NANENIZTHMIO OEZZANIAZ
NOAYTEXNIKH ZXOAH

TMHMA HAEKTPOAOIQN MHXANIKQN KAl MHXANIKQN YINOAOTIZTQN

2XEAIAZMOZ KAl ANANTY=H MHXANIZMQN NAPAKOAOYOHZHZ KAI MPOBAEWH2
KATANAAQZHZ NOPQN MEzZQ AATOPIOMQN MHXANIKHZ MAOHZHZ EIKONIKQN
2YNAPTHZEQN AIKTYQN KAI AYNAMIKH MPOZAPMOTIH TOYZ

Authwpoatikn Epyacia

BaociAeloc Zahokwotag-AlmAag

EruBAénwy: ABavaotog Kopdkng

BoAog 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DESIGN AND IMPLEMENTATION OF MECHANISMS FOR RESOURCE MONITORING,
RESOURCE PREDICTION THROUGH MACHINE LEARNING AND DYNAMIC RE-
CONFIGURATION FOR VIRTUAL NETWORK FUNCTIONS

Diploma Thesis

Vasileios Zalokostas-Diplas

Supervisor: Athanasios Korakis

Volos 2021

Eykpivetal amnoé tnv Enwtponn E€€taong:

EruBAENWY ABavaociog Kopakng
AvarmAnpwtn¢ Kadnyntng, Tunua HAekTpoAoywv Mnxavikwv Kot

Mnxavikwv YroAoylotwy, Maveniotruio Oscoaliag

MéAog Anpntplo¢ Mnapywwtag
AvarAnpwtn¢ Kadnyntng, Tunua HAekTpoAoywv Mnxavikwv Kot

Mnxavikwv YroAoylotwy, MNaveniotripuio Oscoaliog
MéAog Avtwviog Apyupiou

AvarAnpwtn¢ Kadnyntng, Tunua HAekTpoAoywv Mnxavikwv Kot

Mnxavikwv YroAoylotwy, Mavemiotriuio Oscoaliag

Huepounvia éykplonc: 22-09-2021

Vi

EYXAPIZTIEZ 1 ZXOAIA

Oa nbeha va euxoplotiow tov K. ABavaaolo Kopdkn o omoiog pe eméAee yla va avalaBw
oUTO To Bfpa ¢ SuTAwpOTIKAG gpyaociag. Emiong, Ba nBela va €uxaplotiow TOUG
NikoAaog Makprc kot AAEEavdpog BaAavtaong mou He TIG UTodelfelg Kal TG LOEEC TOUG

BonBnaoav otnv oAoKANpwoN TNG EPYACLAG QUTAC.

ErmunpooBeta, EuXapLoTw TNV OLKOYEVELA OV Ttou pe BoriBnoe o€ OAa auTd Ta Xpovia Twv
OTIOUSWV OV TOCO CUVOLOBNUATIKA 000 Kol OLKOVOULKA. TEAOG, suxaplotw tnv Avva
AoUBAN ou pe BonBnoe va oAokAnpwow TNV cuyypadr TG SUTAWUATIKNAC LoU gpyaciag
OAAQ KOl YLl TNV CUUTTAPACTAON KOL TNV OTHPLEN TIou pou £8€L€e ota GOLTNTLIKA OV QUTA

Xpovla.

Vil

viii

YNEYOYNH AHAQZH NEPI AKAAHMAIKHZ AEONTOAOTIAZ KAI MINEYMATIKQN
AIKAIOMATQN

Me mAnpn eniyvwon Twv CUVETTELWV TOU VOLOU TTEPL TIVEUUATIKWY SIKAULWHUATWY, SnAWvVw
pNTA OTL N mapoloa SUTAWHATIKA gpyacia, KaBwc Kol Ta NAEKTPOVIKA apXeLa Kal Ttnyaiot
KWOLKEG TTOU avamtuxbnkav fj Tpomonotnkav ota mAaiola auTthg TnG Epyaciag, anoteAel
OTOKAELOTIKA TIPOIOV TPOOWTIKAG Mou epyaciag, &ev mpooBallel kaBs popdng
Sikatwpata SlavonTikng LOLOKTNOLOG, TPOCWTILKOTNTAC KoL TIPOCWILKWY SeS0UEVWV
pitwy, &ev meplExel £pyo/slodpopeg Tpitwv ylwa Ta omoia arouteitol Adslo Twv
Snuloupywv/Stkatouxwv Kot Sev elval Polov HEPLKAG 1 OALKAC avTlypadnc, oL TnyEg &¢
TIou xpnotpomnotndnkav meplopilovral otic PBiBAloypadlkéc avadopeg Kol HOVov Kol
TANPOUV TOUC KOVOVEG TNC EMLOTNUOVIKAG TapdBsong. Ta onuela Omou €xw
Xxpnotpornotnosl W&€eg, Keipevo, apxeia f/kat mnyég GAAwvV cuyypadewy, avadepovtal
€USLAKPLITO. OTO KEIUEVO ME TNV KATAAANAN TOPOIOUT) KAl N OXETIKA oavadopd
neplhappavetal oto tUAHO Twv BLBAloypadilkwv avoadpopwv He TANPnN Tepypodr).
AvoAapBavw TANPWE, ATOULKA KOL TIPOCWTTILKA, OAEG TLG VOULKEC KOl SLOLKNTLIKEG CUVETIELEG
miou duvartal va TPOoKUYPoUV oTNV MEPIMTWON KATA TNV ornola amodelyOel, Staxpovika, otL

n epyacio auth A TURpa tng dev pou avhket SLOTL lval polov AoyoKAOTAG.

O AnAwv

BaciAelog Zahokwotac-AlmAag
Huepounvia
09/09/21

NEPINHWH

ZTNV ONUEPLVH EMOYXN, OL TIPOYPOLUATIOTEG KaAoUvTal va SnpLloupyrioouv epapoyEC oL
oTmoleg TpExouv oe dLadopa AEITOUPYLKA CUCTAUOTA, CUUTEPIAAUBOAVOUEVWY TOTILKWV
SLaKOULOTWY, ELKOVOTIOLNUEVA LOLWTIKA Kal dnuoota cloud. Me to Kubernetes, to onoio
elval pla mlatdoppoa avolxtol KwdKa yLa avamntuén, KALLAKwWaon Kal dtaxeipnon
epapuoywv o€ container, kabiotatal Suvatog Kot APKETA EVEALKTOC O XELPLOOC TOU
£pYOU QUTOU O€ eva cUUMAgypa urtoAoylotwv Staxelpilovrag mapdAAnAa to ¢opto
gpyaoiog yla va StaopaAloTtel ott OAa AsltoupyouV £TolL Onwe Ba BeAe o xprotng.
Erutpénetl uPnAn SlaBeoiudTNTA KAL EMEKTACLLOTNTO HECW SLAGOPWVY PNXOVIOUWV
ouTOMATNG KALLAKWONG Ta onoia ivatl Horizontal Pod Autoscaler(HPA), to Vertical Pod
Autoscaler(VPA) kat to Cluster Autoscaler(CA). Metafl autwv, 0 TPWTOC TAPEXEL
QIPOOCKOTITN UTINPECLO UE SUVAULKE KALLAKWOT TIPOC TAL TIAVW KoL KATW Tou aplOpol twv
povadwv mopwv, ou ovopalovral Pods, xwplc va xpeldletal emavekkivnon oAOKAnpou

TOU CUOTHUATOC.

YKOTOC TNG epyaciag autng eival n uAomoinon evog CUCTAUOTOG LUE OTOXO TNV HETABOANR
ot Tou aplBpol Twv Pods og mpaypatikd Xpovo cUpdwva e TNV Xprion aAyoplBuwv
UNXOVIKAC padnonc mou Ba mtpoPAEnouv o Babog xpovou to traffic og evav
g€unnpetntn, XwpLig TNV BonBela Tou Horizontal Pod Autoscaler aAAd ouclaoTikd
QVTLKOBLOTWVTOG TOV Kot aLoAoywvtag TiG arnodO0ELg TOU CUCTHHOTOG aAuTou. Me autov
TOV TPOTO, UMopel va yivel amodoTikOTEPN XPHOoN MOPWV Kol EE0LKOVONGH EVEPYELAG
KaBw¢ 0 eEUMNPETNTAG elval EVAEPOC yLa To LeANOVTLKO traffic wote va €xeL TV xpovikn

Sduvatotnta péExpL va katadBdaocel auto, va AABEL Ta amopaitnTa HETPA.

To cUotnua SOKLUACTNKE O€ TPAYHATIKO Xpovo oto NITOS Testbed Laboratory
amodelkviovtag OTL Uropel va wdeANCEL N CUYXWVELCN TNG LNXAVLKNAG LABNoNG Ue
HUNXAVLIOUOUG KALLAKwong oto reptBarlov twv Kubernetes 6nmwg o HPA kaBwg o apKeTEC
TIEPLTITWOELG UTtApXOUV emavoAapuBavopeva potifa oto traffic mou pmopouv va
nipoPAedBouv e peydAn akpifeta. OLmopol deopevovial 1 anodeopevovtal avaloya Ue
To HeAAOVTLKO traffic £TolL wote va elval mpoeToLaoéVOL va avtamokplBoluv
YPNYOPOTEPQ KaL AroSLKOTEPA EVW TAUTOXPOVA EE0LKOVOUELTAL EVEPYELA KABWG Sev
UTTAPXOUV TTOPOL TIOU KAAOUVTOL VA EEUTINPETCOUV EPYACIEC TTAPATIAVW OO AUTEC TIOU

UTtopouV 1 mopol ou eV xpnoLUoToLoUvTaL.

Xi

Xii

ABSTRACT

These days, developers are called on to write applications that run across multiple
operating environments, including local servers, virtualized private and public clouds.
Kubernetes, which is an open-source platform for developing, scaling and managing
applications in a container, makes it possible and flexible enough to handle this task on a
complex of computers while managing the workload to ensure everything works as the
user would like to. It allows high availability and scalability through various automatic
scaling mechanisms which are Horizontal Pod Autoscaler, Vertical Pod Autoscaler and
Cluster Autoscaler. Among these, the first one provides seamless service by dynamically
scaling up and down the number of resource units, called Pods, without having to restart

the entire system.

This diploma thesis focuses on the implementation of a system that aims to change the
number of Pods according to machine learning algorithms that will predict the upcoming
traffic on a server, without the help of Horizontal Pod Autoscaler but essentially replacing
it and evaluating the performance of this system. In this way, more efficient use of
resources and energy savings can be made as the server is aware of future traffic so that

it has the time to take the necessary measures until it arrives.

The system was tested in real time at the NITOS Testbed Laboratory proving that
combining machine learning with scaling mechanisms in the Kubernetes environment
such as HPA can be beneficial, as in many cases there are repetitive traffic patterns that
can be predicted with good accuracy. Resources are being allocated or released
depending on future traffic, so that they are prepared to respond faster and more
efficiently while at the same time energy is being saved as there no resources called to

serve tasks beyond what they can or resources that are not used.

Xiii

Xiv

Table of Contents

TTEPINHWIH.c.aeeeeeeeeeeereeerrereresessesessesessussssesssssssssessssessasessssssssssssassassssassssssesssssssnssssassssnns Xi
ABSTRACT ...cuveeveereirereeeeeereeceeceecssssessassessssssssssssssssssssssssassnsssssssssssssssssssssssssssnssnssnsensenses Xiii
TADIE Of CONLENLSceeeeeeeeeeenrreeeereeeeeeenassseeesseesenmmnsssssssssesssnsssssssssssssssnnsnsssssssssessnnnnnnns xv
LISt Of FIGUIES ceeeeeeeeiiiiiieiieeniieeeiiiienneeseeeeeeteeeennsssssssssenessssssssssssssnnnssssssssssssssnnsssssssssssnnnnnnnnsnsens XVi
LISt Of CRArts ..ccceeeeiiiiiiieiieeiiceiiitreneeeceeeeteeeennnssseeesteeeenssssseesssnessnnsssssssssssssnnssssssssssssnnnnssnssns XVii
Chapter 1: INErOAUCLIONcceeeeeeeeeeeeeereeeeeeeennsseeeeseeeemmnnssssessssessssanssssssssssessnnnnsssssssssesens 1
1.1 BACKBIOUNM ... s e s e e s s s s s a s s n s 1
1.2 MOTIVATION ..ottt e teeeeerreneseseenssestensssesennssessensssessansssssannsssssnnsssssennsnsssannnnes 2
1.3 TRESIS STrUCTUNE....ceeeeeeeereeerrreertieenseeeteeeeennsssseessseesssnsssssesesessnnnssssssssssssssnnssssssesessssnnnsnsnsssses 3
Chapter 2: Infrastructure and Experimental TOOIS.............eeeeeeeereeeeeeeenesseeeeeeeeennnesssseeeeseeens 4
2.1 Chapter INtrodUCioNcccciiiiiiiiiiicccccccccc e e s e e s e s s e e e e e e s s e s ssseseeesaneens 4

b 20 20\ | 10 2 =1 4 Y=Y o U 4
2.3 DOCKET .cceueerreeeerreereeennseeeererennssssesessreeesensssssssssssesansssssssssssesssnssssssssssssssnssssssssssssssnnnsssssssssssannn 5
0 B0 N O V7T YL U 5

R B 0o Y o} - 11011 U 6

2.3.3 Containers VS VIirtual MaChingSuueeeiiiiiiiiiiiee ettt e e e e e e e e e e eaaaaanes 6

2.3.4 DOCKET ArCNITECIUIE....ciiiiiiieee ettt e e e e e e et e e e e e e e e e bbb eeeeeeeraasaeeeeeseeesraaanes 7

2.8 KUBEINELES ... cetreeereeennieeetiieteteenneeeereeeeenesssseeesseesssnssssssssssesssssssssssssssssssnsssssssesssssnnssssssssssssnnns 8
B N O V7T YL N 8

2.4.2 KUDEINETES ATCNITECIUIE ..vviieieiiieiitteee ettt e e e e e e et e e e s e e e bbb e e eeesesssaaaeeeeseesbaaanees 8
Dy N 00 o] d o] I 2= 1<) AP PPRRR 9

2.4.2.2 KUDEINEEES NOUES ..evvvuiieeiiiiiiiiiieee e eeeeeeee e e e e ettt tre e e e e e e e eaaa e e eeeseeasbaaaaeeeesssssssaaneeeseeseraes 10

2.4.3 KUbernetes ObjJeCtS......ccooiiiiiie e, 11

2.4.4 Kubernetes AULOSCaliNg ..o e, 13
2.4.4.1 HOriZoNtal PO AULOSCAIEN ...ccvvvrieeeiiiieieiiiceee ettt e e e e e e e e e e e s e e ea e e eeeeeeeenes 15

DN B = Lo T g d oo T L] =11 P PPPPPPRt 17

P Y V= o ol 17

D Y N oY1 0 11 1 110 L OO PPPIRN 18

DN o Ta =t d o [T I Vo F- T o) <] PPNt 20

T N €1 =Y =1 1 T WO RPPPTRN 20

2.5 Maching LEarningccceeeiiiiiiiiiiiciiiisiesscsseseseeessssessseseseessssssssseeessssessaseesesesssaseesssnsssssessnsnnnnes 21

B T N O V7T YL TR 21

B T A =] o OO PP PPUPTRPP 21

T T =18 T T = [11 ORI 22
Chapter 3: Development and Implementationeeeeeeeeceeeireieeeeeenssesesnsneeeeneensssssnns 24
3.1 Chapter INtrodUCtioN.......cccieeeeiiiiiiiiircccnnnireeeeeeseee st eeeeneesseessssesnnssssssssssssssnnnssssssanseenns 24
3.2 ENVIironment Set-UpPcciiiiiiiiiiiiiiiiiiiiiiiiininssnnssnssssssssnnssssnnssssssssssssssssssssssssssssssnn 24
0 (0 oY= 1= (=TT 24

3.2.2 Php-Apache Deployment and UbUNTU POdooiviiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeee e vvvaveaeeaaeees 26

I B 0 Lo Yol =T 2 1V « TR 29

XV

3.2.4 Prometheus and Grafanacoouuuueiiiiiiiiiiee ettt e e e e e e e bbb e e e e e 30

R[] A ol O LU T=T o OO PP PP PP PPPPPPPPPPPPPPPPPRY 33

3.2.6 PromethEus AQAPTer.....coo i ittt ettt e ettt e e ettt e e s sabbeeesbtbeeeesabaeeeaaes 34

0 A =Y 1Yo 1 = [y TSR 36

IR 3 5 (o] grAe] g} =] W ado o I ANV] o} or=| L= T 37

3.3 MaChING LEAINING ccceuuuciiiiiieeieeniceeititrtnneeeeeeeteeeennsssseessseesenssssssssessssnnsssssssssssssssnnssssssssssnnnn 38
0 T N 0 1Y o V1= Y PSP 38

3.3, 2 MEENOAOIOGY ..ttt ettt e e e e e e ettt e e e e e st e e e e e e e s e an bbbt e e e e e e annrraeeeas 39

I e D) = 1 <) £ PP 40

3304 AlBOITENIMS ..ttt e e e e e e e e e e bt e e e e e e e e e et bbb e e e e e e e annraeeeas 42
IS0 20 0 1Y 12 - 42

S T B A (€] = To Yo 1) 46

S 20 0 31 T I 1 U 50

3.8 SCAIE PONICY ...iiiiieeeeeenceeiiitrretennneeeetteeeennssseeeeeseereennsssssssssesnnsssssssssessssnnnsssssesssssnnnssssssssessssnnn 55
3.5 SYSEEM ArCRItECTUIE ittt cceeereeeenaeseeeeesteeeennssseeesessennnssssssessssessnnnssssssensannnn 56
Chapter 4: Experiments and COMPAIISONSuueeeeereeeeeeeenerseeesreerenmenssssssesseessssssssssssens 58
4.1 Chapter INtroduction...........eeeeeeeeeeeeeeeeeeeeeemmeeeeneeeeeeeeeeeeeeneeeeenersssssssssssnsssnnsnsnnnnsnnnnnnnnsssssnnnn 58
4.2 Experiments DeSCriPioncccciiiiiienieeiiiiiniiieemmeeiiiiiiiieemmseesiisssiimesssssimtimessssssssssssssssnns 58
4.3 EXperimental RESUILS........eeenenenneenneesasssssnsssnsnnnnnnnnnnnnnnnnnnnnsssssnnnn 59
4.3.1 Same dataset fOr train @Nd TESTcceiiiviiiiiiee et e e e et e e e e e e a e e e e e e e eesraaeeeeaaes 59

4.3.2 Different dataset for train and TeST........uuuieeiiiiiiiiiieee e e e e e e e e e e e 61

4.4 Comparisons With AULOSCAlEr........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeenneeneesssssssssssssssssssnnsnnnnnn 62
4.4.1 Same dataset fOr train @0 TEST ...ccciiiiviiiiiiee e e e e e e e et e e e e e e eesbbaeeeeaees 62

4.4.2 Different dataset for train and TeST........uuuiieiiiiiiiiiiiiee e e e e e 63
Chapter 5: Conclusion AN FULUIE WOIKeeeeeeeeeeeereeeeeeeeeesseeerseeeennnnnssseeesseeennnssnssssees 64
5.1 Chapter INtrodUCiONcccceieeeeiiccccceeeeeee e e s e e e s e e s e e s e e e e s e s e e s e s esesesssaseesssnnensannens 64
5.2 CONCIUSION ceeuuirrenenerieieriereeeeserreeesertessssereesesssresssssssessssssessssssssssssssssssssssesssssssnnssssssnssssssanssnes 64
5.3 FULUIE WOKK ...eeeeeeirieeeiirreneeerteneseriesessereesesssresssssssessssssensssssssssssssssssssssesssssssanssssssnssssssanssnes 65
BibliOGrapPRYoiiiiiiereaeiiiicisiiiiennissiiisiiisisssnnssississsssssssmssssssssssssssssssssssssssssssssnsssssssssss 66

List of Figures

Figure 1. NITOS Testbed ArChiteCtUre...........oooivvi i 5
Figure 2. Virtual Machings VS CONLAINEIS..........ccuveiiiieeiieeeciie e sitee et 6
Figure 3. DOCKEr ArChitECLUEcc.vvieiiie e 7
Figure 4. Kubernetes ArChItECIUIE.........cvvi ittt 9
Figure 5. Cluster AULOSCAIINGcccuviiiiie it eaee e 14
Figure 6. Vertical vs Horizontal SCaling...........ccoveiiiieeiiie i 14
Figure 7. Horizontal Pod Autoscaler ArChiteCturecooovvveeiiiieee i 15
Figure 8. Pod Metrics packets-per-second eXampleccovvieiiiiiieiiiiiieec e 16
Figure 9. Pod Metrics requests-per-second eXampleccooveeiiiiiie e 17
Figure 10. HPA'S SCale POLICY ...oooiiiiiiiiiic e 17

Figure 11. Prometheus ArChITECTUIEccviiiiiiiiie e 19
Figure 12. Prometheus USEr INTEITaCE.cooiiiiiiiiiee e 19
Figure 13. Grafana Dashboard User INterface...........cccvvvireiiiieiiiie e 20
Figure 14. Tensorflow aCyClC graphc.ooiiiiiiiiieiie e 23
Figure 15. Kubernetes CluSter CheCKingcocveiiieiiiiiieiiieiie e 26
Figure 16. Custom DOCKEr IMAGE........cccuuiiiiiiiieiie ittt 26
Figure 17. INdeX.php COUR........uiiiieie e 26
Figure 18. Php-apache.yaml COUE.........ccooiiiiiiiiiie e 27
FIQUIE 19, CUITTEST ...t 27
Figure 20. UDUNTU.YaMI COUReiiiiiiiie e 28
Figure 21. Curl teSt iNSIAE POU........ccuuiiiiiiiieiie e 29
Figure 22. DockerHub User Interface and Images USedcccverveiiieniiienieiiienieeninns 29
Figure 23. Prometheus Configuration DEfOreccooviiiiiiiiiiii e 31
Figure 24. Prometheus Configuration after............oceeiviiiiiiiieiie e 31
Figure 25. Prometheus 1ocalhost CheCKING.........ccviiiiiiiiiiiiiie e 31
Figure 26. Grafana Configuration DEfOre............ccoiiiiiiiiiiii e 32
Figure 27. Grafana Configuration after............ccccveeiie e 32
Figure 28. Grafana localhost CheCKiNgcccuooiiiiiiiiii e 33
Figure 29. Prometheus Adapter Configurationcccccvveiieeiiie e 35
Figure 30. Prometheus Adapter Checkingcccoiiieiiiiiii i 36
Figure 31. PYthon ENVIFONMENT..........coiiiiiiiie et e et e e enae e 37
Figure 32. Horizontal Pod Autoscaler Configurationcccevveveiiiee e cie e 37
Figure 33. Horizontal Pod Autoscaler Checking...........oouvviiireiiiee e 38
Figure 34. Multi-step prediction DASIC I0A...........eeeiureeiiieesiie e 39
Figure 35. Dataset FOIMAL.........c.vieiiiiieiiic e e e e e eeanee e 40
Figure 36. Stationary vs Non-Stationary eXxamplescccovveiiieeiiiie e 44
Figure 37. Arima COOE SNIPPEL ...vveiiieeiiee ettt e e et e e e e e e snaaeeanneeeas 45
Figure 38. Time series dataset fOrmat...........cccccoovreiiie e 47
Figure 39. Time series supervised learning format.............ccoccveiiiii i 47
Figure 40. 3 points supervised learning eXxamplecccveeiiieiiiee e 48
Figure 41. XGBO0OSt COUE SNIPPEL......eeeiiiieiiiie et e st e e e e e e e arae e 49
Figure 42. LSTM DIOCK @rChiteCtUre.coiiieiiiee e 51
Figure 43. MinMaxScaler COUE SNIPPELccivvreiiiie ettt e e eaae e 52
Figure 44. Univariate Sequence eXampleooovveiiiie e 52
Figure 45. 3-step modification eXample............ccoviiiiiieiiie e 52
Figure 46. LSTM INPUE FOrMALccvviiiiiiiic e 53
Figure 47. LSTM MOGEL........oooiiieiiee et e e eaea e 53
Figure 48. LSTM PrediCtioNscccuvieiiiieeiiie et e et stee et s e e ntae e stae e sne e e snteeeanee e 55
Figure 49. Custom SCAIE POLICYcovvieiiieiiiee et raa e 55
Figure 50. Thesis' SyStem arChiteCtUIEccueeiiieeiiiee st 56
List of Charts
Chart 1. High and Medium DataSetsS...........cccuriieiiiiiiieeiiiiie e siinie e siire e e e s e e e e srneee e 41

XVii

Chart 2. TrainiNg DataSELueeiiiiieiiie et 42
Chart 3. Arima PrediCtiONSooiiiiiie et 46
Chart 4. XGBOOSt PrediCtIONSeeiiiiiiieiiiieiie ettt 50
Chart 5. LSTM [€ArNING CUIVEScoiuiiiiieiiiieiee ettt 54
Chart 6. Arima vs XGBo00st high.CSV dataset...........c.cueiiiiiiiiiiiiieiiese e 60
Chart 7. Arima vs LSTM high.CSV dataset...........ccceiiuiiiiiiiiiiiieie e 60
Chart 8. XGB00st VS LSTM high.CSV datasetcccveriiiiiiiiieieiieeeee e 60
Chart 9. Arima vs XGBoost different datasetcccvvvveeieeiiiiiiiiiiiieeeee et 61
Chart 10. Arima vs LSTM different dataset............covvvvviiiiiiiiiiiiiieieiieeeeeeeeeeeeeeeeeeeeeee e 61
Chart 11. XGBoost vs LSTM different datasetocvvvviviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 61
Chart 12. HPA vS Arima SAME dataSEL..........cevvviiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt 62
Chart 13. HPA vs XGBO0O0St SAME TALASELcevvviiiiiiiiiiiiiieeeeeeeeeeeee et 62
Chart 14. HPA VS LSTM SAME QALASELcevvveiiiiiiiiieeieeeieeeeeeeeeeeee ettt eaeeees 63
Chart 15. HPA vs Arima different datasetcoevvviviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 63
Chart 16. HPA vs XGBoost different dataset.............ovvvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 63
Chart 17. HPA vs LSTM different dataSet............oevvvvviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee e 64

Xvilii

Chapter 1: Introduction

1.1 Background

The fact that technology has a great impact on our life and business is evident. Not so
long ago, companies had to establish and maintain their own server environment so that
they could host and run applications on their premises. Today, we have cloud computing
that’s revolutionizing everything. Cloud computing [1] is the on-demand availability of
computer system resources, especially data storage (cloud storage) and computing
power, without direct active management by the user and relies on sharing of resources
to achieve coherence and economies of scale. It offers a wide variety of benefits both in
businesses with the efficiency, the cost-effectiveness, and the scalability that it provides,
and in the average person with storing and accessing multimedia content via internet or
even running software programs without installing them on their local PC. Cloud
computing is gaining more and more popularity making it one of the most flamboyant

technological innovation of the 215 century.

Another field of science that has seen a significant growth lately is Machine Learning [2].
Machine Learning is the study of computer algorithms that improve automatically
through experience and using data. It is seen as a part of artificial intelligence and its
algorithms build a model based on sample data, known as “training data”, in order to
make predictions or decisions without being explicitly programmed to do so. Machine
Learning algorithms are used in a wide variety of applications, such as in medicine, email
filtering, speech recognition and computer vision and generally where it is difficult or
unfeasible to develop conventional algorithms to perform the needed tasks by identifying

the common patterns and making predictions.

Each one of these two topics have a positively influence to the world today. However, this
is the beginning, and it will take some time to successfully merge these 2 technologies in
order to become fully operational in important areas such as healthcare, business and
banking. Machine Learning makes it easy to manipulate data in cloud. With a series of

artificial intelligence research on cloud computing, cloud computing is becoming more

and more intelligent. Less energy is being consumed in addition to the performance that

increases at a rapid pace while the resources are being scaled up and down dynamically.

1.2 Motivation

Nowadays, cloud-computing is becoming more and more popular. Kubernetes which is
used to manage container workloads in scalable infrastructure, has become one of the
most famous cloud orchestrators. It is an open-source platform that enables customers to
respond to user requests quickly and deploy software updates faster and with greater
resilience.

Imagine a scenario where an application that had been deployed has more traffic than it
is anticipated and as a result the compute resources overwork to get the job done. This is
a problem that can be solved by scaling the infrastructure. For example, if the application
has more traffic during the day and less during night, it doesn’t make sense to keep the
same number of compute resources allocated during the off-peak hours. By using
autoscaling, you can easily and dynamically provision more compute power when it is
necessary. So, in many cases, like the one described above, where there are common
patterns in the traffic that is being send, merging scaling mechanisms with machine
learning algorithms that can identify these trends would be ideal for making the
appropriate scale ups and downs.

So, that was the motivation of this diploma thesis. To create a mechanism utilizing the
tools and finding the methodology to a more efficient scaling using machine learning
time series algorithms in order to forecast the future traffic to a server, in a Kubernetes
cluster. That way, the number of pods would be adapted to the future values making the
scaling a lot more efficient. As a result energy is saved as there are no resources that are

idle or overwork.

1.3 Thesis Structure

This thesis is divided in 5 chapters which are being descripted below:

Chapter 1: An introduction to cloud computing and machine learning making a
brief explanation on what these technologies represent and how beneficial
their merging is. Also, a reference to the motivation and the problem
statement of this thesis is being made.

Chapter 2: The experimental tools and the technical background that needed
for developing and testing this research in the Kubernetes Cluster using
Machine Learning algorithms.

Chapter 3: The way that the infrastructure and the tools are being used for
implementing this diploma thesis for the desired result. Furthermore, the
methodology of creating the system architecture, the selection of the Machine
Learning algorithms and the scale policy for the pods are being analyzed.
Chapter 4: Results and charts are being presented evaluating the efficiency of
each Machine Learning algorithm comparing to each other and to the
Horizontal Pod Autoscaler.

Chapter 5: Conclusion based on the results from Chapter 4 and the work that

can be done for optimizing this diploma thesis even more.

Chapter 2: Infrastructure and Experimental Tools

2.1 Chapter Introduction

This chapter focuses on the infrastructure and the experimental tools that had being used
in order to successfully complete this diploma thesis. It analyzes in detail every
technology that helped solving this problem as much in Kubernetes environment as in

Machine Learning.

2.2 NITOS Testbed

This diploma thesis was developed and implemented in 2 nodes of the NITOS Testbed
Laboratory [3]. NITOS is an integrated facility with heterogeneous testbeds that focuses
on supporting experimentation-based research in the area of wired and wireless
networks. It is remotely accessible and open to the research community 24/7. It is
comprised of three different deployments which are listed below:

1. The Outdoor Testbed: which consists of powerful nodes that feature multiple
wireless interfaces and allow for experimentation with heterogeneous wireless
technologies. It is deployed at the exterior of a University of Thessaly’s campus
building and consists of 50 nodes.

2. The Indoor RF Isolated Testbed: which contains 50 Icarus nodes that feature
multiple wireless interfaces (Wi-Fi, WiMAX, LTE) and is deployed in an isolated
environment of a University of Thessaly’s campus building. It is also equipped
with directional antennas prototypes.

3. The Office Testbed: which comprises of 10 powerful second-generation Icarus
nodes. The nodes encapsulate heterogeneous technologies, such as WIFI,
WIMAX, LTE etc. and allow the experimenter to design and execute real life

scenarios under a deterministic office environment.

Generally, NITOS testbed offers a variety of tools which the user can use in order to
develop, design and test his own experiments in a large-scale environment and its

architecture is depicted in the image?! below.

=== Control Network
=== WIMAX/LTE Wireless Network
- = = LTE Control Netwotrk

WiMAX Control Network G 9 tﬁ’
- == WIFi Network . » Lte
’ wSy
/ (R AN
& B AR el
o~ S I
&¢ 5 1)
/o WiMAXBS) Y ho S LTE AP LTEAP ¥
Users Fm————— S =% 2 1 e
. E S " [l AT
. : \ g B 3 o
g wimaxrf X ? y £ N A n

1 LTE

: 1
1 \ \ < = -
! \ 1 I I~

| WIMAX to Wii 4 % Sm‘:’r""'::nes (A 1 'ﬂ ‘11
') B ' ! ﬁ"’ &
1 I

1
i
1

’
2
USRF' Devnce
|

o
1 ¥ N Smartphones
intecnst NITOS Server = I I outD.
~-UEE el BN R utDoor

: : Testbed

! LTEnet EPC |

1 | Outdoor Outdoor [} 4

Ve @' L' node node e \" s

1

! WIiMAX WiMAX LTE LTE LTE
. Interface Dongle Interface Interface Interface
I
|
I
|

o camera , . o _
Antennas t

Feeee- - = =4 i -

i —
1 N ICARUS ICARUS ICARUS ICARUS Wi e InDoor

L | ! .la =
=, ' MobileNode 'oStbed
USRP Device i a1
s ACM Cards -
CARUS !CARUS ICARUS

ICARUS Power Monitoring

OpenFlow Switch

Figure 1. NITOS Testbed Architecture

2.3 Docker

2.3.1 Overview

Docker [4] is an open platform for developing, shipping and running applications. It gives
developers the opportunity to better manage and deploy applications by packaging them
in a sandbox (called containers) to run on the host operating system i.e., Linux by taking
advantage of the 0S2-level virtualization (an operating system paradigm in which the
kernel allows the existence of multiple isolated user space instances). Docker’s portability
and lightweight operation also make it easy to dynamically manage workloads, scaling up
or tearing down applications in real time. With the help of container’s technology, the
time gap between writing code and running it on production is being minimized as the

deployment or the update of the app is done in a matter of minutes.

L https://nitlab.inf.uth.gr/NITlab/nitos
2 OS: Operating System

https://nitlab.inf.uth.gr/NITlab/nitos

2.3.2 Containers

So, what is a container [5]? A container is a standard unit of software that packages up
code and all its dependencies, so the application runs quickly and reliably from one
computing environment to another. It uses process isolation and virtualization
capabilities built into the Linux kernel such as control groups (Cgroups) for allocating
resources among processes, and namespaces for restricting a processes access or visibility
into other resources or areas of the system. This gives the developers the ability to create
environments that are isolated from the rest of the applications and can be run

anywhere.

2.3.3 Containers vs Virtual Machines

An important part that must be clarified is the difference between containers and virtual
machines. At first, virtual machines are an abstraction of physical hardware turning one
server into many in addition to the containers that are an abstraction of the application
layer that packages code and dependencies together. So, each architecture has significant
differences from the other as shown in the image® below. Also, the size of virtual
machines images is measured in gigabytes whilst containers images in megabytes, just
because the first ones include a full copy of an operating system. Finally, containers offer
more portability and quicker spinning up applications in contrast with the VMs that can

be slow to boot.

Application 1 Application 2 Application 3 Application 1 Application 2 Application 3

Binary Files Binary Files Binary Files Binary Files Binary Files Binary Files
& Libraries & Libraries & Libraries & Libraries & Libraries & Libraries

Guest Guest

oS 0s Container Engine
Hypervisor Operating System
Virtual % ;
5% Machines Container

Figure 2. Virtual Machines vs Containers

8 https://akfpartners.com/growth-blog/vms-vs-containers

https://akfpartners.com/growth-blog/vms-vs-containers

2.3.4 Docker Architecture

Docker uses a client-server architecture. Users interact with Docker through the Docker
client. When any commands are being executed, this client send them to Docker daemon
which carries them out. The Docker client and daemon communicate using a REST API,

over UNIX sockets or a network interface as depicted in the picture* below.

GOCRER_0sT) (oo
docker build - ,.-/I Docker daemon _ | @ ‘_2’
: = -
. \ i N Y
docker pull - [: \ . 9
J Containers l— b @:— S .
docker run —7 '_\ g 2 ’é NGiMX
~ T~ !
/
S /

Q&g
¢

Figure 3. Docker Architecture

A few more important objects that need to be explained in order to understand the entire
architecture and how Docker operates, are Docker images and Docker registry.

A Docker image is a file used to execute code in a container and acts as a set of
instructions to build one, just like a template. These images make up the starting point
when using Docker as they contain application code, libraries and tools that are needed
to make an application run and are comparable to a snapshot in virtual machine
environments. As a result, Docker images can be described as a record of a Docker
container at a specific point in time.

These images can all be stored in a storage and content delivery system, available in
different tagged versions, named Docker registry. Users can interact with a registry by
using docker push and pull commands in order to pull images locally or push image to the

registry. In this diploma thesis, DockerHub was used for storing and pulling the necessary

4 https://docs.docker.com/get-started/overview/

https://docs.docker.com/get-started/overview/

docker images which is basically a hosted repository service provided by Docker for

finding and sharing container images.

2.4 Kubernetes

2.4.1 Overview

Kubernetes [6] is part of the Cloud Native Computing Foundation which supports the
development of shared networking standards in cloud data management software. It is
an open-source system for automating deployment, scaling and management of
containerized applications and groups containers that make up an application into logical
units for easy management and discovery. Kubernetes provides the developers a
framework where they can run distributed systems resiliently by taking care of scaling
and failover for an application, providing deployment patterns and many more. Docker
being the most popular container virtualization standard is widely used by Kubernetes.
Simply, Docker helps to “create” containers and Kubernetes allows the developers to

“manage” them at runtime.

2.4.2 Kubernetes Architecture

An environment running Kubernetes consists of the following basic components [7]: a
control plane (Kubernetes Master), a storage system for keeping the cluster state

consistent and cluster nodes (Kubelets, also called worker nodes).

Kubernetes Master

Controller Manager)
—=] Q

Deveioper Scheduler)

/ Operator + Users
| etcd I

Kubelet (cAdvisor) (Kube-Proxy Kubelet (CcAdvisor) (Kut}e—Proxy)
‘ \ Pod
A\ A A
Plugin Network (eg Flannel, Weavenet, etc)
Kubernetes Node Kubernetes Node

Figure 4. Kubernetes Architecture

The Kubernetes architecture can be divided into 2 basic parts: the control panel

(Kubernetes Master) and the nodes (Kubernetes Nodes) as shown in the picture® above.

2.4.2.1 Control Panel
The control panel is the “heart” of a Kubernetes cluster. It maintains a data record of the
configuration and state of all cluster’s objects and is in constant contact with the compute
machines in order to ensure that the cluster runs as configured. Below are presented the
main components® of the control panel:
1. Kubernetes API Server: it is the front end of the Kubernetes control panel
and supports updates, scaling and other kinds of lifecycle orchestration

procedures by providing APIs for various types of applications. Also,

5 https://www.jobacle.nl/?p=2688
6 https://kubernetes.io/docs/concepts/overview/components/

https://www.jobacle.nl/?p=2688
https://kubernetes.io/docs/concepts/overview/components/

Kubernetes APl Server is the only component that communicates with the
etcd in order to ensure that data is stored in it and is in agreement with
the service details of the pods.

2. Kubernetes Scheduler’: stores the resource usage data for each compute
node, check the health state of a cluster, determines whether new
containers should be deployed and where they should be placed. Firstly, it
checks the pod’s resource demands and then selects an appropriate
compute node in order to schedule the task taking resource limitations,
data locality, quality of service requirements and other factors into
account.

3. Kubernetes Controller Manager: sometimes called Cloud Controller
Manager, is simply a daemon which runs the Kubernetes cluster using
several controller functions. It is responsible for managing controller
processes with dependencies on the underlying cloud provider such as
pods, services, tokens, service accounts, nodes etc.

4. ETCD: is a distributed and fault-tolerant, key-value store database that
stores Kubernetes cluster data like configuration files and information
about the state of the cluster. It is only accessible from the API server for
security reasons and enables notifications to the cluster about

configuration changes.

2.4.2.2 Kubernetes Nodes
A Kubernetes cluster must have at least one compute node depending on the need of
capacity. These nodes connect applications, compute and storage resources and their
building blocks are being descripted below:
1. Container Runtime Engine: each compute node runs and manages
container lifecycles using a Container Runtime Engine such as Docker.
2. Kubelet: is the main service of the node that communicates with the
control plane to ensure that pods and their containers are healthy and

running in the desired state. When the control plane requires a specific

7 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

10

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

action to happen in a node, the kubelet receives the new pod configuration
and specifications through the APl server and executes the appropriate
action.

Kube-Proxy: is a proxy service that runs on each worker node in order to
deal with the individual host subnetting and expose services to the
external world. It forwards traffic itself or relies on the packet filtering
layer of the operating system to handle network communications both

outside and inside the cluster.

2.4.3 Kubernetes Objects

In this section, the most important Kubernetes Objects will be discussed which are:

1.

Pods: represent a single instance of an application and are the simplest
unit within the Kubernetes object model. It is a group of one or more
containers with shared storage and network resources and a specification
on how to run the containers. Two or more pods can communicate with
each other using a pod network. A pod network is a medium of
communication between pods and nodes. In this thesis a Flannel® pod
network is being deployed in the Kubernetes cluster.
Services: are the Kubernetes way of configuring a proxy to forward traffic
to a set of pods. Services can expose a single or multiple pods to external
or internal consumers and associate specific criteria with pods to enable
their discovery. Pods and services are associated through key-value pairs
called selectors. With the help of selectors, services define which pods uses
which service. These dynamic assighnments make releasing new versions or
adding pods to a service easy. There are four different service types, each
with a different behavior:

e ClusterlP: exposes the service on an internal IP making the

service reachable only from within the cluster.

8 https://platform9.com/docs/kubernetes/networking-integration-with-flannel

11

https://platform9.com/docs/kubernetes/networking-integration-with-flannel

e NodePort: exposes the service on each node’s IP at a
specific port. In that way, developers have the freedom to
configure their own environments. For example, NodePort
was being used in this thesis for exporting Prometheus and
Grafana from a node in NITOS Testbed Laboratory to a local
machine in order to visualize the results.

e LoadBalancer: unlike ClusterIP, exposes the service
externally using a cloud provider’s load balancer.

e ExternalName: will just map a CNAME record in DNS. No
proxying of any kind is established. This is commonly used
to create a service within Kubernetes to represent an
external datastore like a database for example, that runs
externally to Kubernetes.

Deployments: is a resource object in Kubernetes that provides declarative
updates to applications. A deployment allows the developers to describe
an application’s lifecycle such as which image to use for the app, the
number of pods there should be and the way which they should be
updated.

Volume: is just a directory that is accessible to a pod, which may hold data.
The reason that Kubernetes Volumes are being used is that they solve two
problems. First, the loss of files when a container crashes and second, the
way that containers that exists in the same pod, are sharing files. The
contents of the volume, how it comes to be and the medium that backs it,
are determined by the volume type. Volumes can be separated into two
categories:

e PersistentVolumes: or (PVs), are specific to a cluster,
provisioned by an administrator and tie into an existing
storage resource. PVs have a lifecycle independent of any
individual Pod that uses them. The PersistentVolumeClaims
(PVCs) could also exist in this category. A
PersistentVolumeClaim makes a storage consumption

request within a namespace. It is similar to a pod. PVCs

12

consume PV resources just like pods consume node
resources.

e EphemeralVolumes: unlike PersistentVolumes, ephemeral
ones follow the pod’s lifetime and get created and deleted
along with the pod. Caching services are a descriptive

example of EphemeralVolumes.

Sometimes, cluster administrators need to be able to offer a variety of
PersistentVolumes that differ in more ways than size and access modes,
without exposing users to the details of how those volumes are
implemented. For these needs, there is the StorageClass resource. A
StorageClass provides a way to describe the “classes” of storage they offer.
This thesis uses a StorageClass in order to provision the PersistentVolumes.
5. Namespaces: are virtual clusters that exist inside a physical one. They are
intended to provide virtually separated work environments for multiple
users, teams and prevent each one from hindering each other by limiting

what Kubernetes objects they can access.

2.4.4 Kubernetes Autoscaling

As mentioned above, Kubernetes has a feature called autoscaling. Autoscaling allows the
cluster to dynamically adjust to demand without the intervention from the individuals in
charge of operating the cluster. It is an important concept in cloud automation overall.
Without autoscaling, the developers must manually provision resources every time
conditions change, and it is less likely to be operating with optimal resource utilization
and cloud spending. There are 3 autoscaler types:

e Cluster Autoscaler (CA): is a Kubernetes tool that increases or decreases the size

of a cluster by simply adding or removing nodes, based on the presence of

pending pods and node utilization metrics, as shown in the image® below:

9 https://medium.com/kubecost/understanding-kubernetes-cluster-autoscaling-675099a1db92

13

https://medium.com/kubecost/understanding-kubernetes-cluster-autoscaling-675099a1db92

2. Cluster Autoscaler requests node

» Cluster

1. Pods are in a pending state Autoscaler 3. New node is provisioned
Node Node

nmg PnﬂE /
Node Node /
RN ECTH

4. Pods are scheduled on new node

Figure 5. Cluster Autoscaling

e Horizontal Pod Autoscaler (HPA): automatically scales the number of Pods (Figure
6) in a replication controller, deployment, replica set or stateful set based on
observed CPU utilization or custom metrics (like this diploma thesis implements).

e Vertical Pod Autoscaler (VPA): dynamically modifying the attributed resources
like CPU and RAM of each node in the cluster by adjusting the resource requests
and limits based on the current application requirements as shown in the image?°

below:

Vertical Scaling

(Increase size of instance (RAM ,

CPUetc))
Horizontal Scaling
(Add more instances |
A
||\ || || s
o Sl ouppe onee @9
P P < R
& T RIR T BIR
@ - T T
>

Figure 6. Vertical vs Horizontal Scaling

10 hitps://www.webairy.com/wp-content/uploads/2019/07/hvsv.jpg

14

https://www.webairy.com/wp-content/uploads/2019/07/hvsv.jpg

In this thesis, we are focusing on the HPA by using Machine Learning to forecast
the future traffic to a server and comparing the results using this solution

comparatively to the HPA.

2.4.4.1 Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler [8] is implemented as a Kubernetes APl resource and a
controller. The resource determines the behavior of the controller. The controller adjusts
the number of replicas based on the observed metrics to the target specified by the
developers. The controller fetches metrics from the Resource Metrics API (for per-pod
resource metrics) or the custom metrics API (for all other metrics). An image!! is being

shown below describing how the HPA works, using the Resource Metrics API.

ECreate new pods Pod N
’ L N=5

RC/Deployment
(Scale |

4;

2 N

[Resource Metrics API]<——— Horizontal Pod Autoscaler

L Controller Manager »

Figure 7. Horizontal Pod Autoscaler Architecture

For resource metrics like CPU, the controller fetches the metrics from the resource
metrics APl for each pod targeted by the HPA. Then, if a target utilization value is set, the

controller calculates the utilization values as a percentage of the equivalent resource

11 hitps://dasydong.qgithub.io/blog/2019/07/06/k8s-hpa/

15

https://dasydong.github.io/blog/2019/07/06/k8s-hpa/

request on the containers for each pod. If a target raw value is set, the raw metric values
are used directly. Then, the controller takes the mean of the utilization or the raw value
across all targeted pods and produces a ratio used to scale the number of desired
replicas. Replicas are simply identical pods and is a term that it will be used a lot
describing the HPA.

For custom metrics, the controller functions similarly to per-pod resource metrics, except
that it works with raw values and not utilization ones. More details on how custom
metrics can be obtained from a Kubernetes system are provided below.

There are two types of custom metrics: pod metrics and object metrics. The first of these
describes pods and are averaged together across pods and compared with a target value
to determine the replica count. They work much like resource metrics, except that they
only support a target type of AverageValue. These metrics are specified using a metric
block in the .yaml file that describes the HPA. Pod metrics are specified using a metric

block!? like this:

type: Pods
pods:
metric:

name: packets-per-second
target:
type: AverageValue

averageValue: 1k

Figure 8. Pod Metrics packets-per-second example

As far as the object metrics, they describe a different object in the same namespace,
instead of describing pods. Object metrics support target types of both Value for direct
comparison with the target metric and AverageValue for comparison between the target
value and the value that returned from the API divided by the number of pods. The
following example!3 is a visual representation of the extra configuration of a .yaml file

where object metrics, specifically requests-per-second, are specified.

12 hitps://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
13 hitps://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

16

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

type: Object
object:
metric:
name: requests-per-second
describedObject:
apiVersion: networking.k8s.io/vlbetal
kind: Ingress

name: main-route

target:
type: Value
value: 2k

Figure 9. Pod Metrics requests-per-second example

2.4.4.2 Algorithm Details
The Horizontal Pod Autoscaler controller operates on the ratio between desired metric

value and current metric value as shown below:

desiredReplicas = ceil[currentReplicas * { currentMetricValue / desiredMetricValue)]

Figure 10. HPA's scale policy

The currentMetricValue is computed taking the average of the given metric across all
pods in HPA’s scale target if a targetAverageValue or targetAverageUtilization is specified
or taking the direct value if these fields are not specified. Before checking the tolerance
and deciding on the final values, pod readiness and missing metrics are being taken into
consideration. For example, pods with a deletion timestamp set and pods with missing
metric are being discarded.

Then, the ratio between this currentMetricValue and the desiredMetricValue multiplied
by the number of current replicas is being calculated rounding this result upwards. Finally,

this is the desired number of replicas for the given case.

2.4.5 Metrics

Monitoring Kubernetes is also important in the context of resource usage, utilization and

cost control. Kubernetes clusters must be actively managed to ensure pods utilize

17

underlying node resources efficiently. The same is true for resources allocated to
individual container or namespaces. As far as the tools that helped fetching and
visualizing the metrics that this thesis used are: Prometheus, Prometheus Adapter and

Grafana.

2.4.5.1 Prometheus

Prometheus [9] is a standalone open-source systems monitoring and alerting toolkit. It is
a leading monitoring solution that has seen its community grow to large numbers. It
collects and stores its metrics as time series data i.e., metrics information is stored with
the timestamp at which it was recorded, alongside optional key-value pairs called labels.
Prometheus sends an HTTP request, a so-called scrape, based on the configuration
defined in the deployment file. The response to this scape request is stored and parsed in
local storage along with the metrics for the scrape itself. The storage is a custom database
on the Prometheus server and can handle a massive influx of data. The data needs to be
appropriately exposed and formatted so that Prometheus can collect it. Prometheus can
access data directly from the app’s client libraries or by using exporters (a piece of
software that accept HTTP requests). So, every application on the Kubernetes cluster is
available for metrics fetching. In addition, it is possible to configure the alerting rules in
the Prometheus server so that it sends alerts to the AlertManager that will create
notifications to different notification systems like Email, OpsGenie etc. One last
component that must be mentioned is the Service Discovery which informs Prometheus

where to look for data. The whole architecture is shown in the image!* below:

14 hitps://samirbehara.com/2019/05/30/cloud-native-monitoring-with-prometheus/

18

https://samirbehara.com/2019/05/30/cloud-native-monitoring-with-prometheus/

@ pagerduty
OpsGenie

Service
Discovery
T puhfeme
Prometheus

Server
E t i Datal
_ Xporter _

RUlllMetrics;

Application
Client Library

3 party
. Application

IocallStoragel

Figure 11. Prometheus Architecture

Prometheus was used for this thesis in order to get the necessary metrics such as replicas
number and help visualizing them to Grafana. Prometheus Adapter was also deployed in
the Kubernetes Cluster, and is being analyzed in the following section.

Underneath, the user interface of Prometheus is being shown where the developers can

compose their queries and fetch the metrics they want:

Enable query history @ Use local time (@ Enable autocomplete

Figure 12. Prometheus User Interface

19

2.4.5.2 Prometheus Adapter

Prometheus Adapter [10] is a component of Prometheus and is used to leverage the
metrics collected by Prometheus and use them to make scaling decisions. These metrics
are exposed by an APl service and can be used by the Horizontal Pod Autoscaler object.
Simply, Prometheus Adapter pulls custom metrics from Prometheus, and it is running as a

deployment exposed using a service in the Kubernetes cluster.

2.4.5.3 Grafana

Grafana [11] is a very common tool across Kubernetes that monitors the infrastructure
and provides log analytics, predominantly to improve their operational efficiency. It
comes up with a wide variety of dashboards that make tracking users and events easy just
because it automates the collection, management and viewing of data and uses
Prometheus as a data provider by fetching the appropriate metrics. This is how the

Grafana Dashboards look 1°:

Cluster Status

3.1 week

Figure 13. Grafana Dashboard User Interface

15 hitps://techblog.commercetools.com/adding-consistency-and-automation-to-grafana-e99eb374fe40

20

https://techblog.commercetools.com/adding-consistency-and-automation-to-grafana-e99eb374fe40

2.5 Machine Learning

2.5.1 Overview

Machine Learning [12] is the study of computer algorithms that improve automatically

through experience and by the use of data. It is seen as part of artificial intelligence.

Machine Learning algorithms build a model based on sample data, known as “training

data”. As models are exposed to new data, they can independently adapt and make

predictions or decisions without being explicitly programmed to do so. These algorithms

learn from

previous computations and identify common patterns in “training data” in

order to produce reliable results.

2.5.2 Steps

To make things clearer about how Machine Learning algorithms operates, the seven steps

[13] of ML?® are being analyzed below.

1.

Data Gathering: is the process of collecting and measuring information from
different sources. It is an important part of Machine Learning because the
developer must choose the appropriate data that will train the model in order
to produce an effective one. The quantity and quality of them dictate how
accurate the Machine Learning model will be.

Data Preparation: is the procedure of combining, structuring and organizing
data so that it can be used by the algorithms. It involves cleaning the data by
removing duplicates, correcting errors and dealing with missing values, in
some cases randomizing the data which erases the effects of a particular
order, visualizing them to help detect relationship between variables and
finally, splitting the data into train and evaluation sets.

Model Selection: is made up of what Machine Learning model the developer
should use. There is a wide variety of algorithms that had been developed for
different purposes and each one of them is using a logic of its own. There are
algorithms that produce predictions for image recognition, numerical data,

text-based data and other sequences. This thesis uses time-series Machine

16 Machine Learning

21

Learning algorithms that forecasts the future of a specific metric involving a
time component.

4. Model Training: is used to train the model in order to make an as much as
possible accurate prediction. It is an iterative process and is determining good
values for all the weights and the bias from the “training data”. Model Training
is identifying common patterns amongst the data provided so that the
features that best predict the outcomes to be determined.

5. Model Evaluation: is used to test the model accuracy against unseen data.
These data are meant to be representative of model performance in the real
world in order to get an estimation very close to reality. With the help of some
metrics or combination of metrics the objective performance of a model is
being measured.

6. Parameter Tuning: is all about tuning the Machine Learning model to improve
its performance. By changing hyperparameters like training steps, learning
rate, initialization values and many more, the developer can see differences in
the predictions that the model produces choosing the best combination of
these parameters.

7. Predictions Making: is the procedure of using data which have been withheld

from the model in order to test the model by making predictions.

2.5.3 TensorFlow

TensorFlow [14] is a Python library for fast numerical computing created and released by
Google. It is a foundation that can be used to create complex Machine Learning models
directly or using wrapper libraries that simplify the process built on top of TensorFlow. It
got its name from its core framework: Tensor. In Tensorflow, all the computation involve
tensors. A tensor is a vector or matrix of n-dimensions that represents all types of data.
All values in a tensor hold identical data type with a known shape. The shape of the data
is the dimensionality of the matrix or array.

A tensor can be originated from the input data or the result of a computation. In

Tensorflow, all the operations are conducted inside a graph. The graph is a set of

22

computation that takes place successively. Each operation is called an op node and are

connected to each other. Underneath, an example of an acyclic graph is presented:

Figure 14. Tensorflow acyclic graph
Graphs come in many shapes and sizes and are used to solve many real-life problems
such as representing circuit networks. They gather and describe all the series
computation done during the training.
All'in all, TensorFlow was being used in this diploma thesis to implement and use the
LSTM Machine Learning algorithm with the help of one of its library called keras’ as

descripted in the section 3.2.7.

17 https://keras.io/

23

https://keras.io/

Chapter 3: Development and Implementation

3.1 Chapter Introduction

In this chapter, the implementation is being discussed. How the tools that were described
in Chapter 2, were used in order to achieve the desired outcome. It analyzes step by step
the methodology that had been followed. It is separated into 4 sections: the Environment
Set-up analyzing the how this environment initialized, the Machine Learning Algorithms
covering which time-series Machine Learning algorithms used and information about
them, the System Architecture explaining how this environment is designed and finally,

the Scale Policy covering the algorithm behind the scale ups and downs.

3.2 Environment Set-Up

3.2.1 Kubernetes

As mentioned before, for the implementation of the whole experiment NITOS Testbed
was being used. Two of these nodes were used, one operating as a Kubernetes master
and the other as a Kubernetes worker. So, in order to utilize Kubernetes, a cluster must
be deployed. A Kubernetes cluster is simply, a set of node machines that run
containerized applications. After installing Docker and adding Kubernetes signing key and
repository on both nodes, it was time to initialize the cluster. This was done with the help
of Kubeadm, which is a tool for creating a viable Kubernetes cluster, with the following

command:

$ sudo kubeadm init —pod-network-cidr=10.244.0.0/16

The above command is being executed on one node only, making it the Kubernetes
Master node and the flag specify the range of IP addresses for the pod network,

automatically allocating CIDRs (blocks of unique IP addresses) for every node.

24

The output of this command is being displayed below, pointing out that some extra things

still need to be done.

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:
mkdir -p SHOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $SHOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 192.168.100.6:6443 —token 06tl4c.ogn35jzecidgOrOm —discovery-token-ca-
cert-hash sha256:c40f5fa0aba6ba311efch0e8ch637ae0eb8ce27b7a03d47be6d966142f2204¢

After successfully initializing the Kubernetes Master node, a folder must be created to
SHome/.kube in order to copy the configuration files to the local machine. In that way,
the communication with the API Server becomes possible using kubectl commands.
Then, a pod network must be deployed which is the medium between the network of the

nodes. In this diploma thesis, Flannel was being used with the following command.

$ sudo kubectl apply -f
https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-

flannel.ym|*8

Now, everything is ready for the other node, Kubernetes Worker to join the Master. This

is done with the command below.

18 hitps://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube -flannel.yml

25

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

$ sudo kubeadm join 192.168.100.6:6443 —token 06t14c.oqn35jzecidgOrOm —discovery-
token-ca-cert-hash
sha256:c40f5fa0ababba311efcdb0e8cb637ae0eb8ce27h7a03d47be6d966142f2204c¢

Checking the status of the cluster with kubectl just like below, shows that our cluster is

healthy and running and consists of two nodes.

bill@master-node

Figure 15. Kubernetes Cluster Checking

3.2.2 Php-Apache Deployment and Ubuntu Pod

Having the Kubernetes Cluster ready with the Master and Worker up and running, more
things had to be done. In order to put the whole experiment to the trial and to
demonstrate the results a deployment called php-apache was created. This deployment

runs a custom Docker image with the following content:

FROM php:5-apache
COPY index.php /var/wew/html/index.php
RUN chmod a+rx index.php

Figure 16. Custom Docker Image

It defines an index.php page (server) which simply responds to every request with an

“OK!” string, as shown below:

echo "OK!":

Figure 17. Index.php code

26

The .yaml file that starts a deployment running this image and exposing it as a service

making it visible for the whole Cluster, is being represented below:

Figure 18. Php-apache.yaml code

Running the following command, will create the deployment with the above

configuration.

$ kubectl apply -f php-apache.yaml

So, running a simple “curl <<php-apache-deployment IP>>” command will just display the

“OK!” string as shown beneath.

bill@master-node

OK!bill@master-node

Figure 19. Curl test

27

But there’s a twist right there. This <<php-apache IP>>, which was retrieved from the
“kubectl get pods” command, is the IP of the first replica. This is wrong because when
generating traffic, it must be distributed to all the replicas not just the first one.

For this reason, a Pod called Ubuntu was created. This idea behind is that when an
experiment is being held that uses a lot of “curl” commands to simulate traffic to the php-
apache server in the deployment that descripted above, the traffic must be scattered
equally across all replicas. This can be done by sending requests from another Pod to the
php-apache server in the same Kubernetes Cluster. Below, is being displayed its

configuration.

Figure 20. Ubuntu.yaml code

Running the following command, will create this Pod that is being discussed.

$ kubectl apply -f ubuntu.yaml

So, in every experiment that took place in this diploma thesis, the traffic was being sent to
the php-apache server from the “Ubuntu” Pod. In order to get the response from the
server an interaction with this running container must be done, with the help of this

command:

$ sudo docker exec -it <<container-id>> /bin/bash

28

This command enters a bash shell session with the container specified. In this way,
running the following command inside this container instead of “curl <<php-apache-
deployment IP>>" from the Kubernetes Master node will bring the desired result as

displayed underneath:

Figure 21. Curl test inside pod

3.2.3 DockerHub

It can be observed from the “image” header in the configuration files of the “Ubuntu” Pod
and the “Php-apache” Deployment (Figure 20, Figure 18) that the first one uses an image
called “zalos/ubuntu_make_calls” and the second one an image with “zalos/php-
apache_index” name. These are custom Docker images that are being pulled every time
the cluster initializes, from an online repository that allows to share container images,
called DockerHub [15].

After creating an account, these two images were uploaded online, making it possible to

III

“pull” them every time the Kubernetes Cluster starts, as it can be seen below:

#docker hub @ Search for great content (e.g., mysql) Explore Repositories Organizations Help v

zalos Q Create Repository
zalos / ubuntu_make calls o i 34 @Public

Updated 8 days ago
zalos / php-apache_index o + 1.9k @ Public

Updated a month ago

Figure 22. DockerHub User Interface and Images used

29

3.2.4 Prometheus and Grafana

Monitoring is a crucial feature in the context of resource usage, utilization and cost
control. Kubernetes clusters have to be actively managed to ensure pods utilize
underlying node resources efficiently. It allows developers to understand application and
user behavior quickly, identify bugs and scale an application due to usage as needed.
There is a wide variety of monitoring tools with Prometheus and Grafana being the most
popular. They can be used as complementary services that, together, provide a robust

time-series database with excellent data visualization.

Before the installation of these two charts, a StorageClass deployment needs to be
created. Kubernetes doesn’t provide data persistence out-of-the-box. That’s something
the developers have to explicitly configure. Because dynamic persistent volume
provisioning is needed, a namespace called local-path-provisioner is being created with a

provisioner installed, by executing the following command:

$ kubectl apply -f https://github.com/rancher/local-path-

provisioner/blob/master/deploy/local-path-storage.yaml

At first, Prometheus needs to be installed with the help of Helm®°. Helm is the package
manager for Kubernetes, and it allows describing the application structure through
convenient helm-charts and managing it with simple commands.

Four steps need to be made to install and check Prometheus using Helm:

1. Addthe Prometheus repository with the following command.

$ helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

2. Get the .values file from the repository and save it locally just like below:

$ helm inspect values prometheus-community/prometheus >

values/prometheus.values

19 https://helm.sh/

30

https://github.com/rancher/local-path-provisioner/blob/master/deploy/local-path-storage.yaml
https://github.com/rancher/local-path-provisioner/blob/master/deploy/local-path-storage.yaml
https://helm.sh/

3. Make the appropriate changes to this file and install. In server/service heading
replace type:ClusterlP to type:NodePort and add nodePort:32322 as being

depicted below:

service:
annotations: {}
labels: {}
clusterIP: ""

externallPs: []

loadBalancerIP:
loadBalancerSourceRanges: []
servicePort: 80
sessionAffinity: None
nodePort: 32322

type: NodePort

Figure 23. Prometheus Configuration before Figure 24. Prometheus Configuration after

This is done because Prometheus needs to be exported outside of the cluster
so that, the user interface that it provides can be seen from a machine that
isn’t part of the Kubernetes cluster.

4. Run this ssh command matching the local IP (8888) that the Prometheus user
interface will be displayed, the node IP of the NITOS Testbed (10.0.1.89) and
the NodePort that was descripted above (32322) along with the username and

the server name (vzalokost@nitlab3.inf.uth.gr).

$ ssh -L 8888:10.0.1.89:32322 vzalokost@nitlab3.inf.uth.gr

So, typing localhost:8888 in the local machine the user interface of

Prometheus will appear indicating that everything is up and working.

L (¢} O O localhost ¥ @ =
Enable query history Use local time B Enable autocomplete

Q, | Expression (press Shift+ Enter for newlines) m
Table Graph

a wontne

Figure 25. Prometheus localhost checking

31

A similar procedure has been followed for the installation of Grafana. Its installation was
done using Helm and these four steps where being described epigrammatically:

1. Addthe Grafana repository just like below:

$ helm repo add grafana https://grafana.github.io/helm-charts

2. Fetch the .values file from the repository and save it locally with the following

command:

$ helm inspect values grafana/grafana > values/grafana.values

3. Make the appropriate changes to this file and install. In service heading
replace type:ClusterlP to type:NodePort and add nodePort:32323 this time, as

being depicted below for exporting the Grafana outside the cluster:

service: service:
type: NodePort

nodePort: 32323

type: ClusterIP
port: BO

port: 80

: - targetPort: 3000
annotations: {} annotations: {}
labels: {) abels: {)
.|'.||.“". ¥ a . 1.|'.||:||:'1.': & .Ir I.
portName: servic portName: service

Figure 26. Grafana Configuration before Figure 27. Grafana Configuration after
4. Run this ssh command matching the local IP (8887) that the Grafana user
interface will be displayed, the node IP of the NITOS Testbed (10.0.1.89) and
the NodePort that was descripted above (32323) along with the username and

the server name (vzalokost@nitlab3.inf.uth.gr).

$ ssh -L 8887:10.0.1.89:32323 vzalokost@nitlab3.inf.uth.gr

32

So, typing localhost:8887 in the local machine the user interface of Grafana

will appear.

€) D o~ localhost o ® =

Welcome to Grafana

Figure 28. Grafana localhost checking

3.2.5 Metrics Query

Prometheus provides a function query language called PromQL (Prometheus Query
Language) that lets developers to select and aggregate time series data in real time. The
result of an expression can be shown as a graph or viewed as tabular data in
Prometheus’s expression browser.

So, the question that raises here is which query to choose and why?

Just like the Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
paper [16] a lot of queries were tested. Beyond CPU or Memory metrics, a very good
solution is to scale based on some query that describes the traffic that the php-apache
deployment receives. As the traffic requests are becoming more and more often, some
additional scale ups must be done so that the resources won’t overload from enormous
amount of requests that they must carry out. Accordingly, when in lower traffic request
rate, scale downs must occur in order to not have resources allocated without serving any

job.

33

Thus, a metric that is ideal for this case is the following:

avg(rate(container_network_receive_packets_total{pod=~"php-apache.+"}[10m]))

Separating this query to three parts, will help to better understand it:

1. container_network_receive_packets_total = is a counter that describes the
cumulative count of packets that a container receives. Here it should be noted
that this query returns as many results as the number of replicas of this
container.

2. container_network_receive_packets_total{pod=""php-apache.+"} = is a label
that filter the output of the container_network_receive_packets_total query
and returns the cumulative packet count that a container receives whose pod
has the “php-apache” string inside its name. Basically, it returns the
cumulative number of received packets for each replica of the php-apache
container.

3. rate(container_network_receive_packets_total{pod=""php-
apache.+"}[10m]) = calculates the per-second rate of packets received in the
php-apache server as measured over the last 10 minutes for each replica
separately.

4. avg(rate(container_network_receive_packets_total{pod=""php-
apache.+"}[10m])) = returns the average rate of cumulative packets received

across all replicas for 10 minutes.

3.2.6 Prometheus Adapter

Prometheus is the standard toll for monitoring deployed workloads and the Kubernetes
cluster itself. It has a custom component called Prometheus Adapter, which works like a
guery in the Prometheus database by gathering selected metrics and is mainly used to

make scaling decisions. These metrics are being taken advantage both by the Horizontal

Pod Autoscaler object and the developers for fetching and using them as they want.

34

In order to install the Prometheus Adapter, helm was also used following the previous
procedure:
1. The Prometheus repository has already been added.

2. Get the .values file from the repository and save it locally just like below:

$ helm inspect values prometheus-community/Prometheus-adapter >

values/new_prometheus_adapter.values

3. Make the appropriate changes to this file and install. A custom rule has been
defined fetching the rate of cumulative received packets of the php-apache
server for each replica and matching this metrics with “my_custom_metric”

string as being depicted below:

name_ =~"container_network receive packets total"}

. Namespace

<<, GroupBy>=)

Figure 29. Prometheus Adapter Configuration

4. In order to verify that the data is being exposed properly, the following

command is used:

$ kubectl get --raw
/apis/custom.metrics.k8s.io/v1betal/namespaces/default/pods/*/my_custom

metric | jq .

This command returns as many instances as the number of replicas. Here is an

example of 2 replicas.

35

yis/custom.metrics.k8s

Figure 30. Prometheus Adapter Checking

3.2.7 TensorFlow

TensorFlow, being a Python library for fast numerical computing that makes easy for the
developers to build and deploy Machine Learning models, was necessary for this diploma
thesis. With the help of TensorFlow, the time series ML models were being used such as
LSTM. Python3.7 and Miniconda were being used for the installation.

Conda is an open-source package management system and environment management
system that quickly installs, runs and updates packages and their dependencies.
Miniconda is simply a minimal installer for conda. After successfully installing Miniconda

from this link: https://docs.conda.io/en/latest/miniconda.html, the following command

was used:

$ conda create --name tensorflow python3.7 && conda install -c anaconda tensorflow

It creates a Python environment called “tensorflow” and installs tensorflow within.

36

https://docs.conda.io/en/latest/miniconda.html

Now, the only thing that left is to enter this environment and install the necessary
packages for the Machine Learning models. Underneath is shown the Python

environment that each ML algorithm ran.

bill@master-node:~$ conda activate

(tensorflow) bill@master-node:~$ |

Figure 31. Python Environment

3.2.8 Horizontal Pod Autoscaler

Horizontal Pod Autoscaler automatically scales the number of Pods based on a specified
metric. In this diploma thesis, because the scaling was based on custom metrics
(container_network_receive_packets_total), the HPA must fetch this metric from the
Prometheus Adapter. As described above, the Prometheus Adapter associates the metrics
query provided, with a variable called “my_custom_metric” which then, HPA uses for
input metric in order to decide whether to scale or not. The configuration of the

Horizontal Pod Autoscaler can be seen below:

apiVersion:

kind: Horizon

: Dep
php

Figure 32. Horizontal Pod Autoscaler Configuration

37

S kubectl apply -f hpa.yaml

A Horizontal Pod Autoscaler object was created, with autoscaling/v2beta2 version, with
minimum number of replicas equal to 1 and maximum to 10 being named as
“my_custom_hpa”. The metric fetched is the one described earlier, and the scaling is
done based on an average value of 25 of the php-apache server.

So, typing “kubectl| describe hpa” command, will ensure that the Horizontal Pod

Autoscaler is running properly:

e: 1; reason: ALl metrics below target

Figure 33. Horizontal Pod Autoscaler Checking

3.3 Machine Learning

3.3.1 Overview

In order to learn from the past trends, identify patterns and make decisions about the
future this thesis used machine learning algorithms that involve a time component called
time series machine learning algorithms. Time series forecasting can be categorized into
the following series:
1. Classical / Statistical Models = models that have mainly strong base in
statistics like Moving Averages and Exponential Smoothing.
2. Machine Learning = models with reduction methods such as Random
Forests.
3. Deep Learning = complex neural networks with a time component like

RNN.

38

A model from it’s of these categories was used. Arima for Classical models, XGBoost for
Machine Learning models and LSTM for Deep Learning models. Each algorithm was
utilized in order to make a 5-step out-of-sample prediction on the average rate of
cumulative packets received from the php-apache server so that there’s time for the

appropriate scaling of the deployment before the predicted traffic arrives.

3.3.2 Methodology

Before explaining separately every algorithm that had been used, the general idea of how
the 5-step out-of-sample predictions must be mentioned. At first, every model takes a
dataset for input. This dataset is a .csv file that represents the average rate of the packets
sent to the server and is used for training. Then, the Machine Learning model is being
fitted on the training data so that it can be used for forecasting. The forecast that is being
produced is just an observation that is not part of the input data and that’s why it is called
out-of-sample. Now, in order to make a 5-step out-of-sample forecast, every prediction
that is being made, is used as input for the next one and the whole process repeats 5
times. To make things clearer, an example of a 3-step prediction is being presented in the

following picture 2°

— — — — — —_—— — I-step prediction

Multi-step ahead
widition _l prediction Actual values
predic
0@ O' -+ @, @ O

l)

— e = e—— — e ——o—— ——— 3-step prediction

Figure 34. Multi-step prediction basic idea

20 https://www.mdpi.com/1996-1073/13/16/4121/htm (Figure 3)

39

https://www.mdpi.com/1996-1073/13/16/4121/htm

Here every blue dots represent the actual values from the input dataset and the yellow
are the predicted values. So, in the first step, a yellow dot has been produced with the
help of Machine Learning algorithms, that represents a future value at time T. Then, this
prediction plus the input dataset are used as input by appending it to the dataset in order
to be fitted by the model and a new forecast to be brought out at time T+1. The same
thing is done for the T+2 dot. Furthermore, when the 3-step prediction is being made, the
3 predicted values are then being replaced with actual values making every dot blue and
this process repeats all over again. Thus, the prediction for the time T+1 is based on the
whole dataset plus T, the forecast on T+2 is based on the dataset plus T and T+1, and T+3

on the dataset plus on T,T+1,T+2.

3.3.3 Datasets

As far as the datasets [17] [18] that had been used, they provide information about the
telecommunication activity (SMS, data, calls) over the city of Milan. Two datasets were
used and got renamed to high.csv and medium.csv representing the number of

connections to a base station as being shown below:

Hour,Connections
0,1919.7124
1,1683.08394
2,1341.6125

3 ETE

s bs I s |

5092
Bl = [& |
b2.812

JAa72000600002

Figure 35. Dataset Format

40

After rounding up the Connections column, underneath there’s a plot that shown both

datasets.

— High
14000 1 9

Medium
12000 4
10000 -
8000 4
6000
4000 \ |

\ ‘I‘ \

2000 4 /\/

3 25 50 : ‘ 2 ;

75 100 125 150

Chart 1. High and Medium Datasets

The high.csv, as its name suggests has higher number of connections than the
medium.csv. However, none of these datasets were used for training. As 4.2 section
explains in detail, these datasets generated traffic to the php-apache server with a simple
curl command for every connection. For example, the first hour as it can be seen in Figure
31 has 1919.7 connections. So, 1918 HTTP requests were sent with each one displaying
the “OK!” string, as descripted in 3.2.2.

The dataset that each Machine Learning algorithm used for training is the one each was

retrieved from Grafana with the following query:

avg(rate(container_network_receive_packets_total{pod=~"php-apache.+"}[10m]))

It returns the average rate of cumulative packets received across all replicas for 10

minutes. Beneath is displayed the training dataset across 10 replicas of 1412 points based

on the high.csv dataset to generate traffic:

41

m A

30

A ') |

Value

) ﬁf \ M VY

0 500 1000
Time

Chart 2. Training Dataset

The y-axis values are averaged across 10 replicas and not less because the y-values would
be smaller in another case. This happens because the avg() function takes a measurement
and then divides it by the number of the replicas. So, more replicas mean smaller values
in this specific metric. This way it is easier for the Machine Learning algorithms to predict

the upcoming traffic as there are no major changes in the value of this metric.

3.3.4 Algorithms

3.3.4.1 Arima
As mentioned before, a representative algorithm of Classical Machine Learning time
series models, is Arima [19]. Arima is an acronym for “AutoRegressive Integrated Moving
Average” and a type of model known as Box-Jenkins method. This acronym is descriptive
capturing the key aspects of the model itself. Briefly, they are:

e AR: Autoregression. A model that uses the dependent relationship

between an observation and some number of lagged observations.
e I: Integrated. The use of differencing of raw observations (e.g. subtracting

an observation from an observation at the previous time step) in order to

42

make the time series stationary. A stationary time series is one whose
properties do not depend on the time at which the series is observed. So,
time series with trends or with seasonality are not stationary.

e MA: Moving Average. A model that uses the dependency between an
observation and a residual error from a moving average model applied to

lagged observations.

Each of these components are specified in the model as a parameter. A standard notation
is used of ARIMA(p,q,d) where the parameters are substituted with integer values. These
can be defined as:
e p: The number of lagged observations included in the model; also known
as the lag order.
e q: The number of times that the raw observations are differenced; also
known as the degree of differencing.
e d: The size of the moving average window; also called known as moving

average.

A linear regression model is constructed including the specified number and type of terms
and the data is prepared by a degree of differencing in order to make it stationary so that
trend and seasonality structures to be removed because they affect the regression model
negatively.

In order to use the Arima algorithm, the statsmodels?? library must be installed. It is done

with the following command using conda:

$ conda install statsmodels

After successfully importing Arima, the next step was to check the data for stationarity?2.
Stationarity implies that taking consecutive samples of data with the same size should
have identical covariances regardless of the starting point. That’s the reason it is easier to

be analyzed and implemented by many algorithms. Below, there are two examples?® of

21 https://www.statsmodels.org/stable/index.html
22 https://otexts.com/fpp2/stationarity.html
23 https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322 (Figure 1)

43

https://www.statsmodels.org/stable/index.html
https://otexts.com/fpp2/stationarity.html
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322

non-stationary and stationary times series data with the first one with a trend headed

downwards and the second with no trend at all.

Stationary Time Series

w | A l

= il .ll' IJ
- 1'.* l'-* .hi I;JU'H‘ h‘f# ‘H""I" 1l 'H’ r "lHII
- UF_L“" I |0

Hon-stationary Time Saries

an

=

= o Jla P r .

- Wlagl Ha e, o A

0 - b
= ¥

F ADF = - 20251 ailn

" = ~
ol -
= i
o 200 800 GO0 B0 1000

Figure 36. Stationary vs Non-Stationary examples

So, it can be easily decided that the input data are stationary data checking the second
chart. The next step is to tune the hyperparameters of the model (p,q,d) that best fit the
dataset provided. This is a simple process that just test every possible combination and
check the Mean Average Error?* (MAE) of the predictions. MAE informs about how close
the regression line is to a set of points. It does this by taking the distances from the points
to the regression line and squaring them. The predictions are 5-step, and the dataset was
split into test and train. This approach is very close to the experiment that this diploma
thesis focuses in order to find the optimal Arima regression for this case. Inspecting the

results, an Arima model with hyperparameters: p=5, q=0, d=1 was selected.

24 https://en.wikipedia.org/wiki/Mean absolute error

44

https://en.wikipedia.org/wiki/Mean_absolute_error

After tuning the model, everything is ready for the predictions. How the predictions are
being made is descripted above in 3.3.2 section. Here is a code snippet of the

implemented Arima algorithm:

n range(@, len(test), future steps):

] range(future steps):

model = ARIMA(history, order=(5, 0,
model fit = model.fit()
output = model fit.forecast()

yhat = output[0]
predictions.append(yhat)
obs = test[j+i]
history.append(yhat)

] range(points_to_append):

history[hist end+j] = test[test end+]]
history end = history end + points to append
test end = test end + points to append

Figure 37. Arima code snippet

At first, Arima is implemented and fitted to the input data (history variable). Then, the
method .forecast is called to make a single prediction. This prediction is appended to the
dataset so that it will be used as input. This process repeats 5 times and then after these 5
forecasts are appended to the predictions array, they get replaced with the actual values.
Also, in order to evaluate the model’s accuracy and to have an early point of view on how
it would perform in the live scenario that this thesis’ custom system will run, the above
scenario was used. The dataset was split into train and test, with test containing the last
350 points out of the 1412 of the input dataset. The model was trained 1062 points and
made 5-step predictions of the last 350 points. This is the chart comparing this forecast to

the actual values:

45

Ir

[1\

N
P —aty,
a0 By J‘. j

A J
10 A kLL_L . '
. x.?...:f k.
— Actual L
09 — Predicted b
ll'.l SIGI lEJO 150 2CIJD 250 31JI-0 350

Chart 3. Arima predictions

As it can be observed, Arima’s prediction are very good and accurate as the Mean

Average Error of this regression is just 1.036.

3.3.4.2 XGBoost

XGBoost [20] is an open-source software library and stands for eXtreme Gradient
Boosting. It is a decision-tree-based ensemble Machine Learning algorithm that uses a
gradient boosting model. This model is an additive one, where trees are grown in
sequential manner and converts weak learners into strong learners by adding weights to
the weak learners and reduce weights of the strong ones. So each tree learns from the
previous tree grown. Also, XGBoost uses a more regularized model formalization to
control over-fitting which gives better performance and is engineered to exploit every bit
of memory and hardware resources for tree boosting algorithms. XGBoost is very popular
nowadays because it stands out for its computational speed and model performance. It is

also installed with the conda command like below:

$ conda install xgboost

Unlike Arima, the input data must be prepared accordingly for XGBoost. The data must be

restructured to look like a supervised learning problem?°. Supervised learning is an

2 https://machinelearningmastery.com/time-series-forecasting-supervised-learning/

46

https://machinelearningmastery.com/time-series-forecasting-supervised-learning/

approach to Machine Learning where the machine learns from labeled data. By feeding
the learner with examples together with the true labels for those examples, the machine
learns a mapping from input to output. So, samples that have not seen before by the
learner are fed to the model and a prediction is made based on the mapping learned.
Given a sequence of numbers for a time series dataset, the previous time steps can be
used as input variables and the next time step as output variables. Suppose a time series

as follows:

time, measure

2 1, 100
3 2, 110
4 3. 108
5 4, 115
6 5, 120

Figure 38. Time series dataset format

The data must be reorganized as descripted above so that they look like this:

X, v

2 7, 100

3 100, 110
4 110, 108
S 108, 115
Lo

115, 120
120, ?

Figure 39. Time series supervised learning format

X value is taken as input and y as output. Also, it can be observed that the time column is
dropped and some rows of data are unusable for training a model, such as the first and
the last. This representation is called a sliding window, as the window of inputs and
expected outputs is shifted forward through time to create new samples for a supervised

learning model.

47

A simple extension can be made here. In this specific case, the algorithm takes one point
as input and produces one point as output which is not the best solution where there’s a
multistep forecast, like in this thesis. So, in order to make more accurate predictions a
good idea is to use more points as input. But there is a problem here. More points would
definitely help increase the model’s accuracy but it doesn’t mean the more points to take
as input the better. By testing the algorithm with such points ranging from 1 to 90 to use
as input and taking into consideration the Mean Average Error, 50 points was found to be
the optimal value for the points to take as input. In order to understand the input format

of the data an example of 3 is shown below.

X1, X2, X3, Y
22, 7 7, 100
?, 7, 100, 110
4 ?, 100,110, 108
100, 110, 108, 120
6 110, 108, 120, ?

Figure 40. 3 points supervised learning example

The only thing that changes between this example and the input format of XGBoost is
that in XGBoost format the X variables are expanded until X50 and not X3. As a result, the
first and the last 50 values of the dataset are being discarded.

Then, two hyperparameters values had to be chosen: objective and n_estimators.
Objective specifies the learning task and the corresponding learning objective to be used.
A wide variety of objectives were tested such as count:poisson, reg:gamma,
reg:squarederror with reg:tweedie being the best one for this case, due to the lowest
Mean Average Error. As far as the n_estimators variable, it represents the number of
gradient boosted trees. Changing this variable helped choose a value of 20 for the

XGBoostRegressor function. Below, is the code that tests the XGBoost algorithm:

48

range(Lloops num):

estX = history[-1][-num points to look back:]

o insert

asarray(train)

Figure 41. XGBoost code snippet

After selecting the appropriate input vector for the algorithm, the model is fitted to the
data and a prediction is made. Then, this prediction is added to the input vector which is
shifted left in order to be used as input for the second prediction. A slightly different
approach was used here. Instead of appending the predictions to the dataset and then
replacing them accordingly, this XGBoost implementation only appended the actual
values at the end of its 5-step forecast but using the previous predictions as inputs. So,
after 5 iterations, the actual values were appended to the dataset every time.

The same scenario as in the Arima was used in order to test its accuracy. The dataset was
split into train and test, with test containing the last 350 points. The following image

shows the XGBoost performance with MAE= 2.72.

49

o) h
40 - '“""“‘“-1\[

30 A \

L

10 ~ i '1

— Actual L
0 - Predicted
T T

T T T T T T
0 50 100 150 200 250 300 350

Chart 4. XGBoost predictions

3.3.4.3 LSTM

The last Machine Learning time series algorithm that this diploma thesis use is LSTM [21].
The LSTM or Long Short-Term Memory network is a type of recurrent neural network
used in deep learning. Recurrent networks have an internal state that can represent
context information and keep track of the past inputs for an amount of time that is not
fixed but rather depends on its weights and on the input data. LSTMs are explicitly
designed to be able to connect previous information to the present task in such a way
that the long-term dependency problem is being solved. Remembering information for
long periods of time is practically their default behavior, not something they struggle to
learn. Instead of neurons, LSTMs have memory blocks that are connected through layers.
A block has components that make it smarter than a classical neuron and a memory for

recent sequences. A block contains gates that manage the state and the output and

50

operates upon an input sequence. The different types of gates are being shown in the

following image?®:

Input Gate
Forget Gate S 5 Output Gate
1 2 3
Forget irrelevant Pass updated
information LST™M information
b

add/update new
information

Figure 42. LSTM block architecture

There are three types of gates within a unit:
1. Forget Gate: conditionally decides what information to throw away from
the block.
2. Input Gate: conditionally decides which values from the input to update
the memory state.
3. Output Gate: conditionally decides what to output based on input and the

memory of the block.

So, in order to use the LSTM network, tensorflow need to be installed in order to use its
library keras. After installing tensorflow (section 3.2.7), the next step is to prepare the
data. It is common in neural networks to scale the input data before training, using
MinMaxScaler. MinMaxScaler is scaling the independent variables so that they lie in the
range of 0 and 1. This is important because few variable values might be in thousands and
few might be in very small ranges. So, to handle such cases scaling was applied to the

training dataset with the additional code displayed underneath:

26 https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-Istm/

51

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/

scaler = MinV

dataset = 5cC3

Figure 43. MinMaxScaler code snippet

Also, the LSTM model will learn a function that maps a sequence of past observations as
input to an output observation. As such, the sequence of observations must be
transformed into multiple examples from which the LSTM can learn.

For example, for a given univariate sequence:

1 [10, 20, 30, 40, 50, 60, 70, 80, 90]

Figure 44. Univariate sequence example

The sequence can be divided into multiple input/output patterns called samples, where in
this given example, three time-steps are used as input and one time step is used as

output as seen below:

17X, y
2 10, 20, 30)
3 20, 30, 40 50

4 30, 40, 50 60

2

Figure 45. 3-step modification example

Just like XGBoost, this approach can be modified to take more points as input in order to
produce a single prediction. 40 input points was found to be the optimal number of input
points for this particular case. A combination of input points has been tested, checking
the MAE and the time consumed to train and fit the model. So, the input has a format like
this: [samples, timesteps]. But LSTM network expects a 3-dimensional input which has to
be formatted to: [samples, timesteps, features]. Since the preferred output of this
algorithm is one (1 prediction at a time), the input must have this format: [samples,

timesteps, 1] which is being executed with the code below:

52

n features =1

train_x, train_y = split_sequence(train, n_steps)
train x = train x.reshape((train x.shape[8], train x.shape[l], n_features))

Figure 46. LSTM input format

In this diploma thesis, Vanilla LSTM is used. A Vanilla LSTM model has a single hidden
layer of LSTM units, and an output layer used to make a prediction and it is defined as

below:

model = Sequential()

epochs_number

model.fit(train x, train y, 5 number, verbose=0)

Figure 47. LSTM model

The hyperparameters of this network are:

1. LSTM Units: refers to the number of units of LSTM. A higher number of
units indicates a more powerful network with raising training time and
very possible to overfit the data. A lower number of units leads to a bad
implementation of the algorithm with low accuracy score. 400 LSTM units
was found to be the optimal number.

2. Number of epochs: is the number of times that the learning algorithm will
work though the entire training dataset. Usually, training a neural network
takes more than a few epochs with this LSTM network using 40.

3. Loss function: is the function that simply calculates the error. It reduces all
the various good and bad aspects of a complex system down to a single
number which allows candidate solutions to be ranked and compared.
This thesis uses the “MSE” loss function which calculates the loss based on
the difference between the model’s predictions and the ground truth,
squaring it and averaging it across the whole dataset.

4. Optimizer: is an algorithm or a method used to change the attributes of

the neural network such as weights and learning rate to reduce the

53

losses. Optimizers helps to get results faster. The “adam” optimizer [22]

was used because its effectiveness.

In order to check if the LSTM network overfits, learning curves was used?’. A learning
curve is a plot of model learning performance over experience or time. Learning curves
are a widely used as a diagnostic tool in Machine Learning for algorithms that learn from
a training dataset incrementally. The model can be evaluated on the training dataset and
on a holdout validation dataset after each update during training and plots of the
measured performance are created to show learning curves. Reviewing these curves
helps detect if the algorithm overfits, underfits or has a good fit over the validation data.
A good fit is the goal of the learning algorithm and exists between an overfit and underfit
model. It is identified by a training and validation loss and specifically, if both of them
decrease to a point of stability and the validation loss has a small gap with the training
loss. Underneath, the plot of these losses is demonstrated indicating that with the specific
hyperparameters, the model has a good fit over the data with a training dataset

consisting of the first 300 points and a validation dataset containing 300 to 550 points.

model train vs validation loss

0.035 4 — train

validation
0.030 4

0.025 4

0.020 4

loss

0.015 4

0.010 4

0.005 4

0.000 + R o - .

T
0 5 10 15 20 25 30 35 40
epoch

Chart 5. LSTM learning curves

27 https://machinelearningmastery.com/diagnose-overfitting-underfitting-Istm-models/

54

https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

In order to make forecasts and validate and visualize the results as done with Arima and
XGBoost , the methodology explained in 3.3.2 section was used. The input dataset was
split into train (first 1062 points) and test (last 350 points) using 5-step forecasts. The

following chart shows the LSTM network performance over the test dataset with

MAE=3.22.

200 A
150 4
100 A
50

04 —— Actual .

—— Predicted N

0 50 100 150 200 250 300 350

Figure 48. LSTM predictions

3.4 Scale Policy

The scale policy that this diploma thesis used, is based on the Horizontal Pod Autoscaler

scaling algorithm and is shown below:

desiredReplicas = ceil[currentReplicas * { futureMetricValue / desiredMetricValue)]

Figure 49. Custom scale policy

55

The only difference between the HPA’s scale policy and this thesis policy is that the
currentMetricValue variable has been replaced with the futureMetricValue variable. The
futureMetricValue is the prediction that has been produced from the Machine Learning
part and has to do with the upcoming traffic. More specifically, it is the average rate of
cumulative packets received across all replicas for the 10 following minutes. So, having
this value forecasted, the deployment can scale before the traffic arrives making better

use of resources.

3.5 System Architecture

Last but not least, the architecture of the environment must be analyzed. It is a Python
script that runs at the same time as the traffic that the php-apache server receives
predicting the next values, scaling, fetching the actual values and appending them to

dataset. Here an image is being displayed explaining the logic behind.

Predict 5 future points

Y

Calculate the average

Y

Calculate the replicas
number needed

Scale

A J

Append 10 values in
dataset

Sleep /

Figure 50. Thesis' system architecture

56

The architecture of the system that was developed for this diploma thesis can be divided

into 7 sections:

1.

Predict 5 future points: this is the part that a 5-step forecast is being
made with the help of the Machine Learning time series algorithms.
The value that is being predicted is the average rate of cumulative
packets received across all replicas. In order to make comparisons for
each algorithm, 3 python scripts were created one for each algorithm,
with each algorithm used separately in each experiment. So, this is the
only part that differs in these 3 python scripts.

Calculate the average: the average of these 5 values is being calculated
in order to be used as input for the formula that calculates the replicas
number. It was preferred to calculate the average of the next 5 values
compared to simply predicting the next one because with the second
approach there would be a lot of ping-pong effects. A better use of
resources is being made when the deployment is not scaled in traffic
spikes as it is better to strain for a few seconds to carry out the
workload than to scale the whole deployment. That’s why the average
of the next 5 values is used.

Calculate the replicas needed: the futureMetricValue is being replaced
from this formula (Figure 10) with the average value of the 5
predictions in order to get the replicas needed to handle the upcoming
traffic in the best way possible.

Scale (manually): after getting the replicas number needed for the
upcoming minutes, the deployment must be scaled, if the predicted
number of replicas is different from the current number of replicas.
Append 10 values in dataset: this part consists of sampling 10 points of
this metric (average rate of cumulative packets received across all
replicas) every 16 seconds, with the help of Prometheus Adapter. 16
seconds where chosen in order to see changes in its value as
Prometheus has a refresh rate of 15 seconds. So, in 160 seconds 10

samples are taken 16 seconds apart the one from another.

57

6. Sleep: this is the final step and is just a suspension of the execution of
the program for a given number of seconds. This number is simply the

subtraction of the time spent from step one to step 6 of 3 minutes.

This is the main structure of the mechanism that this diploma thesis
implements, that scales in real time based on the predicted upcoming

traffic without the help of Horizontal Pod Autoscaler.

Chapter 4: Experiments and Comparisons

4.1 Chapter Introduction

This chapter consists of some experiments that took place in order to test the
mechanism’s ,that this diploma thesis implements, functionality. Also, it is found that this
mechanism scale more efficiently as the same number of replicas is being deployed
earlier compared to the Horizontal Pod Autoscaler making better use of resources. The
experiments that were performed are being analyzed and the HPA along with the
implementationo of this mechanism for each Machine Learning algorithm are being

compared.

4.2 Experiments Description

In order to test the mechanism that this thesis implement, some experiments need to be
done. The scenario explained above, is being executed 4 times, 3 for each Machine
Learning time series algorithm that had been used (Arima, XGBoost, LSTM) and one for
the Horizontal Pod Autoscaler. This mechanism runs at the same time as the generation
of traffic, just like the Horizontal Pod Autoscaler.

Two Kubernetes Objects were being used in order to generate traffic to the php-apache
server: the Php-Apache Deployment and the Ubuntu Pod, that had been analyzed in 3.2.2
section. This deployment defines the php-apache server and this Pod is used in order to
distribute the traffic equally to all replicas of the server. So, the requests that the apache

server receives, are all being sent from the Ubuntu Pod. After transitioning to the

58

container that this Pod utilize, a Python script called make_calls.py is being used that

III

simply make requests (“curl” command) to the server every 3 minutes. The number of
requests is being retrieved from the high.csv for one case and the medium.csv from the
other case (3.3.3 section).

As far as the Machine Learning, a few more things need to be specified. The training of
the models was done with the dataset that was collected from the traffic generated by
the high.csv dataset and represent the custom metric according to which the scale that
was done and is displayed in Chart 2. As mentioned above, this metric was averaged over
10 replicas so that there would not be some major ups and downs that will make it for the
Machine Learning algorithms hard to train and predict.

Since the traffic generated every 3 minutes, so did the whole procedure that is being
presented on the 3.5 section had to last for each iteration. In these 3 minutes, the first 20
seconds are for training the model, making 5-step prediction and scaling appropriately.
The rest 160 seconds are for sampling every 16 seconds for 10 times.

So, 2 terminals were needed, one for the generation of traffic (Ubuntu Pod) and one for
running the mechanism that this thesis utilize. These Python scripts run simultaneously,

with the first one making requests to the php-apache server and the second one

producing predictions, scaling, sampling and both of them operating every 3 minutes.

4.3 Experimental Results

Having the environment ready and the experiment rolling, the performance charts are yet
to be presented. In order to demonstrate and evaluate the mechanism that this diploma
thesis is all about, some diagrams were made that show how well each Machine Learning
algorithm performed in predicting the future and therefore, scaling the deployment.
These diagrams describe the change in the replicas number as a function of time, based

on the traffic received on the php-apache server.

4.3.1 Same dataset for train and test

In this section, high.csv was used for both training and testing. As mentioned in 3.3.3

section, the algorithms are trained on the traffic that this dataset produced which in this

59

case, is also used for testing. Underneath each Machine Learning algorithm’s

performance is being presented based on the change of the replicas number over time.

10 4 Arima 10 1 Arima
—— XGBoost —— LSTM
87 8
g 5
E 6 E 64
- g
g 4 & 4
2 2
0 200 400 600 800) 200 400 600 800
Time Time
Chart 6. Arima vs XGBoost high.csv dataset Chart 7. Arima vs LSTM high.csv dataset
10 { — XGBoost
—— ISTM
54
z
E o]
=
%
2 44
54
0 200 400 600 800

Time

Chart 8. XGBoost vs LSTM high.csv dataset

In these diagrams, the Arima regression is with the orange line, the XGBoost with the red
and the LSTM with the blue. This experiment lasted 220,5 minutes as there are 882 points
in the x-axes with each one representing a 15 seconds period. While there are differences
in replicas number for each algorithm, it can be seen that more or less, the overall results
are similar. Furthermore, differentiating the predictions of each algorithm from the
others, some of these differences are due to the factor of luck that governs
communication with the php-apache server, as there are thousands of requests that

arriving in the server within a short time.

60

4.3.2 Different dataset for train and test

In this section, high.csv was used for training and medium.csv for testing. As mentioned in
3.3.3 section, the algorithms are trained on the traffic that high.csv produced and tested
on the traffic that medium.csv made. Below each Machine Learning algorithm’s

performance is being presented based on the change on the replicas number.

104 Arima 10 4 Arima
—— XGBoost —— LSTM
8 8
z z
£ 5] £ 5]
= =
2 2
0 200 400 600 800 1000 1200 0 200 400 500 800 1000 1200
Time Time
Chart 9. Arima vs XGBoost different dataset Chart 10. Arima vs LSTM different dataset
10 1 —— XGBoost
— LSTM
84
3
E 6]
=
%
& 44
24
(I) ZCIFO 460 660 860 lUIUD l2IUD

Time

Chart 11. XGBoost vs LSTM different dataset

The Arima regression is with the orange line, the XGBoost with the red and the LSTM with
the blue. This experiment lasted for 317,5 minutes as there are 1270 x-axes points.
Comparing the duration of this experiment with the one described in 4.2.2 section, this

experiment lasted almost 100 minutes longer. The values of medium.csv are way smaller

61

than in high.csv, making it less time consuming to fit the Machine Learning model in order
to make predictions. Also, the changes in the replicas number by every algorithm are

again not far from each other.

4.4 Comparisons with Autoscaler

Having every Machine Learning algorithm’s performance diagram, it is time to compare
each of them with the Horizontal Pod Autoscaler in order to test whether the system that

this diploma thesis implements is indeed making better use of resources or not.

4.4.1 Same dataset for train and test

In this section, high.csv was used for both training and testing. As mentioned in 3.3.3
section, the algorithms are trained on the traffic that this dataset produced which is in
this case used for testing too. Below, there are displayed 3 diagrams that compare the
change of replicas number between the HPA and each Machine Learning algorithm using

the same dataset:

10 1 —— Horizontal Pod Autoscaler r 10 1 —— Horizontal Pod Autoscaler
Arima J —— XGBoost

. [l L | | o

T
’ H[II N

T T T T T
T T T T T
0 200 400 600 800 o 200 400 600 800

Replicas Number
Replicas Number

Time

Chart 12. HPA vs Arima same dataset

Time

Chart 13. HPA vs XGBoost same dataset

62

10 1 —— Horizontal Pod Autoscaler
— LST™M

Replicas Number

T T T T T
0 200 400 600 800
Time

Chart 14. HPA vs LSTM same dataset

According to these graphs, it can be observed that in the case of same dataset for training
and testing, this mechanism gets better results than the Horizontal Pod Autoscaler. A
better use of resources is achieved as the scaling is done earlier using this mechanism.
More specifically, the same number of replicas is being scaled several seconds on many

occasions before the HPA would do.

4.4.2 Different dataset for train and test

In this section, high.csv was used for training and medium.csv for testing. As mentioned in
3.3.3 section, the algorithms are trained on the traffic that high.csv produced and tested
on the traffic that medium.csv brought out. Underneath, can be found 3 diagrams that
make comparisons between each Machine Learning algorithm used and the Horizontal

Pod Autoscaler using the scenario descripted above:

10 4 Arima 10 1 —— Autoscaler
—— Autoscaler —— XGBoost

Replicas Number
Replicas Number

o 200 400 600 800 1ooo 1200 0 200 00 500 800 1000 1200
Time Time

Chart 15. HPA vs Arima different dataset Chart 16. HPA vs XGBoost different dataset

63

10 1 —— Autoscaler
LST™M J

Replicas Number

T T T T T T T
0 200 400 600 800 1000 1200
Time

Chart 17. HPA vs LSTM different dataset

And in this scenario, the mechanism that this diploma thesis implements is performing
better than the Horizontal Pod Autoscaler. The scales are done earlier than the HPA which
shows that better use of resources is being achieved. It predicts the upcoming traffic in
order to scale in time and when the traffic arrives everything is scaled as they should do,
so that there are no resources that overwork or being allocated and not serving the

traffic.

Chapter 5: Conclusion and Future Work

5.1 Chapter Introduction
In this chapter, the conclusion and the future work are being presented. The main idea of

this diploma thesis that had been discussed so far is being summarized and some

suggestions considering the future work are being made.

5.2 Conclusion

Allin all, the main idea of this thesis is to implement a mechanism that would scale a
deployment based on the upcoming traffic on the server with the help of Machine
Learning algorithms. This results in better resource utilization as there are no resources

that are allocated and not used or overtrying to carry out the tasks needed. Energy is also

64

saved as without the autoscaling mechanisms like the one that this diploma thesis
implements, all of the resources must be allocated in order to be able to serve the
upcoming tasks which would be very energy-inefficient. The goal was achieved based on
the experiments that took place above resulting that the replicas number can be well-
predicted, showing that in dynamic scaling and in mechanisms such as the Horizontal Pod

Autoscaler there is enough room for improvement.

5.3 Future Work

Although the goal of this diploma thesis is considered to be accomplished, there are some
improvements that could be made in order to achieve better results. At first, as
mentioned above (section 3.5), for every iteration that lasts 3 minutes, up to 20 seconds
were consumed by the Machine Learning algorithms for training and fitting the model.
But as the training dataset increases (10 points are appended in each iteration), the time
it takes for the algorithms to train also increases. If this proccess exceeds 20 seconds, the
corresponding Python script crashes and the mechanism that this diploma thesis
implements stops working. That’s why this mechanism cannot run endlessly. Therefore, a
good solution to this problem that will make this custom mechanism to run without any
time limit is to train and fit the model in a finite dataset. This dataset can represent a
definable number of points that for every 10 new points, the 10 oldest points have to get
discarded in order to keep a steady dataset length.

Also, a new experiment can be created that will further test and evaluate the importance
of having as best scaling as possible, with the help of Machine Learning as this diploma
thesis implements. Instead of having a php-apache server that simply responds with a
string and inspecting the replicas number, an application could be also written that will
have a better performance when the appropriate scaling is done. A nice example of an
application like that would be a video-streaming one that would generate traffic that with
poor scaling decisions the video will be laggy and with great scaling decisions would be
smooth.

Finally, different Machine Learning time series forecasting algorithms can be tested and
implemented, beyond Arima, XGBoost and LSTM. With the appropriate tuning,

predictions with greater accuracy can be made resulting in better scaling decisions.

65

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography
Wikipedia. (2021). Cloud Computing.

Retrieved from: https://en.wikipedia.org/wiki/Cloud computing

Wikipedia. (2021). Machine Learning.

Retrieved from: https://en.wikipedia.org/wiki/Machine learning

NITLAB. (2015). Network Implementation Laboratory.

Retrieved from: https://nitlab.inf.uth.gr/NITlab/nitos

Docker. (2013). Docker.

Retrieved from: https://www.docker.com/

Docker. (2013). Containers.

Retrieved from: https://www.docker.com/resources/what-container

Kubernetes. (2014). Production-Grade Container Orchestration.

Retrieved from: https://kubernetes.io/

Avi Networks. (2021). Kubernetes Architecture.

Retrieved from: https://avinetworks.com/glossary/kubernetes-architecture/

Kubernetes. (2021). Horizontal Pod Autoscaler.

Retrieved from: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/

Prometheus. (2016). From metrics to insight.

Retrieved from: https://prometheus.io/

Kubernetes SIGS. (2021). prometheus-adapter.

Retrieved from: https://github.com/kubernetes-sigs/prometheus-adapter

66

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Machine_learning
https://nitlab.inf.uth.gr/NITlab/nitos
https://www.docker.com/
https://www.docker.com/resources/what-container
https://kubernetes.io/
https://avinetworks.com/glossary/kubernetes-architecture/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://prometheus.io/
https://github.com/kubernetes-sigs/prometheus-adapter

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Grafana Labs. (2013). Dashboard anything. Observe everything.

Retrieved from: https://grafana.com/grafana/

Wikipedia. (2021). Machine learning.

Retrieved from: https://en.wikipedia.org/wiki/Machine learning

Matthew Mayo, KDNuggets. (2021). The 7 steps of Machine learning.

Retrieved from: https://www.kdnuggets.com/2018/05/general-approaches-machine-

learning-process.html

Tensorflow. (2015). An end-to-end open source machine learning platform.

Retrieved from: https://www.tensorflow.org/

Docker. (2011). Build and Ship any Application Anywhere.

Retrieved from: https://hub.docker.com/

Nguyen, T.-T.; Yeom, Y.-J.; Kim, T.; Park, D.-H.; Kim, S. Horizontal Pod Autoscaling in
Kubernetes for Elastic =~ Container Orchestration. Sensors 2020, 20, 4621.
https://doi.org/10.3390/s20164621.

Barlacchi, G., De Nadai, M., Larcher, R. et al. A multi-source dataset of urban life in the
city of Milan and the Province of Trentino.Sci Data?2, 150055 (2015).
https://doi.org/10.1038/sdata.2015.55.

Harvard Dataverse. (2021). Telecommunications — SMS, Call, Internet — MI.
Retrieved from:

https://dataverse.harvard.edu/dataset.xhtml?persistentld=d0i:10.7910/DVN/EGZHFV

Adam Hayes, Investopedia. (2021). Autoregressive Integrated Moving Average (ARIMA).
Retrieved from:

https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-

arima.asp

Mohit Sharma, Medium. (2021). Gentle Introduction to XGBoost Library.

Retrieved from: https://medium.com/@imoisharmal8/gentle-introduction-of-xghoost-
library-2b1ac2669680

67

https://grafana.com/grafana/
https://en.wikipedia.org/wiki/Machine_learning
https://www.kdnuggets.com/2018/05/general-approaches-machine-learning-process.html
https://www.kdnuggets.com/2018/05/general-approaches-machine-learning-process.html
https://www.tensorflow.org/
https://hub.docker.com/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV
https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp
https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp
https://medium.com/@imoisharma18/gentle-introduction-of-xgboost-library-2b1ac2669680
https://medium.com/@imoisharma18/gentle-introduction-of-xgboost-library-2b1ac2669680

[21] Wikipedia. (2021). Long Short-Term Memory.

Retrieved from: https://en.wikipedia.org/wiki/Long short-term memory

[22] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”International

Conference on Learning Representations, 12 2014

68

https://en.wikipedia.org/wiki/Long_short-term_memory

