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Abstract

This thesis introduces an approach to automated music generation. More specifically, a

neural network architecture is described which composes new music content. Its architecture

is mostly comprised of Bidirectional Long Short­Term Memory layers, used to model the

underlying structure of music. The model is trained in various datasets, containing pieces

from different genres, trying to learn each genre’s patterns. This approach managed to model

music structure and generate harmonic pieces.
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Περίληψη

Αυτή η διπλωματική εργασία παρουσιάζει μια προσέγγιση για αυτοματοποιημένη σύν­

θεση μουσικής. Πιο συγκεκριμένα, περιγράφεται η αρχιτεκτονική ενός νευρωνικού δικτύου

που παράγει νέα μουσικά κομμάτια. Η αρχιτεκτονική του αποτελείται κυρίως από αμφίδρομα

(bidirectional) Long Short­Term Memory επίπεδα, προκειμένου να μοντελοποιήσει τη βα­

σική δομή της μουσικής. Το μοντέλο εκπαιδεύεται σε διάφορα σύνολα δεδομένων, τα οποία

περιέχουν κομμάτια από διαφορετικά μουσικά είδη, με σκοπό να μάθει τα μοτίβα του κάθε

είδους. Η προσέγγιση αυτή κατάφερε να μοντελοποιήσει επιτυχώς τη μουσική δομή στα πε­

ρισσότερα είδη, όπως και να συνθέσει αρμονικά κομμάτια.
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Chapter 1

Introduction

People have been interested in composing music since ancient times. Lately, automated

music generation has been a popular topic of research [2][3][4][5][6][7][8]. In general, great

accomplishments have been made by machine learning and deep learning study fields, such

as text generation, speech recognition, speech generation etc. However, generating music

with minimum human intervention is a challenge, due to the complex nature of music con­

tent. Any music piece is, basically, comprised of sequences of notes played by instruments.

Nevertheless, those sequences are complicatedly structured and many aspects have to be con­

sidered by the composer in order to create a pleasing result. In automated music generation,

two distinct probability distributions must be considered. The first one is the probability dis­

tribution of simultaneous notes, the distribution of chords in other words. The second one is

the probability distribution of a note occurring right after a given note or sequence of notes.

Last but not least, dynamics, that is the loudness of notes playing, must be considered, in

order for the piece to be expressive rather than mechanical.

1.1 Related Work

There have been several approaches to automated music composition so far, all employ­

ing machine and deep learning techniques. Deep learning is preferred over models created

manually, for instance grammar­based [9] or rule­based [10] music generation systems. The

reason is that deep learningmodels implement an agnostic approach, meaning that theymodel

the structure of data, without making the assumption that it can be modelled accurately. As a

result, a deep learning model can be used for various music genres. Moreover, according to

1



2 CHAPTER 1. INTRODUCTION

[11] machine learning tools are able to create content, even when its nature is too complex

to be modelled by formulations or brute force design, adding that they are more likely to

generalize and perform well, in case inputs change.

To begin with, Todd [12] created the first artificial neural network for algorithmic com­

position in 1989. Todd, considering only the pitch and duration of each note, created a fully­

connected network with also feedback connections, with the intention of learning musical

structure. In addition,Mozer [13] extended the idea of learning notes sequentially and ofmod­

elling the probability of the next note given the previous sequence, by developing a recurrent

auto­predictive connectionist network called CONCERT. This architecture uses representa­

tions not only of pitch and duration of notes, but also of harmonic structure. CONCERT,

based on the content it generated, performed well at learning the underlying structure of mu­

sic pieces. Those two approaches of algorithmic composition are fundamental for automated

music generation, since many relative researches that conducted later, are relied on them.

Another approach is implemented by MiniBach model, a two layered feedforward neural

network described in [2]. MiniBach is a music generation system which produces accompa­

niment pieces for alto, tenor and bass voices, provided a melody for a soprano voice. This

system uses binary symbolic representation of music as input and output. Furthermore, the

use of Restricted Boltzmann Machine (RBM) [14] combined with recurrent neural networks

(RNN) was proposed by Boulanger­Levandowski et al. [15]. RBM models the distribution

of chords by studying a musical corpus, while the recurrent network models the sequences

of successive notes. As a result, the network can focus on two different dimensions of data,

while there is interaction between them. To put it in simple words, the RBM focuses on the

vertical dimension of music, that is simultaneous notes or chords. On the other hand, the

RNN models the temporal sequence of notes in the horizontal dimension. The RNN­RBM

network is able to produce harmonic polyphonic pieces, by combining the two distinct prob­

ability distributions. Due to their architectures though, both can produce only sequences of

fixed length.

Oore et al. [16] created a Long Short­Term Memory (LSTM) neural network to generate

music. They used symbolic representations of recorded human performances, in order to

model dynamics of notes, adding that, by employing an iterative strategy, pieces’ duration is

not fixed. Their system generated classical music that lacked long­term structure, however

the local structure, for example phrasing dynamics, was noticeable. Johnson [17], inspired by
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the RNN­RBM architecture, proposed biaxial LSTMs to model probability distributions of

both notes and chords. The network consists of two layers in the vertical axis and two in the

horizontal, resulting in predictions on both axes. The results obtained showed that the model

managed to generate consistent and harmonic pieces

Bidirectional recurrent networks are widely used in speech and text recognition together

with generation [18] [19][20]. They have been shown to model accurately long­term depen­

dencies, especially in combination with LSTM, since they are trained in both directions of

sequences (from beginning to end and vice versa). They have also been implemented for

composing music purposes [21] [22] [23] where the generated pieces sounded more pleasing

to listeners, compared to pieces composed by recurrent networks or other approaches.

Yang et al. [24] proposed a convolutional generative adversarial network for generating

pop accompaniment melodies. They employed Convolutional Neural Networks (CNN) as a

generator for melodies, along with a discriminator to learn the distributions of the melodies.

The final model, called MidiNet can generate multi­track pieces which sound realistic and

pleasant, according to user study. For the same purpose, an encoder­decoder [25] architecture

is suggested in PopMAG [26]. Based on the results, PopMAGmodelled effectively harmony

between the different tracks and long­term context. Finally, Jukebox [27] and WaveNet [28]

are two of the very few models that consider music in the raw audio domain, represented by

waveforms. They employed convolution feedforward networks to generate music of various

genres along with vocal tracks.

1.2 Purpose of the Thesis

The purpose of this thesis is to create a music generating system, in order to generate

multi­track music pieces. To elaborate more, the aim is to generate new and expressive

melody pieces, as well as accompaniment pieces in respect to the melody ones. Most re­

searches so far, are focused either on generating single­track music or on generating only

accompaniment content in respect to already existing melodies. Furthermore, most of them

consider binary representation of notes, meaning that loudness of notes are not engaged. How­

ever, this thesis aims to generate both original melodies and accompaniment tracks, while

also considering note’s loudness. To obtain harmonic and sound pleasing results, the system

models the probability distributions of notes occurring simultaneously (chords), along with
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the probability distributions of notes occurring after a given sequence of notes. Dynamics are

also modelled, towards achieving expressiveness.

In addition, the system is trained in different genres to test its ability of learning different

styles of music and producing content accordingly. Finally, since taste in music is subjective,

quality of outcomes can not be evaluated in an objective way. This thesis aims to provide a

more objective way of evaluation, by predicting the likelihood of a generated piece generated

becoming popular in Spotify, a digital music service with a vast database of songs used by

millions of users.

1.3 Organization of the Thesis

The thesis is organized as follows.

• Chapter 2 is a brief introduction to Deep Learning and its fundamental concepts em­

ployed for this thesis.

• Chapter 3 describes the format of data as well as the encoding implemented.

• Chapter 4 aims to analyze the models built for accomplishing music generation.

• Chapter 5 analyzes the results obtained.

• Chapter 6 is the conclusion of the thesis.



Chapter 2

Introduction to Deep Learning

The purpose of this chapter is to introduce Deep Learning (DL) and its basic concepts

that were considered in this thesis.

2.1 Definition

Deep Learning is a subfield of machine learning, concerned with Neural Networks (ΝΝ).

Neural Networks are series of algorithms inspired by the structure and function of human

brain [29]. Basically, a NN architecture mimics the way a human brain operates in processing

data, learning patterns and making decisions. A NN consists of a large set of units connected

to each other. These units are also known as neurons or nodes.

A node in NN is a mathematical function that processes data according to network’s

architecture. Nodes are interconnected, adding that a weight is assigned to every connection

link, which carries information about the input signal. Every node has also an internal state,

also known as activation signal, produced by the combination of input and an activation

function. A collection of nodes that operate together at a specific depth, is called layer.

2.2 Building blocks

The basic building blocks of neural networks are discussed in the following sections.

5



6 CHAPTER 2. INTRODUCTION TO DEEP LEARNING

2.2.1 Topology

Topology of a network is the way its nodes as well as connection links are arranged. Based

on topology, networks can be divided into two categories, the feedforward networks and the

feedback ones.

Feedforward networks

Feedforward networks consist of consecutive layers. Every layer’s nodes are connected to

the nodes of the previous/next layer. In addition, there is no feedback loop hence information

flows in one direction, from the input layer to the output. The first layer of the network is

called input layer, the last layer is called output layer, while any layer in between is named

hidden layer. In figure 2.1 the structure of a feedforward NN is depicted.

Figure 2.1: The structure of a feedforward NN. Reprinted from [1].

Feedback Networks

Feedback networks have also feedback loops, as a result information flows in both di­

rections, from input to output as well as from output to input. In this thesis, recurrent neural

networks (RNN) are considered, that is feedback networks with closed loops. An example of

a fully recurrent architecture can be seen in figure 2.2, where all nodes are connected to all

other nodes. Principally, a recurrent network is a feedforward one, extended with recurrent

connections, in order to learn series of items. As a consequence, the output of a hidden layer

reenters the layer as an input, hence the RNN learns not only from the current input, but also

from its previous state.
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Figure 2.2: A fully recurrent NN. Reprinted from [1].

2.2.2 Learning

The method of modifying the weights of connections between nodes, is defined as learn­

ing. There are three main categories of machine learning, supervised learning, unsupervised

learning and reinforcement learning.

Supervised Learning

This type of learning is dependent, as a NN is trained under supervision. To begin with,

the dataset is fixed, adding that every instance is associated with an expected outcome. The

general objective is to predict outcomes for new instances. When a NN is trained under su­

pervised learning, its output is compared to the desired outcome, provided by the dataset.

Then, based on the difference between the predicted and the actual outcome, the weights are

adjusted so as to minimize that difference.

Unsupervised Learning

Unsupervised learning is an independent type of learning, meaning there is no supervi­

sion. The dataset is also fixed and the NN learns patterns from unlabeled data. The target

outcomes are not provided, so the algorithm learns on its own the structure of inputs. The

general objective is extracting information. Such examples are feature extraction, clustering

etc.
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Reinforcement Learning

A system trained under reinforcement learning, learns incrementally. An agent interacts

with a dynamic environment in which the agent performs an action. Then the agent gives

feedback, also named reward, to the system providing information about the action. The

system makes adjustments so as to learn an optimal strategy and maximize the rewards.

2.2.3 Activation Functions

Activation functions in NN are functions which compute the weighted sum of inputs and

biases, used for deciding if a neuron can be either fired or not [30]. They are applied over

the inputs to get the desired outcome. An activation function can be linear or non­linear,

according to the function it represents. In this thesis, the following non­linear functions were

used.

Sigmoid Function

Sigmoid function is a non­linear activation function. It is a bounded differentiable real

function, defined for real input, adding that it has a positive derivative everywhere [31]. The

sigmoid is given by equation 2.1 and is shown in figure 2.3. Due to its shape, sigmoid func­

tion is suitable for tasks that require making decisions between two options, such as binary

classification.

sigmoid(x) = σ(x) =
1

1 + e−x
(2.1)

Softmax Function

Another activation function is the softmax function [32]. Softmax computes the proba­

bility distribution over an output variable of discrete values. In simple terms, it computes the

probability of each possible outcome c given an input variable x, i.e. P (y = c|x). Thus, the

output ranges from 0 to 1 and the sum of probabilities is equal to 1. The softmax is given by

equation 2.2. It is used for multi­class classification tasks and it returns the probabilities of

each class. The class with the highest probability is the target.

softmax(xi) =
exi∑
j e

xj
(2.2)
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Figure 2.3: Sigmoid function.

Hyperbolic Tangent Function (Tanh)

Hyperbolic tangent function, also known as tanh function, is another non­linear activation

function. It is a bounded, zero­centered function and ranges from ­1 to 1. Tanh is given by

equation 2.3 and is shown in figure 2.4. The tanh function is preferred over sigmoid for

training multi­layer networks, as stated in [33].

tanh(x) =
ex − e−x

ex + e−x
(2.3)

Figure 2.4: Tanh function.
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2.3 Gradient­based Training

Training a neural network is the process of minimizing a large­scale , non­convex cost

function [34]. Cost functionsmeasure the error between the predicted and the target outcomes.

In other words, the purpose of training is to find those parameters of the model that satisfy

the best an objective function. This search for the optimal values of the parameters, is named

optimization. A very common and effective optimization method is the gradient descent.

Towards optimization, the entire dataset is passed through several times, updating the values

of the parameters. This process is called epoch, and the total number of epochs is a hyper­

parameter, indicating the total number of times the dataset is going to be passed through.

The steps of a gradient descent training algorithm, for solving a simple linear regression

problem h(x) = b+
∑n

i+1 θixi, are the following:

1. initialize all parameters θi and the bias b of the model to random or heuristic values

2. compute the outcome h

3. compute the cost function Jθ(h)

4. compute the gradients ∂Jθ(h)
∂θi

5. update all parameters including the bias at the same time, according to the update rule

θi := θi − α∂Jθ(h)
∂θi

, where α is the learning rate, see figure 2.5

6. repeat the process until a minimum is reached

Figure 2.5: Gradient decent. Reprinted from [2].
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However, when training a neural network there are more dimensions involved. In that

case, the problem has the form f(x) = b +W ⊺X the gradient of cost function J is defined

by equation 2.4, while the updating rule by 2.5.

∇J(W ) =

(
∂J

∂w1

,
∂J

∂w2

, . . . ,
∂J

∂wn

)
(2.4)

W := W − a∇J(W ) (2.5)

In addition, because of the non­linearity of activation functions, the cost function is not

convex. The cost function may have irregularities, hence many local minima instead of an

absolute minimum. As a result, gradient descent may stop iterating after reaching a local

minimum and not the absolute, as it is supposed to. Saddle points of cost functions are also a

major challenge for the gradient descent algorithm [35].

Because of these challenges, more sophisticated methods are usually used as optimizers.

Those considered in this thesis are the following.

2.3.1 Stochastic Gradient Descent (SGD)

In stochastic gradient descent, data are shuffled and each sample is considered individ­

ually. A sample is drawn randomly, the gradients are calculated with respect to that sample

and finally the updating rule 2.5 is applied. The average behavior of the algorithm converges

towards the optimal solution, that is the absolute minimum of the cost function.

According to [36], SGD has some benefits over the gradient algorithm. To begin with,

SGD converges much faster towards the solution, especially when dataset contains redun­

dant instances, such as duplicates which give identical gradients. As SGD requires only a

few instances in each iteration, instead of the entire dataset, it avoids considering many iden­

tical instances, hence identical gradients. Moreover, SGD usually does not get stuck in local

minima of the cost function, as opposed to the gradient algorithm.

2.3.2 Momentum

An optimizing method, such as SGD, may still be slow. The addition of a momentum

term has been shown that accelerates the learning process [37]. Momentum in notated as γ
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and its typical value is 0.9. When momentum is used, the updating rule is given by equation

2.6. Signs might be different, depending on the implementation.

W := W − a∇J(W ) + γ∆Wt−1 (2.6)

2.3.3 RMSprop

RMSprop is an optimizer which is very similar to SGD with momentum. It is an un­

published method proposed by Geoffrey Hinton [38]. In RMSprop , the sum of gradients is

defined recursively as a decaying average of past squared gradients [39]. The running average

of a timestep is given by equation 2.7, while the updating rule by 2.8.

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.7)

where g = ∇J(W ).

W := W − α√
E[g2] + ϵ

g (2.8)

where ϵ is a smoothing term.

2.4 Long Short­Term Memory

RNN [40] architectures (figure 2.6) are effective with short­term dependencies, but fail

when further context is required for predictions. The failure, among other reasons explained

in [41], may also be caused by vanishing gradient. During training, activation functions’

derivatives get multiplied many times. When using functions like sigmoid, derivatives have

small values, due to the range of values. As training progresses, the values of derivatives

may be so small at some point, that they almost vanish and therefore layers can not be trained

properly.

Long Short­Term Memory [42] is a particular type of RNN that can deal successfully

with long­term dependencies. Its architecture is depicted in figure 2.7. LSTM consists of

cells. Cells manipulate network’s memory by either remembering or forgetting information,

with the assistance of gates. There are two kinds of states , the hidden state and the cell state,

that are transferred to the next cell. The architecture (from left to right as shown in figure 2.7)

is further explained in the following sections.
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Figure 2.6: Architecture of RNN.

Figure 2.7: Architecture of LSTM. Orange rectangles represent NN layers, while the green

circles and rectangle represent pointwise operations.
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2.4.1 Forget Gate

Forget gate is the one deciding whether information is kept or not. The previous cell’s

hidden state or output, as well as the current network’s input, are fed to the gate as input.

Inputs get multiplied by weights and the bias is added, followed by sigmoid activation. As a

result, the output is a vector with values within {0, . . . , 1}. The closer to 1, the more important

it is to remember this piece of information. The output vector is multiplied to the cell state.

2.4.2 Input Gate

Input gate adds information to the cell state. Firstly, it manages which values to add by

filtering them with a sigmoid function, similarly to the forget gate. Then, using tahn function,

it creates a vector comprised by all possible values. Values of the output range from ­1 to 1.

Finally, the two outputs, from sigmoid and tahn functions, are multiplied and added to the

cell state.

2.4.3 Output Gate

Principally, the output gate selects useful information from the cell state and outputs it.

At first, it scales the values of the cell state with tahn function. With a filter similar to the

forget output’s, it separates the useful information for the output from the redundant. Lastly,

it sends as an output the useful information as well as the hidden state.

2.5 Evaluation of model

There are several metrics to evaluate a model’s performance. Those used in this thesis are

explained in the following sections.

2.5.1 Cross­entropy

Cross­entropy is a measurement for the error between two probability distributions. It

is a common cost function for classification tasks, both binary and multi­class. Its benefit

over other cost functions is that it simulates also rare events [43]. The cross­entropy of two

discrete probability distributions P and Q with the same supportX is given by equation 2.9.
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There are two types, the binary cross­entropy used for binary classification tasks as well as

the categorical cross­entropy used for multi­class classification.

H(P,Q) = −
∑
x∈X

P (x) logQ(x) (2.9)

2.5.2 Area under the ROC Curve (AUC)

Area under the ROC Curve is one of the fundamental metrics for evaluating a classifi­

cation model. ROC is a probability curve and AUC represents the ability of the model to

separate the classes [44]. The bigger the value of AUC is, the more capable the model of

discerning classes. The ROC curve is depicted in figure 2.8. It is the plot of true positive rate

(TPR), also called recall or sensitivity, against false positive rate (FPR). TPR and FPR are

given by equations 2.10 and 2.11, respectively.

Figure 2.8: The ROC curve.

TPR =
True Positives

True Positives+ False Negatives
(2.10)
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FPR = 1− False Positives
True Negatives+ False Positives

(2.11)



Chapter 3

Data

This chapter aims to describe the nature of data used. Furthermore, the encoding of data

is analyzed, as well as the pre­processing applied, in order for data to be processed by the

model.

3.1 Description of data

It is critical to consider the representation of the musical content, on the grounds that

representation and its encoding are firmly associated to the configuration of the input and

output of the model. In general, the two different representations that are considered are au­

dio and symbolic. Audio representation of music corresponds to continuous variables, while

symbolic to discrete. Even though both ways of representation do not differ much when it

comes to processing from a deep learning architecture, the majority of current architectures

for music generation choose the symbolic one, as mentioned in [2]. Based on that fact, the

symbolic representation of music is, also, considered in this thesis.

More specifically, a data set of MIDI files is used for music generation. MIDI is an

acronym forMusical Instrument Digital Interface, which is a technical standard that describes

a protocol, a digital interface and connectors and as a result it provides a way of exchanging

data between different software applications and devices [45]. This format supports multi­

track music, that is music comprised of parallel tracks, each one with distinct sequence of

notes. MIDI files consist of event messages that correspond to real­time note performances

and control data. Each event is set in a track chunk, which consists of a delta­time value and

the event. Delta­time specifies the timing an event occurs and it could be either a relative

17
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metrical time or an absolute time. In case of relative metrical time, the number of ticks (mea­

surement of musical time), from the beginning or from the previous event, is specified to

indicate the start of an event.

There are many different events [46], but the ones that were used in the process of gen­

eration are the following:

• Note on, an event that implies a note is played. This event also contains some char­

acteristics. The first one is the channel number, which correlates with the instrument

that plays the note. The channel number is an integer within {0, 1, . . . , 15}. Moreover, a

pitch number is contained, a integer within {0, 1, . . . , 127} that indicates the note pitch.

Lastly, the velocity is designated by an integer within {0, 1, . . . , 127}, and implies the

loudness of the note played.

• Note off, an event that indicates a note is no longer played. The Note off event has

the same characteristics as the Note on, however velocity specifies how fast a note is

released.

• Set Tempo, an event, usually in the beginning of each track, that specifies its tempo. In

case there is not a Set Tempo event, the default value is 120 beats per minute (BPM).

• Program Change, an event that tells a device a certain program should be selected for

a MIDI channel. At most times this means that a certain instrument is selected for the

channel, therefore the following notes will be played by this instrument.

• End Of Track, an event that indicates when a track ends.

3.2 Track recognition

For music generation, especially when dealing with multi­track music, it is fundamental

to specify the type of each track. To elaborate further, melody track is very important in music

generation but commonly it is not played by a single instrument and consequently a single

MIDI channel. Thus, it is required to recognize the melody track, as well as other types, such

as bass and drum tracks, for generating accompaniment music.

MIDI Miner [47] was used in PopMAG [26] for track type recognition. MIDI Miner is

a Python library that implements a random forest classifier, which recognizes melody, bass,
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chord, drum and accompaniment tracks. This library was also employed for the purpose of

this thesis.

3.3 Encoding of data

Once the format of data is determined, data have to be encoded in order to get processed

by any model. Having discrete variables and 128 different pitch values in MIDI files, every

channel track can be encoded into a two dimensional array. The array consists of 128 rows,

each one corresponding to a pitch value and as many columns as the total ticks of the track,

each one representing a single tick. The values of the cells are the velocity values of Note on

and Note off events, with positive and negative sign respectively. The velocity of each pitch

is repeated in the array, for as many columns as the total ticks the pitch is played. As a result,

the array created is very similar to MIDI file visualization, see figures 3.1 and 3.2.

Figure 3.1: A visualization of MIDI file. Each column corresponds to one tick, while each

row to a pitch (in this figure only 8 out of 128 pitches are shown). The darker the colour of

the bar, the bigger the velocity.

To conclude, eachMIDI file is encoded in two dimensional arrays, corresponding to types

of tracks recognized by MIDI Miner. Python­midi library [48] was used in order to easily

access MIDI files’ content, as well as write MIDI files.

3.4 Data binning

In music generation, it is important to consider dynamics, that is the variation in loudness.

Dynamics add expressiveness to a music piece, otherwise it sounds too standardized. The two
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Figure 3.2: The array corresponding to the MIDI visualized in figure 3.1.

basic dynamic indicators are f and p meaning ”loud” and ”quiet” respectively [49].

In MIDI files dynamics are represented by the velocities of Note on and Note off events.

There are 128 total distinct velocity values and since music pieces are unique, it would be

challenging for any model to learn music patterns. Most of the systems that have been devel­

oped so far, usually consider a binary representation of note events, for example 0 meaning

Note off and 1 Note on. Such representation would lead to composing music lacking dynam­

ics, hence lacking expressiveness. On the other hand, dealing with the entire range of velocity

is a challenge. Therefore, velocity values were binned.

Data binning or bucketing is a common feature engineering technique used not only to

transform continuous variables into discrete, but also to reduce the cardinality of discrete

values [50]. Values are divided into bins and each bin gets replaced by a representative value,

usually the center (e.g. the mean or the median). The values of velocity were binned so as to

match the scale of dynamics. The representative values, listed in table 3.1, are the same as

the defaults for MuseScore [51], a music composition and notation software.

So values were binned according to the following rules:

• v = 0 (remains the same)

• 0 < v ≤ 16 =⇒ v = 16

• 16 < v ≤ 33 =⇒ v = 33
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Indicator Level Velocity

fff very very loud 127

ff very loud 112

f loud 96

mf average 80

mp average 64

p quiet 49

pp very quiet 33

ppp very very quiet 16

Table 3.1: Velocity values associated with dynamics indicators for MuseScore.

• 33 < v ≤ 49 =⇒ v = 49

• 49 < v ≤ 64 =⇒ v = 64

• 64 < v ≤ 80 =⇒ v = 80

• 80 < v ≤ 96 =⇒ v = 96

• 96 < v ≤ 112 =⇒ v = 112

• 112 < v ≤ 127 =⇒ v = 127

where v is the velocity value of a MIDI event.





Chapter 4

Model Building

The aim of this chapter is to analyze the NN architectures built, in order to generate music

content.

4.1 Objective

To begin with, the general objective of the model needs to be specified. The objective may

include for example if the goal is to generate content ex nihilo (out of nothing) or generate

accompaniment content. Consequently, the model is being built with regard to its goals.

In this thesis, the objective consists of the following goals:

• both ex nihilo and accompaniment generation

• length variability

• expressiveness

• melody­harmony consistency

Ex nihilo generation was set as goal so as to create original melodies, provided only a

seed (input vector). In addition, generating accompaniment music content for the melody is

desired, in order to create multi­track music content. In other words, the aim is to generate

melody as well as support to the melody.

Length variability was also desired for melody generation. This means that the total num­

ber of ticks will not be fixed, hence the duration of the content generated may vary. Duration

23
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of each piece is set by the user. Length variability applies only to melody generation, as the

accompaniment music’s duration equals melody’s duration.

Expressiveness is an important factor inmusic, thus dynamics were considered, as already

mentioned in chapter 3.

Last but not least, the generated content is wanted to be melody­harmony consistent. Har­

mony is defined as the combination of simultaneously played notes, also known as chords,

while melody is a sequence of single notes. In order for a music piece to sound pleasing,

melody and harmony should interact. By examining music from the encoding’s perspective

(described in section 3.3), melody is associated with the horizontal axis (tick dimension),

while harmony with the vertical axis (pitch dimension). Consequently, the model must con­

sider sequences in both axes.

Two separate models were built for satisfying the objective. A melody model for gener­

ating the melody track, as the name suggests, and an accompaniment model for generating

support content in respect to melody. They both share the same architecture, however they

are configured differently towards achieving different goals.

4.2 Architecture

The architecture is mainly inspired by Johnson’s proposed biaxial LSTMs [17]. This

model also considers sequences in both axes of data, adding that it employs Bidirectional

LSTM instead of LSTM layers, as it is found to perform better [21]. The architecture, de­

scribed in the following sections, is originally built for the purpose of this thesis.

The NN built consists of two separate, pre­trained subnetworks merged into one. The

first subnetwork, pitch model, is responsible for modelling the chords, while the second, time

model, for temporal sequences and dynamics of the notes.

All networks employ LSTM layers, described in section 2.4, towards modelling the prob­

ability distributions, with Bidirectional [52] wrapper layer. The Bidirectional wrapper com­

bines two hidden RNN layers, in this case LSTM layers, of opposite directions. Therefore,

the networks are able to model more effectively long­term dependencies of music content.

For the implementation of the NN, Keras [53], an open­source software library with

Python interface, was employed. For visualizing the architectures Netron [54], a visualizer

for DL and ML models, was used.
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4.2.1 Pitch Model

The pitch model learns patterns in the vertical dimension of data, along the pitch axis

(see figure 3.2). This way, the network models the probabilities of notes occurring simulta­

neously, given the previous chord played. This model is the only one that considers binary

representation of music content, so as to focus only on chords learning and not dynamics.

Namely, the encoded array contains ones, in case a note is being played, and zeros otherwise.

A single tick of shape (128, 1) is fed into the model and the next tick is output. The input’s

shape indicates that samples consist of 128 timesteps, corresponding to 128 pitches, and one

feature, as it is fed one tick at a time (see figure 4.1). As follows, the model learns which

notes are more likely to occur, based on previous pitches’ values.

Figure 4.1: The pitchmodel’s input. The arrows indicate timesteps of sequences. In this figure

only 5 out of 128 pitches are displayed.

The network is comprised of 6 total layers, apart from the input layer:

1. Bidirectional LSTM layer. The LSTM hidden layers have 128 units and tanh activation

function. They also return the sequences, meaning that they return all the timesteps of

input.

2. Dropout layer with 0.3 rate. The Dropout layer sets randomly some units to 0, during

training, to prevent overfitting.
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3. Bidirectional LSTM layer. Each LSTM layer consists of 128 units, tanh activation

function and returns sequences.

4. Bidirectional LSTM layer. Each LSTM layer has 64 units, tanh activation function and

returns sequences.

5. Dense layer with Time Distributed wrapper, with 1 unit and sigmoid activation func­

tion. The Time Distributed wrapper layer basically applies sigmoid activation to every

timestep of the input, hence to all pitches.

6. Flatten layer, in order to map the output to a single column vector.

The number of layers and their parameters were determined through experiments, with the

intention of achieving accuracy scores as high as possible. Its architecture is depicted in figure

4.2.

4.2.2 Time Model

The time model is responsible for learning patterns in the horizontal dimension, along the

tick axis (see figure 3.2). Thereupon, the network models the probabilities of notes occurring

directly after a provided sequence of notes. Dynamics are considered, as a result the network’s

output contains also the probabilities for each bin of dynamics.

More specifically, the model is fed a sequence of 240 ticks (see figure 4.3) and predicts

the next tick. Therefore, the model is trained to predict which notes are more likely to occur

after a given sequence, adding the loudness of those notes.

The model is made up by 7 total layers, apart from the input layer:

1. Bidirectional LSTM layer. Each LSTM hidden layer has 128 units, tanh activation

function and returns sequences.

2. Dropout layer with a rate of 0.3.

3. Bidirectional LSTM layer. The LSTM layers consist of 64 units, have tanh activation

function and return sequences.

4. Dropout layer with 0.3 rate.
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Figure 4.2: Pitch model’s architecture.
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Figure 4.3: The time model’s input. The arrows indicate timesteps of sequences. Only 10 out

of 240 ticks and 4 out of 128 pitches are displayed in this figure.

5. Bidirectional LSTM layer. Each hidden layer is comprised of 64 units, tanh activation

and returns sequences.

6. Permute layer to rearrange the dimensions of the vector. The previous layer’s output

has shape (240,128). Towards applying the final activation along the pitch axis, the

vector needs to be transposed.

7. Dense layer with 9 units (as the total number of possible dynamics’ values) and softmax

activation. As a result, the final output has shape (128,9), whichmeans that to each pitch

value correspond 9 probabilities, one for each dynamic bin.

The total number of layers and their parameters were specified through experiments, to­

wards achieving accuracy scores as high as possible. Its architecture is shown in figure 4.4

4.2.3 Merged Model

The models described in sections 4.2.1 and 4.2.2 are merged into one network, in order

to make predictions. Both networks are trained to model probability distributions of notes,
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Figure 4.4: Time model’s architecture.



30 CHAPTER 4. MODEL BUILDING

considering sequences in distinct axes of data. For the purpose of making predictions based

on both distributions, the merged network multiplies their outputs. Thus, the probability of a

note occurring is calculated not only by the pitch model, but also from the time one.

For the two outputs to be multiplied element­wise, their shapes have to match. So, the

pitch model’s output (a single column vector of shape 128) is repeated for 9 total columns,

resulting in an array with shape (128, 9), after a rearrangement of dimensions.

The merged model has two additional Dense layers with Time Distributed wrapper, to­

wards achieving higher accuracy and AUC score. The first layer is comprised of 256 units

with tanh activation, while the second of 9 units (as the range of dynamics) and softmax ac­

tivation. Hence, the final output is an array with shape (128, 9) containing the probabilities

of dynamics corresponding to each pitch.

Its architecture is displayed in figure 4.5.

4.3 Melody Model

The melody model uses sequences of notes only from the melody track. In addition,

pauses were removed from the encoded melody track. In other words, ticks that contain no

notes were not considered by the melody model, on the grounds that AUC score was sig­

nificantly higher and the generated content was more pleasing, compared to having pauses

considered.

4.3.1 Pitch Model

The pitch model is fed with the last tick played as input, and it then predicts the probabili­

ties of the next tick’s notes. It is compiled with RMSprop optimizer, an initial learning rate of

0.001 and momentum of 0.9. Binary cross­entropy is used as a loss function, since the model

considers binary representation of notes. The model is trained for 100 epochs with a batch

size of 100 and a learning rate scheduler. The learning rate scheduler adjusts the learning rate

during training. For this task, the network achieved higher accuracy scores with a decaying

rate. Thus, the learning rate is set to decay according to the 4.1 rule. Basically, the rate is

decreased by half every 10 epochs.

learning rate := learning rate · 0.5⌊
1+epoch

10
⌋ (4.1)
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Figure 4.5: Merged model’s architecture.
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4.3.2 Time Model

The time model is fed a sequence of 240 successive ticks to predict the next tick. The

length of sequencewas chosen through experimentation, in order to capture changes inmelody.

The model is compiled also with RMSprop optimizer, an initial learning rate of 0.001 and

momentum of 0.9. Categorical cross­entropy was used as loss function, on the grounds that

the outputs are one­hot encoded. It was trained for 50 epochs and a batch size of 100. Time

model, also, adjusts the learning rate according to rule 4.1.

4.3.3 Merged Model

The two pre­trained models are merged into one. Consequently, the final model is fed the

inputs of pitch and time networks. In figure 4.6 the inputs are displayed. The red rectangle

corresponds to time model’s input (only 13 ticks are shown instead of 240), while the blue

rectangle is the pitch model’s input. The yellow rectangle is the tick to be predicted.

Figure 4.6: A visualization of melody model’s inputs. Only 8 pitches are displayed instead of

128.

The merged model is compiled with RMSprop optimizer, learning rate of 0.001 and mo­

mentum of 0.9. It is trained for a single epoch with a batch size of 500, so as to minimize

categorical cross­entropy.
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4.4 Accompaniment Model

The accompaniment model uses sequences from the contextual accompaniment track

(e.g. drum track, bass track e.t.c.), as well as the melody track of each song. This is nec­

essary in order for the accompaniment track to interact with the melody one, otherwise the

outcome would not be harmonic.

4.4.1 Pitch Model

Accompaniment’s pitch model is similar to the melody’s pitch model, however the inputs

differ. Towards accomplishing interaction between the two tracks, the pitchmodel is fed a tick

from themelody track and it outputs the notes being played in the accompaniment track, at the

same tick (time). The network considers also pauses in tracks, otherwise the synchronization

between tracks would be lost, however in case both ticks contain no notes they are removed.

Therefore, the model predicts which notes are most likely to occur simultaneously with the

melody’s notes. Thismodel is compiledwith the same parameters as themelody’s pitchmodel

(see section 4.3.1) and it is trained for 50 epochs with a batch size of 50.

4.4.2 Time Model

Time model processes sequences of 240 ticks from the accompaniment track to predict

the next tick, along with dynamics. This way, the model learns patterns of successive notes in

the contextual track, independently of the other tracks. Pauses are removed from the encoded

tracks. It is compiled and trained with the same parameters as the melody’s time model (see

section 4.3.2).

4.4.3 Merged Model

The merged model is fed inputs of both pre­trained models. In figure 4.7 the inputs of the

accompaniment model are shown. The red rectangle is the input of time model (13 instead of

240 ticks are depicted), the blue rectangle stands for the pitch model’s input, while the yellow

is the tick to predicted. As shown, pitchmodel is fed with the tick from themelody track that is

occurring simultaneously with the tick from the accompaniment track that is to be predicted.

This way, the model is able to accomplish harmony between the two distinct tracks. Because
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of the importance of synchronization, pauses are necessary also for this model. However,

simultaneous ticks containing no notes are once again removed.

The network is compiled with RMSprop optimizer, learning rate of 0.001 and momentum

of 0.9. It is trained for a single epoch, with a batch size of 1000 and categorical cross­entropy

as loss function to be minimized.

Figure 4.7: Accompaniment model’s inputs. The first array stands for the melody track and

the second to an accompaniment track of the samemusic piece. Only 8 out of 128 total pitches

are displayed in both tracks.

4.5 Generation

First of all, when a new music piece is to be generated, its tempo (BPM) and duration

need to be specified by the user. The duration is given in seconds and it is converted to MIDI
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ticks. The actual duration in seconds of a music tick, depends on tempo and resolution of the

MIDI track and it is calculated by the following formula:

tick = ⌈ 1

ratio
· seconds⌉ (4.2)

where ratio is given by

ratio =
60

tempo · resolution
(4.3)

The value of resolution is set to the default, which is 220 Pulses per Quarter note [48].

A seed is also necessary for the generation process. The user gives the 240 first ticks of

the tracks (melody, bass, drum e.t.c.) of any music piece. Those ticks are binned appropriately

and are fed to the models. Firstly, the next tick of the melody track is predicted is predicted,

followed by the first tick prediction ­ in respect to the melody tick ­ for the rest tracks. The

process is continued iteratively, until the desired number of ticks is reached.

An empty array of the prosper shape (#number of tracks, 128, #total ticks) gets initialized.

Since both models output arrays of shape (128,9) containing probabilities for each velocity

bin, the bin with the highest probability will be chosen for each pitch. As a result, the final

tick has shape (128,1) and is added in the array. However, if the same tick occurs more than

300 consecutive times, then the bin with the second highest probability will be chosen for

the less likely pitch to occur. To put it in simple words, the pitch that is less likely to occur

compared, will be played. That way, models are prevented from predicting the same notes

over and over again.

By the end of the process, the array is decoded in a MIDI file accordingly to the encoding

process explained in section 3.3.





Chapter 5

Results

The aim of this chapter is to present the results of the models and evaluate them.

5.1 AUC scores

The models were tested for four different music genres:

• classical

• blues

• rock

• jazz

Therefore, each model was trained using four distinct datasets containingMIDI files from

the different genres. For generating classical music, Classical Music MIDI [55] dataset was

employed, which contains the melodies of 295 pieces. Blues Genre MIDI Melodies [56],

which contains the melody tracks of 122 pieces, was used for generating blues melodies. For

the generation of rock and jazz content, the MIDI files used were collected manually from

the Internet.

Classical, blues and rock datasets contain only melody tracks, hence only the melody

model was trained. Jazz dataset has polyphonic content, meaning that the accompaniment

model was also trained for each track.

The losses and AUC scores during the training phase are presented in the following sec­

tions.
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5.1.1 Classical genre

The training history of the pitch model is depicted in figure 5.1. As shown in the graphs,

the pitch model achieved an AUC score of 0.99, hence performed well and managed to model

accurately the harmony of the classical content.

Figure 5.1: Training history of classical pitch model.

The training history of the time model is displayed in figure 5.2. Time model also per­

formed well, achieving 0.99 AUC score, thus the temporal sequences along with dynamics

were modelled accurately.

Figure 5.2: Training history of classical time model.

Since the merged melody model is trained for a single epoch, the training history can not
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be depicted. The last value of the loss function was 0.0072, while the final AUC score was 1.

This indicates that the network managed to model accurately the underlying structure of the

classical content.

5.1.2 Blues genre

The pitch model’s training history is depicted in figure 5.3. The model achieved 0.99

AUC score, indicating that the harmony was modelled with high accuracy.

Figure 5.3: Training history of blues pitch model.

In figure 5.4, the training history of the time model is displayed. As shown in graphs, the

time model achieved an AUC score 0.99, meaning that the temporal sequences and dynamics

of the notes were captivated very accurately.

The final merged model achieved an AUC score of 1, while the last value of the loss

function was 0.015. As a result, the network performedwell on the blues dataset andmodelled

its musical structure.

5.1.3 Rock genre

The training history of the pitch network is displayed in figure 5.5. Themodel achieved an

AUC score of 0.97, hence the harmony of the rock dataset was modelled accurately enough.

The time model’s training history is shown in figure 5.6. The network achieved 0.99AUC

score, therefore the successive notes along with their dynamics were captured with precision.
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Figure 5.4: Training history of blues time model.

Figure 5.5: Training history of rock pitch model.
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The merged model’s final AUC score was 0.99, while the final value of the loss function

was 0.0124. So overall the model seems to have modelled successfully rock melodies.

Figure 5.6: Training history of rock time model.

5.1.4 Jazz genre

The jazz dataset contains multi­track pieces, so both models were trained on this one. The

melody model was trained on melody tracks, while the accompaniment model was trained

on the bass, drum and accompaniment tracks.

Melody track

The pitch model’s training history is depicted in figure 5.8. As shown, the pitch model

achieved a high AUC score of 0.99, meaning that the harmony of the melody tracks was

captured accurately.

The time model’s training history is displayed in figure 5.8. This network, also performed

well, reaching an AUC score of 0.99. Correspondingly, successive notes and their dynamics

were modelled successfully.

The final merged model achieved an AUC score of 1, adding that the last value of the loss

function was 0.0183. So overall the network seems to have modelled efficiently the structure

of the melody tracks.
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Figure 5.7: Training history of jazz pitch model for the melody tracks.

Figure 5.8: Training history of jazz time model for the melody tracks.
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Figure 5.9: Training history of jazz pitch model for the bass tracks.

Bass track

In figure 5.9 the training history of the accompaniment’s pitch model is shown, when

trained on the bass tracks. The model reached 0.96 AUC score, indicating that the harmonic

structure, between the melody and the bass tracks, was accurately modelled.

The time model’s training history is displayed in figure 5.10. The network achieved an

AUC score of 0.99, as a result the temporal sequences along with the notes’ dynamics were

modelled accurately.

Figure 5.10: Training history of jazz time model for the bass tracks.

The merged model’s final AUC score was 0.99, while the last value of the loss function
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was 0.0123. So the accompaniment networkmanaged to model the structure of the bass tracks

in respect to the melodies.

Drum track

The pitch model’s history regarding the drum tracks is depicted in figure 5.11. The har­

mony between melody and drums was captured with high accuracy, as the model achieved

an AUC score of 0.99.

Figure 5.11: Training history of jazz pitch model for the drum tracks.

In figure 5.12, the training history of time model, for the drum tracks, is displayed. This

network also achieved 0.99 AUC score, meaning that successive notes and their dynamics

were modelled with precision.

The merged model achieved also 0.99 AUC score, adding that the final value of the loss

function was 0.0143. Therefore, drum tracks were accurately learned by the accompaniment

model.

Accompaniment track

The training history of the pitch model, regarding the accompaniment tracks, is shown in

figure 5.13. Even though the model scored high AUC for the training set and low values of

the loss function, the network did not manage to predict the chords accurately.

In figure 5.14 the training history of the time model is depicted. The model achieved an

AUC score of 0.99,meaning that temporal sequences along with the notes’ dynamics were
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Figure 5.12: Training history of jazz time model for the drum tracks.

Figure 5.13: Training history of jazz pitch model for the accompaniment tracks.
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modelled accurately.

Figure 5.14: Training history of jazz time model for the accompaniment tracks.

The merged model achieved an AUC score of 1, while the last value of the loss func­

tion was 0.0159. This indicated that eventually the accompaniment’s structure was modelled

accurately.

5.2 Popularity prediction

The outcomes of the networks can not be evaluated completely objectively, due to the fact

that taste in music is a subjective matter. Thus, an attempt was made to predict the likelihood

of the pieces created becoming popular in Spotify platform. For the task of popularity predic­

tion, SpotGenTrack Popularity Dataset [57] was employed. This dataset contains data sources

and features extracted. In this thesis, low level features, like chromagram and MFCCs, were

used, as they can be extracted from any audio using librosa library [58].

Dataset’s songs were categorized into popular and non­popular, based on their score.

Therefore, songs with a popularity score above 50 were considered as popular, while the

rest non­popular. As a result, this was mainly a classification task. The features were trans­

formed with Linear Discriminant Analysis, using Scikit­learn library [59], while Stochastic

Gradient Descent was employed to classify the songs.

The classifier achieved an accuracy score of 73%. Its confusion matrix is displayed in

figure 5.15. Zero stands for the non­popular class, while one for the popular. The classification
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report is in table 5.1.

Precision Recall F1­score

0 0.80 0.65 0.72

1 0.69 0.83 0.76

Table 5.1: Classification report.

Figure 5.15: Classifier’s confusion matrix

5.3 Discussion

The architecture was very successful in generating classical pieces. The outcomes are

pleasant to hear and seem to be harmonic. In general, classical music tends to have clearer

texture compared to other genres and is mainly harmonic. Therefore, the good performance

of the model was somehow expected.

Regarding the blues genre, the model was also successful in generating pleasant and har­

monic content. Blues’ texture is mostly a single melodic line, consequently it was feasible

for the model to learn the melodic and harmonic patterns.
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Even though the network reached high AUC scores when trained on the rock dataset, the

outcomes are not as good as expected. The pieces composed are pleasant to hear and seem to

have harmony, however they would not be identified as rock songs. As a matter of fact, this

was expected on the grounds that rock genre has heterogeneity in its pieces. On that account,

when a model is trained on a very diverse dataset, the outcomes are expected to be confused.

Jazz genre generally is considered to have very complex harmonic structure. Therefore,

the moderate performance of the accompaniment model for Jazz music can be explained.

However, both melody and accompaniment models performed well at learning polyphonic

jazz content, despite the fact that the pitch model performed poorly with the accompaniment

tracks.

As far as the popularity is concerned, the accuracy score of the classifier along with the

fact that the genres considered are generally not popular, indicate that it can not be used

for objective evaluation. For example, classical pieces are more structured and harmonic

compared to the other genres, yet they are classified as non­popular. It is expected, though,

as the majority of users do not listen to classical music.

In general, the models managed to generate content that has harmonic structure and is

quite expressive. However, they are not comparable to human composed music, regarding

long­term structure. Music composed by humans usually has profound structure from the be­

ginning to the end. The networks have captured successfully the short­term structure, mean­

ing that short intervals of the songs are well composed. However, the beginning of a piece

generated may have no relation to the notes towards the end.

Since taste in music is a subjective matter, adding that in automated music generation

each work considers different metrics of evaluation according to the approach, the results

obtained cannot be compared to many works. In [15], the RNN­RBM model achieved the

highest accuracy score of 75.40%. In [60], the Bidirectional LSTM model achieved an av­

erage accuracy score of 50%. In [23], where another Bidirectional LSTM model is imple­

mented, they achieved an accuracy score of 89% after 15 epochs and 99% accuracy after 30

epochs. In terms of accuracy, the results obtained in the present work are comparable to [23],

since the AUC scores are high, indicating also high accuracy. Other works either use different

metrics that cannot be compared, like [17] which employs log likelihood, or evaluate their

results based on music taste.
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Conclusion

6.1 Summary

The purpose of this thesis was to create an automated music generation system. Towards

that purpose, the music content was encoded into two­dimensional arrays containing the ve­

locity values for each tick and pitch. In terms of generating new content by learning musical

patterns, the approach of considering sequences in the axes of data was followed.

Two different neural networks were built, using mostly Bidirectional LSTM layers in

order to learn based on previous timesteps and capture the long­term structure of music. The

first network learns patterns in the vertical dimension, namely the pitch axis, to model the

chords, while the second one considers sequences in the horizontal dimension so as to model

the temporal sequences along with the notes’ dynamics. The two networks were pre­trained

and merged into one, resulting in a network that makes predictions for notes, based on the

two axes.

This architecture was employed for building two separate models, the melody and the

accompaniment model. The melody model, as the name suggests, is responsible for learn­

ing and generating new melodies. On the other hand, the accompaniment model is used for

generating accompaniment content, in respect to the melody, for various instruments, such

as bass and drums.

Melody and accompaniment models were tested for different genres of music, classi­

cal, jazz, blues and rock in order to create polyphonic music. Generally the resulting pieces

sound harmonic, expressive and have solid short­term structure. Notes occurring simultane­

ously and small intervals of successive notes seem to have interaction, thus can be considered
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harmonic. Regarding long­term structure, it is not captured effectively, due to the fact that a

piece may not sound consistent from the beginning to the end.

Moreover, an attempt was made to provide a more objective evaluation metric for music.

For that reason a classifier was used that would predict whether a song could become popular

in Spotify platform. The classifier was created, however its predicted scores do not actually

reflect pieces’ quality. As most of the genres considered are not very popular in this platform,

the generated pieces can not be judged based solely on the specific classifier’s popularity

scores.

6.2 Future work

Regarding future work, a fundamental issue is to employ larger datasets of each genre.

Neural networks tend to be data­demanding, so the more data you feed them, the better the

outcomes. The performance of the proposed methods is expected to get improved when the

amount of data used for training would be increased.

The main drawback of the current architecture is the lack of long­term structure. Thus, fu­

ture work will experiment with the length of the sequences considered by the models towards

capturing the structure, hence generating more consistent content.

Last but not least, future work will try to enhance the popularity prediction task. That

could be accomplished by experimenting with different datasets containing information from

other streaming platforms, where the genres considered in this thesis are more popular. Fur­

thermore, future work will explore considering other features, such as features that indicate

whether a song is energetic, dancing e.t.c., instead of low audio features.
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