
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FPGA Acceleration of Bioinformatics Algorithms

Diploma Thesis

Antonia Sakellariou

Supervisor: Christos Antonopoulos

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FPGA Acceleration of Bioinformatics Algorithms

Diploma Thesis

Antonia Sakellariou

Supervisor: Christos Antonopoulos

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Επιτάχυνση Αλγορίθμων Βιοπληροφορικής σε FPGA

Διπλωματική Εργασία

Αντωνία Σακελλαρίου

Επιβλέπων: Χρήστος Αντωνόπουλος

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Christos Antonopoulos

Associate professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Dimitrios Katsaros

Associate professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Date of approval: 16­7­2021

vii

Acknowledgements

First and foremost, I would like to thank my thesis supervisor Prof. Nikolaos Bellas, for

his guidance, and support throughout the duration of my studies. Most importantly, I would

like to thank him for always being available and, for his great advice any time I needed it. I

would also like to thank him for thank him for our great collaboration all those years.

I would also like to thank PhD Candidate Alexandros Patras, for always being available

and for answering my endless questions. His help was detrimental for the outcome of this

thesis.

I would also like to thank my parents and my sisters for always being my biggest support­

ers. Thank you for always being there for me and for your encouragement. Lastly, I would

like to thank my friends, that played a huge part on this journey. Thank you for all your

support for those five years.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Antonia Sakellariou

16­7­2021

x

Abstract

Bioinformatics is one of the most growing fields in the technology industry. Bioinfor­

matics combines biology and computer science in order to analyze biological data, mainly

genomes. Due to high computational complexity, algorithms used in bioinformatics such as

Gibbs Sampler for motif finding, are extremely slow on commercial devices, and there is a

need of accelerating them using state­of­the­art technology. Gibbs Sampler is one of the most

known algorithms for solving the motif finding problem, which searches for motifs, that are

a set of nucleotides where a transcription factor binds to a DNA sequence.

This thesis presents an implementation of the Gibbs Sampler algorithm first in software

running on amulticore CPU, and, then, in hardware on a high performance FPGA device. Our

work introduces various optimizations, and we show that Gibbs Sampler algorithm can be

highly accelerated. The execution time for Gibbs Sampler on the ARM processor was 3600

ms for an input of 10 DNA sequences that consist of 1974 nucleotides each, and returns the

best motifs found in these sequences of size 15. Our FPGA implementation, using a Xilinx

Ultrascale+ ZCU102MPSoC, enables high performance total time execution at 53 ms, which

is 67x times faster than the ARM processor implementation.

The source code of the thesis: github.com/ansakellariou/GibbsSamplerFPGA

xi

https://github.com/ansakellariou/GibbsSamplerFPGA

Περίληψη

Η βιοπληροφορική είναι ένας από τους πιο αναπτυσσόμενους τομείς στον κλάδο της τε­

χνολογίας. Η βιοπληροφορική συνδυάζει τη βιολογία και την επιστήμη των υπολογιστών

προκειμένου να αναλύσει βιολογικά δεδομένα, κυρίως γονιδιώματα. Λόγω της υψηλής υπο­

λογιστικής πολυπλοκότητας, οι αλγόριθμοι που χρησιμοποιούνται στη βιοπληροφορική, όπως

το Gibbs Sampler για εύρεση μοτίβων, είναι εξαιρετικά αργοί σε εμπορικές συσκευές και

υπάρχει ανάγκη επιτάχυνσης τους χρησιμοποιώντας τεχνολογία αιχμής. Το Gibbs Sampler

είναι ένας από τους πιο γνωστούς αλγόριθμους για την επίλυση του προβλήματος εύρεσης

μοτίβου, ο οποίος αναζητά μοτίβα, που είναι ένα σύνολο νουκλεοτιδίων όπου ένας παράγον­

τας μεταγραφής συνδέεται με μια αλληλουχία DNA.

Αυτή η διατριβή παρουσιάζει μια εφαρμογή του αλγορίθμου Gibbs Sampler πρώτα σε

λογισμικό που εκτελείται σε CPU πολλαπλών πυρήνων και, στη συνέχεια, σε υλικό σε μια

συσκευή FPGA υψηλής απόδοσης. Η δουλειά μας εισάγει διάφορες βελτιστοποιήσεις και

δείχνουμε ότι ο αλγόριθμος Gibbs Sampler μπορεί να επιταχυνθεί σημαντικά. Ο χρόνος

εκτέλεσης του Gibbs Sampler στον επεξεργαστή ARM ήταν 3600 ms για είσοδο 10 ακολου­

θιών DNA που αποτελούνται από 1974 νουκλεοτίδια το καθένα και επιστρέφει τα καλύτερα

μοτίβα που βρέθηκαν σε αυτές τις ακολουθίες μεγέθους 15. Η υλοποίηση και οι βελτιστο­

ποιήσεις που εφαρμόσαμε στην FPGA, χρησιμοποιώντας την Xilinx Ultrascale + ZCU102

MPSoC, επιτρέπει την εκτέλεση υψηλής απόδοσης συνολικού χρόνου στα 53 ms, η οποία

είναι 67 φορές πιο γρήγορη από την υλοποίηση στον επεξεργαστή ARM.

Ο πηγαίος κώδικας της διατριβής: github.com/ansakellariou/GibbsSamplerFPGA

xiii

https://github.com/ansakellariou/GibbsSamplerFPGA

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Subject of the thesis . 1

1.1.1 Contribution . 2

1.2 Organization of the thesis . 2

2 Background 5

2.1 Bioinformatics . 5

2.1.1 Motif finding Algorithms . 5

2.1.2 Gibbs Sampler . 7

2.2 Tools used for timing analysis of C code 11

2.2.1 Gprof tool . 11

2.2.2 Clock() function . 12

2.3 OpenMP . 13

2.4 Vitis Unified Software Platform . 13

xv

xvi Table of contents

2.5 OpenCL . 14

2.6 Vivado HLS tool . 15

2.7 FPGA Technology . 15

2.7.1 MPSoC FPGA . 16

3 Implementation & Optimizations 19

3.1 C Implementation . 19

3.2 OpenMP Optimizations . 22

3.3 FPGA Implementation & Optimizations 22

3.3.1 FPGA implementation . 23

3.3.2 FPGA optimizations . 24

4 Results & Analysis 27

4.1 Testcase analysis . 27

4.2 C Implementation results . 29

4.3 OpenMP results for x86 processor . 31

4.4 FPGA Implementation results . 32

4.5 FPGA optimization results . 33

4.5.1 Memory burst . 33

4.5.2 II optimizations . 36

4.5.3 Approximate optimization . 39

4.5.4 Final Results . 40

4.5.5 Memory utilization . 42

5 Conclusions 43

5.1 Summary & Conclusions . 43

5.2 Future work . 44

Bibliography 45

List of figures

2.1 An illustration of 10DNA sequences and the regulatorymotif AAAAAAAAGGGGGGG.

[1] . 6

2.2 An illustration of 10DNA sequences and the regulatorymotif AAAAAAAAGGGGGGG

mutated at four random positions. [1] . 6

2.3 An example of Score, Count Profile andConsensus for themotif TCGGGGATTTCC.

[1] . 7

2.4 Pseudocode for Gibbs Sampler [1] . 8

2.5 At first, the algorithm has chosen the following 4­mers (shown in red) and

has randomly selected the third string for removal. 9

2.6 Create CountArray, ProfileArray, ProbabilitiesArray. 9

2.7 Update Count and ProfileArray with pseudocount, and use this ProfileArray

to compute the ProbabilitiesArray of all 4­mers in the deleted string ccg­

GCGTtag. 9

2.8 The deleted string ccgGCGTtag is now added back to the collection ofmotifs,

and GCGT substitutes the previously chosen ccgG in the third string in Dna. 10

2.9 Create CountArray, ProfileArray, ProbabilitiesArray. Then update Count and

ProfileArray with pseudocount, and use this ProfileArray to compute the

ProbabilitiesArray of all 4­mers in the deleted string ttACCTtaac. The deleted

string ttACCTtaac is now added back to the collection of motifs, and ACCT

substitutes the previously chosen taac in the first string in Dna. 10

2.10 Example of a flat profile produced by Gprof tool. 11

2.11 Example of a call graph produced by Gprof tool. 12

2.12 An illustration of multithreading where the primary thread forks off a number

of threads which execute blocks of code in parallel. [2] 13

2.13 Vitis unified software platform overview. [3, 4] 14

xvii

xviii List of figures

2.14 Traditional vs OpenCL programming example. [5] 15

2.15 ZCU102 Evaluation Board [6] . 17

3.1 C pseudocode for Gibbs Sampler [1] . 20

3.2 C pseudocode for Profile function [1] 21

3.3 C pseudocode for Score function [1] . 21

3.4 C pseudocode for Probabilities function [1] 22

4.1 DnaArray of size 1974 * T. 28

4.2 ProfileArray of size 4 * K. 28

4.3 Probabilities array of size L ­ K + 1. 28

4.4 Motifs and BestMotifs arrays of size K * T. 28

4.5 Bar chart of how many times a function is called. 29

4.6 Bar chart of the time in ms that each call of the functions take on x86. . . . 29

4.7 Bar chart of the time in ms that each call of the functions take on ARM. . . 30

4.8 Bar chart of the time in ms that each call of the functions take on x86 after

OpenMP optimizations. 31

4.9 Bar chart of the time in ms that Gibbs sampler takes to run in ARM, x86 and

x86 with OpenMP optimizations. 31

4.10 Bar chart of the time in ms that Gibbs sampler takes in FPGA with clock =

300MHz comparedwith ARM, and x86 processor with andwithout OpenMP

optimizations. 32

4.11 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with

utilizing the BRAM for the input array compared with the previous results of

the FPGA device and ARM processor. 33

4.12 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with

utilizing the BRAM for the input array compared with the previous results

x86 processor with and without OpenMP optimizations. 34

4.13 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with

utilizing the BRAM for the input and the output arrays, compared with the

previous results of the FPGA device and ARM processor. 35

List of figures xix

4.14 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with

utilizing the BRAM for the input and the output arrays, compared with the

previous results x86 processor with and without OpenMP optimizations. . . 35

4.15 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II

= 8. 36

4.16 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II

= 4. 37

4.17 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II

= 1. 38

4.18 Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with N

= 500. 39

4.19 Comparison of the results of ARM processor, baseline FPGA implementa­

tion, x86 processor with and without OpenMP optimizations, and optimal

FPGA implementation. 40

4.20 Combination of the results of the implementation and optimizations on soft­

ware and hardware. 42

List of tables

4.1 Table of all the results combined. 41

4.2 Table of memory utilization. 42

4.3 Table of FPGA available resources. 42

xxi

Abbreviations

II Initiation interval

2D two dimension

1D one dimension

K motif length

T number of DNA sequences

L Dna sequence length

HLS High­Level Synthesis

FPGA Field Programmable Gate Array

BRAM Block Random Access Memory

k­mer motif of length k

xxiii

Chapter 1

Introduction

The field of bioinformatics combines computer science and biology, and its purpose is the

collection and interpretation of biological data by using computational methods. The main

problem of this field is the vast amount of data that one has to process in order to analyze

anything that has to do with a genome. If someone tries to analyze the data conventionally,

for instance accessing data one by one and processing it with a brute force algorithm, it could

take forever to take some results back. This is the reason why alternative methods are looked

for by computer and bioinformatics scientists.

1.1 Subject of the thesis

Most of the algorithms that try to analyze data that come from a genome have to be ac­

celerated in some way, in order to return the results on a realistic time frame. This thesis is

focusing on the acceleration of Gibbs sampler algorithm for motif finding in DNA sequences.

After we implemented the algorithm in C language and got its timing analysis, we tried to

optimize its performance by using OpenMP. The results were slightly better, but there was

still room for improvement. Then we made the necessary changes for the algorithm to be able

to run on hardware, which were very important for its functionality, as some things that are

supported by software are not supported by hardware. After that, we tried to optimize further

the time that the algorithm needed to run on the FPGA by making precise and approximate

optimizations. The last part of the thesis is the analysis of all those results, that came from

implementing and optimizing Gibbs sampling algorithm both on software and hardware.

1

2 Chapter 1. Introduction

1.1.1 Contribution

This thesis contribution is summarized as follows:

1. Gibbs sampler was implemented in C and its performance was analyzed using Gprof

tool and clock() function. We measured the time that the algorithm needed to run, the

time each function needed to run, and the total calls of each function.

2. Gibbs sampler was optimized to run in a multithreaded way using OpenMP.

3. Gibbs sampler algorithm was implemented on an FPGA device, after being trans­

formed accordingly in order to be supported by hardware.

4. Gibbs sampler was optimized on the FPGA precisely using HLS pragmas and approx­

imately by reducing the number of its iterations.

5. The results of all of those implementations and optimizations were analyzed and com­

pared.

1.2 Organization of the thesis

Below is a brief presentation of the contents of each chapter:

Chapter 2 presents background information related to the topics that will be covered by

this thesis. After a brief introduction to the field of bioinformatics, we explain the Motif

Finding algorithms, focusing on Gibbs Sampler algorithm. Then, we present the tools that

were use for timing analysis of C code, also we provide the reader with basic information

on OpenMP, Vitis Unified Software platform, OpenCL, Vivado HLS tool and lastly FPGA

technology.

Chapter 3 presents the steps that we took for implementing the pseudocode of Gibbs

sampling algorithm in C and the optimizations that we did in OpenMP. Also, the alterations

that the algorithm needed to have in order to be implemented on the FPGA device. Lastly,

the precise and approximate optimizations of the algorithm in order to accelerate it further.

Chapter 4 presents the results that we got after implementing Gibbs sampler algorithm on

software and hardware and optimized it to work faster. Firstly, we analyze the results of run­

ning Gibbs sampler algorithm on x86 processor without optimizations, on ARM processor,

on x86 processor with OpenMP optimizations, and we compare those results. Then, we show

1.2 Organization of the thesis 3

the results of the implementation on the FPGA and compare it to all the previous results.

Lastly, we present and analyze the results of the FPGA optimizations and of course compare

them as well with all the previous results. Finally, Chapter 4 combines all the results of the

thesis.

Chapter 5 presents a summary of this thesis and the conclusions that we can draw from

the final results. It also presents some ideas for future development of the thesis.

Chapter 2

Background

This chapter describes the fundamentals needed to read and understand the content of this

thesis. First, we describe what bioinformatics are, with a focus on motif finding algorithms,

what is Gibbs Sampler and how it works. We also go through the OpenMP framework and

FPGA technology, which we used to accelerate the Gibbs Sampler algorithm C version.

2.1 Bioinformatics

Bioinformatics [7] is a growing area of biology that plays an increasingly important role in

new discoveries and developments in the field. It is actually a combining field that connects

biology, computer science, physics, chemistry, mathematics and statistics, to analyze and

process biological data, which are most of the time large and complex data sets. The most

important goal of bioinformatics is developing efficient algorithm for solving trivial problems

of biology and genetics. The most significant data that can be retrieved from a cell are DNA,

RNA, protein sequences and micro array images, from which the first three are plain text

data, which means that they can easily be processed by a computer. [8]

2.1.1 Motif finding Algorithms

Most of the information on how a cell works can be found on DNA. As a matter of fact,

DNA contains the information required for gene expression, which produces proteins. Some

proteins, though, are more important than others, as they are able to start and stop genes, these

proteins are called transcription factors or master regulatory proteins. The way that they can

control when a gene is expressed is by binding to a specific place on DNA, called a regulatory

5

6 Chapter 2. Background

motif or transcription binding site, and is located in the beginning of the gene. The problem

of locating where these regulatory motifs are located is the motif finding problem. [1]

Figure 2.1: An illustration of 10 DNA sequences and the regulatory motif

AAAAAAAAGGGGGGG. [1]

Unfortunately, there is a possibility for this motif to be mutated, meaning that there could

be slight differences between the motifs discovered in different DNA sequences and also

from the original one.

Figure 2.2: An illustration of 10 DNA sequences and the regulatory motif

AAAAAAAAGGGGGGG mutated at four random positions. [1]

This problem arises the need for some algorithms for Motif finding. Such an algorithm

is the Brute force algorithm, which explores all possible motifs and checks if it solves the

problem, but it is extremely slow.

Terms that need to be explained prior to introducing more effective algorithms:

• Score(Motifs): it is the number of unpopular(lower case) letters

2.1 Bioinformatics 7

• Count(Motifs): it is a 4*k matrix, where k is the size of the motifs, that counts how

many times each nucleotide appears in a column

• Profile(Motifs): it is a 4*k matrix, where every cell contains the frequency of the same

cell of the Count matrix

• Consensus(Motifs): it is an ideal motif for the given regions of DNA

[1]

Figure 2.3: An example of Score, Count Profile and Consensus for the motif

TCGGGGATTTCC. [1]

2.1.2 Gibbs Sampler

Now that we have introduced the above terms, we can describe a randomized algorithm

that by rolling a virtual dice is searching for motifs. Even though randomized algorithms do

not offer the control over the results that greedy algorithms provide, they take significantly

less time to find a solution, which is approximate. This gives us the opportunity to run the

8 Chapter 2. Background

algorithm multiple times to find the best approximation possible, which is most of the time

close to the solution. Gibbs sampler algorithm, which is the main algorithm for this thesis,

is a Monte Carlo algorithm. [9]

Its main idea is that by starting with a collection of stings DNA and a matrix Profile,

which is the profile of some randomly selected Motifs from DNA, it uses this information to

generate a new collection of motifs, which is again processed in the same way and so on, for

as many iterations as the user defines. Each time only one motif, which is again randomly

selected, is changed, only if it has a worse score than the one that is being examined in the

same DNA line. The reason because only one motif is chosen to be changed is so that we can

avoid missing a motif if it is in a selection that has a worse score than the others, but it can

be in the solution by itself. [1]

1 Gibbs_Sampler(Dna, k, t, N)

2 randomly select k­mers Motifs = (Motif1, …, Motift) in each

string from Dna

3 BestMotifs ← Motifs

4 for j ← 1 to N

5 i ← Random(t)

6 Profile ← profile matrix constructed from all strings in

Motifs except for Motifi

7 Motifi ← Profile­randomly generated k­mer in the i­th

sequence

8 if Score(Motifs) < Score(BestMotifs)

9 BestMotifs ← Motifs

10 return BestMotifs

Figure 2.4: Pseudocode for Gibbs Sampler [1]

2.1 Bioinformatics 9

Gibbs Sampler algorithm example

Figure 2.5: At first, the algorithm has chosen the following 4­mers (shown in red) and has

randomly selected the third string for removal.

Figure 2.6: Create CountArray, ProfileArray, ProbabilitiesArray.

Figure 2.7: Update Count and ProfileArray with pseudocount, and use this ProfileArray to

compute the ProbabilitiesArray of all 4­mers in the deleted string ccgGCGTtag.

10 Chapter 2. Background

Figure 2.8: The deleted string ccgGCGTtag is now added back to the collection of motifs,

and GCGT substitutes the previously chosen ccgG in the third string in Dna.

Figure 2.9: Create CountArray, ProfileArray, ProbabilitiesArray. Then update Count and Pro­

fileArray with pseudocount, and use this ProfileArray to compute the ProbabilitiesArray of

all 4­mers in the deleted string ttACCTtaac. The deleted string ttACCTtaac is now added

back to the collection of motifs, and ACCT substitutes the previously chosen taac in the first

string in Dna.

The capital letters in this example represent the BestMotifs that Gibbs Sampler will even­

tually return after asmany iterations as it was set to do. Already in the example, we have found

the two out of the four motifs that we are searching. After a few iterations if lines 2 and 4 are

picked we will get BestMotifsArray. This is how Gibbs Sampler algorithm works. [1]

2.2 Tools used for timing analysis of C code 11

2.2 Tools used for timing analysis of C code

For better understanding which parts of the algorithm were taking the most time to exe­

cute, so that we could optimize it on the best possible way, we used Gprof tool and clock()

function.

2.2.1 Gprof tool

Gprof [10] is a tool used for performance analysis of Unix applications. The way it works

is by automatically inserting instrumentation code into the program code during compilation

(specifically for the GCC compiler the user needs to use the ’­pg’ option), to gather caller­

function data. Sampling data is saved in gmon.out file before the program exits, the user

can analyze it with the ’gprof’ command­line tool.

Gprof output consists of two parts: the flat profile and the call graph:

1. The flat profile provides the total execution time spent in each function and its percent­

age of the total running time. It also contains function call counts. The output is sorted

in the order of the higher percentage.

2. The second part of the output is the textual call graph, which shows for each function

which one called it (parent) and which it called (child subroutines).

Figure 2.10: Example of a flat profile produced by Gprof tool.

12 Chapter 2. Background

Figure 2.11: Example of a call graph produced by Gprof tool.

2.2.2 Clock() function

The functionclock() is included in the library time.h and it returns an approximation

of processor time used by the program. In particular, the value that is returned is the CPU time

used so far as a clock_t type of variable. In order to get the number of seconds used, the user

needs to divide by CLOCKS_PER_SEC. If the processor time used is not available or its

value cannot be represented, the function returns the value (clock_t) = ­1.

2.3 OpenMP 13

2.3 OpenMP

OpenMP [11] (Open Multi­Processing) is an API that supports shared­memory multipro­

cessing in C. It is an extension of C (or C++) language, using a set of compiler directives,

environment variables and library routines that influence the execution of the program and

enabling the opportunity to run a program concurrently within a multi­core system.

OpenMP’s directives are called pragmas. Using pragmas a user is able to create

threads, run loops in parallel, create critical sections, insert barriers and many more func­

tions. [12] This is what makes OpenMP an easy­to­use library, combining great functionality

with user­friendly interface.

In OpenMP, the main thread (called master) is the primary thread of the execution.

Whenever we create sub­threads and tasks, the framework forks the specified number of

threads. All these threads, may run concurrently, taking advantage of all possible and avail­

able cores in the system. Each thread is associated with a single ID. The user can create

parallel regions where needed, using as many threads as needed. The only limitations are the

computer resources and algorithms restrictions, a program (or specified parts of a program)

may run only by the master, or from any number of threads. A similar structure is shown in

2.15, where the master thread forks different number of threads to run parallel regions. [2]

Figure 2.12: An illustration of multithreading where the primary thread forks off a number

of threads which execute blocks of code in parallel. [2]

2.4 Vitis Unified Software Platform

The Vitis unified software platform makes possible the development of embedded soft­

ware and accelerated applications on heterogeneous Xilinx platforms, including FPGAs and

SoCs. When it comes to FPGA­based acceleration, the Vitis core development kit allows the

14 Chapter 2. Background

user to build a software application using an API, like the OpenCL API, to run hardware ker­

nels on accelerator cards. The Vitis core development kit also supports running the software

application on an embedded processor platform running Linux, such as on Zynq UltraScale+

MPSoC devices. As for the embedded processor platform, the Vitis core development kit ex­

ecution model also uses the OpenCL API and the Linux­based Xilinx Runtime to schedule

the HW kernels and control data movement. [3, 4, 13]

For this thesis, for the hardware development stage were used Vitis Unified Platform and

Vivado HLS 2019.2. [3, 14]

Figure 2.13: Vitis unified software platform overview. [3, 4]

2.5 OpenCL

Applications take less time to run with OpenCL, because they are offloading their most

computationally intensive code onto accelerator processors or devices. OpenCL’s developers

use C or C++ based kernel languages to code programs that are passed through a device

compiler for parallel execution on accelerator devices.

An OpenCL application is split into host and device parts. The host code is written us­

ing a general programming language such as C or C++ and it is compiled by a conventional

compiler for execution on a host CPU. The device compilation phase can be done online,

for example during the execution of an application, using special API calls. It can alterna­

tively be compiled, before executing the application, into the machine binary or a special

representation. [5, 15]

2.6 Vivado HLS tool 15

Figure 2.14: Traditional vs OpenCL programming example. [5]

2.6 Vivado HLS tool

The Xilinx Vivado High Level Synthesis (HLS) tool transforms a C specification into a

register transfer level (RTL) implementation that you can be synthesized into a Xilinx field

programmable gate array (FPGA).

The user can write C specifications in C, C++, or SystemC, and the FPGA provides a

massively parallel architecture with benefits in performance, cost, and power over traditional

processors.An optimized implementation is created byHigh­Level Synthesis based on default

behavior, constraints, and any optimization directives the user specifies. Also, it is up to the

user to use optimization directives to modify and control the default behavior of the internal

logic and I/O ports. This allows the generation of variations of the hardware implementation

from the same C code. [14]

2.7 FPGA Technology

Field­programmable gate array (FPGA) is an integrated circuit that is built around a uni­

form matrix of configure logic blocks, that are interconnected to each other on a grid. [16]

A programmer, can enable different combinations using the grid and an FPGA can recon­

figure to execute different applications. This one of the biggest advantages, if we compare

them to CPUs or GPUs, as it is a semiconductor that is able to be reconfigured and run ap­

plications at the lowest level, compared to CPUs and GPUs that are built to run under certain

16 Chapter 2. Background

circumstances and all applications go through a different pipeline. Not only that, but FPGAs

provide significant advantages compared to other semiconductor devices, such as low latency

and energy efficiency. Due to their reconfigurable nature, FPGAs are now used in fields such

as Aerospace, Automotive, Medical, Video Processing and more and more people are getting

involved with their research. FPGAs have an extreme growth thought the last decade, and

are expected to be used more and more in the upcoming years.

A Programmer is able to specify an FPGA configuration using (usually) a hardware de­

scription language (HDL), such as Verilog or VHDL. It is recently that High­Level Synthesis

has taken over the place, and using state­of­the­art tools, users are able to write a high level

language, such as C, C++, OpenCL, and be able to synthesize it using tools such as Vitis

Platform [4].

2.7.1 MPSoC FPGA

MultiProcessor System­on­Chip FPGA, is a technology that combines a processor and a

reconfigurable architecture into a single device. This provides high performance, low band­

width communication through the processor and the FPGA. Ultrascale+ ZCU102MPSoC [6]

is used in this Thesis as the target platform.

2.7 FPGA Technology 17

Figure 2.15: ZCU102 Evaluation Board [6]

Chapter 3

Implementation & Optimizations

This chapter describes how the Gibbs sampler algorithm for motif finding was imple­

mented in C and what transformations of the C code needed to be made to implement it in

an FPGA device. It also describes the optimizations that were made using OpenMP to run it

with multithreading in an x86 processor, and the optimizations done on the FPGA device.

3.1 C Implementation

The pseudocode of Gibbs sampler had first to be implemented in C, in order to get results

from x86. It consists of four important functionswhich are presented as pseudocode in Fig 3.1,

Fig 3.2, Fig 3.3, Fig 3.4 and some functions less important, not included in this thesis.

Function GibbsSampler presented in Fig 3.1 is the main function of this program as it

the one that calls all the other functions on its main loop of N iterations, where N is given by

the user. It takes as an input Dna(which is a two­dimensional array of T DNA sequences of

(L length), T(integer), K(integer which defines how long will the produced motifs be), L(for

DnaLength). It returns the result in the form the two­dimensional(2D) array BestMotifs,

that has a size K * T, where K is the length of the motifs and is given by the user and

T is the number of DNA sequences that are given as input. Gibbs Sampler is a function

that contains the element of randomness, as it uses the function rand() both to determine

where in the DNA do the initial motifs and best motifs start, and to pick one of the motifs

to be excluded in each iteration of the calculation of the profile matrix. The excluded motif,

depending on theProbabilitiesArray that is constructed, changeswith the one that has

the greatest probability. If the score of newly changed MotifsArray is less than the score

19

20 Chapter 3. Implementation & Optimizations

of BestMotifsArray, then BestMotifsArray takes the values of MotifsArray.

FunctionProfile presented in Fig 3.2 creates a two­dimensional(2D) array ProfileArray,

of size 4 * K, where 4 stands for the number of nucleotides(adenine, cytosine, guanine and

cytosine).

Function Score presented in Fig 3.3 calculates the score of the motifs array, which it

takes as input. Score is the result of adding for each column the instances of the nucleotides

that appears fewer times (for example, if in column there are more adenine than every other

nucleotide, then score for this particular column equals the result of adding all cytosine, gua­

nine and thymine of this column).

FunctionProbabilities presented in Fig 3.4 creates a one­dimensional array ProbabilitiesArray,

of size L ­ K + 1, where L is the size of Dna array line. ProbabilitiesArray con­

tains the probability of each motif of length K (k­mer).

1 Gibbs_Sampler(Dna, k, t, N, L)

2 for i ← 1 to T

3 StartOfMotif = Random(DnaLength ­ K + 1);

4 Motifs(i, 0..K) = Dna(i, StartOfMotif .. StartOfMotif + K)

5 BestMotifs(i, 0..K) = Motifs(i, 0..K)

6 for j ← 1 to N

7 i ← Random(t)

8 ProfileArray = ProfileNot_i(Motifs, k, t, i, pseudocount)

9 ProbabilitiesArray = Probabilities(Dna(i), L, k, ProfileArray)

10 MostProbable_j = Get max from ProbabilitiesArray(max_j)

11 Motifs(i, 0..K) = Dna(i, MostProbable_j.. MostProbable_j + K)

12 ScoreMotifs = Score(Motifs, k, t, output);

13 ScoreBestMotifs = Score(BestMotifs, k, t, output);

14 if(ScoreMotifs < ScoreBestMotifs)

15 BestMotifs(i, 0..K) = Motifs(i, 0..K)

16 return BestMotifs

Figure 3.1: C pseudocode for Gibbs Sampler [1]

3.1 C Implementation 21

1 ProfileNot_i(Motifs, k, t, i_to_exclude, pseudocount)

2 ProfileArray = {pseudocount}

3 for j ← 1 to K

4 count_a = 0; count_c = 0; count_g = 0; count_t = 0;

5 for i ← 1 to T

6 if (i == i_to_exclude) continue;

7 if(Motifs(i,j) == ’A’) count_a++;

8 else if(Motifs(i,j) == ’C’) count_c++;

9 else if(Motifs(i,j) == ’G’) count_g++;

10 else if(Motifs(i,j) == ’T’) count_t++;

11 sum = count_a + count_c + count_g + count_t + 4 * pseudocount;

12 ProfileArray(0,j) = (ProfileArray(0,j) + count_a) / sum;

13 ProfileArray(1,j) = (ProfileArray(1,j) + count_c) / sum;

14 ProfileArray(2,j) = (ProfileArray(2,j) + count_g) / sum;

15 ProfileArray(3,j) = (ProfileArray(3,j) + count_t) / sum;

16 return ProfileArray

Figure 3.2: C pseudocode for Profile function [1]

1 Score(Motifs, k, t)

2 Score = 0;

3 for j ← 1 to K

4 count_a = 0; count_c = 0; count_g = 0; count_t = 0;

5 for i ← 1 to T

6 if(Motifs(i,j) == ’A’) count_a++;

7 else if(Motifs(i,j) == ’C’) count_c++;

8 else if(Motifs(i,j) == ’G’) count_g++;

9 else if(Motifs(i,j) == ’T’) count_t++;

10 if (count_a == max) Score += count_c + count_g + count_t;

11 else if(count_c == max) Score += count_a + count_g + count_t;

12 else if(count_g == max) Score += count_a + count_c + count_t;

13 else if(count_t == max) Score += count_a + count_c + count_g;

14 return Score

Figure 3.3: C pseudocode for Score function [1]

22 Chapter 3. Implementation & Optimizations

1 Probabilities(DnaLineExcluded, DnaLength, k, ProfileArray)

2 ProbabilitiesArray = {1};

3 for j ← 1 to DNA_LENGTH ­ K + 1

4 count_a = 0; count_c = 0; count_g = 0; count_t = 0;

5 for i ← 1 to K

6 if(DnaLineExcluded(i,j) == ’A’)

7 ProbabilitiesArray(i)*= ProfileArray(0,j);

8 else if(DnaLineExcluded(i,j) == ’C’)

9 ProbabilitiesArray(i)*= ProfileArray(1,j);

10 else if(DnaLineExcluded(i,j) == ’G’)

11 ProbabilitiesArray(i)*= ProfileArray(2,j);

12 else if(DnaLineExcluded(i,j) == ’T’)

13 ProbabilitiesArray(i)*= ProfileArray(3,j);

14 return ProbabilitiesArray

Figure 3.4: C pseudocode for Probabilities function [1]

3.2 OpenMP Optimizations

In order to optimize the performance of the algorithm, OpenMP was used to utilize the

multiple cores of the processor. The main part of the algorithm which causes its latency to

increase is the multiple for loops, most of which are also nested for loops, so we decided to

try executing them in parallel. The pragma that was used for this purpose was pragma omp

parallel for [17]. In some cases we needed to keep some variables private, which

means that they cannot be accessed by other threads, but most of them could be shared

between the threads.

3.3 FPGA Implementation & Optimizations

The main purpose of this thesis is to observe how this algorithm could be accelerated on

an FPGA device. So, we had to implement the Gibbs sampler algorithm in a way that it could

be run on an FPGA, then optimize it and observe the way that it performs.

3.3 FPGA Implementation & Optimizations 23

3.3.1 FPGA implementation

The core of the algorithm remained the same for its FPGA implementation, but we needed

to do some drastic changes because some things that are supported by the software are not

an option when it comes to hardware.

1. The first C function that is not supported by Vivado HLS is function malloc() be­

cause it is using resources that exist in the memory of the operating system, which are

created and released during run time. In order to be able to synthesize a hardware imple­

mentation the design must be fully self­contained and to specify all the resources that

it is going to need. [18]. So, all the arrays that were previously stored in dynamically

allocated memory needed to be transformed to static arrays.

2. The second C function that is not supported by Vivado HLS is rand(), which was

used to produce the random numbers that are needed for the functionality of a random

algorithm. This function is not supported as it cannot be synthesized So, it had to be

replaced with a pseudo number generator function that imitates its activity, which was

created manualy.

3. The third C function that is not supported by Vivado HLS is function strncpy(),

which was used to copy BestMotifs, Motifs and Dna arrays and was critical

for the correctness of the algorithm, so we changed it with a function with the same

functionality that we implemented.

4. The fourth thing that needed to change was the dimensions of both the input array Dna

and the output array BestMotifs. The reason for that was the OpenCL framework

that was used. In fact, a two­dimensional(2D) array can not be passed as a kernel argu­

ment in OpenCL, and it has to be reduced into a one­dimensional(1D) array. [15] Dna

array was reduced to an 1D array of size L * T, where L is the length and T is the

number of the Dna sequences. BestMotifs array was also reduced to an 1D array,

in this case of a size of K * T, where K is the length of the motifs that the algorithm

tries to construct.

It is worth mentioning that for the Gibbs sampler algorithm to be able to be syntesized

on Vivado HLS, we had to implement a host function that was the one that gathered all the

data that the user gave and then sent it to the Gibbs_Sampler function. As for the Vitis

24 Chapter 3. Implementation & Optimizations

Unified Software platform, where the actual FPGA on which we did the measurements was

connected, we had to also create a host function with OpenCL language, which also gathered

the information and after the proper processing then sent it to the kernel that it created.

3.3.2 FPGA optimizations

Comparing the results that can be found in Chapter 4 related with the x86 performance

and the initial run on the FPGA we observe quite an important difference, with x86 being

significantly faster than the FPGA. This means that in order to use the FPGA on its full

extent, we need to further optimize the algorithm.

Precise optimizations

1. We tried to utilize the BRAM of the FPGA device by using the function memcpy()

to copy both the Dna array that comes from the host to a local variable that is stored in

BRAM, but also BestMotifsArray from a local variable that is stored in BRAM

to the variable that is sent by the host. These optimizations resulted on a very high drop

of the time the algorithm needed to run on the FPGA.

2. We used pipeline pragma, which reduces the initiation interval(II) for a function

or a loop by allowing the concurrent execution of operations. A loop or a function

that is pipelined can process new inputs every N clock cycles (N = II of the loop or

function).Loop pipelining can be prevented by loop carry dependencies so this pragma

was used along with dependence pragma, which is presented next. [19]

3. We also used dependence pragma, which provides additional information and

enables us to overcome some loop carry dependencies and allows loops to be pipelined

with lower II. This was exactly the result that we got, as we had a further drop of II. [20]

4. Additionally, we tried inline pragma, which removes a function as a separate en­

tity. Sometimes, inlining a function may allow operations within the function to be

shared and optimized more effectively with surrounding operations. As this is a com­

plex algorithm that calls many functions this was a useful optimization. [21]

5. Moreover, we used array_partition pragma, which splits an array in multiple

BRAMS and as a result it increases the amount of read and write ports and improves the

3.3 FPGA Implementation & Optimizations 25

throughput and the design. In this particular algorithm, we partitioned Dna 2D array in

dimension 2 with a factor of DnaLength/2 in order to have DnaLength/2 memory

ports and allow for multiple loads from this array on the same time, which resulted

in to reduce II. We also partitioned arrays BestMotifs and Motifs completely in

dimension 2, ProfileArray and ProbabilitiesArray in dimension 1 with a

factor 4, in order to reduce further the II. [22]

6. We also used unroll pragma, which transforms loops by creating multiple copies

of the loop body in the RTL design. This allows the parallel execution of some or

all loop iterations and can increase data accesses and throughput. All the loops were

completely unrolled in an effort to reduce II, which was finally achieved. [23]

7. We attempted to use loop_flatten pragma, which allows nested loops to be flat­

tened into a single loop and has as a result improved latency. It is important to be men­

tioned that only perfect and semi­perfect loops can be flattened. Imperfect loop nests

are the loops whose inner loop has variable bounds, or its loop body is not completely

inside the inner loop. [24]

8. We tried to eliminate the function that we hadmade to resemble function strncpy(),

because it caused high latency by using pointer logic. So, we replaced it with a fully

unrolled version(that we unrolled by hand), which had the same functionality but far

better results.

9. Finally, we tried to eliminate the function that we had made to resemble the function

rand(), because it caused high latency, as it did multiplications every time it was

called in order to produce a pseudo random number. Instead, we replaced it with two

buffers(of sizes T and N because this is how many times this functions was called to

produce some random numbers in different ranges.These buffers were created by the

host and stored in BRAM of the FPGA in the beginning of the algorithm. This opti­

mization also produced great results.

26 Chapter 3. Implementation & Optimizations

Approximate optimization

Gibbs sampler result depends on the number of the iteration of its main loop, which every

time produces a new MotifsArray, which is then compared with BestMotifsArray

and if its Score is lower, then BestMotifsArray it takes the values of MotifsArray.

The number of iterations is very high, and most of the time higher than needed, in order to

ensure that the results are as close to the optimal solution as they can be. So, our idea was

to reduce the number of the iterations, depending on the initial number of iterations. For

example, from 2000 iterations we reduced them to 500, that is 75% less than the original

number of iterations.We noticed that this resulted in a significant reduction of the time needed

to run the algorithm on the FPGA device and most importantly the results remained optimal.

We tried to reduce the iterations further, but the results weren’t close to the optimal results.

Chapter 4

Results & Analysis

This chapter presents the results of the acceleration of the Gibbs sampler algorithm for

motif finding. Firstly, there are presented the results on x86 and ARM processors after the

implementation in C, and an analysis of the time of each function of the algorithm to analyze

which is the part that takes the most time to execute. Secondly, there are presented the results

on x86 after the OpenMP optimizations. Thirdly, there are presented the results after the al­

terations of the algorithm in order to be implemented to run on the FPGA device. Fourthly,

there are presented the results after precise and approximate optimizations on the FPGA de­

vice. Lastly, all those results are combined, and we make some conclusions regarding the

algorithm.

4.1 Testcase analysis

In this section, we are going to present the example that most of the metrics were taken

from. The inputs for Gibbs sampler algorithm are the DnaArray shown in Figure 4.1, T =

10 which is the number of DNA sequences inside DnaArray, L + 1 = 1974 which is the

length of the sequences in DnaArray, K = 15 which is the size of the motifs that will be

produced and N = 2000 which is the number of iterations that Gibbs sampler algorithm has

to do, in order to converge to an optimal BestMotifs array shown in Figure 4.4, which is

returned by function GibbsSampler. While it is executed, it also creates array Motifs

shown in Figure 4.4.

Now we are going to talk about the functions that are called in the main loop of N = 2000

iterations of GibbsSampler. FunctionProfileNot_i producesProfileArray shown

27

28 Chapter 4. Results & Analysis

in Figure 4.2 and function Probabilities produces ProbabilitiesArray shown in

Figure 4.3.

Figure 4.1: DnaArray of size 1974 * T.

Figure 4.2: ProfileArray of size 4 * K.

Figure 4.3: Probabilities array of size L ­ K + 1.

Figure 4.4: Motifs and BestMotifs arrays of size K * T.

4.2 C Implementation results 29

4.2 C Implementation results

After implementing the pseudocode for Gibbs sampler algorithm in C, we analyzed its

performance, regarding how much time it takes to produce the BestMotifs array using

gprof tool and clock() function, and howmuch time each of its functions take to complete.

In this section are presented the results of this analysis for x86 and ARM processors.

Results and analysis for x86 proccessor

Figure 4.5: Bar chart of how many times a function is called.

Figure 4.6: Bar chart of the time in ms that each call of the functions take on x86.

30 Chapter 4. Results & Analysis

As shown in Figure 4.5 and Figure 4.6 function GibbsSampler is called only 1 time but

as it calls all the other functions in its main loop of N = 2000 iterations it takes the most time

to complete, in this case 651.47 ms. On the other hand, the function Score may be called

the most times (N * 2 = 4000), as in each iteration the score of Motifs and BestMotifs

arrays are compared, it takes near to zero time to complete. The subfunction that takes the

most time per call to complete is Probabilities function, which takes 0.32 ms per call

to complete, and it is called 2000 times. The subfunction ProfileNot_i takes 0.1 ms per

call to complete, and is called 2000 times.

Results and analysis for ARM proccessor

Figure 4.7: Bar chart of the time in ms that each call of the functions take on ARM.

As shown in Figure 4.7 function GibbsSampler takes the most time to complete, in

this case 3875.507 ms. The subfunction that takes the most time per call to complete is

Probabilities function, which takes 1.843ms per call to complete. The function Score

takes 0.019 ms, and the function ProfileNot_i takes 0.013 ms per call to complete.

Comparison of x86 proccessor and ARM processor results

As we can see in Figure 4.6 and Figure 4.7, x86 processor takes 651.47 ms to run Gibbs

sampler algorithm and ARM processor 3875.507 ms. So, x86 is 5.94 times faster than ARM

processor.

4.3 OpenMP results for x86 processor 31

4.3 OpenMP results for x86 processor

Figure 4.8: Bar chart of the time inms that each call of the functions take on x86 after OpenMP

optimizations.

Figure 4.9: Bar chart of the time in ms that Gibbs sampler takes to run in ARM, x86 and x86

with OpenMP optimizations.

As we can see in Figure 4.6 and Figure 4.8, x86 processor takes 651.47 ms to run Gibbs

sampler algorithm without OpenMP optimizations and 471,14 ms with OpenMP optimiza­

tions. This speedup is expected as we parallelized all the loops that was possible. The speedup

32 Chapter 4. Results & Analysis

is not very high as there are many dependencies between the functions of the program, and

even between some loop iterations inside those functions. Nevertheless, x86 with OpenMP

optimizations runs Gibbs sampler algorithm 1.38 times faster than x86 without OpenMP

optimizations.

In Figure 4.9 we can see a comparison between the time that Gibbs sampler algorithm

takes to run in x86 and ARM processor without OpenMP optimizations and in x86 with

OpenMP optimizations. It also shows how much faster x86 is from ARM and x86 with

OpenMP optimizations, from x86 without them.

4.4 FPGA Implementation results

After doing all the changes that were essential for the algorithm to be able to run on an

FPGA device, we finally got to the stage that we could run the Gibbs sampler algorithm on

the FPGA. The initial results were a bit disheartening compared to x86 processor with and

without optimizations, but were better than the results that we got from ARM processor.

Figure 4.10: Bar chart of the time in ms that Gibbs sampler takes in FPGA with clock = 300

MHz compared with ARM, and x86 processor with and without OpenMP optimizations.

As we can see in the Figure 4.10 the code of Gibbs sampler algorithm is significantly

slower when it is run on the FPGA compared with the time that it takes on x86 processor.

4.5 FPGA optimization results 33

In fact, it is 3.6 times slower than x86 without OpenMP optimizations and 4.9 times slower

than x86 with OpenMP optimizations.n On the other hand, it is 1.6 times faster than ARM

processor.

4.5 FPGA optimization results

There is no doubt that some changes need to happen in order to utilize the full capacity

of the FPGA, and as a result get better measurements for Gibbs sampler algorithm.

4.5.1 Memory burst

Transfer input array on BRAM

The first optimization that we tried was copying the input data of the Dna array to the

BRAM in order to be able to access them faster. This optimization had a huge impact on the

time that the algorithm run, even if the II was still 10.

Figure 4.11: Bar chart of the time inms that Gibbs sampler takes to run in FPGAwith utilizing

the BRAM for the input array compared with the previous results of the FPGA device and

ARM processor.

As we can see in the Figure 4.11 the algorithm now takes less time than it did previously

34 Chapter 4. Results & Analysis

on the FPGA without this optimization, with a current clock on 200MHz and a previous one

on 300 MHz. The structure of the algorithm with the multiple for loops, most of which are

nested, caused the synthesis to fail on 300 MHz with this optimization, because a timing

violation was detected.

As we can see in Figure 4.12, the time that it takes for Gibbs sampler algorithm to run on

the FPGA, is approaching the time that it takes to run on x86.

Figure 4.12: Bar chart of the time inms that Gibbs sampler takes to run in FPGAwith utilizing

the BRAM for the input array compared with the previous results x86 processor with and

without OpenMP optimizations.

Transfer output array on BRAM

After copying the input data of the Dna array to the BRAM, we tried copying the output

array BestMotifsArray to the BRAMwhen the algorithm finished so that we do not have

to access host memory whenever we try to read or write from this array. This optimization

also had a huge impact on the time that the algorithm run, even if the II was 15.

4.5 FPGA optimization results 35

Figure 4.13: Bar chart of the time inms that Gibbs sampler takes to run in FPGAwith utilizing

the BRAM for the input and the output arrays, compared with the previous results of the

FPGA device and ARM processor.

Figure 4.14: Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with uti­

lizing the BRAM for the input and the output arrays, compared with the previous results x86

processor with and without OpenMP optimizations.

As we can observe on Figure 4.13 we have achieved a time of 213.4 ms which is quite

good compared with ARM processor, which is 16.87 times slower than that. The original

36 Chapter 4. Results & Analysis

code was also far slower, to be exact, 12.78 times slower than the current time that we had

achieved with a clock of 300 MHz, even if the II was still 10. Regarding Figure 4.14 which

presents the speedup that we have accomplished in comparison with the time that the algo­

rithm takes to run on x86 processor, we can clearly see that the code on the FPGA is without

OpenMP optimizations and 2.21 times faster with OpenMP optimizations. The II was 15 and

the percentage of the LUTs was 28%.

4.5.2 II optimizations

Using all the optimizations that we mentioned in Chapter 3 with different variations we

tried to reduce II to see if we could get better results. There were many attempts using all

the pragmas mentioned also in Chapter 3 combining them with removing the functions

that we made to imitate functions rand() and strncpy. At this point we need to clarify

that we are talking about an algorithm that has many loops, most of which are nested, and

many if, else if and else statements. This made our job very hard, because many of

the optimizations that we tried failed due to timing violations and/ or created more than 80%

LUTs. Below are shown the results of these attempts.

Results for II = 8

Figure 4.15: Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II = 8.

4.5 FPGA optimization results 37

The II dropped to 8whenwe replaced the functionwe had created to imitate the C function

strncpy() with simple variable assignments, which also copied the contents of the two

strings, but more effectively. We also changed the function that imitated the rand() func­

tion with two arrays which contains all the values that this function returned and was now

made by the host to avoid some computations in the loops.We applied memcpy() to transfer

those arrays, that were passed as an input to the FPGA, to the BRAM, we also partitioned

them with array_partition pragma, one of them completely and the other one in di­

mension 1 with a block factor 4. We also used pipeline pragma, unroll pragma,

inline pragma, tripcount pragma and flatten pragma. Finally, we used

array_partition pragma to partition the Dna array in dimension 2 with a block fac­

tor of 1974/2 = 987, ProbabilitiesArray and ProfileArray in dimension 1 with

a block factor of 4, MotifsArray and BestMotifsArray in dimension 1 with a block

factor of 4.

As we can observe on Figure 4.15 we have achieved a time of 673.4 ms with the clock set

to 100 MHz, but at 200 MHz and 300MHz we had timing violations. Even though the II was

improved, we were incapable to run the algorithm on a high clock frequency, so the results

that we got were as expected worse than those with the addition of memcpy() for input and

output arrays. To be exact, the newly obtained result was 3.2x slower than the best result that

we had gotten yet. The percentage of the LUTs was 56%.

Results for II = 4

Figure 4.16: Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II = 4.

38 Chapter 4. Results & Analysis

The II dropped to 4 when we used dependance pragma, to determine that in func­

tion Score, variable Score did not have a dependence in the same loop iteration(intra

dependence), and variable Motifs did not have a dependence between different loop it­

erations(inter dependence). [20] We also used array_partition pragma to partition

MotifsArray and BestMotifsArray completely in dimension 2 instead of partially

with a block factor 4 in dimension 1.

As we can observe on Figure 4.16 we have achieved a time of 341.1 ms with the clock

set to 200 MHz, 681.42ms with the clock set to 100 MHz, and with the clock set to 300MHz

we had timing violation. Even though the II was improved, we were incapable to run the

algorithm on a 300MHz clock frequency, so the results that we got were as expected worse

than those with the addition of memcpy() for input and output arrays. The percentage of

the LUTs was 47%.

To be exact, the newly obtained result was 1.6 times slower than the best result that we

had gotten yet.

Results for II = 1

Figure 4.17: Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with II = 1.

The II dropped to 1 when we used dependance pragma, to determine that in function

ProfileNot_i, variable ProfileArray did not have a dependence between different

4.5 FPGA optimization results 39

loop iterations(inter dependence). We also used array_partition pragma to partition

ProfileArray both in dimension 1 and 2 with a block factor 4, to do that we also needed

to convert ProfileArray to a 2D array, instead of an 1D that it was previously.

As we can observe on Figure 4.16 we have achieved a time of 336.48 ms with the clock

set to 200 MHz, 672.37 ms with the clock set to 100 MHz, and with the clock set to 300MHz

we had timing violation. Even though the II was improved, we were incapable to run the

algorithm on a 300MHz clock frequency, so the results that we got were as expected worse

than those with the addition of memcpy() for input and output arrays. The percentage of

the LUTs was 70%.

To be exact, the newly obtained result was 1.58 times slower than the best result that we

had gotten yet.

4.5.3 Approximate optimization

After trying all those things, we had to think of another way to see if we could further

reduce the time, the Gibbs sampling algorithm needed to run on the FPGA. By reducing N,

the iterations of the main function of this algorithm, we didn’t have any problem with the

results, which were still very accurate.

Results for N = 500

Figure 4.18: Bar chart of the time in ms that Gibbs sampler takes to run in FPGA with N =

500.

40 Chapter 4. Results & Analysis

As we can see in Figure 4.18 even though we still can’t get results with II = 1 and the

clock on 300MHz or 200MHz, we did get results with the clock on 300 MHz for II = 15 that

were pretty good, compared with what we had started with. Also, we got results for II = 1,

with a clock set to 100MHz. As we can see, the results are better than all our previous tries.

With green highlight we have the best time that we have achieved yet, 53.75ms.

4.5.4 Final Results

After all those experiments, we can see in Figure 4.19 that we were able to accelerate

Gibbs Sampler algorithm quite a lot. Even though, we did not manage to run it with a clock

frequency set to 300MHz and II = 1, we still got very good results with II = 15. This algorithm

had a lot of loops with inter loop dependencies and many conditional statements, which made

it harder for us to drop II efficiently and not simultaneously increase the critical path of the

main loop of Gibbs sampler and the percentage of the LUTs, resulting in a timing violation

when routing was taking place.

Figure 4.19: Comparison of the results of ARM processor, baseline FPGA implementation,

x86 processor with and without OpenMP optimizations, and optimal FPGA implementation.

As we can see in Figure 4.19 the best result that we got from the FPGA device is 67x

faster than ARM processor, 43.2x faster than the original code without optimizations on the

4.5 FPGA optimization results 41

FPGA, 12.1x higher faster than x86 without OpenMP optimizations and 8.8x faster than x86

with OpenMP optimizations.

Table 4.1: Table of all the results combined.

Run Time in ms

ARM 3600

original code in FPGA 100MHz 2727.24

original code in FPGA 300 MHz 2321.92

x86 651.47

x86 with OpenMP 471.14

FPGAmemcpy input 100 MHz 1343.88

FPGAmemcpy input 200 MHz 691.099

FPGAmemcpy input 300 MHz Timing violation

FPGAmemcpy input output 200 MHz 318.998573

FPGAmemcpy input output 300 MHz 213.39547

FPGA 100MHz II = 8 673.392767

FPGA 200MHz II = 8 Timing violation

FPGA 300MHz II = 8 Timing violation

FPGA 100MHz II = 4 681.419784

FPGA 200MHz II = 4 341.093692

FPGA 300MHz II = 4 Timing violation

FPGA 300MHz II = 15 N = 500 53.744152

FPGA 100MHz II = 1 N = 500 167.876326

FPGA 200MHz II = 1 N = 500 Timing violation

FPGA 300MHz II = 1 N = 500 Timing violation

FPGA 100MHz II = 1 672.366548

FPGA 200MHz II = 1 336.48165

FPGA 300MHz II = 1 Timing violation

42 Chapter 4. Results & Analysis

Figure 4.20: Combination of the results of the implementation and optimizations on software

and hardware.

4.5.5 Memory utilization

Table 4.2 shows the percentage of memory utilization for each optimization that we tried

on the FPGAdevice. Table 4.3 shows the total number of the available resources of the FPGA.

Table 4.2: Table of memory utilization.

LUT (%) FF (%) BRAM(%) DSP (%)

Baseline Implementation 3 1 0 0

II = 15 (Optimal Implementation) 28 18 2 16

II = 8 56 4 1 0

II = 4 47 4 1 0

II = 1 70 4 2 0

Table 4.3: Table of FPGA available resources.

LUT FF BRAM DSP

Available resources 274080 548160 1824 2520

Chapter 5

Conclusions

This chapter will summarize this thesis and draw some conclusions regarding the accel­

eration of Gibbs Sampler algorithm, both in software and in hardware.

5.1 Summary & Conclusions

The purpose of this thesis was to analyze the performance of Gibbs sampling algorithm

for motifs finding, both in software and hardware, and try optimizing it to achieve a better

performance.

Firstly, the algorithm was implemented in C language, and we analyzed its behavior. We

observed which of the functions that it called took the most time to complete and how many

times each function was called. For the analysis we used Gprof tool and function clock().

Then, we took measurements of execution time of the algorithm on an x86 and an ARM

processor with the function clock().

Secondly, we tried optimizing the algorithm’s performance on software using OpenMP.

We also observed which of the functions that it called took the most time to complete and how

many times each function was called, just like we did on the version of the code that was not

optimized. Then, we took measurements of execution time of the algorithm optimized with

OpenMP on an x86 processor with the function clock().

Thirdly, the algorithm was implemented by being altered so that it could be run on an

FPGA device. The alterations that needed to be made were the replacement of some C func­

tions with user made functions with the same functionality, and the reduction of the input and

output arrays from 2D to 1D arrays, in order to be able to be passed by OpenCL as kernel

43

44 Chapter 5. Conclusions

arguments. Then, we took measurements of execution time of the algorithm on the FPGA

device.

Fourthly, we did several precise and approximate optimizations in order to optimize the

performance of the algorithm on the FPGA device. Then, we tookmeasurements of execution

time of the algorithm after the optimizations on the FPGA device.

To conclude, as we can see in Figure 4.19, which combines all the results of this thesis,

we managed to run the algorithm on the FPGA 67 times faster than ARM processor, 43.2

times faster than the original code without optimizations on the FPGA, 12.12 times higher

faster than x86 without OpenMP optimizations and 8.77 times faster than x86 with OpenMP

optimizations. So, the purpose of this thesis to accelerate Gibbs sampler algorithm was ac­

complished.

5.2 Future work

Some possible extensions of this thesis could be the compression of the input array Dna.

As our input contains only four characters, it is not necessary to store them in a char type

variable, but we can convert those values to binary, and they need only two bits to be mapped.

For example, ’A’ = 00, ’C’ = 01, ’G’ = 10 and ’T’ = 11. This could also reduce the arrays

Motifs and BestMotifsArray and could possibly increase even more the performance

of the algorithm.

Another interesting development of this thesis could be running the Gibbs Sampler al­

gorithm on a bigger FPGA device than Zynq UltraScale+ MPSoC ZCU102 that we used.

It could be interesting to see if that way we could run the optimized algorithm with II = 1

without getting a timing violation error and see if this further decreases its runtime.

Bibliography

[1] P. Compeau and P. Pevzner. Bioinformatics Algorithms: An Active Learning Approach.

Active Learning Publishers, 2015.

[2] Openmp wikipedia. https://en.wikipedia.org/wiki/OpenMP. Accessed:

2021­07­06.

[3] Vitis unified software platform. https://www.xilinx.com/products/

design­tools/vitis.html. Accessed: 2021­07­10.

[4] Vitis platform. https://www.xilinx.com/products/design­tools/

vitis/vitis­platform.html. Accessed: 2021­07­06.

[5] Opencl khronos. https://www.khronos.org/opencl/. Accessed: 2021­07­

10.

[6] Zynq ultrascale+ mpsoc zcu102 evaluation kit. https://www.xilinx.com/

products/boards­and­kits/ek­u1­zcu102­g.html. Accessed: 2021­

07­06.

[7] Bioinformatics wikipedia. https://en.wikipedia.org/wiki/

Bioinformatics. Accessed: 2021­07­07.

[8] Achuthsankar S Nair. Computational biology & bioinformatics: a gentle overview.

Communications of the Computer Society of India, 2:1–12, 2007.

[9] Charles E Lawrence, Stephen F Altschul, Mark S Boguski, Jun S Liu, Andrew F

Neuwald, and John C Wootton. Detecting subtle sequence signals: a gibbs sampling

strategy for multiple alignment. science, 262(5131):208–214, 1993.

[10] Gprof wikipedia. https://en.wikipedia.org/wiki/Gprof. Accessed:

2021­07­10.

45

https://en.wikipedia.org/wiki/OpenMP
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.khronos.org/opencl/
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Gprof

46 Bibliography

[11] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared­

memory programming. IEEE computational science and engineering, 5(1):46–55,

1998.

[12] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff Mc­

Donald. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[13] Xilinx ug1400, howpublished = https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2019_2/ug1400­vitis­

embedded.pdf, note = Accessed: 2021­07­10.

[14] Xilinx ug902. https://www.xilinx.com/support/documentation/sw_

manuals/xilinx2020_1/ug902­vivado­high­level­synthesis.

pdf. Accessed: 2021­07­10.

[15] Opencl wikipedia. https://en.wikipedia.org/wiki/OpenCL. Accessed:

2021­07­09.

[16] Fpga wikipedia. https://en.wikipedia.org/wiki/Field­

programmable_gate_array. Accessed: 2021­07­09.

[17] Openmp pragmas. https://software.intel.com/content/www/us/en/

develop/documentation/cpp­compiler­developer­guide­and­

reference/top/optimization­and­programming­guide/openmp­

support/openmp­pragmas­summary.html. Accessed: 2021­07­06.

[18] Xilinx ug902. https://www.xilinx.com/support/documentation/sw_

manuals/xilinx2018_3/ug902­vivado­high­level­synthesis.

pdf. Accessed: 2021­07­09.

[19] Pipeline pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/fde1504034360078.html. Accessed:

2021­07­09.

[20] Dependance pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/dxe1504034360397.html. Accessed:

2021­07­09.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/dxe1504034360397.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/dxe1504034360397.html

Bibliography 47

[21] Inline pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/jka1504034359550.html. Accessed:

2021­07­09.

[22] Array_partitioning pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/gle1504034361378.html. Accessed:

2021­07­09.

[23] Unroll pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/uyd1504034366571.html. Accessed:

2021­07­09.

[24] Flatten pragma xilinx. https://www.xilinx.com/html_docs/

xilinx2017_4/sdaccel_doc/igd1504034366745.html. Accessed:

2021­07­10.

https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/jka1504034359550.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/jka1504034359550.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/gle1504034361378.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/gle1504034361378.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/uyd1504034366571.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/uyd1504034366571.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/igd1504034366745.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/igd1504034366745.html

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Subject of the thesis
	Contribution

	Organization of the thesis

	Background
	Bioinformatics
	Motif finding Algorithms
	Gibbs Sampler

	Tools used for timing analysis of C code
	Gprof tool
	Clock() function

	OpenMP
	Vitis Unified Software Platform
	OpenCL
	Vivado HLS tool
	FPGA Technology
	MPSoC FPGA

	Implementation & Optimizations
	C Implementation
	OpenMP Optimizations
	FPGA Implementation & Optimizations
	FPGA implementation
	FPGA optimizations

	Results & Analysis
	Testcase analysis
	C Implementation results
	OpenMP results for x86 processor
	FPGA Implementation results
	FPGA optimization results
	Memory burst
	II optimizations
	Approximate optimization
	Final Results
	Memory utilization

	Conclusions
	Summary & Conclusions
	Future work

	Bibliography

