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Abstract

Blink detection can provide a very useful clinical indicator, because of its relation
with many neurological and ophthalmological pathologic conditions. In this thesis, a
system is proposed to automatically detect and classify blinks as “complete” or
“incomplete” in image sequences. This method utilizes iris and eyelid segmentation in
both eyes from the acquired images, using state-of-the-art neural network
(DeeplLabv3+), U-netand Segnet deep learning encoder-decoder neural architectures -
DLEDs. The sequence of the segmented frames is post-processed to calculate the
distance between the eyelids of each eye (palpebral fissure height) and the
corresponding iris diameter. These quantities are temporally filtered. Their fraction is
subjected to adaptive thresholding to identify blinks and determine their type, on each
eye independently. Two DLEDs, of the same architecture, were trained with manually
segmented images of iris and eyelids, respectively . The post-process was parameterized
usinga4-minute video. The proposed systemwas tested on eight (8) subjects, each with
a4-10-minute video. Several metrics of blink detectionandclassificationaccuracy were
calculated against the ground truth, which was generated by three (3) independent
experts, whose differences were resolved by a senior expert. Results show that the
proposed system achieved blink detection and classification accuracy between 79.8%
and 98.7% for each of the 8 subjects. It outperformed all three (3) experts in terms of
accuracy for 3 participants and two of the three experts for 2 of the remaining
participants. The proposed system was proven robust in handling unexpected
participantmovements and actions, as well as glares and reflections from the spectacles.
Also, the trained DLEDs were acquired and tested on RGB videos, that were captured
by a common web camera. Despite the fact that training dataset did not included any
images with those lighting conditions, the trained neural networks were able to detect

and segment iris and sclera.

Keywords

Deep learning, medical image segmentation, neural networks, encoder-decoder, blink

detection and classification
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1 Introduction

1.1 Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, known as Al, is a general term used to show that computers

can deal with some tasks and “think” as a human brain.
Machine Learning (ML) represents a set of algorithms trained on various data.
Deep Learning (DL), is a subset of Machine Learning inspired by the biological
structure of the human brain. In order to solve any task, DL is based on a structure
similar to the biological neurons. So, DL uses a multi-layered structure of algorithms,
known as neural network. Alike the human brain, neural network can be trained to
recognize patterns and classify different types of data. The relation between those three

terms is illustrated on Fig. 1.

Artificial Intelligence (Al)

A program that can sense, act
and adapt

Machine Learning (ML)

Variety of Algorithms whose performance is
improved as they “exposed” to more data

Figure 1: Relationship of Al, ML and DL

1.2 Neural Networks, Encoder-Decoder architecture

1.2.1 Neural networks
Neural network is a set of algorithms applied to recognize underlying relationships
in a set of data. A neural network is composed of multiple hidden layers. Each layer is

created by numerous neurons. A neuron isa mathematical model which takes inputs (i,
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I2, ..., in), multiplies them by their corresponding weights (w1, Wo, ..., wy) and then
passes the sum through a function (f), called activation function, to the other neurons.

The structure of a neuron is illustrated on Figure 2.

Figure 2: A simple neuron

Thereare various neural networks based on the number and architecture of each layer
of the multilayer neural network, such as the U-net, SegNet, Alexnet, MobileNet,
Deeplabv3+ etc. In this thesis, the architecture of U-net, Segnet and Deeplabv3+ will
be explained. The results that have been conducted in Section 3 (Results) are using the

Deeplabv3+ neural network.

1.2.2 Encoder-Decoder Architecture
The encoder-decoder networks have been successfully applied to many computer

vision tasks. Typically, the encoder-decoder network contains:

i. an encoder module, also known as a down-sampling path, that gradually
reduces the features maps, capturing higher semantic information
ii. a decoder module or an up-sampling path that retrieves the spatial

information using transposed convolutions.
This architecture is used in various neural networks, as SegNet, U-net and Deeplabv3+.

U-net is a convolutional neural network with encoder-decoder architecture with a
total of 23 convolutional networks. An example of U-net’s architecture is illustrated in
Figure 3. The encoding path is similar to a convolutional network. Each layer of the

encoder consists of the repeated applications of two (2) 3x3 convolutions, followed by

13



Rectified Linear Unit (ReLU) and a 2x2 max pooling operation with stride 2 for down-
sampling. Every step in the decoder consists of an up-sampling of the feature map
followed by a 2x2 convolution, a concatenation with correspondingly cropped feature
map from the contracting path, and two 3x3 convolutions each followed by aReLU. At
the final layer a 1x1 convolution is used to map each feature vector to the desired

number of classes.

input

- output
image: s segmentation
tile M2l 2 2 map

copy and crop

512 256 '
ﬂt‘l’l =»-conv 3x3, ReLU

“§ s s 1024 512

[elefl [ e # max pool 22

Y Lo 4 2 3 4 up-conv 2x2
--l:_'lb_ - conyv 1x1

Figure 3: U-net Architecture [13]

SegNet has an encoder network and a corresponding decoder network, followed by a
final pixelwise classification layer. The encoder network consists of 13 convolutional
layers which correspond to the first 13 layers of VGG16 network. The final decoder
outputis fed to a multi-class soft-max classifier to conduct class probabilities for each

pixel independently. An example of SegNet’s architecture is illustrated in Figure 4.

Convolutional Encoder-Decoder

Output

Pooling Indices Ca

RGB Image [ conv + Batch Normalisation + ReLU Segmentation
-Pooling -Upsampling Softmax

Figure 4: SegNet Architecture [14]
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1.2.3 DeepLabv3+
DeepLabv3+ is a state-of-the-art neural network on image segmentation. Before the
explanation of the architecture, some features should be defined, such as atrous

convolutionsand ASPP, to easily understand the structure of the neural network.

Atrous convolutions can explicitly control the resolution of the feature maps
occurring after each layer of convolutional neural network. Also, atrous convolutions
give the ability to adjust the convolutional filters in order to achieve capturing better
multi-scale information. In case of atwo-dimensional (2D) signal, like images, foreach
location i of the signal, on the output feature map y and a convolutional filter w, atrous

convolution is applied over the input x as follows:

ylil = ) xli+7- k] wik] (1)
K
where the atrous rate r determines the stride with which sampling is made at the input
signal. It has to be noticed that standard convolution can be determined from Equation
(2) forrater = 1. The adjustmentof the filters occurs due to the adaptively modification

of the rate value.

Atrous Spatial Pyramid Pooling, also known as ASPP, is an atrous version of SPP
in which the application of parallel atrous convolutions, with different rate at the
original image, return a fused image as a result. While objects of the same class can
have different scales in the image, ASPP helps to find out different object scales,
improving the accuracy. In Figure 5, an example of ASPP’s structure is illustrated.

_ rate = 12 rége_:blﬂ
rate = 6 — O O
e

oono
OmA [ ] o] [m
oono

— I
' ¥ Atrous Spatial Pyramid Pooling

Input Feature Map

Figure 5: Atrous Spatial Pyramid Pooling (ASPP) [15]

15



DeeplLabv3+ is based on atrous (or dilated) convolutions [15]. DeeplLabv2 [16]
implements a spatial pyramid pooling (ASPP) using a cascade of atrous convolutions
with increasingrate, replacingthe encoder —decoder architecture. Itwas further refined
by using a parallel atrous convolution module (DeepLabv3) [17]. Finally, the
Deeplabv3+is combined with Deeplabv3, with a simple decoder module, to recover
the object boundaries [18]. The evolve of DeepLab, until it reached its last state, can be
observed in Figure 6, where Figure 6(a) represents first DeepLab’s architecture and

combining a decoder like the one of Figure 6(b), occurs the latest version of DeepLab,

DeepLabv3+.
. = —_— = T .
L7 7 TO.Sx J'Zx =2 —
. = g TO.SX lzx Spatial Pyramid Pooling
Spatial Pyramid Pooling S . — ' 4x
—_ . l T 0.5%
— AYO.E;:»( lZX . .
- fosx Bx L S ——L {o.5x
. Io.s;( }2 LS —L 7
{o.5x : {o.5x
{o.5x 10‘5" le {o.5x
Image . Prediction Image Prediction Image . Prediction
(@) (b) (c)

Figure 6: In Figure 6¢ is depicted DeepLabv3+architecture [18]. This architecture is result of the combination of
DeepLabv?2 [16] architecture, Figure 6(a) and a simple decoder of a classic CNN, Figure 6(b)

1.3 Medical image segmentation

Medical image segmentation has a key role in computer-aided diagnostic systems
with various applications. As medical imaging modalities are rapidly evolving,
including microscopy, computed tomography (CT), magnetic resonance imaging
(MRI), ultrasound, X-ray and positron emission tomography, researchers’ attention is

triggered to develop and apply new medical image processing algorithms.

Image segmentation is considered to be the most essential image processing as it
extracts the region of interest (ROI) with a semi-automatic or automatic method. The

pixels of the original image are divided into areas/labels based on an algorithm.

1.4 Blink detection and classification
The assessment of blinking patterns has traditionally been of major interest due to

their correlations with a series of ophthalmological and systemic diseases [1-7].
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Formally, blink is defined as the provisional closure of both eyes, including the
simultaneous movement of the upper and lower eyelids [8]. Blinks are classified into
complete and incomplete, although there is no universal consensus exists in their
definition. Intheory, acomplete blink requires full contact of the margins of the eyelids
in one blink motion [9]. On the other hand, an incomplete blink should demonstrate
partial cover of the pupil [10], cover less than two-thirds of the cornea [11], or no
contact between the eyelids at all.

Blink-associated parameters attempt to address the unmet need for reliable,
reproducible and non-invasive biomarkers that facilitate both the diagnosis and the
follow-up of chronic diseases. For example, incomplete blinking is associated with
decreased tear break-up time parameter (TBUT) [12], which is prevalentin dry eye
disease (DED). However, since clinical measurement of TBUT is an invasive
technique, that requires direct application of fluorescein on the ocular surface,
incomplete blinking may be considered as an alternative measure of mild-to-moderate
DED assessment.

Thus, automatic eye-blink detection and classification systems may assist the
diagnosis of these diseases, as well as assess therapeutic schemes, both in clinical and
research settings. This task is often tackled using computer vision techniques, since
image acquisition and analysis can be performed continuously and non-invasively.

The field of machine learning and deep neural networks has facilitated several
computer-visiontasks, such as objectsegmentation and detection of Regions of Interest
(ROI) in images. Deep learning encoder-decoder (DLED) neural architectures, such as
U-net [13] and Segnet [14] are commonly used to segment medical images. DLED
neural architectures consist of an encoder (down-sampling) part and a decoder that
gradually up-samples the encoder’s output by transposed convolution.

Many approaches have been proposed for eye blink detection, mostly without
considering the classification of complete and incomplete blinks. In the study of
Drutarovsky and Fogelton [19], an eye blink detection algorithm was suggested
utilizing the vertical motions in the eye region, reaching mean accuracy 99% on public
datasets. A very similar method was introduced using the Gunnar—Farneback tracker in
the eye region and a finite state machine for each eye [20].

An approach based on multi- scale and orientation Gabor filtering [21] for blink
detection reported precision of 84.62%. Additionally, a method using Haar wavelets

and HOG (Histogram of Oriented Gradient) features, combined with SVM classifier
17



[22] reported blink detection with accuracy of 92.5% when tested using standard
databases and 86% when tested under real world conditions. A similar approach
utilizing Haar-like features, for face detection and template matching [23], reported
eye-blink detection accuracy of 95% and 77% for good and poor illumination,
respectively.

In the study of Choi et al. [24], a blink detection method was suggested using an
AdaBoost classifier, achieving accuracy of 96% on their own dataset. Al-gawwam and
Benaissa [25] proposed a novel facial landmark position estimation and used the
vertical distance between the upper and lower eyelids and Savitzky—Golay (SG) filter
to detect blinks with precision of 96.65% on standard datasets. A statistical Active
Appearance Model (AAM), to track and detect eye blinking [26], achieved accuracy
between 67.92%and 100%, on three differentdatasets. A real-time blink detector based
on a SIFT GPU-implementation [27], reported detection rate of 97% on very low
contrast images, acquired under near-infrared illumination.

Despite the number of researches done on simple eye blink detection, only a few
techniques deal with blink classification, i.e., complete and incomplete blinks. The most
recentof them [28] detects blink completeness,usingRecurrent Neural Network (RNN)
as a classifier. The F1 score was calculated between 0.879 and 0.976. Itshould be noted
that the detection of the eyes in each frame was performed manually. Moreover, a
method for eye blink detection and identification of five different eye states, employing
color information [29], achieved 65% - 90% true positive rate.

In this work, a fully automatic eye-blink detection and classification blink is
proposed, using an embedded camera at close distance to the face. The main
contributions of this thesis is:

e The automatic blink classification into “complete” and “incomplete”

e The use of state-of-the art DLED (DeepLabv3+) for iris and eyelid (palpebral
fissure) segmentation, trained on close-up face images, acquired during clinical
examination

e The post-process of the segmented images to estimate palpebral fissure height and
cornea (iris) diameter and their temporal adaptive filtering to detect and classify
blinks

18



e The methodology of ground truth generation that involves three independent
experts and a senior expert to resolve disagreement, allowing comparison between
the proposed method and the human experts.

The proposed algorithm has been applied to our clinical datasets and on a publicly

available dataset and is compared to other state-of-the-art methods.

2 Methodology

2.1 Overview of the proposed method

The proposed blink detection and characterization method incorporate the following
steps. Initially, two DLEDs were trained to segment iris and eyelids (palpebral fissure)
respectively, in both eyes, based ona 536-image training set. The trained DLEDs were
applied on each frame of a given video and generated the corresponding segmented
images. The blinks were detected and characterized as either complete or incomplete,
using post-processing of the ratio of the current palpebral fissure height over the
temporal median value of iris diameter of the corresponding eye. The post-process has

been parameterized using a test video. Those steps are graphically depicted in Figure 7.

2.2 Eyelid and iris segmentation using Deep Learning

A web camera was used to acquire images during the clinical examination. Two
different instances of DeepLabv3+ [17] neural network, using the MobileNetv2 [30] as
backbone, were trained to segment a) the palpebral fissure, including sclera and iris,
also called eyelid segmentation, and b) the iris, respectively. A typical example of the
segmentation for both neural networks is shown in Figure 8. It has to be mentioned that
the images contain only part of the face, in order to provide adequate spatial resolution
for the characterization of the blink. This is the reason why, most of the available face

detectors do not operate satisfactorily.
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Figure 7: The main steps of the proposed algorithm

Figure 8: Eyelids segmented frame (Left) and iris segmented frame (Right)

The iris and the eyelid DLED networks were trained using a manually annotated data
set of 536 RGB images for each neural network. The following parameters were used

for training the DLEDSs: minibatch size equal to 16, initial learning rate of 0.01 and a
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maximum of 30 epochs. Training and testing dataset were acquired by the images from

clinical examination videos of different participants.

2.3 Image post-process, calculation of palpebral fissure height and
horizontal iris diameter

When the DLED networks are applied, the binary images with the segmented iris and
eyelids are generated. The two largest connected components of each eye iris-
segmented frame are identified and their centroids Cg, C_ are calculated. The line
defined by Cg, C_ is lengthened to the image’s borders, using the Bresenham’s
algorithm [32] and the two line-segments lying inside the iris regions are identified,
providing the diameter of each eye dg, d (in pixels), as graphically illustrated in Figure
9(b).

Subsequently, the height of the palpebral fissure h, hr for the left and the right eye
are calculated. If the eyelids of both eyes have been segmented by the DLED, the two
largest connected components of the segmented frame are identified and their centroids
Vg, VL are calculated. The line passing through Vg and is perpendicular to the line (Vg,
V) is generated using the Bresenham’s algorithm and its segment, that lies inside the
corresponding binary connected component of the eyelid segmented frame, is
determined. The height of the palpebral fissure hg is set equal to the length of this
segment. The same process is applied to calculate the height of the palpebral fissure h,
forthe lefteye. The calculationsare depictedin Figure 9 foratypical frame. The current
slope at frame k is calculated as shown below, providing that both eyelids have been
detected,

V
g, =tan"t L—= 3
g v 3)

Rx Lx

otherwise 6 will not be defined in the current frame. The average slope at frame k, is

calculated using the exponential forgetting recursive formula,
0 =af +(1-a),,, @)

where the parameter a is set to 0.1, providing that both eyelids have been detected in

the current frame with the current value of 6 close enough to the average slope,
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|6k —§k_l| =0.2rad, in order to prevent possible outliers affecting the average slope.

Otherwise, the current average slope duplicates the previous average value: g, =4, .

If the eyelids of only one eye have been segmented, then aslightly different approach
is applied. First, the binary eyelid image is rotated by an angle equal to the currentvalue

of the average slope —¢,. Subsequently, the binary rotated image is projected

horizontally and the height of the palpebral fissure hg or h_ is set equal to the length of

the non-zero projection. The aforementioned steps are shown graphically in Figure 10.

If no eyelid has been segmented, then the corresponding eye is assumed to be fully
closed.

(b)

Figure 9: Eyelid (a) and iris (b) segmentation usingthe trained DLEDs and calculation of the palpebral fissure
heights (hr, hi) and iris diameters (dr, di)
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Figure 10: Calculation of palpebral fissure height for one eye only.

2.4 Identification of complete and incomplete blinks
The identification of complete and incomplete blinks is based on the previously

defined parameters (dg, d, hg, h.) and two thresholds. More specifically, for each frame
k of a video, the palpebral fissure heights hf,h and the moving median values dX, d/

of iris diameter are calculated by:

ds =median(dg™,....dg,...,d§™) (5)
dy =median(d;"",...,dy,....d"") (6)

The median value of iris diameter is computed over a window of length 2n+1 frames
that includes the element in the current position, n elements backward, and n elements
forward, with n set to a number of frames that span 0.6 seconds (defined
experimentally). Subsequently, the following fraction is defined for each eye:

k
< _ N

hk
pR_@’ >

p :J_f' (7)
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These quantities express the fissure height as a fraction of moving median iris
diameter, enabling the proposed system to handle cases of different patient-camera

distance or the patient’s orientation, throughout video acquisition. Furthermore, the
median value of iris diameter is used in order to calculate the pf, p fractions in each

frame, even when the iris is partially or fully occluded in the current frame.

The moving median value of the fractions are calculated over a number of frames n;

that cover approximately 5 seconds before and after the current frame k.

Fj;:median( e PR ;ml) ©

p'ﬁ:median( e P tw) ©

The blink is detected independently for each eye (R or L), the type of blink, as well
as the starting and ending frames (startg, endg and start,, end, ) are determined using

the following heuristic algorithm that uses two global thresholds 0<T, <T; < 1.

For each frame k
If pS <T,pk and pi'>T,ps™ Then starta=k
If pS >T,pk and pit<T,pk™ Then endr=k
If min(pg)<T,P,m=start,,...,.end, then

type=“complete” else type= “incomplete”

In Figure 11 it is shown an example of segmented image sequences for a complete
(left) and incomplete (right) blink from patient 1. Yellow and blue colors refer to the
two regions, eyelidsand superimposediris, respectively,after the application of the two
neural networks. The values of dX,d* and h,h¢ are overlaid on each frame, along

with the graphic illustration of the fractions Py, p; (at the upper left corner of each

frame). The values of dg, d|, hg, h_ are shown in Figure 12 and Fig. 13 for one-minute

of the same video.
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The values of p;, pt are shown in Figure 14. The starting and ending frame of

complete and incomplete blinks is indicated by blue symbols “0” and “+” for the
proposed algorithm and black “o0” and “+” for ground truth. The first two “rows” of

symbols represent the left eye’s blinks and the remaining “rows” the right eye’s blinks.

The thin dashed lines indicate the current values of T,p5 and T,p} (red and green

respectively).
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Figure 11: Example of complete (a) and incomplete (b) blink of Subject 1 (frames 1134-1138 and 460-464). DLED-segmented
eyelids and superimposed iris shown in yellow and blue color, respectively.
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Thethick dashed linesindicate the currentvalues of T, pk (red)and T,p; (green). The
incomplete blink of Figure 11 correspondsto frames 460 — 464 and the full blink to
frames 1134 — 1138.

Although the algorithm usestwo global thresholds T;, T,, the inclusion of the moving

median filtered horizontal iris diameter a;,af and the moving median filtered
fractions p;, r)t are expected to provide robustness in handling different subjects, or
motions / change in posture during video acquisition of the same subject. As it can be
observed in Figure 14 the current thresholds of the fractions pg, pf for the incomplete
blink (T,pkand T,p )and for the full blinks (T, prand T,/ ) vary smoothly throughout

the video of the same subject (red and green, thin and thick dashed lines).

After the application of the above algorithm to every frame of a given video, the
detected blinks, with a duration less than three (3) frames, are discarded.
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Figure 12: Palpebral fissure height (pixels).
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Figure 13: Iris diameter (pixels) of each eye. Also, the median value has been plotted. Obviously, when the blink is full (closed
eye) theiris’ diameter is zero, since the iris can’t be detected.

2.5 Clinical setting

This was a prospective study. Protocol adhered to the tenets of the Declaration of
Helsinki and written informed consent was provided by all participants. The
institutional review board of Democritus University of Thrace approved the study
protocol (protocol number/date of approval: ES2/Th15/25-2-2021). The clinical study
was conducted between October 2020 and March 2021. Study official registration
number is NCT04828187.
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Figure 14: Current values of pg, p,lf (green and red continuous lines). “0” and “+”: start and end of complete and
incomplete blinks, determined by ground truth (black) and proposed system (blue), for the right (R) and left (L)
eye. Thin dashed lines: the current values of T,ps (red)and T,pf (green). Thick dashed lines: current values of

T,pk (red) and T,p¢ (green).

3 Results

3.1 Image and Video Datasets, blink ground truth annotation

The two DLEDs used for the segmentation of eyelids and iris were trained using 536
images with manual delineation of the object of interest (481 images of the iris dataset
and 55 additional images of partially or fully closed eyes), resized to 288%288 pixels.
All images were acquired using Raspberry Pi Camera Module IR-CUT v2 (5MP,1080p)
with 2 IR LED lights, connected to a Raspberry Pi 3 model v1.2, operating at the
original resolution of 1080x1920. Camera setup is depicted in Figure 15. The
participants were placed at a distance of 15 to 20 cm from the camera lens and were
asked to watch a TV setabout 2.5 meters away.
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Figure 15: The IR camerasetup for the clinical extraction of videos. The two IR LED lights are visible and
annotated with arrows at the right image.

The training of DLEDs took place using MATLAB on a Microsoft Windows 10
computer with the following specifications: i7-2700K @3.5GHz, 16GB Ram, GPU:
Nvidia GeForce GTX1650 super. The training time for each DLED was approximately

48 hours. The forward pass of a single frame through each DLEDs was equal to 0.06
seconds on average, including image resizing. After DLED training, the proposed
system was tested on videos from eight different patients. Each video duration was

between 4 and 10 minutes.

Two independent blink identificationsare assumed to agree, if and only if there is
sufficient temporal overlapping and the type of blink is the same. Given two
identifications of a blink, defined by the starting-ending frame, [a;, a;] and [bs, b5], the
fraction of (temporal) intersection over union (IOU) between the two blink

identifications is calculated as [33]:

AnB _min(a,b,)-max(a,b )
AUB  max(a,,b,)—min(a,b,)

10U = (6).

If the IOU is greater than or equal to 0.2, as proposed in the study of Choi etal. [24],

then the two blink identifications agree. Generic examples of the application of IOU
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are depicted in Figure 16. Please note that in Blink 3 the intersection will obtain

negative value, thus, by definition, the two blinks are not in agreement.

This definition for blink identification agreement is used to compare expert — ground
truth and proposed algorithm — ground truth identifications.

Blink 1 Blink 2 Blink 3
Blink Annotation 1 L a—
Blink Annotation 2
Intersection o9 or—0_ frathes
Union C O @ ® ® ®

Figure 16 Examples of IOU calculation between two blink identifications.

The starting and ending frame and the type of each blink was annotated in every video
by three (3) independentexperts, accordingto their clinical experience. The annotations
were reviewed by a senior expert, who provided the final blink annotation in case of
disagreement between any two experts: non-unanimoustype of blink, or IOU<0.2, as
depicted in Figure 17, Blink 2 and 3, respectively. If all three experts agree for a specific
blink, then the ground truth for this blink is generated using the average starting and

average ending frame indicated by the experts (as depicted in Figure 17, Blink 1).

Blink 1 Blink 2 Blink 3
Expert agreement Expert disagreement Expert disagreement
Time (frames)
M
Time (frames)
..- f H
1 Time (frames)
Expert 3
0
(10}

Senior Expert
H
Ground truth Time (frames)

Figure 17 Annotation by the 3 independent experts and the final ground truth, generated by resolving expert
disagreement by a senior expert. The green and blue lines indicate detection of complete and incomplete blink
respectively.
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Blinks were annotated in all videos of the 8 participants using this method and the
details are shown in Table I. The results of the proposed system on these videos will be

compared with the ground truth in the next subsection.

3.2 Quantitative segmentation results

In Figure 19 two short sequences of frames are presented, depictinga complete and
an incomplete blink with the segmented iris and eyelid visualized in different color.
Since the type of blink in Figure 19(a) is “complete”, the palpebral fissure has not been
detected. In the “incomplete” blink of Figure 19(b), the palpebral fissure is detected in

each frame of the sequence, with smaller height, as expected.

Table | THE DETAILS OF BLINK-ANNOTATED VIDEOS

Patient Duration (min) Frames, fps Complete blinks  Incompleteblinks
1 6 9.000, 25 183 67
2 10 15.000,25 59 27
3 10 15.000,25 448 0
4 5.3 8.000, 25 52 42
5 4 5.800, 25 182 16
6 4 6.000, 25 158 4
7 4 6.000, 25 97 51
8 5 7.000, 25 130 85

Figure 18: Iris and eyelids (sclera) are detected despite patient’s movement.
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Figure 19 Sequence of frames for (a) “complete” and (b) “incomplete” blink from one of the participants, with
segmented iris and eyelids. The palpebral fissure heightand iris diameter have also been drawn.




The quality of eyelid and iris segmentation, achieved by the two DLEDs is further
assessed qualitatively in Figure 18 that illustrates a few frames with successful

segmentation, despite the patient’s action to put the spectacle on and off.

3.3 Parameterization and quantitative results

In order to determine the type of blink, the values of thresholds T; and T, that are
used in subsection 2.2 need be optimally set. To this end, the followingalgorithm is
applied. A four-minute video of a different subject is input into the algorithm, using all
combinations of Ty in range [0.6, 0.9] and T, in range [0.1, 0.4] with step equal to 0.02.
For these combinations, the system’s overall accuracy is calculated and plotted in
Figure 20. Based on this graph, the values of T; and T, that maximize optimally the
overall blink detection and classification accuracy were detectedas T; =0.88 and T, =

0.34. These two optimal values of thresholds were used forall the results of this work.

0.9

10.8

407

0.1

) 01 06 T

Figure 20 The proposed system’s accuracy for different values of T1, T2. The surface is clearly unimodal,
indicating the existence of optimal thresholds

After the determination of the two optimal thresholds, the proposed system was
applied to the available videos and the resulting confusion matrices for each participant

(collectively for both eyes) are shown in Table 1I. In the next eight sequenced tables,
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Table 111 through Table X, the confusion matrices are presented for each patient and

each expert.

Table Il Confusion matrices of the proposed system summed forall participants

Ground
Expert 1 Expert 2 Expert 3 System
Truth
C 1 N C | N C | C | N
C 1199 75 37 1169 124 19 1273 37 1285 18 6
| 79 200 17 18 271 7 40 255 75 213 4
N 31 27 0 8 2 0 5 18 4 15 0
Table I11 Confusion matrices for Patient 1
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C 1 C 1 N
C 140 23 20 179 4 0 183 0 179 3 1
1 26 39 2 7 60 0 0 67 13 53 1
N 10 5 0 0 2 0 0 2 0 1 0
Table IV Confusion matrices for Patient 2
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | C | N
C 47 8 4 47 4 8 50 10 58 1 0
1 4 9 14 1 22 4 0 27 12 15 0
N 7 5 0 0 0 0 1 6 0 7 0

35



Table V Confusion matrices for Patient 3

Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | C |
C 400 38 10 444 0 6 435 19 445 0
| 0 0 0 0 0 0 0 0 0 0
N 6 3 0 6 0 0 2 6 2 1
Table VI Confusion matrices for Patient 4
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | C |
C 51 1 0 47 4 1 44 5 52 0
| 3 39 0 9 32 1 2 39 6 36
N 5 7 0 0 0 0 0 0 0 0
Table VII Confusion matrices for Patient5
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | C |
C 177 2 3 134 44 4 178 0 178 2
| 4 11 1 0 16 0 6 10 8 8
N 3 3 0 2 0 0 2 2 2 5
Table VIII Confusion matrices for Patient 6
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | C |
C 156 0 0 149 7 0 156 0 158 0
| 4 4 0 0 8 0 4 4 2 2
N 0 0 0 0 0 0 0 0 0 0




Table IX Confusion matrices for Patient 7

Ground

Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | N C | N
C 97 0 0 88 9 0 97 0 0 97 0 0
| 33 18 0 1 50 0 23 28 0 20 31 0
N 0 4 0 0 0 0 0 2 0 0 1 0
Table X Confusion matrices for Patient 8
Ground
Expert 1 Expert 2 Expert 3 System
Truth
C | N C | N C | N C | N
C 131 3 0 81 52 0 130 3 0 118 12 0
1 5 80 0 0 83 2 5 80 0 14 68 3
N 0 0 0 0 0 0 0 0 0 0 0 0

In order to calculate the classification metrics (accuracy, sensitivity, specificity,
precision, negative predictive value, false positive rate, false discovery rate) separately
for the two blink classes, the following quantities are defined:

e TP (true positive): the number of blinks correctly characterized as the current class,
e TN (true negative): the number of blinks correctly characterized as the other class,
e FP (false positive): the number of wrong blink classificationsas the current class,
e FN (false negative): the number of blinks wrongly classified as “no-blink”.

Based on Table Il, the classification metrics are calculated separately for each patient
and type of blink in Table XI. The metric’s definitions are presented in the below
Equations (10)-(11).
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(TP + TN)

Accuracy or Acc = m (12)
e __(TP)
Sensitivity or Sens = ) (13)
s _ (TN)
Specificity or Spec = INTFP) (14)
.. (TP)
Precision or Prec = (15)
(TP+FP)
Negative Predictive Value or NPV = (TN (16)
(TN+FN)
False Positive Rate or FPR = (FP) an
(FP+TN)
False Negative Rate or FNR = (FN) (18)
(FN+TP)
False Discovery Rate or FDR = (FP) (19)
(FP+TP)

If none of the blinks have been characterized by the experts as one of the two classes
and the system has also classified no blinks in this class, then specificity, precision,
FPR and FDR cannot be calculated and are characterized as Not Applicable (N/A) in
Table XI.

Finally, the annotations of each expertare also compared with the ground truth for
each available video. The overall classification accuracy of the three experts, as well as
the proposed system, is calculated as the fraction of blinks correctly classified and
shown in Table XII. The proposed system outperformed at least 1 of the 3 experts in all
participants. More specifically, the proposed system appears to be more accurate in

blink detection surpassing all 3 experts in 3 out of 8 participants and 2 expertsin 2 of
the remaining participants.
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Table XI CLASSIFICATION METRICS (%) FOR EACH SUBJECT, FOR TWO BLINK CLASSES (C: COMPLETE, I: INCOMPLETE)

Pat. Class Acc. Sens. Specif. Prec. NPV FPR FNR FDR
C 93.15 97.81 80.00 93.23 92.86 20.00 2.19 6.77
' | 92.40 77.61 97.81 92.86 92.27 2.19 22.39 7.14
C 84.88 98.31 55.56 82.86 93.75 44.44 1.69 17.14
2 | 78.49 55.56 87.88 65.22 82.86 12.12 44.44 34.78
C 98.89 99.33 0 99.55 0 100 0.67 0.45

3 | 99.78 N/A 99.78 0 100 0.22 N/A 100
Cc 93.62 100 85.71 89.66 100 14.29 0 10.34

‘ | 93.62 85.71 100 100 89.66 0 14.29 0
C 93.00 97.80 44.44 94.68 66.67 55.56 2.20 5.32
° | 92.54 50.00 96.22 53.33 95.70 3.78 50.00 46.67
C 98.77 100 50.00 98.75 100 50.00 0 1.25

° | 98.77 50.00 100 100 98.75 0 50.00 0
C 86.49 100 60.78 82.91 100 39.22 0 17.09
! | 85.91 60.78 98.98 96.88 82.91 1.02 39.22 3.13
C 87.74 90.77 82.93 89.39 85.00 17.07 9.23 10.61
8 | 86.51 80.00 90.77 85.00 87.41 9.23 20.00 15.00
C 93.56 98.17 72.85 94.21 89.83 27.15 1.83 5.79
Al | 92.98 72.60 97.50 86.53 94.14 2.50 27.40 13.47

(Acc: accuracy, Sens: sensitivity, Spec: specificity, Prec: precision, NPV: negative predictive value, FPR: false positive rate,

FDR: false discovery rate)

The proposed system was tested on the Talking Face dataset [34] and itwas compared

with state-of-the art methods of Soukopovaetal. [31] and Fogelton etal. [28], in terms

of F1 score. Talking Face dataset is a 200-second (5000 frames) video of a person

engaged in conversation. Although it was not intended for blink classification, ground

truth is provided with indication for complete blinks. In Table XIII, F1 score is

presented for each method, for both types of blink, as well as for the simple blink

detection.

TABLE XII OVERALL BLINK CLASSIFICATION ACCURACY FOR EACH PATIENT, ACHIEVED BY THE PROPOSED
SYSTEM, AS WELL AS THE THREE MEDICAL EXPERTS (THE BEST PERFORMER IS SHOWN IN BOLD).

Patient Expert 1 Expert 2 Expert 3 Proposed system
1 0.8283 0.9127 0.9094 0.9243
2 0.6980 0.8023 0.8191 0.7849
3 0.7912 0.9737 0.9416 0.9867
4 0.9158 0.8830 0.8085 0.9362
5 0.95 0.7677 0.95 0.9073
6 0.9756 0.9573 0.9756 0.9691
7 0.7566 0.9324 0.8333 0.8591
8 0.7727 0.6750 0.8750 0.8651
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It can be observed that the proposed system performs better than the other two
methods in blink classification (complete and incomplete), but marginally worse in

blink detection.

Table X111 THE F1 SCORE ACHIEVED BY THE PROPOSED METHOD COMPARED WITH TWO EXISTING METHODS FOR THE TALKING
FACE DATASET [34].

Blinks Method 1 [31] Method 2 [29] Our Method
Complete - 0.939 0.970
Incomplete - 0.25 0.66

Total 0.948 0.971 0.928

3.4 Testing regular light-condition videos

The two DLEDs were tested also on videos that captured using a simple web camera.
Despite the factthat the training datasetof DLEDs did notcontain any images thatwere
captured during normal conditions (like physical light or light from a table lamp), the

two neural networks are able to detect and segment sclera and iris, respectively.
The steps of the algorithm that was followed are:

Application of an eye tracking algorithm

Creation of a .txt file that contains the bounding box of eye region
Crop of the original video using the txt file

Apply the two (2) DLEDs for blink detection and classification

ok~ b e

Replace the cropped-segmented video region with the corresponding region

of the original video

The above steps are illustrated in Figure 22, while an example of a segmented blink
sequence is depicted in Figure 21. Also, at left lower corner of each video frame are
displayed the total number of right and left blinks, as also and its class (“complete” or
“incomplete”). At left upper corner, a continuous line is generated indicating the

fractions pg, p{ foreacheye with differentcolor, throughoutthe video. Details for each

eye, like height (palpebral fissure) and iris diameter are also denoted on each frame of

the output video.
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Figure 21: The application of the DLEDs f(; a blink sequence of a “daylight” video
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Crop original
video

Blink detection and
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Final RGB video

Figure 22: Steps of RGB video creation algorithm
The usage of bounding box allows capturing video from a longer distance than the
one of clinical examination. The segmentation result is better, when focusing only on
the region of eyes. A typical example of video segmentation is depicted in Figure 21.

The bounding box is represented in Figure 23 for a testing frame of the video.

Figure 23: Bounding box is created after the eye tracking algorithm
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4 Discussion

The task of eye-blink detection has been tackled, mainly with rather invasive
approaches, such as using EOG (electro-oculogram), such as [Divjak, M., & Bischof,
H.] and [Jammes, B., Sharabty, H.]. Video analysis is another popular approach that
requires no physical contact with the participant and can be immediately applied using
a simple camera. Numerous computer vision techniques have been proposed for video-
based blink detection [19-28] with a very high accuracy, on several proprietary and

public datasets.

The classification of blinks into complete and incomplete has been proposed for
assessment of diseases. Among them are the benign eyelid spasm [1], and the Ocular
Surface Disease, a disease possibly caused by derangements of the eyelid structure or
its secretions [2], leading to extreme dry eyes and hyperosmoticity of tears [3].
Pathological blink patterns have also been linked to Schizophrenia [4], Tourette
syndrome [5], or Parkinson’s disease [6], which show abnormal pause between
blinking, and progressing hypernuclear paralysis, where abnormalities are observed in

all types of blinking [7].

However, the classification of eye-blink is a far less researched subject. The only
work that deals with complete blink detection is the one proposed by Fogelton and
Benesova [29]. The proposed work utilizes video analysis techniques to classify blinks
into “complete” and “incomplete”. As already described, it uses deep learning (DL) to
segment the eyelids and the iris in each frame and a series of post-processing steps to
identify and classify blinks. The images of the dataset used to train the DL neural
networks for the segmentation were acquired during the clinical examination. Due to
the examination setup, the participant’ faces were illuminated only by the TV set and
the two camera IR LEDs, acquiringhigh resolution images of the upper half of the face.
Thus, our datasets differ significantly from the typical face-datasets that are available

for face and blink detection.

The comparison with state-of the-art methods (Table XIII) was performed on a
publicly accessed dataset [34], for which the performance of the method of Soukupova
[31] and [29] (the only blink classification method) had been reported. Despite the
substantially different training set, the proposed method outperformed [29] at blink
classification, when each class is considered separately and was only marginally
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outperformed by [29] and [31] in terms of blink detection (ignoring blink
classification). In addition, in [29] the positions of the eyes are not extracted but
manually annotated. Similarly, in [31] six landmarks are utilized around each eye, as
provided using [37]. This method requires the whole of the face to be visible and it
cannot be applied to our datasets.

The technique employed for the generation of ground truth (three independent
medical experts, whose conflict were resolved by a senior expert), enabled the
comparison of the proposed system with the human experts in detecting and classifying
blinks. As it can be observed in Table XII, the proposed system outperformed at least
1 of the 3 experts in all 8 participants and surpassed all 3 experts in 3 out of 8
participants, in terms of blink detection accuracy. We believe this can be mainly
attributed to the usage of thresholds that vary with time and are automatically defined

relative to each participant’s non-blink eyelid geometry.

Furthermore, results have shown thatborderlinecomplete and incomplete blinks may
be misclassified both by the proposed system and the human experts. The proposed
quantification of the fissure height as a fraction of moving median of the corresponding
iris diameter enables the system to handle robustly different eye-types and subject
movements and may alleviate the problem of border-line blink classifications. Thus, it
could be investigated in the future as an alternative to blink classification. Future work
will also include the utilization and validation of the proposed system for non-invasive
extraction of blink-related biomarkers for specific ophthalmological and neurological
diseases, or even investigate the possibility of utilizing it as a self-assessment tool, in a

pervasive computing environment.

5 Conclusion

In this work, we propose an automatic system that detects and classifies blinks from
a video sequence acquired using an embedded camera within a close distance to the
subject’s face. The system utilizes two (2) DLEDs that are trained to segmentand detect
the iris and eyelids of the eyes. Each segmented frame is post-processed to calculate the
iris diameter and the palpebral fissure height of each eye, whose fraction is the main
indication for blink detection and classification. The usage of temporal median filtering
of the iris diameter and the applied thresholds, with the contribution of the moving

median value of the aforementioned fraction of eacheye, providesrobustness in various
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scenarios, such as motion of the patient that changing the orientation of the head, or
patient-camera distance during the examination. Results also showed that subjects with
different characteristics, such as spectacles, can be handled robustly by the algorithm,
even in casesof stronglight reflections or actions suchas puttingspectacles on or taking
them off. Also, the proposed system seems to be quite accurate for different testing

videos, like normal day-light conditions, in terms of blink detection.

The system was tested on eight (8) participants and the overall blink detection
accuracy is compared with the results achieved from three (3) experts, in terms of
overall accuracy. The proposed system constantly outperformed at least one, and in
certain participants even all of the three experts. Finally, the proposed system was
proven competitive, against state-of-the-art methods in blink classification, on a public
dataset, quite different than the type of videos that it had been trained and tested upon.
Further research is been conducted, where the proposed system is used in order to
connect and in long-term help to be taken medical decisions that are related with

pathological and neurological diseases of the eye.
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