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Abstract

Additive manufacturing (AM) is the construction of a three-dimensional ob-
ject from a digital 3D model, with material being added together, layer
by layer. The high temperature process will produce large tensile residual
stresses which lead to part distortion and negatively affect product perfor-
mance. In AM an accurate estimation of residual stresses and distortion is
necessary to achieve dimensional accuracy and prevent bad product perfor-
mance. In this work, an integrated thermomechanical simulation of additive
manufacturing process, as applied to an AISI 316L austenitic stainless steel,
is presented. A finite element technique is employed to evaluate the temper-
ature evolution as well as residual stresses and distortions in the processed
part, due to the successive material deposition. In particular, an one-way
coupled analysis is carried out with the heat transfer and mechanical prob-
lems solved in sequence. The material deposition is modeled using elements
which are activated as the added material solidifies. These elements are
present from the start of the analysis but are assigned properties so they do
not affect the analysis. The ensuing temperature field is then provided as
an input for the mechanical analysis, to calculate the residual stresses and
distortions. The current implementation is for two-dimensional models but
can be extended to three-dimensional cases.
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Introduction

Additive manufacturing (AM), is the construction of a three-dimensional ob-
ject from a digital 3D model, with material being added together, layer by
layer. More specific, a powder delivering system is used to place a thick
powder layer every time. Then a laser is used to heat and melt the metal
powder, which later solidifies to form a fully dense layer. The addition of
multiple layers can produce a three dimensional fully dense part.
This construction process is very useful due to its ability to easily design and
build parts with complex geometries, which the traditional manufacturing
constraints, such as tooling and physical access to surfaces for machining,
could not allow. The technology is used both for rapid prototyping, as it
decreases the time needed to develop new products, and production manu-
facturing, as a cost saving method to simplify assemblies and complex geome-
tries and to reduce the material waste. Thus, it is used mainly in industries
that have small to medium size, highly complex parts, such as aerospace,
dental and medical.
As it is described earlier, AM process involves heating, melting and solidi-
fication of a metal, by a moving source, such as a laser in a layer by layer
manner. As a consequence, different regions of the work piece experience
repeated heating and cooling, which results in a high temperature gradient,
that generates thermal stresses and leads to cracks and part distortion.
Part distortion due to residual stresses is one of the major defects of AM
parts. So, an accurate estimation of residual stresses and distortion is neces-
sary to achieve dimensional accuracy and prevent an unexpected component
failure. Since AM is affected by a variety of variables, an experimental mea-
surement of residual stresses and distortion is time consuming and expensive.
Therefore, numerical thermo-mechanical models can be used for their esti-
mation, but the quality of the calculations depends critically on the accurate
transient temperature field, which affects both the residual stresses and dis-
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tortion.
As the laser hits the work piece surface, the powder melts quickly to form a
molten pool. During the melting process, energy and mass transformation
occurs through various physical phenomena, such as absorption and scatter-
ing of laser radiation, heat transfer and fluid flow within the molten pool.
Simulation of these complex physical processes is computationally intensive
and in order to build a computationally viable model, simplifications and
assumptions of these processes are necessary. These include several two-
dimensional models [3, 4] or an assumption that the entire deposit is heated
and then cooled [5] or building a part by a single layer deposition [6]. How-
ever, it is very important to avoid making assumptions that may lead to
miscalculations of the temperature field, because it is critical to calculate an
accurate transient temperature field. It has been shown [7, 8] that ignoring
the surface convection and radiation leads to the calculation of inaccurate
temperature fields.
In this work, an integrated thermomechanical simulation of additive manu-
facturing process, as applied to an AISI 316L austenitic stainless steel, is pre-
sented. A finite element technique is employed to evaluate the temperature
evolution as well as residual stresses and distortions in the processed part,
due to the successive material deposition. In particular, an one-way coupled
analysis is carried out with the heat transfer and mechanical problems solved
in sequence. The material deposition is modeled using elements which are
activated as the added material solidifies. These elements are present from
the start of the analysis but are assigned properties so they do not affect
the analysis. This technique is similar to the quiet element method, as it
was presented here [9]. The ensuing temperature field is then provided as an
input for the mechanical analysis, to calculate the residual stresses and dis-
tortions. The current implementation is for two-dimensional models but can
be extended to three-dimensional cases. In order to develop this simulation,
finite element analysis (FEA) package ABAQUS [1] was used.
This thesis proceeds with Chapter 1, where we present the necessary theo-
retical background, that is the heat transfer and the continuum mechanics
theory. Having the fundamentals set, we proceed with Chapter 2, where
we describe the development of the finite element model both for the ther-
mal and mechanical analysis, implementing the relationships of Chapter 1
and new methods, such as the modified-quiet element method, in order to
simulate the AM process. In Chapter 3, we present the thermomechanical
simulation of additive manufacturing process, as applied to an AISI 316L
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austenitic stainless steel. Finally, in 3.2 we summarize the results, make
some conclusions and propose some improvements to enhance the model.



Chapter 1

Theory

1.1 Heat Transfer

Heat is the form of energy that can be transferred from one system to an-
other as a result of temperature difference. Heat transfer refers to the rate
of such energy transfers, which depends upon the differences in temperature,
the greater the difference in temperature, the greater the rate of heat trans-
fer. Most of the relationships that follow based on the [10, 11].
As it is described earlier, temperature difference is the driving force of heat
transfer, while the medium, which heat travels through from one body to
another, is the resistance to the heat flow. Both of these factors, affect the
rate of heat transfer, as we can see in the following general equation for heat
transfer:

[rate of heat transfer] = [temperature difference]/[resistance]

During heat transfer, temperatures can change, so the rate, also, will change.
This is called unsteady-state heat transfer, in contrast with steady-state heat
transfer, where the temperatures do not change and the rate remains con-
stant.
Heat transfer is classified into various mechanisms, such as thermal conduc-
tion, thermal convection, thermal radiation, and transfer of energy by phase
changes.
Heat conduction, also called diffusion, is the direct microscopic exchange
of kinetic energy of particles through the boundary between two systems.

4



1.1. Heat Transfer 5

When an object is at a different temperature from another body or its sur-
roundings, heat flows so that the body and the surroundings reach the same
temperature. Such spontaneous heat transfer always occurs from a region of
high temperature to another region of lower temperature, as described in the
second law of thermodynamics.
Convection is the mode of heat transfer between a solid surface and the ad-
jacent liquid or gas that is in motion, and it involves the combined effects of
conduction and fluid motion.
Radiation is the energy emitted by matter in the form of electromagnetic
waves as a result of the changes in the electronic configurations of the atoms
or molecules.
In general, heat is transferred in solids by conduction, in fluids by conduc-
tion and convection. Heat transfer by radiation occurs through open space,
can often be neglected, and is most significant when temperature differences
are substantial. In practice, all the three types of heat transfer may occur
together, while for calculations it is often better to consider the mechanisms
separately, and then to combine them where it is necessary.
Although heat transfer ant temperature are closely related, they are of a
different nature. Unlike temperature, heat transfer has direction as well as
magnitude, and thus is a vector quantity. Therefore, we must specify both
direction and magnitude in order to describe heat transfer completely at a
point.

1.1.1 Heat Conduction

Heat conduction in a medium, in general, is three-dimensional and time
dependent. That is, T=T(x,y,z,t) and the temperature in a medium is
said to be steady when the temperature does not vary with time and un-
steady or transient when it does. Heat conduction in a medium is said to
be one-dimensional when conduction is significant in one dimension only and
negligible in the other two dimensions, two-dimensional when conduction in
the third dimension is negligible, and three dimensional when conduction in
all dimensions is significant.
Heat conduction through a medium in a specified direction is proportional
to the temperature difference across the medium and the area normal to the
direction of heat transfer, but is inversely proportional to the distance in that
direction. This was expressed in the differential form by Fourier’s law of heat
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conduction for one-dimensional heat conduction as:

Q̇cond = −kAdT
dx

(W ) (1.1)

where k is the thermal conductivity1 of the material, which is a measure of
the ability to conduct heat, dT/dx is the temperature gradient, which is the
slope of the temperature curve on a T-x diagram, and A is the heat conduc-
tion area normal to the x-direction. The thermal conductivity of a material,
in general, varies with temperature, but sufficiently accurate results can be
obtained by using a constant value for thermal conductivity at the average
temperature.
Heat is conducted in the direction of decreasing temperature, and thus the
temperature gradient is negative when heat is conducted in the positive x-
direction. The negative sign in Eq: 1.1 ensures that heat transfer is conducted
in the positive x-direction is a positive quantity.
To obtain a general relation for Fourier’s law of heat conduction, consider a
medium in which the temperature distribution is three-dimensional. In rect-
angular coordinates, the heat conduction vector of a point P on the surface
in that medium, can be expressed as:

~̇Qn = Q̇x
~i+ Q̇y

~j + Q̇z
~k (1.2)

where~i,~j, and ~k are the unit vectors, and Q̇x, Q̇y, and Q̇z are the magnitudes
of the heat transfer rates in the x-,y-, and z-directions, which again can be
determined from Fourier’s law as:

Q̇x = −kAx
dT

dx
, Q̇y = −kAy

dT

dy
, and Q̇z = −kAz

dT

dz
(1.3)

Here Ax, Ay and Az are heat conductive areas normal to the x-,y-, and z-
directions, respectively.
In anisotropic materials such as the fibrous or composite materials, the prop-
erties may change with direction. For example, some of the properties of
wood along the grain are different than those in the direction normal to the

1Although commonly expressed as a scalar, the most general form of thermal conduc-
tivity is a second-rank tensor. However, the tensorial description only becomes necessary
in materials which are anisotropic. This thesis refers to homogeneous isotropic materials
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grain. In such cases the thermal conductivity may need to be expressed as a
tensor quantity to account for the variation with direction. Most engineering
materials are isotropic in nature, and thus they have the same properties
in all directions. For such materials we do not need to be concerned about
the variation of properties with direction and we can assume the thermal
conductivity of a material to be independent of direction.

1.1.2 Heat Convection

Conduction and convection are similar in that both mechanisms require the
presence of a material medium. But they are different in that convection
requires the presence of fluid motion.
Convection is classified as natural (or free) and forced convection, depending
on how the fluid motion is initiated. In forced convection, the fluid is forced
to flow over a surface or in a pipe by external means such as a pump or
a fan. In natural convection, any fluid motion is caused by natural means
such as the buoyancy effect, which manifests itself as the rise of warmer fluid
and the fall of the cooler fluid. Convection is also classified as external and
internal, depending on whether the fluid is forced to flow over a surface or in
a channel.
Heat transfer through a solid is always by conduction, since the molecules of
a solid remain at relatively fixed positions. Heat transfer through a moving
liquid or gas, is by convection. The rate of heat transfer through a fluid is
much higher by convection than is by conduction. In fact the higher the fluid
velocity, the higher the rate of heat transfer.
Convection heat transfer is complicated by the fact that it involves fluid mo-
tion as well as heat conduction. Despite the complexity of convection, the
rate of convection heat transfer is observed to be proportional to the tem-
perature difference and is conveniently expressed by Newton’s law of cooling
as:

Q̇conv = hAs(Ts − T∞) (W ) (1.4)

where h is the convection heat transfer coefficient, As is the heat transfer
area, Ts is the temperature of the surface, and T∞ is the temperature of the
fluid sufficiently far from surface.
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Although, the appearance of this relation looks simple, the convection heat
transfer coefficient h depends on several variables, such as dynamic viscosity
µ, thermal conductivity k, density ρ, specific heat Cp and fluid velocity V,
geometry and roughness of the solid surface, thus it is difficult to determine.

1.1.3 Thermal radiation

So far, we have considered the conduction and convection modes of heat
transfer, which are related to the nature of the materials involved and the
presence of fluid motion, among other things. The third mechanism of heat
transfer: radiation, is characteristically different from the other two.
Radiation heat transfer is the transfer of heat energy by electromagnetic ra-
diation. Radiation operates independently of the medium through which it
occurs and depends upon the relative temperatures, geometric arrangements
and surface structures of the materials that are emitting or absorbing heat.
The basic formula for radiant-heat transfer is the Stefan-Boltzmann Law:

Q̇rad = AσT 4 (W ) (1.5)

where T is the absolute temperature (measured from the absolute zero of
temperature at – 273°) in degrees Kelvin (K) in the SI system, and σ is the
StefanBoltzmann constant = 5.73 x 10−8Jm−2s−1K−4.
This law gives the radiation emitted by a perfect radiator, a black body, as
this is called. A black body gives the maximum amount of emitted radiation
possible at its particular temperature. Real surfaces at a temperature T do
not emit as much energy as predicted by Eq: 1.5, but it has been found
that many emit a constant fraction of it. For these real bodies, that emit
a constant fraction of the radiation from a black body, the equation can be
rewritten:

Q̇rad = εAσT 4 (W ) (1.6)

where ε is called the emissivity of the particular body and is a number be-
tween 0 and 1, and varies with the temperature T and with the wavelength of
the radiation emitted. Bodies obeying this equation are called grey bodies.
Just as a black body emits radiation, it also absorbs radiation according to
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Eq: 1.5. Again grey bodies absorb a fraction of the quantity that a black
body would absorb, corresponding this time to their absorptivity α. For
grey bodies it can be shown that α=ε. The fraction of the incident radiation
that is not absorbed is reflected, and thus, there is a further term used, the
reflectivity, which is equal to (1 – α ).
The radiant energy transferred between two surfaces depends upon their tem-
peratures, the geometric arrangement, and their emissivities. For two parallel
surfaces, facing each other and neglecting edge effects, each must intercept
the total energy emitted by the other, either absorbing or reflecting it. In this
case, the net heat transferred from the hotter to the cooler surface is given by:

Q̇rad = ACσ(T 4
1 − T 4

2 ) (W ) (1.7)

where 1/C = 1/ε1 + 1/ε2 - 1, ε1 is the emissivity of the surface at tempera-
ture T1 and ε2 is the emissivity of the surface at temperature T2. Usually, it
is considered that ε2 = 1, so: C=ε1=ε.

1.1.4 Heat generation

A medium through which heat is conducted may involve the conversion of
electrical, nuclear, or chemical energy into heat (or thermal) energy. In heat
conduction analysis, such conversion processes are characterized as heat gen-
eration.
A source of heat generation in a medium is exothermic or endothermic chem-
ical reactions that may occur throughout the medium, the electric current
passes through a resistance and the phase change of a substance.
Note that heat generation is a volumetric phenomenon. That is, it occurs
throughout the body of a medium. Therefore, the rate of heat generation in
a medium is usually specified per unit volume and is denoted by ġ, whose
unit is W/m3. The rate of heat generation in a medium may vary with time
as well as position within the medium. When the variation of heat genera-
tion with position is known, the total rate of heat generation in a medium of
volume V can be determined from:

Ġ =

∫
V

ġ dV (W ) (1.8)
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1.1.5 Heat conduction equation

In many geometries, such as the wall of a house, heat conduction can be
approximated as being one-dimensional since heat conduction through these
geometries will be dominant in one direction and negligible in other direc-
tions.

One-dimensional heat conduction equation

Consider a thin element of thickness x in a large plane wall. Assume the den-
sity of the wall is ρ, the specific heat is C, and the area of the wall normal to
the direction of heat transfer is A. An energy balance on this thin element
during a small time interval t can be expressed as:

(rate of heat conduction at x) - (rate of heat conduction at x+∆x)
+ (rate of heat generation inside the element) = (rate of change
of the energy content of the element)

or

Q̇x − Q̇x+∆x + Ġelement =
∆Eelement

∆t
(1.9)

Figure (1.1) One-dimensional heat conduction through a volume element
in a large plane wall. Retrieved from [23].
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But we know that the change in the energy and the rate of heat generation
within the element can be expressed as:

∆Eelement = mC(Tt+∆t − Tt) = ρCA∆x(Tt+∆t − Tt) (1.10)

Gelement = ġVelement = ġA∆x (1.11)

Substituting into Eq: 1.9, we get:

Q̇x − Q̇x+∆x + ġA∆x = ρCA∆x
Tt+∆t − Tt

∆t
(1.12)

Dividing by A∆x gives:

− 1

A

Q̇x+∆x − Q̇x

∆x
+ ġ = ρC

Tt+∆t − Tt
∆t

(1.13)

Taking the limit as ∆x→0 and ∆t→0:

∂

∂x
(k
∂T

∂x
) + ġ = ρC

∂T

∂t
(1.14)

This is the equation of one dimensional heat conductivity Eq: 1.14
Most heat transfer problems encountered in practice can be approximated as
being one dimensional. However, this is not always the case, and we need to
consider heat transfer in other directions as well. In such cases heat conduc-
tion is said to be multidimensional.

General heat conduction equation

Now, we consider a small rectangular element of length x, width y, and height
z and we follow exactly the same steps with the one dimensional heat con-
duction equation. As a result, we end up with the general heat conduction
equation for rectangular coordinates:

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
) + ġ = ρC

∂T

∂t
(1.15)
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1.1.6 Boundary and initial conditions

The heat conduction equations that we saw earlier, were developed using an
energy balance on a differential element inside a medium, and they remain
the same regardless of the thermal conditions on the surfaces of the medium.
That is, the differential equations do not incorporate any information re-
lated to the conditions on the surfaces such as the surface temperature or a
specified heat flux. However, the description of a heat transfer problem in a
medium is not complete without a full description of the thermal conditions
at the bounding surfaces of the medium, since we know that the heat flux
and the temperature distribution in a medium depend on the conditions at
the surfaces. The mathematical expressions of the thermal conditions at the
boundaries are called the boundary conditions. Boundary conditions most
commonly encountered in practice are the specified temperature, specified
heat flux, convection, and radiation boundary conditions.
Similarly, it is also important to know at a specified time, at any point of
the medium, the temperature, in order to fully describe the heat transfer
problem. Such a condition, which is usually specified at time t=0, is called
the initial condition, which is mathematical expression for the temperature
distribution of the medium initially.
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1.2 Continuum mechanics

Continuum mechanics is a branch of mechanics that deals with the mechani-
cal behavior of materials modeled as a continuous mass rather than as discrete
particles. It is known that every physical object is made up of molecules,
atoms and even smaller particles. These particles are not continuously dis-
tributed over the object. However, on length scales much greater than that
of inter-atomic distances, models that assume an object as a continuum, are
highly accurate and useful for common engineering applications. Most of the
relationships that follows based on the [12, 13, 14, 15]2.

1.2.1 Kinematics of deformation

The position of all the material points at a particular time defines the so
called configuration of the body. Therefore, the configuration of a body is
identified with a region in a three dimensional Euclidean space relative to
an observer. In order to describe the motion and deformation of a material
body the concept of frame of reference is needed since it is an observer who
captures the motion. It is convenient to choose a particular configuration as
a reference and to identify that frame as the reference configuration of the
material body, that usually this is the body position at time equal to zero or
the undeformed configuration. A current configuration is considered to be
the body position at the current time or the deformed configuration.
In a mathematical way we could say the following. Let B denote an abstract
body and P ∈ B a typical material particle belonging to the body. Further-
more, let Kr(B) and Kt(B) denote the reference and current placements of
the body in Euclidean space, respectively. Here Kr and Kt are one-to-one
mappings from B into the reference and current placements. Let X denote
the typical position vector of a material particle in the reference configura-
tion Kr(B) of the body, and let x denote the corresponding position vector
of the same particle in the deformed configuration Kt(B) at time t. The
coordinates x of the so called current configuration are denoted as spatial
coordinates, and assign to material points X places in space at a particular
time. It is clear then that motion means that material particles change their

2Large portion of this chapter is also based on lecture notes from the Continuum
Mechanics class of Prof. N. Aravas, especially for the section of Plasticity. Responsibility
for any errors solely concerns the author.
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locations in time. Thus, we can express the motion of the body as:

x = χ(X, t) (1.16)

The Eq: 1.16 can be rewritten as:

x = X + u (1.17)

where u is the displacement field:

u = x + X <=> u(X, t) = x(X, t)−X (1.18)

Figure (1.2) Motion of a continuum body. Retrieved from [24].

Deformation analysis

Consider two stationary configurations, an initial and a current one, and
analyze the deformation of the body that occurs between these two config-
urations. This is described by the deformation map χ which takes points
X in the initial configuration to points x in the current configuration3. The
first concept to be introduced is the deformation gradient tensor, which is a
measure of the local deformation of the body. Consider two very close points

3Note here that the deformation of a body must satisfy two conditions. First, any
two different points from the initial configuration cannot occupy the same position in
the current configuration. Second, matter cannot trespass itself. Mathematically this is
guaranteed by imposing that the deformation mapping χ is a bijection mapping (one-to-
one and onto) between the two configurations under consideration.
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in the initial configuration given by the relative differential dX=X1 − X0.
In the current configuration under the mapping χ the relative position of
points X1 and X0 is given by the vector dx. Since the mapping function x
= χ(X,t) is considered to be continuous, it follows that dx=FdX, where F
is called the deformation gradient tensor4 and described as:

F = ~∇xχ =
∂χ(X, t)

∂X
(1.19)

or

Fij(X, t) =
∂xi(X, t)

∂Xj

(1.20)

So:

dx = FdX =

∂x1/∂X1 ∂x1/∂X2 ∂x1/∂X3

∂x2/∂X1 ∂x2/∂X2 ∂x2/∂X3

∂x3/∂X1 ∂x3/∂X2 ∂x3/∂X3

dX1

dX2

dX3

 (1.21)

Consider a surface Sr in Br which deforms into the surface St. Let X be a
point on Sr and x the corresponding point on St. Let dX and dX′ be the sides
of a parallelogram on Sr based at X. The surface area of the parallelogram
is dA, and N is the parallelogram unit normal at X. After the deforma-
tion, based at x=χ(X,t), the deformed parallelogram has sides dx=FdX
and dx′=FdX′, the surface area is da and the unit normal is n. For the un-
deformed parallelogram, NdA=dX×dX′. For the deformed parallelogram:

nda = dx× dx′ = [(FdX)× (FdX′)] = JF−T (dX× dX′) (1.22)

So we get:

nda = JF−T (dX× dX′) = JdAF−TN (1.23)

4If the deformation gradient is constant, i.e. it is the same for every material point X,
then the deformation is said to be homogeneous. On the other hand, the deformation is
said to be non homogeneous if F is a function of the material point X
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This important result, known as Nanson’s formula 5 describes how elements
of surface area deform.
Now we consider an undeformed volume element dV in the body consisting
of a parallelepiped with sides dXXX1, dXXX2, dXXX3 so that dV=( dXXX2 × dXXX3)·
dXXX1. After deformation this volume becomes dv=( dxxx2 × dxxx3)· dxxx1, where
the dxxx1, dxxx2, and dxxx3 represent the vectors forming the sides of the deformed
volume.
So:

dv = (FdXXX2 × FdXXX3) · FdXXX1 = det(F)dV = JdV (1.24)

Therefore:

dv = JdV (1.25)

Stretch and shear are deformation measures related to the deformation gra-
dient. Stretch is defined, for instance, at a material point X in a particular
direction as the ratio of the deformed length to the initial length in that
particular undeformed direction. On the other hand, the change between an
angle in the initial configuration and its corresponding value in the current
configuration is called shear. Different measures of deformation are used
apart from the deformation gradient tensor, that is a local measure of the
deformation. The reason is to impart physical meaning to the measurement
of deformation, such as change of lengths and orientations in particular direc-
tions. This kind of measurement is usually denoted as strain. Strain is also
measured locally and accounts for changes in different geometrical quantities.

Material Strain Tensors

The change in the length of a line element ds0 is given by:

ds =
√

dx · dx (1.26)

5https://en.wikiversity.org/wiki/Continuum_mechanics/Volume_change_and_

area_change

https://en.wikiversity.org/wiki/Continuum_mechanics/Volume_change_and_area_change
https://en.wikiversity.org/wiki/Continuum_mechanics/Volume_change_and_area_change
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by using Eq: 1.21, Eq: 1.26 can be rewritten as:

ds =

√
(dXFT ) · (FdX) =

√
dX ·CdX, C = FTF (1.27)

where C is known as the right Cauchy-Green deformation tensor.
In Cartesian component form Eq: 1.26 can be written as:

ds =

√
∂xi
∂Xj

∂xi
∂Xk

∂Xj∂Xk (1.28)

Eq: 1.28 can be written in component form in terms of the material de-
scription of the displacement u(X, t) = x(X, t) − X by substituting with:
∂xi
∂Xk

= δik + ∂ui
∂Xk

and ∂xi
∂Xj

= δij + ∂ui
∂Xj

, so:

ds =
√

(δjk + 2Ejk)∂Xj∂Xk (1.29)

where Ejk defined as:

Ejk =
1

2
(
∂uj
∂Xk

+
∂uk
∂Xj

+
∂ui
∂Xj

∂ui
∂Xk

) (1.30)

and is called the Green-Lagrange strain tensor.

Infinitesimal Deformations

When displacement gradients are small: ∂ui
∂Xj

<< 1, their products can be

neglected from Eq: 1.30:

Ejk =
1

2
(
∂uj
∂Xk

+
∂uk
∂Xj

) <=> εij =
1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

) (1.31)

It is clear that when the displacement u is known, the strain tensor ε follows
from Eq: 1.31. Nevertheless, in many elasticity problems the three compo-
nents of the displacement are unknown, and furthermore these have to be
calculated from the six components of the strain tensor ε. This suggests that
the six independent components of the strain tensor must be related. These
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relations are known as the equations of compatibility, which can be written
in terms of symmetric incompatibility tensor S, which is given by:

Sij = −eipmejqnεpq,mn = 0 (1.32)

where ei = εi − εkk
3

Eq: 1.32 yields 81 equations, that are known as the compatibility equations,
which only six of them are not identically zero.

1.2.2 Stresses and balance equations

The mechanics of continuous media are described by equations which express
the balance of mass, linear momentum, angular momentum and energy in a
moving body. These balance equations must be obeyed by all moving bodies
and each one gives rise to field equations for sufficiently smooth motions.

Mass and conservation of mass

Clearly mass is a positive quantity as well as the mass density. It is possible
to designate a mass element dm(X)=ρo(X)dV. So, the total mass M of the
body is:

M =

∫
B

dm(X)dV =

∫
B

ρo(X)dV =

∫
Bt

ρ(x, t)dv (1.33)

where ρ(x,t) represents mass density in the current configuration. The total
mass M of the body before (B) and after deformation (Bt) does not change,
so:

dM

dt
=

d

dt

∫
Bt

ρ(x, t)dv =

∫
Bt

∂ρ(x, t)

∂t
dv +

∫
∂Bt

ρ(x, t)v(x, t) ·nds = 0 (1.34)

By using the divergence theorem, we can obtain the continuity equation,
which is a form of the conversation of mass:
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∫
Bt

(
∂ρ(x, t)

∂t
+ div(ρ(x, t)v) )dv = 0 <=>

∂ρ(x, t)

∂t
+ div(ρ(x, t)v) = 0

(1.35)

Stress analysis

The manner in which the surroundings of a body act over the body as well
as the way some parts of a body act over other parts of the body are de-
scribed by means of forces and torques. Forces (torques) are classified as
body forces (body torques) or contact forces (contact torques) also known
as surface forces (surface torques). Body forces that act on the volume (or
mass) of the body has its origin outside of the body. Surface forces can be
either external to the body when acting on the boundary of the body, or
internal to the body when acting between different parts within the body.
Stress measures the internal contact forces per unit area acting between par-
ticles of the body across internal surfaces. The mathematical description of
surface forces is based on Cauchy’s principal, which can be stated as follows:
upon any closed surface S (real or imaginary) that divides the body in two
parts, the action of one part of the body on the other is represented by a
vector field tntntn called the stress vector, defined on the surface S with physical
dimensions of force per unit area and assumed to depend continuously on
the surface unit vector n.
At a point in the deformed configuration of the body, consider a small surface
element of area ∆A having unit normal n on which a force ∆F acts. Then tn

= lim∆A→0(∆F/∆A) is the stress vector acting at this point. Cauchy con-
jectured the existence of a stress tensor σ which, when acting on the surface
normal n at a point in the deformed body, yielded the stress vector at that
point. This is known as Cauchy’s stress theorem and basically it is based on
the fact that by knowing the stress vectors on three mutually perpendicular
planes, the traction vector tn on any other plane passing through that point
can be found. That is:

tn = σn (1.36)

The Cauchy stress tensor refers to forces per unit area of the deformed con-
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figuration. Based on Eq: 1.36 the components of σ (σ= σijei ⊗ ej) in a
Cartesian coordinate system with base vectors (e1, e2, e3) are computed as:
σij=ei · σej , where σej is simply the stress vector acting on a plane whose
normal is the ej direction.

Euler’s Law of Motion

The motion of a material body produced by the action of surface forces and
body forces. When surface and body forces act upon a body, surface or con-
tact forces are transmitted from point to point inside the body according to
Euler’s laws of motion: conservation of linear momentum and conservation
of angular momentum.

Conservation of Linear Momentum

Principle of linear momentum states that the time rate of change of this mo-
mentum is equal to the net force acting on the mass. The concept is extended
to a continuum body by considering the linear momentum of the entire mass,
so that denoting the force byFFF , the balance of linear momentum is written as:

L̇̇L̇L =
d

dt

∫
Bt

ρ(x, t)v(x, t)dv = FFF (1.37)

The resultant FFF consists in general of a body force term and surface forces.
If βββ denotes the body force per unit mass and t the stress vector, then:
FFF =

∫
Bt
ρβββdv +

∫
St

tds. Therefore the conservation of linear momentum Eq:
1.37 takes the form:

∫
Bt

ρ(x, t)
d

dt
(v(x, t))dv =

∫
Bt

ρβββdv +

∫
St

tds (1.38)∫
Bt

ρ(x, t)v̇(x, t)dv =

∫
Bt

(ρβββ + divσσσ)dv (1.39)

Consequently, one can write the local form of Eq: 1.39 known as the Eulerian
equations of motion as:
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∇∇∇σσσ + ρβββ = ρv̇(x, t) (1.40)

∇∇∇σσσ + ρβββ = ρa(x, t) (1.41)

where a(x, t) is the acceleration of the body. In case of zero acceleration, the
latter reduces to the equilibrium equations:

∇∇∇σσσ + ρβββ = 0 (1.42)

∂σji
∂Xj

+ ρβi = 0, i = 1, 2, 3 (1.43)

Conservation of Angular Momentum

The rate of change of the angular momentum is equal to the resultant mo-
ment acting on the mass. The angular momentum of the body is given by:
HHH =

∫
Bt

r× [ρ(x, t)v(x, t)]dv.
Thus:

d

dt
HHH =

∫
Bt

(r× ρβββ)dv +

∫
St

(r× t)ds (1.44)

In component form:

∫
Bt

εijkxjρv̇kdv =

∫
Bt

ρεijkxjβkdv +

∫
St

εijkxjσkpnpds (1.45)∫
Bt

εijkxjρv̇kdv =

∫
Bt

ρεijkxjβkdv +

∫
Bt

εijk(xj
∂

∂xp
σkp + σkj)dv (1.46)∫

Bt

εijkxj[−ρv̇k + ρβk +
∂

∂xp
σkp]dv +

∫
Bt

εijkσkjdv = 0 (1.47)

where −ρv̇k + ρβk + ∂
∂xp

σkp is the linear momentum equation so it is iden-

tically zero. Hence, εijkσkj = 0, which signifies that σkj = σjk, or that σ is
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symmetric:

σσσ = σσσT (1.48)

1.2.3 Elastic deformation

In order to solve a mechanical problem, the following groups of equations are
required:

1. Equilibrium equations.
2. Equations of compatibility of deformation.
3. Constitutive equations of forces and displacements.

In sections 1.2.1 and 1.2.2 the equations of compatibility of deformations and
equilibrium equations were presented. The equations that connect stresses
and deformations are called constitutive equations and they depend on the
properties of the material.
In general, each component of stress tensor σij in a material point depends
on all the components of infinitesimal deformation tensor εij, the tempera-
ture T, the history of deformation and some other factors, such as porosity,
moisture etc.
In most applications it is assumed that the behavior at a point is only af-
fected by what has happened only in a small neighborhood of the point under
study. This postulate, known as local constitutive theory, gives rise to the so
called simple materials. That means that each component of stress tensor σij
in a material point depends on the components of infinitesimal deformation
tensor εij, the temperature T etc, at the same material point, and it does
not being affected by the values of ε, T etc at the rest of the body.
Furthermore, for linearly elastic materials the relation between the compo-
nents of stress tensor σij and the components of infinitesimal deformation
tensor εij is linear. A solid behaves like a linear elastic material when it re-
turns to its original unloaded state, upon removal of the loading. Of course
this behavior applies, as much as the stresses are below a certain limit, which
is different for each material.
In a simple elastic material, where the stress tensor σ in a material point
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X depends only on infinitesimal deformation tensor in that material point,
then the general form of the constitutive equation is:

σσσ(X) = f(εεε(X),X) (1.49)

where f is a second order tensile function. If the mechanical properties are
the same in all of the material points, then the material defines as homoge-
neous and so f does not depend on X and the constitutive equation turns to:

σσσ(X) = f(εεε(X)) = f(εεε) (1.50)

So, in the case of linearly elastic materials, f is a linear function of ε. That
means that each component of the stress tensor σij in a material point is
linear related to the components of infinitesimal deformation tensor εij and
the general form of the constitutive equation is:

σij = Lijklεkl (1.51)

There are 81 physical constants L, which express properties of the material
in the directions of the axes of the system, in which σij and εij are being
computed. These constants are called elastic constants and they are inde-
pendent of the deformation.
In tensile form the constitutive equation is expressed as:

σσσ = LLL : εεε (1.52)

Where LLL are a fourth order tensor and is called elasticity tensor. Further-
more, The stress and strain tensor are symmetric and they define 6 indepen-
dent linear equations, so LLL also is symmetric.

Lijkl = Ljikl = Lijlk (1.53)

For isotropic linearly elastic material:
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LLL = 2GKKK + 3κJJJ (1.54)

Kijkl = Iijkl − Jijkl (1.55)

Iijkl =
1

2
(δikδjl + δilδjk) (1.56)

Jijkl =
1

3
δijδkl (1.57)

G =
E

2(1 + v)
(1.58)

κ =
E

3(1− 2v)
(1.59)

where G is the elastic shear modulus, κ is the elastic expansion modulus and
v is the Poisson’s ratio.
In a continuous body, a deformation field results from a stress field induced
by applied forces or is due to changes in the temperature field inside the
body. Temperature differences (∆T ) of an infinitesimal isotropic elastic el-
ement, leads to its uniform expansion in all directions. That means there
will be equal normal strains in all directions and no shear strains. Thus, the
infinitesimal thermal expansion of infinitesimal material fiber is calculated
from the following equation:

εthermal = α∆T (1.60)

In this case, the components of the tensor of the infinitesimal thermal defor-
mation are:

εthermalij = α∆Tδij (1.61)

where δij =

{
0 if i 6= j
1 if i = j

is the Kronecker delta and α is the thermal ex-

pansion coefficient.
So in general, the components of the total infinitesimal deformation tensor,
when mechanical and thermal loads are applied to an infinitesimal isotropic
material element, are calculated from the following equations:
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ε11 =
1

E
[σ11 − v(σ22 + σ33)] + α∆T (1.62)

ε22 =
1

E
[σ22 − v(σ33 + σ11)] + α∆T (1.63)

ε33 =
1

E
[σ33 − v(σ11 + σ22)] + α∆T (1.64)

ε12 =
σ12

2G
(1.65)

ε13 =
σ13

2G
(1.66)

ε23 =
σ23

2G
(1.67)

1.2.4 The boundary value problem

In order to determine the displacements, the deformations and the stresses
on a linearly elastic body, it takes to combine the equilibrium equations, the
equations of compatibility of deformation and the constitutive equations with
the appropriate boundary conditions, forming the boundary value problem.
Assuming a body with reference configuration B, the boundary conditions
on ∂B are:

u = û̂ûu on ∂Bu (1.68)

σσσ · n = t̂̂t̂t on ∂Bt (1.69)

u · n = ûn and σσσ · n− (n · σσσ · n)n = t̂̂t̂ts on ∂But1 (1.70)

n · σσσ · n = t̂n and u− (u · n)n = ûsûsûs on ∂But2 (1.71)

where n represents the positive (outward) unit normal to the boundary ∂B,
û̂ûu represents the applied displacements on the section ∂Bu of ∂B and t̂̂t̂t rep-
resents the applied surface forces to the rest ∂Bt of ∂B (∂Bu ∪ ∂Bt = ∂B
and ∂Bu ∩ ∂Bt = ∅). There is also a section of the boundary where it is
applied the part of the u (or σσσ ·n) which is normal to ∂B and a part of σσσ ·n
(or u) which is tangential to ∂B. In this case: ∂Bu ∪ ∂Bt ∪ ∂But = ∂B and
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∂Bu ∩ ∂Bt = ∂Bu ∩ ∂But = ∂Bt ∩ ∂But = ∅.
Furthermore, it is assumed that the applied loads on the elastic body are
changing with really slow rates and the body is in constantly condition of
pseudo equilibrium, which is a linear elastostatic problem. So, to recapitu-
late, the boundary value problem can be expressed as:

∇∇∇σσσ + ρβββ = 0 (1.72)

εεε =
1

2
(u∇∇∇+∇∇∇u) (1.73)

LLL = 2GKKK + 3κJJJ (1.74)

u = û̂ûu on ∂Bu (1.75)

σσσ · n = t̂̂t̂t on ∂Bt (1.76)

u · n = ûn and σσσ · n− (n · σσσ · n)n = t̂̂t̂ts on ∂But1 (1.77)

n · σσσ · n = t̂n and u− (u · n)n = ûsûsûs on ∂But2 (1.78)

1.2.5 Plasticity

In physics and materials science, plasticity, also known as plastic deforma-
tion, is the ability of a solid material to undergo permanent deformation, a
non-reversible change of shape in response to applied forces.
In plastic deformation the problem is described by the same equations as in
elastic deformation, except from the constitutive equations, where here the
relation between stress and strain can not be linear. This is obvious as a
certain stress can correspond to multiple strains. In order to implement the
appropriate relation between stress and strain in plasticity, it is important to
determine if the material point under consideration is in the elastic or plastic
region, using a yield function and then it is important to determine if this
point continuous to deform plastically or if it unloads elastically, using an
elastic predictor.
The yield function Φ can be expressed as:

Φ(σσσ, qa) = 0, a = 1, 2, ..., n (1.79)

q̇a = λ̇ga(σσσ, qβ) (1.80)
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where qa
6 are constitutive variables, which are changing as the plastic de-

formation occurs and depend on the material, such as the yield point of the
material, which increases as the plastic deformation takes place.
The plastic deformation rate is described as:

ε̇̇ε̇εP = λ̇N (1.81)

N =
∂Φ

∂σσσ
(1.82)

λ̇ =

{
1
H

N : σ̇̇σ̇σ if H 6= 0, σ̇̇σ̇σ : known
1
L
N : LLLe : ε̇̇ε̇ε if ε̇̇ε̇ε : known

(1.83)

H = −
n∑
a=1

∂Φ

∂qa
ga (1.84)

L = H + N : LLLe : N (1.85)

For von Mises yield criterion, the yield function is described as:

Φ(σσσ, ε̄P ) = σe(σσσ)− σY (ε̄P ) = 0 (1.86)

σe =

√
3

2
sijsij (1.87)

g1 = 1 (1.88)

q1 = ε̄P (1.89)

λ̇ = ˙̄εP (1.90)

ε̇̇ε̇εP = ˙̄εPN (1.91)

N =
3

2σe
s (1.92)

where s is the stress deviator tensor, ε̄P is the equivalent plastic strain, σe
is the equivalent von Mises stress and σY is the yield strength that indicates
the beginning of plastic deformation.

6It is assumed, that it is rate independent, which means is independent of time. Usually
this is true for solids.
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As mentioned earlier, it is important when the material point is in the plastic
region, to determine whether it continuous to deform plastically or it unloads
elastically, in order to implement the appropriate relation between stress and
strain and to achieve it, the elastic predictor is used.
In general, in the plastic region the relation between stress and strain is:
σ̇σσ = LLL : ε̇εε and LLL is defined as:

LLL =

{
LLLe if NNN : LLLe : ε̇̇ε̇ε 6 0
LLLep if NNN : LLLe : ε̇̇ε̇ε > 0

(1.93)

LLLe = 2GKKK + 3κJJJ (1.94)

LLLep = LLLe − 1

L
(LLLe : NNN)(LLLe : NNN) (1.95)

where NNN : LLLe : ε̇̇ε̇ε is the elastic predictor, that determines which is the appro-
priate relationship for LLL.



Chapter 2

Description of the finite
element model

2.1 Description of the model structure

In order to estimate stress and distortion in an additive manufacturing pro-
cess with reasonable computational time, a 2-D finite element model was
developed in ABAQUS. ABAQUS is a software suite for finite element anal-
ysis and computer-aided engineering. The most difficult part of creating this
model was the need for thermomechanical coupling, because the mutual in-
fluences between displacements or strains and temperature are manifested
in many different ways. This challenge has been overcome by considering
the thermal analysis separately form the mechanical analysis. More specific
the concept is, completing first the thermal analysis and extracting the tem-
perature field and later applying this temperature field to the mechanical
analysis, in order to estimate the thermal stresses and strains that are devel-
oping within the body.
Another challenge was, to simulate the actual process of adding material over
time to the formation of the final body shape. In order to avoid complex
methods of dynamic geometries, a modification of the quiet element method
was used, where all the elements of the whole geometry are present since
the beginning of the analysis, but they are inactive. That means, that their
properties in the beginning of the analysis have values that do not allow them
to interact with the active elements and so they do not affect the analysis
until the laser passes over them and activates them. Here are also some other

29
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approaches for additive manufacturing modeling [16, 17, 18, 19, 20, 21, 22].
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2.2 Modified quiet element method

First of all, as it was previously mentioned we developed a 2-d model, so the
laser is moving only on the x and y axis. More specific, it starts from the
left side and moving horizontally along the x-axis to the right side, building
a layer of material. Then is cooling off for some time while moving again
on the left side, but now at a higher height along the y-axis and repeats the
same process to build another layer over the previous layer.
In the quiet element method all the elements are present form the beginning
of the analysis, however they are assigned properties so they do not affect
the analysis. In the heat transfer analysis, the thermal conductivity k is set
to a very low value to minimize conduction into the quiet elements, and the
specific heat Cp respectively is set to a very low value to minimize the energy
transfer to the quiet elements. But this method has the following disadvan-
tages: If the properties of the inactive elements are not small enough, the
quantities that ABAQUS computes for them may affect the analysis, result-
ing in errors or the Jacobian being ill-conditioned. 1

In the modified quiet element method that it is proposed in this thesis, the
properties of the inactive elements are set to zero, so it is sure that there
is no way for inactive elements to affect the analysis. In order to achieve
that, a user subroutine called MPC is used, that sets the displacements in all
the directions to zero and the temperature equal to the initial temperature
for all the inactive elements. This methodology prevents an ill-conditioned
Jacobian and allows for faster computations, as it does not make calcula-
tions for the inactive elements. The MPC user subroutine in the mechanical
analysis sets the displacements in all the directions for the inactive elements
to zero. Respectively, the MPC user subroutine in the thermal analysis sets
the temperature for the inactive elements equal to the initial temperature.
Furthermore, to check if an inactive element must be set to active:

� Find position of laser beam (xlaser, ylaser).

� Calculate the local coordinates of the integration point (ξ,η)2, where
ξ=xlaser − xnpt and η=ylaser − ynpt.

1an ill-conditioned problem is one where, for a small change in the inputs there is a
large change in the answer or dependent variable. This means that the correct solution to
the equation becomes hard to find.

2local coordinates at the ellipsoid center. The laser beam on the metal powder was
modeled as an ellipsoid.
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� check if n>tol and |ξ| ≤α, then element is set to active, where tol=10−4

and α is the semi-axis of the ellipsoid in x-direction.

Figure (2.1) A representation of activation of inactive elements
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2.3 Thermal analysis

2.3.1 Governing equations

A well tested two dimensional heat transfer model for AM is used to compute
temperature field. The model uses the energy conservation equation, that
was shown in Chapter 1 Eq: 1.15

∇∇∇ · (k∇∇∇T ) + ġ = ρCp
∂T

∂t
(2.1)

Thus for homogeneous materials:

k∇2T + ġ = ρCp
∂T

∂t
(2.2)

where:

� ρ [in kg
m3 ] :density

� k [in W
m ◦C

] :conductivity

� Cp [in J
kg ◦C

] :specific heat

This equation is used in conjunction with the following boundary conditions:

� T=known on S1

� −qqq · nnn = qn =known on S2

where qn is the heat power flux at a point on S and it is positive when heat
enters the body. In this model, it is assumed that the power flux at the
boundary transfers heat only with convection and radiation, so combining
the equations: 1.4 and 1.7 from Chapter 1:

qn = −h(T − T0)− σε[(T − Tz)4 − (T0 − Tz)4] (2.3)

where:

� T0 :the room temperature

� Tz :the absolute zero temperature (Tz=-273 ◦ C)

� ε :the emissivity (dimensionless)
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� σ :the Stefan-Boltzmann constant (σ=5.669x10−8 W
m2(◦ C)4

)

� h [in W
m2 ◦C

] :convection heat transfer coefficient

The heat input from the laser beam in this model is modeled as heat gen-
eration and more specific as an ellipsoid volumetric source, so the equation
that simulates the heat input is:

ġ =
6P

π a b c
e−3( ξ

2

a2
+ η2

b2
) (2.4)

where:

� P [in W] :power of the laser

� a,b,c [in mm] are parameters of the volume of an ellipsoid

� ξ,η,ζ [in mm] are respectively local coordinates at the ellipsoid center

2.3.2 Boundary conditions implementation in ABAQUS

It is very important to apply the right boundary conditions to each element,
in order to avoid any errors in the thermal analysis. The boundary conditions
take into consideration both laser heating and heat losses due to convection
and radiation. At first, it has to be checked whether an element is active or it
has to be activated, as it was mentioned earlier. Then if the element is active
or it just got activated, it has to be checked if any part of the boundary of
this element, is part of the boundary of the whole body.
More specific for an element that is currently activated:

� if (|η| <dy), then boundary conditions must be applied at the top of
the element.

� for the previous element if at the same time (|ξ|+dx >α), then bound-
ary conditions must be also applied at the right side of the element.

� for an element with boundary conditions at the top (|η| <dy), if at the
same time is the first element of the layer (xnpt < xlaser0 + dx), then
boundary conditions must be applied at the left side of the element.

Furthermore, for an element that is already activated:
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� if (|η| <dy and xnpt < xlaser + α), then boundary conditions must be
applied at the top of the element.

� if (|η| <2dy and xnpt > xlaser + α), then boundary conditions must be
applied at the top of the element.

� if (noel > nw and xnpt < xlaser0 + dx), that means if the element
belongs to the wall and it is the first element of a layer, then boundary
conditions must be applied at the left side of the element. 3

� if (noel > nw and xnpt > xlaser0 + (NUM − 1)dx), that means if the
element belongs to the wall and it is the last element of a layer, then
boundary conditions must be applied at the right side of the element.

Figure (2.2) Boundary conditions of the evolving surface

The heat source of the laser beam and the boundary conditions for convection
and radiation on the evolving surface are modeled via the user subroutine
DFLUX in ABAQUS.

Listing (2.1) User subroutine interface (DFLUX)

1 SUBROUTINE DFLUX(FLUX,SOL,KSTEP,KINC,TIME,NOEL,NPT,COORDS,
2 1 JLTYP,TEMP,PRESS,SNAME)
3 C
4 INCLUDE ’ABA PARAM. INC ’
5 C
6 DIMENSION FLUX( 2 ) , TIME( 2 ) , COORDS(3)
7 CHARACTER*80 SNAME
8
9

10 user coding to d e f i n e FLUX(1) and FLUX(2)

3nw=10000, the numeration of the wall elements and nodes starts from that number,
in order to distinguish the wall elements from the substrate elements.
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11
12
13 RETURN
14 END

where:

� FLUX(1) → Magnitude of flux flowing into the model at this point.

� FLUX(2)→ Rate of change of the flux with respect to the temperature
at this point.

So, as it is known, when an element is active and which boundary conditions
should apply to the evolving surface it is very simple to define the FLUX(1)
and FLUX(2) respectively. More specific:

� if an element is active, the heat generation equation: 2.4 is applied
combined with latent heat, in case it is a phase change.

� if it was found that boundary conditions must be applied to the element,
then to this element the equation: 2.3 is applied, which is the equation
of heat transfer with convection and radiation.

Regarding the elements that belong to the substrate, they are active from
the beginning and we use the following ABAQUS keywords to handle the
boundary conditions:

� FILM → Define film coefficients and associated sink temperatures.

� RADIATE → Specify radiation conditions in heat transfer analyses.

The material’s thermal behavior is defined via the user subroutine UMATHT:

Listing (2.2) User subroutine interface (UMATHT)

1 SUBROUTINE UMATHT(U,DUDT,DUDG,FLUX,DFDT,DFDG,
2 1 STATEV,TEMP,DTEMP,DTEMDX,TIME,DTIME,PREDEF,DPRED,
3 2 CMNAME,NTGRD,NSTATV,PROPS,NPROPS,COORDS,PNEWDT,
4 3 NOEL,NPT,LAYER,KSPT,KSTEP,KINC)
5 C
6 INCLUDE ’ABA PARAM. INC ’
7 C
8 CHARACTER*80 CMNAME
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9 DIMENSION DUDG(NTGRD) ,FLUX(NTGRD) ,DFDT(NTGRD) ,
10 1 DFDG(NTGRD,NTGRD) ,STATEV(NSTATV) ,DTEMDX(NTGRD) ,
11 2 TIME( 2 ) ,PREDEF( 1 ) ,DPRED( 1 ) ,PROPS(NPROPS) ,COORDS(3)
12
13
14 user coding to d e f i n e U,DUDT,DUDG,FLUX,DFDT,DFDG,
15 and p o s s i b l y update STATEV, PNEWDT
16
17
18 RETURN
19 END

where:

� U→ Internal thermal energy per unit mass, U, at the end of increment.

� DUDT → Variation of internal thermal energy per unit mass with
respect to temperature, evaluated at the end of the increment.

� FLUX(NTGRD) → Heat flux vector, at the end of the increment.

� DFDG(NTGRD,NTGRD) → Variation of the heat flux vector with
respect to the spatial gradients of temperature, at the end of the incre-
ment.

These quantities are terms of the energy conservation equation: 2.2, which
in combination with the boundary conditions in the UMATHT, define the
thermal behavior of the material. It is also very important, in order to
simulate the AM process, to set the specific heat and the thermal conductivity
equal to zero for the inactive elements in the calculations above.
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2.4 Mechanical analysis

2.4.1 UMAT

As it was mentioned earlier, the thermal analysis is executed first and after
is completed, the mechanical analysis starts, using the temperature field that
was computed in the thermal analysis.
In order, to define the mechanical behavior of the material, the UMAT user
subroutine of ABAQUS is used. A quick overview of the UMAT:

Listing (2.3) User subroutine interface (UMAT)

1 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE, SSE ,SPD,SCD,
2 1 RPL,DDSDDT,DRPLDE,DRPLDT,
3 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
4 3 NDI ,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
5 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT, JSTEP,KINC)
6 C
7 INCLUDE ’ABA PARAM. INC ’
8 C
9 CHARACTER*80 CMNAME

10 DIMENSION STRESS(NTENS) ,STATEV(NSTATV) ,
11 1 DDSDDE(NTENS,NTENS) ,DDSDDT(NTENS) ,DRPLDE(NTENS) ,
12 2 STRAN(NTENS) ,DSTRAN(NTENS) ,TIME( 2 ) ,PREDEF( 1 ) ,DPRED( 1 ) ,
13 3 PROPS(NPROPS) ,COORDS( 3 ) ,DROT( 3 , 3 ) ,DFGRD0( 3 , 3 ) ,DFGRD1( 3 , 3 ) ,
14 4 JSTEP(4)
15
16
17 user coding to d e f i n e DDSDDE, STRESS, STATEV, SSE , SPD, SCD
18 and , i f necessary , RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT
19
20
21 RETURN
22 END

where:

� DDSDDE(NTENS,NTENS)→ Jacobian matrix of the constitutive model.
DDSDDE(I,J) defines the change in the Ith stress component at the end
of the time increment caused by an infinitesimal perturbation of the Jth
component of the strain increment array.

� STRESS(NTENS)→ This array is passed in as the stress tensor at the
beginning of the increment and must be updated in this routine to be
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the stress tensor at the end of the increment.

� STATEV(NSTATV)→An array containing the solution-dependent state
variables.

2.4.2 UMAT flow and equations

The flow of UMAT is the following (with σσσn :known):

→ Form elastic stiffness: LLLe = 2GKKK + 3κJJJ
→ Check FFF n+1−FFF n, where FFF n: is the deformation gradient at the beginning
of the increment and FFF n+1: is the deformation gradient at the end of the
increment:

� if FFF n+1 −FFF n=0:
→ Check YFLAG, where YFLAG is defined in the previous increment
and defines if the material is in the elastic or plastic region:

– if YFLAG=0 (elasticity):
→ DDSDDEDDSDDEDDSDDE = LLLe = 2GKKK + 3κJJJ and σσσn+1 = σσσn, where
DDSDDEDDSDDEDDSDDE is the Jacobian Matrix.

– if YFLAG=1 (plasticity):
→ DDSDDEDDSDDEDDSDDE = 2GKKK + 3κJJJ − 4G2

3G+h
NNN ⊗NNN and σσσn+1 = σσσn.

� if FFF n+1 −FFF n 6= 0:
→ Compute: ∆εεε, where: ∆εεε =

∑3
i=1 lnλininini ⊗ ninini, with λi: principal

stretches and ninini: principal stretch directions of ∆VVV ,where: ∆VVV 2 =
∆FFF ·∆FFF T , ∆FFF = FFF n+1 ·FFF−1

n

→ Compute: Φ, Φ = σe − σY , where σe is the equivalent von Mises
stress and σY is the yield strength.

– if Φ>0 (plasticity):
→ DDSDDEDDSDDEDDSDDE = LLLe − 1

L
(LLLe : NNN)(LLLe : NNN) and σσσn+1 = σσσn + LLLe :

∆εεε− 2G ∆ε̄P NNN , where: NNN = 3
2σee

(σσσe − σekk
3
III), σσσe = σσσn +LLLe : ∆εεε

and σee =
√

3
2
ssse : ssse.

– if Φ<0 (elasticity):
→ DDSDDEDDSDDEDDSDDE = LLLe and σσσn+1 = σσσn +LLLe : ∆εεε.
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It is important to highlight that the constitutive equations in the UMAT
were build, using the backward Euler method.

2.4.3 UMAT extension for AM

The UMAT subroutine presented earlier is generally designed, to compute
stresses and strains when mechanical loads applied to the body. So, it needs
some extra features and changes, in order to simulate the AM process.
Some features are similar to those in the thermal analysis, as that for the
inactive elements, the properties of the material are zero. More specific, for
the Young’s modulus (E) and the temperature difference (DTEMP1) between
the time increment:

� check if the element is inactive.

� set E=0 and DTEMP1=0, if the element is inactive.

Of course this is combined with the MPC subroutine, that defines that all
the inactive elements have not any displacement in all the directions.
The basic addition that UMAT needs is to consider the thermal loads, caused
by the temperature differences. The resulting temperature field from the
thermal analysis is used in the UMAT with the keyword: TEMPERATURE.
So, the thermal deformations are calculated by the equation: 1.61 and then
they are subtracted from the total deformations, in order to get the mechani-
cal deformations, as it is shown in equations: 1.62-1.67. As a result, using the
mechanical deformations in the UMAT, it will be calculated the mechanical
stresses and strains, during the AM process.
Furthermore, it is known that the yield point of the material is a property
that is affected by the temperature. So, it was added a subroutine to adjust
the yield point along with the temperature. In this subroutine the following
equation was used:

σy = σy − b(T − T0) (2.5)

where σy is the yield point, T is the temperature at that moment of time
at the specific material point, T0 is the temperature at the beginning of the
analysis in that material point and b: is a coefficient, where for this specific
mechanical analysis, was considered as b=0.28, as it works great with good
results. There is not a specific value for this coefficient, this is an empirical
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relationship.
So, with these changes in the UMAT, we were able to simulate the AM
process and complete the model, that estimates the mechanical stresses and
strains.



Chapter 3

Simulation of AM process, as
applied to an AISI 316L
austenitic stainless steel

3.1 Description of the application

Based on the formulation described in Chapter 2, a thermal analysis using
diffusive heat transfer elements (DC2D4) was performed in order to evaluate
the temperature evolution in the processed part, due to the successive ma-
terial deposition. In the present work, a two-dimensional wall is built and a
15 mm x 14.5 mm substrate is used to start the metal deposition. The wall
length is 10 mm and it is build by 10 layers of 0.5 mm height each. The
substrate and wall model contains 1,070 DC2D4 elements and 1,162 nodes.
For the mechanical analysis CPE4H elements was used.
The material of the application is an AISI 316L austenitic stainless steel and
its properties are presented in table: 3.1.

Furthermore, we consider the following conditions for this application:

� Time of inactivity of the laser between successive layers: 10s.

� The speed of laser beam: 20 mm/s.

� Initial temperature: 27 oC.

� Laser power: 195 W.

42



3.1. Description of the application 43

density ( kg
m3 )

ρ

specific heat
capacity ( kJ

kg K
)

Cp (at T=300K)

thermal
conductivity ( W

m K
)

k (at T=300K)

film coefficient
( W
m2 K

)
h

8,030 0.499 13.96 30

emissivity
ε

latent heat of
fusion (kJ

kg
)

QL

Young’s
Modulus (GPa)

E

Yield point
(MPa)
σo

0.5 330 190 550

The solidus
temperature (oC)

Ts

The liquidus
temperature (oC)

Tl

Poisson’s ratio
v

thermal
expansion

coefficient (oC−1)
ath

1400 1459 0.3 1.6 x 10−5

coefficient (MPa
oC

)
b

0.28

Table (3.1) Properties of the material
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Figure (3.1) Solid part and substrate geometry employed in the analysis.
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� The laser starts from (x0, y0, z0)=(2.5 mm, 14.5 mm, 0) and moves from
left to right.

� The parameters of the volume of the ellipsoid of heat source: (a,b,c)=(1.5
mm, 0.9 mm, 1 mm).

Finally, the data of the figure: 3.2 was used, to change the values of specific
heat capacity (Cp) and thermal conductivity (k), relatively with the change
of the temperature, during the AM process.

So, in this simulation our goal is to create a wall using an additive manu-
facturing process, which consists of 10 layers, where the final shape of the
body is presented in the figure: 3.1. First, the thermal analysis is completed
and then the mechanical analysis is performed, using the temperature field
extracted from the thermal analysis, in order to estimate the mechanical
stresses and strains.
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temperature
(oC)

T

specific
heat

capacity
( kJ
kg K

)
Cp

thermal
conduc-
tivity
( W
m K

)
k

temperature
(oC)

T

specific
heat

capacity
( kJ
kg K

)
Cp

thermal
conduc-
tivity
( W
m K

)
k

26.83 0.4987 13.96 1427.83 0.7699 17.98

126.83 0.5121 15.53 1526.83 0.7699 18.31

226.83 0.5255 17.1 1626.83 0.7699 18.64

326.83 0.5385 18.68 1726.83 0.7699 18.97

426.83 0.5519 20.25 1826.83 0.7699 19.3

526.83 0.5653 21.82 1926.83 0.7699 19.62

626.83 0.5786 23.39 2026.83 0.7699 19.95

726.83 0.5916 24.96 2126.83 0.7699 20.28

826.83 0.605 26.53 2226.83 0.7699 20.61

926.83 0.6184 28.1 2326.83 0.7699 20.94

1026.83 0.6318 29.67 2426.83 0.7699 21.26

1126.83 0.6448 31.25 2526.83 0.7699 21.59

1226.83 0.6849 32.82 2626.83 0.7699 21.92

1326.83 0.7699 34.39 2726.83 0.7699 22.25

1426.83 0.7699 35.96

Table (3.2) Changes of the Cp and k relatively with the change of the
temperature.
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3.2 Results

In this section the results of the application are presented. In figure: 3.2a,
we can see the activation of the element 10110 (figure: 3.3). If the speed of
the laser beam is 20 mm/s and between each layer is a 10 second break, as
the element is the 10th element at the 6th layer, that means that it should
be activated at: 5X(10 + 0.5) + (9X0.5 − 1.5)/20 = 52.65 seconds. As we
can see (figure: 3.2a) the element indeed is activated at 52.65 sec, after the
starting of the process. Before that time the element is inactive. We can also
see for the element 614 (figure: 3.3), which belongs to the substrate and it
should be active from the beginning of the analysis. As we can observe in
the figure: 3.2b, this is confirmed. So overall, the activation of the elements
seems to function properly. In figure: 3.4, there are some frames of the
activated elements during the AM process.

(a) element activation diagram for the
element 10110

(b) element activation diagram for the
element 614

Figure (3.2) Activation diagrams

Subsequently, we examine the temperature variation for different nodes of
the structure. The temperature field in AM is highly transient as well as
spatially non-uniform. Figure: 3.5 represents the variation of the temper-
ature along with time for different nodes of the structure. First of all, we
can very easily observe the thermal cycles, when the laser beam is active
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Figure (3.3) Solid part and substrate geometry where the selected nodes
and elements are highlighted in red
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(a) t=0 sec (b) t=0.45 sec

(c) t=52.725 sec (d) t=94.725 sec

Figure (3.4) Different timestamps in a row of the activated elements

the temperature increases and when it pauses to cool off, the temperature
drops to a new higher low. It is clear that as we move in a higher layer
node, the higher the peak temperature gets. Furthermore, for the node: 758
(see Fig: 3.3), as it belongs to the substrate and it does not come in con-
tact with the laser beam, the temperature increases gradually to its peak, as
more heat is transferred in the body during the AM process. In contrast, the
other nodes (see Fig: 3.3) of the wall reach their peak temperature at the
beginning of their activation, as the laser beam transfers them a lot of heat,
when it passes over them. Figure: 3.6 shows the temperature distribution
for different timestamps, where the peak temperature is the highest at the
pool center and decreases gradually with distance away from the center. In
AM the substrate acts as a heat sink. Therefore, for the upper layers, heat
transfer through the substrate decreases, which in turn, effectively increases
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the peak temperature for the upper layers. Because of the rapid scanning of
laser beam the temperature contours are elongated behind the heat source
and compressed in front of the beam. The highly transient and spatially non-
uniform temperature distribution, that shown in Figure: 3.6, is responsible
for the generation of the stress and strain fields.

Figure (3.5) Temperature variation (oC) for multiple nodes

Finally, we present the results of the mechanical analysis. Figure: 3.8 rep-
resents the stresses distribution across the structure at different timestamps.
Evolution of stresses depends on the transient temperature distribution es-
pecially during cooling of the body. Although, the peak temperature is the



3.2. Results 51

(a) t=0.275 sec (b) t=31.5 sec

(c) t=52.85 sec (d) t=105 sec

Figure (3.6) Temperature variation (oC) for different timestamps in a row

highest at the pool center, we observe that does not result to the highest
stresses. This seems reasonable, as the high temperature softens the ma-
terial locally and lowers the yield strength, so the magnitude of stress is
relatively low as it is limited by the the yield strength at the high temper-
ature. Furthermore, the location of the maximum stresses, after the cool
off period, are near the top of the wall (figure: 3.9). As the temperature,
decreases gradually from top to bottom of the structure, when it cools off, it
would be normal for the stresses to follow a similar pattern. However, we can
observe a small region underneath the top layers, with lower stresses than
the rest of the body, as it is shown in figure: 3.9. This happens because
there, the temperature is high enough to soften the material, but not so high
to develop high stresses, as a result we see lower stresses in that region. In
figure: 3.8, we can observe the deformation at the sides of the wall, as more
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and more layers are added and the obvious plastic deformation of the upper
edges of the substrate, that is totally explained by the high stresses that are
developed in these regions. In figure: 3.7, we have a clear view of the defor-
mation of the body, as it is compared the designed and the actual shape of
the body. So, clearly the substrate is elongated in the y-axis, due to tensile
loads and the wall is compressed in the y-axis, due to compressive loads.

Figure (3.7) Comparison between the designed and the actual shape of the
body
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(a) t=0.25 sec (b) t=10.625 sec

(c) t=31.5 sec (d) t=31.9 sec

(e) t=73.7 sec (f) t=73.925 sec

(g) t=84.2 sec (h) t=105 sec

Figure (3.8) Distribution of the stresses (MPa) during the AM process
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(a) Stress field (t=21.425 sec)
(b) Strength yield distribution (t=21.425
sec)

(c) Stress field (t=21.5 sec)
(d) Strength yield distribution (t=21.5
sec)

(e) Stress field (t=26.5 sec)
(f) Strength yield distribution (t=26.5
sec)

(g) Stress field (t=31.5 sec)
(h) Strength yield distribution (t=31.5
sec)

Figure (3.9) Distribution of the stresses and yield strength (MPa) during
cool of period of the third layer



Closure

In this thesis additive manufacturing of an AISI 316L austenitic stainless
steel was studied via an integrated thermomechanical modeling approach. A
finite element technique was employed to evaluate the temperature evolution
due to successive material deposition. The ensuing temperature field was
provided as an input for a mechanical finite element analysis to calculate,
based on local mechanical properties, the residual stresses and distortions.
The primary purpose was to develop a methodology which simulates accu-
rately the AM process.
We can summarize the results we saw in the previous section as follows:

� The activation of the elements simulates perfectly the movement of the
laser beam.

� The combination of the correct element activation and the MPC user
subroutine work, so the inactive elements indeed do not affect the anal-
ysis, which is also completed in reasonable computation time. As we
can observe that for the inactive elements the temperature remains at:
27oC and the stresses are equal to zero.

� The temperature distribution of the material seems to be accurate, as
the elements of the wall reach the peak temperature at the beginning of
their activation where the heat source hits them, while the elements of
the substrate reach their peak temperature gradually as the heat flows
from the wall to the substrate. We can also clearly note the fluctuation
of the temperature for each element in response to the thermal cycles
of the laser beam.

� Finally, we can observe the successful coupling of the thermal and me-
chanical behavior of the material, as the stresses respond according to

55
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the temperature field. The stresses are increased gradually for the el-
ements at the substrate along with the temperature and the stresses
around the molten pool get very high, as we have the highest tempera-
tures, but not in the molten pool, as the yield strength gets to low and
the material becomes too soft and limits the stresses.

We can also conclude from the results that during the AM process, residual
stresses are developed and because of the stresses the body is deformed sig-
nificantly.
Finally, we close with some recommendations for future work, which could
improve this work:

� Switch from a 2-d model to a 3-d model.

� Evaluate the results of the mechanical stresses and strains estimation
with results from an actual experiment.

� Tune the parameters of the model to eliminate the residual stresses
arising from the AM process.
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