
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Implementation of a Follow­me Multi­access Edge

Computing (MEC) scheme for 5G networks in Kubernetes

Diploma Thesis

Theodoros Tsourdinis

Supervisor: Athanasios Korakis

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Implementation of a Follow­me Multi­access Edge

Computing (MEC) scheme for 5G networks in Kubernetes

Diploma Thesis

Theodoros Tsourdinis

Supervisor: Athanasios Korakis

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση μηχανισμών Follow­me Multi­access Edge

Computing (MEC) σε δίκτυα 5ης γενιάς σε περιβάλλον

Kubernetes

Διπλωματική Εργασία

Θεόδωρος Τσουρδίνης

Επιβλέπων/πουσα: Αθανάσιος Κοράκης

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Associate professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Antonios Argyriou

Associate professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Dimitrios Bargiotas

Associate professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Date of approval: 15­7­2021

vii

Acknowledgements

There are many who helped me along the way on this journey. I want to take a moment

to thank them.

First, I would like to express my sincere gratitude to my supervisor, Mr. Athanasios Ko­

rakis for the trust that showed in me and his faith in my potential, by inspiring my interest in

remarkable research topics. I would also like to extend my deepest gratitude and especially

thank the postdoctoral Nikos Makris for his consistent support and guidance. His immense

knowledge played a huge role in completing my dissertation.

I am extremely grateful to my family and my friends. Without their tremendous under­

standing and encouragement in the past few years, it would be impossible for me to complete

my study. Last but not least, I would like to thank my life companion Olympia, for all her

love and support.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Theodoros Tsourdinis

15­7­2021

x

Abstract

The advent of 5G in cellular networks has opened new horizons in technological advances

such as Vehicle­to­Vehicle communication (V2V), Augmented Reality (AR), and Virtual Re­

ality (VR). However, the above applications have several requirements in terms of latency

(Ultra­Reliable Low Latency Communication ­ uRLLC) and throughput (Enhanced Mobile

Broadband ­ eMBB). These requirements have brought new challenges in the design and im­

plementation of network infrastructure schemes that are capable of managing the needs of

such applications.

The integration of edge computing in the 5G network, seems to cover the needs of the

above applications, since the services are closer to the end­user, offering high QoS / QoE

perfomance. However, the challenges continue as the key feature of cellular networks is user

mobility. Therefore live migrations of services are necessary, with the sole aim of low latency.

Equally necessary is the management of edge services and consequently the management of

network components of the 5G network.

The basis for managing the above network infrastructure schemes is to have a flexible

core to edge cloud implementations and elastically scalable capacity for on­demand require­

ments. Α container orchestrator like Kubernetes meets all of the above requirements since

with Kubernetes we can rapidly deploy clusters and services in minutes, manage network

functions running in containers, and scale­out capacity to meet peak demands. In this thesis,

we manage to deploy an open­source implementation of a mobile network using the Ope­

nAirInterface platform with the support of 3GPP (LTE) and non­3GPP (WiFi) technologies

in the Kubernetes environment and implement a Follow­me Multi­access Edge Computing

(MEC) scheme, all in the Kubernetes ecosystem.

All the experiments were conducted on real experimental infrastructure ­ testbed (Nitos

Testbed) which consists of computers equipped with devices necessary for the operation of an

LTE / 5G network down from the end user, up to the Core Network, with the use of Software

xi

xii Abstract

Defined Radios and commercial off­the­shelf equipment.

Περίληψη

Η έλευση του 5G σε κυψελοειδή δίκτυα άνοιξε νέους ορίζοντες στην τεχνολογική πρόοδο

όπως η επικοινωνία μεταξύ οχημάτων (V2V), η επαυξημένη πραγματικότητα (AR) και η

εικονική πραγματικότητα (VR). Ωστόσο, οι παραπάνω εφαρμογές έχουν αρκετές απαιτήσεις

όσον αφορά τον χρόνο καθυστέρησης και την ταχύτητα. Αυτές οι απαιτήσεις έφεραν νέες

προκλήσεις στο σχεδιασμό συστημάτων υποδομής δικτύου που είναι ικανός να διαχειριστεί

τις ανάγκες αυτές.

Η ενσωμάτωση της τεχνολογίας Edge στο δίκτυο 5G, φαίνεται να καλύπτει τις ανάγκες

των παραπάνω εφαρμογών, καθώς οι υπηρεσίες είναι πιο κοντά στον χρήστη, προσφέροντας

υψηλά πρότυπα στην ποιότητα υπηρεσιών και εμπειρίας. Ωστόσο, οι προκλήσεις συνεχίζον­

ται καθώς το βασικό χαρακτηριστικό των κυψελοειδών δικτύων είναι η κινητικότητα των

χρηστών. Ως εκ τούτου, είναι απαραίτητες οι ζωντανές μετεγκαταστάσεις υπηρεσιών, με μο­

ναδικό στόχο τη χαμηλή καθυστέρηση των δεδομένων. Εξίσου απαραίτητη είναι η διαχείριση

των edge υπηρεσιών και κατά συνέπεια η διαχείριση των στοιχείων του δικτύου του δικτύου

5G.

Η βάση για τη διαχείριση των παραπάνω συστημάτων υποδομής δικτύου είναι να υπάρ­

χει ένας ευέλικτος πυρήνας για την διαχείρηση των edge­cloud στοιχείων και μια ελαστική

ικανότητα επέκτασης των στοιχείων αυτών. Ένας ενορχηστρωτής container όπως ο Kuber­

netes πληροί όλες τις παραπάνω προϋποθέσεις, καθώς με το Kubernetes μπορούμε να ανα­

πτύξουμε γρήγορα συστοιχίες container και υπηρεσίες σε λίγα λεπτά, να διαχειριστούμε τις

λειτουργίες δικτύου που εκτελούνται σε container και να επεκτείνουμε την ικανότητα να

ανταποκριθούμε στις μέγιστες απαιτήσεις.

Σε αυτή τη διατριβή, καταφέρνουμε να υλοποιήσουμε ένα mobile network χρησιμο­

ποιώντας την πλατφόρμα ανοιχτού κώδικαOpenAirInterface με την υποστήριξη τεχνολογιών

3GPP (LTE) και μη 3GPP (WiFi) στο περιβάλλον Kubernetes εφαρμόζοντας ένα Follow­me

Multi­access Edge Computing σχήμα, όλα στο οικοσύστημα Kubernetes. Όλα τα πειράματα

xiii

xiv Περίληψη

διεξήχθησαν σε πραγματική πειραματική υποδομή ­ testbed (Nitos Testbed) που αποτελείται

από υπολογιστές εξοπλισμένους με συσκευές απαραίτητες για τη λειτουργία ενός δικτύου

LTE / 5G από τον τελικό χρήστη, μέχρι την ραχοκοκαλιά του δικτύου, με την χρήση των

Software Defined Radios συσκευών.

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 The subject of Thesis . 2

1.2 Thesis Organization . 3

2 Study of LTE/4G & 5G cellular networks 5

2.1 Introduction to 4G . 5

2.1.1 4G Key Technologies . 6

2.1.2 LTE Architecture . 7

2.1.3 LTE Protocol Stack . 9

2.2 Introduction to 5G . 11

2.2.1 5G Key Technologies . 12

2.2.2 Functional Split Architecture . 14

xv

xvi Table of contents

3 Study of Multi­Access Edge Computing 17

3.1 The defects of Cloud Computing . 17

3.2 Introduction to Multiple­Access Edge Computing 17

3.3 MEC System Implementations and Placements 18

3.3.1 Employing MEC on the Fronthaul of Heterogeneous 5G Architecture 20

3.4 MEC Services Type Deployment . 21

3.5 Live Migration of MEC Services . 21

3.5.1 Purpose of Live Migration . 21

3.5.2 VM Live Migration . 24

3.5.3 Live Migration on KubeVirt . 26

3.6 On Follow­Me Schemes . 26

3.6.1 Related Work . 26

3.6.2 Follow­Me MEC Implementation in Kubernetes Environment . . . 27

4 Kubernetes Ecosystem 33

4.1 Introduction to Docker . 33

4.1.1 Docker architecture . 34

4.2 Introduction to Kubernetes . 35

4.2.1 Kubernetes Components . 36

4.2.2 Kubernetes Objects . 37

4.2.3 Kubernetes Networking . 39

4.3 Multus CNI . 40

4.4 KubeVirt . 41

4.5 Prometheus . 42

4.6 Grafana . 43

5 Experimental Setup 45

5.1 Experimental Setup Resources . 45

5.1.1 NITOS Testbed . 45

5.1.2 OpenAirInterface . 47

5.2 Experimental Setup Architecture . 47

5.3 Experimental Results . 50

5.3.1 Live Monitoring of Resources . 50

Table of contents xvii

5.3.2 Latency Measurements . 53

5.3.3 Migration Measurements . 55

6 Conclusions 57

6.1 Summary and Conclusions . 57

6.2 Future Work . 57

Bibliography 59

List of figures

2.1 LTE downlink resource based on OFDM. [1] 7

2.2 Performance (Bit Error Rate) Analysis on SISO , MISO (2x1), SIMO (1x2)

and MIMO (2x2). [2] . 7

2.3 LTE architecture [3] . 9

2.4 LTE protocol stack. [4] . 11

2.5 Minimum Technical Performance Requirments of IMT 2020. [5] 12

2.6 Eight functional splits proposed by 3GPP. [6] 15

2.7 PDCP/RLC functional split [7]. 16

3.1 MEC Host is placed on the SGi interface. 19

3.2 MEC Host is placed on the S1 interface. 19

3.3 Employing MEC on top of DUs. [8] . 20

3.4 MEC traffic passed on dual technology DU’s. 22

3.5 Radio Access Technology switch. 23

3.6 Live Migration of MEC service. 24

3.7 Pre­Copy Migration vs Post­Copy Migration [9]. 25

3.8 MEC Host Architecture. 29

4.1 Docker Architecture. [10] . 34

4.2 Kubernetes Components. [11] . 36

4.3 Container to Container Communication. 40

4.4 Intra­Node Pod Communication. 40

4.5 Inter­Node Pod Communication. 40

4.6 Secondary interface attached to a pod via Multus [12]. 41

4.7 Kubevirt Architecture [13] . 42

4.8 Prometheus Architecture [14]. 43

xix

xx List of figures

5.1 NITOS testbed overview; all the physical nodes are available to be used as

bare metal machines. In the Figure, an overview of the indoor testbed nodes

is shown. All the nodes of the testbed are in­terconnected under the same

network. [15] . 46

5.2 The ecosystem of NITOS testbed. [15] . 47

5.3 The deployment of Heterogeneous MEC­functional 5G Network on Kuber­

netes. 48

5.4 Memory Usage of the node on which the Core Network has been deployed. 51

5.5 CPU Usage of the node on which the Core Network has been deployed. . . 52

5.6 Disk I/O & Disk Usage of the node on which the Core Network has been

deployed. 52

5.7 Memory Usage of the node on which the Fronthaul components have been

deployed. 52

5.8 CPU Usage of the node on which the Fronthaul components have been de­

ployed. 53

5.9 Disk I/O & Disk Usage of the node on which the Fronthaul components have

been deployed. 53

5.10 Nitos indoor testbed topology. 54

5.11 Latency on Fronthaul (VoIP application). 55

5.12 Migration Time for each scenarios. 56

List of tables

5.1 Benchmark Characteristics (in ms) . 54

xxi

Abbreviations

5G 5th Generation

AR Augmented Reality

URLLC Ultra­Reliable Low­Latency Communications

eMBB Enhanced Mobile Broadband

QoS Quality of Service

QoE Quality of Experience

3GPP 3rd Generation Partnership Project

4G 4th Generation

LTE Long­Term Evolution

MEC Multiple­Access Edge Computing

NITOS Network Implementation using Open­Source software

USRP Universal Software­Defined Radio Peripherals

RAN Radio Access Network

3GPP 3rd Generation Partnership Project

3G 3rd Generation

TV Television

IP Internet Protocol

2G 2nd Generation

WLAN Wireless Locan Area Netw3th Generation

OFDM Orthogonal Frequency Division Multiple Access

MIMO Multiple Input Multiple Output

FEC Forward Error Correction

ARQ Automatic Repeat Request

HARQ Hybrid Automatic Repeat Request

UE User Equipment

xxiii

xxiv List of tables

EUTRAN Evolved Universal Terrestrial Radio Access Network

EPC Evolved Packet Core

MME Mobility Management Entity

P­GW Packet Data Network Gateway

S­GW Serving Gateway

PCRF Policy Control and Charging Rules Function

PDCP Packet Data Convergence Protocol

RLC Radio Link Control

PDU Packet Data Unit

MAC Media Access Control

PHY Physical

RRC Radio Resource Control

NAS Network­Attached Storage

IoT Internet of Things

ITU International Telecommunication Union

mMTC Massive Machine Type Communications

KPI Key Performance Indicators

IMT International Mobile Telecommunications

CSI Channel State Information

NFV Network Function Virtualization

CU Central Unit

DU Distributed Unit

WiFi Distributed Unit

F1AP F1 Application Protocol

V2X Vehicle to Everything

FH Fronthaul

BH Backhaul

RTT Round Trip Time

RNTI Radio Network Temporary Identifier

UL Uplink

DL Downlink

VM Virtual Machine

List of tables xxv

RAT Radio Access Technology

API Application Programming Interface

QUEMU Quick Emulator

WAN Wide Area Network

VIM Virtual Infrastructure Manager

VNFM Virtual Network Function Manager

K8s Kubernetes

RAM Random Access Memory

CPU Central Processing Unit

NFS Network File System

SSH Secure Shell

PV Persistent Volume

PVC Persistent Volume Claim

NAT Network Adress Translation

CNI Container Network Interface

CRD Custom Resource Definition

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

SIM Subscriber Identity Module

SDR Software Defined Radios

OAI Open Air Interface

RF Radio Frequency

OAI Open Air Interface

OAI Open Air Interface

tc Traffic Control

SGPGW­U Serving Gateway and Packet Data Network Gateway User plane

SPGW­C Serving Gateway and Packet Data Network Gateway Control plane

USB Universal Serial Bus

I/O Input/Output

SIP Session Initiation Protocol

VoIP Voice Over Internet Protocol

TCP Transmission Control Protocol

xxvi List of tables

SCTP Stream Control Transmission Protocol

UDP User Datagram Protocol

CQI Channel Quality Indicator

Chapter 1

Introduction

As the fifth generation of mobile network access (5G) rolls out, new applications are

coming to target an end­to­end converged ecosystem, hosting high bandwidth, low latency,

and massively connected devices. These services come to serve, from the ordinary mobile

user, up to companies with specialized manufacturing technologies such as Industry 4.0 [16],

paving new avenues in communication between people, devices, and machines, taking fac­

tory automation to the next level. Also, based on the high throughput and the extremely low

latency provided by the 5G networks, new technologies have been developed that utilize the

autonomy of cars allowing communication between them (Vehicle to Vehicle Communica­

tion).

In such communications, where data must be sent and received quickly and correctly

from one side to the other, reliable network infrastructures and schemes are a must to protect

these time­sensitive data. These schemes should not be based on cloud­based solutions, as

they contribute to latency due to the geographical distance between the end­user and the data

processing centers. Also, another reason cloud computing is not suitable in such schemes is

the constant maintenance costs and energy consumption plus the high risk of privacy leakage

[17].

As 5G networks go beyond the monolithic architecture of LTE / 4G networks, bringing

the architecture components closer to the edge, i.e. closer to the user, distributing the RANs

(Radio Access Networks), allows us to shinemore towards edge computing for the creation of

the above­mentioned network infrastructures. However, with the presence of edge services,

the components of the 5G network are increasing and their management requires a kind of

orchestration for their proper operation, control, scale, and migration. Therefore, there is a

1

2 Chapter 1. Introduction

need for a centralized management platform on which a 5G network must be deployed.

1.1 The subject of Thesis

In this thesis, wewill adequately cover all the above problems thatmainly concern uRLLC

­ High Availability, Low Latency use cases in a 5G Disaggregated Architecture network

which we deployed in the Kubernetes framework. This way, we take the advantage of the

multiple benefits provided by an application container orchestrator like Kubernetes, such

as management and monitoring of resources and dynamic scale of 5G network architecture

components.

To the above Kubernetes deployment, we added an edge network infrastructure for real­

izing Multi­access Edge Computing (MEC) [18] that will support the needs of applications

for low latency and real­time data management. MEC allows virtualization of services de­

ployed in or close to the network edge. Then we implemented a Follow Me algorithm for

live­triggered migration of edge services between different nodes for the services to be avail­

able regardless of the spatial mobility of the network end­users.

The containerized deployment relies on the open­source OpenAirInterface platform to

which functionality for a Heterogeneous Disaggregated Setup has been added, providing the

ability to a network end­user to connect via 3GPP (LTE) and non­3GPP (WiFi) technologies.

The entire setup is based on a real­world testbed (NITOS Testbed) providing the appropriate

hardware equipment for the operation of Radio Access Networks.

1.2 Thesis Organization 3

1.2 Thesis Organization

To complete the dissertation, several methodologies led to understand various concepts,

identifying problems, and solving them. The contribution of this thesis can be summarized

as follows:

In chapter 2 we study the key technologies used by modern cellular networks and the

architecture of LTE / 4G & 5G networks. In chapter 3 we introduce Multi Edge Computing

and the various related technologies.We also present in detail the scenarios for which the Live

Migration of MEC services is necessary and we analyze the implementation of a Follow Me

approach in the Kubernetes environment. In chapter 4 we analyze the Kubernetes framework

as well as technologies offered by the Kubernetes ecosystem. In chapter 5 we present our

experimental setup as well as the experimental results. In the last chapter, we summarize and

conclude this thesis and suggest future work.

Chapter 2

Study of LTE/4G & 5G cellular networks

2.1 Introduction to 4G

The fourth generation of wireless standards for cellular systems is 4G. This is the later

cellular mobile standard after 3G. The peak requirements for the 4G standard according to the

ITU are 100Mbps for amobile connection, e.g. in a car, and 1Gbps for stationary connections,

i.e. for the use of desktop devices. However, a typical data rate in a 4G system ranges from 20

to 100 Mbps. The 3rd Generation Partnership Project (3GPP) standards group has developed

and maintains LTE technology and replaces the 3.75G (HSPA +) and UMTS standards. The

reason for the replacement of the previous technologies used in the third generation of mobile

network access (3G), was for the transition to a standard that will offer higher data rates and

lower latency [19].

The 4G is developed to meet the quality requirements of service (Quality of service­

QoS) and requirements set by future applications such as wireless broadband, multimedia

services, video chat, high­definition TV, digital video streaming, and other services using

high bandwidth. Users can use the above services regardless of time and location. In addition,

4G uses IPV6 technology to support a large number of wireless­enabled devices. It also offers

the capability of a heterogeneous scheme as well as the connection to WLAN satellite and

3G systems is achievable. The 4G system, like the 3G, is IP­based (Internet protocol) but

more specifically the 4G relies exclusively on all­Internet Protocol (all­IP) therefore unlike

3G, 4G uses IP even for voice data systems (IP telephony).

The band of frequencies used by the 4G ranges between 2­8 GHz while the bandwidth

of the channels is 100MHz, taking better advantage of the spectrum compared to the 2G and

5

6 Chapter 2. Study of LTE/4G & 5G cellular networks

3G bands that were limited to the band of 1.8 and 2 GHz respectively.

2.1.1 4G Key Technologies

In order to meet the needs of applications and to offer unique standards in QoS, several

technologies were developed in the 4G era. Below we will analyze some of them:

• Orthogonal Frequency Division Multiple Access – OFDMA: OFDMA was devel­

oped in 4G achieving high spectral performance, supported by a channel distribution

scheme. This technique is used to break down the data to be transmitted along with the

orthogonal carriers making it possible to reduce intersymbol interference (ISI) which

comes from the delay spread of Multi­Path fading and to accomplish a diversity gain

that leads to signal­to­interference­plus­noise ratio (SINR) improvement. As shown in

figure 2.1 the OFDM symbols are grouped into resource blocks. The resource blocks

have a total size of 180 kHz in the frequency domain and 0.5ms in the time domain.

• Multiple Input Multiple Output – MIMO: The use of multiple transmission and

receiving antennas allows increasing capacity network due to higher data rates and

higher number of users served. MIMO systems offer spatial multiplexing and diversity

gain. Spatial multiplexing is mainly for achieving high data rate whereas diversity gain

is mainly to increase the reliability of the system. As we see in figure 2.2 the reason for

getting the improved error performance in MIMO system is just because of the benefit

of both array gain and diversity gain [2].

• Down­Link Adaptation: Depending on the quality of the signal transmitted to and

from a particular user, certain modifications are made to the signal to improve systems

quality and coverage reliability. More specifically, if SINR is good then higher Mod­

ulation and Coding Schemes (MCS) are used. If the SINR is bad, then lower MCS are

used.

• Hybrid Automatic Repeat Request (hybrid ARQ or HARQ): This is a combination

of high­rate forward error correction (FEC) and automatic repeat request (ARQ) error­

control. Both are error­correcting codes and help reduce SINR.

2.1 Introduction to 4G 7

Figure 2.1: LTE downlink resource based on OFDM. [1]

Figure 2.2: Performance (Bit Error Rate) Analysis on SISO , MISO (2x1), SIMO (1x2) and

MIMO (2x2). [2]

2.1.2 LTE Architecture

The LTE architecture has three main components:

• User Equipment (UE): This is mobile equipment. It is any device used directly by an

end­user to communicate through an LTE network.

• EUTRAN (Evolved Universal Terrestrial Radio Access Network): The E­UTRAN

handles the radio communications between the mobile and the EPC. The EUTRAN

consists of the evolved base stations, called eNodeB. An eNodeB is a part of the E­

UTRAN radio access network and is the component that allows UEs to connect to the

LTE network. An eNodeB typically communicates with the UE’s through Uu interface,

with other eNodeBs through X2 interface, and with the EPC through S1 interface. An

8 Chapter 2. Study of LTE/4G & 5G cellular networks

eNodeB performs Radio Control Management where it essentially handles the radio

resource management for UEs in both idle and connected modes. It is also responsible

for the setup, maintenance, and release of radio bearers and their resource configuration

(radio bearer control). In addition, it routes the packets from the user plane towards the

S­GW. It is responsible for selecting the MME, as it allows the UE to be served by a

different MME while being in a network or while the UE is in the ”attach” procedure.

• Evolved Packet Core (EPC): This is the LTE core network. It is comprised of compo­

nents that have the following functions: mobility management, authentication, quality

of service, routing upload and download IP packets, IP address allocation, and more.

The EPC consists of the following:

1. Mobility Management Entity (ΜΜΕ): The MME is responsible for process­

ing the signals between the UE and the EPC. It also manages the connections

between the UE and the core network initially by exchanging authentication in­

formation between the UE and the HSS and then by allowing the subscriber’s mo­

bility within the network or across networks and keeps track of the subscriber’s

location updates. It also establishes bearers by deciding on a gateway router to

the Internet if there are more gateways available. The session management is pro­

vided through S1­MME interface to eNodeB. The mobility management function

is provided through S10 interface. The user data plane is controlled by the MME

through the S11 interface. The MME is linked through the S6a interface to the

HSS which contains all the user subscription information.

2. Home Subscriber Server (HSS): HSS maintains a central database that contains

information about all network operators’ subscribers. It is responsible for many

functions of many of them include call and session establishment support and

user authentication and access authorization. It also maintains profile information

that describes service subscription states and user­subscribed Quality of Service

information.

3. Packet Data Network Gateway (P­GW): P­GW is the termination point of the

packet data interface towards the Packet Data Network. It is responsible for IP

allocation for UEs and filtering of user Down Link IP packets in different QoS

bearers. P­GW also handles policy enforcement, charging support, and lawful

2.1 Introduction to 4G 9

interception. P­GW communicates with the Data Packet Networks (PDN) using

the SGi interface.

4. Serving Gateway (S­GW): S­GW routes all the user data packets and forwards

them between the eNodeB and the PDN gateway. The S­GW also handles mo­

bility and handover between 3GPP networks.

5. Policy Control and Charging Rules Function (PCRF): PCRF is responsible

for policy control decision making and charging rules functionality in the Policy

Control Enforcement Function (PCEF), which is located within P­GW.

Figure 2.3: LTE architecture [3]

2.1.3 LTE Protocol Stack

The protocol stack has two planes:

• The User Plane: Includes network user traffic.

• The Control Plane: Includes signaling traffic.

As we see in figure 2.4 the protocol stack for each interface changes depending on the

plane we are referring to. Let’s see in detail the protocol stack for each of the user and the

control plane.

• PDCP: The main function of Packet Data Convergence Protocol (PDCP) is the header

compression of IP packets. It is also responsible for functions such as:

10 Chapter 2. Study of LTE/4G & 5G cellular networks

1. Transfer of C­Plane andU­Plane data between RLC andHigher U­Plane interface

2. Maintenance of PDCP Sequence Number.

3. Transfer of Sequence Number Status ­ ROHC header compression.

4. In­Sequence delivery of Upper Layer PDUs at re­establishment of lower layer.

5. Duplicate detection, elimination and retransmission of its own SDUs during han­

dover at re­establishment of lower layer for RLC AM.

• RLC: The main function of Radio Link Control (RLC) is the transfer of upper layer

PDUs. It is also responsible for error correction via ARQ and for concatenation, seg­

mentation, and reassembly of RLC SDUs (only for UM and AM data transfer). Also,

it provides functions such as duplicate detection (only for UM and AM data transfer),

protocol error detection and recovery, RLC SDU discard (only for UM and AM data

transfer), and RLC re­establishment.

• MAC: The main function of the MAC layer is the mapping between logical channels

and transport channels. MAC is also responsible for the Multiplexing / demultiplex­

ing of MAC SDUs belonging to one or different logical channels into/from transport

blocks delivered from the physical layer on transport channels. In addition, it supports

scheduling information, dynamic scheduling, and error correction through HARQ.

• PHY: Physical Layer includes all information from the MAC transport channels over

the air interface. It is responsible for power control, link adaptation, cell search, and

other measurements for the RRC layer.

• RRC: Radio Resource Control is responsible for managing the broadcast system in­

formation associated with Access Stratum and Non­Access Stratum (NAS). It is also

responsible for the RRC connection between the UE and eNodeB and additionally

manages UE measurements related to inter­system (inter­RAT) mobility.

• NAS: This is the communication protocol between the UE and MME. It is responsible

for themobility and sessionmanagement of the UE and has functions for authentication

and security control.

2.2 Introduction to 5G 11

Figure 2.4: LTE protocol stack. [4]

The above protocols can be divided based on the Layers:

• Layer1: Consists of Physical layer.

• Layer2: Consists of PDCP, MAC, and RLC protocols.

• Layer3: Consists of RRC, NAS, and IP protocols.

2.2 Introduction to 5G

The fifth­generation wireless system (5G) is the next major phase of mobile telecommu­

nications standards beyond the 4G. The 5G infrastructures are flexible and easily meet the

growing demand and provide connectivity for multiple technologies such as Cloud Technol­

ogy and the Internet of Things (IoT). The 5G network offers a heterogeneous solution to the

network structure that integrates all previous generation networks, facilitating global mobil­

ity and service portability. According to International Telecommunication Union (ITU), the

5G networks are expected to offer unprecedented speeds and extremely low latency to the

applications that will be integrated into the network. Depending on the features and require­

ments of the applications, ITU has defined three main application areas for the enhanced

capabilities of 5G:

• Enhanced Mobile Broadband (eMBB): This category includes cases that will im­

prove the user experience such as access to multimedia content that requires high def­

inition, data, and services like virtual and augmented reality.

12 Chapter 2. Study of LTE/4G & 5G cellular networks

• Ultra­Reliable and Low­Latency Communications (URLLC): This category de­

scribes use cases of critical applications that have low latency and high reliability such

as autonomous driving. In these applications, the requirements are increased in terms

of performance, delay, and availability.

• MassiveMachine­Type Communications (mMTC): This category provides connec­

tivity for many battery­powered, low­cost, and low data rate devices and sensors.

To meet the needs in the applications of the above categories, 5G Key Performance Indi­

cators (KPIs) have been defined by IMT­2020 and are described in detail in the figure 2.5.

Figure 2.5: Minimum Technical Performance Requirments of IMT 2020. [5]

2.2.1 5G Key Technologies

To cover the design and functional aspects of 5G, it was necessary to develop certain

technologies. Some of them are extensions of 4G technologies, while others were developed

exclusively for 5G. In this subsection we will analyze some of them.

• Massive MIMO & Beamforming: We have seen MIMO extensively in 4G / LTE

technologies. It is a technology that uses multiple antennas which are configured as a

2.2 Introduction to 5G 13

multi­dimensional phased array. In the case of 5G,MassiveMIMO systems of the order

of hundreds of antennas are used. By taking advantage of either spatial diversity (where

the same data is transmitted by different paths and received by multiple antennas), or

spatial multiplexing (where the data is divided into smaller parts and transmitted in

multiple paths) we gain in reliability and data rate respectively. Despite the multiple

uses of hundreds of antennas, another advantage of a massive MIMO system is en­

ergy efficiency. A single­antenna user in a massive MIMO system can reduce down its

transmit power proportional to the number of antennas at the base station with perfect

channel state information (CSI) [20]. At 5G,massiveMIMO technology combineswith

Beamforming technology to deliver spectral and bandwidth efficiency to the network.

The Beamforming technique refers to a technique of finding the most effective route

from the base station to a specific one dissemination environment. More specifically

the Beamforming steers the signals produced from an array of transmit antennas to an

intended angular direction. In this way, the purpose is to minimize interference to and

from other antenna systems and maximizing the amount of information transmitted.

• Network Function Virtualization (NFV): NFV is a network architecture that uses

virtualization technologies to simulate functions that allow multiple virtual networks

to be created atop a shared physical infrastructure. With the use of NFV a 5G network

can be fully virtualized. This can offer many benefits in terms of deployment, scaling

and management of a 5G network. A research paper [21] related to the deployment of

a Heterogeneous 5G Cloud­RAN set up in NFV on top of real­world testbed (NITOS­

Testbed) showcases the above benefits as multiple virtual networks supporting differ­

ent radio access networks (RANs). For thesis purposes, we rely on NFV technology

using virtualized environments which we will analyze in detail in chapters 3 4 . These

environments can fully visualize the network functions for scalable deployment and

management of a 5G network.

• Multi­access Edge Computing (MEC): MEC systems bring services near the edge

of the network and therefore close to the end­user. This entity contains applications

and a virtualization infrastructure that provides computers, storage, and network re­

sources, as well as the functions required for applications. The MEC helps meet the

5G era requirements for expected performance, latency, and automation. The MEC al­

lows extremely low latency and high bandwidth while at the same time it can provide

14 Chapter 2. Study of LTE/4G & 5G cellular networks

access to information in real­time for the network and the environment. This technol­

ogy is the main object of study of this dissertation and will be adequately covered in

the next chapter.

2.2.2 Functional Split Architecture

Taking the LTE architecture as a key reference, we can observe that the monolithic RAN

(eNodeb) has some significant drawbacks regarding high­latency and lack of adequate cov­

erage.

Therefore, the 3GPP proposed an improvement in themanagement of architecture compo­

nents. More specifically, they proposed a distributed architecture based on the functional split

of the base station (eNodeb) which brings significant improvements in network efficiency.

As shown in figure 2.6, 3GPP proposed eight functional split options including several sub­

options. Some of them are RRC­PDCP, PDCP­RLC, RLC­MAC,MAC­PHY. Although there

are many options, most do not meet valid implementations and do not offer real benefits (e.g

RLC­MAC) [6]. This is why most research focuses mainly on PDCP / RLC and MAC / PHY

splits. Such research [22] compares these two splits in real­world testbed (Nitos Testbed) and

through real experimentation and simulation it turns out that PDCP/RLC split has the least

overhead and is compatible with various technologies enabling higher network capacity. Split

architecture led to the creation of two new components in our Access Network topology:

• Central Units (CUs): Provides support for the higher layers of the protocol stack such

as SDAP, PDCP and RRC.

• Distributed Units (DUs): Provides support for the lower layers of the protocol stack

such as RLC, MAC and Physical layer.

The Core network up to the CU is called Backhaul, while the Fronthaul consists of the CU

and DU components. The relationship between CU and DU is 1 to N, as a CU communicates

with multiple DU’s which may include 3GPP or non­3GPP (WiFi) technologies. On the other

hand, each DU is associated with only a single CU instance. The communication between CU

and DU is based on F1 Application Protocol (F1AP) via a newly introduced interface called

F1. The F1 interface is divided into the following interfaces:

• F1­U: Responsible for User Plane communication. Uses the GPRS Tunneling Protocol

(GTP).

2.2 Introduction to 5G 15

• F1­C: Responsible for Control Plane communication. Uses the SCTP / IP protocol.

Through the above interfaces, the DU sends an F1 Setup Request, and then an RRC con­

figuration setup is achieved between the CU and the DUs.

Other non­3GPP technologies have been integrated into the above architecture providing

a Heterogeneous network. An example of such non­3GPP technology is WiFi which can be

integrated as a DU [7].

For the packets to be sent from the WiFi DU side to the CU side (UL), some processes

were made that encapsulate these packets with the corresponding PDCP headers. Οn the

contrary, for DL communication, the CU after accepting the Data Requests decapsulates the

PDCP headers of the packets before sending the payload to the WiFi DU. The above imple­

mentation constitutes the basis of our experimental setup.

Figure 2.6: Eight functional splits proposed by 3GPP. [6]

16 Chapter 2. Study of LTE/4G & 5G cellular networks

Figure 2.7: PDCP/RLC functional split [7].

Chapter 3

Study of Multi­Access Edge Computing

3.1 The defects of Cloud Computing

We can observe that centralized RAN has some significant drawbacks. Some of these are

high­latency and high­capacity. High­latency due to the geographical distance between the

Central Unit and the end­users. High­Capacity as the more functions are centralized, the more

capacity is needed on the FH (fronthaul) for the user traffic, due to 1 to many relationship

between CU and DU’s [7, 23].

Therefore, the network bandwidth of cloud computing has been unable to meet the needs

of time­sensitive applications and real­time performance. Such applications areUltra­Reliable

and Low­Latency Communications (URLLC), which require extremely low latency.

3.2 Introduction to Multiple­Access Edge Computing

The observations of section 3.1 led us to install computing infrastructures that are closer

to the user. This logic is synonymous with the distributed computing paradigm called Multi­

Access Edge Computing (MEC). Specifically, MEC systems bring services near the edge of

the network and therefore close to the end­user. A MEC system contains applications and

a virtualization infrastructure that provides computers, storage, and network resources, as

well as the functions required for applications. By shifting the load of cloud computing to

individual local servers, MEC can be considered as a perfect key enabler for various real­

time applications as it helps reduce congestion on mobile networks and decrease latency,

enhancing the quality of experience (QoE) for end users [24]. In detail, theMEC environment

17

18 Chapter 3. Study of Multi­Access Edge Computing

is characterized by the following advantages:

• Low latency: Mobile Edge services can operate near end­user devices to provide the

lowest possible delay.

• Proximity: Close to the source of information, Mobile Edge Computing is especially

useful for getting basic information on analysis and big data.

• High bandwidth: The position of the Mobile Edge that is on the edge of the network

in conjunction with the use of information from the cellular Real­time network can be

used for bandwidth optimization for applications.

• Location Awareness: Mobile Edge can utilize low­level signaling information to de­

termine the location of each connected device.

• Real­time integration of information and Content: Real­time network data can be

used by applications and services to offer content­related services.

It is worth noting that MEC does not eliminate the role of cloud computing, but instead

complements it. Nodes with MEC capabilities can directly serve the applications for which

they have the necessary resources while assigning to a cloud server the service of those who

are tolerant of delay. Both developments bring stability to connected devices in the Internet

of Things network. The working method of the two can be that cloud computing is based on

big data analysis and output, passed to the edge side, and then processed and executed by

edge computing [25].

3.3 MEC System Implementations and Placements

The implementations of a MEC platform had already started from the LTE / 4G networks.

The European Telecommunications Standards Institute (ETSI) had made the following pro­

posals for the placement of MEC in LTE architecture [26]:

• MEC deployed over SGi interface: As we see in figure 3.1 the MEC host is located

on the Backhaul, before SGW/PGW on the SGi interface. The closer the MEC host is

to the core, the more accessible it is to Network Users. But the latency ­ RTT (Round

Trip Time) is higher due to the geographical location of the core network. Therefore,

3.3 MEC System Implementations and Placements 19

the placement of the MEC near the host is not so good practice, as we approach the

latency of the services that are in the cloud and so we have no improvement in the

management of time­sensitive data. The UL (uplink) flow of the packets, in this case,

is as follows: UE­eNodeB­CORE­MEC.

• MEC deployed over S1 interface: Τhe MEC host is located between the eNodeB and

Centralized site (Backhaul). This type of MEC placement (closer to the Fronthaul) is

preferable as the RTT (Round Trip Time) between the end­user and the MEC applica­

tion is much lower than it would be if the MEC host were located close to the core, due

to physical location. Therefore, with this placement, we achieve low latency. The UL

(uplink) flow of the packets, in this case, is as follows: UE­eNodeB­MEC­CORE.

Figure 3.1: MEC Host is placed on the SGi interface.

Figure 3.2: MEC Host is placed on the S1 interface.

20 Chapter 3. Study of Multi­Access Edge Computing

3.3.1 Employing MEC on the Fronthaul of Heterogeneous 5G Archi­

tecture

In a similar philosophy to the second scheme, the placement of MEC is followed in the

architectures of 5G networks. More specifically, research has been done on Employing MEC

on the Fronthaul of Heterogeneous 5G Architecture [27], placing the MEC host next to the

DUs. So, the UL is configured as follows: UE­DU­MEC­CU enabling the lowest latency

between the end­user and the services. The above implementation is based on the F1 Ap­

plication Protocol (F1AP) that we analyzed in chapter 2.2.2. This protocol is a key enabler

for communication between CU­DUs. By the same token, the MEC Host, through the MEC

agent who manages the packets going to and from the MEC services, communicates with the

DUs. The agent holds a book­keeping process for mapping each RNTI value of each UE.

Based on this RNTI information, the appropriate requests are made between DU­MEC and

vice versa. More specifically when a DU has data to transmit to the MEC service creates a

MEC data request message. This message is then handled by the MEC agent and its payload

(user data packets) is delivered to the service. Similarly, for the reverse path, the MEC agent

generates a MEC data indication for the DU that the client is registered with. The above im­

plementation and the placement of the MEC­Agent that takes place in figure 3.3 are the basis

for setting up our experimental setup.

Figure 3.3: Employing MEC on top of DUs. [8]

3.4 MEC Services Type Deployment 21

3.4 MEC Services Type Deployment

To deployMEC­Services, there are two available options: Virtual Machines and Contain­

ers. Both are capable of running MEC services, however, there is a dilemma in choosing the

most suitable one as both technologies have pros and cons, which we will analyze below:

• VirtualMachines (VMs): A VM is an abstraction of physical hardware. In short, VMs

make a virtual copy of all the hardware that the operating system needs to run in order to

be functional (Hypervisor­based virtualization). Therefore, they are heavy and require

a slow startup to boot as they can take up a lot of system resources because of booting

a complete OS. [28]. The isolation property of VMs provides users an independent

system, irrespective of the underlying hardware offering more security [29].

• Containers: Unlike VMs, containers visualize only OS. This offers multiple benefits

such as fast scalable provisioning and low resource consumption. In practice, a con­

tainer can be instantiated in the scale of milliseconds but has process­level isolation,

therefore it is possibly less secure. There are two types of containers: system contain­

ers (e.g. LXC, LXD) which containerize a complete operating system, and applica­

tion containers (e.g. Docker) which provide a lightweight virtualization solution to run

processes in isolation. MEC services can benefit from containers because they offer

mechanisms for fast packaging and deployment to a large number of interconnected

MEC platforms [30].

For our experimental setup, we chose to use both technologies to host MEC services.

In the end, however, we ended up with Virtual Machines due to their developed ability to

be Live Migrated, which brings many benefits in terms of managing MEC services as we

will see in subsection 3.5.2. We also explored hybrid solutions that include nested containers

inside VMs.

3.5 Live Migration of MEC Services

3.5.1 Purpose of Live Migration

The mobility of users plays a huge role in the QoS / QoE provided by the MEC services,

since the farther the user is from the DU, and consequently from the corresponding MEC

22 Chapter 3. Study of Multi­Access Edge Computing

service which is attached to this DU, the higher is the delay and therefore the worse the user

experience will be. In particular, if MEC services are related to V2V (Vehicle to Vehicle)

or V2X (Vehicle­to­everything) communications, wherein these cases the delay should be

extremely low due to the time­sensitivity of the data, then the services should be constantly

close to the user with the permanent purpose of low delay.

So in cases where the user moves away from the base station where he is served and

approximates the next base station, in the meantime or before the handover between the base

stations, there should be a live migration of services from the source (current) edge server to

the destination edge server near the mobile user.

An interesting ­ intermediate solution that we implemented in our experimental setup and

that is supported only in heterogeneous 5G networks, is the dynamic transition to non­3GPP

technology (such as WiFi) depending on the quality of the link offered by 3GPP technology.

In short, the MEC host through the MEC agent­controller constantly listens to the quality of

the link between the user and the MEC application. Depending on the quality, it passes the

traffic through the most suitable DU. For example, if the latency is low enough on 3GPP DU

(eg LTE DU) side due to the mobility of the user from the DU, then the MEC Agent will

switch the traffic to pass exclusively through non­3GPP technology (WiFi DU). In figures

3.4 and 3.5 we see in detail the process of the Radio Access Technology switch.

Figure 3.4: MEC traffic passed on dual technology DU’s.

3.5 Live Migration of MEC Services 23

However, RAT switching does not completely solve the problem. As user mobility in­

creases, the signal between the user and non­3GPP technology weakens. Therefore the need

for live migration of services is imperative, to maintain the connection between the user and

the service, as the user connects to the next RAN. As shown in figure 3.6 during the inter­eNB

Handover, live migration of the MEC service takes place from Host MEC to the destination

Host MEC of the next RAN, providing seamless service support. The above approach is also

known as the “Follow Me” approach and it requires continuous monitoring of user mobility

and a dynamic way of managing resources for live migration of services, to maintain the QoS

/ QoE at the highest levels.

Figure 3.5: Radio Access Technology switch.

24 Chapter 3. Study of Multi­Access Edge Computing

Figure 3.6: Live Migration of MEC service.

3.5.2 VM Live Migration

Migrating the virtual machine means that the in­memory state of VM can be transferred

consistently and efficiently as transparently the VM moves from one host to another without

perceived downtime. According to the following research [31] the aim of live VM migration

consists of:

• Application performance optimization during VM migration.

• Efficient bandwidth utilization .

• Minimize high migration time and downtime during migration.

Ideally, during migrations, we want to maintain kernel state, active TCP / IP connections,

application state, and sockets. However, many factors can be an obstacle to maintaining the

above states. The long downtime due to the many memory pages that need to be copied is one

such factor. Also, the network connectivity between the source host and the destination/target

host plays an important role. Therefore, we are leading to either stateful or stateless/cold mi­

grations. In the first category, the applications and the connection state are maintained. In the

second category, the connections are lost but the memory pages and the disk are successfully

copied.

3.5 Live Migration of MEC Services 25

Finally, an important factor is the different techniques/technologies that handle the VM

memory through LiveMigration. The most basics are Pre­copy VMMigration and Post­copy

VM Migration.

• Pre­copy VMMigration: In this method during migration, memory pages are copied

iteratively from source to destination, even as the virtual machine is running at the

source. In the first phase, the modified memory pages of the source node are duplicated

and copied to the destination node. Pages that are modified but not copied are used to

estimate the downtime. When the modified pages (or dirty pages) are less than the

re­copied pages, then the process of the instance on the source is stopped (causing a

downtime), the remaining pages are transferred to the destination and the VM instance

is resumed in the destination.

• Post­copy VM Migration: In contrast to the pre­copy migration, post­copy first sus­

pends the migrating VM at the source node, copies minimal processor state to the tar­

get node, resumes the virtual machine on the target node, and begins fetching memory

pages over the network from the source.

As shown in figure 3.7 more data is transmitted in the pre­copy than in the post­copy, but

the pre­copy seems to have less downtime, as adaptive algorithm applications for managing

dirty pages are possible [32].

+

Figure 3.7: Pre­Copy Migration vs Post­Copy Migration [9].

26 Chapter 3. Study of Multi­Access Edge Computing

3.5.3 Live Migration on KubeVirt

KubeVirt [13] is a Kubernetes add­on that extends Kubernetes capabilities by delivering

virtual machines as container workloads.WithKubeVirt we can take advantage of the benefits

of VMs in a containerized environment and use hybrid solutions offered by the coexistence

of VMs and Containers. The architecture of KubeVirt is presented in more detail in 4.4.

The significant addition of KubeVirt to the Kubernetes ecosystem brings an environment

ideal for edge solutions in modern cellular networks. This is because we can manage edge

services by defining the life cycle, scaling, and migrating them. Based on the above benefits,

we decided to deploy the MEC host (MEC agent &MEC app) to a VM under the unique API

of KubeVirt.

We can manage VMs as we could manage containers and take advantage of VMs LiveM­

igration by executing kubectl commands. More specifically, Live migration is initiated by

posting an object VirtualMachineInstanceMigration to the cluster, indicating the VM name

to migrate. Also through the ConfigMap object of Kubernetes, we can define the LiveMi­

gration parameters such as the bandwidth that is reserved for each VM Live Migration and

much more.

KubeVirt uses containerized libvirtd and QEMU technologies to deploy VMs. In addi­

tion, the pre­copy technique is used for the Live Migration of VM’s, contributing to lower

downtime. However, as of this writing, there is no capability to specify the target node, as

the API selects the target node according to the lower resources utilization.

3.6 On Follow­Me Schemes

3.6.1 Related Work

In order to maintain the QoS / QoE at the highest levels, there should be a dynamic mech­

anism that, on the one hand, will monitor the change in user mobility, and on the other hand,

will Live Migrate the MEC services depending on the nearest RAN to the mobile user. The

above logic describes a Follow­Me scheme. The key requirement to implement such a scheme

is the autonomy of MEC services in order to be able to move from one node to another with­

out interrupting the connection with end­users. Equally important is the criterion for which

LiveMigrations will be triggered. In short, there should be a dynamic QoS­aware edge server

3.6 On Follow­Me Schemes 27

selection algorithm.

Some research papers suggest algorithms that taking consideration of the transmission

power of the MEC server as a criterion for signaling the live migration of services [33], while

some others focus on tracking user’s position and predicting user movement [34]. However,

the above research papers require perfect knowledge of user mobility within a given time and

access to physical­layer. Therefore they are difficult to implement. In addition, most research

work does not consider the heterogeneity of network (eg, 4G, WiFi, and 5G DUs), which

leads to different network connections and transmission paths for data transferring between

them. [32]. Also, a wide range of research has studied the options on the management and

orchestration of the MEC applications, but most of them proposed MEC frameworks are

unable to support service live migration [35].

3.6.2 Follow­Me MEC Implementation in Kubernetes Environment

Our Follow­me implementation scheme relies on the management of an autonomous Sin­

gle MEC Host with the help of the Kubernetes framework. The MEC host is a VM instance

delivered as container workload by the KubeVirt’s component virt­handler. The placement of

the MEC host is located in the fronthaul of a Heterogeneous 5G network, where the transmis­

sion path of the MEC service can be supported simultaneously through 3GPP and non­3GPP

technologies. This is possible through the MEC agent running internally on the MEC Host

and whose operation is described in detail in the subsection 3.3.1. We focus on MEC to MEC

communication without the need to access the core network to apply Live Migration of ser­

vices. MEC services are located either internally in the VM or nested Docker containers. The

autonomy of the MEC Host is based on the fact that it has remote access to the Kubernetes

cluster on which it has been deployed. Therefore it can Live Migrate itself depending on the

circumstances.

The live migration of services is triggered by the MEC controller which also operates

internally on the VM and can execute migrate commands as well as support RAT switch

functions. In the figure 3.8 the complete architecture of the MEC host and how the MEC

components are connected is presented. MEC service is a docker application that is attached

by two macvlan interfaces M1 and M2. The M1 connects the MEC service with the MEC

agent and through this interface passes all the traffic between the service and the end­user.

On the other hand, the M2 interface connects the MEC service with the MEC controller.

28 Chapter 3. Study of Multi­Access Edge Computing

Through this interface passes all the traffic related to the monitoring of the quality of the

connection between the service and the end­user. More specifically, the connection between

the MEC controller and the MEC application is based on server­client communication. The

MEC service runs a server socket whose operation is described in the algorithm 1. In essence,

it gathers information about the quality of the link it has with the end­user. This information

is mainly related to RTT which is measured multiple times and after these measurements, the

RTT average is calculated. Along with the RTT average, the number of packets and the packet

loss rate are measured and all of these statistics are stored in a dictionary. This dictionary

is then sent to the socket client which runs on the MEC controller and whose operation is

described in the algorithm 2. The MEC controller after receiving the dictionary constantly

monitors if the RTT average exceeds the RTT threshold which is defined depending on the

type of application. In case the RTT average exceeds the threshold, then the controller makes

a RAT switch by switching the transmission path from LTE DU to WiFi DU. If the delay is

still high then the controller live migrates the MEC Host to another Kubernetes Node. After

waiting for the average migration downtime to pass, which is updated at the end of each

migration after being parsed by the log files, it switches to LTE DU. In the meantime, the

user exchanges MEC data via WiFi DU.

In this way, we keep the costs of migrations low, as service migration incurs additional

operation costs such as usage of the expensive wide­area­network (WAN) bandwidth and

system energy consumption [36]. And at the same time, we also take advantage of the benefits

of a heterogeneous 5G network utilizing all the transmission paths that are available with the

sole purpose of reducing latency.

However, inmany cases changing the transmission path between different RATs can cause

a connection reset between the end­user and the application. Therefore, in cases where the ap­

plication does not support multihoming capabilities, the algorithm 3 is recommended, which

follows an always migrate strategy depending on the latency values without a RAT switch.

3.6 On Follow­Me Schemes 29

Figure 3.8: MEC Host Architecture.

Algorithm 1: Follow­Me procedure [Server]
Input:MEC­to­MEC server IPmec_ip, port, End User’s IP ue_ip, #packets to

send num_of_packets

1 Function follow_me_server(mec_ip, port, ue_ip, num_of_packets):

2 client_socket = init_server_socket(mec_ip,mec_port);

3 while True do

4 ping_results = get_ping_results(ue_ip, num_of_packets);

5 ping_statistics = ping_results.parse().as_dict();

6 msg = ping_statistics.serialize();

7 client_socket.send(msg)

8 end

9 End Function

30 Chapter 3. Study of Multi­Access Edge Computing

Algorithm 2: Follow­Me procedure [Client]
Input:MEC­to­MEC server IPmec_ip, port, #packets to send num_of_packets,

rtt_threshold

1 Function follow_me_client(mec_ip, port, ue_ip, num_of_packets):

2 client_socket = connect_to_server_socket(mec_ip,mec_port);

3 avg_downtime = init_avg_downtime();

4 rat_switch = False;

5 while True do

6 msg = client_socket.recv();

7 ping_statistics = msg.deserialize();

8 if ping_statistics.rtt_avg > rtt_threshold then

9 if rat_switch == False then

10 switch_to_wifi_du();

11 rat_switch = True;

12 else

13 kubectl.live_migrate(mec_host);

14 sleep(avg_downtime);

15 avg_downtime =

get_avg_downtime(log_of_previous_migrations);

16 switch_to_lte_du();

17 rat_switch = False;

18 end

19 end

20 end

21 End Function

3.6 On Follow­Me Schemes 31

Algorithm 3: Always­Follow­Me procedure [Client]
Input:MEC­to­MEC server IPmec_ip, port, #packets to send num_of_packets,

rtt_threshold

1 Function always_follow_me_client(mec_ip, port, ue_ip, num_of_packets):

2 client_socket = connect_to_server_socket(mec_ip,mec_port);

3 avg_downtime = init_avg_downtime();

4 while True do

5 msg = client_socket.recv();

6 ping_statistics = msg.deserialize();

7 if ping_statistics.rtt_avg > rtt_threshold then

8 kubectl.live_migrate(mec_host);

9 sleep(avg_downtime);

10 avg_downtime = get_avg_downtime(log_of_previous_migrations);

11 end

12 end

13 End Function

Chapter 4

Kubernetes Ecosystem

In recent years, microservices have become an attractive solution for applications that

must be highly scalable and portable. The revolution of microservices is the technology of

containers. In the field of telecommunications and computer networks, the arrival of the NFV

technology is harmoniously combined with VMs since they satisfactorily visualize the Net­

work Functions. The baton in this technological development is taken by the Kubernetes

framework, as through its unique API it can orchestrate hundreds of containers and VM’s

through KubeVirt add­on that helps to take an existing virtual machine and deploy it inside a

container. Thus, Kubernetes helps to reduce the costs of deploying and operating cloud­native

network functions, playing a key role as a Virtual Infrastructure Manager (VIM) and VNF

Manager (VNFM). A 5G network can be fully softwarized as all its functions and architecture

components can be visualized as it promotes NFV technology. For this reason, the deploy­

ment of a 5G network in the Kubernetes environment is an ideal solution for the management

of network resources, the monitoring of its status, its scale, and its easy installation. There­

fore, it is a good time to analyze the Kubernetes ecosystem, mentioning the technologies it

integrates and the various technologies we used to develop the dissertation.

4.1 Introduction to Docker

Docker [10] [https://www.docker.com/] is one of the most popular container technolo­

gies. Docker provides the ability to build ­ package isolated application configuration and

execution environments. These environments are called containers. Docker has 2 basic ob­

jects:

33

34 Chapter 4. Kubernetes Ecosystem

• Docker Containers: A container is a standard unit of software that packages up code

and all its dependencies. The containers are light and isolated from the environment in

which they run. thus, the same container can run in a data center, one cloud computing

platform, or even on a personal computer. Α container contains only space operating

system users, libraries, and services required for applications. Also, thanks to their

isolation, it is possible to run them on the same machine multiple times simultaneously.

For docker containers to run successfully, they need a Docker runtime, which sits on

top of the host operating system. This runtime is called Docker Engine and it allows

containerized applications to run on any infrastructure.

• Docker Images: A docker image is a file that contains all the necessary elements that

an application needs to run in a container, such as libraries, configuration files, and

system tools. Docker images become containers under docker engine.

4.1.1 Docker architecture

The docker architecture is based on client­server communication. The server is called

Docker Daemon and is responsible for build, run and distribute Docker Containers. Before

each action, Docker Daemon communicates through a REST API through UNIX sockets

with the client called Docker Client. For the storage and distribution of Docker Containers,

there are storage spaces that store Docker Images. These spaces are called Docker Registries.

Docker Daemon retrieves and stores images from and in Docker Registries.

Figure 4.1: Docker Architecture. [10]

4.2 Introduction to Kubernetes 35

4.2 Introduction to Kubernetes

Kubernetes [11], also known as K8s, is an open­source system for automating deploy­

ment, scaling, and management of containerized applications. Kubernetes is therefore a con­

tainer orchestrator which, through its framework, provides multiple benefits to distributed

systems that use containerized applications. Some of the features it offers are:

1. Load balancing: Kubernetes has a convenient function to expose containerized appli­

cations. This function is called Service. By this, the applications are exposed on the

internet (outside the cluster) via the DNS name or the IP address. Kubernetes within

the service can guarantee that the load assigned to each container is evenly distributed.

2. StorageManagement: Kubernetes allows volumemounting from various storage sys­

tems, such as local storage, public cloud providers, NFS, and more.

3. Continuous Control of the Desired State of Deployment: The description of the state

of deployed containers can be easily done through YAML or JSON files. Kubernetes is

then responsible for changing the current state to the desired state at a controlled rate.

For example, we can set the number of containers we want to run at any time.

4. ResourceManagement: Kubernetes enables cluster administrators to define resources

such as memory (RAM) and CPU that will be consumed by containerized applications.

Based on the description of resources, Kubernetes takes care of the better management

of these resources.

5. Health Checking: Kubernetes constantly monitors the health status of the contain­

ers. In case of failed containers, Kubernetes restarts or replaces containers that do not

respond.

6. Secret and configuration management: Kubernetes enables its users to define con­

tainer configurations and store and manage various sensitive information such as pass­

words, SSH keys, etc. without having to rebuild container images.

36 Chapter 4. Kubernetes Ecosystem

4.2.1 Kubernetes Components

Kubernetes manages clusters that consist of worker machines called nodes. Clusters have

at least one node, as on these worker­nodes run the containerized applications which are

managed within the smallest unit that Kubernetes can handle which are called pods and are a

generalization of the container (we will analyze them in detail later). However, for the cluster

to be functional, the nodes must run the following components:

• Kubelet: Kubelet is an agent that ensures that the containers inside the pods are running

and are healthy.

• Kube­proxy: Kube Proxy is a network proxy that maintains network rules at the nodes,

to achieve network communication between the pods, inside and outside the cluster.

• Container runtime: The container runtime is the software that is responsible for run­

ning the containers. Kubernetes supports various container runtimes such as Docker,

containerd, CRI­O, and many more.

Figure 4.2: Kubernetes Components. [11]

Kubernetes has a system that checks the status of nodes and cluster objects such as pods

and works to make the actual state of objects match the desired state. It also exposes the API

and controls scheduling. This system is called Control Plane and operates on a node called a

control plane node. Kubernetes clusters usually have only one control plane node, but there

may be more for high availability. In such nodes operations are performed only for the control

4.2 Introduction to Kubernetes 37

operation of the cluster, therefore containerized applications are not scheduled on them. The

control plane is made up of the following components:

• kube­apiserver: The kube­apiserver is a server that exposes the Kubernetes API. It is

the main implementation of the Kubernetes API, as it is the front end of the Kubernetes

control plane. There can be multiple instances of kube­apiserver in a cluster, to have

load balancing between them for a smooth response to the requests of cluster adminis­

trators. The API is accessed and used either through a command­line interface such as

kubectl or through a user interface such as the Kubernetes Dashboard.

• etcd: The etcd is a consistent and highly available, distributed data store. It’s actually

the Kubernetes backend, which contains the cluster information in key­value pairs.

• kube­controller­manager: The kube­controller­manager runs controller processes.More

specifically it is a loop that constantly focuses on making the desired state equal to the

current state for the Kubernetes objects in the cluster.

• kube­scheduler: The kube­scheduler is a controller that constantly assigns to theworker

nodes the newly created pods. The assignment is based on multiple criteria such as re­

source requirements, hardware/software/policy constraints, and user specifications e.g.

node affinity.

• cloud­controller­manager: The cloud­controller­manager links the cluster to the pub­

lic cloud providers. If the cluster is local, the cluster does not have a cloud controller

manager. The cloud controller manager runs controllers that are associated with spe­

cific cloud providers.

4.2.2 Kubernetes Objects

Kubernetes objects are entities provided by Kubernetes, for configuring, deploying, and

scaling containerized applications. They are described in the form of YAML or JSON files

which are passed to the Kubernetes API. Then, through the various components available to

the Kubernetes nodes, the continuous control of the transition of the current state of these

objects to the desired state is performed. These objects are:

• Pod: As already described, the pod is the smallest management unit in the Kubernetes.

Multiple containers can run inside the pods, but it is common to have one pod for

38 Chapter 4. Kubernetes Ecosystem

one container. Kubernetes creates a virtual network that assigns new IPs to the newly

created pods. These IP addresses are not permanent. Thus, in case there is a failed or

restarted pod, a new IP address is created and assigned.

• ReplicaSet: The purpose of its operation is the desired number of pods that are speci­

fied, to always be in the running state. In short, it scales up and scales down the pods

depending on the desired state.

• Deployment: Deployment manages the creation, deletion, and updates of pods. It can

be considered as a higher level of abstraction of replicaSets, as it uses replicaSets to

manage the pods. It allows for seamless application updates and downgrades through

rollouts and rollbacks, and it directly manages its ReplicaSets for application scaling.

• Service: Service is configured to forward requests to a set of pods. Services have an

IP address and this IP address automatically routes to a healthy pod. Due to the lack of

permanent ­ static IP addresses of the pods, the services take advantage of this weakness

and offer a more permanent solution in the communication between the end­users and

the pods.

• Job: Job is the type of pod that is supposed to terminate on its own after execution. It

is used to create and execute individual tasks.

• StatefulSet: StatefulSet is used specifically for stateful applications.Manages the de­

ployment for the pod scaling and gives the pods a sticky identity that it maintains across

any rescheduling.

• PersistentVolume (PV): PersistentVolume is a part of storage space in the cluster that

is provided either statically by the administrator using for example the resources from

the worker nodes, or dynamically by the cloud provider.

• PersistentVolumeClaim (PVC): PersistentVolumeClaim acts as a request to use the

storage created by PersistentVolume. When the storage request is accepted, the volume

is attached to the pod. Claims can request specific sizes and access modes.

• ConfigMap: ConfigMap is used to easily manage the configuration files used by con­

tainerized applications. It offers the ability to make dynamic changes, usually through

environment variables, to the data during the runtime of the container.

4.2 Introduction to Kubernetes 39

• Namespace: It is responsible for the separation and organization of Kubernetes objects.

A classic way to use it is to create different deployment environments.

4.2.3 Kubernetes Networking

Akey part of Kubernetes functionality is networking. The basic communication scenarios

between containers­pods in a cluster are the following:

• Container to Container Communication: Container to Container Communication:

Containers are located inside the pod. Containers are connected to a physical network

inside a pod via Docker bridge (with virtual interface) as we see in figure 4.3. So since

from themoment they are connected to the same bridge interface they can communicate

with each other without NAT (Network Adress Translation).

• Intra­Node Pod Communication: Different pods on the same Node. Suppose the

communication scenario between pod1 and pod2 is shown in figure 4.3. The packet

leaves from pod1 and enters the Node’s 1 Root Network, then it passed to the Linux

bridge (cbr0). Cbr0 makes an ARP request to find the destination. Then it finds the

destination and forwards the packet to veth1 and finally, the package reaches the pod2

network.

• Inter­Node Pod Communication: Different pods on different Nodes. Suppose the

communication scenario between pod1 and pod4 is shown in figure 4.3. The initial

process of sending the packet from pod1 Network to cbr0 is the same as the Intra­

Node communication scenario. However, when the package reaches the root network

of Node1 it cannot be forwarded unless there is a routing table. So with the routing

table, the packet is forwarded to the cbr0 of Node2 and then reaches the pod4 network.

40 Chapter 4. Kubernetes Ecosystem

Figure 4.3: Container to Container Communication.

Figure 4.4: Intra­Node Pod Communication.

Figure 4.5: Inter­Node Pod Communication.

4.3 Multus CNI

By default, it is not possible to add more than one network interface to Kubernetes pods.

This gap is being filled by Multus CNI [12]. Multus CNI is a container network interface

(CNI) plugin for Kubernetes. Thanks to Multus CNI, attaching multiple network interfaces

to pods is enabled. The addition and specification of one or more network interfaces are

4.4 KubeVirt 41

done through the Kubernetes Network Custom Resource Definition, where the user through

a YAML file can configure the additional network interfaces, and then the Kubernetes API

will take care of the attachment.

Figure 4.6: Secondary interface attached to a pod via Multus [12].

4.4 KubeVirt

As we know Kubernetes is a container orchestrator managing containerized applications

in the most efficient way. By default, it does not support the management of virtualized tech­

nologies such as Virtual Machines. This weakness is covered by KubeVirt [13] which is a

Kubernetes add­on that enables the management of libvirt virtual machines. KubeVirt is not

a way to separate between containers and VMs, because KubeVirt delivers virtual machines

as container workloads. Its architecture is based on the following components:

• virt­api­server: virt­api­server is the server that exposes the API of KubeVirt. It up­

dates anything that has to do with virtualization flows through custom resource defini­

tions. It is also responsible for the validation and defaulting of VMs.

• virt­controller: Manages the pods associated with VMs and is responsible for moni­

toring the status of VMs.

• virt­handler: virt­handler is similar to kubelet, as it runs on each worker node and

monitors the state of VMs constantly trying to satisfy the desired state.

42 Chapter 4. Kubernetes Ecosystem

• virt­launcher: virt­launcher manages the namespaces to be used to host VMs. The

virt­handler component signals the virt­launcher to start a VM, by passing the VM’s

CRD object to it.

• libvirtd: libvirtd is located inside each VM pod and is used by the virt­launcher to

manage the life cycle of the VM process.

Figure 4.7: Kubevirt Architecture [13]

4.5 Prometheus

Prometheus [14] is an open­source monitoring and alerting framework. Prometheus is an

ideal solution for collecting and monitoring multi­dimensional data, not only for machine­

centric computer systems but also for architectures that support microservices (e.g. Docker,

Kubernetes). It is capable of receiving large amounts of data every second and offers multiple

benefits to computer systems. Some of these are:

1. A multi­dimensional, time­series data model which is defined by key/value pairs and

a metric name.

4.6 Grafana 43

2. An easily manageable query language named PromQL.

3. The collection of time series data is done autonomously through the HTTP protocol.

4. Targets are discovered via service discovery. Monitoring, graphing, and dashboarding

support.

Figure 4.8: Prometheus Architecture [14].

4.6 Grafana

Grafana [37] is an open­source web application that provides interactive data visualiza­

tion through charts and graphs and alerts. Ideally combined with time­series databases such

as Prometheus. Used in machine­centric computer systems but also in systems that support

architectural microservices such as Kubernetes. An ideal usage scenario is the visualization

of the data that have been exported from containerized applications through Prometheus.

Also, with the interactive dashboards available, Grafana can give the overall picture of the

cluster to the user such as memory or CPU utilization of the nodes. Finally, it enables the

user to create custom dashboards that visualize custom metrics that have been exported by

Prometheus.

Chapter 5

Experimental Setup

5.1 Experimental Setup Resources

In this section, we are going to analyze thoroughly the testbed and the tools used for the

experimental setup.

5.1.1 NITOS Testbed

The target facility used for the development, application, and evaluation of this disser­

tation is the NITOS testbed [15], located in University of Thessaly, Greece. The testbed is

providing in a 24/7 fashion remotely accessible resources, targeting experimentally driven

research in wireless and wired networks. In this sub­section, we provide a very brief descrip­

tion of the capabilities of the testbed. The testbed is providing access free­of­charge to over

100 static physical nodes, equipped with key networking technologies:

1. All the nodes are high­end PCs, equipped with Core­i7 processors and 8 GBs of RAM

each, featuring at least two IEEE 802.11 a/b/g/n/ac cards, compatible with Open Source

drivers (e.g. ath9/10k) used for WiFi research.

2. Two commercial off­the­shelf LTE access points are available for experimentation,

along with a commercial off­the­shelf Evolved Packet Core (EPC). Both femtocells

and EPC are programmable through the available testbed services. About half of the

nodes are equippedwith LTE dongles, that allow the establishment of an operator­grade

LTE network, using testbed­specific SIM cards.

45

46 Chapter 5. Experimental Setup

3. Over 20 different SDR devices are installed in the testbed, which are compatible RF

front­ends for open source implementations of 4G/5G and beyond base stations such

as OpenAirInterface [38]

4. Six mmWave devices are installed in the testbed, reachable from all the nodes, support­

ing the creation of high­throughput wireless point­to­point links. The nodes support

beam steering allowing the formation of different topologies over the mmWave links.

5. All the testbed nodes are interconnected through three hardware OpenFlow switches,

organized in a tree topology.

Figure 5.2 illustrates the deployed testbed infrastructure. The testbed is organized in three

different setups: An indoor RF­isolated, an outdoor setup prone to uncontrolled external in­

terference and an office setup with mild interference settings. Resources can be mixed from

the different locations in order to create a versatile experimentation environment.

Figure 5.1: NITOS testbed overview; all the physical nodes are available to be used as bare

metal machines. In the Figure, an overview of the indoor testbed nodes is shown. All the

nodes of the testbed are in­terconnected under the same network. [15]

5.2 Experimental Setup Architecture 47

Figure 5.2: The ecosystem of NITOS testbed. [15]

5.1.2 OpenAirInterface

OpenAirInterface (OAI) [38] is an open­source platform which consists of 3GPP tech­

nologies such as LTE / 4G and 5G. The project includes developments for the core network

(EPC) and access­network (EUTRAN) of 3GPP cellular networks. The software is written in

the C programming language and can be compiled and executed on x86 computer systems.

For the proper operation of Radio Access Networks, the computers must be equipped with

SDR (Software Defined Radio) devices.

5.2 Experimental Setup Architecture

As shown in figure 5.3 our implementation comprises a Heterogeneous 5G Architecture

with MEC functionality, which has been deployed in the Kubernetes framework. The exper­

imental setup is based on the architecture of the specific research [8].

We leverage the Kubernetes framework which we analyzed extensively in chapter 4. The

control­plane node is running as a Virtual Machine (VM) in the testbed infrastructure, which

has direct network access to the wireless nodes of the testbed. Each of the testbed nodes is

configured as a worker node for the K8s control­plane node, and therefore containers can

be orchestrated on top of them. Regarding the selection of Kubernetes Network, we deploy

the Flannel [39] CNI (Container Network Interface) plugin to the cluster. Flannel is a simple

overlay network that acts as a network of containers and consequently as a pod network. By

48 Chapter 5. Experimental Setup

default, it is not possible to add more than one network interface to Kubernetes pods. In figure

5.3 we see that the pods have more than one network interface. This feature is possible as we

used the Multus plugin to add more than one interface to the pods. These network interfaces

have been added to the pods as macvlan­static IPs, which means that the plug­in creates a

sub­interface from the parent interface on the host. These host interfaces are bridge interfaces

from a VLAN interface. The reason we used bridge interfaces, is that VMs that are deployed

by the KubeVirt API only attach bridge­type network interfaces.

The architecture components end up being Kubernetes pods, as internally in them, run

containerized applications based on Docker images that contain compiled OAI instances that

together make a complete Heterogeneous 5G network. With the help of KubeVirt, we in­

tegrated the functionality of MEC in the architecture, as we deployed virtual machines as

container workloads by expanding the ecosystem of our Kubernetes cluster. To accomplish

a stateful Live Migration of the VMs, there must be L2 connectivity between the source and

the target/destination VM. To achieve this we created bridge interfaces in Kubernetes Nodes.

On these bridge interfaces, the VMs attached their own static IPs. Thus, in this way, we can

maintain active IP / TCP connections during Live Migrations. Also to be able to test the

functionality of Follow Me implementation that we analyzed in the section 3.6.2, we created

mobility scenarios of the end­user by injecting constant delay in the interfaces of 3GPP and

non­3GPP DUs with the help of the Linux Traffic Control tool (tc).

Figure 5.3: The deployment of Heterogeneous MEC­functional 5G Network on Kubernetes.

5.2 Experimental Setup Architecture 49

For the proper operation and management of our network from the backhaul to the fron­

thaul, specific Kubernetes objects were used for the respective architecture components. Be­

low, we cover them extensively:

• Cassandra DataBase: It is the central database that contains information about all net­

work operators’ subscribers. It is a part of the operation of HSS. Therefore, to be able

to communicate with the HSS pod, it runs a Kubernetes service so that the database is

accessible from the HSS pod. Also, a StatefulSet is used to create the pods, to secure

state information and other resilient data. Database configurations are parsed via Con­

figMap. For the data persistence, local PV and PVC have used that mount the directory

in which the data entries are written.

• HSS: HSS pod is responsible for session establishment support. To provide user au­

thentication and access authorization it needs to communicate with the database and

in our case with Cassandra database through its Service. To be able to access the Ser­

vice running on the Cassandra Database, it has a ServiceAccount. Also through the

ConfigMap the credentials for the connection to the database and configuration data

to the application (e.g MME IP), are parsed. To create the Pod, we used the Deploy­

ment object as it provides us with the ability for scaling and better management of the

pods. Finally, the HSS entity includes a Service for MME exchanging authentication

information.

• MME: To exchange authentication information between the UE and the HSS, MME

pod accesses the service running on the HSS pod via ServiceAccount. It includes net­

work configurations for the multiple interfaces (S6a, S11, S1­MME) which are parsed

via ConfigMap. In addition, it includes a Service over which the components (SPGW­

U, SPGW­C) that share the S11 interface communicate with each other. The Deploy­

ment object was used to create the pods.

• SGPGW­U: It provides a Serving Gateway and PDNGateway User plane. ConfigMap

defines IPs for its interfaces (SGi, SPGW) and the UEs network IP. Also, accesses

MME service through ServiceAccount. The pod is created through the Deployment

object.

• SPGW­C: It provides a ServingGateway and PDNGatewayControl plane. The SPGW­

C pod is also created through the Deployment object. Since it is responsible for the UEs

50 Chapter 5. Experimental Setup

IP address allocation, the UEs IP range and UEs DNS IP server are parsed in the con­

figuration files of the application through ConfigMap.

• CU: CU pods are created through the Deployment Object and run the containerized

version of OAI CU. The container runs a pre­built Image docker in which all the nec­

essary libraries have been compiled and contains all the necessary configuration files

for the proper operation of the Central Unit. It supports communication with non­3GPP

DU technology like WiFi DU.

• LTE DU: Kubernetes Deployment object is used to create LTE DU pods. As we know,

LTE DU includes both baseband processing and RF functions. Therefore, these pods

are deployed only on Nodes that have a USRP device. To be able to map the USRP

device port (USB port) of a Node to the pod, in the description file (YAML file), we

run the container privileged and mount the path of the USB device in the container.

With its creation, LTE DU is connected to MEC­Agent and to CU, which they should

already be running on specific IPs and ports.

• WiFi DU: It is deployed through the Deployment object. Inside runs the WiFi Access

Point with the help of Hostapd. Thus, these pods are deployed only on Nodes that have

wireless chipsets (Atheros in our case) and drivers (Ath9k in our case). To be able to

attach the WiFi device from the Node, we run the pod with the host network enabled.

Also, the pod runs a server that is connected to the MEC agent along with the CU. The

WiFi configuration utilizes 802.11n channels.

• MEC Host: The MEC host is a VM instance defined by the KubeVirt API. The VM

contains a proper cloud­init network setup with static IPs. To replicate a large number

of the VM workloads, we used containerDisk ephemeral storage.

5.3 Experimental Results

5.3.1 Live Monitoring of Resources

For the deployment of the heterogeneous containerized 5G network, we used 2 Kuber­

netes nodes which are Nitos testbed nodes. At one node we deployed the Backhaul com­

ponents (Core Network & Central Unit), while at the other node we deployed all fronthaul

5.3 Experimental Results 51

components including LTE DU and WiFi DU as well as the VM of MEC Host.

With the help of Prometheus, we exported some basic metrics that summarize the utiliza­

tion of resources based on the respective deployment that takes place in Kubernetes Nodes.

These measurements concern CPU, Memory, and Disk I / O. Then through Grafana we vi­

sualized these metrics in real­time.

In figure 5.4 we see the memory usage for the deployment of backhaul components.

While in figure 5.7 we see the memory usage for the deployment of all fronthaul components.

The memory usage is more in the core deployment due to the database running in the HSS

component. However, as shown in figure 5.7 fronthaul deployment has more CPU usage than

the corresponding CPU usage of core deployment 5.5. This is due to the processing power

required by the antennas fromWiFi, USRP devices. Disk I / O and Disk Usage do not exceed

the limit and remain relatively low on both deployments as shown in the figures 5.6 and

5.9. From the following figures, we can conclude that given the resources available to Nitos

nodes we can scale the 5G components, as the Memory / CPU / Disk usage is relatively low.

This is due to the benefits of using application containers, as they have a lower virtualization

overhead and are lightweight.

Figure 5.4: Memory Usage of the node on which the Core Network has been deployed.

52 Chapter 5. Experimental Setup

Figure 5.5: CPU Usage of the node on which the Core Network has been deployed.

Figure 5.6: Disk I/O&DiskUsage of the node onwhich the Core Network has been deployed.

Figure 5.7: Memory Usage of the node on which the Fronthaul components have been de­

ployed.

5.3 Experimental Results 53

Figure 5.8: CPU Usage of the node on which the Fronthaul components have been deployed.

Figure 5.9: Disk I/O & Disk Usage of the node on which the Fronthaul components have

been deployed.

5.3.2 Latency Measurements

For the evaluation part of our MEC deployment, we focus on measuring the overall la­

tency for accessing the MEC services. The measurements are based on the latency between

the multihomedUE (connected to LTE andWiFi DU) and theMEC service which is deployed

either to the fronthaul or to the core network.We noticed that the latency measurements 5.1 of

MEC services deployed on the fronthaul are slightly better than the MEC services deployed

on the core network. This is because in the Nitos Testbed topology shown in figure 5.10 the

core network container instances run on node081 which is relatively close to the fronthaul

container instances running on node055 (UE operates on node050). In real­world scenarios,

the core network is usually very far from the fronthaul. To emulate real­world scenarios, we

tuned the delay on the link between the CU and the EPC by injecting 20ms delay. In addition,

we can conclude that WiFi outperforms LTE for the cases of latency as shown in figure 5.11.

54 Chapter 5. Experimental Setup

Table 5.1: Benchmark Characteristics (in ms)

LTE to WiFi to LTE WiFi LTE WiFi

MEC­APP MEC­APP to EPC to EPC to EPC to EPC

(20ms) (20ms)

Avg. RTT 25.6 5.28 27.9 5.88 46.03 26.08

Min. RTT 18.76 3.09 22.04 3.21 45.4 25.2

Max. RTT 32.3 12.8 40.8 13.4 54.07 34.9

Figure 5.10: Nitos indoor testbed topology.

5.3 Experimental Results 55

Figure 5.11: Latency on Fronthaul (VoIP application).

5.3.3 Migration Measurements

To test the functionality of our follow­me implementation, we used 2 MEC services. One

was a simple chat application based on a TCP / IP socket and the other was an application

called SIPp [40] that uses Session Initiation Protocol (SIP) to transfer VoIP packets. The SIP

protocol can be carried by several transport layer protocols including Transmission Control

Protocol (TCP), User Datagram Protocol (UDP), and Stream Control Transmission Protocol

(SCTP).

To measure migration time, we created some scenarios:

• S1: VM includes MEC Agent and MEC Controller (Does not include MEC service)

• S2: The VM includes MEC Agent, MEC Controller and SIPp as MEC service.

• S3: The VM includes MEC Agent, MEC Controller and a text chat as MEC service.

• S4: Empty VM

In the following figure 5.12 we see the migration time of live migration of the VM for

each of these scenarios. In all cases the migration throughput was 64 MiB / s.

56 Chapter 5. Experimental Setup

Figure 5.12: Migration Time for each scenarios.

Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis, we deployed a Heterogeneous 5G Network with MEC functionality and

implemented a MEC Follow­me scheme all in the Kubernetes Environment. We took advan­

tage of the capabilities of the Kubernetes framework as we had the ability to scaling, load

balancing, and monitoring the 5G components. In addition, with the KubeVirt add­on, we

took advantage of the benefits of VMs in a containerized environment and use hybrid solu­

tions offered by the coexistence of VMs and Containers. This combination was our basis for

deploying a MEC ecosystem with Follow­me mechanisms.

With the Follow­me scheme that we implemented, we managed to keep the latency of the

services and the migration downtime low. We also successfully maintained stateful connec­

tions during live migrations of MEC services. At the same time, we exploited the advantages

of a heterogeneous 5G network by utilizing all the available transmission paths. Then with

the help of Prometheus, we exported somemetrics that summarize the utilization of resources

and give us statistical information about the migration of services.

6.2 Future Work

The future work will enhance the proposed Follow­Me scheme with more intelligence to

adapt to different network conditions and will add tracking user’s position capabilities that

will allow predicting user movement by using deep learning models. In addition, other poli­

cies will be added that will trigger the live migration of MEC services such as channel quality

57

58 Chapter 6. Conclusions

indicator (CQI). This will allow the UE to give feedback on the quality of its connection and

thus lead us to a better algorithm for deciding when migrations take place.

Bibliography

[1] Mohamed Habaebi, Jalel Chebil, A Al­Sakkaf, and Taha Dahawi. Comparison be­

tween scheduling techniques in long term evolution. International Islamic University

Malaysia Engineering Journal, 14, 04 2013.

[2] K.V.N. Kavitha, Saikat Ghosh, Ankit Keetey, and Sibaram Khara. Error rate analysis

of stbc­ofdm system with efficient channel coding technique at low snr. International

Journal of Applied Engineering Research, 9:973–4562, 07 2014.

[3] Wireless tech. https://wirelesstech.info.

[4] Mohsin Khan and Valtteri Niemi. AES and SNOW 3G are Feasible Choices for a 5G

Phone from Energy Perspective, pages 403–412. 01 2018.

[5] Mansoor Shafi, Andreas Molisch, Peter Smith, Thomas Haustein, Peiying Zhu, Prasan

Silva, Fredrik Tufvesson, Anass Benjebbour, and Gerhard Wunder. 5g: A tutorial

overview of standards, trials, challenges, deployment and practice. IEEE Journal on

Selected Areas in Communications, PP:1–1, 04 2017.

[6] Line M. P. Larsen, Aleksandra Checko, and H. Christiansen. A survey of the functional

splits proposed for 5g mobile crosshaul networks. IEEE Communications Surveys &

Tutorials, 21:146–172, 2019.

[7] Nikos Makris, Christos Zarafetas, Pavlos Basaras, Thanasis Korakis, Navid Nikaein,

and Leandros Tassiulas. Cloud­based convergence of heterogeneous rans in 5g disag­

gregated architectures. 05 2018.

[8] Nikos Makris, Virgilios Passas, Christos Nanis, and Thanasis Korakis. On minimizing

service access latency: Employing mec on the fronthaul of heterogeneous 5g architec­

tures. 07 2019.

59

https://wirelesstech.info

60 Bibliography

[9] Michael Hines and Kartik Gopalan. Post­copy based live virtual machine migration

using pre­paging and dynamic self­ballooning. pages 51–60, 01 2009.

[10] Docker. https://docs.docker.com/get­started/overview/.

[11] Kubernetes. https://kubernetes.io/docs/concepts/overview/

components/.

[12] Multus. https://github.com/k8snetworkplumbingwg/multus­cni.

[13] Kubevirt. https://kubevirt.io/.

[14] Prometheus. https://prometheus.io/.

[15] Nitos testbed. http://nitos.inf.uth.gr.

[16] Sriganesh Rao and Ramjee Prasad. Impact of 5g technologies on industry 4.0. Wireless

Personal Communications, 100:1–15, 05 2018.

[17] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge com­

puting research. IEEE Access, PP:1–1, 01 2020.

[18] Multi­access edge computing. https://www.etsi.org/technologies/

multi­access­edge­computing.

[19] A. Abioye, M. Joseph, and Hendrik Ferreira. Comparative study of 3g and 4glte net­

work. Journal of Advances in Computer Networks, 3:247–250, 01 2015.

[20] S.S. Hussain, S.M.Yaseen, andKoushik Barman. An overview ofmassivemimo system

in 5g. 9:4957–4968, 01 2016.

[21] Nikos Makris, Christos Zarafetas, Kostas Choumas, Paris Flegkas, and Thanasis Ko­

rakis. Virtualized heterogeneous 5g cloud­ran deployment over redundant wireless

links. 07 2019.

[22] Nikos Makris, Pavlos Basaras, Thanasis Korakis, Navid Nikaein, and Leandros Tassi­

ulas. Experimental evaluation of functional splits for 5g cloud­rans. IEEE Conference

Record ­ International Conference on Communications, 05 2017.

https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://github.com/k8snetworkplumbingwg/multus-cni
https://kubevirt.io/
https://prometheus.io/
http://nitos.inf.uth.gr
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing

Bibliography 61

[23] Alberto Martínez Alba, Jorge Humberto Gomez Velasquez, and W. Kellerer. An adap­

tive functional split in 5g networks. IEEE INFOCOM 2019 ­ IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages 410–416, 2019.

[24] T. Taleb, Konstantinos Samdanis, B. Mada, H. Flinck, Sunny Dutta, and D. Sabella.

On multi­access edge computing: A survey of the emerging 5g network edge cloud

architecture and orchestration. IEEE Communications Surveys & Tutorials, 19:1657–

1681, 2017.

[25] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge com­

puting research. IEEE Access, PP:1–1, 01 2020.

[26] Etsi gs mec. https://www.etsi.org/deliver/etsi_gs/MEC/001_099/

026/02.01.01_60/gs_MEC026v020101p.pdf.

[27] Nikos Makris, Virgilios Passas, Thanasis Korakis, and Leandros Tassiulas. Employing

mec in the cloud­ran: An experimental analysis. pages 15–19, 10 2018.

[28] Miguel Xavier, Marcelo Neves, Fábio Rossi, Tiago Ferreto, Timoteo Lange, and Cesar

De Rose. Performance evaluation of container­based virtualization for high perfor­

mance computing environments. pages 233–240, 02 2013.

[29] Tung Doan, Giang Nguyen, Hani Salah, Sreekrishna Pandi, Michael Jarschel, Rastin

Pries, and Frank Fitzek. Containers vs virtual machines: Choosing the right virtualiza­

tion technology for mobile edge cloud. pages 46–52, 09 2019.

[30] Tarik Taleb, K. Samdanis, Badr Eddine Mada, Hannu Flinck, Sunny Dutta, and Dario

Sabella. On multi­access edge computing: A survey of the emerging 5g network edge

architecture & orchestration. IEEE Communications Surveys & Tutorials, PP:1–1, 05

2017.

[31] Prakash Nayak, Deepak Garg, Abhishek Shakya, and Poonam Saini. A research paper

of existing live vm migration and a hybrid vm migration approach in cloud computing.

pages 720–725, 05 2018.

[32] Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. A survey on service

migration in mobile edge computing. IEEE Access, 6:23511–23528, 2018.

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/026/02.01.01_60/gs_MEC026v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/026/02.01.01_60/gs_MEC026v020101p.pdf

62 Bibliography

[33] Jintian Hu, Gaocai Wang, Xiaotong Xu, and Yuting Lu. Study on dynamic service

migration strategy with energy optimization in mobile edge computing. Mobile Infor­

mation Systems, 2019:5794870, Oct 2019.

[34] Run Yang, Hui He, andWeizhe Zhang. Multitier service migration framework based on

mobility prediction in mobile edge computing. Wireless Communications and Mobile

Computing, 2021:6638730, Apr 2021.

[35] Tung V. Doan, Alexander Kropp, Giang T. Nguyen, Hani Salah, and Fitzek Frank H. P.

Reusing sub­chains of network functions to support mec services. In 2019 IEEE Sym­

posium on Computers and Communications (ISCC), pages 1–8, 2019.

[36] Cong Shen, Cem Tekin, and Mihaela van der Schaar. A non­stochastic learning ap­

proach to energy efficient mobility management. IEEE Journal on Selected Areas in

Communications, 34(12):3854–3868, 2016.

[37] Grafana. https://grafana.com/.

[38] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond

Knopp, and Christian Bonnet. Openairinterface. ACM SIGCOMM Computer Com­

munication Review, 44(5):33–38, 2014.

[39] Flannel repository. https://github.com/flannel­io/flannel.

[40] Sipp. http://sipp.sourceforge.net/.

https://grafana.com/
https://github.com/flannel-io/flannel
http://sipp.sourceforge.net/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	The subject of Thesis
	Thesis Organization

	Study of LTE/4G & 5G cellular networks
	Introduction to 4G
	4G Key Technologies
	LTE Architecture
	LTE Protocol Stack

	Introduction to 5G
	5G Key Technologies
	Functional Split Architecture

	Study of Multi-Access Edge Computing
	The defects of Cloud Computing
	Introduction to Multiple-Access Edge Computing
	MEC System Implementations and Placements
	Employing MEC on the Fronthaul of Heterogeneous 5G Architecture

	MEC Services Type Deployment
	Live Migration of MEC Services
	Purpose of Live Migration
	VM Live Migration
	Live Migration on KubeVirt

	On Follow-Me Schemes
	Related Work
	Follow-Me MEC Implementation in Kubernetes Environment

	Kubernetes Ecosystem
	Introduction to Docker
	Docker architecture

	Introduction to Kubernetes
	Kubernetes Components
	Kubernetes Objects
	Kubernetes Networking

	Multus CNI
	KubeVirt
	Prometheus
	Grafana

	Experimental Setup
	Experimental Setup Resources
	NITOS Testbed
	OpenAirInterface

	Experimental Setup Architecture
	Experimental Results
	Live Monitoring of Resources
	Latency Measurements
	Migration Measurements

	Conclusions
	Summary and Conclusions
	Future Work

	Bibliography

