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ABSTRACT 
The evolution of phase fractions of intermetallic phases formed during solidification 

and homogenization of the Al-alloy 6060 observed computationally and 

experimentally. The aim of this project also, was the improvement of extrudability. 

After solidification, the as-cast billets contain several inhomogeneities, such as 

elemental and grain boundary segregation and formation of eutectic and intermetallic 

phases, which affect extrudability. So, homogenization process is required in order to 

increase the extrudability by the β-to-α AlFeSi transformation and elimination of the 

as-cast morphology. Additionally, the dissolution and re-precipitation of Mg2Si 

during homogenization cooling is one of the main strengthening factors of the alloy. 

The investigation includes simulations of solidification and cooling to room 

temperature, as well as homogenization heating, holding and cooling. The study also 

includes experimental observation of the as-cast and as-homogenized materials, via 

Optical Microscopy, SEM and EDX point analysis.  

The simulation model and metallographies of the as-cast material present very good 

agreement and show that after solidification, α-AlFeSi, β-AlFeSi, Mg2Si, π-phase and 

eutectic mixtures exist, which limit extrudability of the alloy. Also, elemental 

segregation near grain boundaries was identified.  

The homogenization was simulated using two models (for homogenization 

temperatures, 570
o
C and 580

o
C respectively) because a difference between model 

predictions and experiments was observed regarding the completion of the β-to-α 

AlFeSi transformation. The difference can be attributed to temperature variation of 

the provided measurements obtained by industry. The updated simulation model for 

homogenization holding temperature 580
o
C and experimental observations present 

very good agreement and show that the main phases after homogenization are Mg2Si 

and α-AlFeSi, which improve extrudability. Also, elimination of elemental 

segregation observed. At the end, the increase of heating rate leads to complete 

transformation β-to-α AlFeSi and spheroidization of particles and the total 

homogenization time should be reduced. 
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1. INTRODUCTION 
Aluminum extrusions are used in a variety of structural applications ranging from 

building and automotive to aerospace industries. The growing demand for weight-

optimized design in order to reduce energy consumption and air pollution is a 

challenge for the automotive industry. Car companies try to respond with the design 

of new concept cars that include a light-weight design meet the requirements of the 

public with growing awareness on fuel consumption. The usage of Aluminum and 

Aluminum alloys is a promising field of study, that companies are investing more and 

more in. Low-density Al-alloys, especially age-hardenable Al-Mg-Si (6xxx) alloys, 

are a preferred choice, because of their combination of high strength, formability, 

extreme durability, excellent corrosion resistance and density. 

6xxx Series alloys are heat-treatable, which means that they acquire their optimum 

mechanical properties through a process of thermal treatment. These are the Al-Mg-Si 

alloys (Mg and Si additions of around 1%) and are found widely throughout the 

welding fabrication, industry, used predominantly in the form of extrusions and 

incorporated in many structural components. The addition of magnesium and silicon 

to aluminum enables the formation of a magnesium-silicide intermetallic compound, 

which can contribute to precipitation strengthening through a solution heat treatment.  

As shown in the triangle of the relation between the treatment, the properties and the 

microstructure, as depicted in Figure 1, the mechanical properties of an alloy are 

influenced by the microstructure, which depends on the thermomechanical treatments 

that a material has undergone. Thus, in order to achieve specific mechanical 

properties, it is necessary to control microstructural evolution via processing. 

 
Figure 1: Triangle: Treatment-Microstructure-Properties. 

In Figure 2, a sketch of the different process steps is depicted. First of all, the alloying 

elements of the alloy are added during melt treatment. The main strengthening is 

result of addition of Mg and Si to the formation of the intermetallic phase, Mg2Si. 

Melt treatment is followed by casting. Casting is a technical process in which a 

molten metal acquires the desired shape (billet for rolling process or ingots for 

extrusion). The metal solidifies after the casting process. The microstructure of the 
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casting consists of three zones related to the size and morphology of the grains: chill, 

columnar and equiaxed zone.  

 
Figure 2: Sketch of the different process steps. 

The solidification of the cast results to modification of the composition from point to 

point, i.e. segregation. Micro-segregation is found in composition changes in the 

dendritic regions due to the rejection of the second component and is more important 

at the borders of the columnar zone. Microsegregation is a significant problem in 

castings, because it affects the mechanical properties, due to the heterogeneity in the 

distribution of the alloying elements in the grain scale. This problem is more 

important when thermal treatments follow the casting to strengthen the alloy. In 

particular, in the alloys 6xxx the grains’ inside lacks Mg, Si for the formation Mg2Si 

during the process of precipitation. Also, β-AlFeSi, an intermetallic compound of Fe 

is a sharp microstructure that can cause cracking ruptures during extrusion. So, it 

needs to be transformed to a more desirable compound to increase extrudability of the 

material. 

The next process is homogenization. During homogenization, the alloy is heated in 

order to uniformly dissolve the alloying elements in matrix. In this way the 

microstructure of Aluminum is transformed and especially alloying elements diffuse 

as intermetallics, formed near the grain boundaries during solidification and dissolve 

upon homogenization. Homogenization is followed by quenching, resulting in a 

supersaturated solid solution. 

The 6xxx Aluminum alloys can be extruded.  Prior to extrusion, the billet is preheated 

(450-500
o
C) in order to reduce yield strength, dissolve Mg2Si particles and permit 

extrusion to take place. Extrusion is a process used to create objects of fixed cross-

sectional profile. The microstructure of Aluminum extrusion influences mechanical 

properties of the alloy and its surface quality. Wherever it is observed more plastic 

deformation, recrystallization can take place. Non-recrystallized structure is preferred, 

because large crystallized grains reduce formability and enhance Precipitation Free 

Zones (PFZ) during aging. Extrusion is followed by quenching, to avoid precipitation 

and maintain a supersaturated solid solution. 

The final stage of heat treatments is aging. Aging is the process by which a uniform 

dispersion of precipitates is created from the supersaturated solid solution. Aging 
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determines final mechanical properties of the extruded profile. Based on all these 

treatments certain factors are controlled to obtain an alloy with a specific 

microstructure and the desired mechanical properties. Aging is a process that consists 

of many different steps-thermal cycles. The chain of treatments is solution annealing › 

quenching › storage › ageing (age hardening). Each step targets a different part of the 

age hardening mechanism that results to the final product. The general precipitation 

sequence in Al-Mg-Si alloys is: 

SSSS → atomic clusters → GP zones → β΄΄ → β΄, U1, U2, B΄ →β, Si 

Solution annealing targets the acquisition of the homogeneous solid state while after 

quenching, is expected the material to be into super saturate solid state (SSSS). 

During storage, the formation of atomic clusters and GP zones is expected, but 

storage temperature is crucial since very big clusters are unwanted. Age hardening is 

involved in the final three steps of the transformation and peak hardness achieved 

when transitioning from β΄΄to β΄phase. 

Homogenization is of the most important heat treatment applied in the production 

process of alloys 6xxx. Homogenization and the associated phase transformations 

have attracted increased attention due to the importance of the homogenization 

process in obtaining high extrudability and desirable properties in the extruded 

profiles. This project describes solidification and homogenization treatment and 

presents results from the simulation of the solidification and the homogenization of 

the Al-alloy 6060. Computational thermodynamic and kinetic modeling is used for the 

description of microstructural evolution during solidification and homogenization, 

aiming at the improvement of the final properties of 6060 Al-alloy. 

The solidification and the homogenization processes have been studied by several 

researchers. Specific topics of interest are the microsegregation, the dissolution of 

Mg2Si, the β-AlFeSi to α-AlFeSi transformation and the re-precipitation of Mg2Si 

during homogenization cooling. The most important literature data concerning 

experimental and modeling studies are presented below. 

Jim Hu et al studied the solidification of alloys with balanced and not balanced Mg 

and Si additions and with different alloying levels ranging from 6063 to 6082 and 

they researched the effects of growth rate, temperature gradient and composition on 

structure formation [1]. They observed that grain refinement is necessary to avoid 

columnar growth in alloys and that the transformations during cooling are important 

for the final structure and the materials properties. The microstructure evolution of the 

6063 alloy during homogenization has been studied for various thermal cycles [2]. 

Microstructural changes during homogenization have been discussed for a 6063 alloy 

in [3], including the β-AlFeSi to α-AlFeSi transformation. It appears that the 

precipitation of the metastable β΄-Mg2Si phase instead of the equilibrium β-Mg2Si 

phase enhances the extrudability of the material [4]. The modeling of 

microsegregation and homogenization holding and cooling of 6xxx Al alloys and the 

mapping of phase fractions of Mg2Si and β-AlFeSi versus alloy composition have 

been discussed in [5,6]. 
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1.1. Effects of Chemical Composition 
The main components of 6xxx alloys are silicon and magnesium, which allow age-

hardening by coherent or semi-coherent Mg-Si precipitates. Silicon (0.3-1.2 wt. %) is 

responsible for high fluidity, low density and has very low solubility in Aluminum. It 

precipitates as virtually pure Si which is hard and improves the corrosion resistance. 

Also, it is observed that the ultimate tensile strength of Aluminum alloys is increased 

and the density of the alloys is decreased when silicon content is increased [17].   

Magnesium (0.4-1.3 wt. %) increases the strength and hardness of the alloys, but in 

castings also decreases the ductility and impact resistance. The hardness and the 

tensile strength increase when magnesium content is increased. Furthermore, with 

increased amount of magnesium in the alloy, the average values of the Dendrite Arm 

Spacing and grain size reduced in cast condition [16].  

With the addition of Manganese (0-0.8 wt. %), the 6xxx series Aluminum alloys 

enhance the strength simultaneously with increased ductility and contributes to 

uniform deformation. In the 6xxx series Aluminum alloys, the Mn-dispersoids formed 

during the homogenizing heat treatment behave as dislocated blocking particles and 

inhibit recrystallization after extrusion [18]. 

Iron (0-0.8 wt. %) is a common impurity in Aluminum alloys which can cause 

adverse effects to ductility and castability, particularly in Al-Si based casting alloys. 

Iron also plays a significant role in Aluminum solidification due to its strong tendency 

to partition. While normally presents as an impurity in small amounts around 0.2 

wt%, iron tends to form intermetallic compounds with Aluminum and silicon, thereby 

affecting the solidification sequence and extrudability [19]. 

Chromium is added to Aluminum to control grain structure and for preventing grain 

growth in Al-Mg alloys and recrystallization in Al-Mg-Si alloys during heat 

treatment. Chromium also reduces stress corrosion susceptibility and improves 

toughness [20]. 

Zirconium is added to Aluminum to form a fine precipitate of intermetallic particles 

that inhibit crystallization [21].  

The increase of copper content in an alloy also boosts the precipitation hardening 

through the stabilization of hardening phases like Al5Cu2Mg8Si6 and Al2Cu. The 

increase of Si, Mg and Cu boosts the durability but reduces the extrudability [22]. 

1.2. Solidification 

The metal solidifies after the casting process. The microstructure of the casting 

consists of three zones related to the size and morphology of the grains: the chill zone, 

the columnar zone and the equiaxed zone, as shown in Figure 3. In the chill zone, the 

liquid after its introduction into the mold cools abruptly at the points where it comes 

in contact with the cold wall of the mold and many small grains are formed. If the 

input temperature of the liquid in the mold is low, the liquid can be below the liquidus 
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temperature, so that the small crystals of the chill zone grow and new crystals are 

formed. Thus, the casting will have an equiaxed structure. On the contrary, if the input 

temperature is over liquidus temperature, only the crystals of chill zone are formed 

and create derdrites. This creates columnar structure. 

 
Figure 3: a) Al ingot exhibiting columnar structure, b) Al-3Si ingot showing chill, 

columnar and central equiaxed structure. 

With the progress of solidification, the center of the cast is enriched with the second 

component causing constitutional supercooling. This situation leads to the nucleation 

of many new crystals, developed dendritic, but not directionally, thus giving the 

equiaxed zone. The formation of the equiaxed zone in the center of the cast is result of 

both the nucleation of new crystals and the multiplication of crystals. The 

solidification conditions affect the morphology of the dendritic structure and 

especially the Dendrite Arm Spacing, DAS. The lower the DAS is, the smaller the 

size of the grain is, which improves the mechanical properties. The microstructure 

described represents the as-cast morphology. This structure is modified by thermal 

treatments, which follow the casting. These treatments move the grain boundaries or 

activate various phase transformations to form the final microstructure.  

The solidification of the billet results to modification of the composition from point to 

point, i.e. segregation. There are two different types of segregation, macro-

segregation and microsegregation. The microsegregation is found in composition 

changes to the dendritic regions due to the rejection of the second component and is 

more important at the boundaries of the columnar zone. Microsegregation is a 

significant problem in castings, because it affects the mechanical properties, due to 

the heterogeneity in the distribution of the alloying elements in the grain scale. This 

problem is more important when thermal treatments follow the casting to strengthen 

the alloy. In the alloys Al-Mg-Si, the grains’ inside lacks Mg, Si for the formation 

Mg2Si during the process of precipitation. 

The as-cast billets contain several inhomogeneities, such as elemental segregation, 

grain boundary segregation and formation of low-melting eutectics as well as the 

formation of iron intermetallics. The presence of intermetallic phases which have 

sharp edges, can affect the extrudability of 6xxx Al alloys especially when located in 
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the grain boundary regions. For the reasons above homogenization treatment is 

required.  

1.3. Homogenization 

Homogenization is the first process that an Aluminum alloy undergoes before it gets 

its final qualities. During homogenization, the alloy is heated in order to uniformly 

dissolve the alloying elements in matrix. At start, the alloy is being heat treated to 

high temperature, mostly ranging from 560 to 600
o
C for a sufficient period of time, 

during which diffusion of alloying elements is activated from areas with high 

concentration to areas with low concentration. In this way the microstructure of 

Aluminum is transformed and especially, intermetallics diffuse from the grain 

boundaries in the inside into ultra-fine dispersion. This results in the elimination of 

the as-cast structure and the microsegregation, the spheroidization of intermetallic 

compounds and the transformation of β-to-α AlFeSi phase. At the same time, small 

particles of dispersoids precipitate in the center of the grain, consisting of α-Mn phase 

(Al15Si4M4) 

Key factors in homogenization process are: 

 Homogenization temperature: is related to diffusion rate of alloying elements. 

Solid solution becomes more homogeneous the higher the temperature is, because 

alloying elements that diffuse into it increase. 

 Homogenization time: in order to create a homogeneous solid solution it is 

important for homogenization time to be sufficient so that all alloying elements are 

completely diffused throughout the matrix. 

Homogenization after casting of Aluminum alloys is an important process step which: 

 Reduces microsegregation, leading to homogeneous properties across the 

secondary Dendrite Arm. 

 Dissolves the eutectic phases formed during casting which have low melting 

point and may melt during subsequent processing. 

 Helps in rounding of non-soluble phases to reduce stress concentrators, 

improving the fracture toughness and enhances surface finish. 

 Facilitates precipitation of dispersoids which are on grain boundaries 

inhibiting recrystallization during extrusion (for alloys containing Mn, Cr, Zn and Sc). 

Non-recrystallized structure is preferred.  Large crystallized grains reduce ductility 

and corrosion resistance and enhance enhance Precipitation Free Zones (PFZ) during 

aging. 

 Eliminates the sharp structure of β-AlFeSi by the phase transformation β-to-

αAlFeSi which results in a substantial increase in extrudability. 

 Is mainly used on as cast parts and during its course, two main phase 

transformations take place: 

i. The β-AlFeSi to α-AlFeSi transformation. 

ii. Dissolution and re-precipitation of Mg2Si. 
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Homogenization treatment for Aluminum alloys is aimed to modify the as-cast 

microstructure of the billet so that the extrudability is enhanced in terms extrusion 

pressure, extrusion speed, surface finish and mechanical properties of the final 

products. Homogenization treatment includes heating at a high temperature and a 

cooling step at some controlled rate. Extrudability is influenced by the amount of Mg, 

Si in solid solution and also from eutectic particles and Fe-bearing intermetallics, 

most important by β-AlFeSi. At first, the alloy is being heat treated to high 

temperature. Specific cycles vary, but actually for 6xxx alloys are performed 560-

590
o
C for 6-8 hours. According Mulazimoglou et al [7], the homogenization may be 

shortened by addition of elements such as Strontium (Sr) or Manganese (Mn), 

whereas for a fixed composition the temperature should increase. The addition of 

Strontium favors the formation of more desirable α-AlFeSi instead of platelike β-

AlFeSi. Sr influences the Mg2Si precipitation kinetics in 6xxx series Al alloys during 

solidification. Then the alloy part is cooled to room temperature. Cooling conditions 

determine the nature and amount of secondary phases precipitated, which influence 

parameters during thermal treatments that follow. These precipitates affect the age-

hardenability of the alloy reducing the much desired mechanical strength of the alloy.  

Specific topics of interest are the dissolution of Mg2Si, the β-AlFeSi to α-AlFeSi 

transformation and the re-precipitation of Mg2Si during homogenization cooling. 

Since Mg2Si or Si particles dissolve rather fast, it is the β-to-α transformation kinetics 

which determines the minimum homogenization time. 

1.3.1. The β-AlFeSi-to α AlFeSi transformation 

During solidification Fe segregates to cell or dendrite arm boundaries where it takes 

part in eutectic reactions. It forms intermetallic phases with Al, Si and sometimes Mn. 

The AlFeSi intermetallic compounds play an important role in the microstructure of 

Aluminum alloys; influence the materials’ properties during the following treatments 

and its surface quality.  

The first and most important transformation during homogenization is the β-AlFeSi to 

α-AlFeSi (β-Al9Fe2Si and α-Al8(FeMn)2Si respectively as the Τable 1 shows). The 

intermetallic compounds can form from the melt and from the supersaturated solid 

solution of the solidified Aluminum alloys. Fe has a very low solubility in the Al-

matrix; almost all Fe will bind the excess Si and the Al to form Fe-containing 

intermetallics. During solidification, these intermetallics formed at the edge of the 

dendrites by a eutectic reaction, which explains their plate shape. Most of these 

intermetallics are the β-AlFeSi and a small fraction of the phases are the α-AlFeSi. 

These intermetallics do not dissolve and remain as separate phase in the Al-matrix 

even after long homogenization times, but they can change in phase composition and 

morphology.  

Some authors comment on α-particles that nucleate at the beginning of the 

transformation on the boundary of β particles [8,9]. Birol et al [8] observed that the β 

particles are gradually replaced by uniform strings of cubic and hexagonal α-AlFeSi 
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particles. Sarafoglou et al [9] observed that β-particles break up into a necklace 

structure. They found that the individual particles in the intermediate homogenization 

state, exhibit partial transformation to the α-phase. The particles of the α-phase then 

coarsen and spheroidise at the expense of the remaining β-phase particles. The 

remaining α-particles coarsen when the homogenization process lasts longer than 

10hours.  

The β-AlFeSi, has a monoclinic structure and a plate-like morphology, which results 

in “pointy” and sharp microstructures that can cause cracking ruptures when extrusion 

is performed. On the contrary, α-AlFeSi has a cubic structure and a more rounded 

morphology, resembling a sphere. This morphology significantly reduces the cracking 

and produces an even surface, eliminating the defects of β-AlFeSi. The β-to-α AlFeSi 

phase transformation is claimed to increase extrudability [23]. Extrudability is defined 

by the maximum production speed for a given press capacity while still obtaining the 

desired mechanical properties, surface quality and geometric tolerances of the 

extrudate. The extrudability increases due to the β-to-α AlFeSi transformation and the 

parameter that quantifies the degree of β-to-α AlFeSi transformation is the ratio of the 

α-AlFeSi volume to the total volume of intermetallics. The increase of extrudability 

with the relative α fraction is caused by both improvement of the ductility and 

workability.  

Table 1: Characteristics of α- and β-AlFeSi intermetallics 

 

All processes during homogenization are achieved by the diffusion of alloying 

elements through the matrix. The homogenization of iron intermetallics, mainly 

referring to α-AlFeSi and β-AlFeSi, can be separated into three stages according to 

Sarafoglou et al [9]. The alloy investigated was Al-0.38Mg-0.4Si-0.2Fe-0.03Mn (wt. 

%). Three homogenization heat treatments consisting of holding 560
o
C for 2, 4, 6 

hours followed by air cooling, in order to study the morphological changes of the α-

AlFeSi phase after the complete transformation of β-to-α AlFeSi. 

During the first stage, 2 hours of homogenization heating, the β-particles first get 

reduced to a necklace structure and then begin to become rounder, so that the 
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transformation to α-AlFeSi can be assumed completed. This is known as “Chinese 

script”, is an as-cast morphology of mainly β-AlFeSi and it is eliminated during 

homogenization. Therefore, there are no β-AlFeSi particles after 2 hours. After the 

completion of the β-to-α AlFeSi, the intermetallic phase α-AlFeSi undergoes 

spheroidization. Firstly, the plate-like particles of α-AlFeSi exhibit a decrease in their 

width and then become more rounded at the edges [9].   

On the second stage, 4 hours of homogenization process, pinching can be observed, 

i.e. the particles separate into smaller pieces and the edges of the particles keep 

getting rounder. Reduction in surface energy drives the rounding of edges.  

On the final stage, 6 hours of homogenization process, the particles dissolve into 

small spheres and they line up and start to form necklace-like structures. This is 

caused by the reduction of the surface energy of the particles during the 

homogenization. The resulting α-particles are shorter, thicker and rod-like particles. 

The morphological changes of the α-AlFeSi described, include rounding of edges, 

pinching and spheroidization. The reduction of surface energy drives all the stages. 

Spherodization and in particular, necklace formation is a key process for increased 

extrudability. The morphological changes of the structure can be described by using 

certain sizes measurements such as feret and aspect ratio. These sizes get altered as 

the homogenization time goes by. Although they are a good representative of the 

structural transformations, they can only describe the change quantitatively [9]. 

The microstructural evolution of the 6060 Al-alloy during homogenization is depicted 

in Figure 4, the microstructural features of the as cast and as homogenized material 

are observed. More specifically in: (a) is depicted the as-cast microstructure, where it 

is observed Mg2Si and intermetallics α, β-AlFeSi, which are located at the grain 

boundaries, while β-AlFeSi phase forms the characteristic ‘Chinese-script’ 

morphology. The morphological evolution with homogenization time is indicated in 

Figure 4b for 4 hours and Figure 4c for 6 hours homogenization time. Connectivity 

between intermetallics is decreased with homogenization time. Only after 6 hours of 

homogenization is observed clear spheroidization of particles and necklace formation. 
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Figure 4: metallographic images of Alloy 6060: a) as-cast microstructure, 

homogenized at 560
o
C b) for 4 hours and c) for 6 hours. 

1.3.2. Dissolution and Re-precipitation of Mg2Si 

The second transformation during homogenization is the dissolution of Mg2Si from 

the grain boundaries during the heating, and its re-precipitation during cooling to an 

even distribution throughout the body of the alloy with a more homogeneous in-grain 

distribution. The dissolution of Mg2Si during homogenization is a fast process while 

the transformation of β-to-α-AlFeSi is a much slower process. In the as cast material, 

the particles of Mg2Si are large, hard and with sharp edges and concentrated at the 

boundary of the grains. Larger Mg2Si particles do not get dissolved. Instead, they 

coarse and grow in size, while the smaller ones are dissolved. The result is that while 

the total amount of particles depletes, their total surface area increases. This is called 

the Ostwald ripening effect or second phase coarsening. Through the first 2hours of 

homogenization, the smaller Mg2Si precipitates are dissolved in the matrix. Mg2Si 

precipitates during homogenization cooling, as the temperature drops below the 

solvus of Mg2Si and coarsening of Mg2Si grains begins.  

Cooling after homogenization and its rate determines the precipitation behavior of 

Mg2Si and thus influences extrusion performance of the billet and the final 

mechanical properties. During the homogenization cooling, the Mg2Si phase re-

precipitates and forms a new dispersion. The Particle Size Distribution (PSD) of this 

dispersion is an important parameter influencing extrudability. An increase is 

observed in both amount and size of Mg2Si particles with a decreasing cooling rate. 

The hardness at room temperature and the flow stress at preheating temperature 

(450
o
C) and extrusion temperature (500-550

o
C) decrease with a slower cooling 

rate[24,26].  

Large amounts of coarse β-Mg2Si particles precipitate during a slow homogenization 

cooling rate. During extrusion, the undissolved β-Mg2Si particles lead to incipient 

melting and surface defects. On the other hand, a fast cooled billet with fully 

solutionized Mg and Si is not desired, because it would lead to a rise in flow stress 

during extrusion, making the billet difficult to extrude. The microstructure desired is 

that the Mg2Si particles mostly remain undissolved after preheating but become easily 

dissolved upon deformation. Therefore, it should be controlled the cooling rate during 
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homogenization. The precipitation of metastable β’-Mg2Si phase instead of the 

equilibrium β-Mg2Si phase, which is a result from some intermediate cooling rate, 

enhances the extrudability of the material. With step cooling at temperatures between 

250-300
o
C and with a cooling ratio between 100/200

o
C/h, the Mg2Si precipitates with 

the form of metastable β’-Mg2Si, a fine precipitate with a small particle size [25].  

To conclude with, homogenization is being done in order to increase the extrudability 

and strength of the alloy by the elimination of the as-cast morphology. While the β-

AlFeSi to α-AlFeSi transformation plays a critical role to increasing extrudability, the 

dissolution and re-precipitation of Mg2Si is one of the main strengthening factors of 

the alloy. The elimination of sharp and crack inducing β-AlFeSi particles in 

conjunction with the coarsening of Mg2Si particles throughout the material body, 

results to a more extrudable and strong material. Those qualities are essential for a 

safe and successful application. 

2. METHODOLOGY 
Controlling the homogenization process is important in obtaining high extrudability 

and desirable properties in 6xxx Aluminum alloys. Computational thermodynamic 

and kinetic modeling is used for the description of microstructural evolution during 

solidification and homogenization, aiming at the improvement of the final properties 

of 6xxx Al-alloys. More specifically, the CALPHAD approach as implemented in the 

Thermo-Calc software was used to model thermodynamics and kinetics in multi-

phase, multi-component systems[10,11,12]. Modeling of solidification and 

homogenization was performed on the 6060 Al-alloy with chemical composition 

given in the Table 2.  

 Table 2: Chemical Composition of 6060(%wt) 

    Mg      Si      Mn       Fe       Cu       Zn      Cr       Al 

    0.38     0.5    0.019     0.23    0.021     0.061    0.005 balanced 

The present work deals with the modeling of solidification and cooling to room 

temperature, as well as the homogenization heating, holding and cooling. The 

processes investigated, the relevant phenomena and the models employed for the 

simulation are shown in Table 3. Segregation of elements and phases was treated with 

Scheil-Gulliver solidification model[13]. The dissolution of Mg2Si and the 

transformation of β-AlFeSi to α-AlFeSi were treated with DICTRA based on multi-

component diffusion in dispersed-phase systems[10,14]. All these modeling 

approaches are described in the next sections. 
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Table 3: Models used in the present work 

Process Phenomena Modeled Relevant Models 
Solidification Microsegregation of elements and 

phases 

Nucleation and growth of intermetallics 

 

Scheil-Gulliver 

Solidification Model 

Homogenization 

(holding) 

 

Transformation of β-to-α AlFeSi 

Dissolution of Mg2Si 

Multi-component diffusion 

with 

dispersed phases in an Al-

matrix, 

in DICTRA 

2.1. Thermodynamic Equilibrium Model 

First of all, thermodynamic calculations were performed to determine phase stability 

in the system for the given chemical composition. Equilibrium calculations were 

treated using the Thermo-Calc software with the TCAL7 Al-alloy database. 

Thermodynamic calculations were performed on the provided chemical composition, 

to compute isopleth sections of the phase diagram, with respect to Si, Mg, Fe and Mn. 

Additionally, equilibrium calculations were performed to study the evolution of phase 

fractions with respect to temperature, at thermodynamic equilibrium, as well as to 

identify the liquidus and solidus temperatures, regarding solidification and solvus 

temperature of the intermetallic compounds in the system. The phases considered 

during the equilibrium calculations were: 

  Liquid 

  FCC_A1 

  Al13Fe4 

  Al8Fe2Si 

  Al9Fe2Si2 

  Al18Fe2Mg7Si10 

  Mg2Si_C1 

  Al15Si2M4 

  Al15Mn3Si2 

  Q_AlCuMgSi 

  Diamond_A4 

 

The FCC_A1 determines the α-(Al) Aluminum matrix phase. The Al8Fe2Si and 

Al9Fe2Si2 phases are the Fe-bearing intermetallic phases. Especially, the Al8Fe2Si is 

known as α-AlFeSi and the Al9Fe2Si2 is knows as β-AlFeSi. They are formed by 

eutectic reactions between Fe, Al, Si and sometimes Mn. The Al13Fe4 is an iron 

aluminide phase and it is known as Al3Fe. The Al18Fe2Mg7Si10 is a quaternary 

stoichiometric intermetallic phase, known as π-, h- or φ- phase. The Al15Si2M4 is an 

intermetallic phase originating from the Al-Mn-Si ternary system and commonly 

found in the form of cubic precipitates. The Al15Si2M4 is also referred to as τ9. 

Al15Mn3Si2 or α-Mn is rich in Fe and/or Mn, depending on the nominal alloy 

composition. The Q_AlCuMgSi is a quaternary Al-Cu-Mg-Si phase and it is known 
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as the Q-phase (not to be confused with the Fe containing q- or π phase) or 

Al5Cu2Mg8Si6 and commonly acts as a strengthening precipitate in Cu and Mg 

containing Aluminum alloys. The Diamond structure is pure Si. Some phases might 

not be observed in practice, even though they are stable, due to kinetic constraints. 

Especially, the formation of Al13Fe4 is hindered and substituted primarily by α-AlFeSi 

when Aluminum-Titanium Boride (AlTi5B) inoculation particles are used during 

casting. 

2.2. Solidification Model 

Solidification was treated by the Scheil-Gulliver model using the Thermo-Calc 

software with the TCAL7 Al-alloy database[13]. The Scheil-Gulliver model was used 

because of its accuracy for rapid solidification processes with minimal computational 

complexity. The model allows for the study of non-equilibrium solidification 

phenomena, including the development of elemental segregation at the level of the 

primary and secondary dendritic arms, the formation of non-equilibrium intermetallic 

phases and eutectic mixtures. 

 The following assumptions are made for the Scheil-Gulliver solidification simulation 

in Thermo-Calc: 

  Diffusion in the liquid phase is assumed to be infinitely fast. 

  Diffusion in the solid phases is slow enough to be ignored and as a result 

diffusion is assumed to be zero and what solidifies does not diffuse further. 

  The liquid/solid interface is under thermodynamic equilibrium. Thus, the 

model better describes solidification under rapid cooling rates where diffusion in the 

solid can be neglected. 

These assumptions are acceptable since the local solidification times encountered in 

industrial direct chill casting are short and the diffusion coefficient of the alloying 

elements in the liquid phase are significantly larger than those in the solid phase. 

In the Scheil-Gulliver simulation the temperature is decreased step-by-step. When the 

temperature drops below the liquidus temperature the equilibrium amount and 

composition of solid and liquid phase is calculated. The solid phase is removed from 

the system and the amount and composition of the liquid phase is used for the next 

calculation step at a lower temperature. This procedure is repeated until the last liquid 

disappears. The outputs of Scheil-Gulliver calculations are the profiles of the 

intermetallic phases (wt. %) formed during solidification as well as the profiles of 

alloying elements in the FCC Al-matrix phase. These results represent the as-cast 

microstructure and were used as initial conditions for the homogenization simulations. 

Microsegregation in Aluminum alloys is a result of the low solubility of the alloying 

elements in the solid in relation with the liquid, which leads to the formation of 

secondary phases in the as-cast microstructure. The size and morphology of these 

phases depends on the chemical composition, the Dendrite Arm Spacing (DAS), the 

grain size and the local solidification time.  
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Assuming the diffusion is close to zero in the solid state during solidification, the 

composition profile of the alloying elements can be described with the Scheil 

equation:  

              
    

where Co, the alloy nominal composition, K the partition coefficient and Cs the 

element composition when the solid weight fraction is fs. 

The phases considered during the Scheil-Gulliver calculations were less than the 

equilibrium phases in order to reduce computational complexity and these phases 

were: 

  Liquid 

  FCC_A1 

  Al8Fe2Si 

  Al9Fe2Si2 

  Al18Fe2Mg7Si10 

  Mg2Si_C1 

  Diamond_A4 

2.3. Homogenization Model 

The homogenization heat treatment can be simulated as a diffusion-precipitation 

process. The phenomena that take place during homogenization are the removal of 

segregation, the phase dissolution and the precipitation inside the grains. The 

homogenization problem is separated computationally to the solidification cooling, 

homogenization heating, isothermal holding and homogenization cooling. During 

solidification cooling the intermetallics precipitate and then in homogenization 

heating they are dissolved. During isothermal holding it is observed the β-to-α AlFeSi 

transformation and during homogenization cooling Mg2Si re-precipitates in small 

particle size. First of all, the simulation of the dissolution of Mg2Si during 

homogenization and its re-precipitation during cooling was performed, though results 

might need to be reevaluated in a future study, using a Kampmann-Wagner (KWN) 

model to better describe the kinetics of nucleation, growth and dissolution of fine 

particles upon cooling [15]. Also, the simulation of the β-AlFeSi to α-AlFeSi was 

performed in DICTRA.  

The required data for the homogenization simulation are: 

  Initial concentration profiles of the alloying elements 

  Secondary phase volume fractions  

  Thermal cycle of homogenization 

  A geometric model where the diffusion equations will be solved. 

To study the evolution of the microstructure during homogenization treatment, multi-

component, multi-phase diffusion simulations were performed in a system with 

dispersed phases in an FCC Al-matrix, using DICTRA module in Thermo-Calc with 
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the MOBAL5 Al-alloy database. A one-dimensional single cell planar geometry was 

employed in DICTRA, and the cell is selected to be 50μm, as shown in Figure 6. This 

cell is a result of the microstructure, where the grain size was measured about 100μm, 

as shown in Figure 5. The grain diameter is 100μm, remaining constant after the 

homogenization treatment. Due to symmetry, only half of the grain was simulated, 

from the boundary to the center of the grain. Thus, diffusion was solved in a 50μm 

diffusion cell with an FCC Al-matrix structure, while the secondary phases are 

considered as dispersed phases in the matrix. The elements used for the 

homogenization simulations in DICTRA were, Al, Mg, Si, Fe and Mn, the weight 

percent of which were reported in Table 2 and the phases considered were: 

  FCC_A1 

  Al8Fe2Si 

  Al9Fe2Si2 

  Al18Fe2Mg7Si10 

  Mg2Si_C1 

  Diamond_A4 

 
Figure 5: Microstructure as-cast of 6060 Aluminum alloy. 

The dissolution of Mg2Si and the transformation of β-AlFeSi to α-AlFeSi during 

homogenization are treated with multi-component, multi-phase diffusion simulations 

in dispersed-phase systems. Diffusion is assumed to take place only in the matrix 

phase and according to the dispersed model in DICTRA. The Dispersed Phase Model 

in DICTRA treats problem involving diffusion through microstructures containing 

dispersed precipitates or secondary phases. The dispersed phases are considered as 

“non-diffusion phases” and they act as point sinks or sources of solute atoms (alloying 

elements). The matrix diffusion controls the overall kinetics, because the growth and 

dissolution rates of dispersed phases are very high compared with the rates in the 

matrix. This assumption is tolerable for the high homogenization temperatures, since 

the growth-dissolution rates are very high and the particles reach the equilibrium state 

very fast. 
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Figure 6: Diffusion Cell for homogenization simulation. 

The volume fraction of the phases and the segregation profiles of the elements in the 

phases (wt. %) obtained by the Scheil-Gulliver model, were used as input for the 

kinetic calculations in DICTRA. The Scheil-Gulliver segregation profiles represent 

the as-cast microstructure. To the end, the fraction solid fs, derived from Scheil was 

converted to a distance axis via the relation: 

                          (1) 

where L is the length of the diffusion cell, 50μm. The initial phase fraction of the 

intermetallic phases, required for the diffusion simulations, was obtained by 

differentiating the phase profiles obtained by Scheil-Gulliver simulations with respect 

to the diffusion distance. Thus the diffusion problem was solved in one dimension. 

The phase transformations that were treated in the diffusion cell are the Mg2Si, the π-

phase (Al18Fe2Mg7Si10) and pure Si (Diamond) dissolution as well as the β-to-α 

AlFeSi transformation. Both are diffusional transformations and their rate is 

controlled by the diffusion of alloying elements. Grain boundary diffusion was not 

considered, as during homogenization process, diffusion takes place from the 

boundaries, where is the end of the solidification, to the grain interiors in order to 

eliminate the microsegregation gradients. The volume fraction of dispersed phases is 

calculated from the local composition in each node, assuming local equilibrium. The 

growth or dissolution of phases leads to adjustments in the concentration profiles of 

the elements to be used in the next time-step of the calculation. Thus, in each step 

change the volume fraction of phases and the local composition profiles through the 

matrix diffusion. The solution of the diffusion equation is performed under the 

following boundary and initial conditions. Considering a closed system, the boundary 

conditions are: 

                                 (2) 

where Ji are the elemental fluxes with i=Mn, Mg, Si, Fe. In terms of concentration 

gradients, the above equation becomes: 

   

  
                     (3) 
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The initial conditions for the diffusion problem are the result of the Scheil-Gulliver 

calculations, converted over the diffusion distance using equation (1), for t=0 and can 

be expressed as follows for the elements: 

          
                            (4) 

while for the phases: 

        
   

 

   
  

 

 
             

        
 

 
   (5) 

where k= Mg2Si, α-AlFeSi, β-AlFeSi, Si (Diamond), π-phase and ci
s
(x) and fk

s
(x) are 

the composition profiles and phase fractions, resulting from the Scheil-Gulliver 

simulation.  

In DICTRA, the diffusivities are products of mobilities and corresponding 

thermodynamic factors. The mobility paremeter, Mi for an element in a given phase is 

described by a frequency factor Mi
0
 and activation energy ΔGi

*
, which are related by 

the following equation: 

   
  

 

  
     

   
 

  
                    (6) 

where R is the gas constant and T is the absolute temperature. Both Mi
0
 and ΔGi

*
 are 

composition dependent. 

The thermal cycle is an operational parameter for the homogenization simulation. To 

calculate the evolution of the temperature during solidification cooling, a one-

dimensional radial heat transfer simulation was employed. Temperature 

measurements were not available for this stage and heat transfer simulations were 

used to approximate it. The calculated cooling curve was then used in the diffusion 

simulations to calculate the evolution of the microstructure during solidification. An 

explicit finite difference scheme was applied in a MATLAB script to solve the heat 

equations in a cylindrical geometry, because the billets are cylindrical and 

temperature and composition depend on thermophysical properties. The 

thermophysical properties are composition and temperature dependent. Thermo-Calc 

was used to calculate the thermophysical properties as a function of composition and 

temperature, during the numerical integration of the heat transfer equation. 

 

 

 

  
     

  

  
      

  

  
 

Where, ρ represents the density       , cp the heat capacity (   ) and k the thermal 

conductivity        and they depend from temperature. The boundary conditions 

for this problem are: 

         
  

  
                        

where q represents the heat flux (    ). 
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r R T 2 oC (because the surface is in contact with water) 

The numerical solution of the radial heat transfer problem allows the determination of 

the temperature history as a function of the billet radius. In order to perform 

calculations of the microstructural evolution during solidification cooling in DICTRA, 

a reference temperature history at 2/3 of the outer billet radius was used. An analytical 

equation was fitted to the numerical data in order to provide the appropriate DICTRA 

input as follows:   

                      
o
C 

where α=757.8
o
C, b=0.05107s

-1
 and c=25.17

o
C. 

Results regarding the temperature profile as a function of the billet radius at different 

times, as well as the temperature history at selected radii, are presented in Figures 7a 

and b. 

 
                                a)                                                                     b) 

Figure 7: Temperature field upon solidification cooling, according to heat transfer 

simulations, a) Temperature profiles as a function of radius at different times and b) 

the temperature variation with time at selected radii. 

For the homogenization heating and holding, the temperature measurements were 

provided by the industry and fitted to the problem resulting:  

                     
o
C 

Where α is the homogenization holding temperature, i.e. the maximum temperature 

observed during homogenization process, equal to 570
o
C, b=2.1161*10

-4
s

-1
 and 

c=1.748399 (dimensionless). 

The transfer problem results in the evolution of the temperature field along the billet, 

providing input for DICTRA. 

Concluding, the profiles of alloying elements and the volume fractions of the 

intermetallic phases, provided by the Scheil-Gulliver Solidification Model, and the 

thermal cycle are used as inputs for the simulation of the homogenization process to 

the diffusion cell described above. To study the evolution of the microstructure during 
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homogenization treatment, multi-component, multi-phase diffusion simulations were 

performed in a system with dispersed phases in an FCC Al-matrix. 

It should be emphasized that although, the methodology described has been used 

successfully in the past by Sarafoglou et al [6,9] to model and optimize the heat 

treatment process of Al-alloys, experimental calibration and validation is required. 

Characterization of the phases present after solidification and homogenization is 

required to provide feedback for the model development.  

3. RESULTS 

3.1. Thermodynamics 

Thermodynamic calculations were performed on the provided chemical composition 

(as shown in Table 2) in order to determine phase stability. The volume fraction of 

phases present at thermodynamic equilibrium was calculated as a function of 

temperature, considering all stable phases involved in the alloying system, as shown 

in Figure 8. In high temperatures, the material is liquid. As the temperature decreases, 

equilibrium solidification starts at the liquidus temperature, Tliquidus=654.5
o
C with the 

precipitation of the Aluminum FCC matrix, from the liquid. Subsequent cooling 

results in the precipitation of Al13Fe4 phase (known as Al3Fe) in T =633.6
o
C, from the 

liquid, as solidification progresses. The Al13Fe4 phase becomes unstable at T=621.3
o
C 

and is replaced by the Al8Fe2Si intermetallic compound (known as α-AlFeSi). The 

end of solidification, denoted by the complete consumption of the liquid phases, takes 

place at the equilibrium solidus temperature, Tsolidus=618.3
o
C. Further cooling results 

in a minimal increase of the Al8Fe2Si volume fraction followed by its decrease, as the 

Al9Fe2Si2 intermetallic compound (known as β-AlFeSi) begins to grow in Tsol_β-

AlFeSi=573.3
o
C.The solvus temperature of Al9Fe2Si2 is very close to the nominal 

homogenization temperature Thomogenization=580
o
C and above the actual achievable 

homogenization temperature, measured to be 570
o
C. The volume fraction of Al8Fe2Si 

decreases with the drop of temperature until Tsol_α-AlFeSi=566.5
o
C, indicating the 

complete dissolution of α-AlFeSi. Then, in T=449.7
o
C precipitates the 

Al18Fe2Mg7Si10 (π-phase) and at lower temperatures, the Al15Si2M4 intermetallic (τ9 

phase) appears. At 210
o
C, the Q_AlCuMgSi (Q-phase) becomes thermodynamically 

stable. The final stable phase is pure Si with a Diamond structure, appearing below 

200
o
C. The Diamond phase instantly consumes the Al18Fe2Mg7Si10 and promotes the 

formation of Mg2Si and Al9Fe2Si2 intermetallic compounds.  
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Figure 8: Evolution of equilibrium volume fraction of phases for the 6060 Al-alloy. 

To determine the effect of composition on the phase transition temperatures during 

solidification and homogenization, isopleth sections of the phase diagram were 

computed with respect to Mg, Si, Fe and Mn, varying one alloying element at a time 

and maintaining the nominal constant concentration for the other elements. The 

isopleth sections were computed as a function of composition and temperature in the 

range of 0 to 1wt% for every alloying element. To simplify the calculation, only the 

Al8Fe2Si (α-AlFeSi), Al9Fe2Si2 (β-AlFeSi), Al18Fe2Mg7Si10 (π-phase), Diamond (Si), 

Mg2Si, liquid and FCC Al-matrix were considered in the phase diagram, as shown in 

Figure 9. The solidus, liquidus and solvus temperature of intermetallic phases are 

affected by composition. The liquidus and solidus temperature, i.e. the temperatures 

that correspond to the initiation and ending of equilibrium solidification decrease by 

the addition of Mg, Si and Mn and increase by the addition of Fe. With the exception 

of Si, the variation of the liquidus and solidus temperatures is limited in the examined 

composition range. As shown in Figure 9a, the solvus of α-AlFeSi and β-AlFeSi, i.e. 

the temperature that the phase is completely dissolved, are remain relatively constant 

by the addition of Mg. The addition of Si and Mn, promotes the formation of β-

AlFeSi at elevated temperatures, as both solvus temperatures increase. The addition of 

Fe promotes the formation of α-AlFeSi against β-AlFeSi at elevated temperatures, as 

both solvus temperatures decrease. According to thermodynamics, the range of 

stability of α-AlFeSi and β-AlFeSi is dependent on the Si, Fe and Mn content of the 

alloy and most importantly on the ratio of Fe/Si and Mn/Si. Excess Si and Mn can 

promote β-AlFeSi, requiring higher homogenization temperatures to complete the β-

to-α AlFeSi transformation. 
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                                  a)                                                              b) 

 
                                    c)                                                              d) 

Figure 9: Isopleth sections of the phase diagrams for the 6060 Al-alloy, with respect 

to a) Mg, b) Si, c) Fe and d) Mn, near the solidification and homogenization 

temperature range. 

3.2. Solidification 

Solidification was modeled using Scheil-Gulliver approach. To ease computational 

complexity, were considered only the major alloying elements, including Si, Mg, Mn 

and Fe and the phases, FCC Al-matrix, Al8Fe2Si (α-AlFeSi), Al9Fe2Si2 (β-AlFeSi), 

Mg2Si and Diamond (Si) in the solidification and homogenization calculations. 

The solidification path, the evolution of phase fractions and the development of 

elemental segregation at grain boundaries are presented in Figure 9. The solidification 

sequence is depicted in Figure 10a, with respect to temperature and mass fraction of 

solid. The phase sequence during solidification is: 

FCC Al-matrix→Al8Fe2Si (α-AlFeSi)→Al9Fe2Si2 (β-AlFeSi)→Mg2Si→Diamond (Si) 

The evolution of the phase fractions as a function of temperature is shown in Figure 

10b. Solidification begins at the thermodynamic equilibrium liquidus temperature, 

Tliquidus=654.5
o
C, with the nucleation and growth of α-Al FCC dendrites. At 625

o
C, 

the Al8Fe2Si (α-AlFeSi) nucleates and grows with the α-Al matrix. The growth of 

Al8Fe2Si (α-AlFeSi) stops at approximately 598
o
C, where the Al9Fe2Si2 (β-AlFeSi) 

begins to grow with the α-Al matrix, until the consumption of the liquid. As the 

temperature decreases, the Mg2Si nucleates at 568
o
C and grows along with the β-
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AlFeSi and α-Al matrix. Finally, the Diamond (Si) becomes stable at 557
o
C and the 

rest of liquid solidifies rapidly to a eutectic mixture of Diamond (Si), Mg2Si, β-AlFeSi 

and α-Al. That temperature constitutes the non-equilibrium solidus temperature, 

Tsolidus=557
o
C, where solidification is complete. The secondary phases were formed 

near the grain boundaries.  

During a second iteration of calculations, the Al18Fe2Mg7Si10 (π-phase) was added to 

the Scheil-Gulliver model, since significant fractions of π-phase were observed 

experimentally after solidification cooling. The solidification path, the evolution of 

phase fractions and the development of elemental segregation at grain boundaries are 

presented in Figure 12. The solidification sequence is depicted in Figure 12a, with 

respect to temperature and mass fraction of solid. The phase sequence during 

solidification is: 

FCC Al-matrix→ Al8Fe2Si(α-AlFeSi)→ Al9Fe2Si2(β-AlFeSi)→Mg2Si→Al18Fe2Mg7Si10→ Diamond  

The evolution of phase fractions is as mentioned above with the difference that at 

T=560
o
C the Al18Fe2Mg7Si10 (π-phase) nucleates and grow, until its consumption 

from Diamond (Si) at T=557
o
C. 

The Scheil-Gulliver solidification model predicts an increased freezing range (the 

difference between the liquidus and solidus temperature), compared to the equilibrium 

solidification model. According to equilibrium calculations, the freezing range is 

36.2
o
C, whereas in the Scheil calculations, the freezing range is 97.5

o
C. This 

difference is due to the development of elemental segregation at the level of the 

primary and secondary dendritic arms, due to the high cooling rates exist during 

solidification. The Scheil-Gulliver model predicts the composition of intermetallic 

phases. The profiles of the alloying elements in the matrix are shown in Figure 11, 

where microsegregation appears. Mg concentration drops close to grain boundary due 

to the formation of Mg2Si and Fe drops due to the formation of iron intermetallics, α-

AlFeSi and β-AlFeSi. The Scheil-Gulliver calculations provide the initial conditions 

for the homogenization simulation. The solidification model should be validated 

experimentally. 

 
                                    a)                                                             b) 
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Figure 10: Scheil-Gulliver solidification results, regarding a) the solidification path, 

i.e. the temperature as a function of the solid fraction and b) the phase fractions as a 

fraction of temperature. 

 
Figure 11: Profiles of alloying elements in the Al- matrix (FCC) after solidification. 

 
                               a)                                                                  b) 

Figure 12: Scheil-Gulliver solidification results, including Al18Fe2Mg7Si10 (π-phase), 

regarding a) the solidification path, i.e. the temperature as a function of the solid 

fraction and b) the phase fractions as a fraction of temperature. 

3.3. Homogenization 

Multi-phase, multi-component diffusion simulations were employed in DICTRA, to 

calculate the homogenization of the as-cast material, the degree of elimination of 

elemental segregation, the dissolution of intermetallic phases and eutectic mixtures 

and the transformation of β-to-α AlFeSi. Firstly, only the α-Al (FCC), Al8Fe2Si (α-

AlFeSi), Al9Fe2Si2 (β-AlFeSi), Mg2Si and Diamond (Si) intermetallic phases were 

considered during diffusion calculations. The selection of phases involved in the 

calculations should be validated experimentally and model adjustments should be 

made accordingly. 

Results regarding the evolution of phase fractions and the composition of the α-Al 

matrix, during solidification cooling and homogenization heating, holding and cooling 

are shown in Figure 13. The local phase fractions of intermetallic phases as a function 

of distance in the diffusion cell, at selected times are presented in Figure 14. The local 

chemical composition of the α-Al matrix, indicating the degree of segregation, is 

given as a function of distance in the diffusion cell, at selected times, as depicted in 
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Figure 15. The right side of the diffusion cell corresponds to the center of the primary 

dendrite, whereas the left side represents the end of the dendrite arm, near the grain 

boundary, where the last liquid was solidifies. Results from Scheil-Gulliver 

simulations were used to obtain the initial phase fractions and compositions, as shown 

in Figures 14a, 15a. The intermetallic phases formed near the grain boundary where 

the liquid solidifies at the lowest temperature. A mixture of intermetallic phases is 

found in the right side of the diffusion cell, according to the solidification sequence: 

FCC Al-matrix → Al8Fe2Si (α-AlFeSi) →Al9Fe2Si2 (β-AlFeSi) → Mg2Si → Diamond (Si) 

After solidification, the segregation of alloying elements near the grain boundaries is 

depicted in Figure 15a, where Si and Mg concentrations in the Al-matrix reach a 

value of 1.35% and 1.05%wt, respectively.  

During cooling to room temperature after solidification, according to the temperature 

curve, given in Figure 13a, the volume fraction of Al8Fe2Si (α-AlFeSi) decreases 

significantly, whereas the volume fractions of Mg2Si, β-AlFeSi and Diamond (Si) 

increase. The α-AlFeSi dissolves completely and re-precipitates and grows at late 

stages of homogenization. As the function of intermetallic compounds increase during 

cooling and oversaturation of alloying elements decreases, as shown in Figures 13c, 

d, thus, the segregation profiles of the α-Al matrix decrease. It should be noted that 

the predicted phase fractions at the end of cooling might be lower and supersaturation 

of the α-Al matrix higher in practice because the model might overestimate the 

formation kinetics of intermetallic compound under rapid cooling rate.  

 
                                a)                                                                b) 
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                                 c)                                                                   d) 

Figure 13: Evolution of a) phase fractions during solidification cooling, b) phase 

fractions during homogenization, c) composition of the α-Al matrix during 

solidification, d) composition of the Al-matrix during homogenization. 

During homogenization heating, the small fraction of Al8Fe2Si (α-AlFeSi) dissolves 

rapidly, while the fraction of Al9Fe2Si2 (β-AlFeSi), Mg2Si and Diamond (Si) slowly 

decreases, because in low temperatures diffusion is sluggish, as shown in Figure 13b. 

As intermetallic phases dissolve, alloying elements are released in the matrix and the 

concentration of Al-matrix increases, as shown in Figure 13d. By the increase of 

temperature, the eutectic mixture, containing β-AlFeSi, Mg2Si and Diamond (Si), 

decreases in fraction and after 3 hours of homogenization process the Diamond (Si) is 

eliminated. The Mg2Si are initially spheroidized and later dissolved completely at 3.4 

hours of treatment, as depicted in Figure 13c, 14c-14e. The dissolution of Mg2Si and 

Diamond (Si), results in the exaggeration of segregation profiles, because alloying 

elements are released in the matrix, as depicted in Figures 15c, d. As the Mg2Si and 

Diamond (Si) are eliminated, the release of Mg and Si stop, forming a plateau in the 

composition of the α-Al matrix, as shown in Figure 13d. During homogenization, as 

the temperature increases, the segregation of alloying elements is eliminated, because 

they diffuse in the matrix and composition becomes homogeneous, as shown in 

Figures 15e-g.  

 
                                       a)                                                       b) 
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                                        c)                                                       d) 

 
                                     e)                                                          f) 

 
                                      g)                                                         h) 

Figure 14: Local intermetallic phase fractions as a function of distance in the 

diffusion cell, at various times during homogenization treatment. The right side of the 

cell corresponds to the center of the primary dendrite, whereas the left side to grain 

boundary. 

After the dissolution of the Mg2Si and Diamond (Si), the β-AlFeSi remains the main 

intermetallic compound, with a minimal decrease in phase fraction during 

homogenization heating and holding, as shown in Figures 14e,f. During 

homogenization holding, the composition of α-Al matrix remains relatively constant, 

as shown in Figures 15e, f. At 7 hours of homogenization process, the α-AlFeSi 

nucleates together with the β-AlFeSi and begins to grow as the temperature increases, 

as the β-to-α transformation is favored. During homogenization holding at 

temperature approximately 570
o
C, the α-AlFeSi grows against the β-AlFeSi, as 
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depicted in Figure 14g, while the composition of α-Al matrix remains stable, as 

shown in Figure 15g.  

During homogenization cooling, after 9 hours of treatment, the temperature decreases 

rapidly and the reverse transformation of α-to-β AlFeSi observed, as the β-AlFeSi 

grows against the α-AlFeSi, until the complete consumption of the later, as shown in 

Figures 13b and 14h. Additionally, the Mg2Si particles re-precipitate, when the solvus 

temperature of Mg2Si is reached, as shown in Figures 13b and 14h, and the phases 

grow rapidly, decreasing the concentration of alloying elements in α-Al matrix, as 

shown in Figures 13d and 15h. The local phase fractions and composition profiles at 

the end of homogenization cooling are depicted in Figures 14h and 15h, where 

homogeneous dispersion of Mg2Si particles has formed and β-AlFeSi particles remain 

near the boundary.  

The results regarding the homogenization cooling must be interpreted with care, 

because the present model overestimates the transformation rates of α-to-β AlFeSi and 

the precipitation kinetics of Mg2Si under rapid cooling rates. The homogenization 

cooling can be simulated using PRISMA, which is not included in this project. 

 
                                    a)                                                              b) 

 
                                  c)                                                                 d) 
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                                   e)                                                                  f) 

 
                             g)                                                                           h) 

Figure 15: Local composition of the α-Al matrix as a function of distance in the 

diffusion cell, at various times during homogenization treatment. The right side of the 

cell corresponds to the center of the primary dendrite, whereas the left side to grain 

boundary. 

3.4. Experimental Validation 

The validity of the simulation results were confirmed via experimental measurements. 

Characterization of the received material from the industry was performed for the as-

cast and homogenized Al-alloy microstructure. The characterization of the as-cast 

material was performed by SINTEF, using Scanning Electron Microscopy (SEM), 

Energy Dispersive X-Ray point analysis (EDX) and image analysis. Metallographic 

analysis of the as-cast material, using Light Optical Microscopy was performed at the 

Laboratory of Materials at the University of Thessaly. Samples from the center, 

middle and edge of the billet along the radius, as shown in Figure 16, were analyzed 

to determine the fraction and morphology of the intermetallic phases that exist and the 

composition of these phases, after casting and cooling.  
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Figure 16: As-cast Al-alloy 6060, sections of received as-cast for the characterization 

analysis. 

The microstructure of the as-cast material via Light Optical Microscopy at the billet 

center, middle and edge are shown in Figures 17, 18 and 19, respectively. 

Metallographic images are presented at three different magnification levels, x100, 

x200 and x500. No significant variations along the billet radius were observed, as 

shown in Figures 17, 18 and 19. After solidification and cooling, intermetallic 

compounds exist in grain boundaries and in between the secondary dendritic arms. 

Most of the particles have rod shaped morphology, typical of β-AlFeSi, which limits 

extrudability. Also, are presented some rounded particles and eutectic mixtures. The 

intermetallics in between dendritic arms and near grain boundaries are result of 

elemental segregation in those areas, because of rapid cooling rate during casting. 

Optical Microscopy cannot be used to identify the phases and are used SEM and EDX 

analysis, to determine the structure and the volume fractions of the intermetallic 

phases. 

    
                                 a)                                                                b) 

    
                              c)                                                                    d) 
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Figure 17: Metallography of as-cast Al-alloy 6060, center section. Magnification: a) 

x100, b) x200, c) and d) x500. 

     
a)                                                               b) 

    
                            c)                                                                   d)  

Figure 18: Metallography of as-cast Al-alloy 6060, middle section. Magnification: a) 

x100, b) x200, c) and d) x500. 

     
a)                                                                    b) 

     
                               c)                                                                 d) 
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Figure 19: Metallography of as-cast Al-alloy 6060, edge section. Magnification: a) 

x100, b) x200, c) and d) x500. 

Scanning electron micrographs of the as-cast material are shown in Figure 20, at 

different magnification levels. By EDX point analysis on the intermetallics, it was 

observed that the most of them were β-AlFeSi (Al9Fe2Si2) and Mg2Si and a small 

amount of α-AlFeSi (Al8Fe2Si), Al18Fe2Mg7Si10 (π-phase) and eutectic mixtures. The 

Mg2Si particles formed during solidification are large irregularly shaped, as shown in 

Figure 20a, b, c and d, with the dark color. Fine precipitates of Mg2Si are expected 

after solidification, but their size is undetectable using SEM and EDX analysis. The 

most of the particles observed are β-AlFeSi in an elongated morphology near grain 

boundaries, as shown in Figure 20c. Also, smaller rounded particles were formed, 

which represent β-AlFeSi compounds or more rarely α-AlFeSi, as depicted in Figures 

20e and f. The π-phase particles are in contact with β-AlFeSi particles and eutectic 

mixtures, as shown in Figures 20g and h. The eutectic particles are formed at the end 

of solidification, as remaining liquid solidifies isothermally. The phases included in 

the eutectic mixture, contain β-AlFeSi, Mg2Si, π-phase and Diamond (Si), but these 

phases is difficult to observe individually because of their very fine lamellar structure. 

The differentiation of the phases was made by comparing the ratio of alloying 

elements of each particle, measured via EDX analysis by SINTEF. The theoretical α-

AlFeSi Fe/Si is equal to 2.05 and the theoretical β-AlFeSI Fe/Si is equal to 0.922.  

       
                                 a)                                                               b) 

       
                                 c)                                                                 d) 
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                               e)                                                                   f) 

       
                               g)                                                                   h) 

Figure 20: Scanning Electron Micrographs of the as-cast material, showing a), b) the 

intermetallic phases near grain boundary, b), c), d), e), f), g), h) the phases shown in 

a)and b) separately. 

Homogenization is being done in order to increase the extrudability and strength of 

the alloy by the elimination of the as-cast morphology. While the β-AlFeSi-to-α-

AlFeSi transformation plays a critical role to increasing extrudability, the dissolution 

and re-precipitation of Mg2Si is one of the main strengthening factors of the Al-alloy. 

The elimination of sharp and crack inducing β-AlFeSi particles in conjunction with 

the coarsening of Mg2Si particles throughout the material body, results to a more 

extrudable and strong material. The validity of the homogenization simulation was 

performed via experimental measurements of the as-homogenized material received 

from industry. The characterization of the as-homogenized material was performed by 

SINTEF, using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray 

point analysis (EDX) and image analysis. Metallographic analysis of the as-

homogenized material, using Light Optical Microscopy was performed at the 

Laboratory of Materials at the University of Thessaly. Samples from the center, 

middle and edge of the billet along the radius, as shown in Figure 21, were analyzed 

to determine the fraction and morphology of the intermetallic phases that exist and the 

composition of these phases, after homogenization process.  
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Figure 21: As-homogenized Al-alloy 6060, sections of received as-homogenized for 

the characterization analysis. 

The microstructure of the as-homogenized material via Light Optical Microscopy at 

the billet center, middle and edge are shown in Figures 22, 23 and 24, respectively. 

Metallographic images are presented at three different magnification levels, x100, 

x200 and x500. No significant variations along the billet radius were observed, as 

shown in Figures 22, 23 and 24. The dendritic structures that were present in the as-

cast microstructure have been eliminated and the segregation of alloying elements 

was removed during homogenization. Also, no eutectic particles were observed, 

because they were completely dissolved during homogenization heating. Regarding 

the iron intermetallics found near grain boundaries and in between secondary 

dendritic arms, it was observed that they were more rounded in edges with pinching 

of elongated particles and partial segmentation into smaller particles. Also, some 

particles with high aspect ratio observed because of incomplete homogenization.  

     
a)                                                                 b) 

     
                                   c)                                                                d)                   

Figure 22: Metallography of as-homogenized Al-alloy 6060, center section. 

Magnification: a) x100, b) x200, c) and d) x500. 
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                               a)                                                                     b) 

      
                                c)                                                                    d) 

Figure 23: Metallography of as-homogenized Al-alloy 6060, middle section. 

Magnification: a) x100, b) x200, c) and d) x500. 

    
a)                                                                  b) 

    
                              c)                                                                     d) 

Figure 24: Metallography of as-homogenized Al-alloy 6060, edge section. 

Magnification: a) x100, b) x200, c) and d) x500. 
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SEM and EDX analysis was conducted by SINTEF in the as-homogenized material in 

order to measure the volume fraction of phases and determine the homogenization 

state of the material and the elimination of elemental segregation. Scanning Electron 

Micrographs of the as-homogenized material are shown in Figure 25, at different 

magnification levels. The volume fraction of intermetallic compounds is reduced 

compared to the as-cast microstructure. By EDX point analysis on the intermetallics, 

it was observed that the major intermetallic phases after homogenization treatment 

were coarse Mg2Si and α-AlFeSi. Fine precipitates can also exist, but their size is 

undetectable using SEM and EDX analysis. No significant fractions of β-AlFeSi, π-

phase and eutectic mixtures were observed, indicating that the β-to-α transformation 

is complete. The particles in the as-homogenized microstructure are smaller compared 

to the as-cast. The spheroidization of α-AlFeSi has not been fully achieved, as shown 

in Figures 25b and c. Most of the α-AlFeSi particles present signs of early stage 

spheroidization, as the edges of particles were rounded and pinching, forming a neck 

structure, as shown in Figure 25b. Also, dispersoids were found in the grains of the 

as-homogenized material, white colored small particles, as depicted in Figure 25d, but 

their size and volume fraction was undetectable using EDX point analysis. It is 

estimated that the dispersoids are α-Mn rich particles of α-AlFeSi, because they have 

more Mn and they were formed during homogenization holding and cooling. These 

particles inhibit recrystallization after extrusion and improve the grain structure. The 

differentiation of the phases was made by comparing the ratio of alloying elements of 

each particle, measured via EDX analysis by SINTEF. The theoretical α-AlFeSi Fe/Si 

is equal to 2.05 and the theoretical β-AlFeSI Fe/Si is equal to 0.922. 

      
                                a)                                                                b)             
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                              c)                                                                   d) 

Figure 25: Scanning Electron Micrographs of the as-homogenized material, showing 

the microstructure at different magnification levels. Only large Mg2Si and α-AlFeSi 

were observed in a), the only iron intermetallic was α-AlFeSi in b), c) and dispersoids 

were observed in d). 

According to EDX measurements of chemical composition of intermetallic phases, it 

was observed that only α-AlFeSi and large Mg2Si particles were formed during 

homogenization. As a result, the transformation of β-to-α AlFeSi is complete and the 

eutectic mixtures and π-phase particles have been dissolved in α-Al matrix. Fine 

precipitates of Mg2Si can also exist after homogenization, but their size is 

undetectable using SEM and EDX analysis. Dispersoids also observed, most likely 

comprised of a Mn and Cr rich τ9 structure (also known as α-Μn or Al15Si2M4), but 

their size and volume fraction was undetectable using EDX point analysis. 

In contrast to experimental observation, the homogenization simulation predicts that 

the transformation of β-to-α AlFeSi is incomplete. Considering that the maximum 

homogenization temperature of 570
o
C, as measured by industry, remains below the 

solvus temperature of β-AlFeSi, Tsol.β-AlFeSi=573.3
o
C, is reasonable to observe β-

AlFeSi intermetallic phase in the results. If the Nominal Homogenization 

Temperature of 580
o
C is used in the simulations, the completion of β-to-α AlFeSi 

transformation can be predicted and only α-AlFeSi particles can be observed. This 

indicates that most likely the temperature measurements were inaccurate and not 

representative of the temperature experienced by the billets in the homogenization 

furnace, giving lower measurements. Additionally, the complete dissolution of 

eutectic mixtures and Mg2Si particles is predicted by simulation during 

homogenization heating.  

During homogenization cooling the inverse transformation α-to-β AlFeSi is predicted 

leading to the complete consumption of α-AlFeSi. This behavior is probably not 

realistic, as the model overestimates the transformation kinetics of the α-to-β AlFeSi 

under rapid cooling rates. Also, during homogenization cooling the precipitation of 

Mg2Si particles is predicted and observed experimentally. The precipitation kinetics 

of Mg2Si is overestimated. The homogenization cooling can be simulated using 

PRISMA, which is not included in this project. 

To conclude with, the simulation predictions and experimental observation at the end 

of homogenization process have some differences. As a result, the homogenization 

simulation should adjust, using as homogenization holding temperature the nominal 

Homogenization Temperature of 580
o
C. This temperature is the maximum 

temperature observed during homogenization. Also, the Al18Fe2Mg7Si10 (π-phase) 

should be considered to the phases formed during homogenization. 

3.5. Updated Homogenization Model 

The Solidification Cooling and Homogenization Models were updated according to 

the experimental findings, to better describe the microstructural evolution upon 
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processing. In the updated model, α-Al (FCC), Al8Fe2Si (α-AlFeSi), Al9Fe2Si2 (β-

AlFeSi), Mg2Si, Diamond (Si) and Al18Fe2Mg7Si10 (π-phase) intermetallic phases 

were considered during diffusion calculations. The Al18Fe2Mg7Si10 (π-phase) 

intermetallic phase was added to diffusion calculations in order to adjust the previous 

Homogenization Model to the experimental observations. Also, homogenization 

simulation was performed using the Nominal Homogenization Temperature of 580
o
C 

as the maximum homogenization holding temperature in the cycle, to correct for the 

low temperature measurements reported. Additionally, to avoid numerical instabilities 

arising from a eutectoid reaction, involving the Diamond and π-phase at low 

temperatures, the lowest temperature considered during solidification cooling was 

kept at 200
o
C   . 

Results regarding the evolution of phase fractions and the composition of the α-Al 

matrix, during solidification cooling and homogenization heating and holding, is 

shown in Figure 26. The local phase fractions of intermetallic phases as a function of 

distance in the diffusion cell, at selected times are presented in Figure 27. The local 

chemical composition of the α-Al matrix, indicating the degree of segregation, is 

given as a function of distance in the diffusion cell, at selected times, in Figure 28. 

The right side of the diffusion cell corresponds to the center of the primary dendrite, 

whereas the left side represents the end of the dendrite arm, near the grain boundary, 

where the last liquid was solidifies. Results from Scheil-Gulliver simulations were 

used to obtain the initial phase fractions and compositions, as shown in Figures 27a, 

28a. The intermetallic phases formed near the grain boundary where the liquid 

solidifies at the lowest temperature. A mixture of intermetallic phases is found in the 

right side of the diffusion cell, according to the solidification sequence: 

FCC Al-matrix→ Al8Fe2Si(α-AlFeSi) → Al9Fe2Si2(β-AlFeSi) → Mg2Si→ Al18Fe2Mg7Si10 →Diamond 

After solidification, the segregation of alloying elements near the grain boundaries is 

depicted in Figure 28a, where Si and Mg concentrations in the Al-matrix reach a 

value of 1.35% and 1.05%wt, respectively. 

During cooling to room temperature after solidification, according to the temperature 

curve, given in Figure 26a, the volume fraction of Al8Fe2Si (α-AlFeSi) decreases 

significantly, whereas the volume fractions of β-AlFeSi, Mg2Si, Al18Fe2Mg7Si10 (π-

phase) and Diamond (Si) increase. The α-AlFeSi dissolves completely and re-

precipitates and grows at late stages of homogenization. As the function of 

intermetallic compounds increase during cooling and oversaturation of alloying 

elements decreases, as shown on Figures 26c, d, thus, the segregation profiles of the 

α-Al matrix decrease. It should be noted that the predicted phase fractions at the end 

of cooling might be lower and supersaturation of the α-Al matrix higher in practice 

because the model might overestimate the formation kinetics of intermetallic 

compound under rapid cooling rate.  
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                                  a)                                                               b) 

 
                                   c)                                                                d) 

Figure 26: Evolution of a) phase fractions during solidification cooling, b) phase 

fractions during homogenization, c) composition of the α-Al matrix during 

solidification, d) composition of the Al-matrix during homogenization. 

During homogenization heating, the small fraction of Al8Fe2Si (α-AlFeSi) dissolves 

rapidly, while the fraction of Al9Fe2Si2 (β-AlFeSi), Mg2Si, π-phase and Diamond (Si) 

slowly decreases, because in low temperatures diffusion is sluggish, as shown in 

Figure 26b. As intermetallic phases dissolve, alloying elements are released in the 

matrix and the concentration of Al-matrix increases, as shown in Figure 26d. By the 

increase of temperature, the eutectic mixture, containing β-AlFeSi, Mg2Si, 

Al18Fe2Mg7Si10 (π-phase) and Diamond (Si), decreases in fraction and after 2.2 hours 

of treatment the Diamond (Si) is eliminated, as shown in Figures 26b and 27c, d. The 

Al18Fe2Mg7Si10 (π-phase) decreases in fraction as the temperature increases and after 

2.5 hours of treatment, the π-phase dissolves completely, as shown in Figures 26b 

and 27c, d. The Mg2Si are initially spheroidized and later dissolved completely at 2.6 

hours of heating, as depicted in Figure 26c, 27c, d. The dissolution of Mg2Si, 

Al18Fe2Mg7Si10 (π-phase) and Diamond (Si), results in the exaggeration of 

segregation profiles, because alloying elements are released in the matrix, as depicted 

in Figures 28c, d. As these phases are eliminated, the release of Mg and Si stop, 

forming a plateau in the composition of the α-Al matrix, as shown in Figure 26d. 

During homogenization, as the temperature increases, the segregation of alloying 
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elements is eliminated, because they diffuse in the matrix and composition becomes 

homogeneous, as shown in Figures 28e-j.  

    
                                       a)                                                         b) 

 
                                   c)                                                                d) 

 
                                   e)                                                              f) 



49 
 

 
       g)                                                              h) 

 
                                      i)                                                              j)                           

Figure 27: Local intermetallic phase fractions as a function of distance in the 

diffusion cell, at various times during homogenization treatment. The right side of the 

cell corresponds to the center of the primary dendrite, whereas the left side to grain 

boundary. 

After the dissolution of the Mg2Si, Al18Fe2Mg7Si10 (π-phase) and Diamond (Si), the β-

AlFeSi is the main intermetallic compound, with a minimal decrease in phase fraction 

during homogenization heating and holding, as shown in Figures 27d, e. During 

homogenization holding, the composition of α-Al matrix remains relatively constant, 

as shown in Figures 28e-j. At 5 hours of homogenization process, the α-AlFeSi 

nucleates together with the β-AlFeSi and begins to grow as the temperature increases, 

as the β-to-α transformation is favored. During homogenization holding at 

temperature approximately 580
o
C, the α-AlFeSi grows against the β-AlFeSi, as 

depicted in Figure 27f, g, while the composition of α-Al matrix remains stable, as 

shown in Figure 28f, g.  

At the end of homogenization holding, the only stable phase is the α-AlFeSi, because 

the β-to-α AlFeSi transformation is complete. The Mg2Si re-precipitates during 

homogenization cooling in a fine precipitate with small particle size. During 

homogenization cooling, the temperature decreases rapidly and this process can be 

simulated using PRISMA, which is not included in this project. 
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       a)                                                                  b) 

 
           c)                                                                d) 

 
e)                                                                f) 
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g)                                                              h) 

 
      i)                                                              j) 

Figure 28: Local composition of the α-Al matrix as a function of distance in the 

diffusion cell, at various times during homogenization treatment. The right side of the 

cell corresponds to the center of the primary dendrite, whereas the left side to grain 

boundary. 

3.6. Model Comparison 

The volume fraction of phases was measured by SINTEF, via image analysis of 

micrographs, to validate the predictions of solidification model. The Table 4 shows 

the volume fractions of measured and predicted phases after solidification cooling. 

The fraction of π-phase, α-AlFeSi and eutectic particles was low and difficult to 

separate from β-AlFeSi. As a result, the volume fraction of π-phase, α-AlFeSi, β-

AlFeSi and eutectic particles was measured as ones phase volume fraction, i.e. all 

white colored particles shown in Figure 20. Also, only the particles Mg2Si forming 

directly from liquid can be measured, because the Mg2Si particles which form in 

eutectic mixtures or during solidification cooling have a very fine structure, 

undetectable using SEM or EDX analysis. According to model predictions, after 

solidification cooling, 0.74% of β-AlFeSi, 0.02% of α-AlFeSi, 0.38% of eutectic 

mixtures and 0.05% of π-phase are present, in total 1.14% for the original simulation 

model and in total 1.19% for the updated model of these intermetallics, which agrees 

with the measured value 1.1-1.3%, as shown in Table 4. The model prediction for the 

volume fraction of Mg2Si in eutectic mixtures is 0.144% and the precipitated fraction 

is 0.326%. Subtracting the fractions from the total amount of Mg2Si, 0.56% after 



52 
 

solidification gives 0.09% of Mg2Si forming directly from liquid, as shown in Table 

4. The small difference between prediction and measurements, 0.02% can be the 

result of a limited sample size used for measurements. At the end, the solidification 

model is in very good agreement with the experimental analysis to the as-cast 

material. 

Table 4:  Comparison between measured and predicted phase fractions after 

solidification cooling 

 Measured Vol. 
Fraction 

Original Model 
Predicted Vol. 

Fraction  

Updated Model 
Predicted Vol. 

Fraction  

β-AlFeSi + α-AlFeSi + 
π-Phase + Eutectics 

 

1.1-1.3% 1.14% (No π-Phase) 1.19% 

Blocky β-      0.014-0.02% 0.09% 0.087% 

 

The volume fraction of phases was measured by SINTEF, via image analysis of 

micrographs, to validate the predictions of homogenization model. The Table 5 shows 

the volume fractions of measured and predicted phases after homogenization process. 

According to EDX measurements of chemical composition of intermetallic phases, it 

was observed that only α-AlFeSi and large Mg2Si particles formed during 

homogenization. As a result, the transformation of β-to-α AlFeSi is complete and the 

eutectic mixtures and π-phase particles have been dissolved in α-Al matrix. The 

fraction of α-AlFeSi was measured at 0.6% and large Mg2Si particles at 0.026%, 

slightly higher than the as-cast material, as shown in Table 5. Fine precipitates of 

Mg2Si can also exist after homogenization, but their size is undetectable using SEM 

and EDX analysis. According, to model of 580
o
C Homogenization Holding 

Temperature predictions, after homogenization process only 0.554% α-AlFeSi are 

present, because the β-to-α AlFeSi transformation is complete.  Additionally, the 

complete dissolution of eutectic mixtures and Mg2Si particles is predicted. The 

difference regarding the Mg2Si between experimental observation and simulation 

prediction can be attributed to an inhomogeneous size distribution of Mg2Si particles, 

leading to slower dissolution of large particles. At the end, the updated 

homogenization model is in very good agreement with the experimental analysis to 

the as-cast material. 

 Table 5: Comparison between measured and predicted phase fractions after 

homogenization holding 

 Measured Vol. 
Fraction 

Original Model 
Predicted Vol. 

Fraction 

Updated Model 
Predicted Vol. 

Fraction 

α-AlFeSi  0.6% 0.16%(at     )  0.554% (at     ) 
β-AlFeSi 0% 0.5% (at     ) 0% (at     ) 

β-AlFeSi + α-AlFeSi 0.6% 0.66% 0.554% 
Blocky β-      0.026% 0% (at     ) 0% (at     ) 

Eutectics 0% 0% (at     ) 0% (at     ) 
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4. CONCLUSIONS  
The solidification and homogenization of the Aluminum alloy 6060 were simulated 

using kinetic models described above, in order to improve its final properties. 

Analysis was performed on the Al-alloy 6060, regarding the microstructural evolution 

during solidification and cooling to room temperature and during homogenization 

heating, holding and cooling. Microstructural characterization of the as-cast and as-

homogenized materials, were conducted using SEM, EDX point and Metallographic 

analysis.  

According to the analysis presented, about solidification the following remarks can be 

made. 

 Solidification begins at the thermodynamic equilibrium liquidus temperature, 

Tliquidus=654.5
o
C, with the nucleation and growth of phases and completes at solidus 

temperature, Tsolidus=557
o
C.  

 

 The phase sequence during solidification is: 

FCC Al-matrix→ Al8Fe2Si (α-AlFeSi) → Al9Fe2Si2 (β-AlFeSi) →Mg2Si→Al18Fe2Mg7Si10→ Diamond  

The phases formed may be individual particles or parts of a eutectic mixture, 

depending on the solidification temperature. Eutectic mixtures, β-, π-phase particles 

are large with sharp edges and they limit extrudability. 

 

 During solidification, at 625
o
C, the α-AlFeSi nucleates and grows until 598

o
C, 

where the β-AlFeSi begins to grow. As temperature decreases, the Mg2Si nucleates at 

568
o
C, the π-phase at 560

o
C and finally the Diamond (Si) becomes stable at 557

o
C. 

Upon solidification, the secondary phases were formed near the grain boundaries. 

 

 Elemental segregation near grain boundaries and at the level of secondary 

dendritic arms was observed; due to the high cooling rates exist during solidification 

cooling. The solidified structure represents the as-cast microstructure. Mg 

concentration drops near grain boundary due to the formation of Mg2Si and Fe drops 

due to the formation of α-, β-AlFeSi. 

Microstructural evolution during homogenization heating, holding and cooling was 

performed via multi-component, multi-phase diffusion simulations in DICTRA.  

According to the analysis presented, about homogenization process the following 

remarks can be made. 

 During homogenization heating, the fraction of Al8Fe2Si (α-AlFeSi) dissolves 

rapidly, while the fraction of Al9Fe2Si2 (β-AlFeSi), Mg2Si and Diamond (Si) slowly 

decreases, because in low temperatures diffusion is sluggish. Using as 

Homogenization Holding Temperature of 570
o
C, the eutectic mixtures dissolve 

completely after 3 hours of heating. The Mg2Si particles, formed during solidification 

dissolve completely after 3.5 hours of treatment. Using as homogenization holding 



54 
 

temperature, the Nominal Homogenization Temperature of 580
o
C, the eutectic 

mixtures dissolve completely after 2.2 hours of heating. The Al18Fe2Mg7Si10 (π-

phase) decreases in fraction and after 2.5 hours of heating, the π-phase dissolves 

completely. The Mg2Si particles, formed during solidification dissolve completely 

after 2.6 hours of treatment. The dissolution of all phases is faster using a higher 

Homogenization Holding Temperature, as at higher temperatures diffusion is favored. 

 

  The dissolution of Mg2Si, Al18Fe2Mg7Si10 (π-phase) and Diamond (Si), 

results in the exaggeration of segregation profiles, because alloying elements are 

released in the matrix and the composition of Al-matrix becomes homogeneous. 

 

 Using as Homogenization Holding Temperature of 570
o
C after 7 hours of 

process starts the β-to-α AlFeSi transformation. As the temperature increases above 

566
o
C, the Al8Fe2Si (α-AlFeSi) becomes thermodynamically stable and the α-AlFeSi 

grows against β-AlFeSi without the complete dissolution of the latter, because the 

temperature remains below the solvus of β-AlFeSi, Tsolvus β-AlFeSi=573.3
o
C. As a result, 

the β-to-α AlFeSi transformation is incomplete. Using as homogenization holding 

temperature, the Nominal Homogenization Temperature of 580
o
C, after 5 hours of 

treatment starts the β-to-α AlFeSi transformation and the α-AlFeSi grows against β-

AlFeSi until the complete dissolution of the latter. During homogenization holding, 

the temperature remains approximately at 580
o
C which is over the solvus of β-AlFeSi, 

Tsolvus β-AlFeSi=573.3
o
C. As a result, the β-to-α AlFeSi transformation is complete. 

 

 The β-to-α transformation kinetics determines the minimum homogenization 

time because the dissolution of Mg2Si during homogenization is a fast process while 

the transformation of β-to-α-AlFeSi is a much slower process. The Mg2Si particles 

dissolve completely after 2.6 to 3.5 hours of homogenization treatment whereas the β-

to-α transformation starts after 4.5 hours of heating and it is completed after 7 hours 

of process. 

 

 During homogenization cooling, after 9 hours of treatment, the Mg2Si particles 

re-precipitate to an even distribution throughout the body of the alloy with a more 

homogeneous in-grain distribution. This model overestimates the precipitation 

kinetics of Mg2Si under rapid cooling rates. As a result, homogenization cooling can 

be simulated using a Kampmann-Wagner (KWN) model to better describe the 

kinetics of nucleation, growth and dissolution of fine particles upon cooling. 

 

 The experimental observation of the as-homogenized samples shows that the 

phases exist after the end of homogenization treatment, are large Mg2Si particles and 

α-AlFeSi. No significant fractions of β-AlFeSi, π-phase and eutectic mixtures were 

observed, indicating the β-to-α transformation is complete.  
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 The spheroidization of α-AlFeSi has not fully achieved. Most of the α-AlFeSi 

particles present signs of early stage spheroidization, as the edges of particles were 

rounded and pinching, forming a neck structure. Spheroidization of the α-AlFeSi is 

considered to improve the extrudability of the material. Yet morphological 

improvements of the remaining α-AlFeSi particles can be achieved via 

homogenization treatment modifications.   

 

 The material should be heated to a homogenization holding temperature above 

the solvus temperature of β-AlFeSi, Tsolvus β-AlFeSi=573.3
o
C, in order to complete the β-

to-α transformation. The Nominal Homogenization Temperature of 580
o
C is suitable 

to complete the β-to-α transformation and spheroidize the remaining α-AlFeSi 

particles. Although, the equilibrium solidus temperature is high at Tsolidus=618
o
C, the 

maximum homogenization temperature should remain below 590
o
C to avoid potential 

partial melting of the material at hot-spots of the surface. 

 

 The homogenization at 580
o
C results in the earlier and complete 

transformation β-to-α compared to the homogenization at 570
o
C. At the late stages of 

homogenization holding at 580
o
C, 8-9.5 hours of treatment, no significant variations 

of the volume fraction of the α-AlFeSi observed. So, the homogenization duration can 

be reduced.  Increasing homogenization heating rate to reach solvus temperature of α-

AlFeSi and β-AlFeSi earlier, should result in a reduction of the treatment duration, 

without impact on the final microstructural features.  

 

 The comparison between measured and solidification and homogenization 

models phase fractions shows agreement, indicating that they can predict the 

microstructural evolution during solidification and homogenization 

5. SUGGESTIONS FOR FUTURE RESEARCH 
Some suggestions for further research include the following: 

I.  Simulation of homogenization cooling using PRISMA. 

II. The effect of the ratio of Fe/Si and Mn/Si to the β-AlFeSi to α-AlFeSi phase 

transformation. 

III. Optimization of the homogenization duration when the heating rate increases. 
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