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YNEYOYNH AHAQIH NEPI AKAAHMAIKHZ AEONTOAOTIAZ KAl TMNEYMATIKQN
AIKAIQMATQN

Me A pn enlyvooN TOV GUVETELOY TOL VOLOL TTEPT TVELHATIKAOV SIKOIOUATOV, ONADGV® p1Td
OTL M| TAPOVLGA SIMAMUOTIKY EPYOsio, KAODS Kot To NAEKTPOVIKE apyeio Kot Tnyoiol KOJIKES
7oV ovamTHYONKAY 1) TPOTOTOONKAV GTA TAAICLH AVTAG TNG EPYACIAG, OMOTEAEL ATOKAEIGTIKA
TPOIOV TPOCMOMIKNG LoV €Pyaciag, dev mPooPiidel kKAOe HOPPNG SKOIDOUOTO SLOVONTIKNG
1010KTNG10G, TPOSOTIKATNTOS KOl TPOCSHOTIKAOV OEGOUEVOV TPIT®V, OEV TEPIEXEL EPYA/EIGPOPES
TPIT®V Y10 TO OTTOL0L OTTOLTEITON AOELNL TV ONUOVPYDOV/IKOOVY MV Kol OV Elval TPOIOV HEPTKTG
N OMKNG avTILypa®ng, ot INYEG 0 Tov ypnoiponomdnkay teplopilovior otig PipAtoypoeikég
avaPopEG Kol LOVOV KoL TATPOVV TOVG KAVOVEG TNG EMLGTNOVIKNG TapdBeong. Ta onpeia dmov
€Y YPNOLOTOMGEL 10€€C, Kelpevo, apyela N/Kor myéc GALOV GLYYPAPE®V, OVOPEPOVTIL
EVOLAKPITO GTO KEIUEVO LLE TNV KATAAANAN TOPATOUTT) KOL 1] GYETIKT OVOPOPA TEPIAALPAVETOL
01O TUNUO TOV BPAOYPaQIKOV ovoeopdv pe TANPN meptypaen. AvoioauPdve TAMpg,
OTOUIK( KOl TPOCMOTUKA, OAEG TIG VOUIKES KO OOIKTTIKEG GUVETELES TTOL OVVALTOL VOL TPOKVYOVV
oTNV TEPITTMON KATA TNV omoia amoderydel, dtoypovikd, OTL 1 Epyacio LT 17 TUNHO TNG OEV

LoV aviKEL O10TL €ivon TPoidv AOYOKAOTNG.
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HEPIAHYH

216)0¢ ovTNG TG epyaciog eivar 1 avarTuén Kot vVAOToINoT €vOg GUGTNUATOS ALTOVOUNG
Tlonynone, 1o omoio Ba Exer v dvvardéNTO VO TAONYEite o€ yvwotrd M dyvoorto
nepairovia, oto omoia dev vdpyel dOvvatotnTa ypnong GPS. Eriong, umopel va amopiyet
OTOTIKA OAAG KOl SUVAUIKE EUTOOI0 GE TTPAYUATIKO YPOVO. XPNGUYLOTOIOVUE Kot OOKIUALOVUE
ddpopovg aoOntpeg (kduepeg, LIDAR, IMU), dapoppmdvovps 6v0 d1apopeTikon £id0vg
SLAM odyopiBuovg vy va metvyovpe 10 emBountd oamotédecpa. O mpmdTog oAdyopiOuog
SLAM Baciletor og dedopéva PaBovg otov 51601406TATO 1 TPICIACTATO YMDPO, 0 OEVTEPOG
alyopiBuoc Paciletal oe onTIKA dedopéEvVa, dNAad ewoves amd kapepa. To teMkd cuoTnU
amotedeitor amd SVLO OPOPETIKES KAuepes Kot éva awcOntpo IMU, extehel eviolég
TAONYNONG UE EMTUYIO. OTO SUOPPOUEVO ecmTEPIKO Ydpo Tov Network Implementation
Testbed Laboratory (NITLab) pe axpipeio 8éong +4 cm.



ABSTRACT

The goal of this thesis is the development and implementation of an autonomous navigation
system, which will be able to navigate through known or unknown GPS-less environments.
Also, it will be able to avoid static and dynamic obstacles in real time. We are using and testing
a set of sensors (cameras, LIDAR, IMU) and configure two different kinds of SLAM
algorithms to accomplish our goal. The first SLAM algorithm uses 2D or 3D depth information,
the second algorithm is based on visual data only, like camera images. Our final system consists
of two different cameras and an IMU sensor, it successfully executed navigation commands in
the Network Implementation Testbed Laboratory (NITLab) indoor testbed environment and

achieved a position accuracy of +4 cm.



Table of Contents

Chapter 1 INTrOAUCTION ......couiiiiiiieiee et 1
1.1 Problem deSCIIPLION ......ccviieiieie ettt re e e e nae e 1
1.2 PUrP0SE OF thiS PrOJECT......eiiiieicie et 1
1.3 THESIS STIUCTUIE......eutieiiiite ettt 2

Chapter 2 Infrastructure and tOOIS ............ccoeciiieiicie e 2
2.1 SOftWAIre COMPONENTS ......oviiiiiie ettt e et e s neenre e e e reenneens 3

211 ROS e bt bttt n e nar e bt 3
2. 1.2 VISUBHZALION ...ttt 3
2.1.3 Publish/SUDSCIIDE PALIEIN ... 4
2. L4 NOGEIETS ...t b ettt 4
2.L.5 POINE CIOUT ...t 5
2.1.6 SENSON rANSTOMMS ...ttt 5
2.2 Hardware COMPONENTS. ........oouiitiriirieitieiieiieieie ettt ettt sb e b e 6
2. 2L RICOH THETA V ottt sttt nnee s 6
2.2.2 Inertial Measurement Unit (IMU) ........ccoiiiiiiiiccece e 6
2.2.2.0 GYFOSCOPE ..ottt e sttt e sttt e sttee e sttt e s bt eeasbbe e e sbe e e e bae e e sbeeeabeeeassseeanbeeeanbeeeanseeeanbeaeas 7
2.2.2.2 ACCEIBIOMELEN ...ttt 8
2.2.3 Intel REAISENSE DA3SH .....cviiiieieiiiee s 8
2.2.4 Light Detection and Ranging (LIDAR) SENSOF...........cccvivieiieerieiieseeie e ene e, 9

Chapter 3 Simultaneous Localization And Mapping (SLAM)........cccoveviiveieeve e, 9

3.1 SLAM With ProXimity SENSOK .....ccviiiiieiieeitie it esiee st ettt e saae e e sraeeree e 10
TR0 1= ST o 1o o | SRS 11
312 LOCAI SLAM ... et 12
3 1.3 GIODAI SLAM ... e 12

KT YTTU F= LY 2N 1 SR 14

Xi



3. 2.1 FRAtUre dELECHION ... 14

3.2.1.1 Features from Accelerated Segment TeSt (FAST)....cccoevvieeieninieenesie e 15
3.2.1.2 Oriented Fast and Rotated BRIEF (ORB) ........ccccooiveiiiiieiieie e 15

3.2.2 Algorithm WalKthrough ..........ccoeiiiie i 16
Chapter 4 AUtonomMOoUS NaVIQAtION.........c.ccviiieiiiie e sre s 17
4.1 MOVE_DASE PACKAGE ......ecvviciieie e e 17
4.1.1 Global, 10Cal COSE-MAP.....ccuviiiiieie e 19
4.1.2 Path PIANNING ....ocviiieic et et sre e re e reenne e 20
4.1.2.1 Dijkstra’s alOrithm ..........cccooiviiiiiiiicii e 20

4.1.3 RECOVEIY DBNAVIOUT ...t 22

4.2 Algorithm WalKthrough ...........oooiiiiii e 22
4.2.1 BASE CONTIOIIEY ...t 22

4.3 Sensor fusion and Kalman Filter ..., 24
4,31 BASIC TEIMMS ...ttt sttt bbbttt ettt bbbttt n e 25
4.3.2 Kalman filter algorithim ... 26
Chapter 5 System INtEGration .............coveiiiiiiieee e 28
5.1 LIDAR IMPIEMENTAtION ......ccooiiiiiiiciic ettt 28
5.2 RICOH THETA Implementation ..........ccccooieiieiicic e 29
5.3 Intel real-sense iMpPIlemMENTatioN ...........cceiiiiiiiiiiie s 33
5.4 MUITICAMEIA SYSTEIM ...ttt et e e e e taeenre e 37
5.4.1 Kalman filter integration ............ccceoieiiiii e 40
Chapter 6 ConclusioNS & DISCUSSION ........ccveiuieiiiieiiee e seese e e ste e srae e e e see e eeeenes 41
6.1 SUMIMIBIY ...ttt b bbbttt e b e et e e s 41
8.2 DISCUSSION ...ttt b e r et b et r et nr e ene 41
6.2.1 Implement parts of the system without ROS............c.ccociiiiiiiii e, 41
6.2.2 Hardware UPGIAE ........eevueeieieeiieeiesieesieeie e e ste e e e sseessaestaenaesneesseaneesneesneeneennes 42
B.2.3 3D SLAM ...ttt 42



0.3 FUTUIE WOTK oo 42

6.3.1 Virtual Reality teleOPeration ...........cocoeiiiiiieerese e 42
(T I @ o] 1= ox a0 (=] 1=Tod 1 o] SR 43
T L o1 Lo o] =10 1 |2 SRR OSPRSS 43

List of figures

Figure 2.1 RODOT IN @ MAP. 1.vveiiiiiiiicceee ettt e et be e e esreeneenes 4
Figure 2.2 TranSfOrM IrEE. . ...civi ettt sre e ens 5
Figure 2.3 RICOH THETA V CAMETA. ...ccuviiiiiiiiiieieiieeeie ettt 6
Figure 2.4 Inertial Measurement UNIT...........cooiiiiiiiiiiieee e 7
Figure 2.5 SIMPIE gYTOSCOPE. . .eoviiiiiiieeie e sttt sttt te e ba et esre e be et e sneesreeneeenes 7
Figure 2.6 Intel RealSense D435 CAMEIA. ......ccuecveieeiieiieiie e eee e re e sre e 8
Figure 2.7 RPLIAAr ALMB GBVICE. .....cuviuiiiiieiieiti ittt 9
Figure 3.1 Google cartographer STUCTUIE. ..........cooiiiiieieieese e 10
Figure 3.2 The effect of voxel grid filter on 3D. ......ccccoiiiiiiiii 11
Figure 3.3 Global optimization reSUILS. ..........coveiiieiice e 13
Figure 3.4 EXample LUa FIlE. ......oooiiiiiiie e 14
Figure 3.5 MUltisCale PYFamid.........ccoviiiiiiieie e 16
FIQUIE 3.6 VISUAL SLAM. ..ottt bbb 17
Figure 4.1 Global cost map configuration file. ... 18
Figure 4.2 move_Dase Set OF NOUES. ........cveiiiiiiiie s 19

Figure 4.3 Global cost map. Black cells are inflated objects, green rectangle is the robot and

the red arrow represents itS OreNTATION. .........ccooiieriiinieee e 20
Figure 4.4 local cost map aligned with a normal Map. ........ccooeiiiiininiie e 20
Figure 4.5 Starting cell is “s”, adjacent cells are considered neighbors. ...........c.ccccvvviienennn. 21

Xiii


https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082422
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082423
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082424
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082425
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082426
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082427
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082428
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082430
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082431
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082432
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082433
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082434
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082435
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082436

Figure 4.6 Red and pink cells represent obstacles, blue cells represent the inflation of

obstacles, green cells represent the path. ... 21
Figure 4.7 Motor CONtrol PSEUAOCOUE. .......veivveiiieiecieesieeie et e et aesae e nreas 23
FIQUIE 4.8 IMOTOT IV, ...t bbb 24
Figure 4.9 Gaussian diStriDULION N, G2......cccoiiiiiiieiiee et 25
Figure 4.10 COVATANCE MALMIX. .....eiieieeieieteitesiesie ettt bbbt 26
Figure 4.11 Kalman fIlter..........oooi i 27
Figure 5.1 RODOt PIAFOIM. ....ocviie e 28
Figure 5.2 System With LIDAR SENSOT. ......ccueiiiiiiriiiieieie ettt 28
Figure 5.3 System structure using LIDAR SENSOI. ......c.ccceiuiiiiiriniiieieiesiesie st 29
Figure 5.4 System With 3600 CAMEIA...........cccueiieiiiieiecie e sre e 29

Figure 5.5 Map created by openVSLAM, white cells are features, green cells represent the

PALN TOHOWED. ... 30
Figure 5.6 Each rectangle represents a node in the ROS SyStem..........cccovveviieninineniieienn. 31
Figure 5.7 Pseudo code of the SLAM implementation and filtering procedure. ..................... 32

Figure 5.8 Black cells represent obstacles, white cells represent free space, red arrow

1EPIESENtS the TODOL'S POSE. . eiviiiiiiiieiiiiii i 32
Figure 5.9 Rover with IntelRealSense D435i CAMETa. .......ccoceiiiiriiieieieee e 33
Figure 5.10 Pseudo code of the SLAM system, using IntelRealSense D435i camera. ........... 34
Figure 5.11 Yellow cells are features, algorithm is mapping. ........ccccceveevevievesie e 35
Figure 5.12 Camera is turned, and algorithm iS 1OSt. ...........cccccveviiiiiie e 35

Figure 5.13 The chair is moved out of the field of view, camera is back on the starting

position and the algorithm is St IOSE. ..........coovviiei e 35
Figure 5.14 Picking the chair and MOVING It.........cccccveiiiiiiiie e 35
Figure 5.15 Algorithm still cannot match the features. ...........ccoocveieiiiii e 35
Figure 5.16 Chair back on starting position, algorithm tracks the features again. .................. 35
Figure 5.17 Different colors of the line represent different distances from the camera. ......... 36

Xiv


https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082440
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082440
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082441
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082442
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082443
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082444
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082445
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082446
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082447
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082448
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082449
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082450
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082450
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082451
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082452
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082453
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082453
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082454
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082455
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082462

Figure 5.18 System structure using only IntelRealSense D435 ........ccccoeveiiiiiiiiiicicee, 36

Figure 5.19 MUIICAMEra SYSLEM ......cciiiiiieiie ittt e e e naesneenne s 37
Figure 5.20 Position and orientation coordinates of 0dOMEtry...........ccoccvvvevveveiiecieese e 38
Figure 5.21 System Structure USiNg tWO CAMETAS. .......cueverierierieriirieniieieeenee e 39
Figure 5.22 Red arrow represents the orientation and position of the robot in the map.......... 39
Figure 5.23 System structure including an Extended Kalman Filter. ............cccccooeiiiiiiienn, 40

XV


https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082463
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082464
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082465
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082466
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082467
https://d.docs.live.net/ef0272c78d4d5edd/Έγγραφα/Graduate_project.docx#_Toc77082468

Chapter 1 Introduction

1.1 Problem description

Nowadays, engineers are trying to automate many procedures, in order to accomplish complex
tasks with little human effort and risk. One of the most challenging tasks, is autonomous
navigation, which includes vehicle navigation in public streets, ground or aerial robot
navigation in indoor or outdoor environments. To achieve this goal, many techniques are
developed, especially in the robotics field. These techniques include algorithms and
mathematic models, that process data in fast and efficient ways, hardware components that
produce those data, in order to understand the surrounding environment and the robot’s or

vehicle’s state.

Distinct sensors that produce information about the environment are designed and integrated
into autonomous mobile systems, such as laser sensors and cameras. Laser sensors are very
common, and can be found in almost every mobile vehicle, they provide depth information,
which is important for a mobile robot. Cameras especially, are used in a lot of tasks in
autonomous systems, like object detection, Simultaneous Localization And Mapping (SLAM),
visualization for remote control etc. However, it is difficult to integrate them into a system and

configure them properly.

1.2 Purpose of this project

The goal of this project is to create an autonomous mobile robot, which can localize itself,
navigate in (un)known GPS-less environments, create a map and avoid obstacles, if any,
simultaneously. All those objectives have to be accomplished in real time, otherwise the system
will not correspond to real life scenarios and we will not be able to deploy it in future
experiments. This kind of system has many applications in everyday life such as health, indoor
object search, work, military and in mining sites. We are using cameras, laser sensors and an

IMU in our system and test two SLAM algorithms in our implementation. The robot is tested

1



at the NITLab’s indoor GPS-less testbed, in which our robot is deployed as a mobile node, so

that experiments can be conducted with it.

1.3 Thesis Structure

The thesis is divided in six Chapters with the following content.

Chapter_2: illustrates the technologies and techniques, a reader should know, in order to
comprehend the rest of the content. It is divided in two categories, the first is the software we
used in the project and the second one is the hardware, we examine each component

individually.

Chapter 3: investigates in depth the SLAM algorithms we use, more specific, the way a map
is constructed and the way a robot obtains its position in it. Also, it introduces the concept of

sensor fusion and a specific algorithm our system includes, Kalman filters.

Chapter 4: describes the algorithms used to achieve autonomous navigation and the
prerequisites. Examines the procedure of how a robot avoids obstacles and how path planning
works. In the end, an overall description of how all the algorithms cooperate to get an optimal

result is given.

Chapter 5: contains all the systems implemented and tested. It describes the reasons why some
specific implementations cannot work in real situations and why others can. In the end, a

complex system is built, in order to tackle all the problems, other systems face.

Chapter 6: summarizes the thesis and looks ahead for the next steps of the project.

Chapter 2 Infrastructure and tools

The making of an autonomous navigation system consists of different tools. Hardware

components like minicomputers, microcontrollers, sensors, batteries etc., software is included



and developed to fetch and process data from available resources (hardware). Below we take a

better look at all the components our system consists of.

2.1 Software components

Most of the software developed is written in C++, also many ready to use packages are included
to develop our project. The platform that assisted us with the packages needed is ROS. Below,

we clarify the resources we use and why.

2.1.1 ROS

ROS! [1] is an opensource meta-operating system for robots and is mostly used in Unix
operating systems. It provides the same utilities as a normal operating system does in a
computer, some of these utilities are, hardware control, package manager for easier finding and
installation and a communication system between processes. Also, it provides tools that help
create and execute code, which can be distributed among different computers. This is achieved
due to the architecture of the system, it uses Nodes? to execute code, Topics® and Messages* for
the intra-Nodes communication. This operating system is used by many developers, that

develop robot software. In our implementation ROS is used as the core of the system.

2.1.2 Visualization

ROS offers tools to visualize different kinds of procedures, among others we can visualize the
map of an environment, the path a robot is going to follow and the position of the robot in the
map. The tool we use in this project is rviz®, because it gives us the capability to send commands

to the robot and debug our system errors. An example map and a robot are shown below.

! https://www.ros.org/about-ros/
2 http://wiki.ros.org/Nodes
3 http://wiki.ros.org/Topics
4 http://wiki.ros.org/Messages

5 http://wiki.ros.org/rviz
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Figure 2.1 Robot in a map.

2.1.3 Publish/Subscribe pattern

In software architecture, publish-subscribe is a communication pattern, where senders of
messages, called publishers, do not send messages to a specific receiver (subscriber), rather
than classify their messages into groups, without knowledge of which subscribers, if any, there
may be. In a similar way, subscribers express interest in one or more classes and receive
messages that are of interest, without knowledge of which subscribers, if any, there are. ROS

is based on this architecture for the Nodes communication.

2.1.4 Nodelets

On many occasions, message communication is very time consuming because there are a lot
of data to transfer. Nodelets’ are designed to provide a way to run multiple algorithms on a
single machine, in a single process without incurring copy costs when passing messages intra-
process. In conjunction with the publish/subscribe pattern, nodelets are used in our system to

transfer images from the cameras efficiently.

8 https://blog.roverrobotics.com/ros-2-maps-maps-maps/

" http://wiki.ros.org/nodelet
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2.1.5 Point Cloud

Point cloud is a set of data points in space. The points represent a 3D shape or object. Each

point has its set of X, Y, Z coordinates. In our implementation point clouds are produced from

depth images and are processed accordingly to map an environment.

2.1.6 Sensor transforms

A very frequent problem when dealing with robots, with multiple joints or sensors is the wrong
reference system transformation. ROS offers a package that is designed to refer data to multiple
reference systems, that can vary over time, also it maintains the relationship between coordinate
frames in a tree structure buffered in time. This package makes the coordinates frames available
to all ROS nodes on any computer connected to the system. The visualization of these

transforms has a tree structure, so we refer to it as transform tree. Below is shown a simple

transform tree.
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Average rate: 30.204 Hz
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Figure 2.2 Transform tree.



2.2 Hardware components

Robots are built from many different components, that provide a robot with the ability to sense
and perceive an environment. Most of the hardware we utilize, are commercial out of the shelf

products. Below, we elaborate on the reasons why we chose each component.

2.2.1 RICOH THETAV

RICOH THETA V&, is a 3600 camera, with an improved video performance, transfer speed
and extensibility. It produces high resolution videos while streaming live and has opensource
plugins for developers to hack. It is supported by the Linux operating system, which makes it
easy to connect on small computers (like Raspberry pi computers). We use it as an input of

images, in order to localize our robot and navigate to unknown environments.

Figure 2.3 RICOH THETA V camera.

2.2.2 Inertial Measurement Unit (IMU)

A combination of sensors is important to measure and estimate a robot’s position in a specified

environment, to fetch this kind of information we use an IMU sensor. An IMU is an electronic

8 https://theta360.com/en/about/theta/v.html



device that measures and reports a body’s gravitational force, angular rate® and acceleration. A

fusion of this information provides the orientation of the sensor.

To reduce the system’s complexity, the final system uses the Intel RealSense D435i built in

IMU. Below we elaborate on each sensor a simple IMU consists of.

Figure 2.4 Inertial Measurement
Unit

2.2.2.1 Gyroscope

A gyroscope is a rotation sensor capable of measuring orientation and angular velocity based
on the principles of angular momentum?. The device consists of a spinning wheel or disc in
which the axis of rotation (spin axis) is free, so the wheel or disc can measure its orientation
around every axis. When the sensor is rotated the spin axis is unaffected from the rate of change

of angular displacement.

Gyroscope Spin axis

Gimbal M Rotor

Figure 2.5 Simple gyroscope.

® https://en.wikipedia.org/wiki/Angular_velocity

10 https://en.wikipedia.org/wiki/Angular_momentum#Conservation_of angular_momentum



2.2.2.2 Accelerometer

An accelerometer is a device that measures proper acceleration in a single or more dimensions
(dimensions might differ depending on the device). Proper acceleration is the rate of change of
velocity of a body in own frame. For example, an accelerometer at rest on the surface of the

will measure an acceleration due to Earth’s gravity. To the contrary, an accelerometer in free

fall (falling towards the center of Earth at rate of about 9.81 sz) will measure zero acceleration.

We use this information to measure our robot’s acceleration on the floor/road.

2.2.3 Intel RealSense D435i

D435i is a stereo camera, which generates RGB and depth images (RGB-D), it also has a built
in IMU device. We chose this device because, there is a lot of available documentation and a
Software Development Kit (SDK) provided by Intel, which helped us develop the necessary
functionalities. Images from this camera are used to test a Visual SLAM algorithm (read below)

and detect obstacles.

(intel) REALSENSE

Figure 2.6 Intel RealSense D435i camera.

1 https://www.intelrealsense.com/depth-camera-d435i/



2.2.4 Light Detection and Ranging (LiDAR) sensor

LiDAR sensor provides accurate information about the distance between the sensor and an
object in a specified range in the 1D, 2D or 3D space (depends on the sensor’s capabilities). In
one implementation a 3600 2D LIiDAR (RP LiDAR A1-M8%) sensor is used, to scan the

environment in a certain radius.

Figure 2.7 RPLidar A1M8 device.

Chapter 3 Simultaneous Localization And Mapping (SLAM)

In this chapter we are going to take a deeper look, on a very common problem of autonomous
mobile systems, localization in static and dynamic environments and mapping those

environments. At first, we define those procedures.

Robot localization is the process of determining where a mobile robot is located with respect
to its environment. Localization is a fundamental competency required by an autonomous
robot, as the knowledge of the robot’s own location is a prerequisite to making decisions about

future actions.

SLAM is a computational problem of constructing or updating a map of an unknown
environment, while simultaneously keeping track of the robot’s location within it. There are
many algorithms to approach an optimal solution. Each solution is designed around the sensors
that are used to perceive the environment. In our system we use different sensors to find an

optimal solution.

12 https:/fwww.slamtec.com/en/Lidar/Al



3.1 SLAM with proximity sensor

One of the most common ways to apply a SLAM algorithm, is with a proximity sensor,
especially 3600 laser sensors, mostly because they can acquire accurate depth information of
an environment in different angles. A common SLAM algorithm used is google cartographer

[2], because it provides real time map and robot position data. Below we can see the algorithm’s

structure.
Input Sensor Data Local SLAM
Range Data
(Laser scan/ Voxel Filter Adaptive
Laser range/ (fixed size) Voxel Filter )
Paint cloud) Scan Matching
(ceraes)
y PoseQbservation
Od;:\;iry PoseExtrapolator
PoseEstimate
Mation Filter Still
(lingar/angular Dropped
maotion or time)
IMU Data
acc“e.;:f:tl:-on ITUT".BCKEF Movement or 01
Angular (gravity alignment) Submaps
velocity)
Voxel Grid
Update
| (active)
Fixed Frame Global SLAM (background thread) I
Pose
| Compute Constraints |
| | (INTRA: node + 2 |
S I insertion submaps
INTER: loop closure)

Sparse Pose InsertionResult
Adjustment (time, pose,
range data,
l submaps)

Extrapolate all
poses that were
added later

13

Figure 3.1 Google cartographer structure.

13 https://github.com/cartographer-
project/cartographer/blob/master/docs/source/high_level system_overview.png
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Below we explain in depth every component of the algorithm, in order to understand how it

works overall.

3.1.1 Sensor input

Proximity sensors, such as lidars, provide depth information in different angles. However,
some measurements are not accurate, due to dust or a robot part partially covering the sensor,
also, some of the furthest measurements can be a result of reflection or sensor noise, hence they
are considered as noise for SLAM. Thus, cartographer applies a bandpass filter and keeps

values between a certain range.

The resulting range data are often denser in some angles than others, this happens because
objects closer to the sensor provide more points, on the contrary far objects are less often hit
and provide less points. The computational weight of points handling needs to be reduced, a
solution is to subsample point clouds. A voxel filter is used to down sample raw points into

cubes of a certain size and only keeps the centroid of each cube.

Below we can see an example of this filtering procedure.

Figure 3.2 The effect of voxel grid filter on 3D.

14

Next, an adaptive voxel filter is applied to the data. This filter tries to find out the optimal voxel

size to achieve a specific number of points.

14 https:/lwww.researchgate.net/figure/The-effect-of-the-voxel-grid-filter-on-Kinect-3D-data_fig3_ 286624443
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The use of an IMU sensor is optional in 2D SLAM, because the cartographer can handle range
data in real time. Although, it provides an accurate direction of gravity and a noisy estimation
of the robot’s rotation, which is useful for SLAM overall. In 3D SLAM, IMU usage is
mandatory, because it is used to make an initial guess for the orientation of the proximity sensor
scans, reducing the computational weight of scan matching. Odometry sensors help the pose

extrapolator to make accurate predictions (read below).

3.1.2 Local SLAM

When a scan is produced and filtered, it is handled by the local SLAM algorithm. Local SLAM
inserts a new scan into its current submap construction by scan matching using an initial guess

from the pose extrapolator.
The scan matching strategy used in this project:

e The scan matcher node takes an initial guess as prior and finds the best spot where the
scan match fits the submap. This is done by interpolating the submap and sub-pixel

aligning the scan.

Pose extrapolator uses sensor data other than that of range finders to predict where the next

scan should be inserted into the submap.

A submap is considered complete when the local SLAM has received a certain amount of range
data. Local SLAM drifts over time, to fix this global SLAM is used. Submaps need to be small
enough so their drift is below the resolution, but they must be large enough for the loop closure
detection to work properly. Loop closure detection is the process of detecting whether an agent

has returned to a previously visited location.

3.1.3 Global SLAM

While local SLAM produces submaps, a global optimization task is executed simultaneously.
This procedure rearranges submaps in a way that the result is a coherent global map. In its core
global SLAM is a pose graph optimization algorithm [3] which works by building constraints

between nodes and submaps and then optimizing the resulting constraints graph.

12
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Figure 3.3 Global optimization results.
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Google cartographer parameters are configured through Lua files, below is shown an example

configuration for 2D SLAM with one proximity sensor.

15 https://www.semanticscholar.org/paper/Planar-Pose-Graph-Optimization%3A-Duality%2C-Optimal-
Carlone-Calafiore/c110a7544c4d48cacccbec5f0c21c89523e45260/figure/0

16 https://en.wikipedia.org/wiki/Lua_(programming_language)
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include "map_builder.lua”
include "trajectory_builder.lua"

options = {
map_builder = MAP_BUILDER,

trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map"”,

tracking_frame = "base_link",
published_frame = "base_link",
odom_frame = "odom",

provide_odom_frame = true,
use_odometry = false,

use_nav_sat = false,

use_landmarks = false,
publish_frame_projected_to_2d = false,
num_laser_scans = 1,
num_multi_echo_laser_scans = 0,
num_subdivisions_per_laser_scan = 1,
rangefinder_sampling_ratio = 1,
odometry_sampling_ratio = 1,
fixed_frame_pose_sampling_ratio = 1,
imu_sampling_ratio = 1,
landmarks_sampling_ratie = 1,
num_point_clouds = 0,
lookup_transform_timeout_ﬁec = 0.2,

submap_publish_period_sec = 0.3,

pose_publish_period_sec = 5e-3,

trajectory_publish_period_sec = 3@e-3,
}
MAP_BUILDER.use_trajectory_builder_2d = true
TRAJECTORY_BUILDER_2D.use_imu_data = false
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true

POSE_GRAPH.optimization_problem.huber_scale = 1e2

return options

Figure 3.4 Example Lua file.

3.2 Visual SLAM

Visual SLAM algorithm is a solution of the SLAM problem, using camera images or other
visual data only. Visual SLAM can be used as a fundamental technology for various types of
applications and has been discussed in the field of computer vision, augmented reality and
robotics. One implementation of our system uses openVSLAM [4], a visual SLAM algorithm
in conjunction with RICOH THETA V camera, in order to achieve autonomous navigation in

an unknown environment.

3.2.1 Feature detection

Most Visual-SLAM algorithms localize the system by comparing camera frames and matching
key points or features. OpenVSLAM depends on Oriented FAST and Rotated BRIEF (ORB)

local feature detector.

14



3.2.1.1 Features from Accelerated Segment Test (FAST)

Features from Accelerated Segment Test (FAST) is a corner detection method which is used
by ORB algorithm. Given a pixel p in an array, FAST compares the brightness of p to a specific
number of surrounding pixels that are in a small circle around p. Pixels in the circle are grouped
into three classes (lighter, darker or similar to p). If more than a certain number of pixels are
darker or brighter than p, it is selected as a key point. Thus, key points produced by FAST help

determine edges in an image.

3.2.1.2 Oriented Fast and Rotated BRIEF (ORB)

Features produced by FAST do not have orientation and multiscale features. ORB algorithm
utilizes a multiscale image pyramid. Multiscale image pyramid is a representation of a single
image at different resolutions. Each level of the pyramid consists of a down-sampled version
of the upper-level image, starting from the original image. FAST algorithm is executed on this
pyramid to detect key points at each level, essentially locating key points at a different scale.
Thus, ORB is partial scale invariant.

15
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Figure 3.5 Multiscale pyramid.
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The next step is to assign orientation to each key point depending on how the levels of intensity
vary around each key point. Intensities are detected by using intensity centroid:®. The intensity
centroid assumes that a corner’s intensity is offset from its centre and this vector may be used
to impute orientation. Finally Binary Robust Independent Elementary Features [5] (BRIEF)
algorithm is used as a feature point descriptor. Next, we discuss how openVSLAM algorithm

works, using the feature detection method mentioned above.

3.2.2 Algorithm walkthrough

The algorithm extracts a set of points (features) through successive camera frames and
triangulate their 3D position, while simultaneously using this information to estimate camera
pose. A map is created and extended using the extracted features and a local bundle *°
adjustment procedure is performed. At the end, global optimization is performed, which

includes loop closure detection, global bundle adjustment and pose-graph optimization.

7 https://en.wikipedia.org/wiki/Pyramid_(image_processing)
18 https://en.wikipedia.org/wiki/Image_moment

19 https://en.wikipedia.org/wiki/Bundle_adjustment
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Figure 3.6 Visual SLAM.
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Chapter 4 Autonomous Navigation

Autonomous Navigation can be accomplished in known or unknown environments when a
mobile robot is able to localize itself and map the environment (in unknown environments) as
we explained above. At this point we must have obtained a map and the robot’s position in it.
There are different kinds of algorithms for autonomous navigation, ROS provides a software
navigation stack?, a group of packages that includes different algorithms to handle navigation

problems. We use and configure them to suit our system.

4.1 move_base package

The package we use is called move_base?, it offers among others, algorithms for path planning
(goal position is defined by the user) and obstacle avoidance in a map. Every algorithm that is

20 https://link.springer.com/chapter/10.1007/978-981-15-3651-9 5
2L http://wiki.ros.org/navigation

22 hitp://wiki.ros.org/move_base
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used is configured via yaml?® files. Below is shown a yaml example file for a cost map
algorithm we use (read below).

global_costmap:
update_frequency: 2.5
publish_frequency: 2.5
transform_tolerance: 0.5
width: 15
height: 15
origin_x: -7.5
origin_y: -7.5
static_map: false
rolling_window: true
inflation_radius: 2.ﬂ
resolution: 0.1
global_frame: /map
robot_base_frame: base_link

Figure 4.1 Global cost map configuration file.

The navigation algorithm structure is shown below.

2 hitps://en.wikipedia.org/wiki/Y AML
18
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Figure 4.2 move_base set of nodes.

4.1.1 Global, local cost-map

Cost-maps are essentially grid maps, where each cell has a certain value (cost). Larger cost
values indicate a greater possibility that an obstacle is in a certain position. Similarly, smaller
cost values suggest less or zero possibility of an obstacle existence in a certain position. In our
system’s cost-map there is an inflation layer?. Inflation is the process of propagating cost
values out from occupied cells that decrease with distance. This layer tries to help the robot
keep a certain (adjustable by the user) distance from obstacles. Below an example of a local

and a global cost map is shown.

24 http://wiki.ros.org/costmap_2d/hydro/inflation
19
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Figure 4.3 Global cost map. Black cells are inflated objects,  Figure 4.4 local cost map aligned with a normal map.
green rectangle is the robot and the red arrow represents its
orientation.

4.1.2 Path planning

Path planning algorithms, calculate a valid sequence of positions, that a robot must follow, in
order to reach a (user defined) destination. We use Dijkstra’s?® algorithm in our

implementation.

4.1.2.1 Dijkstra’s algorithm

Dijkstra’s algorithm is used to find the shortest path between nodes? in a graph, which in our
case represents the map of our environment. This algorithm finds the shortest path between a
source node and every other node in the graph, meaning that the path to the goal node is an
optimal one. Although the map of our environment is a 2D grid, we can treat it as a graph and
each grid square is connected to up to 8 adjacent grid cells.

25 https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
% nttps://en.wikipedia.org/wiki/Vertex_(graph_theory)
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Figure 4.5 Starting cell is “s”, adjacent cells are considered neighbors.

Figure 4.6 Red and pink cells represent obstacles,
blue cells represent the inflation of obstacles, green
cells represent the path.

In Figure 4.6 a visualization of the robot in a 2D cost map is shown, the red arrow represents
the pose of our robot, and the green rectangle represents its size. We set a navigation command
through rviz for the robot to execute, using Dijkstra’s algorithm the path generated (green line)

is an optimal one, considering all the information a cost map provides.

21



4.1.3 Recovery behaviour

State or behaviour recovery algorithm is a procedure a robot follows when it is not able to
follow a user’s command. For example, reach a certain goal position when it is surrounded by
obstacles, or the goal position is inside an obstacle. In this project, we will not handle these

situations.

4.2 Algorithm walkthrough

Move base uses two cost maps and two path planning algorithms, one global and one local of
every kind (see Figure 4.2). The global cost map in conjunction with the global planner,
optimize the complete path from a starting point until the goal point. Local cost map and local
planner, optimize the path near the robot. The combination of the global and local cost maps
and planners, find an optimal path, for a given goal in a map. The algorithm produces velocity

messages, that are handled by the base controller.

4.2.1 Base controller

The base controller in our system is essentially a node which receives velocity messages, that
include a linear speed in x-axis and an angular speed in z-axis. This node calculates speed for
the wheels and sends a pulse-width modulation? (PWM) signal to a motor driver, which also
includes GPI10O pins? to control direction for each wheel. This motor driver decodes the signal

and delivers certain power to the motors, so they can rotate at the desired speed.

Our robot is a differential wheeled robot, which means that it can change its direction by
varying the relative rate of rotation of its wheels and hence does not require a steering motion.

Below we can see a pseudocode of our implementation.

27 https://en.wikipedia.org/wiki/Pulse-width_modulation

28 https://en.wikipedia.org/wiki/General-purpose_input/output

22



(velocity msg)

ul d
right wh p v + (velocity msg.angular * ROBOT_BASE_WIDTH

left_wheels .x - (velocity msg.angula * ROBOT_BASE_WIDTH

- ang
normal (right_wheels_speed)
normal (left_wheels_sp )

=eilel )
left wheels direction
right_wheels_direction = find direction(right wheels_s

Ch s
write_left_wheels GPIO_PINS{GPIO PINS, left wheels_direction)
i right_wheels_GPIO_PINS(GPIO_PINS,right_wheels_direction)

idth
( -~ wheels_spee
S(right_wheels_speed)

Figure 4.7 Motor control pseudocode.

The motor driver used is shown below.



Figure 4.8 Motor driver.

4.3 Sensor fusion and Kalman filter

Nowadays, many autonomous mobile robots use more than one sensor, in order to navigate
and do tasks independently. The acquired sensor data can be used together to gather more
information about our system and the surroundings, thus a procedure called sensor fusion is

introduced to solve this sensor combination problem.

Sensor fusion is a procedure, where two or more data sources are combined in a way that
generates a more consistent, accurate and dependable understanding of the system, than it
would be from a single data source. Kalman filters are utilized in our system to fuse different
kinds of information. Kalman filter is an estimator for what is called the linear-quadratic
problem, which is the problem of estimating the instantaneous “state” by using measurements
linearly related to the state but corrupted by white noise. The resulting estimator is statistically
optimal with respect to any quadratic function of estimation error. Kalman filter has numerous
applications and specifically extended Kalman filters. Extended Kalman filter handles
nonlinearity by linearizing the system at the point of current estimate and then the linear
Kalman filter is used to filter this linearized system. An application of a Kalman filter is the
fusion of different sensors of a robot, in order to estimate its position and predict the next
position. In our system implementation, Kalman filter is used to combine odometry and IMU
data [6].
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4.3.1 Basic Terms

A robot’s position uncertainty can be expressed with a Gaussian distribution N(x,a?). For
example, we believe the robot’s x-axis position is x = 10m and the variance is 1 m? or
N(10,1).
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0.0
6 8 10 12 14

Figure 4.9 Gaussian distribution N (y, a2).

The plot shows a probability density function which indicates every probability of the robot’s

position in a range of values between x = 9mtox = 11m.

In multivariate Kalman filters it is essential to consider how the multiple variables are
correlated and how much is their covariance. Covariance describes how two variables change
in relation to each other. A covariance of 0 indicates no correlation between the variances of

the variables.

A covariance matrix between two variables x, y looks like:
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y Leov(z,y) war(y)

Figure 4.10 Covariance matrix.

The diagonal contains the variance of each variable, and the off-diagonal elements represent
the covariance between variables.

4.3.2 Kalman filter algorithm

The Kalman filter can be broken down to three stages [7]:
Initialization

1. Initialize the state of the filter.
2. Initialize our belief in the state.

Predict

1. Use process model to predict state at the time step.

2. Adjust belief to account for the uncertainty in prediction.

Update

1. Get a measurement and associated belief about its accuracy.

2. Compute residual between estimated state and measurement.

3. Compute scaling factor (Kalman gain) on whether the measurement or prediction is
more accurate.

4. Set state between the prediction and measurement based on scaling factor.

5. Update belief in the state based on how certain we are in the measurement.
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Figure 4.11 Kalman filter.

Below we examine the multivariate Kalman filter equations.

Prediction

1. x=Fx+ Bu
2. P=FPFT+Q

Update
l. y=z—Hx
2. K=PHT(HPHT + R)™!
3. x=x+Ky
4. P=(I—-KH)P

The variables are defined below:

e x, P are the state mean and covariance

e F,Q are the state transition function and process covariance
e B, u are the control matrix and control input

e H is the measurement function

e z, R are the measurement mean and noise covariance

e y,K are the residual and the Kalman gain

state
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Chapter 5 System integration

We are using a custom rover platform. It uses 4 independent dc motors and a custom battery
pack for the motors. The main computer is raspberry pi 4B, which also has its own battery

pack.

Figure 5.1 Robot platform.

5.1 LiDAR implementation

In this implementation the only sensor used is RP-lidar A1M8. The cartographer is used to
create a map of the environment and localize the robot in it and the move base package is used

to navigate.

Figure 5.2 System with LiDAR sensor.
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Through rviz we manage to visualize and send navigation commands to the robot from a
computer station. The system successfully navigated in the testing environment and avoided

obstacles. The accuracy achieved is +5 cm in an unknown environment.

localization/mapping l

Move base

navigation 1

Figure 5.3 System structure using LiDAR
Sensor.

5.2 RICOH THETA implementation

Figure 5.4 System with 3600 camera.
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In this implementation, our goal is to test the accuracy of a visual SLAM algorithm. RICOH
theta V is used as the only sensor for our system and OpenVSLAM is configured to work under
ROS framework. Move base package is used for the navigation part along with octomap_ros®.
At this point the robot can navigate to an environment without obstacles. Below is shown an

example of a map created by openvSLAM and the robot’s path in it.

L 34

gffs.com

30

Figure 5.5 Map created by openVSLAM, white cells are features, green cells
represent the path followed.

OpenVSLAM produces point-clouds and octomap_ros package transforms them into a map
format. We filtered the feature points the algorithm produced by keeping only those in a
specified height range. This filtering procedure is important, because we want to discard
features that occur from the floor (not actual obstacles) and features that occur above the robot’s
height (there is no chance of collision if an actual object exists above the robot’s height). Below

we can see the system’s structure.

2 http://wiki.ros.org/octomap
30
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68747470733a2f2f6a2e676966732e636f6d2f38316d31514c2e676966
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Figure 5.6 Each rectangle represents a node in the ROS
system.

Below is shown a pseudocode of our SLAM subsystem when using RICOH THETA V camera.
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ROS.Publisher pose_publisher.initialize()
RO5.Publisher point_cloud_publi .initialize()

thread()

(is_not_end)

video.read(frame);

camera_pose = SLAM.feed_frame(frame)

point_cloud = SLAM.get_landmarks()

counter from > point_cloud.size

point_cloud r].height > robot.height
delete point_cloud[counter]

ius, r t
robot_wheel.radi

delete point_cloud[counter]

pose_publisher(camera_pose)
point_cloud_publisher(point_cloud)

d thread

isuali = Tr
viewer.run()

it(thread)
SLAM. shutdown( )

Figure 5.7 Pseudo code of the SLAM implementation and filtering procedure.

Unfortunately, it is not possible to create an accurate map of the environment with this data,
because the depth information of the camera is inaccurate. This leads to the map shown below.

Figure 5.8 Black cells represent obstacles, white cells
represent free space, red arrow represents the robot’s
pose.
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5.3 Intel real-sense implementation

Figure 5.9 Rover with IntelRealSense D435i
camera.

This time a different type of camera is tested, IntelRealSense D435i. At first, RGB and depth
images are extracted from the camera and passed to the openVSLAM algorithm, which is
configured to handle RGB-D images. IntelRealSense software development kit provides tools
to access and handle images of the camera, so instead of using ROS functionalities to fetch and
process images, we wrote code and utilized the development kit, to process images faster and
more efficiently. Below we can see a pseudocode of the SLAM algorithm implementation with

IntelRealSense.
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run SLA
thread()

(is_not_end)

camera_pose = SLAM.feed_frame(aligned_images.rgb_image,aligned_images.depth_image)

point_cloud = SL t_landmarks()

’
delete point_cloud[counter]

pose_publisher(camera_pose)
point_cloud_publisher(point_cloud)

end thread

Figure 5.10 Pseudo code of the SLAM system, using IntelRealSense D435i camera.

Again, the data (features) were filtered, and we kept those in a specified range of height.

Although, the system can localize itself in slow change of movements and create a map, it is
very susceptible to quick turns and accelerations, thus the system loses track of the robot’
position and the robot must return to the previous position, or the algorithm needs to be reset.
This problem is caused by the narrow field of view of the camera [8] and the possible dynamic

change of a featureless environment.
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PangolinViewer: Frame Viewer pangolinViewer: Frame Viewer PangolinViewer: Frame Viewer

Figure 5.11 Yellow cells are features, Figure 5.12 Camera is turned, and Figure 5.13 The chair is moved out of the
algorithm is mapping. algorithm is lost. field of view, camera is back on the
starting position and the algorithm is still
lost.

Figure 5.14 Picking the chair and moving Figure 5.15 Algorithm still cannot match Figure 5.16 Chair back on starting
it. the features. position, algorithm tracks the features
again.

A second experiment was conducted, with google cartographer package. Depth images are
extracted from the camera and then processed by depthimage to_laserscan 3 package. It
essentially receives 3D depth images and extracts 2D distance information about objects, that

are in the camera’s field of view.

81 http://wiki.ros.org/depthimage_to_laserscan
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Figure 5.17 Different colors of the line represent different
distances from the camera.

The 2D information needed is now extracted and passed into the cartographer along with the
IMU data. The algorithm cannot perform and loses track of the robot. Submaps cannot be
created correctly, because the IMU information alone cannot produce an accurate guess of the

robot’s position over time and the global SLAM fails to create a coherent map.

localization 1 l |

mapping l

Move_base

navigation l

Figure 5.18 System structure using only IntelRealSense D435i.
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http://wiki.ros.org/depthimage_to_laserscan?action=AttachFile&do=get&target=depthimage.png

5.4 Multicamera system

The last system implemented, consists of two cameras, Intel RealSense D435i and RICOH
THETA V.

[T u
cldi/ B8 @

Figure 5.19 Multicamera system

Both cameras are strategically mounted on the robot, in order to get the most out of the
available visual information. RICOH THETA V along with openVSLAM algorithm, are used
to localize the robot and provide odometry only, we do not save a map or search for loop closure

in it. Below is shown an odometry information message coming from openVSLAM.
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header:
seq: 1378
stamp:
secs: 1621592782
nsecs: 442026911
frame_id: "odom"
pose:
position:
X: -0.02173168484

y: 0.0142315850346

Z: 0.000243609486757
orientation:

X: -0.001361160996298

y: -0.00206709021039

Z: 0.162004540183

w: 0.986786843181

Figure 5.20 Position and orientation
coordinates of odometry.

Intel RealSense depth images are extracted and processed again by depthimage_to_laserscan
package, in the end we keep 2D depth information about the environment and the built-in
IMU’s data. At this point, we have localized the robot and have depth information that can be
used to construct a map. Google cartographer algorithm receives the above data and creates a
map. The next step is to navigate and explore the area, move_base package is utilized, it

receives map messages from cartographer and the robot’s position in it.
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localization 1 1 |

mapping l

Move_base

navigation 1

Figure 5.21 System structure using two cameras.

Our system can navigate in unknown environments and perform object avoidance at this point.

The position accuracy achieved is +4 cm and orientation accuracy +15 degrees.

Below we can see a map, that was produced during experiments.

Figure 5.22 Red arrow represents the orientation and
position of the robot in the map.

The outliers far away are not constructed very well, because the camera’s range is constrained
to 5 meters and the objects in those ranges are partially or not often hit by the camera. Finally,
we can fetch the live streaming of the camera, while navigating and have a first-person view
(FPV).
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5.4.1 Kalman filter integration

Although the accuracy our system achieved is very good, we tried to increase it a bit more. All
components are the same in this implementation, but we used one more algorithm in order to
fuse odometry and IMU information. As we mentioned in a previous chapter (see Chapter 3,
paragraph 3.3) an extended Kalman Filter is used to reduce drift from our sensors and increase
odometry accuracy. The filter is modified to fuse information in the 2D space, odometry
measurements are considered relative to the first measurement which is the starting position
(x=0,y=0, z=0, roll =0, pitch =0, yaw = 0 , although z-axis and roll, pitch
measurements are not used ) and IMU measurements are relative to the previous measurements,
to clarify an IMU measurement at time t is considered relative to the measurement at time t —
1. This setting is useful because we could not set the variances of the input sources precisely,
which means that the measurements may get out of sync with one another and cause oscillations

in the filter. Below is shown our system’s structure.

localization l 1

mapping l

navigation l

Figure 5.23 System structure including an Extended Kalman Filter.

Experiments with this structure produced better results, the position accuracy achieved is

+4 cm and orientation achieved is +10 degrees. Position accuracy is similar to the previous
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experiment, although the tools used to calculate position drift cannot provide accurate
information in a millimetre scale. Orientation of the robot has a very noticeable improvement,
which is expected because IMU orientation information can help smooth the errors of odometry

orientation.

Chapter 6 Conclusions & Discussion

6.1 Summary

Integration of many cameras in mobile robots is very common and challenging, our system can
act and navigate autonomously with the information provided by two different cameras. This
is achieved with the architecture introduced in the previous chapters. Based on the experiments
conducted, the system can act and make decisions in a relative short amount of time. This was
one of the main goals, because the system was initially designed to handle real time situations.
Furthermore, the use of a 3600 cameras, is what makes the system special, because there are

many applications that can be developed around them.

6.2 Discussion

The introduced system can be optimized in many ways. As a graduate project thesis, a big part
of the system is implemented, as we described in the previous chapters. However, there are
different aspects of the system that can be optimized or even change. Below we present some

of those open issues.

6.2.1 Implement parts of the system without ROS

ROS uses data streams through TCP sockets along with the publish/subscribe pattern for the
inter-Node communication, which is useful in many predicaments like communication
between distributed computers. When it comes to fetching data from sensors or algorithms,
that do not need to be shared with other computers, the communication architecture mentioned
above is redundant and sometimes it is a computational burden to apply in a single computer.
Thus, raw code can be written to fetch and transport data intra-process or inter-Node, similar

example are nodelets.
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6.2.2 Hardware upgrade

Most of our experiments were conducted with a single main control unit, raspberry pi 4B
(rpi4B). The system worked fine until the 3600 camera was connected and the Visual SLAM
algorithm was executed, then we realised a more powerful computer was needed, the
multicamera system was tested on a more powerful computer with Intel Core i5% processor.
This problem can be addressed by using mesh computing [], rather than having a single control

unit.

6.2.3 3D SLAM

Our system was configured to navigate and create a map of a 2D environment, even though we
obtained 3D images from IntelRealsense D435i camera and the google cartographer can be
configured to handle 3D data, our computers could not process all data in real time, due to the
problem mentioned in the previous paragraph. To clarify, the computers we had available
during the development and testing of the system, could not handle the computational weight
of 3D data processing, so we were restricted to the 2D implementation.

6.3 Future work

6.3.1 Virtual Reality teleoperation

The next step is to combine teleoperation features on the existing platform. We have already
succeeded in navigating a rover through a Virtual Reality (VR) environment by using VR
controllers and produce a 3600 field of view live streaming for the user (RICOH THETA V
camera). Now we want the user to experience autonomous navigation in a first-person view
and be able to send goal positions in a map or even intervene in the navigation procedure while

the robot is acting on its own.

2 https://www.intel.com/content/www/us/en/products/details/processors/core/i5.html
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6.3.2 Object detection

Systems with multiple cameras produce images from different angles in order to accomplish
difficult tasks. One future goal for our system is to provide an object detection feature using
one of the deployed cameras while performing autonomous navigation, in order to produce

better information about the surrounding environment and be able to handle tougher missions.
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