MTANEINIIXTHMIO

OEXXAANIAZ

EXOAH OETIKON ENIETHMON

TMHMA [TAHPODOPIKHE KAT THAENTKOINGQNION

Xyedraopog kot YAomoinon AlyopiOuwmv Teyvntg
Nonuoovwvng yia to Interval Scheduling Problem

["'edpyrog Aapoviomoviog

NTYXIAKH EPTAELA
YTEYEYMNOE

Mikoraos Topitag
Erivovpos Kabnyntig

Aapin 30 lovkiov £rog 2021

MTANEINIIXTHMIO

OEXXAANIAZ

EXOAH OETIKON ENETHMON

TMHMA TTAHPO®OPIKHE KAT THAENTKOINQNIOQN

Yyedaonog kot Yiomoinon AlyopiBumv Teyvntic
Nonuoovwvng via 1o Interval Scheduling Problem

['edpyrog Mapoviomoviog

NTY XIAKH EPTAXTA
YTIEY&EYNOE

Mikoiaog TOpitog
Emivowpog Kabnyntig

Aapia 30 lovkiov £rog 2021

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & TELECOMMUNICATIONS

Design and Implementation of Artificial

Intelligence Algorithm for the Online Interval
Scheduling Problem

(zeorgios Diamantopoulos

FINAL THESIS
ADVISOR

Mikolaos Tziritas
Assistant Professor

Lamia July 30 year 2021

«Me arouikn pou guBuvn kai yvwpilovrac i kupwaels (', mou mpoBAémovrar amé ¢
oiardéeis g map. 6 Tou dpBpou 22 tou N. 1599/1986, dnAwvw ori:

1. Aegv mapabétw kouudria BiBAiwv n dpbpwv N epyaciwv GAAwv autoAeéei xwpic va
Ta MEPIKALIW O EI0AYWYIKA KQl XWPIC va avagépw To ouyypapéa, Tn xpovoAoyia, n
oedida. H autoAeéei mapdBeon xwpic sioaywyikd@ xwpic avagopd ornv mnyn, €ivai
AoyokAomn. TMépav tng autoAeei mapabsong, AoyokAom Bswpeiral kai n mapdepaon
edagiwv amé épya GAAwv, ouuTTEPIAQUBAVOUEVWY KAl EPYWV CUUQOITHTWYV IOU, KABWS
Kal n mapdBean aroixeiwv mou dAAol cuvédeéav) emreepydobnkav, Xwpic avapopd
arnv mnyn. Avagépw TTavioTte e mANEPOTNTA TNV TNy KAGTw amo Tov mivaka 1 oxéSIo,
onTwg ara mapabéuara.

2. Aéxouar 611 n autoAeéel mapdBson xwpic eI0aywyikd, akoua Ki av ouvodeUeTal
arrdé avaeopd atnv mTnyn o€ KATmolo AAA0 onueio Tou Kelpévou N aTo TéEAoS Tou, Eivail
avriypa@n. H avagopd otnv mnyn oTo TEAOS TT.X. piag mapaypdeou N piag oeAidag, oev
OIKaloAoyei ouppagn edagiwv Epyou @AAou ouyypa@éa, E0Tw Kal TTAPAPPACLEVWY, Kal
mapouadiact) Toug wg OIKA UOU Epyaaia.

3. Aéxouar 611 umTdpxEl ETTIONS TTELIOPIOUOS OTO LEYEBOS Kal OTn OuxVvOTNTA TWV
TapabeudTwy moU UTTOpW va evidéw OTnV epyacdia pou eviog sioaywylikwy. KO
ueydAo mapdbeua (m.x. o€ mivaka 1 mAaiolo, KATT), mpPoUTTOBETEl EI0IKES PUBUITEIS, Kal
orav onuoacievstal TEOUTTOBETEl TNV AdEIa TOU ouyypa@éa 1 Tou ekdoTn. To idio kai ol
mivakes Kal Ta oxédia

4. Aéxopal OAEC TIC OUVETTEIEG O€ TTEQITITWON AOYOKAOTTNS 1 avTiyparig.

Huepounvia: 30/7/2021

O AnAwv.

A

(1) «Oroio¢ ev yvwaoer tou dnAwvel weudn yeyovora 1 apveital fj amokpUTTel 1a aAnBiva ue
Eyypaen utretbuvn 6nAwaon

Tou apbpou 8 map. 4 N. 1599/1986 miuwpeitai pe QUAGKION TOUAGYIOTOV TPIWV Unvwv. Edv o
UTTQiTIOq QUTWV TWV TTPA¢EWV

OKOTTEUE va TTPOCTTOPIOEl OTOV £QUTOV ToU 1) € dAAov Trepiouaiakd opeAog BAdmrovrag Tpitov n
okotTeUE va BAGwer GAAov, Tiuwpeital e kGOeipén uéxpr 10 eTwWv. »

ITEPIAHYH

To Online Interval Scheduling Problem &yt mpéceateg epapuoyég otov topéa tov cloud
computing ywo v Beltictonoinon tng avabeonc SlEPYACLOY GE EIKOVIKEG UNYOVES Yo
enekepyacio. Me tnv peyodldtepn KoTovalmon evépyelog vo yivetal yio tnv eneéepyacio 0edopuévaov
Ko TNV Woln, €vag mo BEATIOTOC TPOYPAUUOTIOUOC TOV SlEPYOCIOV UTOPEL Vo ELOTTOGEL TO busy
time Kol g GLVETELD TNV KATOVAA®GT gvEpYElg. 1o non-preemptive clairvoyant online
interval scheduling n avamapdotoon Tev diepyacidv yivetar pe £vo nuavorytod SaoTua TG
®OPag APIENG Kol ovaydPnong Kot EMTALOV TIG ATOITNOELG TNG dlepyaciog o€ Tupnves. Evag emmiéov
neplopiopds Tov online wpofAnuatog eival 1o 0Tt 6gv EYOVUE YVOGN Y10 TIG LEAAOVTIKES 0pi&elg
diepyacidv. Avti 1 dovietd Paciletar otov Threshold Based Categorisation (TBC) aiyopiBuo
0 omoiog dOVLALLEL WG Eval PriLa TpoemeEepyaaiag Yo TOLS TAPUSOGLOAKOVG AAYOPLOLOVG
npoypoppaticpod depyacsiwv. O TBC Bacileton o pa tyur katdeir T n omoia ypnoponoteitat yio
va kafapicel av 600 depyacieg ival apotPaio ATOKAEIOUEVEG KOl G GUVETELD OEV UTOPOHV VO
uovy oty idta. unyavy. Bacikd yio mv Kok anddoon tov adyopibuov givor 1 emioyn g tiung T.
TNa v enidvon awtod Tov TpoPAnuatog 2 TpdrTopeg evioyvuévng udbnong, o Q-Learning kot o
Deep Q-Learning, viomomnkav kot EKTOISEVTIKAY 68 TPAYUATIKG dedopéva dhote va pabovv va
eméyovv 10 BéAtioto T Baomn v mapehboviikég Kot ovapEVOUEVEG LEAMOVTIKEG OTTOTIGELS TOV
server. H am6docn TV Tpaktopmv PeTpOnKe o€ ded0UEVO TTOV OL TPAKTOPEG OV glyav ova det
KOLL TOL OTOTEAEGHLOTO EMPERUIDVOVY OTL 01 TPAKTOPEG OVIMG TPOGOPLOLOVTaAL OTIC dAPOPES

AMOLTAOELG Ko TETOYOVY KaAvTEPO amoteiéouata ond tov TBC pe otabepo T kon tov First Fit.

ABSTRACT
The Online Interval Scheduling Problem has recently been applied in the field of cloud

computing for optimising the packing of incoming tasks into virtual machines (VM) for
processing. With the largest part of the power consumption of data centers arising from
processing and cooling, a more optimal packing reduces the busy time of the system and
thus the total power consumption. Specifically in the non-preemptive clairvoyant online
interval scheduling problem, arriving jobs are represented by the semi-open interval of
their arrival and departure time and their processing requirements. An additional
constraint of the online problem is the restriction of knowledge for future job arrivals.
This work relies on the Threshold Based Categorisation (TBC) algorithm which works as
a preprocessing step to traditional bin packing algorithms. TBC relies on a threshold
value which is used to determine whether two tasks are mutually exclusive and thus can
not be packed in the same bin. Critical for the performance of this algorithm is the
selection of a fitting threshold value. To solve this problem two reinforcement learning
agents are proposed, specifically a Q-Learning and a Deep Q-Learning agent, which are
trained on real world data to learn to select optimal thresholds based on the server’s
past and expected load. The agent's performance is evaluated on previously unseen data
and the experimental results show that the agents learn to adjust to many different

workloads and outperform both the TBC with static threshold strategy and First Fit.

Table of Contents

ITEPIAHYH [
ABSTRACT Il
CHAPTER 1 INTRODUCTION 2
(SEcTION 1.1 ONLINE INTERVAL SCHEDULING) 2
(SECTION 1.2 THRESHOLD BASED CATEGORISATION) 2
(SECTION 1.3 PROPOSED ALGORITHM) 3
CHAPTER 2 RELATED WORK 4
CHAPTER 3 SysteEM MODEL 6
CHAPTER 4 AGENT ARCHITECTURE 7
(SECTION 4.1 Q-LEARNING) 8
(SUBSECTION 4.1.A INTRODUCTION TO Q-LEARNING) 8
(SUBSECTION 4.1.B TEMPORAL DIFFERENCES) 9
(SECTION 4.2 REWARD FUNCTION) 10
(SECTION 4.3 TD AND UNEXPLORED STATE ACTION PAIRS) 11
(SECTION 4.4 STATE DEFINITION) 11
(SECTION 4.5 DEEP Q-LEARNING) 15
(SUBSECTION 4.5.A INTRODUCTION TO DEEP Q-LEARNING) 15
(SUBSECTION 4.5.B TRAINING THE Q NETWORK) 16
(SECTION 4.6 TRAINING THE AGENTS) 17
CHAPTER 5 EXPERIMENTAL RESULTS 18
(SECTION 5.1 SIMULATOR) 18
(SEcTION 5.2 RESULTS) 18
CHAPTER 6 CONCLUSION 22
REFERENCES 23

CHAPTER 1 Introduction

(Section 1.1 Online interval scheduling)

The Interval Scheduling problem or Bin Packing problem is an optimization problem
regarding the packing of varying size items into a single or many bins with the goal of
packing as many items as possible into one bin or using the least number of bins to pack
all items. Depending on the formulation, this problem can be used for optimization in a
plethora of applications such as reducing thrashing when allocating memory to tasks in
an operating system [19] or for packing cargo in aircrafts[20]. The focus of this work is
on a specific formulation that applies to large cloud servers with the goal of minimizing
power consumption. This specific problem has recently attracted much attention from
the research community [1], [2], [3], creating an influx of new algorithms. Such
environments have massive computational capabilities which come coupled with equally
massive energy requirements. With the highest power consumption attributed to cooling
and processing [9],[10] improving the optimality of the algorithms used in such
environments is critical for reducing the need for both aforementioned factors. The
benefits of such a reduction are both environmental and monetary by simultaneously
reducing the carbon footprint and the cost of running a data center.

The specific formulation for the cloud server case is the following. Jobs are described by
a semi-open interval denoting the job's starting and departing time as well as the job’s
demand in CPU cores. Each job that arrives must be packed in a bin at its arrival time
(strict time) and remain there until it has finished processing without its execution
being paused (non-preemptive scheduling). The online version of this problem introduces
the constraint that there is no knowledge of future job arrivals and thus is closer to the
real-world problem in which we only become aware of the jobs when they arrive. The
goal of the algorithms solving this problem is to minimize the total busy time. The busy
time of a bin is simply the duration of its operation, from the initialization time until the
last job is processed. The total busy time of the system is the sum of the busy times of
every bin that was opened in order to process all the jobs.

(Section 1.2 Threshold Based Categorisation)

If we define local parallelism as the number of jobs that run in parallel in the same bin
it is easy to correlate higher local parallelism with reduced busy time. But that is not
always the case. In [8], the authors proved that packing jobs of similar size together, in
dense workloads, reduces busy time overall as demonstrated in figure 1 workload 2. To
exploit this, the authors proposed Threshold Based Categorisation (TBC), an algorithm
which works as a preprocessing step to any traditional bin-packing algorithm such as
First Fit [11]. The algorithm works using a parameter called the Threshold (T) which as
shown experimentally, outperforms the state-of-are algorithms, and improves over the
worst case of First Fit especially in dense workloads. This parameter T heavily

influences the algorithm’s performance, and choosing an optimal value largely depends
on the situation.

(Section 1.3 Proposed algorithm for dynamic threshold)

This work focuses on designing and implementing a machine learning based approach
for choosing an optimal T value. For this task, two different agents, a Q-learning [17],
[12] agent, and a Deep Q-learning [18] agent are employed to update the T values in
order to minizine the busy time. The agents can choose between the TBC algorithm with
any threshold (in the defined range) and the First Fit algorithm. Allowing the agent to
use First Fit when the arriving jobs are sparse, and TBC with an appropriate T on dense
workloads. Here sparse and dense are used as an example, in reality the decisions are
taken using a more complex set of metrics.

CHAPTER 2 Related Work

To my knowledge there is yet for work to appear in the literature in which the online or
the offline interval scheduling problem is tackled using machine learning techniques.
The current state of the art approaches for optimizing both the online and the offline
interval scheduling problem mostly rely on traditional algorithms and some heuristics
approaches all focused around improving the competitive ratio which is the ratio of the
online algorithms performance to the best case performance.

There are many works in the literature focusing on the offline version of the problem but
are omitted here since the approaches for solving the offline version of the problem are
significantly different that those for the online. In [4], the authors compute and compare
the competitive ratios for the traditional packing algorithms of First Fit, Best Fit and
Any Fit and also propose Hybrid First Fit which defines a variable beta and classifies

tasks with size larger that rlmas large and the rest as small with the goal of packing

large and small tasks separately. Finally they prove that the algorithm achieves a

5

. . 19 . .
competitive ratio of —-m + —— when m is not known and m + 5 when m is known,

where m is the ratio of the durations of the largest and smallest task.

In [5], the authors consider the same problem as this work, the Clairvoyant Online
Interval Scheduling problem. The authors improve the previous upper bound of

0(%) to 0(+/logm). The two algorithms proposed by the authors are the Hybrid

Algorithm and the Classify-Duration-First-Fit. The Hybrid Algorithm uses two types of
bins: general bins (GN) and classify by duration bins (CD). At any moment, based on the
load the algorithm can decide whether to pack the task in a GN or CD bin. Finally, the
Classify-Duration-First-Fit algorithm keeps groups of bins. Each group can only
accommodate tasks that belong in the same category. Each task is classified into a
category based on its duration

In [6], the authors consider the online flexible tasks scheduling problem which is similar
to the online interval scheduling problem with the main difference being that tasks are
described by their arrival time, starting time, and processing time allowing the
scheduler to pack the task anytime between its arrival and starting time. Of course this
allows for further optimization of the scheduling. The authors propose algorithms for
both the clairvoyant and non-clairvoyant case, Batch and Batch+ for the former and
Classify-By-Duration Btach+ (CDB+) and Profit for the latter. The Batch and Batch+
algorithms work iteratively and rely on starting the execution of as many tasks as
possible in parallel. In each iteration the task with the shortest deadline is marked with
a flag, and all tasks in that iteration begin processing at the same time as the flag task.
Batch+ arguments Batch by additionally starting the execution of tasks arriving during
the processing of the initially started jobs. CDB+ is used in the clairvoyant case where
task durations are known; the algorithm first, given a category size, creates bins and
each arriving task is put into a category based on its duration; finally every category is
packed separately using Batch+. The Profit algorithm is similar to Batch+ with the

4

main difference being that when the flag tasks start their execution the algorithm packs
the tasks that have arrived before the flag task (profitable tasks) with the arriving tasks
being packed in the same iteration. The process is repeated for the non-profitable tasks
of that iteration. Finally the competitive ratio of Batch+ and profit are computed at
m + 1,where m is the length of the taks with the maximum length, for the former and at

4 + 2+/2 for the latter.

In [7], the authors consider two versions of the online clairvoyant interval scheduling
problem, minimizing the busy time and maximizing the tasks packed while not
exceeding a predetermined busy time. The algorithm BucketFirstFit(A) is a general case
greedy algorithm. Each job is assigned to a category based on its duration on arrival
with each category being packed on a separate set of bins. The parameter ‘A’ denotes the
number of categories. Finally, the authors prove that for a=4 the competitive ratio of the
algorithm is 5logm where m is the length of the taks with the maximum length.

This work heavily relies on the TBC algorithm [8] .The TBC algorithm is designed to be
used in combination with traditional bin packing algorithms as a pre-processing step.
TBC’s main functionality is to only allow non-mutually exclusive tasks to be packed
together in the same bin. Two tasks with durations durl, dur2 are considered

non-mutually exclusive if their duration ratio is less than the mutual exclusivity
threshold (T).

max(durl, dur?)
min(durl, dur2)

< T eq.1

The above can be extended to apply to the bin case. Using the maximum duration
(max_dur) and the minimum duration (min_dur) in that bin, a task with duration (dur)
can be packed in that bin if it satisfies the above for both the largest and smallest task
in the bin.

qu(max_dur, dur) < T and mflx(mlin_dur, dur)
min(max_dur, dur) min(min_dur, dur)

< Teq.2

The satisfaction of the eq.2 guarantees that there is no other task in the bin for which
eq. 1 is not satisfied and thus the bin belongs to the non mutually exclusive set of bins
for the current task.

Using the above, for every task, we can compute a subset of bins that only contain
non-mutually exclusive tasks and thus are the most optimal candidates for the task to
be packed in. In the case where there is no bin satisfying the above equation, a new VM
is opened for the task to be packed in.

CHAPTER 3 System Model

Formally, the problem can be described by a set of jobs J = {J;, J ... J,} denoting the jobs
arriving at a large parallel system that need to be scheduled to a bin for processing. A

job J, is described by a semi-open interval I = [arival_time, departure_time) and its
processing requirements in CPU cores, denoted by R,. The processing requirements of
each job are known on arrival (clayvorant case of online interval scheduling). Finally, for
each job J, in the set of incoming jobs the job's duration D, can be calculated by
subtracting the job's arrival time from its departure time. The scheduler is responsible
for opening bins according to the packing algorithm to accommodate all jobs in J. Each
bin V,, can be described as a set of time intervals TI, = {TI,, TI, ... TI,}, and a capacity
C,, which denotes the number of CPU cores available to that bin. Each TI,, represents a
time interval in which the current CPU cores used in that bin stay the same. When a job
is packed into a bin, the intervals are updated in such a way to represent the new usage
of CPU cores caused by the job. As a constraint, interval’'s CPU cores usage must not
exceed the capacity C of the bins at any point in time. In the case where no bin can
accommodate a job, a new bin is opened. Finally, when a bin is done processing all of its
assigned jobs it is shut down by the scheduler.

The goal is to pack a workload J, such that to minimize the busy time of the system
which is the total time the system is under load. The busy time of a bin V,; can be
calculated by subtracting the closing time from the opening time. Formally, the total
busy time of the system BT, can be calculated using the following

total bins

BT = X BT,

sys i=1 i

Where BTy; is the total busy time of the i-th bin in the system.

CHAPTER 4 Agent Architecture

The TBC algorithm heavily relies on the threshold for optimizing lower bounds.
Although the use of a static threshold can yield better performance over traditional
algorithms in some cases, especially in the offline version of Interval Scheduling where
there is knowledge about the load and more sophisticated algorithms are possible, this
approach is not very effective. The alternative to using a static threshold is the use of an
algorithm that is tasked with dynamically adjusting the threshold.

workload 1 workload 2

CPU cores

s]| job 5 | time
workload 2
packed with First Fit | capacity 3

workload 1 bin 1

packed with First Fit | capacity 3
job3
bin 1 bin 2 job2 ‘
b 1

bin 2

fime Jobd

time
workload 1

packed with TBC+FF| capacity 3 workload 2

. packed with TBC+FF | capacity 3
bin 1 bin 3
bin 1

jon 4]

job 1 | job 4 job 5] - bl]

bin 2 bin 4 bin2

job 6]

tume

time

Figure 1: Packing of two simple workloads using the First Fit algorithm and the TBC algorithm
(assuming appropriate threshold to achieve illustrated packing). Workload 1 is sparse, thus First
Fit achieves optimal packing while Workload 2 is dense and TBC achieves optimal packing.

Figure 1 demonstrates the differences between First Fit and TBC. In workload 1, when
applying the TBC algorithm, jobs 1 and 4 are mutually exclusive with jobs 2 and 3 and
thus are packed in different bins; the same is also true for jobs 5 and 6. On the other
hand, First Fit packs these jobs together. Workload 1 also demonstrates why the TBC
algorithm is not suitable for sparse workloads since choosing to split a sparse workload
only increases the busy time without getting the benefits. On the other hand, workload 2
shows how the TBC algorithm can achieve better packing results in dense sets. By
summing the total busy times of bins 1 and 2 for both cases we can see that TBC’s total
busy time is the sum of duration of job1l and job3 while First Fit’s is the sum of duration
of job1l and job4. Because the duration of job4 is greater than that of job3, TBC result in
an inferior packing against First Fit.

Even in favorable workloads for the TBC algorithm an initial spike in busy time can be
observed. For example, in the workload 2 shown in figure 1 the busy time achieved by
TBC before job4 arrives is higher than that of First Fit, but that ‘sacrifice’ is rewarded
later when job4 arrives and binl still has available capacity for it. Therefore, in this
scenario TBC outperforms First Fit. Based on the aforementioned scenarios the goal is
to design reinforcement learning agents (see next subsections) that dynamically adjust
the threshold for packing jobs on different machines based on their durations.

(Section 4.1 Q-learning)

(subsection 4.1.a Introduction to Q-learning)

The first agent used to solve this problem is a Q-learning [17] agent which uses the
Temporal Differences [12] update rule. Q-learning is a model-free algorithm, which
means that there is no model of the environment. A typical model of an environment
consists of the Transition Probability Distribution (TPD) and a Reward Function. The
Transition Probability Distribution is a table containing all the probabilities for every
possible transition from each state and the reward function, in the model point of view,
is one in which all rewards of possible state action pairs are known. In such problems
the optimal solution can be found using Dynamic Programming or an approximation of
the optimal solution can be found with the use of heuristic algorithms. With the above
absent, model-free algorithms are implemented such as to learn the environment
through experience but with no guarantees for optimality.

Environment

New VM's state . .
Optimal action for batch

State

‘ VM’s - Scheduler > Agent
J .

Agent’s busy time A 1

Pack batch according to agent (

Reward scheduler’s busy time

Reward VM’s |j&——] e -
Scheduler

Pack batch Reward

\ using First Fit /

Data in

Figure 2: Overview of the algorithm. The agent acts on the environment by selecting an action
and gets rewarded according to the optimality of that action.

The environment (Fig. 2) is a model of the real-world problem used for the agent to
explore and gain experience on the problem. Each time the agent makes a decision it
directly affects the environment and based on the change this action caused, the agent

gets a reward. Specifically for this problem, the environment is a class that contains the
scheduler and other auxiliary metrics used to calculate the reward and provide the
agent with the next state.

Q-learning learns the environment through the maximization of the Q function. The Q
function is computed at each time step to calculate the expected reward of each action.
The environment in which the agent is placed provides the agent with the current state
S, and with the reward of the action taken in the previous time step A, (see fig 2). The
agent then, using the expected rewards of all possible actions calculated by the
Q-function, will choose the action A, which corresponds to the maximum future reward.

The Q-values are stored in an N; x N, x ... x N, x M matrix Q where N, is the range of
discrete values of the metric representing state 1 the state, N,is the range of discrete
values of the metric representing state 2 and so on, P is the number of different metrics
that are used to represent the state, and M is the number of all possible actions. Each
state can be represented as a P dimensional vector S with S, being the value of the
metric that represents state 1, S, being the value of the metric that represents state 2,
and so on. At each time step t, the agent first updates Q[(S; 1, A1) Q-value to be closer
to the R,; plus the expected future reward using the TD learning update which will be
explained in detail in the next subsection. Finally, before the training can begin the
Q-table must be initialized. There are many methods of initializing the Q-values such as
an optimistic initialization in which the Q-table is initialized with high Q-values thus
promoting exploration, using random values, or all 0’s or 1’s or any number heavily
depending on the reward function. For this problem, the initialization chosen was all 0’s
which will be discussed later in this chapter. Figure 3 illustrates the architecture of a
g-learning agent.

(subsection 4.1.b Temporal Differences)

The update of Q-values happens using Temporal Differences (TD) learning. In TD,
updates take place after every time step. This constant update can help the agent stay
up to date and adapt to new workloads. The TD update rule for Q-learning is the
following.
Qnew(St'At) - Qold(st'At) +LR* (Rt +G* max(quture(StH)) - Qold(st’ At))

Where LR is the learning rate, R is the reward and G is the discount factor. The learning
rate defines the impact the update will have on the old value. Choosing a balanced LR is
important since both a very large and a very small LR can prevent convergence. One
advantage of this update rule is its ability to maximize long-term rewards. This is
achieved by taking into account the max expected future reward. Consider the case of
chess. Generally, a move that allows the agent to capture the opponent's queen will have
a high reward. But in the edge case where capturing the opponent's queen allows a
checkmate for the opponent (losing the game for the agent), such a move should be

avoided. An agent which does not take into account expected future rewards would fail

9

to get good results in chess and generally in any problem which requires long-term
decision making. The TBC algorithm has a similar property, that is, choosing a lower T
value can temporarily increase the busy time over the First Fit algorithm since a new
bin will be opened to pack a mutually exclusive task that could have been packed in an
existing bin. An agent acting on current results will never choose to use the TBC
algorithm, since from its point of view it would never maximize the reward. Q-learning
with TD overcomes this hurdle by using the max future reward in the update rule and a
result reflecting future rewards on current actions.

If the above formula is studied carefully, one can deduce that for continuous serial
updates the discount factor G is raised to 2nd power for the second call, to the 3rd for
the third call, and so on. By lowering the value of G we effectively reduce how much the
agent will take into account future rewards. G is bounded in the range of [0,1].
Considering the extreme cases, a G value of 1 would make the agent try to maximize the
reward given after an infinite time or put differently, taking into account reward after
an infinite amount of time with the same weight as the current reward. The opposite is
true for a G value of 0 , which would make the agent completely disregard the future
and only maximize the current reward.

Optimal action A_,

Environment

\ / Agent \

SRS
't

New VM's state

Temporal
Differences

Pack batch according to
agent State

< Scheduler

update g-value Q(S.A)

Agent’s busy time
reward R,

Reward scheduler’s busy L
time s . N
= tima 1
Reward VM's Reward Scheduler [€— = PHITAT SCHORTOr 2.,
Pack batch = Q-table >
using First Fit
K Data in

Figure 3: Overview of the architecture of a q-learning agent.

(Section 4.2 Reward Function)

Choosing a reward function for this type of problem is a difficult task since the final goal
1s not known. In traditional problems such as chess, the reward function is simple, e.g.
+1 for winning, 0 for draw, and -1 for defeat. Considering this specific problem,
rewarding the agent using the optimal packing is impossible since the problem is
NP-Complete. Therefore, a different approach must be adopted to solve this problem.

The reward function that is chosen is based on the performance of the agent’s packing as
compared to the packing of the jobs by the First Fit algorithm. To calculate this value a
secondary scheduler is placed in the environment which packs the same jobs as the

10

agent in parallel. When a new batch arrives and the agent is ready to receive its reward
for the previous task, the total busy time achieved by the main scheduler and the
reward scheduler are measured and their difference is given as the reward. Formally, for
state S, in which a batch B, is packed, the reward R, is calculated using the following
formula

- B
t reward sch main sch

Using this formula, in case the agent outperforms the First First algorithm it is
rewarded with the positive busy time difference, in case the agent achieves the same
performance with the First Fit algorithm it is rewarded 0, and finally if the agent is
performing worse than the First Fit algorithm, the agent is rewarded with the negative
busy time difference. Such a reward function steers the agent towards the right
direction and does not limit its performance in any way since the better it performs the
higher the agent's reward.

(Section 4.3 TD and Unexplored State Action Pairs)

When using the TD rule, more specifically when calculating the max expected future
reward, an unexplored state can be chosen. Consider the simple case of a Q-learning
agent with two possible actions A1 and A2. When trying to calculate the max expected
reward of state S,;, max(Q(S,)) is calculated. If we assume that, Q(S,, Al) = -10 and
Q(S,, A2) = 0 the max expected future reward will be Q(S,, A2) which is correct if the
state Q(S,, A2) has been visited before and its Q-value represents reality. However, if we
consider the case where the state has not been visited and its true value is not yet
calculated, the risk of Q(S,, A2) < -10, for example, Q(S,, A2) = -100, is possible hence
causing Q(S,;, A,;) to diverge from its true value. To solve this problem a secondary
matrix Ve With the same dimensions as the Q-table is created. This matrix holds
information about whether a state has been visited. Then when choosing the max
expected future reward a conditional max function is used which returns the maximum
of only explored state-action pairs or O in the case where no future state is explored.

QneW(St,At) = Qold(St,At) + LR * (Rt + G * cond_max(Q
)

(A4 S, —@

t+17" " explored ™ t+1 old(St' At)

future

(Section 4.4 State definition)

The states are the agent’s inner representation of the environment and are the sole
information used by the agent to make decisions. Defining the states of the environment
is a critical part of the design to ensure convergence and therefore learning. When
choosing states the goal is to minimize dimensionality while maximizing useful
information about the environment. Dimensionality in this context refers to the

11

dimensions and the size of each dimension of the Q-table. The maximization of useful
information is a bit less strictly defined. In more simple problems the most useful and
complete metrics to describe the environment are straightforward, for example, a smart
thermostat trying to keep the temperature of a room at a constant temperature set by
the user would need information about the indoor temperature of the house and maybe
the outside temperature and the humidity. In more complex problems though, such
simple metrics alone will rarely suffice.

Before explaining the state's metrics in depth, some more information about the
structure of the data must be given. To model the progression of time in the agent, the
workload is split into batches each of duration H, where H is how often the agent will
update the threshold. Formally, a workload J split into batches can be denoted as the set
J = {B;, B, ... B,} where batch B; contains jobs that arrived in the first time window of
duration H, B, contains jobs that arrived in the second time window of duration H and
SO on.

To calculate the new state of the environment when the new batch B, arrives, the jobs of
the previously packed batch B, ;, and the first job of the new batch B, are used. The
decision is taken when the first job of the new batch has arrived. The derived state is
used to calculate the optimal action to pack B,. The first batch B,is packed using the
First Fit algorithm since no information about the state is available. One thing to clarify
here is that the packing strategy stays the same for the whole batch.

Sparsity is the ratio of the sum of the duration of the M, jobs in a batch B, divided by
the total busy time of the jobs when packed in a bin with infinite capacity with all empty
intervals (idle time) removed.

Mn
» durBi
Spar = ————
B BusyTlme(Bn)
m
by definition Y durB, =z BusyTime(B)
i=1
hence 0 < Spar_ <1
Bn

Sparsity was chosen because it heavily affects the packing strategy since sparse sets are
best packed using First Fist due to the fact that not enough jobs arrive close enough to
each other for TBC to achieve a more optimal packing. Furthermore, using the TBC
algorithm in sparse datasets can further increase the busy time as illustrated in figure
1.

One limitation of the Q-learning algorithm is that states can not be continuous due to
the nature of the Q-table. So every continuous variable must be converted into a discrete
one. In the case of sparsity, the continuous range of (0,1] is converted into 11 discrete
states from 0 to 10 with a step of 1 with the conversion happening by rounding down to
1 digit precision and multiplying by 10. Figure 4 shows the mean sparsity of batches for
every workload.

12

Average Batch Sparsity Train VS Test | VM capacity 8 Average Batch Sparsity Train VS Test | VM capacity 16

B Train @ Train W Train [Test
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
« . ® o NN q R R 1% e & N N e
-gG"U @Qif OQ@\ 0\‘)6 O«éﬂ ,\q‘b@ Q/Oé/ & vﬁy SN & @\G O'D\’b Q\?‘ q9\g {260 R O\\)fo %Q’P & ,(/Oé/ @;\V’,\y \NO oY Q"'\ Q&\\;a/ ')9\6 Oq\'” Q\i(j' ’19\0’
3 Y Je h 3 ; " P XL
K &S S NN NS K S F &V F oo & N N
¥ @ 9 Q7 2K N @ PR O ¥ 2 9 R & & S O
<~ \C\Q‘ o 9 éo > cf\v & & & R P > (,4@‘ ¢ & p,\k N RS

Average Batch Sparsity Train VS Test | VM capacity 32

W Train @ Test
0.8

0.6
0.4
0.2

0.0
& P . e o O & N N .
& LS T A F o

R° N » WGP NS
v ¥ 9 VoS NOF R K
& Q\,éz & & 5 0,%(2 E AR 3
«
é

o &
& T e
Figure 4: Mean sparsity of batches for all workloads for all VM capacities

The L2 norm of the duration distribution is a way of measuring the ‘uniformity’ of the
duration distribution of a batch. If the L2 norm is applied on a vector that represents a
distribution of a random variable X the result represents the ‘uniformity’ of the
distribution. Studying the extreme cases, assuming the vector V im = [0.33, 0.33, 0.33]
the scaled L2 norm of V., Will be almost 0, while the scaled L2 norm for V. =
[1,0,0] which is a one-hot vector will be 1.

To calculate the L2 norm first we must calculate the distribution of durations in the
batch. Initially, the upper and lower bounds of durations in the batch are calculated.
Using these bounds, M bins are calculated and the jobs are assigned to the bins whose
value is the closest to its duration. The vector of size M containing the sums of each bin
divided by the total number of jobs represents the distribution of durations. The
following formula is used to calculate the L2 norm

13

Mean L2norm of batches | VM capacity 8

0.8

0.6

0.4

0.2

,) o q, P , e o > NN e
& L E TS o g & F S L F ST ST
2 & & F ST P IS F &S S o N N
F LI P v & &P @ SRR O IR v & TR
& & ¢ T & & ¢ T

Where x is summing over the distribution vector for the current batch. This value is
initially bounded by [1/sqrt(M), 1]. To scale these results in the range of (0,1] the
following is used
L2*\M—1

M-1
This, in combination with sparsity, gives the agent a wider picture of the workload. This
again is a continuous variable in the range of (0,1] and converted into a discrete variable
using the same method as sparsity, by rounding down to 1 digit precision and
multiplying by 10. Figure 5 shows the mean L2 of batches for every workload.

sL2 =

Mean L2norm of batches | VM capacity 16
B Train [Test B Train [Test
0.8

0.6
0.4

0.2

Mean L2norm of batches | VM capacity 32

B Train [Test
0.8

0.6
0.4

0.2

¢ o o o NN us
& F 5 S @‘?’Q{@oé/ & v"y o5 S WY s & Q\fj- s
¥ & @ &V NN E R K S S
SN M NP 5 & o$« S & & /\,@ & F S
& & ¢ S

Figure 5: Mean L2 norm of batches for all workloads for all VM capacities.

The third state defining metric is active bins, which is simply the number of active bins
at the time of the arrival of the first job in B,. This variable is by its nature discrete,
only taking integer values and its range is from [0,10] with values more than 10 being
rounded down to 10.

The final metric used is overlap, which measures whether the previous batch B, ;
overlaps with the next batch B, calaculated using the latest departing job of batch B, ;
and the first job of B, . This metric is binary and hence discrete. Figure 6 shows the
mean overlap of batches for every workload.

14

Mean Overlap Train VS Test | VM capacity 8 Mean Overlap Train VS Test | VM capacity 16

B Train [Test B Train [Test
50 50
40 40
30 30
43 2
3 2 3 2
£ =
[(]
£ 10 £ 10
IS =
0 0
o N ;o " e o o v NN e :a o N ;& ") o O & NN e . a9
_g%cr S F | ,9‘2()' &5 OQ’Q/ &@csv:&)‘ . XY Q,'VQ\ Q\,\ &‘\'&)/ & 0,,,@ 2 &'\‘p&\o«) \Q@U & UQ’b Q\oe Uéz"’ & Q/Oé/ & Y;&'N \,\9 6{]9\ Q\,\ Q@e/ (LQ\W O'b\'bq&-\. ’19@
3 ; { ; S " Y X < Voo v > N £ N Y N .
FLF S S S O &g F PP ¥ S T L L & T DY @
P9 oI N S & F T S F 2 Oeo,g N S LT T

Mean Overlap Train VS Test | VM capacity 32

W Train @ Test
50

40
30

20

Time in hours

10

ot N SV Y & X P L D N K

& LT L T H N P S
F L F ST NG SIS
I 2P @ o P R S Y

Figure 6: Mean overlap of batches for all workloads for all VM capacities

(Section 4.5 Deep Q-Learning)

(subsection 4.5.a Introduction to deep Q-learning)

Deep Q-learning[18] is a method similar to Q-learning with the main difference being
the replacement of the Q-table with a Neural Network. Ignoring the training for now
and considering a trained agent this variation not only allows for continuous variables
to be used as state metrics but also for an agent able to generalize better and make more
accurate decisions for unseen data due to the strong generalization power of neural
networks. Of course, training such an agent requires higher computational capabilities
due to the complexity of the neural network and inference requires higher
computational power. But in cases where the use of continuous and/or a large number of
state metrics are required to describe the environment or in cases where exploring a
large number of states is not possible, the traditional Q-learning algorithm does not
work but the Deep Q-learning algorithm is a viable option. Additionally, for an
algorithm aimed at the cloud, an increase in the required computational power of this
scale is marginal.

15

(subsection 4.5.b Training the Q network)

Two Neural Networks take the place of the Q-table - the policy network and the target
network. The target network is used by the agent to infer actions by using the current
state as input and the policy network is trained on the data that the agent produces by
initially randomly choosing actions and receiving rewards. The target networks’ weights
are periodically updated to match the policy network; this approach of using two
networks is used since it provides a more stable training.

The input of these networks is an N-dimensional vector V,, where N is the number of
metrics describing the states and whose values are the state metrics for the current
state S,. The output of the network is the M-dimensional vector V,, where M is the
action space. With the V., calculated, the optimal action is A[largmax(V,,)] where A is
the action values vector.

To train the policy network, a replay memory technique is utilized. Initially, the
un-trained target network makes random decisions and is rewarded accordingly by the
environment. With the values state, action, next state, and reward, a training dataset
can be compiled. The training set consists of a state vector S, which is the input and a
vector V... of which is the target output of the network for the state action pair (S, A,).
If the output of the target net when inferring the action for state S, is Vi, Viarges cOnsists
of the updated Q-value for action A, calculated using the reward the agent received in
the TD update rule. Formally

Vtarget[At] = Rt + G * maX(TargetNet(SHl)) - Vout[At]

Where R, is the reward, G is the discount factor, and max(TargetNet(S,,;)) is the max
future Q-value obtained by running the next state through the target network. One can
easily see the similarities between the update rule of regular Q-learning and Deep
Q-learning. With V. calculated, the pair (S, V ..z can be pushed into replay memory
and used for training. In Fig 4. the architecture of a Deep Q-learning agent is also
shown visually.

Training the Policy Network is just like training any other Neural Network. A loss
function is used to calculate the output error which is then propagated backward and
using an optimizer function in combination with the gradients calculated on the forward
pass by the auto-grad algorithm of PyTorch[21] the new weights and biases are updated
to reduce the output error. Of course, the auto-grad algorithm is turned off for inference
to reduce computational complexity. In further detail, the loss function used is Mean
Squared Error which simply calculates the average of the squared difference of each
element of V.. and V,, , the optimizer is RMSProp [22] which utilizes techniques such
as momentum to help escape local minima (in non-convex loss functions) and adjustable
learning rate to promote faster convergence. The architecture of the networks consists of
the input layer of size equal to the number of states, 3 hidden layers of size 1024 with
the ReLU[16] activation function and an output layer that outputs the Q-values for each

16

possible action. The state metrics, the reward function, and the other common
parameters between the two algorithms not mentioned here stay the same.

(Section 4.6 Training the agents)

Training these algorithms is computationally expensive, especially for the Deep
Q-learning algorithm. Additionally the problem is by nature sequential prohibiting any
parallelization of the training process. An e-greedy (epsilon-greedy) training algorithm
was used for the agents. The e-greedy algorithm is used to determine how an agent will
act. Each time the agent is given a new state and tasked with choosing an action from a
list of possible actions, the e-greedy algorithm determines whether that action will be an
exploration or an exploitation action based on a probability €. Exploitation is defined as
picking the action with the largest gq-value and has a probability of 1- € while exploration
is defined as choosing a random action hence exploring the environment and has a
probability of . Considering the extreme cases, an agent with an epsilon of 0, so an
agent that never explores, will only choose the current best action, possibly getting stuck
at a local minimum. On the other hand, it is easy to see how an agent with an epsilon
value of 1 will fail to converge.

The agents are trained in an episodic manner. For every episode, the agent is called to
pack the same part of a workload. After the training is done, the agent’s performance is
evaluated on the next part of the workload which has not been used for training.

Optimal action AH

Environment
/ \ / A gent \
N) compute V__
New VM's state using S B, S, \:trtel‘l ™ sa.mpledef traming
S t
Replay Memory == Policy Net
Pack batch according to
. State
VM’s 2gen Scheduler pentodically update weights —
Agent’s busy time reward R,
Reward scheduler’s busy SH action A
time ————— Target Net
Reward VM’s Reward Scheduler /

Pack batch
vsing First Fit

Datain

Figure 7: Overview of the architecture of a Deep g-learning agent.

17

CHAPTER 5 Experimental Results

(Section 5.1 Simulator)

The scheduler is the core part of the model. It is the scheduler that is tasked with
packing the jobs, keeping track of machines (creating new machines, deleting empty
machines), and the busy time. The model was built using an object-oriented approach.
The machine, the scheduler, and the jobs are all modeled as classes.

The Job class contains information about the start time, end time, duration, demand,
and the timestamp of the job’s arrival and departure. The job class also includes many
properties that mainly manipulate the timestamps to extract information about the day
and time of arrival and completion.

The Machine class has a few main components, most notably a list of all active jobs in
the machine, a list of all active intervals, and the Interval Maker. The Machine has
information about its start time to keep track of its busy time. The most notable
methods of the Machine class are the update method and the add method. The update
method is called by the scheduler for all machines every time a new job arrives. The
update methods can be thought of intuitively as the way for the model to move forward
in time. It makes all the necessary checks and updates currently active jobs, adds new
ones along with their respective time intervals in the lists, and keeps track of whether
the machine is empty and should be shut down. The add method works using the
interval maker class.

The interval maker's sole purpose is the creation of intervals. When the scheduler
assigns a new job to a machine, the machine then proceeds to call the add methods of
interval maker. The add method first removes past intervals and then in one pass (O(n)
time complexity, where n is the number of active intervals) finds the suitable start point
and endpoint for the interval, creates the interval, and updates the requirements for all
intermediate intervals.

Finally, the scheduler class handles everything related to the packing of jobs and keeps
track of the state of the system. It keeps a list of all active machines and its methods are
the bin packing algorithms and the run methods which take a workload, part of a
workload, or single job and simulate it running on the cloud server.

(Section 5.2 Results)

To validate the performance of the agent, real-world datasets from [13], [14], and [15]

were used. The datasets consist of instances of jobs each with information about arrival
time, duration, and demand in CPU cores which are parsed, discarding any job that has
a demand larger than or equal to the max capacity of the VM’s. As a consequence, when
comparing the results of the same sets with different capacities, variations between the
same sets are expected. Furthermore, the data are split into D single-core jobs where D

18

is the demand of the original job. The agents were trained for 3 different VM capacities:
8 cores, 16 cores, and 32 cores.

To compare the algorithms the normalised busy time is used. To normalise the busy
time, the workloads were packed using the First Fit algorithm as well as the TBC with
static threshold and TBC adjusted with Q-Learning and Deep Q-Learning + FF. For
each algorithm the percent difference over the First Fit algorithm was calculated and
the normalised busy time was calculated using the following formula
NormBT = 100 + PD where PD is the percent busy time difference of the algorithm as
compared to First Fit. The agents were trained on 5 thousand jobs and tested on the
next 5 thousand jobs for each workload. The agents both used a Gamma value of 0.8, an
epsilon of 0.05 (5% percent change to explore), and a learning rate of 0.01. The Deep
Q-Learning agents' replay memory has a capacity of 10.000 and is cleared upon filling
up.

Percent busy time difference as compared to First Fit | VM capacity 8
B TBC with Static Threshold [l TBC adjusted by Q-Learning TBC adjusted by Deep Q-Learning

125
100
75
50

25

Figure 8: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning adjusting
threshold as compared to First Fit for 17 workloads with VM core capacity 8. Lower percentage
means lower busy time and thus better performance.

19

Percent busy time difference as compared to First Fit | VM capacity 16

B TBC with Static Threshold [l TBC adjusted by Q-Learning || TBC adjusted by Deep Q-Learning

125

100
75
50

25

Figure 9: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning adjusting
threshold as compared to First Fit for 17 workloads with VM core capacity 16. Lower percentage
means lower busy time and thus better performance.

Percent busy time difference as compared to First Fit | VM capacity 32

I TBC with Static Threshold [l TBC adjusted by Q-learning || TBC adjusted by Deep Q-learning

125

100
75
50

25

Figure 10: Performance of TBC with static threshold, Q-Learning and Deep Q-Learning
adjusting threshold as compared to First Fit for 17 workloads with VM core capacity 32. Lower
percentage means lower busy time and thus better performance.

20

Average percent busy time difference as compared to First Fit | VM capacity 16 i i i i i
Average percent busy time difference as compared to First Fit | VM capacity 8 ge p y P | pacity Average percent busy time difference as compared to First Fit | VM capacity 32

100

100
9730
%0
%
89.44
857
%0 0
))

W TBC with Static Threshold Ml TBC adjusted by Q-Learning 1 TBC adjusted by Deep Q-Learning Ml First Fit M TBC with Static Threshold Bl TEC adjusted by Q-Learning 1% TBC adjusted by Deep Q-Learning M First Fit B TBC with Static Threshold [TBC adjusted by Q-Learning 1 TBC adjusted by Deep Q-Learning M First Fit

100

9958

96.47

70

Figure 11: Average percent difference in busy time as compared to First Fit for all the datasets
for 8, 16, and 32 cores capacity.

As shown in the above results the Deep Q-Learning agent managed to consistently
achieve a better performance than both the TBC algorithm with a static threshold and
the Q-Learning agent. Furthermore, when compared to First Fit, the Deep Q-Learning
managed to match the performance of First Fit in cases where First Fit seems to be the
optimal approach and outperform it when a more optimized packing was possible. In
such cases where the optimal strategy seems to be First Fit, the static threshold method
by nature will not be able to achieve better results. Focusing on the Q-Learning agent,
we can see that while on average it outperformed the static algorithm for capacities of
16, and 32 cores, it failed to match the performance of the First Fit algorithm in the
worst case, specifically sparse workloads. The main disadvantages of the Q-learning
algorithm and the reason for its poor performance as compared to the Deep Q-learning
algorithm is its lack of generalisation. The deep Q-learning algorithm uses a deep neural
network which is designed for generalisation, this in turn allows the Deep Q-learning
agent to make informed decisions on unseen states based on similar cases seen in the
training. On the other hand, the Q-learning algorithm when faced with an unexplored
state will choose a random action. This is especially obvious in the cases where First Fit
seems to be the optimal packing in which the generalised Deep Q-learning agent will
have no trouble selecting First Fit in an unseed case but the Q-learning will choose a
random action resulting in inferior performance.

21

CHAPTER 6 Conclusion

In this work, two reinforcement learning based algorithms for the online interval
scheduling problem were proposed. These algorithms are based on the model free
Q-learning and Deep Q-learning reinforcement learning agents which excel in
maximising long-term reward tasks due to the temporal difference update rule. These
agents work in combination with the TBC algorithm which itself is a preprocessing step
to any traditional bin packing algorithm (in this problem First Fit was used). The goal of
the agent is to minimize the total busy time of the system when processing a workload
and thus the total power consumption. The agents were trained and evaluated using
real-world data and the Deep Q-Learning agent, due to its great generalisation
capabilities, outperformed both the First Algorithm and the TBC algorithm with a static
threshold. In the future, algorithms capable of predicting future workloads, similar to
work proposed in [13] but also in the form of an LSTM recurrent neural network [23],
can be implemented in order to provide the agent with extra information resulting in a
more optimized and faster adapting agent.

22

REFERENCES

[1] M. Flammini, G. Monaco, G. L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and
S. Zaks. Minimizing total busy time in parallel scheduling with application to optical
networks. Handbooks in operations research and management science,
411(40-42):3553-3562, 2010

[2] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks. Minimizing total
busy time in parallel scheduling with application to optical networks. Theoretical
Computer Science, 562:524-541, 2015

[3] W. Tian, Q. Xiong, and J. Cao. An online parallel scheduling method with application
to energy-efficiency in cloud computing. The Journal of Supercomputing, 66:1773-1790,
2013.

[4] Li Y, Tang X, Cai W. Dynamic bin packing for on-demand cloud resource allocation.
IEEE Transactions on Parallel and Distributed Systems. 2015 Jan 19;27(1):157-70.

[5] Ren R, Tang X. Online flexible job scheduling for minimum span. InProceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures 2017 Jul 24
(pp. 55-66).

[6] Azar Y, Vainstein D. Tight bounds for clairvoyant dynamic bin packing. ACM
Transactions on Parallel Computing (TOPC). 2019 Oct 15;6(3):1-21.

[7] Shalom M, Voloshin A, Wong PW, Yung FC, Zaks S. Online optimization of busy time
on parallel machines. Theoretical Computer Science. 2014 Dec 4;560:190-206.

[8] In private communication with Nikos Tziritas and Panos Oikonomou

[9] Wang D, Ren C, Govindan S, Sivasubramaniam A, Urgaonkar B, Kansal A, Vaid K.
ACE: abstracting, characterizing and exploiting peaks and valleys in datacenter power
consumption. ACM SIGMETRICS Performance Evaluation Review. 2013 Jun
17;41(1):333-4.

[10] M. Dayarathna, Y. Wen and R. Fan, "Data Center Energy Consumption Modeling: A
Survey," in IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732-794,
Firstquarter 2016, doi: 10.1109/COMST.2015.2481183.

[11] X. Tang, Y. Li, R. Ren, and W. Cai. On first fit bin packing for online cloud server
allocation. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 323-332, 2016

[12] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 2018.
[13] Yao Lu, John Panneerselvam, Lu Liu, Yan Wu, "RVLBPNN: A Workload
Forecasting Model for Smart Cloud Computing", Scientific Programming, vol. 2016,
Article ID 5635673, 9 pages, 2016.

[14] D. G. Feitelsoni, D. Tsafrir, and D. Krakov. Experience with using the parallel
workloads archive. Journal of Parallel and Distributed Computing, 74(10):2967— 2982,
2014

23

[15] D. Klusacek and V. Chlumsky. Evaluating the impact of soft walltimes on job
scheduling performance. Workshop on Job Scheduling Strategies for Parallel Processing,
Springer, pages 15-38, 2018.

[16] Li Y, Yuan Y. Convergence analysis of two-layer neural networks with relu
activation. arXiv preprint arXiv:1705.09886. 2017 May 28.

[17] Watkins, C.J.C.H., Dayan, P. Q-learning. Mach Learn 8, 279-292 (1992).

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., &
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[19] Reuben M. Reducing the Thrashing Effect Using Bin Packing. Bar Ilan University.
Department of Mathematics and Computer Science.; 2004Eliiyi U, ELIIYI DT.

[20] Applications of bin packing models through the supply chain. International Journal
of Business and Management Studies. 2009 Jan;1(1):11-9.

[21] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L. and Lerer, A., 2017. Automatic differentiation in pytorch.

[22] Kurbiel, T. and Khaleghian, S., 2017. Training of deep neural networks based on
distance measures using RMSProp. arXiv preprint arXiv:1708.01911.

[23] Gers, F.A., Eck, D. and Schmidhuber, J., 2002. Applying LSTM to time series

predictable through time-window approaches. In Neural Nets WIRN Vietri-01 (pp.
193-200). Springer, London.

24

