTMPS, or RTMPE packets within.

o RTMFP

RTMPF uses RTMP over UDP instead of TCP. The RTMFP was designed for low

latency, real-time, live audio, and video communication directly between peers

(P2P) without the need for going through an RTMP server.

• Real-Time Streaming Protocol (RTSP)

RTSP was created as an open-source “network remote control” for media servers. It

was developed to control streams without the need for downloading locally. RTSP is

not designed to transmit data. The actual transmission of the video data is done by the

Real-time Transport Protocol (RTP) and the Real-time Control Protocol (RTCP) delivers

the media. RTSP often refers to the entire stack of RTP, RTCP, and. It is dependent on a

dedicated media server for viewer-facing content. In the case of IP cameras, IoT devices

and other applications requiring close to instant playback from a source, RTSP remains

a perfect choice for livestreaming.

21

RTSP supports several commands such as play, pause, setup, etc which are called

control request operations. The initial “OPTIONS” command reports back to the client

which of these operations are available in the current stream. When a user initiates a

When a video stream is initiated by a user from an IP camera using RTSP, the camera

first sends an RTSP request to the streaming server. This jumpstarts the setup process.

An end-to-end connection with TCP is maintained and achieves high transmission speed

without requiring any local download or caching. Because RTSP depends on a dedicated

server for streaming and relies on RTP to transmit actual media, the protocol does not

support content encryption or the retransmission of lost packets. And while RTSP and

HTTP have similar syntax and operation, due to incompatibilities there is no way to

stream it in a web browser without adding additional software.

• RTMP vs RTSP

Both protocols are on application-level and used to control media streams, having low-

latency through a stable connection and being able to deliver in nearly real-time.

RTMP benefits from its low latency (3-5 seconds) with minimal buffering but it is not

optimized for quality of experience or scalability. Playback compatibility is no longer

accepted by iOS, Android and most browsers, thus is limited to Flash Player, Adobe AIR

and RTMP-compatible players like VLC. It supports H.264, VP6 and VP8 video codecs. It

is the go-to solution for first-mile screen-recording or web cameras streaming video

ingesting it to larger media broadcasters

For RTSP, the latency is relatively smaller (1-2 seconds) and it is ubiquitous protocol for

IP cameras even in today’s technology, with the same drawbacks as RTMP. It is not

widely supported and rarely used for playback, but a few exceptions are Quicktime

Player, VideoLAN VLC media player and 3Gpp-compatible mobile devices. The video

codecs RTSP supports are H.264, H.265, VP88 and VP9. For applications including P

cameras and IoT devices and close to instant playback from a source, RTSP is the best

solution.

On today’s internet, video streaming workflows use RTMP or RTSP to ingest streams

(per its designation as a “contribution protocol” or “first-mile” technology) and then

22

utilize another means of delivery to repackage and send the content to be watched on

a wide range of devices.

HTTP-Based Adaptive Protocols:

Modern stream delivery protocols take advantage of Adaptive Bitrate Streaming (ABR).

With ABR, the protocol adapts to the bandwidth and CPU capacity of the receiving device

to provide the smoothest experience possible.

In ABR streaming, a video is transcoded into multiple resolutions and bitrate combinations,

and each is referred to as a “rendition”. These renditions can be “1080p 5.0mbps”, “720p

4.0mbps”, “640p 3.2mbps”, “480p 2.0mbps” and “270p 1mbps”. A collection of renditions

is a bitrate ladder. When the player starts to playback the video, it senses the available

bandwidth. If this is much greater than the highest bitrate on the bitrate ladder, the player

safely downloads the highest bitrate for a few segments. the player senses the bandwidth

again and if it is still very high, it asks for the highest bandwidth again. If the bandwidth

suddenly drops, then the player will probably request for smaller rendition chunk from the

server in order to not have loading issues. This process continues throughout the video.

This is how the bitrate and quality are adaptively varied to adapt to the varying bandwidth

conditions.

• Apple HTTP Live Streaming (HLS)

HLS is currently the most widely used video streaming protocol by professional

broadcasters. It was developed and released in 2009 and was originally developed by

Apple to make the iPhone able to access live streams, but now nearly every device

supports this format. HLS, developed by Apple, is an ABR protocol but it does not

include an encoder which is required to bring in live streams. This is where traditional

streaming protocols remain useful for input. Content in HLS is delivered through

standard HTTP web servers, with no special infrastructure required, and it is less likely

to be blocked by firewalls. Its major benefits are the adaptive bitrate and widely

supported playback compatibility, thus leading to fairly high-latency (6-30 seconds).

In HLS multiple files are created and distributed to the player via different streams,

which change adaptively for playback experience optimization. No streaming server is

required because it is an HTTP-based protocol, thus the switching is done on the player.

23

For client distribution, the source is encoded into short chunks at different data rates,

about 5-10 seconds long. These are loaded onto an HTTP server along with a text-based

manifest file with a .M3U8 extension that directs the player to additional manifest files

for each of the encoded streams.

The player monitors changing bandwidth and CPU conditions. If a stream change must

occur, the player finds the location of additional streams in the original manifest file,

and then acquires the stream-specific manifest file for next chunk of video data. Stream

switching is generally seamless to the viewer.

Figure 16: HLS directs the player to different streams and chunks of data within them

Low-Latency HLS (LL-HLS) is a variant of HLS which promises to deliver streams globally

with a latency of under 3 seconds. It also offers backward compatibility to existing

clients, meaning that any players that are not optimized for LL-HLS can fall back to

standard HLS behavior. It is designed to significantly shrinking the latency of HLS while

having the same simplicity, scalability, and quality in content delivery. Its major

drawback as an emerging spec is that vendors are still implementing support.

• Dynamic Adaptive Streaming over HTTP (DASH)

24

DASH, or preferably MPEG-DASH, one of the newest streaming protocols that came to

be one of the most popular, is developed by MPEG in 2010-2011, published as a

standard in 2012 and provided some strong competition for HLS dominating the

streaming world. MPEG-DASH also is an ABR protocol but in contrast with HLS’

proprietorship of Apple, MPEG-DASH is an open-source option. It also can use content

encoded in any format which makes it “codec-agnostic”.

Describing in detail the functionality of this standard, a set of encodes (or renditions)

of a livestream is packaged by a MPEG-DASH packaging service or software. This

packager splits each rendition into chunks of a small duration and records the order in

which they are to be delivered into a manifest, called MPD. The origin server stores the

packaged video along with the manifest and waits to deliver it to a player, usually via a

CDN. The MPEG-DASH compliant player at the client side has an ABR-streaming engine.

On start the video player requests the video’s MPD file. After receiving the MPD, the

player parses it to understand how to play the video. The player then starts requesting

the video’s chunks in the pre-defined order, decodes the chunks, and displays the video

to the user. The player monitors bandwidth conditions and requests from the CDN to

send the next chunk of video for suitable bitrate advertised in the MPD. This process

continues until either the livestream comes to an end, or the user stops the playback

session.

Figure 17: Course of actions in the MPEG-DASH protocol

25

Like HLS and LL-HLS, MPEG-DASH has its own low-latency counterpart and that is “Low-

Latency Common Media Application Format (CMAF) for DASH” – another emerging

technology for speeding up HTTP-based video delivery. Basically, the need for CMAF was

emerged due to the inefficiency of HLS using .ts format and DASH using the .mp4 containers

based on ISOBMFF. Content distributors had to encode and store the same data twice for

reaching both Apple and Microsoft devices. So MPEG established the new standard for

reducing complexity when delivering video online. Although vendors have yet to prioritize

support for this protocol, the technology shows promise delivering superfast video (at 3

seconds latency or less) at scale by using shorter data segments. When a player is not

optimized for low-latency CMAF for DASH it can fall back to standard DASH behavior.

New Technologies:

• Secure Reliable Transport (SRT)

SRT is designed by Haivision to support low-latency streams when there is noise over

the network. By combining UDP’s high speed and TCP’s error-correction qualities, SRT

delivers reliable, low-latency livestreams, regardless of network quality. It utilizes the

Automatic Repeat reQuest (ARQ), an error-correction mechanism for packet recovery.

If there is a gap in the stream, the server recognizes and re-requests those packets from

the encoder. Even though the server and encoder keep communicating throughout the

transmission, only the missing packets get retransmitted. In this way, it does not cause

a mess of overhead or extensive latency.

SRT carries many benefits for the future of livestreaming. For starter, it provides high

quality video withstanding up to 10% packet loss without detectable degradation and

maintains stream integrity by accounting jitter and fluctuating bandwidth. It is media-

agnostic meaning it acts as a wrapper around audiovisual content, be it MPEG-2 or

H.264. It is secure, providing 128/256 bit AES encryption for secure transmission over

the internet and finally uses simplified firewall traversal. All that in addition to being

open-source, delivering interoperability and longevity.

• Web Real-Time Communication (WebRTC)

WebRTC is an open web framework for real-time communication. It is combination of

standards and protocols alongside JavaScript APIs, which enables peer-to-peer

connections between browsers for near-simultaneous exchange of data. This supports

26

browser-to-browser communication and interactive live streaming between

individuals.

WebRTC employs HTML5 APIs so that browsers can capture, encode, and transmit live

streams between one another with two-way communication. While some streaming

workflows require an IP camera, encoder, and/or streaming software, the simplest

WebRTC deployments can accomplish everything with a connected webcam and

browser. WebRTC can be played back on any HTML5 player unlike Flash-based video.

WebRTC supports H.264, VP8 & VP9, while being compatible with the most widely used

browsers (Chrome, Firefox, Safari) without any plug-in. The latency of this protocol

averages at 500 milliseconds but it does not provide scalability without the of a

streaming server or service.

Figure 18: Protocols comparison for streaming latency and interactivity continuum

27

2.4: Virtual Reality

The concept of Virtual Reality (VR) has been around since the early 20th century, when a

science fiction writer, Stanley G. Weinbaum, described the idea of interactive movies which

can provide sight, sound but also taste, smell, even touch. Since then, there have been

decades of experimentation, with the 1992 film “The Lawnmower Man” shaping

mainstream perceptions of VR for some time afterwards. Nevertheless, the current age of

VR began in 2010 with the first VR headset prototype, which then evolved into Oculus Rift.

A few genres of “realities” exist because of today’s technology but there is a clear

distinction between them.

2.4.1: Categories

• Virtual Reality (VR)

A VR environment is a completely computer-generated. All scenery and objects appear

to be real in sight, thus making the user feel immersed in his surroundings. Therefore,

the typical VR is called “immersive VR”. This environment is presented to the user

through a device, the VR headset or Head Mount Display (HMD). Immersive VR is

famous for video gaming and sports exercising because it simulates the whole

experience as if the playable character is the user himself.

VR applications do not stop on gaming and sports. Various areas have already taken

advantage of this technology such as medicine, culture, education, and architecture.

From guided virtual museum visits to practical experience in working positions, VR

allows humanity to cross boundaries that would otherwise be unimaginable.

Figure 19: Inside a VR headset playing VR Rush Hour: Austin

28

• Augmented Reality (AR)

AR is when the real physical world is enhanced using digital visual elements, sound, or

other sensory stimuli. It is a growing trend among companies involved mostly in mobile

computing and business applications, like marketing. Retailers and other companies

can use AR to promote products or services, launch novel marketing campaigns, and

collect unique user data.

Smart eyewear devices could be a breakthrough for AR because they do not show a tiny

portion of the user’s landscape (as smartphones and tablets do), but they provide a

more complete link between real and virtual realms if it develops enough to become

mainstream.

Figure 20: AR in gaming, Pokémon GO

Figure 21: AR applicated in smart eyewear

• Mixed Reality (MR)

While VR allows the creation of a virtual world from scratch, what AR does is add virtual

elements to the real surrounding environment.

Mixed Reality brings together real world and digital elements, meaning it combines

elements of both VR and AR. In MR, interaction is possible with both physical and virtual

items and environments, using next generation sensing and imaging technologies. MR

offers real view of the surrounding world but also immersion and interaction with a

virtual environment without using any special equipment besides the MR headset. MR

breaks down basic concepts between real and imaginary, offering an experience that

can change the comprehension of everyday activities like working, gaming, and

education to name a few.

29

Figure 22: Industrial worker using MR headset Microsoft's HoloLens

2.4.2: Hardware

• Degrees of Freedom

Degrees of Freedom (DoF) is a term referring to motion around or along an axis in a 3D

space. It is the number of ways a rigid object is able to move in that 3D space. According

to the Cartesian coordinate system of 3D space, there is a triplet of coordinate axis, X-

Y-Z. Each of these can allow a translational movement along the axis and a rotational

movement around the axis. The three rotational movements are known as pitch, yaw

and roll while the three translational movements are called forward/backward,

left/right and up/down, depending on the “positive” direction. In VR, DoF is an essential

concept with which human movement converts into movement in the VR environment.

Figure 23: Degrees of Freedom in a 3D space

30

• VR headsets

A Head Mount Display (HMD) is wearable display device for the human head that

provide visuals for the human eye. It can be either monocular or binocular. The

difference with VR headsets is that the latter are basically HMDs combined with Inertial

Measurement Units (IMUs). IMUs measure the rotational movements on a 3D space

and positional tracking sensors, either HMD built-in or external, measure the

translational movements. With this hardware, a VR headset is considered an input

device which tracks the 3D movements of the user’s head. A VR headset can either be

“3-DoF” or “6-DoF”. The 3-DoF headsets, like Google Cardboard or VR Box, are usually

glasses for smartphones, which only have gyroscopes. So, they cannot perceive a

change in the user’s translational movement. On the other hand, 6-DoF headsets, like

Oculus Rift and HTC Vive, allow full transitional and rotational tracking, thus offering

the user a lot more freedom and making the experience closer to immersive.

Figure 24: Difference between a 3-DoF headset and 6-DoF headset

2.4.3: Software

A VR environment is fundamentally a 3D environment which has some special features

when it comes to sensory input and output. So, before developing a VR environment,

it is firstly required to develop a 3D environment.

• Unity game engine

For this task, the preferred choice are game engines, which are software frameworks

primarily used for developing video games. They typically consist of a rendering engine

for 2D and 3D graphics, a physics engine for managing the interactions in the

31

environment and they include relevant libraries and other software tools for scripting,

networking, memory management and much more.

The Unity game engine is ideal for cross-platform developing of 3D environments, and

not only for desktop usage. It is considered an easy-to-use engine because of its

simplicity, flexibility in language scripting and a great variety of tools.

Unity mainly supports C# and JavaScript, and its scripting API is fully documented for

both of them. Though, for the majority of developers and for the contents of this thesis,

the language of choice is the former.

• UnityEngine namespace in Scripting API

In C#, a namespace is, like a library, a method of preventing name conflicts while

containing declarations and implementations. In the UnityEngine namespace there is

the MonoBehaviour class, the base class from which every Unity script derives.

The MonoBehaviour class offers basic callback functionality, public and static methods,

and properties for Unity’s GameObjects to employ on runtime. Some of the basic

functions are explained below:

o Awake: This function is used to initialize variables or states before the

application starts so it is called when the script instance is being loaded

o Start: This function is called when the script becomes enabled, exactly once in

the lifetime of the instance. This happens after the initialization in Awake and

before the first Update call.

o Update: If the MonoBehaviour script is enabled, the Update function can be

considered a loop method because it is called before the rendering of every

frame. That is why it usually implements the main functionality of the script.

There is also the FixedUpdate and the LateUpdate variant, from which the

former is frame-rate independent and used for physics calculations, while the

latter is useful for ordering script execution because it is called after all Update

functions have been called.

o OnDestroy: The Destory function actually belongs to the Object class because it

removes every possible component, script or GameObject in runtime.

32

MonoBehaviour class though provides the OnDestroy callback, which is invoked

just before the script gets destroyed by the Destroy function.

An evenly important piece of the UnityEngine namespace is the Coroutine class. A

Coroutine is a type of function that can pause its execution with the yield keyword and

automatically resume in the next frame. With the WaitForSeconds class, the coroutine

execution can be yielded for a given number of seconds. Coroutines start within a

MonoBehaviour script with the StartCoroutine function, which needs an IEnumerator

routine as an argument, and can be stopped with the StopCoroutine function. The

Corutine type is very useful for multitasking and is well-suited for implementing event

loops and iterators.

• Steam VR

SteamVR is a runtime, provided by Valve’s Steam client, which powers VR experiences

on a desktop. It runs over the OpenVR API which allows access to VR equipment

without the applications knowing the specific hardware they are targeting. SteamVR is

also a Unity Plug-in, maintained by Valve, to smoothly interface the homonym runtime

with the game engine. It handles the VR equipment positional and rotational tracking,

the loading of the VR controllers’ 3D models and also their input and haptic output.

The class of interest in the SteamVR Plug-in is the Player class, inside

Valve.VR.InteractionSystem namespace. This is a MonoBehaviour derived class which

includes references for other MonoBehaviour scripts handling the HMD and both

controllers.

Figure 25: SteamVR runtime with room setup

33

CHAPTER 3: IMPLEMENTATIONS

In the content of this thesis, 360o video livestreaming through VR [3] is implemented in

various ways. The physical equipment available is limited to a single 360o camera, that

being Ricoh THETA V, and to two HMDs, one being HTC Vive and the other being VR Box.

Nevertheless, this limitation allows to test different streaming protocols and different end-

platforms for visualizing the video. All implementations were tested on Windows 10 Home

64-bit, versions 2004 (OS Build 19041.804) and Version 21H1 (OS Build 19043.1237).

Figure 26: Ricoh THETA V

Figure 27: HTC Vive headset

Figure 28: VR Box for smartphones

3.1: Describing Ricoh THETA V

Ricoh THETA V was selected after a thorough research around 360o cameras. Research was

conducted based on some criteria, which are onboard stitching, live preview capabilities,

wireless connectivity, and affordable price. Ricoh THETA V is a perfect choice for developers

and has a lot of bonus features against its competitors. Namely having an open-source

Application Programming Interface (API), and running on Android, which allows the

development of various plug-ins. All that come along with a detailed documentation.

34

Figure 29: THETA V components

1. Microphone
2. Lens
3. Camera status lamp
4. Shutter button
5. Speaker
6. Wireless lamp
7. Capture mode lamp
8. Video recording lamp
9. Memory warning lamp
10. Power lamp
11. Power button
12. Wireless button
13. Mode button
14. Microphone terminal
15. USB terminal
16. Tripod mount hole

3.1.1: Characteristics

It has 19 GB internal memory, capable of 4K video at 30 FPS and HDR shooting. It also has a

four-channel microphone allowing spatial audio in video capturing.

3.1.2: Ricoh Desktop Application

Ricoh provides a desktop application which supports all models in the series, THETA V

included. It is used for viewing 360o still images and videos on a computer by dragging them

to the main app and rotate them as well as manipulate them by dragging them or with the

navigation panel. Converting them to other formats as well as save them as 360o videos is

also possible. The app can update the device firmware to the latest version as it is

recommended by Ricoh.

3.1.3: Plug-ins

RICOH THETA V utilize an Android-based operating system, so in addition to the basic 360°

camera functionality, installing plug-ins - basically Android applications - allows even

greater flexibility in controlling the camera.

In order to enable developer mode, registering for the RICOH THETA Partner Program is

required. Developing is done through the Android Studio having downloaded the Ricoh

THETA Plug-in Software Development Kit (SDK). Plug-ins, either self-developed or from

other partners, can be viewed from the Plug-in Store webpage, but they are downloaded

35

via the Ricoh Desktop App. The same app is used for plug-in management when the camera

is connected via USB to the PC.

3.1.4: THETA Web API v2.1

This is the API used to access the camera’s functions through commands and options.

THETA Web API v2.1 conforms to Open Spherical Camera (OSC) API v2.0 by Google. OSC

API is a proposed set of commands for various spherical cameras with built-in Wi-Fi

capabilities. Developing any app against OSC lets it control any connected spherical camera

that implements OSC.

Each camera creates an Access Point (AP) and serves a discoverable, WPA2-PSK password

protected, Wi-Fi network with a human-readable Service Set Identifier (SSID). After that,

the OSC camera must implement a HTTP 1.1 webserver on default HTTP port 80, which

must response to GET and POST requests. Commands input/output JSON and are part of

HTTP requests/responses respectively. In addition to official OSC commands and

parameters, THETA-specific commands are distinguished by an underscore prepended to

their name. More on THETA Web API will be discussed in the below implementations.

3.1.5: Wi-Fi modes

THETA V has to modes of Wi-Fi connectivity. The first is Direct mode or “AP mode” where

the device creates a local Wi-Fi network without internet access and operates as an Access

Point. For accessing the Web API, the viewer device must connect on THETA’s WLAN and

reach the gateway’s IP 192.168.1.1, which is the camera’s IP.

The second and more convenient Wi-Fi mode is the Client mode or “CL mode” in which the

device connects as a client to an already existing local Wi-Fi network provided by a Wi-Fi

router. For this mode to be activated, there are two possible ways. First is by Wi-Fi

Protected Setup (WPS) configuration if the router supports it. By pressing the WPS button

on the router and by pressing shutter & Wi-Fi & mode buttons on the camera at the same

time. THETA V will connect automatically on the main WLAN of the router. Second way is

by utilizing the smartphone App and is described below.

3.1.6: THETA Smartphone Application

THETA Smartphone App is the easiest way to control everything on Ricoh THETA V. The

mobile device should firstly connect to the camera’s local Wi-Fi network. The mobile app

will automatically recognize and connect to THETA V because the IP (192.168.1.1) is already

36

known by the network’s gateway (the camera). In the settings section there is an option

for connecting THETA V on a WLAN by providing wanted SSID and password. After that, the

mobile app can make the connection via WLAN, because both devices ae connected to that.

The app offers full 360o and dual-lens VR navigation for images and videos in camera’s

internal memory. It utilizes almost every command from THETA Web API v2.1 thus

providing live preview feed with image and video capturing, resolution and frame rate

control, firmware update from internet, plug-in management and a lot of other settings

and configurations.

37

3.2: Bridged Wireless Access Point

This thesis required working from a PC with a wired connection to a 10.64.44.0/23 network

while the WLAN was a different network with 192.168.1.0/24 domain. Ricoh THETA V

would only connect wirelessly and in order to communicate with the PC, they should be on

the same LAN. A TL-WN821N wireless USB adapter did not solve the problem due to be

problematic. The preferred workaround was having a Raspberry Pi 3 Model B (RPi) function

as a bridged wireless AP, providing THETA V with a 10.64.44.0/23 IP. The procedure is

described below with Shell sessions on an Raspbian gnu/linux 10 (buster) operating system.

To connect the Ethernet and wireless networks a bridge network device is added named

br0 by creating a file /etc/system/network/02-br0.netdev with contents:

[NetDev]

Name=br0

Kind=bridge

Adding the built-in Ethernet interface (eth0) as a bridge member by creating

/etc/system/network/04-br0_add-eth0.network containing:

[Match]

Name=eth0

[Network]

Bridge=br0

The software will add the wireless interface (wlan0) to the bridge when the service starts,

so no actions need to be taken.

Enabling the systemd-networkd service to create and populate the bridge

sudo systemctl enable system-networkd

Network interfaces which are members of a bridge device should not have an IP address,

but the bridge device itself shall in order to reach RPi within LAN. The DHCP client in RPi,

dhcpd, requests an IP for every active interface according to the /etc/dhcpcd.conf file. So

eth0 and wlan0 must be blocked and bro needs to be defined in the file, by adding the lines

denyinterfaces wlan0 eth0

interface br0

38

For the configuration of the AP software, wpa_supplicant is used, and the below lines must

be added in /etc/wpa_supplicant/wpa_supplicant-wlan0.conf:

country=GR

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

network={

 ssid="10.64.44.0/23"

 mode=2

 frequency=2412

 key_mgmt=WPA-PSK

 proto=RSN WPA

 psk="********"

}

A later addition was done in order to have a static IP on the Bridged AP, creating

/etc/system/network/12-br0_up.network with contents:

[Match]

Name=br0

[Network]

MulticastDNS=yes

Address=10.64.44.242/23

Gateway=10.64.44.1

DNS=10.64.44.1

This step, creating a Bridged Wireless Access Point is very crucial for the PC-camera

communication in the following implementations and is simultaneously used by the

smartphone having THETA App. The IPs assigned were 10.64.44.242 (RPi), 10.64.45.228

(THETA V), 10.64.45.161 (PC Windows) and 10.64.45.224 (PC Ubuntu), stable during all

implementations.

39

3.3: Equirectangular and non-VR livestream solutions

While putting through this thesis, many approaches either led to an immersive VR

implementation or could not be considered for further research due to missing features.

3.3.1: OBS webcam

Open Broadcaster Software (OBS) is a free and open-source cross-platform streaming and

recording program built with Qt and maintained by the OBS Project. Since 2016, the

software is now referred to as OBS Studio. OBS 27.0.1(64-bit, windows) is used in this

implementation on operating system Windows 10. It is recommended to always update to

latest firmware on the camera either by Desktop App or Mobile App. As of the release date

of this thesis, downgrading firmware is not possible on THETA cameras. This

implementation was checked through time with firmware versions 3.50.1, 3.60.1 and

3.70.1 for THETA V.

Ricoh THETA V communicates with PCs over USB cable implementing Media Transfer

Protocol (MTP). The PC or OBS is capable of recognizing THETA V as a webcam but in order

to enable livestream support, it is required to install the THETA UVC Blender application.

UVC is basically the computer driver for THETA cameras which supports 360o features when

livestreaming and in OBS it is interpreted as different device from THETA V camera. Older

versions of UVC were using uncompressed video formats like MJPEG, but since v1.5.0 it

uses H.264 compression for high-resolution videos and outputs equirectangular data.

There are two available resolutions, 1920x960 defined as FullHD or 2K and 3840x1920

defined as 4K, and the frame rate is constant at 29.97fps (30fps for convenience) in regular

conditions. In this implementation the UVC version tested was the latest, Ricoh THETA UVC

V/Z1 v2.0.0 (which works for both THETA V and THETA Z1 cameras) and has two available

“devices”, one for each resolution mentioned above.

40

Figure 30: Creating Video Capture Device in OBS

Figure 31: Devices from UVC v2.0.0 and equirectangular USB live preview in OBS

3.3.2: VLC capturing RTSP

VLC was also mentioned in chapter 2.3.5 and here it is used as a streaming tool to catch an

RTSP livestream, one exposed by THETA V itself using a Plug-in. Two product versions were

tested, 3.0.12 stable version and 4.0.0 nightly build, an experimental version which is

unstable. 3.0.12 was already supposed to support 360o video and 3D audio, but with no

success, so the experiment version 4.0.0 needed to be tested. Again, 360o navigation was

not supported from an equirectangular stream. Therefore, both versions are used for

equirectangular video display.

There were two Partner Plug-ins available, “THETA RTSP Streaming” (here tested with

v1.0.3) and “Device WebAPI Plug-in” (here tested with v1.1.0) which implemented an RTSP

server on THETA V.

41

The former is using the port 8854 and the /live endpoint for exposing the RTSP stream. A

URL parameter, “resolution”, is available for configuration and the four possible options

are "640x320", "1024x512", "1920x960" or "3840x1920". The framerate is fairly stable and

unconfigurable at 30fps. An example of the livestream URL for the 1920x960 resolution can

be formatted in the following: rtsp://10.64.45.228:8554/live?resolution=1920x960

Figure 32: VLC 4.0.0 steps to opening a URL stream

Figure 33: Equirectangular 1920x960 livestream from THETA RTSP Streaming Plug-in

The latter, as its name suggests, is using the THETA Web API to function upon. The Plug-in

is developed in Japanese so not much info is presented here. It offers an HTTP webserver

exposed on port 8888. The RTSP stream though is exposed on port 8086, with no available

resolution setting, therefore the URL is constantly rtsp://10.64.45.228:8086. An important

difference with the THETA RTSP Streaming Plug-in is that the live preview format is not

equirectangular. Instead, the livestream appears to be in spherical projection, and it is

42

cropped out in a specific FOV of about 90o wide and 60o tall. Due to VLC capabilities, it does

not support spherical navigation

Figure 34: Cropped spherical RTSP livestream from Device WebAPI Plug-in

3.3.3: MJPEG with spherical navigation

Continuing with the Device WebAPI Plug-in, in the Live Preview section, it offers another

viewable form of the 360o livestream. This time it exposes an MJPEG stream on a randomly

produced endpoint on port 9000. Copying the exact URL and opening it in another tab will

result on the same view which the RTSP option provides. Although, when the “MJPEG

Display” button is pressed, the Plug-in webserver provides a web browser spherical view

supporting mouse navigation. In the Live Preview section there is also a “Camera Settings”

field in which the MJPEG resolution can be set with the options "640x320", "1024x512",

"1920x960" or "3840x1920". The MJPEG livestream cannot be seen simultaneously with

the RTSP livestream and vice versa. The Plug-in’s authors report that there is an option to

support split screen mode, in order to view the live preview with a smartphone VR headset.

No such feature was found as of the release of this thesis.

Figure 35: MJPEG livestream with spherical navigation

43

3.4: YouTube livestreaming with RTMP

The same implementation is also supported from Facebook but, in this document, only

YouTube is examined. YouTube lets anyone with a registered channel to create and publish

livestream. By clicking the YouTube Studio option in the Account section, the site opens the

Channel Dashboard. On the top right corner there is a “Go Live” button and clicking this

will load the livestream configuration page. The important settings here is enabling “360o

video” and selecting “Ultra low-latency”, which does not support 1440p and 4K resolutions.

The URL rtmp://a.rtmp.youtube.come/live2 is the Primary YouTube ingest server, which

receives the streams using RTMPS, authorizes and registers if their Stream key is valid and

lastly prepares the stream for the viewers.

3.4.1: OBS redirecting to YouTube

In OBS (v27.0.1), in the Stream section, the right configuration is to select “YouTube –

RTMPS” in the Service field. Server field remains as it is and in the Stream key field, it must

be filled in with the stream key provided in the YouTube livestreaming dashboard. After

that, pressing “Start Streaming” in the OBS should start the livestream in YouTube platform.

Figure 36: OBS setting for YouTube streaming

44

Figure 37: OBS and YouTube livestream side by side

3.4.2: Wireless Live Streaming Plug-in

Wireless Live Streaming Plug-in (here tested with v1.1.1), is an official Ricoh Plug-in and

supports livestreaming to an RTMP server. THETA V Wi-Fi should function on CL mode for

this implementation because access to the internet is mandatory to reach YouTube server.

After activating the Wireless Live Streaming Plug-in, a webserver is exposed on the cameras

IP, on port 8888. Within this page there are again the same setting fields as in OBS, the

Server URL field and the Stream key field, to be filled with YouTube information. There are

also configuration options for Resolution, Bit rates and No-operation timeout, for turning

off the camera. After filling in the fields, Fix streaming settings button must be pressed to

send the configurations to THETA V. Final step is pressing either Start streaming button or

the camera’s shutter button.

45

Figure 38: Wireless Live Streaming Plug-in default dashboard

3.4.3: VR features

Once the livestream is up, it can be viewed via PC on the YouTube platform, or via

smartphone on the YouTube application. The former supports spherical navigation with a

mouse and VR navigation if SteamVR is open and HTC Vive connected to the PC. The latter

support spherical touchscreen and gyroscope navigation as well as VR navigation with dual

screen view to function within VR Box.

3.4.4: Conclusion

Livestreaming from OBS is more reliable, with a stable USB link offering better quality video

and with a wired Ethernet link offering higher bit rates. But its main disadvantage is

requiring operating from PC in addition to having all those cables limiting the camera’s

movement. Wireless Live Streaming Plug-in on the other hand solves these problems by

operating wirelessly and autonomously within the already operating camera, thus allowing

the camera to move freely within the Wi-Fi coverage area. This makes the Plug-in a very

convenient and ready-to-go solution for applications regarding teleoperating vehicles.

46

3.5: Unity livestreaming with webcam

Unity was used with version 2019.4.6f1 on Windows 10. For VR functionality SteamVR Plug-

in for Unity was selected for its simplicity. The specific version of camera driver tested was

RICOH THETA UVC v1.0.2 because the earliest v2.0.0 supports H.264 compression instead

of MJPEG, resulting in the error “Could not connect pins - RenderStream()”. This version of

UVC offers “RICOH THETA V 4K” and “RICOH THETA V FullHD” devices.

The concept is to receive the camera’s equirectangular livestream feed from wired USB

connection and wrap it inside a sphere, resulting to a spherical projection. There are two

different Unity features which can be utilized for that application - a sphere with inverted

normals (or inversed sphere) and the environment’s skybox. Common start for both

techniques is to identify THETA V inside if the Unity environment, assign its livestream feed

on a 2D texture object and the project this texture on a material component.

In the UnityEngine namespace there is WebCamTexture class, whose objects are textures

onto which live video input is rendered. The WebCamTexture constructor’s parameters are

deviceName, requestedWidth, requestedHeight and optionally requestedFPS (for max

frame rate). After construction, the Play() method must be called to start the camera

livestream and render the feed onto the texture. After that, the texture must be assigned

to the material object’s mainTexture property. Below is the getRicohStream script used to

implement this functionality.

47

using UnityEngine;

public class getRicohStream : MonoBehaviour

{

 static WebCamTexture ricohStream; // Equirectangular feed texture

 public string camName = "RICOH THETA V 4K"; // Name of device.

 public Material camMaterial; // Skybox material

 void Start()

 {

 if (ricohStream == null)

 ricohStream = new WebCamTexture(camName, 3840, 1920);

 if (!ricohStream.isPlaying)

 ricohStream.Play();

 if (camMaterial != null)

 camMaterial.mainTexture = ricohStream;

 }

}

3.5.1: Inverse sphere technique

In Unity, objects appear to be 3D but, in reality, they are “hollow”, meaning that they are

only rendered on the exterior side. This happens for performance issues. This exterior side

is not objective, but it depends on the normals of an object. Normal is defined as the vector

perpendicular to the surface tangent at a point on the surface of an object. In simple words,

the direction of an object’s normals defines the way this object will be rendered. In this

scenario, the camera must be in the center of the spherical livestream, the livestream must

render on the inside of the sphere, so the normals must be flipped.

For this task, a 3D Computer Graphics software was needed and the selected one was

Blender, because Unity natively imports Blender files. Blender version 2.72 was used for

this implementation, although version 2.79b is demonstrated in this thesis.

The sphere to be created on an empty scene must have an Icosphere mesh with 6

subdivisions and with the “Generate UVs” option checked. Icopheres are polyhedral

spheres made up of triangular faces structured to appear like a sphere. Subdivisions

determine the vertices, thus the triangles, used to define the icosphere. At level 1 the

icosphere is an icosahedron, a solid with 20 equilateral triangular faces. Each increase in

the number of subdivisions splits each triangular face into four triangles. Configuring 6

subdivisions results to 20.480 triangles, a good enough number to maintain high quality on

48

the texture and avoid high performance rendering. Generating UVs is needed for adding

texture coordinates in curve objects. Then in edit mode, by pressing the “W” key, “Flip

Normals” option comes into view. From there, saving the .blender file inside the Unity

Project’s Assets folder, lets the Unity environment interpret it as a model (inside-sphere) to

be used the Hierarchy prefab (Inverse_sphere).

Figure 39: Creating an inverse sphere in Blender 2.79b environment

Next step is creating a Material object (Ricoh_mat) in the Unity Project’s Assets folder and

in the Inspector window selecting Shader -> Unlit -> Texture. Ricoh_mat must be assigned

to the sphere’s Mesh Renderer component, in the Materials field.

From there, final action is creating in the Hierarchy window an empty object (GetStream)

and assigning to it a getRicohStream Script component with the Ricoh_mat dragged in the

Cam Material field.

After all this process, image inside the sphere needs some modifying. Firstly it needs a

positive scaling (up to 100 in each axis) for it to be appearing distant. If image is mirrored

after flipping the normals, then it needs a negative sign in front of the scale values and

maybe a rotation of 180o on the X-axis.

49

Figure 40: Inverse sphere technique setup in Unity

3.5.2: Skybox technique

After describing the above technique in detail, this Skybox technique is fairly similar. Skybox

[4] is in fact a cube map projection wrapped as a sphere to deceive the eye. So this time,

Ricoh_mat must be set as Shader -> Skybox -> Panoramic, because the texture provided

will be equirectangular (panoramic). It is already rendered from inside out so all that

remains is assigning Ricoh_mat in the Lighting window -> Environment -> Skybox Material

and having GetStream object running the getRicohStream script.

Figure 41: Skybox technique setup in Unity

50

3.5.3: Conclusion

Both techniques work great with high-quality livestream video, minimal latency due to

wired USB connection, which has a benefit of keeping the THETA V fully charged. A minor

issue is that in Inverse Sphere technique, player should be standing still. If he is to walk

away from the starting point, he is basically walking towards the “wall” of the sphere’s

interior, resulting to spoiling livestream image. Skybox technique is usually preferred

because of two reasons: 1) not having to deal with mirroring issues and 2) it allows the

player of walking freely by staying always in the far distance of the environment.

51

3.6: Unity livestreaming with MJPEG decoding

This implementation has many similarities with the previous one in chapter 3.5 and even

more with the following one in chapter 3.7. Once more, Unity version 2019.4.6f1 is used

with SteamVR Plug-in for Unity, this time working alongside THETA Web API and the camera

working on Wi-Fi CL mode. Both projection techniques described above can be used,

although Skybox technique is preferred for its simplicity.

3.6.1: THETA Web API functionality

Web API was slightly described in chapter 3.1 and here will be the main subject. Basically,

Web API is the device’s built-in HTTP/1.1 server on port 80, responding to GET and POST

requests. Port 80 default HTTP port, so it can be skipped when writing a URL for Web API.

Along the few endpoints provided, the one responsible for configuring and controlling the

camera is /osc/commands/execute, which is responding to POST requests with JSON

content. This is why in the request headers, the Content-Type key needs to have a value of

either “application/json;charset=utf-8” or simpler “application/json”. The final URL for web

requests to THETA Web API would be

http://10.64.45.228/osc/commands/execute

Regarding the specific commands needed in this implementation, these are

camera.getLivePreview and camera.setOptions. The camera.getLivePreview command is as

simple as it appears requiring only the request body to contain below JSON:

{

 "name": "camera.getLivePreview"

}

The server responds with an MJPEG stream in the form of binary data. This binary data is

transferred with the headers:

Connection: Keep-Alive

Content-Type: multipart/x-mixed-replace;boundary="---osclivepreview---"

X-Content-Type-Options: nosniff

Transfer-Enconding: Chunked

These headers will be explained separately in chapter 3.7, but briefly, they serve the

purpose of keeping the HTTP (operating over TCP) connection alive so that the server keeps

responding in the same request, without the client resending it. Responses are chunks of

data, each one depending on the previous chunk to make sense on the receiving side. And

52

because these chunks have not constant size and are not interpreted separately, the

“boundary” string indicates when a new chunk is beginning- thus when the previous one

has ended.

The camera.setOptions command is for device configuration and has to be send along the

options parameter. From the many options provided from OSC and Ricoh, the one needed

to alter the MJPEG live preview quality is previewFormat, using object with framerate,

height, and width fields. The resolutions available are 640x320, 1024x512 and 1920x960,

in height-by-width format. Frame rate can be set to 8fps for all possible resolutions and to

30fps only for 640x320 and 1024x512. Below is an example of the request body for setting

MJPEG live preview:

{

 "name": "camera.setOptions",

 "parameters": {

 "options": {

 "previewFormat": {

 "framerate": 30,

 "height": 512,

 "width": 1024

 }

 }

 }

}

The Web API requires the incoming requests to have an Authorization field of type Digest

Auth. This means that it needs authentication credentials (username and password) or else

it will not respond or even check the request body. Under the THETA V, there is a code, eg.

“YL12345678”. The username required for the Web API is “THETAYL12345678” and the

password is the numeric side of the username “12345678”.

3.6.2: MJPEG decoding in C#

For the Unity and code side of this implementation, just like chapter 3.5, the livestreaming

should load on a 2D texture which will be rendered on the panoramic material assigned to

the Skybox. Only this time, there is no ready texture. The program should send a request

to Web API and keep receiving every response while decoding the chunks of data to

construct separate JPEG images. A single script component will be assigned on an empty

object in Unity hierarchy.

53

Starting with the namespaces used, System.IO has major part in response streaming and

System.Net in the HTTP communication.

using System.Collections;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Net;

using UnityEngine;

The main functionality of the script is within a coroutine named GetLivePreview which is

called in the Start function.

private void Start()

{

 StartCoroutine(GetLivePreview());

}

Inside GetLivePreview coroutine, the Digest Auth authorization is a priority.

var credentialCache = new CredentialCache();

credentialCache.Add(

 new System.Uri("http://10.64.45.228/osc/commands/execute"),

 "Digest",

 new NetworkCredential("THETAYL12345678", "12345678")

);

Two separate requests will be sent, one with camera.setOptions and one with

camera.getLivePreview command, thus creating two separate byte arrays to be the

requests’ bodies.

byte[] previewBody = Encoding.Default.GetBytes("{\"name\" :

\"camera.getLivePreview\"}");

byte[] formatBody = Encoding.Default.GetBytes("{"+

 "\"name\":\"camera.setOptions\","+

 "\"parameters\":{"+

 "\"options\":{"+

 "\"previewFormat\":{"+

 "\"framerate\":30,"+

 "\"height\":512,"+

 "\"width\":1024"+"}}}}");

For the Web API communication, the System.Net class HttpWebRequest was used which

makes a request to a Uniform Resource Identifier (URI) or in this case the

54

http://10.64.45.228/osc/commands/execute URL. It is an old and reliable class and much

simpler than the other networking features which Unity provides.

var request =

HttpWebRequest.Create("http://10.64.45.228/osc/commands/execute");

request.PreAuthenticate = true;

request.Credentials = credentialCache;

request.Timeout = (int)(30 * 10000f);

request.Method = "POST";

request.ContentType = "application/json;charset=utf-8";

request.ContentLength = previewBody.Length;

ServicePointManager.Expect100Continue = false;

Stream reqStream = request.GetRequestStream();

reqStream.Write(previewBody, 0, previewBody.Length);

Now, regarding the response, the initial steps is to receive the response byte stream and

be able to read it from binary to ASCII characters, using System.IO classes, Stream,

BinaryReader and BufferedStream.

using (var stream = request.GetResponse().GetResponseStream())

{

 BinaryReader reader = new BinaryReader(new

BufferedStream(stream), new ASCIIEncoding());

 {

 ...

 }

}

For the missing part of the snippet, is the main functionality of this program, the MJPEG

decoding. An MJPEG streams consists of many consecutive JPEG images. JPEG images start

with a header, the hexadecimal values “FF D8”, or “0xFF 0xD8” in binary. No file length is

embedded in a JPEG image, so there is also a trailer, the hexadecimal values “FF D9”, or

“0xFF 0xD9” in binary. Now this searching method must be done continually and endlessly

as the livestreaming continues and Web API keeps sending data.

Concerning code, the task requires a data structure for dynamic insertion and removal of

bytes - a byte list. Every two successional bytes received are checked for being the JPEG

header, signifying the start of the image. Previously checked bytes are discarded and the

following ones are added in the list unchecked. They are checked though after their

insertion in searching of the JPEG trailer. Once the trailer pair of bytes is found, the JPEG

image is constructed and loaded on the skybox material’s texture. The procedure has come

to an end and loops back.

55

List<byte> imageBytes = new List<byte>();

bool isLoadStart = false;

while (true)

{

 byte byteData1 = reader.ReadByte();

 byte byteData2 = reader.ReadByte();

 if (!isLoadStart)

 {

 if (byteData1 == 0xFF && byteData2 == 0xD8)

 {

 imageBytes.Add(byteData1);

 imageBytes.Add(byteData2);

 isLoadStart = true;

 }

 }

 else

 {

 imageBytes.Add(byteData1);

 imageBytes.Add(byteData2);

 if (byteData1 == 0xFF && byteData2 == 0xD9)

 {

 tex = new Texture2D(texWidth,texHeight);

 tex.LoadImage((byte[])imageBytes.ToArray());

 thetaMaterial.mainTexture = tex;

 imageBytes.Clear();

 yield return null;

 isLoadStart = false;

 }

 }

}

The MjpegDecode.cs script needs to be assigned to an empty ThetaV object in order to run.

Some public variables can be added for easy playtesting settings.

Figure 42: Unity Livestreaming with MJPEG decoding

56

3.6.3: Conclusion

The application was tested and works perfectly over WLAN and allows the camera to move

freely. The result is decent in terms of quality and latency, because the decoding time of

each JPEG is nearly 135ms, not affecting the small latency of MJPEG streaming.

Implementing livestreaming in Unity with MJPEG decoding unravels a whole lot of

possibilities in VR livestreaming because of the SteamVR plugin capabilities. Yet, the Unity

platform is a restrictive tool if the livestreaming needs to be exposed in public and for

general use, thus inspiring the next implementation.

57

3.7: Browser livestreaming with Reverse Proxy Server

Following the steps of the previous chapter, the initial idea was to convert the Unity MJPEG

decoding application into a browser application, which if made public it would be accessible

to everyone. This means that that the frontend application should be served over a web

server, like Apache HTTP Server, and have VR functionality, which can be provided by

WebXR Device API alongside Unity WebGL or by A-Frame web framework. Down the road

it became clear that the implementation is complex and would be limited by the camera’s

simple HTTP server. That is why it was necessary to extend its capabilities by deploying a

reverse proxy server.

3.7.1: Apache HTTP Server

Both WebXR and A-Frame require the content to be served over HTTPS, because of the

Secure Sockets Layer (SSL) protocol. Simple development servers would not do the trick if

they do not support SSL certificates. Apache HTTP Server is a free and open-source web

server and can be easily set up by installing the XAMPP stack package. In this thesis, XAMPP

was installed with version 8.0.3 on Windows 10 and the XAMPP Control Panel v3.2.4.

Figure 43: XAMPP Control Panel for Apache control

After the installation, any build folder, e.g. browserLivestreaming, must be located inside

C:\xampp\htdocs. When Apache starts, the built application can be reached on a browser

through the URL https://10.64.45.161/browserLivestreaming/index.html.

3.7.2: Reverse Proxy Server

Reverse proxy [5], in a cloud architecture, is a server that sits on the backend side of

applications to accomplish load balancing, fault tolerance and auto scaling, smoothly and

efficiently. It is responsible for receiving all the requests from the clients and redirecting

them to the many servers of the system. In this case, the reverse proxy redirects the

58

requests only to Web API and extends it by implementing additional functionality, like

serving over HTTPS, responding to OPTIONS requests or caching [6] the MJPEG stream as

separate JPEGs.

Figure 44: Reverse Proxy server diagram

The initial need for a reverse proxy server was CORS policy. Cross-Origin Resource Sharing

(CORS) is a mechanism that allows a server, in this case Apache, to indicate any resources

about to be loaded on browser and whose origins are not the same with its own. Browsers

make a "pre-flight" request as a safety measure to ensure that the request being done is

trusted by the server hosting the cross-origin resource. This pre-flight is an OPTIONS

method request which it indicates the HTTP method and the headers that will be used in

the actual request. The foreign origin server will check the pre-flight and will either permit

the actual request or not.

Simple requests are those which do not trigger a CORS pre-flight. The conditions for one

request to be “simple” and that are relevant to this implementation are the following:

1. Its method must be GET, HEAD or POST.

2. The only headers which are allowed to be manually (not by the user agent) set are

Accept, Accept-Language, Content-Language and Content-Type.

3. Content-Type header must be valued as application/x-www-form-urlencoded,

multipart/form-data or text/plain.

59

Conditions 1 and 2 are met but for the request on Web API for camera.getLivePreview

command has a Content-Type: application/json header. So simple request is not a solution

in this case.

There are some browser extensions, like Moesif CORS and Allow CORS, that allow CORS by

adding in the server response the following headers if necessary: Access-Control-Allow-

Origin, Access-Control-Allow-Methods, Access-Control-Allow-Headers and Access-Control-

Allow-Credentials. With these extensions, an OPTIONS pre-flight request is still triggered,

which THETA Web API cannot response to.

Finally, the only acceptable solution would be the reverse proxy server responding to

OPTIONS method requests and at the same time adding the required CORS response

headers.

For the reverse proxy server application, Flask was chosen, a micro web framework written

in Python. It was installed as a python module with pip command, not natively as a bash

script. It was installed in version 0.10.1 alongside Jinja2 2.11.3 and Werkzeug 1.0.1 as the

Web Server Gateway Interface (WSGI) and is running with Python 3.7.3. The device running

the Flask application is the RPi used as a bridged AP in chapter 3.2, thus the reverse proxy’s

IP is 10.64.44.242 , the same as RPi’s IP.

The FlaskProxy.py script is enough to run a web server, on port 5000 using HTTP, just by

writing the below code:

from flask import Flask

app = Flask(__name__)

THETA_IP = 'http://10.64.45.228'

default_headers = [

 ('Connection','Keep-Alive'),

 ('X-Content-Type-Options','nosniff')

]

@app.route('/')

def index():

 return 'Flask is running ' + request.environ.get('SERVER_PROTOCOL')

if __name__ == '__main__':

 app.run(host="0.0.0.0", debug=True)

60

Flask needs to work over HTTPS for WebXR and A-Frame to work. That can be achieved

with SSL certificates. Usually the certificates acts as identification for the server, as it

includes the server’s name and domain. To ensure that the information provided by the

server is correct, the certificate is cryptographically signed by a certificate authority. is one

where the signature is generated using the private key that is associated with that same

certificate. After the client verifies the certificate, it creates an encryption key to use for

the communication with the server. To make sure that this key is sent securely to the

server, it encrypts it using a public key that is included with the server certificate. The server

is in possession of the private key that goes with that public key in the certificate, so it is

the only party that is able to decrypt the package. From the point when the server receives

the encryption key all traffic is encrypted with this key that only the client and server know.

Not having access to a validated certificate authority, the same task can be fulfilled with a

self-signed certificate. With OpenSSL toolkit installed with version 1.1.1d, the following

command must run on the same folder as FlaskProxy.py:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout local.key -out local.crt

And __main__ function of the python program will be:

if __name__ == '__main__':

 context = ('local.crt', 'local.key')

 app.run(host="0.0.0.0", debug=True, ssl_context=context)

Now the Flask server is running on https://10.64.44.242:5000/ and the reverse proxy

functionality must be added. Flask supports route handling for fixed paths, with constant

URLs, or dynamic route handling where the path can have any value. Basically the path

parameter in the handler URL can be any string. And when the server starts handling the

URL following the pattern, this string is interpreted as a string variable. In simple words,

when /osc/commands/execute is reached, the path variable has a value of

‘osc/commands/execute’.

61

from flask import Response, request

import requests

from requests.auth import HTTPDigestAuth

@app.route('/<path:path>',methods=['GET','POST','OPTIONS'])

def proxy(path):

 if request.method=='GET':

 resp = requests.get(THETA_IP+'/'+path,

 auth=HTTPDigestAuth('THETAYL12345678',

 '12345678')

)

 headers = [(name, value) for (name, value)

 in resp.raw.headers.items()]

 response = Response(resp.content, resp.status_code, headers)

The above code handles the GET method requests. Client does not need to send

authorization header to the proxy since the proxy itself uses the HTTPDigestAuth function

for authentication with the camera. As soon as the response is back from THETA Web API

server, a new Response is constructed with the same content, status code and headers as

the real response which THETA sent to the reverse proxy server.

from flask import stream_with_context

@app.route('/<path:path>',methods=['GET','POST','OPTIONS'])

def proxy(path):

 ...

 elif request.method=='POST':

 if request.get_json() is not None:

 # LIVE PREVIEW COMMAND

 if request.get_json()["name"] == "camera.getLivePreview":

 resp = requests.post(THETA_IP+'/'+path,

 stream=True,

 json=request.get_json,

 auth=HTTPDigestAuth('THETAYL12345678',

 '12345678')

)

 headers = [(name, value) for (name, value)

 in resp.raw.headers.items()]

 response = Response(

 stream_with_context(resp.iter_content(chunk_size=None)),

 resp.status_code,

 headers

)

 # REGULAR POST

 else:

 resp = requests.post(THETA_IP+'/'+path,

 json=request.get_json(),

 auth=HTTPDigestAuth('THETAYL12345678',

 '12345678')

)

62

 headers = [(name, value) for (name, value)

 in resp.raw.headers.items()

 response = Response(resp.content, resp.status_code, headers)

About handling regular POST method requests, the process is the same with the slight

difference of redirecting the client request’s JSON body to the Web API server. Other than

that, the complicate part is when the reverse proxy needs to handle a streaming response.

The Response.iter_content function is basically a generator which iterates over the

response body data and does not read the content at once into memory. Chunk_size is to

None so that the program reads the data in whatever size of chunks they are received, not

by a predefined size that could delay the streaming speed. The flask.stream_with_context

helper wraps around this generator and keeps sending the generated chunks back to the

client as individual bodies but keeping the same HTTP connection with him, thus sending

only on response that keeps adding to its body.

from flask import make_response

@app.route('/<path:path>',methods=['GET','POST','OPTIONS'])

def proxy(path):

 ...

 elif request.method=='OPTIONS':

 response = make_response()

OPTIONS pre-flight requests must be handled, even with an empty response from

flask.make_response function. After all, the OPTIONS responses are not concerning the

client application.

For the final part of the reverse proxy basic functionality, in every response constructed in

whatever if else branch, CORS policy headers are added and then the response is returned

to the client. The whole route handler would look like this:

63

@app.route('/<path:path>',methods=['GET','POST','OPTIONS'])

def proxy(path):

 if request.method=='GET':

 ...

 elif request.method=='POST':

 ...

 elif request.method=='OPTIONS':

 ...

 response.headers.add("Access-Control-Allow-Origin", "*")

 response.headers.add('Access-Control-Allow-Headers', "*")

 response.headers.add('Access-Control-Allow-Methods', "*")

 return response

Having developed the reverse proxy server this way, the previous implementation in

chapter 3.6 works flawlessly, because the MJPEG stream is redirected to Unity exactly as it

was before. Some additional feature will be added for the next chapter concerning WebXR.

3.7.3: WebXR in Unity WebGL

Unity allows building a project as a web application, using tools as HTML5/JavaScript,

WebAssembly, WebGL rendering API and other web standards which are all supported by

most major browsers like Google Chrome and Mozilla Firefox. Although, WebGL builds have

some limitations due to constrains of the platform. The three limitations, which will be

explained further below, are the networking specifications of WebGL, the lack of threading

support in JavaScript and the memory allocations of Unity Heap.

For the VR features in the web application, Unity WebGL builds support WebXR JavaScript

API which is integrated via the Mozilla WebXR Exporter asset. The compatible Unity

versions are 2019.4.7 and up or 2020.1 and up, so in this implementation 2019.4.24f1 is

used.

• UnityWebRequest features and architecture

According to WebGL Networking page, .NET networking classes, like HttpWebRequest,

cannot be used because as mentioned before, JavaScript code does not have direct access

to IP sockets directly, due to the browsers’ forbidding it. Though, it supports the

UnityWebRequest (UWR) class, which is based on the XMLWebRequest, by using the

JavaScript Fetch API. By default, this imposes security restrictions with CORS resources, but

the reverse proxy server takes care of it already.

64

UWR does not a have a Digest Auth feature. This should not be a problem as soon as the

proxy acts as a middleman and do the authentication for the client. But for direct

communication with the THETA Web API, the digest authentication must be disabled.

THETA V must operate in AP mode. The client device must send a POST request on

http://192.168.1.1/osc/commands/execute with the below JSON contents:

{

 "name": "camera.setOptions",

 "parameters": {

 "options": {

 "_authentication": "none"

 }

 }

}

For the C# script used in the Unity project, the procedure starts with setting the resolution

and frame and the proceeds to request the stream. Although this time, UWR class has some

impact on the code because of its architecture. It breaks down to three distinct operations:

1) supplying data to server, 2) receiving data from server and 3) HTTP flow control. The first

two are managed by an UploadHandler object and a DownloadHandler object respectively.

These two objects and the HTTP flow control are managed by the UWR object itself. Their

classes can also be used to implement derived classes which will have custom functionality

based on the user’s needs.

65

Figure 45: UntiyWebRequest architecture

For usage over HTTPS (like WebXR requires), there is another handler class called

CertificateHandler, which is responsible for validating SSL certificates against certificate

authorities. However, the reverse proxy server uses a self-signed SSL certificate. Therefore,

for this thesis’ development usage, a derived class HttpsCertificateHandler is implemented

from CertificateHandler. This class overrides the ValidateCertificate method and returns

true without checking.

using UnityEngine;

using UnityEngine.Networking;

public class HttpsCertificateHandler : CertificateHandler

{

 protected override bool ValidateCertificate(byte[] certificateData)

 {

 return true;

 }

}

The basic code flow for a simple request, like the camera.setOptions request, where

setOptionsBytes contain the JSON body, can be demonstrated with the following snippet:

66

private UnityWebRequest request;

IEnumerator SetOptions()

{

 request = new UnityWebRequest(url, "POST")

 {

 uploadHandler = new UploadHandlerRaw(setOptionsBytes),

 downloadHandler = new DownloadHandlerBuffer(),

 certificateHandler = new HttpsCertificateHandler()

 };

 request.SetRequestHeader("Content-Type", "application/json");

 yield return request.SendWebRequest();

 while (!request.isDone)

 {

 yield return new WaitForEndOfFrame();

 }

 request.Dispose();

 request = null;

}

The Dispose method signals that the UWR object is no longer being used and should clean

up any resources it is using. These resources include all handler objects used within this

UWR.

• Pseudo-MJPEG streaming

WebGL is single threaded while the JavaScript Fetch API is asynchronous. This means that

while UWR coroutine handles an HTTP response, it occupies the one and only thread and

returns control to the browser after it finishes the download. The

DownloadHandler.ReceiveContentLengthHeader callback is invoked whenever a Content-

Length header is received within a server response. With that information the

UnityWebRequest.downloadProgress returns a floating point between 0.0 and 1.0

indicating the progress of the downloading body data from the server. When that reaches

value 1.0, the UnityWebRequest.isDone property return true and the coroutine can finally

terminate and release the main thread. This is not the case with MJPEG streaming

response, because the response from THETA Web API does not contain a Content-Length

header. The callback is never invoked, expected response length is unknown, progress is

constantly on zero and the UWR never terminates to release the main thread.

In the meantime, no image is rendered on the skybox material. That is because the

DownloadHandler.ReceiveData callback never acquires the WebGL thread. This callback is

67

the one which has to be overridden when received data needs to be tampered with, like in

the case of MJPEG decoding.

With that said, it was essential to develop a mechanism in the reverse proxy to break up

the MJPEG stream and caching it as individuals JPEG images in a buffer and then sending

them as individual responses to individual Unity requests. In that way, the client application

can just request rapidly single JPEGs and project them, thus creating a pseudo MJPEG

stream.

This is implemented with a thread process constantly “recording” the MJPEG, meaning that

it receives the stream, finds the JPEG header and trailer in the way that was described in

3.6.2, and caches the image in a buffer until the client application requests it. To avoid race

conditions, a semaphore is used, controlling access to the common buffer between the

thread and the main process. The selected data structure for the buffer is queue for

inserting and deleting elements in O(1) time. The Python data-type for implementing a

queue is a double-ended queue (deque) which supports adding and removing elements

from either end, but here used as First-In/First-Out (FIFO) from one end. Caching memory

size is limited for performance optimization, so older JPEGs are replaced by newer ones.

68

import collections

import threading

recThread = None

sem = threading.Semaphore()

buffer = collections.deque([], maxlen=2)

def recordMjpeg(response):

 bytes = b''

 a = -1

 b = -1

 for line in response.iter_content(chunk_size=None):

 bytes += line

 if a == -1:

 a = bytes.find(b'\xff\xd8')

 b = bytes.find(b'\xff\xd9')

 if a != -1 and b != -1:

 jpg = bytes[a:b+2]

 bytes = bytes[b+2:]

 a = -1

 b = -1

 sem.acquire()

 buffer.append(jpg)

 sem.release()

def generateJpeg():

 jpg = None

 while True:

 sem.acquire()

 if len(buffer) > 0:

 jpg = buffer.popleft()

 sem.release()

 if jpg is not None:

 return jpg

The recordMjpeg function is the target function for the recThread and the generateJpeg

function is called by the main program serving the client.

69

@app.route('/<path:path>',methods=['GET','POST','OPTIONS'])

def proxy(path):

 global recThread

 if request.method=='POST':

 if request.get_json() is not None:

 if request.get_json()["name"] == "camera.recordMjpeg":

 #Start recordMjpeg thread

 if recThread is None:

 request.get_json()["name"]="camera.getLivePreview"

 resp = requests.post(THETA_IP+'/'+path,

 stream=True,

 json=request.get_json()

)

 recThread = threading.Thread(target=recordMjpeg,

 args=(resp,),

 daemon=True

)

 recThread.start()

 #Reset recordMjpeg thread

 else:

 sem.acquire()

 buffer.clear()

 sem.release()

 response = make_response()

 elif request.get_json()["name"] == "camera.getJpeg":

 response = Response(

 generateJpeg(),

 200,

 default_headers

)

 response.headers.add("Access-Control-Allow-Origin", "*")

 response.headers.add('Access-Control-Allow-Headers', "*")

 response.headers.add('Access-Control-Allow-Methods', "*")

 return response

The two commands, camera.recordMjpeg and camera.getJpeg are not native THETA Web

API commands, but rather exist exclusively for client-proxy communication.

Concerning the Unity side of the system and the C# code, JpegHandler is a custom class

implemented for this task, derived from DownloadHandlerScript (basically a

DownloadHandler interface). When constructing an object for continuous and long-term

use, memory allocation is a constraint. The DownloadHandlerScript constructor eliminates

memory allocation by permiting the pre-allocation of a managed-code byte array, reusing

it to deliver downloaded data to DownloadHandler.ReceiveData callback. This byte array

70

limits the amount of data delivered each frame. There are three possible options for the

byte array size, provided by the main process: 40000, 80000 and 210000, because of its

direct relation with the jpegLength variable – the average JPEG size. With empirical

estimation during tryouts, the average JPEG size seems to depend on the resolution of the

live preview of THETA V: ~35000 bytes for 640x320, ~65000 for 1024x512 and ~210000 for

1920x960.

public class JpegHandler : DownloadHandlerScript

{

 private Texture2D tex;

 private Material thetaMaterial;

 private List<byte> dataStream;

 private int jpegLength;

 public JpegHandler(byte[] buffer,

 Material thetaMaterial,

 Texture 2D tex,

 List<byte> dataStream)

 : base(buffer)

 {

 this.tex = tex;

 this.thetaMaterial = thetaMaterial;

 this.dataStream = dataStream;

 switch (buffer.Length)

 {

 case 40000: jpegLength = 35000;

 break;

 case 80000: jpegLength = 65000;

 break;

 case 210000: jpegLength = 200000;

 break;

 }

 }

 ...

 callbacks

 ...

}

Seeing inside the ReceiveData callback of the JpegHandler, it operates the same way as in

chapter 3.6.2, regarding textures and materials for skybox rendering. Its algorithm has been

designed to manage the sometimes chunked-transfer response of the data, thus waiting

for the minimum jpegLength bytes to be assembled before loading the image on the

material.

71

public class JpegHandler : DownloadHandlerScript

{

 ...

 protected override bool ReceiveData(byte[] jpegBytes, int numBytes)

 {

 if (numBytes < 1)

 {

 return false;

 }

 for (int i = 0; i < numBytes; i++)

 {

 dataStream.Add(jpegBytes[i]);

 }

 if (dataStream.Count > jpegLength)

 {

 tex.LoadImage(dataStream.ToArray());

 thetaMaterial.mainTexture = tex;

 dataStream.Clear();

 }

 return true;

 }

}

In the main process A coroutine is used again for the repetitive JPEG requests. The

StartRecording coroutine needs no display, since it resembles the above SetOptions

coroutine, only this time sending a POST request with the camera.recordMjpeg command,

and later, on server response, it flips the recordingStarted variable.

72

IEnumerator RepetitivePreviewRequests()

{

 yield return StartCoroutine(StartRecording());

 byte[] byteBuffer;

 switch (texHeight)

 {

 case 320: byteBuffer = new byte[40000];

 break;

 case 512: byteBuffer = new byte[80000];

 break;

 case 960: byteBuffer = new byte[210000];

 break;

 default: byteBuffer = new byte[80000];

 break;

 }

 byte[] postBytes;

 postBytes = Encoding.Default

 .GetBytes("{\"name\" :\"camera.getJpeg\"}");

 Texture2D texture = new Texture2D(2, 2);

 List<byte> dataStream = new List<byte>();

 while (true)

 {

 if (!recordingStarted)

 {

 yield break;

 }

 request = new UnityWebRequest(url, "POST")

 {

 uploadHandler = new UploadHandlerRaw(postBytes),

 downloadHandler = new JpegHandler(byteBuffer,

 thetaMaterial,

 texture

 dataStream),

 certificateHandler = new HttpsCertificateHandler()

 };

 request.SetRequestHeader("Content-Type", "application/json");

 while (!request.isDone)

 {

 yield return new WaitForEndOfFrame();

 }

 request.Dispose();

 request = null;

 GC.Collect();

 }

}

The last piece of the code not discussed is the System.GC.Collect method, which forces an

immediate garbage collection of all generations and cleans them from memory. That is

73

because WebGL content will run inside a browser, so any memory has to be allocated by

the browser within the browser’s memory space.

Figure 46:Reverse Proxy Server pseudo-MJPEG livestream in Unity with WebXR

Finally, the end result after building the project in the WebXR_JPGs folder of the

xampp/htdocs is this:

Figure 47: Livestreaming in browser with Unity WebGL and WebXR

74

3.7.4: A-Frame

Starting with Three.js, a cross-browser JavaScript library and API used to create and display

of GPU accelerated 3D animations and computer graphics in a web browser using WebGL.

It uses the JavaScript language as part of a website without relying on proprietary browser

plugins. It includes many features and components known from game engines like scenes,

cameras, geometries, meshes, materials and so on.

A-Frame is an open-source web framework for building VR experiences, originally

developed by Mozilla VR team. It is an entity-component-system (ECS) framework for

Three.js where developers can create 3D and WebXR scenes using HTML without having to

know WebGL. HTML provides a familiar authoring tool for web developers and designers

while incorporating a popular game development pattern used by game engines, such as

Unity. Nevertheless, developers have unlimited access to JavaScript, DOM APIs, three.js,

WebXR, and WebGL. One of its top advantages, and true to the reason of this

implementation, is that it is cross-platform that works on standard desktop, smartphones

and is compatible with all major VR headsets.

Initially, the reverse proxy server needs to handle an extra URL, /get_stream, from which

it will expose the MJPEG livestream in equirectangular data while still provide with CORS

headers.

75

THETA_IP = 'http://10.64.45.228'

EXECUTE_PATH = '/osc/commands/execute'

LIVE_CMD = '{"name": "camera.getLivePreview"}'

@app.route('/get_stream', methods=['GET'])

def stream():

 print("get stream")

 resp = requests.post(THETA_IP+EXECUTE_PATH,

 stream=True,

 json=json.loads(LIVE_CMD))

 headers = [(name, value) for (name, value)

 in resp.raw.headers.items()]

 response = Response(

 stream_with_context(resp.iter_content(chunk_size=None)),

 resp.status_code,

 headers

)

 response.headers.add("Access-Control-Allow-Origin", "*")

 response.headers.add('Access-Control-Allow-Headers', "*")

 response.headers.add('Access-Control-Allow-Methods', "*")

 return response

Figure 48: Equirectangular livestream from reverse proxy server in browser

Concerning A-Frame, it can be developed from a plain HTML file without having to install

anything. It needs an index.html file inside a folder in C:\xampp\htdocs, including a script

tag pointing to the source script aframe.min.js, of the wanted release, in the <head>

section.

76

<html>

<head>

 <script

 src="https://aframe.io/releases/1.2.0/aframe.min.js">

 </script>

</head>

<body>

<script>

...

</script>

<a-scene>

 <a-entity a-theta></a-entity>

</a-scene>

</body>

</html>

The <a-scene> component is the one handling 3D boilerplate, VR setup, and default

controls. Inside of it, is an <a-entity> of the ECS mentioned above. The entities are container

objects, the base for all scene objects, in which components are attached. Components,

like the above <a-theta>, are reusable modules which provide visuals and/or functionality

and can also contain other components inside them to have more complex behaviour. The

<a-theta> component contains the main implementation and resembles the one on

chapter 3.6, where an MJPEG livestream is projected and wrapped inside a sphere.

77

<script>

 AFRAME.registerComponent('a-theta', {

 schema: {

 radius: { type: 'number', default: 15 },

 width: { type: 'number', default: 64 },

 height: { type: 'number', default: 32 },

 color: { type: 'color', default: '#AAA' }

 },

 init: function () {

 var data = this.data;

 var el = this.el;

 this.loader = new THREE.TextureLoader();

 this.geometry = new THREE.SphereGeometry(

 data.width,

 data.height,

 data.depth

);

 this.geometry.scale(-1,1,1)

 this.material = new THREE.MeshBasicMaterial({

 map: this.getImage()

 });

 this.material.needsUpdate = true;

 this.mesh = new THREE.Mesh(this.geometry, this.material);

 this.mesh.position.set(0,0,0)

 el.setObject3D('mesh', this.mesh);

 },

 tick: function (time, timeDelta) {

 this.mesh.material.map.img = this.getStream();

 this.mesh.material.map.needsUpdate = true;

 },

 getStream: function () {

 var stream = "https://10.64.44.242:5000/get_stream"

 return this.loader.load(stream);

 }

 });

</script>

The component needs a schema that defines and describes its properties, like dimensions

and color. This is stored in the data variable used in the component initialization to create

an imaginable sphere with THREE.SphereGeometry and invert its scale on x-axis. The

THREE.MeshBasicMaterial is the one receiving the livestream from the reverse proxy server

with the help of THREE.TextureLoader, which renders it on the material. The real 3D object

is the THREE.Mesh, combining both geometry and material. The material is updated

whenever tick callback is triggered, on each render loop. With this simple snippet of code,

the result appears below.

78

Figure 49: MJPEG livestreaming in browser using A-Frame

3.7.5: Conclusion

Browser VR livestreaming was a difficult task to implement with many obstacles and

constraints due to the requirements of browsers with VR and with their CORS policy. The

WebGL-WebXR solution is inconvenient because of its networking and memory-allocation

management. Although, if those difficulties are known, there can be a workaround.

Because of its synergy with the Unity game engine, it can be a powerful tool for developing

a great variety of features inside immersive and interactive VR livestreaming applications.

The A-Frame solution was by far easier, with much less constraints than WebGL. It is a web

application environment, with game engine traits, offering a vast variety of networking

features and more than enough functionality to build VR livestreaming applications in

browser. These two frameworks open a great field in browser VR content distribution.

79

CHPATER 4: CONCLUSION

4.1: Summary

The goal of this thesis was to examine various approaches and implementations to achieve

VR functionality side by side with 360o video livestreaming. 360o images and videos already

are being used for virtual tours in the real estate market. Livestreaming gains more ground

in the gaming and the entertainment community, day by day. Virtual Reality finds more

and more practical applications in everyday life. The 360o video livestreaming is a

technology that currently few developers experiment on. Virtual Reality on the other side

has a huge community when it comes to developing. Blending those two together is a great

step for the many inconceivable applications to come in tomorrow’s society.

4.2: Discussion

In the contents of this thesis, the solutions we examined were either easy to implement or

more complex. YouTube’s approach provides VR features while 360o video livestreams and

also permits users to spectate over the Internet, not only over LAN. Easy as this may be,

the camera needed to be tethered with a USB cable and the resolution options are limited

in order to keep the minimum livestream latency, which is clearly greater than latency over

LAN. like having to deploy a reverse proxy server to achieve the same output over LAN.

On the other hand, Unity and A-Frame implementations are providing a freedom in the

developing of the applications, extending them further than just livestreaming purposes.

The current infrastructure was only allowing deployment over LAN. This resulted in greater

resolutions with much smaller latency times while also having the camera connected

wirelessly, allowing it to move freely.

4.2: Future work

As a future step, to enhance the survey conducted in the current thesis, we should carry

out a detailed comparison of the final implementations. The characteristics to be compared

should be the resolution, the frame rate and latency of the livestream but also the camera

connectivity, the VR features capabilities, and the distribution potential.

360o video livestreaming through VR could also benefit from the technology of machine

vision and would result in an advanced version of mixed reality environment. A personal

goal for the future of this project is to integrate it in a robotic arm teleoperation project.

80

BIBLIOGRAPHY

[1] D. Ochi, Y. Kunita, A. Kameda, A. Kojima and S. Iwaki, “Live streaming system for

omnidirectional video,” in 2015 IEEE Virtual Reality (VR), 2015.

[2] M. Jamali, F. Golaghazadeh, S. Coulombe, A. Vakili and C. Vazquez, “Comparison of 3D

360-Degree Video Compression Performance Using Different Projections,” in 2019 IEEE

Canadian Conference of Electrical and Computer Engineering (CCECE), 2019.

[3] I. D. D. Curcio, H. Toukomaa and D. Naik, “360-Degree Video Streaming and its

Subjective Quality,” in SMPTE 2017 Annual Technical Conference and Exhibition, 2017.

[4] M. Zheng, Y. Tie, F. Zhu, L. Qi and Y. Gao, “Research on Panoramic Stereo Live

Streaming Based on the Virtual Reality,” in 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), 2021.

[5] A. Erfanian, F. Tashtarian, A. Zabrovskiy, C. Timmerer and H. Hellwagner, “OSCAR: On

Optimizing Resource Utilization in Live Video Streaming,” in IEEE Transactions on

Network and Service Management, 2021.

[6] P. Maniotis and N. Thomos, “Tile-based edge caching for 360° live video streaming,” in

IEEE Transactions on Circuits and Systems for Video Technology, 2021.

	ACKNOWLEDGMENTS
	DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS
	ABSTRACT
	ΠΕΡΙΛΗΨΗ
	TABLE OF CONTENTS
	CHAPTER 1: INTRODUCTION
	1.1: A blend of advanced technology
	1.2: Applications
	1.3: Motivation

	CHAPTER 2: TECHNICAL BACKGROUND
	2.1: Video
	2.1.1: Characteristics of video streams
	2.1.2: Video Compression

	2.2: 360o video
	2.2.1: 360o cameras
	2.2.2: Map projections
	2.2.3: Video display

	2.3: Livestreaming
	2.3.1: Background procedure
	2.3.2: Types of Livestreaming Communication
	2.3.3: Streaming Protocols

	2.4: Virtual Reality
	2.4.1: Categories
	2.4.2: Hardware
	2.4.3: Software

	CHAPTER 3: IMPLEMENTATIONS
	3.1: Describing Ricoh THETA V
	3.1.1: Characteristics
	3.1.2: Ricoh Desktop Application
	3.1.3: Plug-ins
	3.1.4: THETA Web API v2.1
	3.1.5: Wi-Fi modes
	3.1.6: THETA Smartphone Application

	3.2: Bridged Wireless Access Point
	3.3: Equirectangular and non-VR livestream solutions
	3.3.1: OBS webcam
	3.3.2: VLC capturing RTSP
	3.3.3: MJPEG with spherical navigation

	3.4: YouTube livestreaming with RTMP
	3.4.1: OBS redirecting to YouTube
	3.4.2: Wireless Live Streaming Plug-in
	3.4.3: VR features
	3.4.4: Conclusion

	3.5: Unity livestreaming with webcam
	3.5.1: Inverse sphere technique
	3.5.2: Skybox technique
	3.5.3: Conclusion

	3.6: Unity livestreaming with MJPEG decoding
	3.6.1: THETA Web API functionality
	3.6.2: MJPEG decoding in C#
	3.6.3: Conclusion

	3.7: Browser livestreaming with Reverse Proxy Server
	3.7.1: Apache HTTP Server
	3.7.2: Reverse Proxy Server
	3.7.3: WebXR in Unity WebGL
	3.7.4: A-Frame
	3.7.5: Conclusion

	CHPATER 4: CONCLUSION
	4.1: Summary
	4.2: Discussion
	4.2: Future work

	BIBLIOGRAPHY

