












«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι:

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να
τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη
σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι
λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση
εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς
και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά
στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο,
όπως στα παραθέματα.

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται
από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι
αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν
δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και
παρουσίασή τους ως δική μου εργασία. 

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε
μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και
όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι
πίνακες και τα σχέδια

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.

Ημερομηνία:      30/7/2021

Ο  Δηλών.

(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με
έγγραφη υπεύθυνη δήλωση 
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο
υπαίτιος αυτών των πράξεων 
σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή
σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.»





ΠΕΡΙΛΗΨΗ
To Online Interval Scheduling Problem έχει πρόσφατες εφαρμογές στον τομέα του cloud

computing για την βελτιστοποίηση της ανάθεσης διεργασιών σε εικονικές μηχανές για

επεξεργασία. Με την μεγαλύτερη κατανάλωση ενέργειας να γίνεται για την επεξεργασία δεδομένων

και την ψύξη, ένας πιο βέλτιστος προγραμματισμός των διεργασιών μπορεί να ελαττώσει το busy

time και ως συνέπεια την κατανάλωση ενέργειας. Στο non-preemptive clairvoyant online

interval scheduling η αναπαράσταση των διεργασιών γίνεται με ένα ημιανοιχτό διάστημα της

ώρας άφιξης και αναχώρησης και επιπλέον τις απαιτήσεις της διεργασίας σε πυρήνες. Ένας επιπλέον

περιορισμός του online προβλήματος είναι το ότι δεν έχουμε γνώση για τις μελλοντικές αφίξεις

διεργασιών. Αυτή η δουλειά βασίζεται στον Threshold Based Categorisation (TBC) αλγόριθμο

ο οποίος δουλεύει ως ένα βήμα προεπεξεργασίας για τους παραδοσιακούς αλγόριθμους

προγραμματισμού διεργασιών. Ο TBC βασίζεται σε μια τιμή κατώφλι T η οποία χρησιμοποιείται για

να καθαρίσει αν δύο διεργασίες είναι αμοιβαία αποκλειόμενες και ως συνέπεια δεν μπορούν να

μπουν στην ίδια μηχανή. Βασικό για την καλή απόδοση του αλγορίθμου είναι ή επιλογή της τιμής T.

Για την επίλυση αυτού του προβλήματος 2 πράκτορες ενισχυμένης μάθησης, ο Q-Learning και ο

Deep Q-Learning, υλοποιήθηκαν και εκπαιδευτικάν σε πραγματικά δεδομένα ώστε να μάθουν να

επιλέγουν το βέλτιστο T βάση την παρελθοντικές και αναμενόμενες μελλοντικές απαιτήσεις του

server.  Η απόδοση των πρακτόρων μετρήθηκε σε δεδομένα που οι πράκτορες δεν είχαν ξανά δει

και τα αποτελέσματα επιβεβαιώνουν ότι οι πράκτορες όντως προσαρμοζονται στις διάφορες

απαιτήσεις και πετύχουν καλύτερα αποτελέσματα από τον TBC με σταθερό T και τον First Fit.





ABSTRACT

The Online Interval Scheduling Problem has recently been applied in the field of cloud

computing for optimising the packing of incoming tasks into virtual machines (VM) for

processing. With the largest part of the power consumption of data centers arising from

processing and cooling, a more optimal packing reduces the busy time of the system and

thus the total power consumption. Specifically in the non-preemptive clairvoyant online

interval scheduling problem, arriving jobs are represented by the semi-open interval of

their arrival and departure time and their processing requirements. An additional

constraint of the online problem is the restriction of knowledge for future job arrivals.

This work relies on the Threshold Based Categorisation (TBC) algorithm which works as

a preprocessing step to traditional bin packing algorithms. TBC relies on a threshold

value which is used to determine whether two tasks are mutually exclusive and thus can

not be packed in the same bin. Critical for the performance of this algorithm is the

selection of a fitting threshold value. To solve this problem two reinforcement learning

agents are proposed, specifically a Q-Learning and a Deep Q-Learning agent, which are

trained on real world data to learn to select optimal thresholds based on the server’s

past and expected load. The agent's performance is evaluated on previously unseen data

and the experimental results show that the agents learn to adjust to many different

workloads and outperform both the TBC with static threshold strategy and First Fit.
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CHAPTER 1 Introduction

(Section 1.1 Online interval scheduling )

The Interval Scheduling problem or Bin Packing problem is an optimization problem

regarding the packing of varying size items into a single or many bins with the goal of

packing as many items as possible into one bin or using the least number of bins to pack

all items. Depending on the formulation, this problem can be used for optimization in a

plethora of applications such as reducing thrashing when allocating memory to tasks in

an operating system [19] or for packing cargo in aircrafts[20]. The focus of this work is

on a specific formulation that applies to large cloud servers with the goal of minimizing

power consumption. This specific problem has recently attracted much attention from

the research community [1], [2], [3], creating an influx of new algorithms. Such

environments have massive computational capabilities which come coupled with equally

massive energy requirements. With the highest power consumption attributed to cooling

and processing [9],[10] improving the optimality of the algorithms used in such

environments is critical for reducing the need for both aforementioned factors. The

benefits of such a reduction are both environmental and monetary by simultaneously

reducing the carbon footprint and the cost of running a data center.

The specific formulation for the cloud server case is the following. Jobs are described by

a semi-open interval denoting the job's starting and departing time as well as the job’s

demand in CPU cores. Each job that arrives must be packed in a bin at its arrival time

(strict time) and remain there until it has finished processing without its execution

being paused (non-preemptive scheduling). The online version of this problem introduces

the constraint that there is no knowledge of future job arrivals and thus is closer to the

real-world problem in which we only become aware of the jobs when they arrive. The

goal of the algorithms solving this problem is to minimize the total busy time. The busy

time of a bin is simply the duration of its operation, from the initialization time until the

last job is processed. The total busy time of the system is the sum of the busy times of

every bin that was opened in order to process all the jobs.

(Section 1.2 Threshold Based Categorisation )

If we define local parallelism as the number of jobs that run in parallel in the same bin

it is easy to correlate higher local parallelism with reduced busy time. But that is not

always the case. In [8], the authors proved that packing jobs of similar size together, in

dense workloads, reduces busy time overall as demonstrated in figure 1 workload 2. To

exploit this, the authors proposed Threshold Based Categorisation (TBC), an algorithm

which works as a preprocessing step to any traditional bin-packing algorithm such as

First Fit [11]. The algorithm works using a parameter called the Threshold (T) which as

shown experimentally, outperforms the state-of-are algorithms, and improves over the

worst case of First Fit especially in dense workloads. This parameter T heavily
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influences the algorithm’s performance, and choosing an optimal value largely depends

on the situation.

(Section 1.3 Proposed algorithm for dynamic threshold)

This work focuses on designing and implementing a machine learning based approach

for choosing an optimal T value. For this task, two different agents, a Q-learning [17],

[12] agent, and a Deep Q-learning [18] agent are employed to update the T values in

order to minizine the busy time. The agents can choose between the TBC algorithm with

any threshold (in the defined range) and the First Fit algorithm. Allowing the agent to

use First Fit when the arriving jobs are sparse, and TBC with an appropriate T on dense

workloads. Here sparse and dense are used as an example, in reality the decisions are

taken using a more complex set of metrics.
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CHAPTER 2 Related Work

To my knowledge there is yet for work to appear in the literature in which the online or

the offline interval scheduling problem is tackled using machine learning techniques.

The current state of the art approaches for optimizing both the online and the offline

interval scheduling problem mostly rely on traditional algorithms and some heuristics

approaches all focused around improving the competitive ratio which is the ratio of the

online algorithms performance to the best case performance.

There are many works in the literature focusing on the offline version of the problem but

are omitted here since the approaches for solving the offline version of the problem are

significantly different that those for the online. In [4], the authors compute and compare

the competitive ratios for the traditional packing algorithms of First Fit, Best Fit and

Any Fit and also propose Hybrid First Fit which defines a variable beta and classifies

tasks with size larger that as large and the rest as small with the goal of packing
1

𝑏𝑒𝑡𝑎

large and small tasks separately. Finally they prove that the algorithm achieves a

competitive ratio of when m is not known and when m is known,
5
4 𝑚 + 19

4 𝑚 + 5

where m is the ratio of the durations of the largest and smallest task.

In [5], the authors consider the same problem as this work, the Clairvoyant Online

Interval Scheduling problem. The authors improve the previous upper bound of

to . The two algorithms proposed by the authors are the Hybrid𝑂( 𝑙𝑜𝑔𝑚
𝑙𝑜𝑔𝑙𝑜𝑔𝑚 ) 𝑂( 𝑙𝑜𝑔𝑚)

Algorithm and the Classify-Duration-First-Fit. The Hybrid Algorithm uses two types of

bins: general bins (GN) and classify by duration bins (CD). At any moment, based on the

load the algorithm can decide whether to pack the task in a GN or CD bin. Finally, the

Classify-Duration-First-Fit algorithm keeps groups of bins. Each group can only

accommodate tasks that belong in the same category. Each task is classified into a

category based on its duration

In [6], the authors consider the online flexible tasks scheduling problem which is similar

to the online interval scheduling problem with the main difference being that tasks are

described by their arrival time, starting time, and processing time allowing the

scheduler to pack the task anytime between its arrival and starting time. Of course this

allows for further optimization of the scheduling. The authors propose algorithms for

both the clairvoyant and non-clairvoyant case, Batch and Batch+ for the former and

Classify-By-Duration Btach+ (CDB+) and Profit for the latter. The Batch and Batch+

algorithms work iteratively and rely on starting the execution of as many tasks as

possible in parallel. In each iteration the task with the shortest deadline is marked with

a flag, and all tasks in that iteration begin processing at the same time as the flag task.

Batch+ arguments Batch by additionally starting the execution of tasks arriving during

the processing of the initially started jobs. CDB+ is used in the clairvoyant case where

task durations are known; the algorithm first, given a category size, creates bins and

each arriving task is put into a category based on its duration; finally every category is

packed separately using Batch+. The Profit algorithm is similar to Batch+ with the
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main difference being that when the flag tasks start their execution the algorithm packs

the tasks that have arrived before the flag task (profitable tasks) with the arriving tasks

being packed in the same iteration. The process is repeated for the non-profitable tasks

of that iteration. Finally the competitive ratio of Batch+ and profit are computed at

where m is the length of the taks with the maximum length, for the former and at𝑚 + 1,
for the latter.4 + 2 2

In [7], the authors consider two versions of the online clairvoyant interval scheduling

problem, minimizing the busy time and maximizing the tasks packed while not

exceeding a predetermined busy time. The algorithm BucketFirstFit(A) is a general case

greedy algorithm. Each job is assigned to a category based on its duration on arrival

with each category being packed on a separate set of bins. The parameter ‘A’ denotes the

number of categories. Finally, the authors prove that for a=4 the competitive ratio of the

algorithm is where m is the length of the taks with the maximum length.5𝑙𝑜𝑔𝑚

This work heavily relies on the TBC algorithm [8] .The TBC algorithm is designed to be

used in combination with traditional bin packing algorithms as a pre-processing step.

TBC’s main functionality is to only allow non-mutually exclusive tasks to be packed

together in the same bin. Two tasks with durations dur1, dur2 are considered

non-mutually exclusive if their duration ratio is less than the mutual exclusivity

threshold (T).

eq. 1
𝑚𝑎𝑥(𝑑𝑢𝑟1, 𝑑𝑢𝑟2) 
𝑚𝑖𝑛(𝑑𝑢𝑟1,  𝑑𝑢𝑟2)  <  𝑇

The above can be extended to apply to the bin case. Using the maximum duration

(max_dur) and the minimum duration (min_dur) in that bin, a task with duration (dur)

can be packed in that bin if it satisfies the above for both the largest and smallest task

in the bin.

and eq. 2
𝑚𝑎𝑥(𝑚𝑎𝑥_𝑑𝑢𝑟, 𝑑𝑢𝑟) 
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑑𝑢𝑟,  𝑑𝑢𝑟)  <  𝑇 𝑚𝑎𝑥(𝑚𝑖𝑛_𝑑𝑢𝑟, 𝑑𝑢𝑟) 

𝑚𝑖𝑛(𝑚𝑖𝑛_𝑑𝑢𝑟,  𝑑𝑢𝑟)  <  𝑇

The satisfaction of the eq.2 guarantees that there is no other task in the bin for which

eq. 1 is not satisfied and thus the bin belongs to the non mutually exclusive set of bins

for the current task.

Using the above, for every task, we can compute a subset of bins that only contain

non-mutually exclusive tasks and thus are the most optimal candidates for the task to

be packed in. In the case where there is no bin satisfying the above equation, a new VM

is opened for the task to be packed in.
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CHAPTER 3 System Model

Formally, the problem can be described by a set of jobs J = {J1, J2 ... Jn} denoting the jobs

arriving at a large parallel system that need to be scheduled to a bin for processing. A

job Jn is described by a semi-open interval I = [arival_time, departure_time) and its

processing requirements in CPU cores, denoted by Rn. The processing requirements of

each job are known on arrival (clayvorant case of online interval scheduling). Finally, for

each job Jn in the set of incoming jobs, the job's duration Dn can be calculated by

subtracting the job's arrival time from its departure time. The scheduler is responsible

for opening bins according to the packing algorithm to accommodate all jobs in J. Each

bin Vm can be described as a set of time intervals TIm = {TI1, TI2 ... TIk}, and a capacity

Cm which denotes the number of CPU cores available to that bin. Each TIm represents a

time interval in which the current CPU cores used in that bin stay the same. When a job

is packed into a bin, the intervals are updated in such a way to represent the new usage

of CPU cores caused by the job. As a constraint, interval’s CPU cores usage must not

exceed the capacity C of the bins at any point in time. In the case where no bin can

accommodate a job, a new bin is opened. Finally, when a bin is done processing all of its

assigned jobs it is shut down by the scheduler.

The goal is to pack a workload J, such that to minimize the busy time of the system

which is the total time the system is under load. The busy time of a bin Vl can be

calculated by subtracting the closing time from the opening time. Formally, the total

busy time of the system BTsys can be calculated using the following

𝐵𝑇
𝑠𝑦𝑠

 =
𝑖 = 1

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑛𝑠

∑ 𝐵𝑇
𝑉

𝑖

Where BTVi is the total busy time of the i-th bin in the system.
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CHAPTER 4 Agent Architecture

The TBC algorithm heavily relies on the threshold for optimizing lower bounds.

Although the use of a static threshold can yield better performance over traditional

algorithms in some cases, especially in the offline version of Interval Scheduling where

there is knowledge about the load and more sophisticated algorithms are possible, this

approach is not very effective. The alternative to using a static threshold is the use of an

algorithm that is tasked with dynamically adjusting the threshold.

Figure 1: Packing of two simple workloads using the First Fit algorithm and the TBC algorithm

(assuming appropriate threshold to achieve illustrated packing). Workload 1 is sparse, thus First

Fit achieves optimal packing while Workload 2 is dense and TBC achieves optimal packing.

Figure 1 demonstrates the differences between First Fit and TBC. In workload 1, when

applying the TBC algorithm, jobs 1 and 4 are mutually exclusive with jobs 2 and 3 and

thus are packed in different bins; the same is also true for jobs 5 and 6. On the other

hand, First Fit packs these jobs together. Workload 1 also demonstrates why the TBC

algorithm is not suitable for sparse workloads since choosing to split a sparse workload

only increases the busy time without getting the benefits. On the other hand, workload 2

shows how the TBC algorithm can achieve better packing results in dense sets. By

summing the total busy times of bins 1 and 2 for both cases we can see that TBC’s total

busy time is the sum of duration of job1 and job3 while First Fit’s is the sum of duration

of job1 and job4. Because the duration of job4 is greater than that of job3, TBC result in

an inferior packing against First Fit.
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Even in favorable workloads for the TBC algorithm an initial spike in busy time can be

observed. For example, in the workload 2 shown in figure 1 the busy time achieved by

TBC before job4 arrives is higher than that of First Fit, but that ‘sacrifice’ is rewarded

later when job4 arrives and bin1 still has available capacity for it. Therefore, in this

scenario TBC outperforms First Fit. Based on the aforementioned scenarios the goal is

to design reinforcement learning agents (see next subsections) that dynamically adjust

the threshold for packing jobs on different machines based on their durations.

(Section 4.1 Q-learning)

(subsection 4.1.a Introduction to Q-learning)

The first agent used to solve this problem is a Q-learning [17] agent which uses the

Temporal Differences [12] update rule. Q-learning is a model-free algorithm, which

means that there is no model of the environment. A typical model of an environment

consists of the Transition Probability Distribution (TPD) and a Reward Function. The

Transition Probability Distribution is a table containing all the probabilities for every

possible transition from each state and the reward function, in the model point of view,

is one in which all rewards of possible state action pairs are known. In such problems

the optimal solution can be found using Dynamic Programming or an approximation of

the optimal solution can be found with the use of heuristic algorithms. With the above

absent, model-free algorithms are implemented such as to learn the environment

through experience but with no guarantees for optimality.

Figure 2: Overview of the algorithm. The agent acts on the environment by selecting an action

and gets rewarded according to the optimality of that action.

The environment (Fig. 2) is a model of the real-world problem used for the agent to

explore and gain experience on the problem. Each time the agent makes a decision it

directly affects the environment and based on the change this action caused, the agent
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gets a reward. Specifically for this problem, the environment is a class that contains the

scheduler and other auxiliary metrics used to calculate the reward and provide the

agent with the next state.

Q-learning learns the environment through the maximization of the Q function. The Q

function is computed at each time step to calculate the expected reward of each action.

The environment in which the agent is placed provides the agent with the current state

St and with the reward of the action taken in the previous time step At-1 (see fig 2). The

agent then, using the expected rewards of all possible actions calculated by the

Q-function, will choose the action At which corresponds to the maximum future reward.

The Q-values are stored in an N1 x N2 x … x Np x M matrix Q where N1 is the range of

discrete values of the metric representing state 1 the state, N2 is the range of discrete

values of the metric representing state 2 and so on, P is the number of different metrics

that are used to represent the state, and M is the number of all possible actions. Each

state can be represented as a P dimensional vector S with S1 being the value of the

metric that represents state 1, S2 being the value of the metric that represents state 2,

and so on. At each time step t, the agent first updates Q[(St-1, At-1)] Q-value to be closer

to the Rt-1 plus the expected future reward using the TD learning update which will be

explained in detail in the next subsection. Finally, before the training can begin the

Q-table must be initialized. There are many methods of initializing the Q-values such as

an optimistic initialization in which the Q-table is initialized with high Q-values thus

promoting exploration, using random values, or all 0’s or 1’s or any number heavily

depending on the reward function. For this problem, the initialization chosen was all 0’s

which will be discussed later in this chapter. Figure 3 illustrates the architecture of a

q-learning agent.

(subsection 4.1.b Temporal Differences)

The update of Q-values happens using Temporal Differences (TD) learning. In TD,

updates take place after every time step. This constant update can help the agent stay

up to date and adapt to new workloads. The TD update rule for Q-learning is the

following.

)𝑄
𝑛𝑒𝑤

(𝑆
𝑡
, 𝐴

𝑡
) = 𝑄

𝑜𝑙𝑑
(𝑆

𝑡
, 𝐴

𝑡
) + 𝐿𝑅 * (𝑅

𝑡
+ 𝐺 * 𝑚𝑎𝑥(𝑄

𝑓𝑢𝑡𝑢𝑟𝑒
(𝑆

𝑡+1
)) − 𝑄

𝑜𝑙𝑑
(𝑆

𝑡
, 𝐴

𝑡
)

Where LR is the learning rate, R is the reward and G is the discount factor. The learning

rate defines the impact the update will have on the old value. Choosing a balanced LR is

important since both a very large and a very small LR can prevent convergence. One

advantage of this update rule is its ability to maximize long-term rewards. This is

achieved by taking into account the max expected future reward. Consider the case of

chess. Generally, a move that allows the agent to capture the opponent's queen will have

a high reward. But in the edge case where capturing the opponent's queen allows a

checkmate for the opponent (losing the game for the agent), such a move should be

avoided. An agent which does not take into account expected future rewards would fail
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to get good results in chess and generally in any problem which requires long-term

decision making. The TBC algorithm has a similar property, that is, choosing a lower T

value can temporarily increase the busy time over the First Fit algorithm since a new

bin will be opened to pack a mutually exclusive task that could have been packed in an

existing bin. An agent acting on current results will never choose to use the TBC

algorithm, since from its point of view it would never maximize the reward. Q-learning

with TD overcomes this hurdle by using the max future reward in the update rule and a

result reflecting future rewards on current actions.

If the above formula is studied carefully, one can deduce that for continuous serial

updates the discount factor G is raised to 2nd power for the second call, to the 3rd for

the third call, and so on. By lowering the value of G we effectively reduce how much the

agent will take into account future rewards. G is bounded in the range of [0,1].

Considering the extreme cases, a G value of 1 would make the agent try to maximize the

reward given after an infinite time or put differently, taking into account reward after

an infinite amount of time with the same weight as the current reward. The opposite is

true for a G value of 0 , which would make the agent completely disregard the future

and only maximize the current reward.

Figure 3: Overview of the architecture of a q-learning agent.

(Section 4.2 Reward Function)

Choosing a reward function for this type of problem is a difficult task since the final goal

is not known. In traditional problems such as chess, the reward function is simple, e.g.

+1 for winning, 0 for draw, and -1 for defeat. Considering this specific problem,

rewarding the agent using the optimal packing is impossible since the problem is

NP-Complete. Therefore, a different approach must be adopted to solve this problem.

The reward function that is chosen is based on the performance of the agent’s packing as

compared to the packing of the jobs by the First Fit algorithm. To calculate this value a

secondary scheduler is placed in the environment which packs the same jobs as the
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agent in parallel. When a new batch arrives and the agent is ready to receive its reward

for the previous task, the total busy time achieved by the main scheduler and the

reward scheduler are measured and their difference is given as the reward. Formally, for

state St in which a batch Bn is packed, the reward Rt is calculated using the following

formula

𝑅
𝑡

= 𝐵𝑇
𝑟𝑒𝑤𝑎𝑟𝑑 𝑠𝑐ℎ

 −  𝐵𝑇
𝑚𝑎𝑖𝑛 𝑠𝑐ℎ

Using this formula, in case the agent outperforms the First First algorithm it is

rewarded with the positive busy time difference, in case the agent achieves the same

performance with the First Fit algorithm it is rewarded 0, and finally if the agent is

performing worse than the First Fit algorithm, the agent is rewarded with the negative

busy time difference. Such a reward function steers the agent towards the right

direction and does not limit its performance in any way since the better it performs the

higher the agent's reward.

(Section 4.3  TD and Unexplored State Action Pairs)

When using the TD rule, more specifically when calculating the max expected future

reward, an unexplored state can be chosen. Consider the simple case of a Q-learning

agent with two possible actions A1 and A2. When trying to calculate the max expected

reward of state Sn-1, max(Q(Sn)) is calculated. If we assume that, Q(Sn, A1) = -10 and

Q(Sn, A2) = 0 the max expected future reward will be Q(Sn, A2) which is correct if the

state Q(Sn, A2) has been visited before and its Q-value represents reality. However, if we

consider the case where the state has not been visited and its true value is not yet

calculated, the risk of Q(Sn, A2) < -10, for example, Q(Sn, A2) = -100, is possible hence

causing Q(Sn-1, An-1) to diverge from its true value. To solve this problem a secondary

matrix Vexplored with the same dimensions as the Q-table is created. This matrix holds

information about whether a state has been visited. Then when choosing the max

expected future reward a conditional max function is used which returns the maximum

of only explored state-action pairs or 0 in the case where no future state is explored.

𝑄
𝑛𝑒𝑤

(𝑆
𝑡
, 𝐴

𝑡
) = 𝑄

𝑜𝑙𝑑
(𝑆

𝑡
, 𝐴

𝑡
) + 𝐿𝑅 * (𝑅

𝑡
+ 𝐺 * 𝑐𝑜𝑛𝑑_𝑚𝑎𝑥(𝑄

𝑓𝑢𝑡𝑢𝑟𝑒
(𝑆

𝑡+1
), 𝑉

𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑
(𝑆

𝑡+1
)) − 𝑄

𝑜𝑙𝑑
(𝑆

𝑡
, 𝐴

𝑡
)

)

(Section 4.4 State definition)

The states are the agent’s inner representation of the environment and are the sole

information used by the agent to make decisions. Defining the states of the environment

is a critical part of the design to ensure convergence and therefore learning. When

choosing states the goal is to minimize dimensionality while maximizing useful

information about the environment. Dimensionality in this context refers to the
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dimensions and the size of each dimension of the Q-table. The maximization of useful

information is a bit less strictly defined. In more simple problems the most useful and

complete metrics to describe the environment are straightforward, for example, a smart

thermostat trying to keep the temperature of a room at a constant temperature set by

the user would need information about the indoor temperature of the house and maybe

the outside temperature and the humidity. In more complex problems though, such

simple metrics alone will rarely suffice.

Before explaining the state's metrics in depth, some more information about the

structure of the data must be given. To model the progression of time in the agent, the

workload is split into batches each of duration H, where H is how often the agent will

update the threshold. Formally, a workload J split into batches can be denoted as the set

J = {B1, B1, … Bn} where batch B1 contains jobs that arrived in the first time window of

duration H, B2 contains jobs that arrived in the second time window of duration H and

so on.

To calculate the new state of the environment when the new batch Bn arrives, the jobs of

the previously packed batch Bn-1, and the first job of the new batch Bn are used. The

decision is taken when the first job of the new batch has arrived. The derived state is

used to calculate the optimal action to pack Bn. The first batch B0 is packed using the

First Fit algorithm since no information about the state is available. One thing to clarify

here is that the packing strategy stays the same for the whole batch.

Sparsity is the ratio of the sum of the duration of the Mn jobs in a batch Bn divided by

the total busy time of the jobs when packed in a bin with infinite capacity with all empty

intervals (idle time) removed.

𝑆𝑝𝑎𝑟
𝐵

𝑛

= 𝑖=1

𝑀𝑛

∑ 𝑑𝑢𝑟𝐵
𝑖

𝐵𝑢𝑠𝑦𝑇𝑖𝑚𝑒(𝐵
𝑛
)

by definition

𝑖=1

𝑚

∑ 𝑑𝑢𝑟𝐵
𝑖

≥  𝐵𝑢𝑠𝑦𝑇𝑖𝑚𝑒(𝐵
𝑛
) 

hence  0 < 𝑆𝑝𝑎𝑟
𝐵𝑛

≤ 1 

Sparsity was chosen because it heavily affects the packing strategy since sparse sets are

best packed using First Fist due to the fact that not enough jobs arrive close enough to

each other for TBC to achieve a more optimal packing. Furthermore, using the TBC

algorithm in sparse datasets can further increase the busy time as illustrated in figure

1.

One limitation of the Q-learning algorithm is that states can not be continuous due to

the nature of the Q-table. So every continuous variable must be converted into a discrete

one. In the case of sparsity, the continuous range of (0,1] is converted into 11 discrete

states from 0 to 10 with a step of 1 with the conversion happening by rounding down to

1 digit precision and multiplying by 10. Figure 4 shows the mean sparsity of batches for

every workload.
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Figure 4: Mean sparsity of batches for all workloads for all VM capacities

The L2 norm of the duration distribution is a way of measuring the ‘uniformity’ of the

duration distribution of a batch. If the L2 norm is applied on a vector that represents a

distribution of a random variable X the result represents the ‘uniformity’ of the

distribution. Studying the extreme cases, assuming the vector Vuniform = [0.33, 0.33, 0.33]

the scaled L2 norm of Vuniform will be almost 0, while the scaled L2 norm for Vone-hot =

[1,0,0] which is a one-hot vector will be 1.

To calculate the L2 norm first we must calculate the distribution of durations in the

batch. Initially, the upper and lower bounds of durations in the batch are calculated.

Using these bounds, M bins are calculated and the jobs are assigned to the bins whose

value is the closest to its duration. The vector of size M containing the sums of each bin

divided by the total number of jobs represents the distribution of durations. The

following formula is used to calculate the L2 norm

𝐿2 =
𝑖=1

𝑀

∑ 𝑥
𝑖| |2
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Where x is summing over the distribution vector for the current batch. This value is

initially bounded by [1/sqrt(M), 1]. To scale these results in the range of (0,1] the

following is used

 𝑠𝐿2 =  𝐿2 * 𝑀− 1
 𝑀− 1

 

This, in combination with sparsity, gives the agent a wider picture of the workload. This

again is a continuous variable in the range of (0,1] and converted into a discrete variable

using the same method as sparsity, by rounding down to 1 digit precision and

multiplying by 10. Figure 5 shows the mean L2 of batches for every workload.

Figure 5: Mean L2 norm of batches for all workloads for all VM capacities.

The third state defining metric is active bins, which is simply the number of active bins

at the time of the arrival of the first job in Bn. This variable is by its nature discrete,

only taking integer values and its range is from [0,10] with values more than 10 being

rounded down to 10.

The final metric used is overlap, which measures whether the previous batch Bn-1

overlaps with the next batch Bn calaculated using the latest departing job of batch Bn-1

and the first job of Bn . This metric is binary and hence discrete. Figure 6 shows the

mean overlap of batches for every workload.
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Figure 6: Mean overlap of batches for all workloads for all VM capacities

(Section 4.5 Deep Q-Learning)

(subsection 4.5.a Introduction to deep Q-learning)

Deep Q-learning[18] is a method similar to Q-learning with the main difference being

the replacement of the Q-table with a Neural Network. Ignoring the training for now

and considering a trained agent this variation not only allows for continuous variables

to be used as state metrics but also for an agent able to generalize better and make more

accurate decisions for unseen data due to the strong generalization power of neural

networks. Of course, training such an agent requires higher computational capabilities

due to the complexity of the neural network and inference requires higher

computational power. But in cases where the use of continuous and/or a large number of

state metrics are required to describe the environment or in cases where exploring a

large number of states is not possible, the traditional Q-learning algorithm does not

work but the Deep Q-learning algorithm is a viable option. Additionally, for an

algorithm aimed at the cloud, an increase in the required computational power of this

scale is marginal.
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(subsection 4.5.b Training the Q network)

Two Neural Networks take the place of the Q-table - the policy network and the target

network. The target network is used by the agent to infer actions by using the current

state as input and the policy network is trained on the data that the agent produces by

initially randomly choosing actions and receiving rewards. The target networks’ weights

are periodically updated to match the policy network; this approach of using two

networks is used since it provides a more stable training.

The input of these networks is an N-dimensional vector Vin where N is the number of

metrics describing the states and whose values are the state metrics for the current

state Sn. The output of the network is the M-dimensional vector Vout where M is the

action space. With the Vout calculated, the optimal action is A[argmax(Vout)] where A is

the action values vector.

To train the policy network, a replay memory technique is utilized. Initially, the

un-trained target network makes random decisions and is rewarded accordingly by the

environment. With the values state, action, next state, and reward, a training dataset

can be compiled. The training set consists of a state vector St which is the input and a

vector Vtarget of which is the target output of the network for the state action pair (St, At).

If the output of the target net when inferring the action for state St is Vout, Vtarget consists

of the updated Q-value for action At, calculated using the reward the agent received in

the TD update rule. Formally

Vtarget[At] = Rt + G * max(TargetNet(St+1)) - Vout[At]

Where Rt is the reward, G is the discount factor, and max(TargetNet(St+1)) is the max

future Q-value obtained by running the next state through the target network. One can

easily see the similarities between the update rule of regular Q-learning and Deep

Q-learning. With Vtarget calculated, the pair (St, Vtarget) can be pushed into replay memory

and used for training. In Fig 4. the architecture of a Deep Q-learning agent is also

shown visually.

Training the Policy Network is just like training any other Neural Network. A loss

function is used to calculate the output error which is then propagated backward and

using an optimizer function in combination with the gradients calculated on the forward

pass by the auto-grad algorithm of PyTorch[21] the new weights and biases are updated

to reduce the output error. Of course, the auto-grad algorithm is turned off for inference

to reduce computational complexity. In further detail, the loss function used is Mean

Squared Error which simply calculates the average of the squared difference of each

element of Vtarget and Vout , the optimizer is RMSProp [22] which utilizes techniques such

as momentum to help escape local minima (in non-convex loss functions) and adjustable

learning rate to promote faster convergence. The architecture of the networks consists of

the input layer of size equal to the number of states, 3 hidden layers of size 1024 with

the ReLU[16] activation function and an output layer that outputs the Q-values for each
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possible action. The state metrics, the reward function, and the other common

parameters between the two algorithms not mentioned here stay the same.

(Section 4.6 Training the agents)

Training these algorithms is computationally expensive, especially for the Deep

Q-learning algorithm. Additionally the problem is by nature sequential prohibiting any

parallelization of the training process. An ε-greedy (epsilon-greedy) training algorithm

was used for the agents. The ε-greedy algorithm is used to determine how an agent will

act. Each time the agent is given a new state and tasked with choosing an action from a

list of possible actions, the ε-greedy algorithm determines whether that action will be an

exploration or an exploitation action based on a probability ε. Exploitation is defined as

picking the action with the largest q-value and has a probability of 1- ε while exploration

is defined as choosing a random action hence exploring the environment and has a

probability of ε. Considering the extreme cases, an agent with an epsilon of 0, so an

agent that never explores, will only choose the current best action, possibly getting stuck

at a local minimum. On the other hand, it is easy to see how an agent with an epsilon

value of 1 will fail to converge.

The agents are trained in an episodic manner. For every episode, the agent is called to

pack the same part of a workload. After the training is done, the agent’s performance is

evaluated on the next part of the workload which has not been used for training.

Figure 7: Overview of the architecture of a Deep q-learning agent.
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CHAPTER 5 Experimental Results

(Section 5.1 Simulator)

The scheduler is the core part of the model. It is the scheduler that is tasked with

packing the jobs, keeping track of machines (creating new machines, deleting empty

machines), and the busy time. The model was built using an object-oriented approach.

The machine, the scheduler, and the jobs are all modeled as classes.

The Job class contains information about the start time, end time, duration, demand,

and the timestamp of the job’s arrival and departure. The job class also includes many

properties that mainly manipulate the timestamps to extract information about the day

and time of arrival and completion.

The Machine class has a few main components, most notably a list of all active jobs in

the machine, a list of all active intervals, and the Interval Maker. The Machine has

information about its start time to keep track of its busy time. The most notable

methods of the Machine class are the update method and the add method. The update

method is called by the scheduler for all machines every time a new job arrives. The

update methods can be thought of intuitively as the way for the model to move forward

in time. It makes all the necessary checks and updates currently active jobs, adds new

ones along with their respective time intervals in the lists, and keeps track of whether

the machine is empty and should be shut down. The add method works using the

interval maker class.

The interval maker's sole purpose is the creation of intervals. When the scheduler

assigns a new job to a machine, the machine then proceeds to call the add methods of

interval maker. The add method first removes past intervals and then in one pass (O(n)

time complexity, where n is the number of active intervals) finds the suitable start point

and endpoint for the interval, creates the interval, and updates the requirements for all

intermediate intervals.

Finally, the scheduler class handles everything related to the packing of jobs and keeps

track of the state of the system. It keeps a list of all active machines and its methods are

the bin packing algorithms and the run methods which take a workload, part of a

workload, or single job and simulate it running on the cloud server.

(Section 5.2 Results)

To validate the performance of the agent, real-world datasets from [13], [14], and [15]

were used. The datasets consist of instances of jobs each with information about arrival

time, duration, and demand in CPU cores which are parsed, discarding any job that has

a demand larger than or equal to the max capacity of the VM’s. As a consequence, when

comparing the results of the same sets with different capacities, variations between the

same sets are expected. Furthermore, the data are split into D single-core jobs where D
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is the demand of the original job. The agents were trained for 3 different VM capacities:

8 cores, 16 cores, and 32 cores.

To compare the algorithms the normalised busy time is used. To normalise the busy

time, the workloads were packed using the First Fit algorithm as well as the TBC with

static threshold and TBC adjusted with Q-Learning and Deep Q-Learning + FF. For

each algorithm the percent difference over the First Fit algorithm was calculated and

the normalised busy time was calculated using the following formula

where PD is the percent busy time difference of the algorithm as𝑁𝑜𝑟𝑚𝐵𝑇 = 100 + 𝑃𝐷
compared to First Fit. The agents were trained on 5 thousand jobs and tested on the

next 5 thousand jobs for each workload. The agents both used a Gamma value of 0.8, an

epsilon of 0.05 (5% percent change to explore), and a learning rate of 0.01. The Deep

Q-Learning agents' replay memory has a capacity of 10.000 and is cleared upon filling

up.

Figure 8: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning adjusting

threshold as compared to First Fit for 17 workloads with VM core capacity 8. Lower percentage

means lower busy time and thus better performance.
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Figure 9: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning adjusting

threshold as compared to First Fit for 17 workloads with VM core capacity 16. Lower percentage

means lower busy time and thus better performance.

Figure 10: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning

adjusting threshold as compared to First Fit for 17 workloads with VM core capacity 32. Lower

percentage means lower busy time and thus better performance.
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Figure 11: Average percent difference in busy time as compared to First Fit for all the datasets

for 8, 16, and 32 cores capacity.

As shown in the above results the Deep Q-Learning agent managed to consistently

achieve a better performance than both the TBC algorithm with a static threshold and

the Q-Learning agent. Furthermore, when compared to First Fit, the Deep Q-Learning

managed to match the performance of First Fit in cases where First Fit seems to be the

optimal approach and outperform it when a more optimized packing was possible. In

such cases where the optimal strategy seems to be First Fit, the static threshold method

by nature will not be able to achieve better results. Focusing on the Q-Learning agent,

we can see that while on average it outperformed the static algorithm for capacities of

16, and 32 cores, it failed to match the performance of the First Fit algorithm in the

worst case, specifically sparse workloads. The main disadvantages of the Q-learning

algorithm and the reason for its poor performance as compared to the Deep Q-learning

algorithm is its lack of generalisation. The deep Q-learning algorithm uses a deep neural

network which is designed for generalisation, this in turn allows the Deep Q-learning

agent to make informed decisions on unseen states based on similar cases seen in the

training. On the other hand, the Q-learning algorithm when faced with an unexplored

state will choose a random action. This is especially obvious in the cases where First Fit

seems to be the optimal packing in which the generalised Deep Q-learning agent will

have no trouble selecting First Fit in an unseed case but the Q-learning will choose a

random action resulting in inferior performance.
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CHAPTER 6 Conclusion

In this work, two reinforcement learning based algorithms for the online interval

scheduling problem were proposed. These algorithms are based on the model free

Q-learning and Deep Q-learning reinforcement learning agents which excel in

maximising long-term reward tasks due to the temporal difference update rule. These

agents work in combination with the TBC algorithm which itself is a preprocessing step

to any traditional bin packing algorithm (in this problem First Fit was used). The goal of

the agent is to minimize the total busy time of the system when processing a workload

and thus the total power consumption. The agents were trained and evaluated using

real-world data and the Deep Q-Learning agent, due to its great generalisation

capabilities, outperformed both the First Algorithm and the TBC algorithm with a static

threshold. In the future, algorithms capable of predicting future workloads, similar to

work proposed in [13] but also in the form of an LSTM recurrent neural network [23],

can be implemented in order to provide the agent with extra information resulting in a

more optimized and faster adapting agent.
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