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ΠΕΡΙΛΗΨΗ 

Στην σημερινή εποχή, οι προγραμματιστές καλούνται να δημιουργήσουν εφαρμογές οι 

οποίες τρέχουν σε διάφορα λειτουργικά συστήματα, συμπεριλαμβανομένων τοπικών 

διακομιστών, εικονοποιημένα ιδιωτικά και δημόσια cloud. Με το Kubernetes, το οποίο 

είναι μια πλατφόρμα ανοιχτού κώδικα για ανάπτυξη, κλιμάκωση και διαχείρηση 

εφαρμογών σε container, καθίσταται δυνατός και αρκετά ευέλικτος ο χειρισμός του 

έργου αυτού σε ενα σύμπλεγμα υπολογιστών διαχειρίζοντας παράλληλα το φόρτο 

εργασίας για να διασφαλιστεί οτι όλα λειτουργούν έτσι όπως θα ήθελε ο χρήστης. 

Επιτρέπει υψηλή διαθεσιμότητα και επεκτασιμότητα μέσω διάφορων μηχανισμών 

αυτόματης κλιμάκωσης τα οποία είναι Horizontal Pod Autoscaler(HPA), το Vertical Pod 

Autoscaler(VPA) και το Cluster Autoscaler(CA). Μεταξύ αυτών, ο πρώτος παρέχει 

απρόσκοπτη υπηρεσία με δυναμική κλιμάκωση προς τα πάνω και κάτω του αριθμού των 

μονάδων πόρων, που ονομάζονται Pods, χωρίς να χρειάζεται επανεκκίνηση ολόκληρου 

του συστήματος. 

Σκοπός της εργασίας αυτής είναι η υλοποίηση ενός συστήματος με στόχο την μεταβολή 

αυτή του αριθμού των Pods σε πραγματικό χρόνο σύμφωνα με την χρήση αλγορίθμων 

μηχανικής μάθησης που θα προβλέπουν σε βάθος χρόνου το traffic σε ενάν 

εξυπηρετητή, χωρίς την βοήθεια του Horizontal Pod Autoscaler αλλά ουσιαστικά 

αντικαθιστώντας τον και αξιολογώντας τις αποδόσεις του συστήματος αυτού. Με αυτόν 

τον τρόπο, μπορεί να γίνει αποδοτικότερη χρήση πόρων και εξοικονόμηση ενέργειας 

καθώς ο εξυπηρετητής είναι ενήμερος για το μελλοντικό traffic ώστε να έχει την χρονική 

δυνατότητα μέχρι να καταφθάσει αυτό, να λάβει τα απαραίτητα μετρα. 

Το σύστημα δοκιμάστηκε σε πραγματικό χρόνο στο NITOS Testbed Laboratory 

αποδεικνύοντας ότι μπορεί να ωφελήσει η συγχώνευση της μηχανικής μάθησης με 

μηχανισμούς κλιμάκωσης στο περιβάλλον των Kubernetes όπως ο HPA καθώς σε αρκετές 

περιπτώσεις υπάρχουν επαναλαμβανόμενα μοτίβα στο traffic που μπορούν να 

προβλεφθούν με μεγάλη ακρίβεια. Oι πόροι δεσμεύονται ή αποδεσμεύονται ανάλογα με 

το μελλοντικό traffic έτσι ώστε να είναι προετοιμασμένοι να ανταποκριθούν 

γρηγορότερα και αποδικότερα ενώ ταυτόχρονα εξοικονομείται ενέργεια καθώς δεν 

υπάρχουν πόροι που καλούνται να εξυπηρετήσουν εργασίες παραπάνω από αυτές που 

μπορούν ή πόροι που δεν χρησιμοποιούνται.   
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ABSTRACT 

 

These days, developers are called on to write applications that run across multiple 

operating environments, including local servers, virtualized private and public clouds. 

Kubernetes, which is an open-source platform for developing, scaling and managing 

applications in a container, makes it possible and flexible enough to handle this task on a 

complex of computers while managing the workload to ensure everything works as the 

user would like to. It allows high availability and scalability through various automatic 

scaling mechanisms which are Horizontal Pod Autoscaler, Vertical Pod Autoscaler and 

Cluster Autoscaler. Among these, the first one provides seamless service by dynamically 

scaling up and down the number of resource units, called Pods, without having to restart 

the entire system. 

This diploma thesis focuses on the implementation of a system that aims to change the 

number of Pods according to machine learning algorithms that will predict the upcoming 

traffic on a server, without the help of Horizontal Pod Autoscaler but essentially replacing 

it and evaluating the performance of this system. In this way, more efficient use of 

resources and energy savings can be made as the server is aware of future traffic so that 

it has the time to take the necessary measures until it arrives. 

The system was tested in real time at the NITOS Testbed Laboratory proving that 

combining machine learning with scaling mechanisms in the Kubernetes environment 

such as HPA can be beneficial, as in many cases there are repetitive traffic patterns that 

can be predicted with good accuracy. Resources are being allocated or released 

depending on future traffic, so that they are prepared to respond faster and more 

efficiently while at the same time energy is being saved as there no resources called to 

serve tasks beyond what they can or resources that are not used. 
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Chapter 1:  Introduction 

1.1 Background 

The fact that technology has a great impact on our life and business is evident. Not so 

long ago, companies had to establish and maintain their own server environment so that 

they could host and run applications on their premises. Today, we have cloud computing 

that’s revolutionizing everything. Cloud computing [1] is the on-demand availability of 

computer system resources, especially data storage (cloud storage) and computing 

power, without direct active management by the user and relies on sharing of resources 

to achieve coherence and economies of scale. It offers a wide variety of benefits both in 

businesses with the efficiency, the cost-effectiveness, and the scalability that it provides, 

and in the average person with storing and accessing multimedia content via internet or 

even running software programs without installing them on their local PC. Cloud 

computing is gaining more and more popularity making it one of the most flamboyant 

technological innovation of the 21st century. 

 

Another field of science that has seen a significant growth lately is Machine Learning [2].  

Machine Learning is the study of computer algorithms that improve automatically 

through experience and using data. It is seen as a part of artificial intelligence and its 

algorithms build a model based on sample data, known as “training data”, in order to 

make predictions or decisions without being explicitly programmed to do so. Machine 

Learning algorithms are used in a wide variety of applications, such as in medicine, email 

filtering, speech recognition and computer vision and generally where it is difficult or 

unfeasible to develop conventional algorithms to perform the needed tasks by identifying 

the common patterns and making predictions.  

 

Each one of these two topics have a positively influence to the world today. However, this 

is the beginning, and it will take some time to successfully merge these 2 technologies in 

order to become fully operational in important areas such as healthcare, business and 

banking. Machine Learning makes it easy to manipulate data in cloud. With a series of 

artificial intelligence research on cloud computing, cloud computing is becoming more 
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and more intelligent. Less energy is being consumed in addition to the performance that 

increases at a rapid pace while the resources are being scaled up and down dynamically. 

 

1.2 Motivation 

Nowadays, cloud-computing is becoming more and more popular. Kubernetes which is 

used to manage container workloads in scalable infrastructure, has become one of the 

most famous cloud orchestrators. It is an open-source platform that enables customers to 

respond to user requests quickly and deploy software updates faster and with greater 

resilience. 

Imagine a scenario where an application that had been deployed has more traffic than it 

is anticipated and as a result the compute resources overwork to get the job done. This is 

a problem that can be solved by scaling the infrastructure. For example, if the application 

has more traffic during the day and less during night, it doesn’t make sense to keep the 

same number of compute resources allocated during the off-peak hours. By using 

autoscaling, you can easily and dynamically provision more compute power when it is 

necessary. So, in many cases, like the one described above, where there are common 

patterns in the traffic that is being send, merging scaling mechanisms with machine 

learning algorithms that can identify these trends would be ideal for making the 

appropriate scale ups and downs. 

So, that was the motivation of this diploma thesis. To create a mechanism utilizing the 

tools and finding the methodology to a more efficient scaling using machine learning 

time series algorithms in order to forecast the future traffic to a server, in a Kubernetes 

cluster. That way, the number of pods would be adapted to the future values making the 

scaling a lot more efficient. As a result energy is saved as there are no resources that are 

idle or overwork. 
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1.3 Thesis Structure 

This thesis is divided in 5 chapters which are being descripted below: 

- Chapter 1: An introduction to cloud computing and machine learning making a 

brief explanation on what these technologies represent and how beneficial 

their merging is. Also, a reference to the motivation and the problem 

statement of this thesis is being made. 

- Chapter 2: The experimental tools and the technical background that needed 

for developing and testing this research in the Kubernetes Cluster using 

Machine Learning algorithms. 

- Chapter 3: The way that the infrastructure and the tools are being used for 

implementing this diploma thesis for the desired result. Furthermore, the 

methodology of creating the system architecture, the selection of the Machine 

Learning algorithms and the scale policy for the pods are being analyzed. 

- Chapter 4: Results and charts are being presented evaluating the efficiency of 

each Machine Learning algorithm comparing to each other and to the 

Horizontal Pod Autoscaler. 

- Chapter 5: Conclusion based on the results from Chapter 4 and the work that 

can be done for optimizing this diploma thesis even more. 
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Chapter 2: Infrastructure and Experimental Tools 

 

2.1 Chapter Introduction  

This chapter focuses on the infrastructure and the experimental tools that had being used 

in order to successfully complete this diploma thesis. It analyzes in detail every 

technology that helped solving this problem as much in Kubernetes environment as in 

Machine Learning. 

 

2.2 NITOS Testbed  

This diploma thesis was developed and implemented in 2 nodes of the NITOS Testbed 

Laboratory [3]. NITOS is an integrated facility with heterogeneous testbeds that focuses 

on supporting experimentation-based research in the area of wired and wireless 

networks. It is remotely accessible and open to the research community 24/7. It is 

comprised of three different deployments which are listed below: 

1. The Outdoor Testbed: which consists of powerful nodes that feature multiple 

wireless interfaces and allow for experimentation with heterogeneous wireless 

technologies. It is deployed at the exterior of a University of Thessaly’s campus 

building and consists of 50 nodes. 

2. The Indoor RF Isolated Testbed: which contains 50 Icarus nodes that feature 

multiple wireless interfaces (Wi-Fi, WiMAX, LTE) and is deployed in an isolated 

environment of a University of Thessaly’s campus building. It is also equipped 

with directional antennas prototypes. 

3. The Office Testbed: which comprises of 10 powerful second-generation Icarus 

nodes. The nodes encapsulate heterogeneous technologies, such as WIFI, 

WiMAX, LTE etc. and allow the experimenter to design and execute real life 

scenarios under a deterministic office environment. 
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Generally, NITOS testbed offers a variety of tools which the user can use in order to 

develop, design and test his own experiments in a large-scale environment and its 

architecture is depicted in the image1 below. 

 

 

 

Figure 1. NITOS Testbed Architecture 

 

2.3 Docker 

2.3.1 Overview 

Docker [4] is an open platform for developing, shipping and running applications. It gives 

developers the opportunity to better manage and deploy applications by packaging them 

in a sandbox (called containers) to run on the host operating system i.e., Linux by taking 

advantage of the OS2-level virtualization (an operating system paradigm in which the 

kernel allows the existence of multiple isolated user space instances). Docker’s portability 

and lightweight operation also make it easy to dynamically manage workloads, scaling up 

or tearing down applications in real time. With the help of container’s technology, the 

time gap between writing code and running it on production is being minimized as the 

deployment or the update of the app is done in a matter of minutes. 

 
1 https://nitlab.inf.uth.gr/NITlab/nitos 
2 OS: Operating System 

https://nitlab.inf.uth.gr/NITlab/nitos
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2.3.2 Containers 

So, what is a container [5]? A container is a standard unit of software that packages up 

code and all its dependencies, so the application runs quickly and reliably from one 

computing environment to another. It uses process isolation and virtualization 

capabilities built into the Linux kernel such as control groups (Cgroups) for allocating 

resources among processes, and namespaces for restricting a processes access or visibility 

into other resources or areas of the system. This gives the developers the ability to create 

environments that are isolated from the rest of the applications and can be run 

anywhere. 

 

2.3.3 Containers vs Virtual Machines 

An important part that must be clarified is the difference between containers and virtual 

machines. At first, virtual machines are an abstraction of physical hardware turning one 

server into many in addition to the containers that are an abstraction of the application 

layer that packages code and dependencies together. So, each architecture has significant 

differences from the other as shown in the image3 below. Also, the size of virtual 

machines images is measured in gigabytes whilst containers images in megabytes, just 

because the first ones include a full copy of an operating system. Finally, containers offer 

more portability and quicker spinning up applications in contrast with the VMs that can 

be slow to boot. 

 

Figure 2. Virtual Machines vs Containers  

 
3 https://akfpartners.com/growth-blog/vms-vs-containers 

https://akfpartners.com/growth-blog/vms-vs-containers


7 

 

 

2.3.4 Docker Architecture 

Docker uses a client-server architecture. Users interact with Docker through the Docker 

client. When any commands are being executed, this client send them to Docker daemon 

which carries them out. The Docker client and daemon communicate using a REST API, 

over UNIX sockets or a network interface as depicted in the picture4 below. 

 

 

Figure 3. Docker Architecture 

 

A few more important objects that need to be explained in order to understand the entire 

architecture and how Docker operates, are Docker images and Docker registry. 

A Docker image is a file used to execute code in a container and acts as a set of 

instructions to build one, just like a template. These images make up the starting point 

when using Docker as they contain application code, libraries and tools that are needed 

to make an application run and are comparable to a snapshot in virtual machine 

environments. As a result, Docker images can be described as a record of a Docker 

container at a specific point in time.  

These images can all be stored in a storage and content delivery system, available in 

different tagged versions, named Docker registry. Users can interact with a registry by 

using docker push and pull commands in order to pull images locally or push image to the 

registry. In this diploma thesis, DockerHub was used for storing and pulling the necessary 

 
4 https://docs.docker.com/get-started/overview/ 

https://docs.docker.com/get-started/overview/
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docker images which is basically a hosted repository service provided by Docker for 

finding and sharing container images. 

 

2.4 Kubernetes 

2.4.1 Overview 

 Kubernetes [6] is part of the Cloud Native Computing Foundation which supports the 

development of shared networking standards in cloud data management software. It is 

an open-source system for automating deployment, scaling and management of 

containerized applications and groups containers that make up an application into logical 

units for easy management and discovery. Kubernetes provides the developers a 

framework where they can run distributed systems resiliently by taking care of scaling 

and failover for an application, providing deployment patterns and many more. Docker 

being the most popular container virtualization standard is widely used by Kubernetes. 

Simply, Docker helps to “create” containers and Kubernetes allows the developers to 

“manage” them at runtime. 

        

2.4.2 Kubernetes Architecture 

An environment running Kubernetes consists of the following basic components [7]: a 

control plane (Kubernetes Master), a storage system for keeping the cluster state 

consistent and cluster nodes (Kubelets, also called worker nodes). 
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Figure 4. Kubernetes Architecture 

 

 

The Kubernetes architecture can be divided into 2 basic parts: the control panel 

(Kubernetes Master) and the nodes (Kubernetes Nodes) as shown in the picture5 above. 

 

2.4.2.1 Control Panel 

The control panel is the “heart” of a Kubernetes cluster. It maintains a data record of the 

configuration and state of all cluster’s objects and is in constant contact with the compute 

machines in order to ensure that the cluster runs as configured. Below are presented the 

main components6 of the control panel: 

1. Kubernetes API Server: it is the front end of the Kubernetes control panel 

and supports updates, scaling and other kinds of lifecycle orchestration 

procedures by providing APIs for various types of applications. Also, 

 
5 https://www.jobacle.nl/?p=2688 
6 https://kubernetes.io/docs/concepts/overview/components/ 

https://www.jobacle.nl/?p=2688
https://kubernetes.io/docs/concepts/overview/components/
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Kubernetes API Server is the only component that communicates with the 

etcd in order to ensure that data is stored in it and is in agreement with 

the service details of the pods. 

2. Kubernetes Scheduler7: stores the resource usage data for each compute 

node, check the health state of a cluster, determines whether new 

containers should be deployed and where they should be placed. Firstly, it 

checks the pod’s resource demands and then selects an appropriate 

compute node in order to schedule the task taking resource limitations, 

data locality, quality of service requirements and other factors into 

account. 

3. Kubernetes Controller Manager: sometimes called Cloud Controller 

Manager, is simply a daemon which runs the Kubernetes cluster using 

several controller functions. It is responsible for managing controller 

processes with dependencies on the underlying cloud provider such as 

pods, services, tokens, service accounts, nodes etc.  

4. ETCD: is a distributed and fault-tolerant, key-value store database that 

stores Kubernetes cluster data like configuration files and information 

about the state of the cluster. It is only accessible from the API server for 

security reasons and enables notifications to the cluster about 

configuration changes. 

 

2.4.2.2 Kubernetes Nodes 

A Kubernetes cluster must have at least one compute node depending on the need of 

capacity. These nodes connect applications, compute and storage resources and their 

building blocks are being descripted below: 

1. Container Runtime Engine: each compute node runs and manages 

container lifecycles using a Container Runtime Engine such as Docker. 

2. Kubelet: is the main service of the node that communicates with the 

control plane to ensure that pods and their containers are healthy and 

running in the desired state. When the control plane requires a specific 

 
7 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/ 

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
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action to happen in a node, the kubelet receives the new pod configuration 

and specifications through the API server and executes the appropriate 

action. 

3. Kube-Proxy: is a proxy service that runs on each worker node in order to 

deal with the individual host subnetting and expose services to the 

external world. It forwards traffic itself or relies on the packet filtering 

layer of the operating system to handle network communications both 

outside and inside the cluster. 

 

2.4.3 Kubernetes Objects 

In this section, the most important Kubernetes Objects will be discussed which are: 

1. Pods: represent a single instance of an application and are the simplest 

unit within the Kubernetes object model. It is a group of one or more 

containers with shared storage and network resources and a specification 

on how to run the containers. Two or more pods can communicate with 

each other using a pod network. A pod network is a medium of 

communication between pods and nodes. In this thesis a Flannel8 pod 

network is being deployed in the Kubernetes cluster. 

2. Services: are the Kubernetes way of configuring a proxy to forward traffic 

to a set of pods. Services can expose a single or multiple pods to external 

or internal consumers and associate specific criteria with pods to enable 

their discovery. Pods and services are associated through key-value pairs 

called selectors. With the help of selectors, services define which pods uses 

which service. These dynamic assignments make releasing new versions or 

adding pods to a service easy. There are four different service types, each 

with a different behavior: 

• ClusterIP: exposes the service on an internal IP making the 

service reachable only from within the cluster. 

 
8 https://platform9.com/docs/kubernetes/networking-integration-with-flannel 

https://platform9.com/docs/kubernetes/networking-integration-with-flannel
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• NodePort: exposes the service on each node’s IP at a 

specific port. In that way, developers have the freedom to 

configure their own environments. For example, NodePort 

was being used in this thesis for exporting Prometheus and 

Grafana from a node in NITOS Testbed Laboratory to a local 

machine in order to visualize the results. 

• LoadBalancer: unlike ClusterIP, exposes the service 

externally using a cloud provider’s load balancer. 

• ExternalName: will just map a CNAME record in DNS. No 

proxying of any kind is established. This is commonly used 

to create a service within Kubernetes to represent an 

external datastore like a database for example, that runs 

externally to Kubernetes. 

3. Deployments: is a resource object in Kubernetes that provides declarative 

updates to applications. A deployment allows the developers to describe 

an application’s lifecycle such as which image to use for the app, the 

number of pods there should be and the way which they should be 

updated.  

4. Volume: is just a directory that is accessible to a pod, which may hold data. 

The reason that Kubernetes Volumes are being used is that they solve two 

problems. First, the loss of files when a container crashes and second, the 

way that containers that exists in the same pod, are sharing files. The 

contents of the volume, how it comes to be and the medium that backs it, 

are determined by the volume type. Volumes can be separated into two 

categories: 

• PersistentVolumes: or (PVs), are specific to a cluster, 

provisioned by an administrator and tie into an existing 

storage resource. PVs have a lifecycle independent of any 

individual Pod that uses them. The PersistentVolumeClaims 

(PVCs) could also exist in this category. A 

PersistentVolumeClaim makes a storage consumption 

request within a namespace. It is similar to a pod. PVCs 
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consume PV resources just like pods consume node 

resources.  

• EphemeralVolumes: unlike PersistentVolumes, ephemeral 

ones follow the pod’s lifetime and get created and deleted 

along with the pod. Caching services are a descriptive 

example of EphemeralVolumes. 

Sometimes, cluster administrators need to be able to offer a variety of 

PersistentVolumes that differ in more ways than size and access modes, 

without exposing users to the details of how those volumes are 

implemented. For these needs, there is the StorageClass resource. A 

StorageClass provides a way to describe the “classes” of storage they offer. 

This thesis uses a StorageClass in order to provision the PersistentVolumes. 

5. Namespaces: are virtual clusters that exist inside a physical one. They are 

intended to provide virtually separated work environments for multiple 

users, teams and prevent each one from hindering each other by limiting 

what Kubernetes objects they can access. 

 

2.4.4 Kubernetes Autoscaling 

As mentioned above, Kubernetes has a feature called autoscaling. Autoscaling allows the 

cluster to dynamically adjust to demand without the intervention from the individuals in 

charge of operating the cluster. It is an important concept in cloud automation overall. 

Without autoscaling, the developers must manually provision resources every time 

conditions change, and it is less likely to be operating with optimal resource utilization 

and cloud spending. There are 3 autoscaler types:  

• Cluster Autoscaler (CA): is a Kubernetes tool that increases or decreases the size 

of a cluster by simply adding or removing nodes, based on the presence of 

pending pods and node utilization metrics, as shown in the image9 below: 

 

 
9 https://medium.com/kubecost/understanding-kubernetes-cluster-autoscaling-675099a1db92 

https://medium.com/kubecost/understanding-kubernetes-cluster-autoscaling-675099a1db92
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Figure 5. Cluster Autoscaling 

 

• Horizontal Pod Autoscaler (HPA): automatically scales the number of Pods (Figure 

6) in a replication controller, deployment, replica set or stateful set based on 

observed CPU utilization or custom metrics (like this diploma thesis implements). 

• Vertical Pod Autoscaler (VPA): dynamically modifying the attributed resources 

like CPU and RAM of each node in the cluster by adjusting the resource requests 

and limits based on the current application requirements as shown in the image10 

below: 

 

 

Figure 6. Vertical vs Horizontal Scaling 

 

 
10 https://www.webairy.com/wp-content/uploads/2019/07/hvsv.jpg 

https://www.webairy.com/wp-content/uploads/2019/07/hvsv.jpg
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In this thesis, we are focusing on the HPA by using Machine Learning to forecast 

the future traffic to a server and comparing the results using this solution 

comparatively to the HPA. 

 

2.4.4.1 Horizontal Pod Autoscaler 

The Horizontal Pod Autoscaler [8] is implemented as a Kubernetes API resource and a 

controller. The resource determines the behavior of the controller. The controller adjusts 

the number of replicas based on the observed metrics to the target specified by the 

developers. The controller fetches metrics from the Resource Metrics API (for per-pod 

resource metrics) or the custom metrics API (for all other metrics). An image11 is being 

shown below describing how the HPA works, using the Resource Metrics API. 

 

 

Figure 7. Horizontal Pod Autoscaler Architecture 

 

For resource metrics like CPU, the controller fetches the metrics from the resource 

metrics API for each pod targeted by the HPA. Then, if a target utilization value is set, the 

controller calculates the utilization values as a percentage of the equivalent resource 

 
11 https://dasydong.github.io/blog/2019/07/06/k8s-hpa/ 

https://dasydong.github.io/blog/2019/07/06/k8s-hpa/
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request on the containers for each pod. If a target raw value is set, the raw metric values 

are used directly. Then, the controller takes the mean of the utilization or the raw value 

across all targeted pods and produces a ratio used to scale the number of desired 

replicas. Replicas are simply identical pods and is a term that it will be used a lot 

describing the HPA. 

For custom metrics, the controller functions similarly to per-pod resource metrics, except 

that it works with raw values and not utilization ones. More details on how custom 

metrics can be obtained from a Kubernetes system are provided below. 

There are two types of custom metrics: pod metrics and object metrics. The first of these 

describes pods and are averaged together across pods and compared with a target value 

to determine the replica count. They work much like resource metrics, except that they 

only support a target type of AverageValue. These metrics are specified using a metric 

block in the .yaml file that describes the HPA. Pod metrics are specified using a metric 

block12 like this: 

 

 

Figure 8. Pod Metrics packets-per-second example 

 

As far as the object metrics, they describe a different object in the same namespace, 

instead of describing pods. Object metrics support target types of both Value for direct 

comparison with the target metric and AverageValue for comparison between the target 

value and the value that returned from the API divided by the number of pods. The 

following example13 is a visual representation of the extra configuration of a .yaml file 

where object metrics, specifically requests-per-second, are specified. 

 
12 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 
13 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
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Figure 9. Pod Metrics requests-per-second example 

 

2.4.4.2 Algorithm Details 

The Horizontal Pod Autoscaler controller operates on the ratio between desired metric 

value and current metric value as shown below: 

 

 

Figure 10. HPA's scale policy 

 

The currentMetricValue is computed taking the average of the given metric across all 

pods in HPA’s scale target if a targetAverageValue or targetAverageUtilization is specified 

or taking the direct value if these fields are not specified. Before checking the tolerance 

and deciding on the final values, pod readiness and missing metrics are being taken into 

consideration. For example, pods with a deletion timestamp set and pods with missing 

metric are being discarded. 

Then, the ratio between this currentMetricValue and the desiredMetricValue multiplied 

by the number of current replicas is being calculated rounding this result upwards. Finally, 

this is the desired number of replicas for the given case. 

 

2.4.5 Metrics 

Monitoring Kubernetes is also important in the context of resource usage, utilization and 

cost control. Kubernetes clusters must be actively managed to ensure pods utilize 
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underlying node resources efficiently. The same is true for resources allocated to 

individual container or namespaces. As far as the tools that helped fetching and 

visualizing the metrics that this thesis used are: Prometheus, Prometheus Adapter and 

Grafana. 

 

2.4.5.1 Prometheus 

Prometheus [9] is a standalone open-source systems monitoring and alerting toolkit. It is 

a leading monitoring solution that has seen its community grow to large numbers. It 

collects and stores its metrics as time series data i.e., metrics information is stored with 

the timestamp at which it was recorded, alongside optional key-value pairs called labels. 

Prometheus sends an HTTP request, a so-called scrape, based on the configuration 

defined in the deployment file. The response to this scape request is stored and parsed in 

local storage along with the metrics for the scrape itself. The storage is a custom database 

on the Prometheus server and can handle a massive influx of data. The data needs to be 

appropriately exposed and formatted so that Prometheus can collect it. Prometheus can 

access data directly from the app’s client libraries or by using exporters (a piece of 

software that accept HTTP requests). So, every application on the Kubernetes cluster is 

available for metrics fetching. In addition, it is possible to configure the alerting rules in 

the Prometheus server so that it sends alerts to the AlertManager that will create 

notifications to different notification systems like Email, OpsGenie etc. One last 

component that must be mentioned is the Service Discovery which informs Prometheus 

where to look for data. The whole architecture is shown in the image14 below: 

 
14 https://samirbehara.com/2019/05/30/cloud-native-monitoring-with-prometheus/ 

https://samirbehara.com/2019/05/30/cloud-native-monitoring-with-prometheus/
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Figure 11. Prometheus Architecture 

 

Prometheus was used for this thesis in order to get the necessary metrics such as replicas 

number and help visualizing them to Grafana. Prometheus Adapter was also deployed in 

the Kubernetes Cluster, and is being analyzed in the following section. 

Underneath, the user interface of Prometheus is being shown where the developers can 

compose their queries and fetch the metrics they want: 

 

 

Figure 12. Prometheus User Interface 
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2.4.5.2 Prometheus Adapter 

Prometheus Adapter [10] is a component of Prometheus and is used to leverage the 

metrics collected by Prometheus and use them to make scaling decisions. These metrics 

are exposed by an API service and can be used by the Horizontal Pod Autoscaler object. 

Simply, Prometheus Adapter pulls custom metrics from Prometheus, and it is running as a 

deployment exposed using a service in the Kubernetes cluster. 

 

2.4.5.3 Grafana 

Grafana [11] is a very common tool across Kubernetes that monitors the infrastructure 

and provides log analytics, predominantly to improve their operational efficiency. It 

comes up with a wide variety of dashboards that make tracking users and events easy just 

because it automates the collection, management and viewing of data and uses 

Prometheus as a data provider by fetching the appropriate metrics. This is how the 

Grafana Dashboards look 15: 

 

 

Figure 13. Grafana Dashboard User Interface 

 

 

 

 
15 https://techblog.commercetools.com/adding-consistency-and-automation-to-grafana-e99eb374fe40 

https://techblog.commercetools.com/adding-consistency-and-automation-to-grafana-e99eb374fe40
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2.5 Machine Learning 

2.5.1 Overview 

Machine Learning [12] is the study of computer algorithms that improve automatically 

through experience and by the use of data. It is seen as part of artificial intelligence. 

Machine Learning algorithms build a model based on sample data, known as “training 

data”. As models are exposed to new data, they can independently adapt and make 

predictions or decisions without being explicitly programmed to do so. These algorithms 

learn from previous computations and identify common patterns in “training data” in 

order to produce reliable results. 

 

2.5.2 Steps 

To make things clearer about how Machine Learning algorithms operates, the seven steps 

[13] of ML16 are being analyzed below. 

1. Data Gathering: is the process of collecting and measuring information from 

different sources. It is an important part of Machine Learning because the 

developer must choose the appropriate data that will train the model in order 

to produce an effective one. The quantity and quality of them dictate how 

accurate the Machine Learning model will be. 

2. Data Preparation: is the procedure of combining, structuring and organizing 

data so that it can be used by the algorithms. It involves cleaning the data by 

removing duplicates, correcting errors and dealing with missing values, in 

some cases randomizing the data which erases the effects of a particular 

order, visualizing them to help detect relationship between variables and 

finally, splitting the data into train and evaluation sets. 

3. Model Selection: is made up of what Machine Learning model the developer 

should use. There is a wide variety of algorithms that had been developed for 

different purposes and each one of them is using a logic of its own. There are 

algorithms that produce predictions for image recognition, numerical data, 

text-based data and other sequences. This thesis uses time-series Machine 

 
16 Machine Learning 
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Learning algorithms that forecasts the future of a specific metric involving a 

time component. 

4. Model Training: is used to train the model in order to make an as much as 

possible accurate prediction. It is an iterative process and is determining good 

values for all the weights and the bias from the “training data”. Model Training 

is identifying common patterns amongst the data provided so that the 

features that best predict the outcomes to be determined. 

5. Model Evaluation: is used to test the model accuracy against unseen data. 

These data are meant to be representative of model performance in the real 

world in order to get an estimation very close to reality. With the help of some 

metrics or combination of metrics the objective performance of a model is 

being measured. 

6. Parameter Tuning: is all about tuning the Machine Learning model to improve 

its performance. By changing hyperparameters like training steps, learning 

rate, initialization values and many more, the developer can see differences in 

the predictions that the model produces choosing the best combination of 

these parameters. 

7. Predictions Making: is the procedure of using data which have been withheld 

from the model in order to test the model by making predictions. 

 

2.5.3 TensorFlow 

TensorFlow [14] is a Python library for fast numerical computing created and released by 

Google. It is a foundation that can be used to create complex Machine Learning models 

directly or using wrapper libraries that simplify the process built on top of TensorFlow. It 

got its name from its core framework: Tensor. In Tensorflow, all the computation involve 

tensors. A tensor is a vector or matrix of n-dimensions that represents all types of data. 

All values in a tensor hold identical data type with a known shape. The shape of the data 

is the dimensionality of the matrix or array.  

A tensor can be originated from the input data or the result of a computation. In 

Tensorflow, all the operations are conducted inside a graph. The graph is a set of 
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computation that takes place successively. Each operation is called an op node and are 

connected to each other. Underneath, an example of an acyclic graph is presented: 

 

 

Figure 14. Tensorflow acyclic graph 

Graphs come in many shapes and sizes and are used to solve many real-life problems 

such as representing circuit networks. They gather and describe all the series 

computation done during the training.  

All in all, TensorFlow was being used in this diploma thesis to implement and use the 

LSTM Machine Learning algorithm with the help of one of its library called keras17 as 

descripted in the section 3.2.7. 

 

  

 
17 https://keras.io/ 

https://keras.io/
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Chapter 3: Development and Implementation 

 

3.1 Chapter Introduction 

In this chapter, the implementation is being discussed. How the tools that were described 

in Chapter 2, were used in order to achieve the desired outcome. It analyzes step by step 

the methodology that had been followed. It is separated into 4 sections: the Environment 

Set-up analyzing the how this environment initialized, the Machine Learning Algorithms 

covering which time-series Machine Learning algorithms used and information about 

them, the System Architecture explaining how this environment is designed and finally, 

the Scale Policy covering the algorithm behind the scale ups and downs. 

 

3.2 Environment Set-Up 

3.2.1 Kubernetes 

As mentioned before, for the implementation of the whole experiment NITOS Testbed 

was being used. Two of these nodes were used, one operating as a Kubernetes master 

and the other as a Kubernetes worker. So, in order to utilize Kubernetes, a cluster must 

be deployed. A Kubernetes cluster is simply, a set of node machines that run 

containerized applications. After installing Docker and adding Kubernetes signing key and 

repository on both nodes, it was time to initialize the cluster. This was done with the help 

of Kubeadm, which is a tool for creating a viable Kubernetes cluster, with the following 

command: 

 

$ sudo kubeadm init –pod-network-cidr=10.244.0.0/16 

 

The above command is being executed on one node only, making it the Kubernetes 

Master node and the flag specify the range of IP addresses for the pod network, 

automatically allocating CIDRs (blocks of unique IP addresses) for every node. 
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The output of this command is being displayed below, pointing out that some extra things 

still need to be done. 

 

 

Your Kubernetes control-plane has initialized successfully!  

 

To start using your cluster, you need to run the following as a regular user:  

mkdir -p $HOME/.kube  

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config  

sudo chown $(id -u):$(id -g) $HOME/.kube/config  

 

Then you can join any number of worker nodes by running the following on each as root: 

kubeadm join 192.168.100.6:6443 –token 06tl4c.oqn35jzecidg0r0m –discovery-token-ca-

cert-hash sha256:c40f5fa0aba6ba311efcb0e8cb637ae0eb8ce27b7a03d47be6d966142f2204c 

 

 

 

After successfully initializing the Kubernetes Master node, a folder must be created to 

$Home/.kube in order to copy the configuration files to the local machine. In that way, 

the communication with the API Server becomes possible using kubectl commands. 

Then, a pod network must be deployed which is the medium between the network of the 

nodes. In this diploma thesis, Flannel was being used with the following command. 

 

$ sudo kubectl apply -f 

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-

flannel.yml18 

 

Now, everything is ready for the other node, Kubernetes Worker to join the Master. This 

is done with the command below. 

 

 
18 https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml 

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
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$ sudo kubeadm join 192.168.100.6:6443 –token 06t14c.oqn35jzecidg0r0m –discovery-

token-ca-cert-hash 

sha256:c40f5fa0aba6ba311efcdb0e8cb637ae0eb8ce27b7a03d47be6d966142f2204c 

 

Checking the status of the cluster with kubectl just like below, shows that our cluster is 

healthy and running and consists of two nodes. 

 

 

Figure 15. Kubernetes Cluster Checking 

 

3.2.2 Php-Apache Deployment and Ubuntu Pod 

Having the Kubernetes Cluster ready with the Master and Worker up and running, more 

things had to be done. In order to put the whole experiment to the trial and to 

demonstrate the results a deployment called php-apache was created. This deployment 

runs a custom Docker image with the following content: 

 

 

Figure 16. Custom Docker Image 

 

It defines an index.php page (server) which simply responds to every request with an 

“OK!” string, as shown below: 

 

 

Figure 17. Index.php code 
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The .yaml file that starts a deployment running this image and exposing it as a service 

making it visible for the whole Cluster, is being represented below: 

 

 

Figure 18. Php-apache.yaml code 

 

 

Running the following command, will create the deployment with the above 

configuration. 

 

$ kubectl apply -f php-apache.yaml 

 

So, running a simple “curl <<php-apache-deployment IP>>” command will just display the 

“OK!” string as shown beneath. 

 

 

Figure 19. Curl test 
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But there’s a twist right there. This <<php-apache IP>>, which was retrieved from the 

“kubectl get pods” command, is the IP of the first replica. This is wrong because when 

generating traffic, it must be distributed to all the replicas not just the first one. 

For this reason, a Pod called Ubuntu was created. This idea behind is that when an 

experiment is being held that uses a lot of “curl” commands to simulate traffic to the php-

apache server in the deployment that descripted above, the traffic must be scattered 

equally across all replicas. This can be done by sending requests from another Pod to the 

php-apache server in the same Kubernetes Cluster. Below, is being displayed its 

configuration. 

 

 

Figure 20. Ubuntu.yaml code 

 

Running the following command, will create this Pod that is being discussed. 

 

$ kubectl apply -f ubuntu.yaml 

 

So, in every experiment that took place in this diploma thesis, the traffic was being sent to 

the php-apache server from the “Ubuntu” Pod. In order to get the response from the 

server an interaction with this running container must be done, with the help of this 

command: 

 

$ sudo docker exec -it <<container-id>> /bin/bash 
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This command enters a bash shell session with the container specified. In this way, 

running the following command inside this container instead of  “curl <<php-apache-

deployment IP>>” from the Kubernetes Master node will bring the desired result as 

displayed underneath: 

 

 

Figure 21. Curl test inside pod 

  

3.2.3 DockerHub 

It can be observed from the “image” header in the configuration files of the “Ubuntu” Pod 

and the “Php-apache” Deployment (Figure 20, Figure 18) that the first one uses an image 

called “zalos/ubuntu_make_calls” and the second one an image with “zalos/php-

apache_index” name. These are custom Docker images that are being pulled every time 

the cluster initializes, from an online repository that allows to share container images, 

called DockerHub [15]. 

After creating an account, these two images were uploaded online, making it possible to 

“pull” them every time the Kubernetes Cluster starts, as it can be seen below: 

 

 

Figure 22. DockerHub User Interface and Images used 
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3.2.4 Prometheus and Grafana 

Monitoring is a crucial feature in the context of resource usage, utilization and cost 

control. Kubernetes clusters have to be actively managed to ensure pods utilize 

underlying node resources efficiently. It allows developers to understand application and 

user behavior quickly, identify bugs and scale an application due to usage as needed. 

There is a wide variety of monitoring tools with Prometheus and Grafana being the most 

popular. They can be used as complementary services that, together, provide a robust 

time-series database with excellent data visualization. 

 

Before the installation of these two charts, a StorageClass deployment needs to be 

created. Kubernetes doesn’t provide data persistence out-of-the-box. That’s something 

the developers have to explicitly configure. Because dynamic persistent volume 

provisioning is needed, a namespace called local-path-provisioner is being created with a 

provisioner installed, by executing the following command: 

 

$ kubectl apply -f https://github.com/rancher/local-path-

provisioner/blob/master/deploy/local-path-storage.yaml 

  

At first, Prometheus needs to be installed with the help of Helm19. Helm is the package 

manager for Kubernetes, and it allows describing the application structure through 

convenient helm-charts and managing it with simple commands. 

Four steps need to be made to install and check Prometheus using Helm: 

1. Add the Prometheus repository with the following command. 

$ helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts 

 

2. Get the .values file from the repository and save it locally just like below: 

$ helm inspect values prometheus-community/prometheus > 

values/prometheus.values 

 
19 https://helm.sh/ 

https://github.com/rancher/local-path-provisioner/blob/master/deploy/local-path-storage.yaml
https://github.com/rancher/local-path-provisioner/blob/master/deploy/local-path-storage.yaml
https://helm.sh/
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3. Make the appropriate changes to this file and install. In server/service heading 

replace type:ClusterIP to type:NodePort and add nodePort:32322 as being 

depicted below: 

 

Figure 23. Prometheus Configuration before 

 

Figure 24. Prometheus Configuration after 

This is done because Prometheus needs to be exported outside of the cluster 

so that, the user interface that it provides can be seen from a machine that 

isn’t part of the Kubernetes cluster. 

4. Run this ssh command matching the local IP (8888) that the Prometheus user 

interface will be displayed, the node IP of the NITOS Testbed (10.0.1.89) and 

the NodePort that was descripted above (32322) along with the username and 

the server name (vzalokost@nitlab3.inf.uth.gr).  

$ ssh -L 8888:10.0.1.89:32322 vzalokost@nitlab3.inf.uth.gr 

  

So, typing localhost:8888 in the local machine the user interface of 

Prometheus will appear indicating that everything is up and working. 

 

Figure 25. Prometheus localhost checking 
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A similar procedure has been followed for the installation of Grafana. Its installation was 

done using Helm and these four steps where being described epigrammatically: 

1. Add the Grafana repository just like below: 

$ helm repo add grafana https://grafana.github.io/helm-charts 

 

2. Fetch the .values file from the repository and save it locally with the following 

command: 

$ helm inspect values grafana/grafana > values/grafana.values 

 

3. Make the appropriate changes to this file and install. In service heading 

replace type:ClusterIP to type:NodePort and add nodePort:32323 this time, as 

being depicted below for exporting the Grafana outside the cluster: 

 

 

Figure 26. Grafana Configuration before 

 

Figure 27. Grafana Configuration after 

4. Run this ssh command matching the local IP (8887) that the Grafana user 

interface will be displayed, the node IP of the NITOS Testbed (10.0.1.89) and 

the NodePort that was descripted above (32323) along with the username and 

the server name (vzalokost@nitlab3.inf.uth.gr).  

$ ssh -L 8887:10.0.1.89:32323 vzalokost@nitlab3.inf.uth.gr 
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So, typing localhost:8887 in the local machine the user interface of Grafana 

will appear. 

 

 

Figure 28. Grafana localhost checking 

 

3.2.5 Metrics Query 

Prometheus provides a function query language called PromQL (Prometheus Query 

Language) that lets developers to select and aggregate time series data in real time. The 

result of an expression can be shown as a graph or viewed as tabular data in 

Prometheus’s expression browser. 

So, the question that raises here is which query to choose and why? 

Just like the Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration 

paper [16] a lot of queries were tested. Beyond CPU or Memory metrics, a very good 

solution is to scale based on some query that describes the traffic that the php-apache 

deployment receives. As the traffic requests are becoming more and more often, some 

additional scale ups must be done so that the resources won’t overload from enormous 

amount of requests that they must carry out. Accordingly, when in lower traffic request 

rate, scale downs must occur in order to not have resources allocated without serving any 

job. 
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Thus, a metric that is ideal for this case is the following: 

avg(rate(container_network_receive_packets_total{pod=~"php-apache.+"}[10m])) 

 

Separating this query to three parts, will help to better understand it: 

1. container_network_receive_packets_total = is a counter that describes the 

cumulative count of packets that a container receives. Here it should be noted 

that this query returns as many results as the number of replicas of this 

container. 

2. container_network_receive_packets_total{pod=~"php-apache.+"} = is a label 

that filter the output of the container_network_receive_packets_total query 

and returns the cumulative packet count that a container receives whose pod 

has the “php-apache” string inside its name. Basically, it returns the 

cumulative number of received packets for each replica of the php-apache 

container. 

3. rate(container_network_receive_packets_total{pod=~"php-

apache.+"}[10m]) = calculates the per-second rate of packets received in the 

php-apache server as measured over the last 10 minutes for each replica 

separately. 

4. avg(rate(container_network_receive_packets_total{pod=~"php-

apache.+"}[10m])) = returns the average rate of cumulative packets received 

across all replicas for 10 minutes. 

 

3.2.6 Prometheus Adapter 

Prometheus is the standard toll for monitoring deployed workloads and the Kubernetes 

cluster itself. It has a custom component called Prometheus Adapter, which works like a 

query in the Prometheus database by gathering selected metrics and is mainly used to 

make scaling decisions. These metrics are being taken advantage both by the Horizontal 

Pod Autoscaler object and the developers for fetching and using them as they want. 
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In order to install the Prometheus Adapter, helm was also used following the previous 

procedure: 

1. The Prometheus repository has already been added. 

2. Get the .values file from the repository and save it locally just like below: 

$ helm inspect values prometheus-community/Prometheus-adapter > 

values/new_prometheus_adapter.values 

 

3. Make the appropriate changes to this file and install. A custom rule has been 

defined fetching the rate of cumulative received packets of the php-apache 

server for each replica and matching this metrics with “my_custom_metric“ 

string as being depicted below: 

 

 

Figure 29. Prometheus Adapter Configuration 

  

4. In order to verify that the data is being exposed properly, the following 

command is used: 

$ kubectl get --raw 

/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/my_custom_

metric |  jq . 

       

This command returns as many instances as the number of replicas. Here is an 

example of 2 replicas. 
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Figure 30. Prometheus Adapter Checking 

        

 

3.2.7 TensorFlow 

 

TensorFlow, being a Python library for fast numerical computing that makes easy for the 

developers to build and deploy Machine Learning models, was necessary for this diploma 

thesis. With the help of TensorFlow, the time series ML models were being used such as 

LSTM. Python3.7 and Miniconda were being used for the installation. 

Conda is an open-source package management system and environment management 

system that quickly installs, runs and updates packages and their dependencies. 

Miniconda is simply a minimal installer for conda. After successfully installing Miniconda 

from this link: https://docs.conda.io/en/latest/miniconda.html, the following command 

was used:  

 

$ conda create --name tensorflow python3.7 && conda install -c anaconda tensorflow 

 

It creates a Python environment called “tensorflow” and installs tensorflow within. 

https://docs.conda.io/en/latest/miniconda.html
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Now, the only thing that left is to enter this environment and install the necessary 

packages for the Machine Learning models. Underneath is shown the Python 

environment that each ML algorithm ran. 

 

 

Figure 31. Python Environment 

 

3.2.8 Horizontal Pod Autoscaler 

Horizontal Pod Autoscaler automatically scales the number of Pods based on a specified 

metric. In this diploma thesis, because the scaling was based on custom metrics 

(container_network_receive_packets_total), the HPA must fetch this metric from the 

Prometheus Adapter. As described above, the Prometheus Adapter associates the metrics 

query provided, with a variable called “my_custom_metric” which then, HPA uses for 

input metric in order to decide whether to scale or not. The configuration of the 

Horizontal Pod Autoscaler can be seen below: 

 

 

Figure 32. Horizontal Pod Autoscaler Configuration 
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$ kubectl apply -f hpa.yaml 

 

A Horizontal Pod Autoscaler object was created, with autoscaling/v2beta2 version, with 

minimum number of replicas equal to 1 and maximum to 10 being named as 

“my_custom_hpa”. The metric fetched is the one described earlier, and the scaling is 

done based on an average value of 25 of the php-apache server. 

So, typing “kubectl describe hpa” command, will ensure that the Horizontal Pod 

Autoscaler is running properly: 

 

 

Figure 33. Horizontal Pod Autoscaler Checking 

 

3.3 Machine Learning  

3.3.1 Overview 

In order to learn from the past trends, identify patterns and make decisions about the 

future this thesis used machine learning algorithms that involve a time component called 

time series machine learning algorithms. Time series forecasting can be categorized into 

the following series: 

1. Classical / Statistical Models = models that have mainly strong base in 

statistics like Moving Averages and Exponential Smoothing. 

2. Machine Learning = models with reduction methods such as Random 

Forests. 

3. Deep Learning = complex neural networks with a time component like 

RNN. 
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A model from it’s of these categories was used. Arima for Classical models, XGBoost for 

Machine Learning models and LSTM for Deep Learning models. Each algorithm was 

utilized in order to make a 5-step out-of-sample prediction on the average rate of 

cumulative packets received from the php-apache server so that there’s time for the 

appropriate scaling of the deployment before the predicted traffic arrives. 

 

3.3.2 Methodology 

Before explaining separately every algorithm that had been used, the general idea of how 

the 5-step out-of-sample predictions must be mentioned. At first, every model takes a 

dataset for input. This dataset is a .csv file that represents the average rate of the packets 

sent to the server and is used for training. Then, the Machine Learning model is being 

fitted on the training data so that it can be used for forecasting. The forecast that is being 

produced is just an observation that is not part of the input data and that’s why it is called 

out-of-sample. Now, in order to make a 5-step out-of-sample forecast, every prediction 

that is being made, is used as input for the next one and the whole process repeats 5 

times. To make things clearer, an example of a 3-step prediction is being presented in the 

following picture 20. 

 

 

Figure 34. Multi-step prediction basic idea 

 
20 https://www.mdpi.com/1996-1073/13/16/4121/htm (Figure 3) 

https://www.mdpi.com/1996-1073/13/16/4121/htm
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Here every blue dots represent the actual values from the input dataset and the yellow 

are the predicted values. So, in the first step, a yellow dot has been produced with the 

help of Machine Learning algorithms, that represents a future value at time T. Then, this 

prediction plus the input dataset are used as input by appending it to the dataset in order 

to be fitted by the model and a new forecast to be brought out at time T+1. The same 

thing is done for the T+2 dot. Furthermore, when the 3-step prediction is being made, the 

3 predicted values are then being replaced with actual values making every dot blue and 

this process repeats all over again. Thus, the prediction for the time T+1 is based on the 

whole dataset plus T, the forecast on T+2 is based on the dataset plus T and T+1, and T+3 

on the dataset plus on T,T+1,T+2. 
 

3.3.3 Datasets 

As far as the datasets [17] [18] that had been used, they provide information about the 

telecommunication activity (SMS, data, calls) over the city of Milan. Two datasets were 

used and got renamed to high.csv and medium.csv representing the number of 

connections to a base station as being shown below: 

 

 

Figure 35. Dataset Format 
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After rounding up the Connections column, underneath there’s a plot that shown both 

datasets. 

 

 

Chart 1. High and Medium Datasets 

 

The high.csv, as its name suggests has higher number of connections than the 

medium.csv. However, none of these datasets were used for training. As 4.2 section 

explains in detail, these datasets generated traffic to the php-apache server with a simple 

curl command for every connection. For example, the first hour as it can be seen in Figure 

31 has 1919.7 connections. So, 1918 HTTP requests were sent with each one displaying 

the “OK!” string, as descripted in 3.2.2. 

The dataset that each Machine Learning algorithm used for training is the one each was 

retrieved from Grafana with the following query: 

 

avg(rate(container_network_receive_packets_total{pod=~"php-apache.+"}[10m])) 

 

It returns the average rate of cumulative packets received across all replicas for 10 

minutes. Beneath is displayed the training dataset across 10 replicas of 1412 points based 

on the high.csv dataset to generate traffic: 
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Chart 2. Training Dataset 

The y-axis values are averaged across 10 replicas and not less because the y-values would 

be smaller in another case. This happens because the avg() function takes a measurement 

and then divides it by the number of the replicas. So, more replicas mean smaller values 

in this specific metric. This way it is easier for the Machine Learning algorithms to predict 

the upcoming traffic as there are no major changes in the value of this metric.  

 

3.3.4 Algorithms 

3.3.4.1 Arima 

As mentioned before, a representative algorithm of Classical Machine Learning time 

series models, is Arima [19]. Arima is an acronym for “AutoRegressive Integrated Moving 

Average” and a type of model known as Box-Jenkins method. This acronym is descriptive 

capturing the key aspects of the model itself. Briefly, they are: 

• AR: Autoregression. A model that uses the dependent relationship 

between an observation and some number of lagged observations. 

• I: Integrated. The use of differencing of raw observations (e.g. subtracting 

an observation from an observation at the previous time step) in order to 
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make the time series stationary. A stationary time series is one whose 

properties do not depend on the time at which the series is observed. So, 

time series with trends or with seasonality are not stationary. 

• MA: Moving Average. A model that uses the dependency between an 

observation and a residual error from a moving average model applied to 

lagged observations. 

Each of these components are specified in the model as a parameter. A standard notation 

is used of ARIMA(p,q,d) where the parameters are substituted with integer values. These 

can be defined as: 

• p: The number of lagged observations included in the model; also known 

as the lag order. 

• q: The number of times that the raw observations are differenced; also 

known as the degree of differencing.  

• d: The size of the moving average window; also called known as moving 

average. 

A linear regression model is constructed including the specified number and type of terms 

and the data is prepared by a degree of differencing in order to make it stationary so that 

trend and seasonality structures to be removed because they affect the regression model 

negatively. 

In order to use the Arima algorithm, the statsmodels21 library must be installed. It is done 

with the following command using conda: 

 

$  conda install statsmodels 

 

After successfully importing Arima, the next step was to check the data for stationarity22. 

Stationarity implies that taking consecutive samples of data with the same size should 

have identical covariances regardless of the starting point. That’s the reason it is easier to 

be analyzed and implemented by many algorithms. Below, there are two examples23  of 

 
21 https://www.statsmodels.org/stable/index.html 
22 https://otexts.com/fpp2/stationarity.html 
23 https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322 (Figure 1) 

https://www.statsmodels.org/stable/index.html
https://otexts.com/fpp2/stationarity.html
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
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non-stationary and stationary times series data with the first one with a trend headed 

downwards and the second with no trend at all. 

 

 

Figure 36. Stationary vs Non-Stationary examples 

 

So, it can be easily decided that the input data are stationary data checking the second 

chart. The next step is to tune the hyperparameters of the model (p,q,d) that best fit the 

dataset provided. This is a simple process that just test every possible combination and 

check the Mean Average Error24 (MAE) of the predictions. MAE informs about how close 

the regression line is to a set of points. It does this by taking the distances from the points 

to the regression line and squaring them. The predictions are 5-step, and the dataset was 

split into test and train. This approach is very close to the experiment that this diploma 

thesis focuses in order to find the optimal Arima regression for this case. Inspecting the 

results, an Arima model with hyperparameters: p=5, q=0, d=1 was selected.  

 

 
24 https://en.wikipedia.org/wiki/Mean_absolute_error 

https://en.wikipedia.org/wiki/Mean_absolute_error
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After tuning the model, everything is ready for the predictions. How the predictions are 

being made is descripted above in 3.3.2 section. Here is a code snippet of the 

implemented Arima algorithm: 

 

 

Figure 37. Arima code snippet 

 

At first, Arima is implemented and fitted to the input data (history variable). Then, the 

method .forecast is called to make a single prediction. This prediction is appended to the 

dataset so that it will be used as input. This process repeats 5 times and then after these 5 

forecasts are appended to the predictions array, they get replaced with the actual values. 

Also, in order to evaluate the model’s accuracy and to have an early point of view on how 

it would perform in the live scenario that this thesis’ custom system will run, the above 

scenario was used. The dataset was split into train and test, with test containing the last 

350 points out of the 1412 of the input dataset. The model was trained 1062 points and 

made 5-step predictions of the last 350 points. This is the chart comparing this forecast to 

the actual values: 
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Chart 3. Arima predictions 

As it can be observed, Arima’s prediction are very good and accurate as the Mean 

Average Error of this regression is just 1.036. 

 

3.3.4.2 XGBoost 

XGBoost [20] is an open-source software library and stands for eXtreme Gradient 

Boosting. It is a decision-tree-based ensemble Machine Learning algorithm that uses a 

gradient boosting model. This model is an additive one, where trees are grown in 

sequential manner and converts weak learners into strong learners by adding weights to 

the weak learners and reduce weights of the strong ones. So each tree learns from the 

previous tree grown. Also, XGBoost uses a more regularized model formalization to 

control over-fitting which gives better performance and is engineered to exploit every bit 

of memory and hardware resources for tree boosting algorithms. XGBoost is very popular 

nowadays because it stands out for its computational speed and model performance. It is 

also installed with the conda command like below: 

 

$  conda install xgboost 

 

Unlike Arima, the input data must be prepared accordingly for XGBoost. The data must be 

restructured to look like a supervised learning problem25. Supervised learning is an 

 
25 https://machinelearningmastery.com/time-series-forecasting-supervised-learning/ 

https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
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approach to Machine Learning where the machine learns from labeled data. By feeding 

the learner with examples together with the true labels for those examples, the machine 

learns a mapping from input to output. So, samples that have not seen before by the 

learner are fed to the model and a prediction is made based on the mapping learned. 

Given a sequence of numbers for a time series dataset, the previous time steps can be 

used as input variables and the next time step as output variables. Suppose a time series 

as follows: 

 

 

Figure 38. Time series dataset format 

 

The data must be reorganized as descripted above so that they look like this: 

 

 

Figure 39. Time series supervised learning format 

 

X value is taken as input and y as output. Also, it can be observed that the time column is 

dropped and some rows of data are unusable for training a model, such as the first and 

the last. This representation is called a sliding window, as the window of inputs and 

expected outputs is shifted forward through time to create new samples for a supervised 

learning model. 
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A simple extension can be made here. In this specific case, the algorithm takes one point 

as input and produces one point as output which is not the best solution where there’s a 

multistep forecast, like in this thesis. So, in order to make more accurate predictions a 

good idea is to use more points as input. But there is a problem here. More points would 

definitely help increase the model’s accuracy but it doesn’t mean the more points to take 

as input the better. By testing the algorithm with such points ranging from 1 to 90 to use 

as input and taking into consideration the Mean Average Error, 50 points was found to be 

the optimal value for the points to take as input. In order to understand the input format 

of the data an example of 3 is shown below. 

 

 

Figure 40. 3 points supervised learning example 

  

The only thing that changes between this example and the input format of XGBoost is 

that in XGBoost format the X variables are expanded until X50 and not X3. As a result, the 

first and the last 50 values of the dataset are being discarded.  

Then, two hyperparameters values had to be chosen: objective and n_estimators. 

Objective specifies the learning task and the corresponding learning objective to be used. 

A wide variety of objectives were tested such as count:poisson, reg:gamma, 

reg:squarederror with reg:tweedie being the best one for this case, due to the lowest 

Mean Average Error. As far as the n_estimators variable, it represents the number of 

gradient boosted trees. Changing this variable helped choose a value of 20 for the 

XGBoostRegressor function. Below, is the code that tests the XGBoost algorithm: 
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Figure 41. XGBoost code snippet 

 

After selecting the appropriate input vector for the algorithm, the model is fitted to the 

data and a prediction is made. Then, this prediction is added to the input vector which is 

shifted left in order to be used as input for the second prediction. A slightly different 

approach was used here. Instead of appending the predictions to the dataset and then 

replacing them accordingly, this XGBoost implementation only appended the actual 

values at the end of its 5-step forecast but using the previous predictions as inputs. So, 

after 5 iterations, the actual values were appended to the dataset every time. 

The same scenario as in the Arima was used in order to test its accuracy. The dataset was 

split into train and test, with test containing the last 350 points. The following image 

shows the XGBoost performance with MAE= 2.72. 
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Chart 4. XGBoost predictions 

 

3.3.4.3 LSTM 

The last Machine Learning time series algorithm that this diploma thesis use is LSTM [21]. 

The LSTM or Long Short-Term Memory network is a type of recurrent neural network 

used in deep learning. Recurrent networks have an internal state that can represent 

context information and keep track of the past inputs for an amount of time that is not 

fixed but rather depends on its weights and on the input data. LSTMs are explicitly 

designed to be able to connect previous information to the present task in such a way 

that the long-term dependency problem is being solved. Remembering information for 

long periods of time is practically their default behavior, not something they struggle to 

learn. Instead of neurons, LSTMs have memory blocks that are connected through layers. 

A block has components that make it smarter than a classical neuron and a memory for 

recent sequences. A block contains gates that manage the state and the output and 
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operates upon an input sequence. The different types of gates are being shown in the 

following image26: 

 

 

Figure 42. LSTM block architecture 

 

There are three types of gates within a unit: 

1. Forget Gate: conditionally decides what information to throw away from 

the block. 

2. Input Gate: conditionally decides which values from the input to update 

the memory state. 

3. Output Gate: conditionally decides what to output based on input and the 

memory of the block. 

So, in order to use the LSTM network, tensorflow need to be installed in order to use its 

library keras. After installing tensorflow (section 3.2.7), the next step is to prepare the 

data. It is common in neural networks to scale the input data before training, using 

MinMaxScaler. MinMaxScaler is scaling the independent variables so that they lie in the 

range of 0 and 1. This is important because few variable values might be in thousands and 

few might be in very small ranges. So, to handle such cases scaling was applied to the 

training dataset with the additional code displayed underneath: 

 

 
26 https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/ 

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
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Figure 43. MinMaxScaler code snippet 

 

 

 

Also, the LSTM model will learn a function that maps a sequence of past observations as 

input to an output observation. As such, the sequence of observations must be 

transformed into multiple examples from which the LSTM can learn. 

For example, for a given univariate sequence: 

 

 

Figure 44. Univariate sequence example 

 

The sequence can be divided into multiple input/output patterns called samples, where in 

this given example, three time-steps are used as input and one time step is used as 

output as seen below: 

 

 

Figure 45. 3-step modification example 

 

Just like XGBoost, this approach can be modified to take more points as input in order to 

produce a single prediction. 40 input points was found to be the optimal number of input 

points for this particular case. A combination of input points has been tested, checking 

the MAE and the time consumed to train and fit the model. So, the input has a format like 

this: [samples, timesteps]. But LSTM network expects a 3-dimensional input which has to 

be formatted to: [samples, timesteps, features]. Since the preferred output of this 

algorithm is one (1 prediction at a time), the input must have this format: [samples, 

timesteps, 1] which is being executed with the code below: 
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Figure 46. LSTM input format 

 

In this diploma thesis, Vanilla LSTM is used. A Vanilla LSTM model has a single hidden 

layer of LSTM units, and an output layer used to make a prediction and it is defined as 

below: 

 

 

Figure 47. LSTM model 

 

The hyperparameters of this network are: 

1. LSTM Units: refers to the number of units of LSTM. A higher number of 

units indicates a more powerful network with raising training time and 

very possible to overfit the data. A lower number of units leads to a bad 

implementation of the algorithm with low accuracy score. 400 LSTM units 

was found to be the optimal number.  

2. Number of epochs: is the number of times that the learning algorithm will 

work though the entire training dataset. Usually, training a neural network 

takes more than a few epochs with this LSTM network using 40. 

3. Loss function: is the function that simply calculates the error. It reduces all 

the various good and bad aspects of a complex system down to a single 

number which allows candidate solutions to be ranked and compared. 

This thesis uses the “MSE” loss function which calculates the loss based on 

the difference between the model’s predictions and the ground truth, 

squaring it and averaging it across the whole dataset. 

4. Optimizer: is an algorithm or a method used to change the attributes of 

the neural network such as weights and learning rate to reduce  the 
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losses. Optimizers helps to get results faster. The “adam” optimizer [22] 

was used because its effectiveness.  

 

In order to check if the LSTM network overfits, learning curves was used27. A learning 

curve is a plot of model learning performance over experience or time. Learning curves 

are a widely used as a diagnostic tool in Machine Learning for algorithms that learn from 

a training dataset incrementally. The model can be evaluated on the training dataset and 

on a holdout validation dataset after each update during training and plots of the 

measured performance are created to show learning curves. Reviewing these curves 

helps detect if the algorithm overfits, underfits or has a good fit over the validation data. 

A good fit is the goal of the learning algorithm and exists between an overfit and underfit 

model. It is identified by a training and validation loss and specifically, if both of them 

decrease to a point of stability and the validation loss has a small gap with the training 

loss. Underneath, the plot of these losses is demonstrated indicating that with the specific 

hyperparameters, the model has a good fit over the data with a training dataset 

consisting of the first 300 points and a validation dataset containing 300 to 550 points. 

 

 

Chart 5. LSTM learning curves 

 
27 https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/ 

https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/
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In order to make forecasts and validate and visualize the results as done with Arima and 

XGBoost , the methodology explained in 3.3.2 section was used. The input dataset was 

split into train (first 1062 points) and test (last 350 points) using 5-step forecasts. The 

following chart shows the LSTM network performance over the test dataset with 

MAE=3.22. 

 

 

Figure 48. LSTM predictions 

 

3.4 Scale Policy 

The scale policy that this diploma thesis used, is based on the Horizontal Pod Autoscaler 

scaling algorithm and is shown below: 

 

 

Figure 49. Custom scale policy 
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The only difference between the HPA’s scale policy and this thesis policy is that the 

currentMetricValue variable has been replaced with the futureMetricValue variable. The 

futureMetricValue is the prediction that has been produced from the Machine Learning 

part and has to do with the upcoming traffic. More specifically, it is the average rate of 

cumulative packets received across all replicas for the 10 following minutes. So, having 

this value forecasted, the deployment can scale before the traffic arrives making better 

use of resources. 

 

3.5 System Architecture 

Last but not least, the architecture of the environment must be analyzed. It is a Python 

script that runs at the same time as the traffic that the php-apache server receives 

predicting the next values, scaling, fetching the actual values and appending them to 

dataset. Here an image is being displayed explaining the logic behind. 

 

 

Figure 50. Thesis' system architecture 
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The architecture of the system that was developed for this diploma thesis can be divided 

into 7 sections: 

1. Predict 5 future points: this is the part that a 5-step forecast is being 

made with the help of the Machine Learning time series algorithms. 

The value that is being predicted is the average rate of cumulative 

packets received across all replicas. In order to make comparisons for 

each algorithm, 3 python scripts were created one for each algorithm, 

with each algorithm used separately in each experiment. So, this is the 

only part that differs in these 3 python scripts. 

2. Calculate the average: the average of these 5 values is being calculated 

in order to be used as input for the formula that calculates the replicas 

number. It was preferred to calculate the average of the next 5 values 

compared to simply predicting the next one because with the second 

approach there would be a lot of ping-pong effects. A better use of 

resources is being made when the deployment is not scaled in traffic 

spikes as it is better to strain for a few seconds to carry out the 

workload than to scale the whole deployment. That’s why the average 

of the next 5 values is used. 

3. Calculate the replicas needed: the futureMetricValue is being replaced 

from this formula (Figure 10) with the average value of the 5 

predictions in order to get the replicas needed to handle the upcoming 

traffic in the best way possible. 

4. Scale (manually): after getting the replicas number needed for the 

upcoming minutes, the deployment must be scaled, if the predicted 

number of replicas is different from the current number of replicas. 

5. Append 10 values in dataset: this part consists of sampling 10 points of 

this metric (average rate of cumulative packets received across all 

replicas) every 16 seconds, with the help of Prometheus Adapter. 16 

seconds where chosen in order to see changes in its value as 

Prometheus has a refresh rate of 15 seconds. So, in 160 seconds 10 

samples are taken 16 seconds apart the one from another. 
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6. Sleep: this is the final step and is just a suspension of the execution of 

the program for a given number of seconds. This number is simply the 

subtraction of the time spent from step one to step 6 of 3 minutes. 

This is the main structure of the mechanism that this diploma thesis 

implements, that scales in real time based on the predicted upcoming 

traffic without the help of Horizontal Pod Autoscaler. 

 

 

Chapter 4: Experiments and Comparisons  

 

4.1 Chapter Introduction 

This chapter consists of some experiments that took place in order to test the 

mechanism’s ,that this diploma thesis implements, functionality. Also, it is found that this 

mechanism scale more efficiently as the same number of replicas is being deployed 

earlier compared to the Horizontal Pod Autoscaler making better use of resources. The 

experiments that were performed are being analyzed and the HPA along with the 

implementationσ of this mechanism for each Machine Learning algorithm are being 

compared. 

 

4.2 Experiments Description 

In order to test the mechanism that this thesis implement, some experiments need to be 

done. The scenario explained above, is being executed 4 times, 3 for each Machine 

Learning time series algorithm that had been used (Arima, XGBoost, LSTM) and one for 

the Horizontal Pod Autoscaler. This mechanism runs at the same time as the generation 

of traffic, just like the Horizontal Pod Autoscaler.  

Two Kubernetes Objects were being used in order to generate traffic to the php-apache 

server: the Php-Apache Deployment and the Ubuntu Pod, that had been analyzed in 3.2.2 

section. This deployment defines the php-apache server and this Pod is used in order to 

distribute the traffic equally to all replicas of the server. So, the requests that the apache 

server receives, are all being sent from the Ubuntu Pod. After transitioning to the 
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container that this Pod utilize, a Python script called make_calls.py is being used that 

simply make requests (“curl” command) to the server every 3 minutes. The number of 

requests is being retrieved from the high.csv for one case and the medium.csv from the 

other case (3.3.3 section).  

As far as the Machine Learning, a few more things need to be specified. The training of 

the models was done with the dataset that was collected from the traffic generated by 

the high.csv dataset and represent the custom metric according to which the scale that 

was done and is displayed in Chart 2. As mentioned above, this metric was averaged over 

10 replicas so that there would not be some major ups and downs that will make it for the 

Machine Learning algorithms hard to train and predict.  

Since the traffic generated every 3 minutes, so did the whole procedure that is being 

presented on the 3.5 section had to last for each iteration. In these 3 minutes, the first 20 

seconds are for training the model, making 5-step prediction and scaling appropriately. 

The rest 160 seconds are for sampling every 16 seconds for 10 times.  

So, 2 terminals were needed, one for the generation of traffic (Ubuntu Pod) and one for 

running the mechanism that this thesis utilize. These Python scripts run simultaneously, 

with the first one making requests to the php-apache server and the second one 

producing predictions, scaling, sampling and both of them operating every 3 minutes. 

 

4.3 Experimental Results 

Having the environment ready and the experiment rolling, the performance charts are yet 

to be presented. In order to demonstrate and evaluate the mechanism that this diploma 

thesis is all about, some diagrams were made that show how well each Machine Learning 

algorithm performed in predicting the future and therefore, scaling the deployment. 

These diagrams describe the change in the replicas number as a function of time, based 

on the traffic received on the php-apache server. 

 

4.3.1 Same dataset for train and test 

In this section, high.csv was used for both training and testing. As mentioned in 3.3.3 

section, the algorithms are trained on the traffic that this dataset produced which in this 
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case, is also used for testing. Underneath each Machine Learning algorithm’s 

performance is being presented based on the change of the replicas number over time. 

 

 

Chart 6. Arima vs XGBoost high.csv dataset 

 

Chart 7. Arima vs LSTM high.csv dataset 

 

 

 

Chart 8. XGBoost vs LSTM high.csv dataset 

 

In these diagrams, the Arima regression is with the orange line, the XGBoost with the red 

and the LSTM with the blue. This experiment lasted 220,5 minutes as there are 882 points 

in the x-axes with each one representing a 15 seconds period. While there are differences 

in replicas number for each algorithm, it can be seen that more or less, the overall results 

are similar. Furthermore, differentiating the predictions of each algorithm from the 

others, some of these differences are due to the factor of luck that governs 

communication with the php-apache server, as there are thousands of requests that 

arriving in the server within a short time. 
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4.3.2 Different dataset for train and test 

In this section, high.csv was used for training and medium.csv for testing. As mentioned in 

3.3.3 section, the algorithms are trained on the traffic that high.csv produced and tested 

on the traffic that medium.csv made. Below each Machine Learning algorithm’s 

performance is being presented based on the change on the replicas number. 

 

 

Chart 9. Arima vs XGBoost different dataset 

 

Chart 10. Arima vs LSTM different dataset 

 

 

Chart 11. XGBoost vs LSTM different dataset 

 

The Arima regression is with the orange line, the XGBoost with the red and the LSTM with 

the blue. This experiment lasted for  317,5 minutes as there are 1270 x-axes points. 

Comparing the duration of this experiment with the one described in 4.2.2 section, this 

experiment lasted almost 100 minutes longer. The values of medium.csv are way smaller 
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than in high.csv, making it less time consuming to fit the Machine Learning model in order 

to make predictions. Also, the changes in the replicas number by every algorithm are 

again not far from each other. 

 

 

4.4 Comparisons with Autoscaler 

Having every Machine Learning algorithm’s performance diagram, it is time to compare 

each of them with the Horizontal Pod Autoscaler in order to test whether the system that 

this diploma thesis implements is indeed making better use of resources or not.  

 

4.4.1 Same dataset for train and test 

In this section, high.csv was used for both training and testing. As mentioned in 3.3.3 

section, the algorithms are trained on the traffic that this dataset produced which is in 

this case used for testing too. Below, there are displayed 3 diagrams that compare the 

change of replicas number between the HPA and each Machine Learning algorithm using 

the same dataset: 

 

 

Chart 12. HPA vs Arima same dataset 

 

Chart 13. HPA vs XGBoost same dataset 
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Chart 14. HPA vs LSTM same dataset 

 

According to these graphs, it can be observed that in the case of same dataset for training 

and testing, this mechanism gets better results than the Horizontal Pod Autoscaler. A 

better use of resources is achieved as the scaling is done earlier using this mechanism. 

More specifically, the same number of replicas is being scaled several seconds on many 

occasions before the HPA would do. 

  

4.4.2 Different dataset for train and test 

In this section, high.csv was used for training and medium.csv for testing. As mentioned in 

3.3.3 section, the algorithms are trained on the traffic that high.csv produced and tested 

on the traffic that medium.csv brought out. Underneath, can be found 3 diagrams that 

make comparisons between each Machine Learning algorithm used and the Horizontal 

Pod Autoscaler using the scenario descripted above: 

 

Chart 15. HPA vs Arima different dataset 

 

Chart 16. HPA vs XGBoost different dataset 
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Chart 17. HPA vs LSTM different dataset 

 

And in this scenario, the mechanism that this diploma thesis implements is performing 

better than the Horizontal Pod Autoscaler. The scales are done earlier than the HPA which 

shows that better use of resources is being achieved. It predicts the upcoming traffic in 

order to scale in time and when the traffic arrives everything is scaled as they should do, 

so that there are no resources that overwork or being allocated and not serving the 

traffic. 

 

 

Chapter 5: Conclusion and Future Work 

 

5.1 Chapter Introduction 

In this chapter, the conclusion and the future work are being presented. The main idea of 

this diploma thesis that had been discussed so far is being summarized and some 

suggestions considering the future work are being made. 

 

5.2 Conclusion 

All in all, the main idea of this thesis is to implement a mechanism that would scale a 

deployment based on the upcoming traffic on the server with the help of Machine 

Learning algorithms. This results in better resource utilization as there are no resources 

that are allocated and not used or overtrying to carry out the tasks needed. Energy is also 
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saved as without the autoscaling mechanisms like the one that this diploma thesis 

implements, all of the resources must be allocated in order to be able to serve the 

upcoming tasks which would be very energy-inefficient. The goal was achieved based on 

the experiments that took place above resulting that the replicas number can be well-

predicted, showing that in dynamic scaling and in mechanisms such as the Horizontal Pod 

Autoscaler there is enough room for improvement. 

 

5.3 Future Work 

Although the goal of this diploma thesis is considered to be accomplished, there are some 

improvements that could be made in order to achieve better results. At first, as 

mentioned above (section 3.5), for every iteration that lasts 3 minutes, up to 20 seconds 

were consumed by the Machine Learning algorithms for training and fitting the model. 

But as the training dataset increases (10 points are appended in each iteration), the time 

it takes for the algorithms to train also increases. If this proccess exceeds 20 seconds, the 

corresponding Python script crashes and the mechanism that this diploma thesis 

implements stops working. That’s why this mechanism cannot run endlessly. Therefore, a 

good solution to this problem that will make this custom mechanism to run without any 

time limit is to train and fit the model in a finite dataset. This dataset can represent a 

definable number of points that for every 10 new points, the 10 oldest points have to get 

discarded in order to keep a steady dataset length. 

Also, a new experiment can be created that will further test and evaluate the importance 

of having as best scaling as possible, with the help of Machine Learning as this diploma 

thesis implements. Instead of having a php-apache server that simply responds with a 

string and inspecting the replicas number, an application could be also written that will 

have a better performance when the appropriate scaling is done. A nice example of an 

application like that would be a video-streaming one that would generate traffic that with 

poor scaling decisions the video will be laggy and with great scaling decisions would be 

smooth. 

Finally, different Machine Learning time series forecasting algorithms can be tested and 

implemented, beyond Arima, XGBoost and LSTM. With the appropriate tuning, 

predictions with greater accuracy can be made resulting in better scaling decisions. 
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