
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Precise and Approximate Optimizations for Visual SLAM on GPUs

Diploma Thesis

Pavlos Aimoniotis

Supervisor: Nikolaos Bellas

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Precise and Approximate Optimizations for Visual SLAM on GPUs

Diploma Thesis

Pavlos Aimoniotis

Supervisor: Nikolaos Bellas

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Aκριβείς και Προσεγγιστικές Βελτιστοποιήσεις του Visual SLAM σε

GPUs

Διπλωματική Εργασία

Παύλος Αιμονιώτης

Επιβλέπων: Νικόλαος Μπέλλας

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Christos D. Antonopoulos

Associate Professor, Department of Electrical and Computer En-

gineering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Date of approval: 16-6-2021

vii

Acknowledgements

I would like to thank my thesis supervisor Prof. Nikolaos Bellas, not only for his great

guidance during my research and writing of this paper, but also for our collaboration all these

years. Prof. Bellas was always available for me and always steering me to the right direction.

For these, I would like to express him my deepest appreciation and huge thanks.

To PhD Candidate of CSL Laboratory, Maria Rafaela Gkeka, thank you for always being

available for me, and for being extremely patient with my impatience!

To my family and friends, thank you for the support and for encouraging me throughout

my five years of study at the University of Thessaly. Thank you for understanding me and

for always being there for me! This accomplishment would not have been possible without

you.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re-

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Pavlos Aimoniotis

16-6-2021

x

Abstract

Simultaneous Localization and Mapping (SLAM) is the problem of creating or updating

a map of an unknown environment when monitoring an agent’s position within it. SLAM

algorithms are used in navigation, robotic mapping, and odometry for virtual reality and aug-

mented reality, and they are still a heavily researched subject. Where sensor input is inade-

quate to evaluate the environment and position, visual SLAM is a type of SLAM system that

uses 3D vision to perform location and mapping. The basic aim is to map their surroundings

in relation to their current location.

SLAM algorithms have high computational and energy requirements which make imple-

mentations very challenging. In this thesis, we propose a high-performance SLAM imple-

mentation for GPU devices using OpenCL framework. Our work introduces different opti-

mization techniques, for both precise and approximate optimization of KinectFusion, a well-

known SLAM system. We show that proper approximations can enable high performance at

almost 634 frames per second, using NVidia GeForce GTX 770 Graphics Processing Unit

(GPU), with high energy efficiency and without compromising agent tracking and map con-

struction.

xi

Περίληψη

Το Simultaneous Localization and Mapping (SLAM) αναφέρεται στο πρόβλημα κατα-

σκευής ή ενημέρωσης ενός χάρτη ενός άγνωστου περιβάλλοντος, παρακολουθώντας παράλ-

ληλα την τοποθεσία ενός πράκτορα μέσα σε αυτό. Το SLAM παραμένει ένα ενεργό ερευνη-

τικό θέμα και οι αλγόριθμοι χρησιμοποιούνται στην πλοήγηση, τη ρομποτική χαρτογράφηση

και την οδομετρία για εικονική πραγματικότητα (virtual reality) ή επαυξημένη πραγματικό-

τητα (agumented reality). Το Visual SLAM είναι ένας τύπος συστήματος SLAM που αξιο-

ποιεί την τρισδιάστατη όραση για τη θέση και τη χαρτογράφηση όταν οι πληροφορίες του

αισθητήρα δεν επαρκούν για τον προσδιορισμό του περιβάλλοντος και της θέσης. Βασικά, ο

στόχος είναι να χαρτογραφήσουν το περιβάλλον τους σε σχέση με τη δική τους τοποθεσία.

Οι αλγόριθμοι SLAM έχουν υψηλές υπολογιστικές και ενεργειακές απαιτήσεις που κα-

θιστούν τις υλοποιήσεις πολύ δύσκολες. Σε αυτή τη διατριβή, προτείνουμε μια εφαρμογή

SLAM υψηλής απόδοσης για συσκευές GPU που χρησιμοποιούν το πλαίσιο προγραμματι-

σμού OpenCL. Η δουλειά μας εισάγει διαφορετικές τεχνικές βελτιστοποίησης, τόσο για την

ακριβή όσο και κατά προσέγγιση βελτιστοποίηση του KinectFusion, ενός γνωστού συστή-

ματος SLAM. Δείχνουμε ότι οι σωστές προσεγγίσεις μπορούν να επιτρέψουν υψηλή από-

δοση σε σχεδόν 634 καρέ ανά δευτερόλεπτο, σε επεξεργαστή γραφικών NVidia GTX 770,

με υψηλή ενεργειακή απόδοση και χωρίς συμβιβασμούς στην παρακολούθηση των πρακτό-

ρων και την κατασκευή χαρτών.

xiii

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

1 Introduction 1

1.1 Content Overview . 1

2 Background 3

2.1 Simultaneously Localization and Mapping 3

2.1.1 Mathematical description . 3

2.1.2 Systems . 3

2.1.3 KinectFusion . 5

2.1.4 ICL-NUIM Dataset & Trajectory Error 7

2.2 Device and Framework . 8

2.3 Related Work . 10

3 KinectFusion Optimizations 11

3.1 Baseline . 12

3.2 Bilateral Filter . 13

3.3 Tracking . 14

xv

xvi Table of contents

3.4 Integrate . 16

3.5 Raycast . 17

3.6 Render . 18

4 Kernels Evaluation 19

4.1 Individual Evaluation . 19

4.1.1 Bilateral Filter . 19

4.1.2 Tracking . 20

4.1.3 Integrate . 21

4.1.4 Raycast . 23

4.2 Combining Kernels . 27

4.2.1 Integrate and Tracking (IT) . 27

4.2.2 Bilateral Filter and IT (BIT) . 27

4.2.3 Raycast and BIT (RBIT) . 28

4.3 Overall Evaluation . 30

5 Conclusions 33

Bibliography 35

APPENDICES 39

List of figures

2.1 Monocular Visual SLAM [1] . 4

2.2 Sparse System (MonoSLAM) [2] . 5

2.3 Dense System (KinectFusion)[3] . 5

2.4 KinectFusion System Workflow [4] . 5

2.5 Kernels Pipeline [5] . 7

2.6 I/O from KinectFusion: the input RGB scene (top left), the input depth frame

(bottom left), the tracking output (top right), and the 3D map reconstruction

(bottom right) [6] . 8

2.7 GK104 block diagram that entails the Kepler architecture [7] 9

3.1 Where do kernels spent their time? . 12

4.1 Bilateral Filter ATE Comparison between Baseline and Optimized 20

4.2 Bilateral Filter Performance Comparison between Baseline and Optimized

shown in Percentages . 20

4.3 Tracking ATE Comparison between Baseline and Optimized 21

4.4 Tracking Performance Comparison between Baseline and Optimized shown

in Percentages . 22

4.5 INT_Step ATE . 22

4.6 INT_Step Performance . 23

4.7 Integrate Performance Comparison between Baseline and Optimized shown

in Percentages . 24

4.8 RAY_Step ΑΤΕ . 24

4.9 RAY_Step Performance . 25

4.10 Raycast Performance Comparison between Baseline and Optimized shown

in Percentages . 26

xvii

xviii List of figures

4.11 Integrate and Tracking ATE Comparison between Baseline and Optimized . 27

4.12 Integrate and Tracking Performance Comparison between Baseline and Op-

timized shown in Percentages . 28

4.13 BIT_Step ATE . 28

4.14 BIT_Step Performance . 29

4.15 Bilateral Filter and IT Performance Comparison between Baseline and Opti-

mized shown in Percentages . 29

4.16 Optimized Performance shown in Percentages regarding the Baseline . . . 30

4.17 Final Evaluation Timing Performance . 31

List of tables

3.1 NVidia GPU GTX 770 vs Intel CPU i7-4820KU Performance Comparison . 12

3.2 Bilateral Filter Optimizations . 14

3.3 Tracking Optimizations . 15

3.4 Integrate Optimizations . 17

3.5 Raycast Optimizations . 18

4.1 Bilateral Filter Comparison between Baseline and Optimized 19

4.2 Tracking Comparison between Baseline and Optimized 21

4.3 INT_Opt1_Opt2 . 21

4.4 Integrate Comparison between Baseline and Optimized 23

4.5 Raycast Comparison between Baseline and Optimized 25

4.6 Baseline vs Optimized Comparison Table 30

xix

Chapter 1

Introduction

Visual SLAM is becoming increasingly relevant in recent technology. Industries like

robotics and navigation focus deeply on it. Visual SLAM is not concerned about any spe-

cific algorithm or piece of software. It’s a technique for assessing a sensor’s location and

orientation in relation to its surroundings while simultaneously imaging the world around it.

Most systems map fixed points through successive camera frames to triangulate their 3D

position, while simultaneously using this information to approximate camera pose. Basically,

the goal of these systems is to monitor their surroundings in comparison to their own position

for navigation purposes. To solve this problem, most systems use Sparse SLAM algorithms,

which preserve key points while reducing computational requirements, and are typically lim-

ited to localization. In the other hand, the Dense SLAM algorithms use all pixels in an input

frame and have the potential to model the 3D scene more thoroughly. Nevertheless, the high

requirements in computation and resources make implementation very difficult.

We propose a high-performance KinectFusion implementation on OpenCL framework.

We combine precise computing techniques and approximate computing techniques, to achieve

excessive performance on an NVidia GeForce GTX 770 Graphics Processing Unit.

1.1 Content Overview

Chapter 2 describes the fundamentals. Provides information crucial to continue reading

this thesis.

Chapter 3 presents all the optimizations we applied into KinectFusion. There are two

different techniques, precise optimizations and approximate optimizations.

1

2 Chapter 1. Introduction

Chapter 4 illustrates the experimental results.

Chapter 5 concludes the thesis.

Chapter 2

Background

In this chapter we will go through the fundamentals. We will see how SLAM algorithms

work, details of KinectFusion, what is OpenCL framework and we will describe the NVidia

GeForce GPU.

2.1 Simultaneously Localization and Mapping

2.1.1 Mathematical description

Given a series of controls ut and sensor observations ot over discrete time steps t, the

SLAMproblem is to compute an estimate of the agent’s state xt and a map of the environment

mt [8]. All quantities are usually probabilistic, so the objective is to compute:

P (mt+1, xt+1|o1:t+1, u1:t)

Provided a map and a transformation function, Bayes’ rule provides a mechanism for

updating the position posteriors sequentially P (xt|xt−1),

P (xt|o1:t, u1:t,mt) =
∑

mt−1
P (ot|xt,mt, u1:t)

∑
xt−1

P (xt|xt−1)P (xt−1|mt, o1:t−1, u1:t)/Z

Similarly the map can be updated sequentially by

P (mt|xt, o1:t, u1:t) =
∑

xt

∑
mt

P (mt|xt,mt−1, ot, u1:t)P (mt−1, xt|o1:t−1,mt−1, u1:t)

2.1.2 Systems

Slam systems [9, 2, 10, 11] consist of two parts:

1. Mapping: create a map of the environment

2. Localization: Identifying the agent’s relative location and orientation in the world

3

4 Chapter 2. Background

Figure 2.1: Monocular Visual SLAM [1]

Many different sensor types are used by SLAM systems, and therefore depending on

the sensor, algorithms that are applied are also different. Exteroceptive sensors offer defi-

nitions of several points in an area, removing the need for SLAM inference because shapes

can be conveniently and unambiguously aligned by image registration at each level in these

point clouds. Tactile sensors are extremely sparse since they only have knowledge on points

very close to the agent, so they require strong previous models to compensate for only tac-

tile SLAM. Many practical SLAM events fail somewhere between these graphic and tactile

peaks.

The following sensors are used in modern technology:

• Acoustic Sensors

• Visual Sensors

• Laser Range Finders

Visual SLAMs [12] use visual sensors, including RGB-D cameras and monocular cam-

eras. Unlike other SLAM implementations, Visual SLAM depends on a single 3D vision

camera, which is supposed to function in real time. In robotics and computer vision, visual

odometry is a way of determining a robot’s position and path by analyzing the accompanying

camera images.

Finally, structures are categorized as sparse or dense. SLAM systems that are considered

Sparse only use a small subset of the pixels in an input frame. On the other hand, when all

pixels of a frame are taken in consideration, we consider those systems as dense.

2.1 Simultaneously Localization and Mapping 5

Figure 2.2: Sparse System (MonoSLAM) [2] Figure 2.3: Dense System (KinectFusion)[3]

2.1.3 KinectFusion

KinectFusion [3, 13] is a variable lighting system for the precise real-time mapping of

complex and arbitrary indoor scenes, and is used for dense surface mapping and localization.

It was introduced by Microsoft in 2011, and since then it is considered one of the most used

algorithms for SLAM systems.

Figure 2.4: KinectFusion System Workflow [4]

In this research, we use SLAMBench [5], a freely accessible software tool that targets

benchmarking of SLAM systems. It is used for quantitative, comparable and validated ex-

perimental analysis to study trade-offs in the performance, accuracy and energy consumption

of a dense RGB-D SLAM device. SLAMBench includes KinectFusion’s C++, OpenMP[14],

OpenCL[15] andCUDA implementation, reffered asKFusion, and uses the ICL-NUIMdataset

of simulated trajectory and scenario ground truth RGB-D sequences for detailed precision

comparison of different algorithms and implementations.

The KinectFusion[3] method has six stages, but some of them are broken into multiple

kernels in SLAMBench’s KFusion. KinectFusions pipeline, as well as KFusions Kernels are

shown below.

1. Acquire A new RGB-D frame is obtained. This phase is specifically included in order

to account for I/O costs during benchmarking and in real-world implementations.

6 Chapter 2. Background

2. Reprocess

• Kernel 1:mm2meters frommillimeters tometers, a 2D depth image is converted.

Just a portion of the image is transformed and mapped into the output if the input

image size is not the usual 640x480.

• Kernel 2: bilateralFilter is a depth picture blurring filter that protects the corners.

It mitigates the consequences of noise and inaccurate depth values.

3. Tracking

• Kernel 1: halfSample By subsampling the filtered depth image, a three-level im-

age pyramid is formed. The tracking solutions from the pyramid’s low-resolution

images are used as guesses for higher resolutions. depth2vertex: translates each

pixel in a new depth image into a three-dimensional point (vertex). As a conse-

quence, a point cloud is created by this kernel.

• Kernel 2: vertex2normal the normal vectors for each vertex of a point cloud are

computed. Normals are used to measure the point-plane distances between two

corresponding vertices of the synthetic point cloud and a new point cloud in the

projective data association stage of the ICP algorithm.

• Kernel 3: track in the synthetic and new point cloud, the correspondence between

vertices is formed.

• Kernel 4: reduce For the minimisation process, adds up all the distances (errors)

between corresponding vertices of two point clouds. The final sum is computed

on GPUs using a parallel tree-based reduction.

• Kernel 5: solve TooN is used on the CPU to perform a singular value decompo-

sition that solves a linear 6x6 method. To correct the new camera pose approxi-

mation, a 6-dimensional vector is generated.

4. Integrate The new point cloud is inserted into the 3D volume. The running average

used in fusion is determined.

5. Raycast computes the point cloud and normals that lead to the actual camera location

estimation.

6. Render

2.1 Simultaneously Localization and Mapping 7

• Kernel 1: renderDepth color coding is used to visualize the depth map obtained

from the sensor.

• Kernel 2: renderTrack Visualizes the monitoring performance. Different colors

are correlated with each of the potential effects of the monitoring move with each

pixel, e.g. ’right tracking’,’ pixel too far away’,’ false standard’, etc.

• Kernel 3: renderVolume The 3D reconstruction is visualized from a fixed point

of view (or a user specified viewpoint when in the GUI mode).

Figure 2.5: Kernels Pipeline [5]

2.1.4 ICL-NUIM Dataset & Trajectory Error

SLAMBench can take as input video frames, instead of using a Kinect camera, or any

camera sensor. We use ICL-NUIM datasets, containing camera poses and ground truth poses.

One of the goals of ICL-NUIM datasets is to help in benchmarking SLAM systems, and that

makes it a perfect match to use as algorithm’s input. We convert given datasets to .raw files,

using an already implemented script of SLAMBench named scene2raw. The trajectory error,

8 Chapter 2. Background

is the absolute distance between the projected trajectory and the ground truth. For visual

SLAM systems, the Absolute Trajectory Error (ATE) is the most common error metric.

In this paper, we are using the living room trajectory ’lr kt2’ loop from [16, 17] as input

frames, which has a real run time of 30 seconds and 882 frames at 30Hz.

Figure 2.6: I/O from KinectFusion: the input RGB scene (top left), the input depth frame

(bottom left), the tracking output (top right), and the 3Dmap reconstruction (bottom right) [6]

2.2 Device and Framework

As already stated before, in this thesis we focus on GPUs and how we can optimize the

KinectFusion implementation.We use theOpenCLKinectFusion implementation of SLAMBench[5],

and test our results on NVidia GeForce GTX 770 device.

OpenCL is a system for softwarewriting that runs across heterogeneous platforms. Khronos

Organization, a non-profit infrastructure association, manages it as an open standard.

A computer system in OpenCL [15] is made up of a variety of compute devices, such as

CPUs or ”accelerators” like GPUs, all of which are connected to a host processor, which is a

central processor unit. On the way of writing, it is almost like a C programming language. The

”kernels” are the functions performed on an OpenCL computer. Usually, a single computing

system is made up of several compute units, each of which comprises several PEs. On all or

all of the PEs in parallel, a single kernel execution will run.

Launched in May 2013, the NVIDIA GeForce GTX 770 desktop Graphics Processing

Unit uses the Kepler architecture and is assembled using 28 nm technology. The card is

clocked at 1.046 GHz and can be boosted as high as 1.085 GHz. It also has 1536 CUDA cores,

2.2 Device and Framework 9

Figure 2.7: GK104 block diagram that entails the Kepler architecture [7]

128 texture modules, and 32 ROPs. The GeForce GTX 770 comes with 2 GB of GDDR5

memory. The memory uses a 256 bit interface and runs at 1.7525 GHz. As a result, the card’s

ram bandwidth is 224.32 GB/s. On the GPU, there is a PCI Express 3.0 interface. The average

power consumption of this model is 195 Watts.

Frequency Base clock: 1046 MHz, GPU boost: 2.0, Boost clock: 1085 MHz

Memory specificationsMemory size: 2048MB,Memory type: GDDR5,Memory clock:

1752.5 MHz, Memory clock (effective): 7010 MHz, Memory interface width: 256-bit, Mem-

ory bandwidth: 224.32 GB/s

Cores CUDA: 3.5, CUDA cores: 1536

Performance Pixel fill rate: 34.72 Gigapixels/s, Texture fill rate: 138.88 Gigatexels/s,

Single precision compute power: 3333.12GFLOPS,Double precision compute power: 138.88

GFLOPS

10 Chapter 2. Background

2.3 Related Work

SLAM Systems add way too much overhead on commercial CPUs and mobile devices.

It is only recently, that people have tried to accelarate SLAM algorithms through GPUs and

FPGAS, achieving excessive performance.

Gkeka, Patras et al. [6] accelerated all kernels of KFusion algorithm from SLAMBench in

an FPGA, without significant hurting the error. Gautier et al. [18, 19] proposed performance

optimizations on FPGAs, on two different works. ORB-SLAM [11] is a sparse SLAM, which

was implemented in an FPGA for better performance [20]. Abouzahir et al. [21] implemented

FastSLAM2.0 [10] in both GPU and FPGA. Boikos and Bouganis [22] accelerated LSD-

Slam on an FPGA achieving more than 60 fps. Lee et al. proposed a GPU-based SLAM

system [23], and the same authors also worked on GPU-acceleration for Image feature-based

real-time RGB-D 3D SLAM[24].

Chapter 3

KinectFusion Optimizations

In this chapter we will go through the optimizations we applied in the KinectFusion im-

plementation of SLAMBench [5]. Different techniques work for different kernels in SLAM-

Bench, as shown in [6], a work for accelerating the algorithm in FPGAs. Techniques that

lead to significant performance speedup are mostly approximate, meaning that we allow the

technique to hurt the error (ATE) in order to achieve better speedup. As a consequence, opti-

mizations on individual kernels do not guarantee that all kernels can be combined to run the

algorithm smoothly. For example, an optimization on Kernel 1, with low error affection, and

an optimization on Kernel 2, with low error affection, when combined can lead to huge ATE

or even code corruption.

We first optimized each kernel individually, and we present the optimizations. We then

combine the kernels and the optimizations to produce the final optimized version of Kinect-

Fusion on OpenCL.

You can find the baseline kernels source code in the appendices 5. The optimizations

described below are based on those lines of code. The default source code have been put on

appendices, so it is easier to understand the optimizations while reading.

Optimizations are classified in two categories:

• Precise optimizations: The algorithm preserves precision and achieves better perfor-

mance.

• Approximate optimizations: We sacrifice some of the accuracy to gain performance

[25]

11

12 Chapter 3. KinectFusion Optimizations

3.1 Baseline

KinectFusion is an algorithm that takes advantage of the GPU computation power, as it

relies on computations. Before we start with the optimizations, we would like to mention the

baseline performance.

We run the initial OpenCL implementation on GTX 770 with 8 compute units. I/O and

Kernels took 5.21 seconds to complete all 882 frames, running at 203 frames per second.

Before we continue we present the comparison between the GPU and CPU performance.

NVIDIA GPU GTX 770 INTEL CPU i7-4820KU Speed Comparison

ATE 18.118 18.113 -

acquisition host 0.064 0.090 -

computation 4.352 28.696 x6.56

preprocessing 0.37 1.513 x4.89

tracking 1.905 5.359 x2.81

integration 0.515 7.625 x14.8

raycasting 1.556 14.496 x9.31

total 5.217 32.762 x6.27

Table 3.1: NVidia GPU GTX 770 vs Intel CPU i7-4820KU Performance Comparison

Figure 3.1: Where do kernels spent their time?

3.2 Bilateral Filter 13

3.2 Bilateral Filter

Bilateral filter [26] is an edge-preserving blurring filter applied to the depth image. It

reduces the effects of noise and invalid depth values. The kernel reads the input 320x240

depth image, the 5x5 filter, and writes back the new blurred image.

As stated in 3.1 prepossessing takes 0.37 seconds, which is already very good perfor-

mance, compared to the same algorithm running on different other devices.

We decided that a precise technique, such as Input Depth Padding, is better to be imple-

mented as an approximate technique. By making the input depth frame padded, kernels can

eliminate boundary conditions and get rid of branch divergence, which can cause significant

delays in our execution. Normally, when we pad an array on the host side we can set the exact

values needed for the computations, so when the accelerator side accesses the padded part

always take the correct value as if an if-else statement was in place. In our case, the kernel

side is way too fast, and the CPU can not match the performance by copying the correct val-

ues to the correct positions. For this, we initialize the padded values to zero, barely affecting

the error.

The baseline algorithm uses a 5x5filter, taking into consideration all 25 neighbors of

a single element. Although a smaller filter leads to a less smooth result, it results in fewer

memory accesses and computations. We choose a 3x3filter for our convolution, using con-

stant values. We take into consideration 9 neighbors of a single element. This causes the loop

in the kernel to be unrolled 9 times.

We apply the following 3x3filter.

gaussian[9] = 0.9394130111, 0.9692332149, 0.9394130111, 0.9692332149, 1, 0.9692332149,

0.9394130111, 0.9692332149, 0.9394130111

By applying a 3x3filter, we are able to unroll the the nested loops 9 times, making each

nearby element computations independent and more flexible in scheduling and executing.

We also remove the range filter, which is an exponential function. By doing this we elim-

inate the invocation of an exponent function in the filter.

14 Chapter 3. KinectFusion Optimizations

Bilater Filter

Precise Optimizations

-

Approximate Optimizations

1. Input Depth Frame Padding (Partial)

2. 3x3 Filter

3. Loop Unroll

4. Remove Range Filter

Table 3.2: Bilateral Filter Optimizations

3.3 Tracking

The Tracking kernel accesses the current image produced in the preprocessing stage. It

pairs each pixel to its corresponding point in the 2D projection of the reconstructed model.

Tracking Kernel is called multiple times for the three pyramid levels for each frame. As in

the default execution, it is called for a maximum of 10, 5, and 4 iterations for level 0, level

1, and level 2 respectively.

We reduce the pyramid levels from the default three as stated above. This is an approxi-

mate technique. Pyramids are used for image detail enhancement. In our case, we are using

low-resolution images, the depth resolution in 320x240 unpadded. Skipping some of the pro-

cesses will not dramatically affect image quality. We choose to reduce the levels to 1 instead

of 3, and the maximum iterations to 2.

Loop perforation [27] is also an idea which implies great performance speedup. Loop

perforation is a general term and refers to skipping some iterations by copying the result of

an iteration to the skipped iterations. Although we do not have a loop in our implementation,

as we have multiple kernels running for a single job, the idea remains the same. Instead of

creating as many kernels as the elements, we create fewer kernels and copy results to ele-

ment’s neighbor. Although we tried different blocks and copies, it seems that trying to access

different memory cells makes the overhead bigger than the gained performance, as the kernel

execution time has fallen deeply after the first optimization described above. We evaluated

different tiles both on the X-axis and Y-axis, horizontally and vertically. Starting from step 1

to 16, as after step equal to 16, the Trajectory Error would get deeply affected. We also tried

3.3 Tracking 15

different block sizes, [2, 4] and [2, 8] but nothing seemed to match the performance of the first

optimization. Bigger blocks would have given slightly better timing performance but would

not perform the same regarding the ATE, and the trade-off did not worth the optimization.

In defense of the above, we also tried to copy the result of the skipped iterations on the

host side, preventing any overhead that may occur due to memory banks. Although we did

72.000 fewer accesses with a step of 16 on the kernel side, the kernel run only 0.14 seconds

faster, meaning that there was not such a problem. On the other hand, the overhead caused

on the host side, for copying the values, was huge.

Tracking

Precise Optimizations

-

Approximate Optimizations

1. Reduce Pyramid Levels

2. Reduce Iterations

Table 3.3: Tracking Optimizations

16 Chapter 3. KinectFusion Optimizations

3.4 Integrate

The target of this kernel is to update a 3D voxel grid, consisting of 256x256x256voxels,

using the new pose of the agent obtained by tracking. Each voxel runs independently.

We first removed some unnecessary functions. We focused on square roots functions ap-

plied on equations and squaring functions but did not get a great performance speedup. We

also tried to get rid of specific branches, to avoid divergence. There were different branches

to be removed, some that would just jump an iteration because there was no need to per-

form computations (precise) and others that would affect the Trajectory Error (approximate).

The trade-off between the Error and the speedup was not worth it, except the precise branch

mentioned above, with a positive speedup close to zero.

The main optimization on this kernel again stands on the Loop Perforation idea. Although

here the default kernel creates a 2D global workgroup, creating a thread for a single position

on X, Y, the kernel also works on a third dimension (Z-axis) on voxels grid. On this specific

kernel, every thread (representing an element) has to loop on the Z-axis. At this point, we can

skip some iterations on the third axis without even copying the value as it does not affect the

execution. We have to be careful to start from different points every time so that we avoid

repetition and wewill not be able to track frames. Also, we do not only have to jump a specific

step every time, but also determine the new position and camera position.We chose to specify

the starting point by the frame we currently at, and by specifying a constant step, every frame

will go through different data. Take for example frame 0 and step 4, then frame 0 will set the

volume for z = 0, 4, 8, frame 1 will set the volume for z = 1, 5, 9, and so on.

We tried different steps, but we will go through our evaluation in the next chapter.

As a last optimization, we thought of tiling. Creating a much smaller 2D grid, and copying

the values to neighbors. At this point, the kernel performance was almost at zero, and we

decided that it is pointless to continue with further approximate optimizations.

3.5 Raycast 17

Integrate

Precise Optimizations

1. Remove branches

Approximate Optimizations

1. Remove functions

2. Loop Perforation

3. Tiling (-)

Table 3.4: Integrate Optimizations

3.5 Raycast

Raycast computes the point cloud and normals corresponding to the current estimate of

the camera position. Raycasting accesses Truncated Signed Distance Function (TSDF) mul-

tiple times, for interpolation.

The ray traversal uses steps of variable size. It starts with larger step size and it becomes

smaller and smaller as the ray approaches a surface or the edges of the 3D voxel grid. Instead,

we use a constant step to achieve a deterministic schedule. Along with that, we modify the

interpolation function, and instead of visiting 8 different positions on TSDF, we access two

TSDF values, making less overall memory accesses.

We also applied raycast once every some number of pixels, similar to loop perforation.

We try different steps and block sizes, and we present all of them in the evaluation chapter.

Finally, we chose to raycast at a lower frequency, every 2 frames instead of raycasting

every single frame, the change in Error is really small on the particular Trajectory, that we

could even consider this technique a precise technique, depending on the metric.

18 Chapter 3. KinectFusion Optimizations

Raycast

Precise Optimizations

-

Approximate Optimizations

1. Larger Step

2. Change Interpolation

3. Perforation

4. Lower Frequency

Table 3.5: Raycast Optimizations

3.6 Render

Rendering consists of 3 kernels, renderDepth, renderTrack and renderVolume. The target

of this kernel is to take the data and visualize the depthmap acquired from the sensor, visualize

the result of tracking, and the 3D reconstruction from a fixed viewpoint.

All this information refers to GUI mode. In this thesis, we focus on computations and

performance regarding the speedup of the KinectFusion algorithm.

For all the above, Render is not a kernel we have to take into consideration.

Chapter 4

Kernels Evaluation

In this chapter, we will go through the evaluation of each kernel individually and in com-

bination. We will apply the optimizations proposed in 3. It is important to mention that some

optimizations may work on a kernel when we optimize it individually, but when combin-

ing kernels, the circumstances change and we also need to change some parameters or even

remove some optimizations. All the following total time results exclude the rendering kernel.

4.1 Individual Evaluation

4.1.1 Bilateral Filter

To observe a 1.3x speedup in Bilateral Filter optimized version we had to combine all the

optimizations. Bilateral Filter ran with exceptional performance prior to the optimizations,

so the potential was limited. Most of the speedup came from the reduction of the Gaussian

filter.

Baseline Optimized

ATE 18.118m 19.086m

preprocessing 0.37s 0.29s

total 4.41s 4.38s

Table 4.1: Bilateral Filter Comparison between Baseline and Optimized

19

20 Chapter 4. Kernels Evaluation

Baseline Optimized

18

18.5

19

19.5

18.12

19.09

#A
TE

(m
)

Error

Figure 4.1: Bilateral Filter ATE Comparison between Baseline and Optimized

Optimized
0

25

50

75

100

125

78.37

99.3

#T
im
e(
%
)

Preprocess Total
Baseline

Figure 4.2: Bilateral Filter Performance Comparison between Baseline and Optimized shown

in Percentages

4.1.2 Tracking

In this kernel, we applied two approximate optimizations, reducing the pyramid levels

and iterations. As stated in previous chapter.

4.1 Individual Evaluation 21

Baseline Optimized

ATE 18.118m 18.57m

tracking 1.91s 0.50s

total 4.41s 3.04s

Table 4.2: Tracking Comparison between Baseline and Optimized

Baseline Optimized

17

17.5

18

18.5

18.12

17.13

#A
TE

(m
)

Error

Figure 4.3: Tracking ATE Comparison between Baseline and Optimized

4.1.3 Integrate

In this kernel we applied three different optimizations. Removing functions and branches,

and applying loop perforation technique.

Baseline Optimized

Remove Functions

ATE 18.118m 18.88m

integration 0.52s 0.50s

Remove Branches

ATE 18.88m 18.88m

integration 0.50s 0.48s

Table 4.3: INT_Opt1_Opt2

To perform loop perforation we needed to specify a loop step. In the following figures

22 Chapter 4. Kernels Evaluation

Optimized
0

25

50

75

100

125

26.17

68.93

#T
im
e(
%
)

Tracking Total
Baseline

Figure 4.4: Tracking Performance Comparison between Baseline and Optimized shown in

Percentages

4.5 4.6 we present the evaluation of different steps applied.

Step 2 Step 4 Step 8 Step 16
17

17.5

18

18.5

18.6

18.34

17.21

17.51

#A
TE

(m
)

Integrate

Figure 4.5: INT_Step ATE

Based on the information provided by figures, we applied step equal to 16 in the integra-

tion kernel.

4.1 Individual Evaluation 23

Step 2 Step 4 Step 8 Step 16
0

0.1

0.2

0.3

0.33

0.17

9.3 · 10−2

5.3 · 10−2

#T
im
e(
s)

Integrate

Figure 4.6: INT_Step Performance

Baseline Optimized

ATE 18.118m 18.35m

integrate 0.52s 0.053s

total 4.41s 4.07s

Table 4.4: Integrate Comparison between Baseline and Optimized

4.1.4 Raycast

As stated in 3 we applied 4 approximate techniques. First, we used constant value at

LargerStep and we changed the interpolation function to access 2 values instead of 8, we

applied those two techniques as one. We then performed the Loop Perforation technique and

applied Raycast to lower frequency, specifically every two frames.

At Loop Perforation we applied a step on two axes, copying a block of elements, the

evaluation is shown in 4.8 and 4.9. We decided to use a Block 1x2, which means we skip 1

on X-axis and 2 on Y-axis, and we copy the value to those positions.

24 Chapter 4. Kernels Evaluation

Optimized
0

25

50

75

100

125

10.19

92.3
#T
im
e(
%
)

Integrate Total
Baseline

Figure 4.7: Integrate Performance Comparison between Baseline and Optimized shown in

Percentages

Baseline Block1x2 Block2x2
16.8

17

17.2

17.4

17.6

17.8

18
17.87

17.19

16.95

#A
TE

(m
)

Raycast

Figure 4.8: RAY_Step ΑΤΕ

4.1 Individual Evaluation 25

Baseline Block1x2 Block2x2

0.8

1

1.2

1.4

1.6 1.56

0.89
0.94

#T
im
e(
s)

Raycast

Figure 4.9: RAY_Step Performance

Baseline Optimized

Constant Step & Interpolation

ATE 18.118m 17.87m

raycast 1.56s 1.15s

Perforation

ATE 17.87m 16.66m

raycast 1.15s 0.67s

Lower Frequency

ATE 17.87m 17.97m

raycast 0.67s 0.35s

total 4.41s 3.08s

Table 4.5: Raycast Comparison between Baseline and Optimized

26 Chapter 4. Kernels Evaluation

Optimized
0

25

50

75

100

125

22.4

69.84

#T
im
e(
%
)

Raycast Total
Baseline

Figure 4.10: Raycast Performance Comparison between Baseline and Optimized shown in

Percentages

4.2 Combining Kernels 27

4.2 Combining Kernels

In this section, we will combine our optimized kernels and apply the best possible pa-

rameters and techniques. Our target is to get an optimal solution out of the combination. We

go step by step, adding one kernel at a time. We start by combining Integrate and Tracking

kernel. We then continue with Preprocessing, Bilateral Filter relies on this overall process,

and finally, we end up adding to our combination Raycast kernel. In the end, we provide our

final evaluation on Living Room Trajectory of [16], where we managed to stay close to the

baseline error, and we achieved exceptional timing performance.

4.2.1 Integrate and Tracking (IT)

Due to the algorithmic optimization of Tracking 3.3, the overall execution is not harmed

at all. All frames are tracked as expected.

Baseline IT

17

17.5

18

18.5

18.12

17.24

#A
TE

(m
)

Error

Figure 4.11: Integrate and Tracking ATE Comparison between Baseline and Optimized

4.2.2 Bilateral Filter and IT (BIT)

To combine the Bilateral Filter kernel with IT combination, we have to change the INT_Step,

as Step equal to 16, with the new padded image, can not co-operate and produces an ex-

tremely large Trajectory Error. Once again we tested various steps and we concluded that for

BIT combination we chose Step equal to 12 as shown in 4.14.

28 Chapter 4. Kernels Evaluation

Optimized
0

25

50

75

100

125

57.82

#T
im
e(
%
)

Integrate+Tacking (IT) Baseline

Figure 4.12: Integrate and Tracking Performance Comparison between Baseline and Opti-

mized shown in Percentages

Step 2 Step 4 Step 6 Step 8 Step 10Step 12

18

19

20

21

17.6 17.77

21.78

17.49

19.51

18.83#A
TE

(m
)

Integrate

Figure 4.13: BIT_Step ATE

4.2.3 Raycast and BIT (RBIT)

Finally, combining Raycast Kernel we have once again to change the INT_Step 3.4. Al-

though Step equal 12 still works fine, Step 8 almost matches the performance giving us a

better trade-off according to Trajectory Error. For this, we chose Step equal to 8. Further-

more, at this combination, we had to remove RAY_ConStep 3.5 as it could not be combined

4.2 Combining Kernels 29

Step 2 Step 4 Step 6 Step 8 Step 10Step 12

0.1

0.15

0.2

0.25

0.3

0.33

0.17

0.12

9.3 · 10−2

7.7 · 10−2

6.6 · 10−2

#T
im
e(
s)

Integrate

Figure 4.14: BIT_Step Performance

Optimized
0

25

50

75

100

125

57.82 56.6

#T
im
e(
%
)

IT Bilateral+IT
Baseline

Figure 4.15: Bilateral Filter and IT Performance Comparison between Baseline and Opti-

mized shown in Percentages

with other optimizations. As this is our final combination the results are shown in 4.3.

30 Chapter 4. Kernels Evaluation

4.3 Overall Evaluation

Wemanaged to achieve a 3.1x speedup to our optimized version.We run the KinectFusion

algorithm on 634 frames per second, 431 frames more than the baseline execution.

Baseline Final Optimized Speed Comparison

ATE 18.2 19.38 -

preprocessing 0.37 0.30 x1.24

tracking 1.9 0.5 x3.8

integration 0.51 0.09 x5.67

raycasting 1.57 0.49 x3.2

total 4.41 1.39 x3.17

Table 4.6: Baseline vs Optimized Comparison Table

Optimized
0

25

50

75

100

125

57.82 56.6

31.51

#T
im
e(
%
)

IT BIT
Final Baseline

Figure 4.16: Optimized Performance shown in Percentages regarding the Baseline

4.3 Overall Evaluation 31

Figure 4.17: Final Evaluation Timing Performance

Chapter 5

Conclusions

In terms of time and precision, dense Visual SLAM algorithms must be fast and accu-

rate. Since the agent relies on run-time computations, fast implementations are needed for

powerful SLAM systems. We used numerous precise and approximate techniques to refine

an OpenCL KinectFusion implementation in this thesis. We demonstrate that approximate

techniques can achieve outstanding efficiency in GPU devices, but that they must be used

with caution due to error sensitivity. At a 320x240 input depth frame resolution, our fastest

implementation achieves 634 frames per second, which is 3.1 times faster than the baseline

KinectFusion OpenCL implementation of SLAMBench.

The code of this thesis can be found at: https://github.com/pavlosaim

33

Bibliography

[1] Niklas Karlsson, Enrico Di Bernardo, Jim Ostrowski, Luis Goncalves, Paolo Pirjanian,

and Mario E Munich. The vslam algorithm for robust localization and mapping. In

Proceedings of the 2005 IEEE international conference on robotics and automation,

pages 24–29. IEEE, 2005.

[2] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:

Real-time single camera slam. IEEE transactions on pattern analysis and machine

intelligence, 29(6):1052–1067, 2007.

[3] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,

Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-

bon. Kinectfusion: Real-time dense surface mapping and tracking. In 2011 10th IEEE

international symposium on mixed and augmented reality, pages 127–136. IEEE, 2011.

[4] Redhwan Jamiruddin, Ali Osman Sari, Jahanzaib Shabbir, and Tarique Anwer. Rgb-

depth slam review. arXiv preprint arXiv:1805.07696, 2018.

[5] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul HJ Kelly,

Andrew J Davison, Mikel Luján, Michael FP O’Boyle, Graham Riley, et al. Introducing

slambench, a performance and accuracy benchmarking methodology for slam. In 2015

IEEE International Conference on Robotics and Automation (ICRA), pages 5783–5790.

IEEE, 2015.

[6] Maria Rafaela Gkeka, Alexandros Patras, Christos D Antonopoulos, Spyros Lalis, and

Nikolaos Bellas. Fpga architectures for approximate dense slam computing.

[7] Palit geforce gtx 770 jetstream review - graphics architecture. https:

//www.guru3d.com/articles-pages/palit-geforce-gtx-770-

jetstream-review,4.html. Accessed: 2021-06-15.

35

https://www.guru3d.com/articles-pages/palit-geforce-gtx-770-jetstream-review,4.html
https://www.guru3d.com/articles-pages/palit-geforce-gtx-770-jetstream-review,4.html
https://www.guru3d.com/articles-pages/palit-geforce-gtx-770-jetstream-review,4.html

36 Bibliography

[8] Wikipedia. Simultaneous localization and mapping.

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping. [Online;].

[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct

monocular slam. In European conference on computer vision, pages 834–849. Springer,

2014.

[10] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fastslam

2.0: An improved particle filtering algorithm for simultaneous localization andmapping

that provably converges. In IJCAI, volume 3, pages 1151–1156, 2003.

[11] Raul Mur-Artal, JoseMariaMartinezMontiel, and Juan D Tardos. Orb-slam: a versatile

and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163,

2015.

[12] Alvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, and Ian Reid. Visual slam: Why

bundle adjust? In 2019 International Conference on Robotics and Automation (ICRA),

pages 2385–2391. IEEE, 2019.

[13] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,

Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, AndrewDavison, et al.

Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera.

In Proceedings of the 24th annual ACM symposium on User interface software and

technology, pages 559–568, 2011.

[14] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-

memory programming. IEEE computational science and engineering, 5(1):46–55,

1998.

[15] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium

(HCS), pages 1–314. IEEE, 2009.

[16] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark for RGB-D

visual odometry, 3D reconstruction and SLAM. In IEEE Intl. Conf. on Robotics and

Automation, ICRA, Hong Kong, China, May 2014.

Bibliography 37

[17] Ankur Handa, ThomasWhelan, John McDonald, and Andrew J Davison. A benchmark

for rgb-d visual odometry, 3d reconstruction and slam. In 2014 IEEE international

conference on Robotics and automation (ICRA), pages 1524–1531. IEEE, 2014.

[18] Quentin Gautier, Alric Althoff, and RyanKastner. Fpga architectures for real-time dense

slam. In 2019 IEEE 30th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), volume 2160-052X, pages 83–90, 2019.

[19] QuentinGautier, Alexandria Shearer, JanarbekMatai, Dustin Richmond, PingfanMeng,

and Ryan Kastner. Real-time 3d reconstruction for fpgas: A case study for evaluating

the performance, area, and programmability trade-offs of the altera opencl sdk. In 2014

International Conference on Field-Programmable Technology (FPT), pages 326–329,

2014.

[20] Weikang Fang, Yanjun Zhang, BoYu, and Shaoshan Liu. Fpga-based orb feature extrac-

tion for real-time visual slam. In 2017 International Conference on Field Programmable

Technology (ICFPT), pages 275–278, 2017.

[21] Mohamed Abouzahir, Abdelhafid Elouardi, Rachid Latif, Samir Bouaziz, and Abde-

louahed Tajer. Embedding slam algorithms: Has it come of age? Robotics and Au-

tonomous Systems, 100:14–26, 2018.

[22] Konstantinos Boikos and Christos-Savvas Bouganis. A scalable fpga-based architecture

for depth estimation in slam. In International Symposium on Applied Reconfigurable

Computing, pages 181–196. Springer, 2019.

[23] Donghwa Lee, Hyongjin Kim, and Hyun Myung. Gpu-based real-time rgb-d 3d slam.

In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI), pages 46–48, 2012.

[24] Donghwa Lee, Hyongjin Kim, and Hyun Myung. Image feature-based real-time rgb-d

3d slam with gpu acceleration. Journal of Institute of Control, Robotics and Systems,

19(5):457–461, 2013.

[25] Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing

Surveys (CSUR), 48(4):1–33, 2016.

38 Bibliography

[26] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In

Sixth international conference on computer vision (IEEE Cat. No. 98CH36271), pages

839–846. IEEE, 1998.

[27] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, pages 124–134, 2011.

[28] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d reconstruc-

tion in real-time. In 2011 IEEE intelligent vehicles symposium (IV), pages 963–968.

Ieee, 2011.

APPENDICES
The following code represents the default unoptimized kfusion. For the GPU accelarated

version visit my github page. https://github.com/pavlosaim/kfusion-opencl

39

40 Bibliography

1 __kernel void bilateralFilterKernel(__global float * out,

2 const __global float * in,

3 const __global float * gaussian,

4 const float e_d,

5 const int r) {

6

7 const uint2 pos = (uint2) (get_global_id(0),get_global_id(1));

8 const uint2 size = (uint2) (get_global_size(0),get_global_size(1));

9

10 const float center = in[pos.x + size.x * pos.y];

11

12 if (center == 0) {

13 out[pos.x + size.x * pos.y] = 0;

14 return;

15 }

16

17 float sum = 0.0f;

18 float t = 0.0f;

19 for(int i = -r; i <= r; ++i) {

20 for(int j = -r; j <= r; ++j) {

21 const uint2 curPos = (uint2)(clamp(pos.x + i, 0u, size.x-1),

clamp(pos.y + j, 0u, size.y-1));

22 const float curPix = in[curPos.x + curPos.y * size.x];

23 if(curPix > 0) {

24 const float mod = sq(curPix - center);

25 const float factor = gaussian[i + r] * gaussian[j + r] *

exp(-mod / (2 * e_d * e_d));

26 t += factor * curPix;

27 sum += factor;

28 } else {

29 //std::cerr << ”ERROR BILATERAL ” <<pos.x+i<< ” ”<<pos.y+j<< ”

” <<curPix<<” \n”;

30 }

31 }

32 }

33 out[pos.x + size.x * pos.y] = t / sum;

34

35 }

Bibliography 41

Listing 5.1: Baseline OpenCL Kernel Code for Bilateral Filter

1 __kernel void trackKernel (

2 __global TrackData * output,

3 const uint2 outputSize,

4 __global const float * inVertex,// float3

5 const uint2 inVertexSize,

6 __global const float * inNormal,// float3

7 const uint2 inNormalSize,

8 __global const float * refVertex,// float3

9 const uint2 refVertexSize,

10 __global const float * refNormal,// float3

11 const uint2 refNormalSize,

12 const Matrix4 Ttrack,

13 const Matrix4 view,

14 const float dist_threshold,

15 const float normal_threshold

16) {

17

18 const uint2 pixel = (uint2)(get_global_id(0),get_global_id(1));

19

20 if(pixel.x >= inVertexSize.x pixel.y >= inVertexSize.y) {return;}

21

22 float3 inNormalPixel = vload3(pixel.x + inNormalSize.x *

pixel.y,inNormal);

23

24 if(inNormalPixel.x == INVALID) {

25 output[pixel.x + outputSize.x * pixel.y].result = -1;

26 return;

27 }

28

29 float3 inVertexPixel = vload3(pixel.x + inVertexSize.x *

pixel.y,inVertex);

30 const float3 projectedVertex = Mat4TimeFloat3 (Ttrack ,

inVertexPixel);

31 const float3 projectedPos = Mat4TimeFloat3 (view , projectedVertex);

32 const float2 projPixel = (float2) (projectedPos.x / projectedPos.z

+ 0.5f, projectedPos.y / projectedPos.z + 0.5f);

42 Bibliography

33

34 if(projPixel.x < 0 projPixel.x > refVertexSize.x-1 projPixel.y < 0

projPixel.y > refVertexSize.y-1) {

35 output[pixel.x + outputSize.x * pixel.y].result = -2;

36 return;

37 }

38

39 const uint2 refPixel = (uint2) (projPixel.x, projPixel.y);

40 const float3 referenceNormal = vload3(refPixel.x + refNormalSize.x *

refPixel.y,refNormal);

41

42 if(referenceNormal.x == INVALID) {

43 output[pixel.x + outputSize.x * pixel.y].result = -3;

44 return;

45 }

46

47 const float3 diff = vload3(refPixel.x + refVertexSize.x *

refPixel.y,refVertex) - projectedVertex;

48 const float3 projectedNormal = myrotate(Ttrack, inNormalPixel);

49

50 if(length(diff) > dist_threshold) {

51 output[pixel.x + outputSize.x * pixel.y].result = -4;

52 return;

53 }

54 if(dot(projectedNormal, referenceNormal) < normal_threshold) {

55 output[pixel.x + outputSize.x * pixel.y] .result = -5;

56 return;

57 }

58

59 output[pixel.x + outputSize.x * pixel.y].result = 1;

60 output[pixel.x + outputSize.x * pixel.y].error =

dot(referenceNormal, diff);

61

62 vstore3(referenceNormal,0,(output[pixel.x + outputSize.x *

pixel.y].J));

63 vstore3(cross(projectedVertex, referenceNormal),1,(output[pixel.x +

outputSize.x * pixel.y].J));

64

65 }

Bibliography 43

Listing 5.2: Baseline OpenCL Kernel Code for Tracking

1 __kernel void integrateKernel (

2 __global short2 * v_data,

3 const uint3 v_size,

4 const float3 v_dim,

5 __global const float * depth,

6 const uint2 depthSize,

7 const Matrix4 invTrack,

8 const Matrix4 K,

9 const float mu,

10 const float maxweight ,

11 const float3 delta ,

12 const float3 cameraDelta

13) {

14

15 Volume vol; vol.data = v_data; vol.size = v_size; vol.dim = v_dim;

16

17 uint3 pix = (uint3) (get_global_id(0),get_global_id(1),0);

18 const int sizex = get_global_size(0);

19

20 float3 pos = Mat4TimeFloat3 (invTrack , posVolume(vol,pix));

21 float3 cameraX = Mat4TimeFloat3 (K , pos);

22

23 for(pix.z = 0; pix.z < vol.size.z; ++pix.z, pos += delta, cameraX +=

cameraDelta) {

24 if(pos.z < 0.0001f) // some near plane constraint

25 continue;

26 const float2 pixel = (float2) (cameraX.x/cameraX.z + 0.5f,

cameraX.y/cameraX.z + 0.5f);

27

28 if(pixel.x < 0 pixel.x > depthSize.x-1 pixel.y < 0 pixel.y >

depthSize.y-1)

29 continue;

30 const uint2 px = (uint2)(pixel.x, pixel.y);

31 float depthpx = depth[px.x + depthSize.x * px.y];

32

33 if(depthpx == 0) continue;

44 Bibliography

34 const float diff = ((depthpx) - cameraX.z) *

sqrt(1+sq(pos.x/pos.z) + sq(pos.y/pos.z));

35

36 if(diff > -mu) {

37 const float sdf = fmin(1.f, diff/mu);

38 float2 data = getVolume(vol,pix);

39 data.x = clamp((data.y*data.x + sdf)/(data.y + 1), -1.f, 1.f);

40 data.y = fmin(data.y+1, maxweight);

41 setVolume(vol,pix, data);

42 }

43 }

44

45 }

Listing 5.3: Baseline OpenCL Kernel Code for Intergate

1 __kernel void raycastKernel(__global float * pos3D, //float3

2 __global float * normal,//float3

3 __global short2 * v_data,

4 const uint3 v_size,

5 const float3 v_dim,

6 const Matrix4 view,

7 const float nearPlane,

8 const float farPlane,

9 const float step,

10 const float largestep) {

11

12 const Volume volume = {v_size, v_dim,v_data};

13

14 const uint2 pos = (uint2) (get_global_id(0),get_global_id(1));

15 const int sizex = get_global_size(0);

16

17 const float4 hit = raycast(volume, pos, view, nearPlane, farPlane,

step, largestep);

18 const float3 test = as_float3(hit);

19

20 if(hit.w > 0.0f) {

21 vstore3(test,pos.x + sizex * pos.y,pos3D);

22 float3 surfNorm = grad(test,volume);

Bibliography 45

23 if(length(surfNorm) == 0) {

24 //float3 n = (INVALID,0,0);//vload3(pos.x + sizex * pos.y,normal);

25 //n.x=INVALID;

26 vstore3((float3)(INVALID,INVALID,INVALID),pos.x + sizex *

pos.y,normal);

27 } else {

28 vstore3(normalize(surfNorm),pos.x + sizex * pos.y,normal);

29 }

30 } else {

31 vstore3((float3)(0),pos.x + sizex * pos.y,pos3D);

32 vstore3((float3)(INVALID, INVALID, INVALID),pos.x + sizex *

pos.y,normal);

33 }

34 }

Listing 5.4: Baseline OpenCL Kernel Code for Raycast

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction
	Content Overview

	Background
	Simultaneously Localization and Mapping
	Mathematical description
	Systems
	KinectFusion
	ICL-NUIM Dataset & Trajectory Error

	Device and Framework
	Related Work

	KinectFusion Optimizations
	Baseline
	Bilateral Filter
	Tracking
	Integrate
	Raycast
	Render

	Kernels Evaluation
	Individual Evaluation
	Bilateral Filter
	Tracking
	Integrate
	Raycast

	Combining Kernels
	Integrate and Tracking (IT)
	Bilateral Filter and IT (BIT)
	Raycast and BIT (RBIT)

	Overall Evaluation

	Conclusions
	Bibliography
	APPENDICES

