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Abstract

In datadriven applications, which go beyond simple data collection, drones may need to

process sensor measurements at certain locations, during the mission. However, the onboard

computing platforms typically have strong resource limitations, whichmay lead to significant

delays and extended mission times. To address this problem, we explore the potential of of

floading heavyweight computations from the drone to a nearby computing infrastructure. We

discuss a concrete implementation for a serviceoriented application software stack, which

takes offloading decisions based on the expected service invocation times and the locations

of the servers expected to be available in the mission area. We evaluate our implementation

using an experimental setup that combines a hardwareintheloop and softwareintheloop

configuration, as well as via a suitable simulation environment. Our results show that the pro

posed approach can reduce the total mission time significantly, by up to 48% vs localonly

processing, and by 10% vs more naive opportunistic offloading, depending on the mission

scenario.
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Περίληψη

Σε εφαρμογές που βασίζονται σε δεδομένα, οι οποίες υπερβαίνουν την απλή συλλογή,

τα drones μπορεί να χρειαστεί να επεξεργαστούν μετρήσεις αισθητήρων σε συγκεκριμένες

τοποθεσίες, κατά τη διάρκεια της αποστολής. Ωστόσο, οι ενσωματωμένες πλατφόρμες έχουν

συνήθως ισχυρούς περιορισμούς πόρων, οι οποίοι μπορεί να οδηγήσουν σε σημαντικές κα

θυστερήσεις και παρατεταμένους χρόνους αποστολής. Για την αντιμετώπιση αυτού του προ

βλήματος, διερευνούμε τη δυνατότητα εκφόρτωσης υπολογισμών από το drone σε μια κον

τινή υποδομή υπολογιστών. Συζητάμε την υλοποίηση μιας συγκεκριμένης στοίβας λογισμι

κού, η οποία λαμβάνει αποφάσεις εκφόρτωσης βάσει των αναμενόμενων χρόνων επίκλησης

μιας συγκεκριμένης υπηρεσίας και της τοποθεσίας των servers που αναμένεται να είναι δια

θέσιμοι στην περιοχή αποστολής. Αξιολογούμε την εφαρμογή μας χρησιμοποιώντας τόσο

μια πειραματική εγκατάσταση που συνδυάζει μια διαμόρφωση υλικούσεβρόγχο και λογι

σμικούσεβρόγχο όσο και ένα περιβάλλον προσομοίωσης. Τα αποτελέσματά μας δείχνουν

ότι η προτεινόμενη προσέγγιση μπορεί να μειώσει σημαντικά το χρόνο αποστολής, έως και

48%, σε σύγκριση με την τοπική επεξεργασία και 10% σε σύγκριση με την απλή ευκαιριακή

εκφόρτωση, ανάλογα με το σενάριο αποστολής.
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Chapter 1

Introduction

1.1 Motivation

Thanks to the rapid developments in control systems and embedded systems, aerial un

manned vehicles (UAVs), also referred to as drones, are becoming a key component of the

cyberphysical computing landscape. As costs have dropped in the last years, drones have be

come affordable for a large number of organizations or even individuals with a small budget.

As a result, drones are now being used in an increasing number of civilian applications, such

as agriculture [1] and environmental monitoring [2] and rescue operations [3]. A very pop

ular type of drone for a wide range of applications are polycopters, such as quadcopters and

hexacopters. They are easy to fly, can hover above a specific position, can perform vertical

maneuvers and can takeoff/land virtually anywhere.

However, such drones have limited autonomy, the usual flight time being 2030 minutes.

Also, to keep the cost, weight and power consumption low, the onboard hardware platforms

are typically embedded systems with limited computing resources. As a consequence, heavy

weight computations can introduce significant delays, especially if these cannot be over

lapped with the navigation tasks of the drone. In turn, this increases the total mission time

and reduces the area that can be targeted without changing/switching batteries.

In this thesis, we tackle this problem by letting time consuming computations be of

floaded to servers that are located in the mission area, in a flexible and educated manner. This

is achieved by adopting a serviceoriented architecture in conjunction with a mechanism for

offloading service invocations in a transparent way for the mission program running on the

drone. The decision to use a server for offloading is taken at runtime, based on performance
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2 Chapter 1. Introduction

related estimations and the location of the servers in the mission area. We have implemented

the proposed approach on a real drone platform. To avoid the limitations of field experiments,

we study the behavior of our implementation using an experimental setup that combines a

hardwareintheloop (HITL) and softwareintheloop (SITL) configuration. We also per

form experiments using a simulation environment. The results show that our approach can

significantly reduce the mission time. These time gains can, in turn, be exploited to target

larger areas or scan them at a finer grain without having to switch batteries.

1.2 Contribution

The main contributions of this thesis are:

• We present a mechanism for offloading service invocations to remote servers in the

context of a real application software stack for drones.

• We propose a policy for taking offloading decisions at runtime in an educated manner.

• We provide an evaluation based on a HITL/SITL setup and a simulation environment

that are used to get realistic measurements.

• We show that the proposed approach can lead to significant gains.

1.3 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 introduces the system model.

Chapter 3 describes a concrete implementation of the proposed system on top of a popular

application software stack for drones. Chapter 4 presents the evaluation of the implementa

tion. Chapter 5 gives an overview of related work. Finally, Chapter 6 concludes the thesis

and points to directions for future work.



Chapter 2

System Model

The system we consider in our work consists of a drone that is used to visit a set of

waypoints where it performs some sensing, processes the sensor measurements and based on

the results notifies the user, and possibly also performs some actuation. For instance, a drone

can scan a crop field in order to detect areas that have been attacked by some pest, in which

case it sprays some pesticide. Another example is a drone tha monitors a certain industrial

plant, such as a solar park or wind park, in order to detect faulty/damaged solar panels and

blades, respectively. As one more application scenario, a drone can fly over certain main

roads in a city to monitor traffic. There are many more applications that follow such sense

processdecidenotify/actuate loop. Of course, in the general case, an application may use

multiple drones at the same time. This is largely orthogonal to the problem we address here,

so we focus on a single drone.

Besides its sensors and actuators, the drone also features some generalpurpose computing

platform that can be used to perform computations locally. However, due to cost, weight and

power restrictions, the local platform is limited compared to a typical ground infrastructure.

As a consequence, heavyweight processing may still lead to significant delays during the

mission.

As an addon to this system, we assume one or more servers that may be located near the

mission area. These servers can be part of a larger fog infrastructure, or in the more extreme

case standalone computingresource boxes (possibly powered using renewable energy, such

as solar panels, wind turbines) that can be used in an adhoc fashion. In the spirit of edge

computing, the drone can exploit such servers to offload some processing tasks so that these

are executed faster to compared to a local execution. This way, the mission can be reduced

3



4 Chapter 2. System Model

and it becomes possible to target larger areas.

Without loss of generality, we assume that the existence and locations of such servers

is known at mission design time. Thus, it is possible to ship missionspecific code to them

before the mission starts. There are already very mature software packaging and deployment

technologies for this, such as virtual machines or containers. Such a proactive code shipment

is important so that the potentially large image transfer delay does not have an impact on

the mission. However, even if the code is already available on the server, some time is still

required in order to load and initialize it. This has to be done during the mission, depending

on the path that will be followed by the drone.

Of course, the fact that the servers are known when the mission is designed and soft

ware can be transferred to them before the mission starts, does not provide any guarantees

regarding their availability during the mission. For instance, a server might be loaded and

thus not be able to process a request coming from the drone. The server can also be down

due to maintenance or a system/power failure. Thus, to be autonomous, the drone cannot rely

exclusively on these servers being available during the entire mission. In the worst case, it

should be able to perform the required processing locally.

Finally, we assume that each server is accessible through a dedicated wirelles network,

which is used exclusively for the purpose of offloading. The network ID and any credentials

that are needed to connect to the server’s network are preloaded on the drone before the

mission starts.



Chapter 3

Implementation

We start by describing the mission execution environment and how offloading is sup

ported in this context. Then, we discuss in more detail the server management aspect and

how offloading decisions are taken.

3.1 Software architecture

We have designed our mission execution environment following a serviceoriented ap

proach [4]. More specifically, the drone’s sensing, actuation, navigation and data processing

capabilities are exported to the application developer as firstclass services with welldefined

interfaces. The mission logic is a proper Python program, which invokes the drone’s services

to retrieve sensor data and to process it so that it can then take decisions and actions according

to the mission objectives.

The calls to the autopilot are always executed locally via the Dronekit software [5]. The

rest of the service invocations are captured by an intermediate layer, which calls the cor

responding services and returns back the result/reply to the mission program. The fact that

a service call can be performed remotely is transparent to the mission program. Internally,

service calls are done through Pyro [6].

The main components and information objects of our implementation are shown in Fig

ure 3.1. The server selection component decides whether to use one of the servers that are

available in the mission area for offloading. In this case, the service check component pro

ceeds to confirm the server’s availability. A connection is made to the network of the server

and a request is sent to check for the services the drone wishes to use. If the server has the

5



6 Chapter 3. Implementation

Figure 3.1: Software Architecture.

required software images and sufficient free capacity to serve the drone, it sends a positive

reply, which includes the endpoints of the services that are already running (if any). Else, the

server sends a negative reply.

If the desired service is not running on the server, a start request is sent. The server then

loads/initializes the service and replies with the respective endpoint information, which is

then passed on to the service invocation component. In case the service was already running

on the server, the endpoint that was received in the first phase is used instead. If at a later

point it is decided not to use the server, e.g., because a better option is found, the remote

endpoint is updated accordingly.

The service invocation component intercepts the invocations of the mission program and

calls the corresponding service. A remote call is made if a valid remote endpoint is available

for the service in question. Else, the local service is called as usual. The delay of each call is

recorded and is taken into account to reevaluate the server selection / offloading decisions

in the future.

On the server side, a daemon handles the interaction with the drone. When an availability

confirmation request is received, it replies with the names of the services for which the soft

ware image is locally available and the endpoints for the ones that are already running. When

a start request is received, the daemon asks the service runtime environment to load and start
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Figure 3.2: Server state diagram.

running the service in question. We use the LXD environment [7] for this, with each ser

vice being properly packaged as a Linux container. We assume that the services are stateless.

Thus, one can switch between local and remote invocations without needing to checkpoint

and transfer state information between the drone and the server. Many computeintensive

data processing functions fall under this category.

To focus on the essence of the mechanism, in the following, we assume a single ser

vice being considered for offloading. However, our implementation supports offloading for

multiple services each having different performance characteristics.

3.2 State management

For each server in the mission area, an entry is kept with information about its expected

performance, location, network ID, access credentials and the communication range of the

wireless technology. Based on this information, function inrange(s) indicates whether the

current position of the drone is sufficiently close to servers to be within its range.

Also, each entry has a state that is consulted during server selection and usage. The states

and transitions are shown in Figure 3.2. The R flag in the AVL and CHECK states captures
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the assumption that the service is already running on the server. This determines the estimate

for the service availability check delay (see Section 3.4), since the extra time for startingup

a service can be nonnegligible. Initially, all servers are AVL as it is assumed that they are

available for offloading but the service still needs to be loaded/activated on them.

When an AVL server is selected for offloading (see Section 3.3), its state is set to CHECK.

Similarly, if the selected server is AVLR, its state changes to CHECKR. In both cases, the

time of server selection is recorded in tcheck. At this point, if another server was previously

selected for offloading and is in the READY state, its state is set to AVLR and the service

check component disconnects from the server’s network.

Subsequently, a connection is made to the network of the selected server (in CHECK or

CHECKR state) to confirm its availability and receive the service endpoint. If the server is

available and the service is already running, its state is set to READY and can be used for

offloading. If the server confirms its availability but the service is not already running there,

its state is set to CHECK and the service is started via a followup request to the server. When

the server replies with the corresponding endpoint, its state is set to READY.

If it is not possible to connect to the server’s network, or the server does not respond, or

it is unavailable, its state is set to BLACKLISTED so that it is not considered for offloading.

The procedure is repeated until the next best selected server confirms its availability and the

endpoint for the service is successfully received, or all candidates are blacklisted.

At most one server can be selected at any point in time (be in the CHECK, CHECKR or

READY state). The current selection is reevaluated periodically (the period is configurable).

For instance, the drone may come in range of new servers that may be better candidates for

offloading, or go out of range of the currently selected server. Also, the remote invocation

delay may turn out worse than expected, rendering the server unattractive for offloading.

In these cases, the server is deselected and its state reverts to AVLR. Note that the server

selection and the (potentially timeconsuming) service check procedure are performed in the

background, concurrently to the execution of the mission program.

Finally, BLACKLISTED servers are reset to AVL after a configurable period of time.

A similar transition occurs from AVLR to AVL for servers that have not been selected

over along period of time, assuming that the service running there has most likely been de

activated/unloaded in the meantime.
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Table 3.1: Key parameters of the server selection policy.

Symbol Description

Call Local endtoend service call delay.

Data Size of service request and reply data

that need to be sent over the wireless networks.

Procs Remote service processing time on server s.

Calls Remote endtoend service call delay on server s,

including data transfer over the wireless network.

Checks Connection & availability confirmation delay

when the service needs to be started on s.

CheckRs Connection & availability confirmation delay

when the service is already running on s.

3.3 Server selection policy

The server selection and offloading decision is based on a few basic parameters, listed

in Table 3.1. Initially, Call is obtained through offline profiling on the drone platform. The

amount of data Data that has to be sent over the network if the service is called remotely is

obtained in a similar way. An initial value for Procs is obtained by conducting offline tests

on each server platforms. Then, Calls can be initially estimated as follows:

Calls ≈ Procs +Data/Bandwidths (3.1)

whereBandwidths is the nominal bandwidth of the server’s wireless network. Finally,Checks

and CheckRs are determined via suitable offline tests as well. Note that these include the

time for connecting to the network of the server.

Once the mission starts, Call and Calls are updated online, after each local and remote

service call, respectively. In this case, Calls is measured directly and does not need to be

approximated via Equation 3.1. Similarly, Checks and CheckRs are updated each time the

server’s availability is checked. The updates are performed using a moving average based on

the last 3 interactions; in the beginning, the missing values are filled with the corresponding

offline estimates.

A server s is a candidate for offloading if it is in range of the drone, the estimated remote
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service call delay is smaller than the local call delay, and it is not blacklisted:

candidate(s) = inrange(s) ∧ Calls < Call ∧ s.state ̸= BLACKLISTED (3.2)

If several candidates exist, the best is the one with the smallest estimated service call delay:

best(s) = candidate(s) ∧ ∄s′ : candidate(s′) ∧ Calls′ < Calls (3.3)

The server that is currently selected for offloading, let cur, is deselected in favor of a better

candidate s only if this is expected to lead to a nonnegligible gain relative to the local call

delay:

select(s) = best(s) ∧ Callcur − Calls
Call

> Gainswitch (3.4)

This is done to avoid switching between servers that have more or less the same performance.

The Gainswitch threshold is flexibly configurable. Note that, based on Equation 3.2, the cur

rently used server is deselected even in the absence of a better candidate, if the remote call

delay grows larger than that of the local call or the drone moves out of the server’s range.

3.4 Service invocation

The server selection and service check process runs in the background, asynchronously

to the execution of the mission program. For this reason, additional checks are performed by

the invocation component when the mission program invokes the service, before making a

call to the selected server cur.

First, it is checked whether cur is READY. If so and inrange(cur) holds, the remote ser

vice is called via the corresponding endpoint, else the server is deselected, its state changes

to AVLR and the local service is called instead.

If the selected server cur is in the CHECK or CHECKR state, the amount of time

where the server should confirm service availability and become READY is estimated as

waitT = Checkcur−(getT ime()−tcheck) andwaitT = CheckRcur−(getT ime()−tcheck),

respectively. If waiT > 0, it is checked whether:

Call − (Callcur + waitT )

Call
> Gainwait (3.5)

If the condition does not hold, the local service is called immediately. Else, the invocation

component waits for the server to become READY and then calls the remote service. The
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rationale is that this waiting timewill be immediately amortized due to themuch faster remote

vs local service invocation. It is also possible for waitT ≤ 0, if the service availability check

has already exceeded the expected delay. In this case, it is decided to wait for up toX , where

X is the maximum value of waitT so that Equation 3.5 is satisfied.

Note that the background service check may fail and the currently selected server may be

BLACKLISTED. Also, no suitable server may be selected for offloading in the first place. In

both cases, the service invocation component will simply call the local service on the drone.





Chapter 4

Evaluation

While our software stack has been successfully tested on areal drone, for practical reasons,

we use a labbased setup that combines a hardwareintheloop (HITL) with a softwarein

theloop (SITL) approach. This allows us to explore scenarios that are hard or even impossible

to test in the field, mainly due to the strict flight and safety restrictions for urban areas. Still,

the measurements obtained using this setup are realistic. In order to experiment in the future

with multiple servers and multiple drones that use our software stack in a controlled and

flexible way, we create a simulation environment. To test the reliability of our simulation

environment, we perform the same experiments as the HITL/SITL setup. The measurements

showed that the simulation environment provides trustworthy results.

4.1 HITL/SITL setup

As a typical drone platform, we pick that of a custom polycopter we have in our lab.

The drone is controlled by the popular opensource ArduPilot autopilot [8], which runs on

a dedicated CUAV nano V5 board. In addition, the drone has a companion board for hosting

application software (Figure 4.1). This is a Raspberry Pi v.4 (RPi) with a 4core Cortex

A72 ARM processor running at 1.5GHz and 2GB of memory. The RPi runs our application

software stack, including Dronekit and the mission program, on top of an Ubuntu 18.04 dis

tribution. The communication with the autopilot subsystem is done via the MavLink protocol

[9] over a serial connection. For the server, we use a HP Pavilion Gaming Laptop 15cx0xxx

with a 12core i78750H X84 processor at 2.20 GHz and 12 GB of memory. The laptop also

runs Ubuntu 18.04, which provides support for LXD containers.

13
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Figure 4.1: Custom polycopter of our lab with a Raspberry Pi as a companion board

To perform a wide range of experiments in a flexible and controlled way, we use a setup

that faithfully simulates a real drone system through a combined HITL/SITL configuration,

shown in Figure 4.2. The full application software stack (Dronekit and our mission execution

environment with support for offloading) runs on a RPi that is identical to the companion

board of the drone. For the autopilot, we use the official SITL configuration of ArduPilot,

which runs on a standard Linux environment on a PC. The autopilot code is identical to the

one running on the real drone, but is coupled to a physics model that simulates the dynamics

and movement of the drone in the 3D space. In this setup, the MavLinkbased interaction

between the application software stack and the autopilot occurs over UDP/IP and an Ethernet

link via a router.

The current position of the drone is communicated to the application software stack via

MavLink, as usual. The positions, performance characteristics and communication range of

the servers that are supposed to be available in themission area are specified in a configuration

file, which is preloaded on the RPi before the mission starts. The only difference compared

to the native drone configuration is that the position of the drone is initialized and updated as

part of the SITL operation (rather than being received from the GPS of the drone).

The communication between the RPi (drone) and the laptop (server) is done over WiFi,

set to operate in adhoc mode with a nominal bandwidth of about 54Mbps. Server discov

ery/selection and remote service invocation runs as described in Chapter 3, as done in the
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Figure 4.2: HITL/SITL setup.

configuration used for the real drone. The time needed for the RPi to perform a full discovery

cycle, including network connection, initialization of the IP stack via the DHCP protocol and

our service discovery protocol, is roughly 3.5 seconds.

To run experiments for scenarios with multiple (virtual) servers using the laptop, wemod

ify the service discovery protocol so that the discovery request also contains the identifier of

the target server (in addition to the identifier of the service in question). In turn, the laptop

handles such requests independently for each server identifier, and can load the same service

multiple times, once for each server. Although, in this particular setup, the RPi connects to,

disconnects from and then reconnects each time to the same WiFi network (of the laptop),

the availability check is performed exactly as if each server were accessible through its own

private WiFi network, incurring each time the corresponding overhead.

4.2 Simulation setup

The design of our simulation environment is based on AeroLoop [10], a modular system

for experimentation with virtual drones designed to run on offtheshelf computing infras

tructure. Each system entity, either it is a drone or it is a server, is packaged as a separate

virtualized system (vDrone and vServer respectively). Instead of virtual machines (VMs)
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Figure 4.3: Simulation setup.

used in the AeroLoop system, in our case, we use Linux Containers (LXDs). LXDs offer a

good compromise between isolation and resource efficiency, as they provide operating sys

tem level virtualization, which is more lightweight than fullfledged VMs, while offering a

more complete virtual system (closer to a real drone or server) than Docker containers that

share the same networking/storage stacks.

A vDrone consists of our full software stack and the ArduPilot, both run internally to

a dedicated container. The interaction between the software stack and the autopilot is, once

again, MavLinkbased and occurs over UDP/IP and loopback. A vServer internally uses the

LXD environment, with each service being packaged as a Linux container. To this end, for

vServers running as LXDs we exploit the nested container functionality.

Wireless networking is implemented using ns3 [11]. The setup is illustrated in Figure

4.3. For WiFi channels, each simulated ns3 node, called ghost node, utilizes the ns3 Tap

Bridge device, which is connected to each vDrone/vServer through a combination of network

bridges and virtual network devices (see [10]). Thus each vDrone communicates with each

vServer through a dedicated, adhoc fashioned,WiFi channel. Themaximum available band

width is, roughly, 12Mbps. Each vDrone has as many virtual interfaces as the vServers in the

mission area.

In order to simulate the connect/disconnect delays that would appear in realworld sce

nario, as part of the interaction of a drone with a server’s WiFi network, we introduce appro

priate artificial delays, based to offline measurements. When a vDrone is going to connect
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Algorithm 1Mission program used in the experiments
Input:WPList ▷ waypoints to visit

autopilot.arm()

autopilot.takeOff()

whileWPList ̸= ∅ do

wp← getNxtWaypoint(WPList)

autopilot.goto(wp)

autopilot.waitToArrive(wp)

pic← camera.takePhoto()

objs← detector.processPhoto(pic) ▷ may be offloaded

if unexpected(objs) then

user.notify(objs)

end if

end while

autopilot.returnToHomeAndLand()

autopilot.disarm()

to a vServer, it uses vServer’s identifier in order to obtain the IP from the appropriate virtual

interface and starts the communication.

4.3 Mission template and services

On the drone, we run a mission program that visits a series of waypoints. At each way

point, a picture is taken that is processed to detect an unexpected or problematic situation,

in which case an action needs to be taken, e.g., to notify the user who may wish a closer

inspection. Note that the drone should not start moving towards the next waypoint before

determining whether a problem exists at the current waypoint. Algorithm 1 shows the logic

of the mission program.

Given that we run experiments using a static setup, the camera service on the RPi is

configured to return static images from a directory in the local file system. As indicative

input, we use pictures taken with a FLIR Duo R camera, which is a popular choice for drones

(we also use this in our own drone). These pictures have a resolution of 1440 × 1080 pixels at

a size of 400 to 450 KB. Each time the camera service is invoked from the mission program,
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it returns the next picture from the local directory. We add a delay of 1 second to account for

the time that would be typically required to shoot a picture using such a camera.

The photos are processed by an object detection service, which internally employs an off

theshelf version of YOLOv3 [12]. The service takes as parameters the image and the desired

processing mode. The latter can take two values: light, in which case we run YOLOv3320,

and heavy where we run YOLOv3608. The average service call delay on the RPi, measured

offline, is about 3 and 10 seconds, respectively.

Since these delays are significant, the object detection service is a good candidate for

offloading. To this end, the object detection service is packaged as a container that can run

in the laptop (server) on top of LXD. The startup time, including the time needed to load the

container and start running the service, is about 8 seconds. Note that this delay is not visible

to the mission program as service startup is requested in the background before the selected

server becomes ready for use. Once the service is running on the server, the average call

delay, measured offline, is about 0.2 seconds for the light processing mode and 0.6 seconds

for the heavy mode. Taking into account the time needed to send the call request and receive

the reply over the WiFi network, the respective endtoend remote call delays are initially

estimated at roughly 0.3 and 0.7 seconds.

In the simulation setup, each vServer runs the object detection service as a (nested) con

tainer on top of LXD, with practically the same performance as in the HITL/SITL setup.

Taking into account the maximum bandwidth supported by the network simulator, the end

toend remote call delays are initially estimated to 0.6 seconds for the light processing mode

and 1 second for the heavy mode. To properly simulate the call delay for local invocations,

the object detection service running in the vDrone is configured with an extra artificial delay

(where it simply sleeps) so that it exhibits the same response time as the service on the RPi.

Finally, in both setups, the Gainswitch and Gainwait thresholds are set both to 25%.

4.4 HITL/SITL experiments

We have performed a wide range of experiments using the HITL/SITL setup. As an in

dicative example, here we discuss the experiments performed for an area of 200×200 square

meters. The mission plan consists of 121 waypoints set every 20meters in a gridlike pattern

so that they cover the entire target area. Figure 4.4 illustrates the topology. The drone’s plan
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Figure 4.4: Mission waypoints and server coverage.

is to visit the waypoints starting from the topleft corner and moving rowwise from the top to

the bottom of the area (as indicated by the black arrows). When moving between waypoints,

the autopilot is instructed to fly at a speed of 4 m/s, which is the default for the field tests

with our drone. Note, however, that as the drone moves away from the previous waypoint it

needs some time to reach the target speed, and it also needs to slow down as it approaches

the next waypoint.

We investigate a scenario with two servers in the mission area, s1 and s2, with a commu

nication range of about 100 meters (based on tests we have performed in the field using our

equipment). The dashed circles in Figure 4.4 indicate the respective coverage. The waypoints

covered by both servers are brown. We run tests for both the light and heavy modes in the

object detection service. As a reference, we use the default nooffload configuration where

our mechanism is deactivated and all service calls are performed locally on the RPi.

4.4.1 Both servers at full capacity

In a first experiment, both servers provide the object detection service with the full per

formance. Figure 4.5 and Figure 4.6 shows the delay experienced by the mission program

when invoking the object detection service in each waypoint in the light and heavy process

ing mode, when our offloading mechanism is enabled (blue) vs nooffloading (gray). The
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Figure 4.5: Call delay in the light processing mode, s2 is equally fast to s1 (HITL/SITL).

peaks correspond to waypoints where the local service is called, because no server has been

selected or this is not yet ready. The areas under the dashed lines indicate when each server

is being used for offloading, while the colored dots indicate the points where the mechanism

decides to wait (green) or not (red) for the selected server to become ready.

Clearly, offloading achieves a very notable reduction of the service invocation delay vs.

the nooffload configuration. In the light processing mode, improvement is about 3.7x, yield

ing a mission time (including the travel time between waypoints) of 22.2 instead of 26.5min

utes, a reduction of 16%. The gains become even more significant for the heavy processing

mode, where offloading reduces the total service invocation delay vs localonly invocation

about 7x, which shrinks the mission time by more than 48.5%, from 47.5 down to 24.4 min

utes. This is less than the time needed for the nooffload configuration to perform the mission

in the light processing mode. In fact, without offloading it would be impossible for a typical

drone to complete the mission in the heavy processing mode without returning to base to

change batteries.

In the light processing mode, the mechanism never decides to wait for the selected server

to become ready, due to the relatively short call delay of the local service. In the heavy pro

cessing mode, this decision is taken several times during the mission, and, despite the extra

waiting time, saves about 11.5% vs having called the local service at those waypoints.

Note that the first local service call, performed at the start of the mission, is slower than
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Figure 4.6: Call delay in the heavy processing mode, s2 is equally fast to s1 (HITL/SITL).

all subsequent invocations, due to a coldstart effect. There is a similar effect when calling a

remote service that remained inactive for a while, due to time it takes to resume the inactive

service container on the server. Also, in the light processing mode, the local calls that are

performed concurrently to the attempt to connect to the network of the selected server, are

slightly slower than in the nooffload configuration, due to the extra load. On the contrary,

in the heavy processing mode, the nooffload configuration gradually exhibits a much larger

service call delay, which stabilizes only after a large number of invocations. The reason is

that processing in the heavy mode overloads the RPi and activates the frequency scaling

mechanism to reduce CPU temperature. With offloading, local calls are performed at a much

lower rate without any serious performance degradation.

4.4.2 One of the servers is loaded

In a second experiment, we slow down processing at s2 so that it performs worse than

s1 (but still better than the local service), corresponding to a scenario where one of the two

servers is loaded. Figure 4.7 and Figure 4.8 show the result for the light and heavy processing

mode, where s2 processes incoming requests with an additional delay of 1 and 7 seconds,

respectively.

The server usage pattern clearly shows that s1 is preferred over s2 in the waypoints cov

ered by both servers. Also, due to the increased delay of s2, in several cases the mechanism
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Figure 4.7: Call delay in the light processing mode, s2 is slower than s1 (HITL/SITL).

decides not to wait for s2 to become ready, and calls the local service, even in the heavy

processing scenario. In the light processing scenarios, offloading reduces the total mission

time to 22.7 instead of 26.5 minutes, by about 16%. In the heavy processing scenario, the

reduction of the aggregated service invocation delay compared the nooffload configuration

is about 3.6x, leading to a total mission time of roughly 28 instead of 48.5 minutes.

To estimate the gain of this selection strategy vs a more naive approach that uses s2

with equal preference to s1 (as in Figure 4.6), we use the logs of the previous experiment

and substitute for s2 the longer call delays recorded here. For the heavy processing mode,

our calculations show that such a naive selection would increase the total service invocation

delay by about 32.5%, which leads to an almost 10% longer mission time (extra 2.5minutes).

Note that, for polycopter drones like the one in our lab, offloading cannot improve power

consumption significantly. This is because the motors alone have a power consumption in

the order of a few hundred watts, while the RPi consumes just a few watts even when loaded.

However, offloading does lead to a significant reduction of the mission time thereby improv

ing the effective operational capability of the drone.

4.4.3 Simulation experiments

We confirm the validity of the simulation setup, by performing the same experiments as

in the HITL/SITL setup. To simulate the frequency scaling effects that occur on the RPi, we
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Figure 4.8: Call delay in the heavy processing mode, s2 is slower than s1 (HITL/SITL).

perform offline tests for the object detection service in heavy mode using different rates and

apply polynomial curve fitting to the results. The approximate polynomials obtained this way

are then used in the object detection service running in the vDrone to calculate the additional

artificial processing delay to be applied as a function of the invocation rate.

The results for the case where both servers are unloaded and can provide the object de

tection service with full performance, are shown in Figure 4.9 and Figure 4.10 for the light

and heavy processing mode, respectively. In the light processing mode the time gain is 13%,

from 25.4minutes for the nooffload configuration down to 22.3minutes with offloading. In

the heavy processing mode, offloading leads to a total mission time of 24.5 minutes instead

of 46.8 minutes, with a gain of 47.5%.

In the light processing mode, the big peak early in the mission corresponds to a wait deci

sion point where the selected server has not yet confirmed its availability as expected. Even

though the decision is taken to wait for some time in hope of receiving the remote endpoint,

in this case, the maximum waiting time is reached without success, and thus the service is

invoked locally. Note that the decision to wait is taken one more time towards the end of the

mission, with a successful outcome. In the heavy processing mode, the wait decision is taken

successfully several times, like in the corresponding HITL/SITL experiment.

The results for the case where s2 is slower than s1are shown in Figure 4.11 and Figure 4.12

for the light and heavy processing mode, respectively. As in the HITL/SITL experiments, the
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Figure 4.9: Call delay in the light processing mode, s2 is equally fast to s1 (simulation).

Figure 4.10: Call delay in the heavy processing mode, s2 is equally fast to s1 (simulation).
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Figure 4.11: Call delay in the light processing mode, s2 is slower than s1 (simulation).

Figure 4.12: Call delay in the heavy processing mode, s2 is slower than s1 (simulation).
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s1 is preferred at all waypoints that are covered by both servers.

In the light processing mode, offloading leads to a mission time of 22.3 minutes, a 13%

gain vs the nooffload configuration. In the heavy processing mode, offloading achieves a

reduction of 40.5%, leading to a mission time of 28.2 minutes. As above, in the light pro

cessing mode, we observe a big peak due a risky wait decision which does not payoff and

finally leads to a local call. Also the wait mechanism decides to wait one more time during

the mission.

4.4.4 Results summary

Table 4.1 summarizes the results obtained from the HITL/SITL and simulation experi

ments. As can be seem, the simulation setup produces trustworthy results, very close to those

obtained from the HITL/SITL experiments where we use the hardware and software of the

real drone.

Table 4.1: Result overview for the mission times obtained in the HITL/SITL and simulation

experiments (in min).

Experiment Nooffloading Offloading Time gain

SITL/HITL vs Simu SITL/HITL vs Simu SITL/HITL vs Simu

Equal servers, light 26.5 vs 25.4 22.2 vs 22.3 16% vs 12%

Equal servers, heavy 47.5 vs 46.8 24.4 vs 24.5 48.5% vs 47.5%

Slow s2, light 26.5 vs 25.4 22.7 vs 22.3 16% vs 12%

Slow s2, heavy 47.5 vs 46.8 28.0 vs 28.2 42.2% vs 40.5%

Therefore, we believe that such simulations are perfectly valid to explore more complex

scenarios. This is expected to be particularly useful for experiments that involve multiple

drones, for which it is practically impossible to build and maintain a HITL/SITL setup.
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Related Work

Computation offloading has been investigated for general purpose mobile devices such

as smartphones as well as in the context of robotic systems. Each application domain poses

different requirements and comes with different challenges.

In mobile computing, the main objective of computation offloading is to conserve the

energy of mobile devices. To this end, several platforms have been proposed that implement

offloading at various levels. For instance, CloneCloud [13] migrates threads running in a

smartphone to a VM in the cloud, which runs a clone/duplicate of the smartphone software

environment. Instead of migrating entire threads, Jade [14] supports classlevel offloading

for Java applications, by providing an API that allows developers to control the application’s

partitioning and the interactions between remote and local code. Maui [15] allows finer

grade computation offloading, at the granularity of individual methods, for which the system

automatically produces the required stubs at compile time. Cuckoo [16] offers similar func

tionality, but allows the programmer to provide two separate implementations for each remote

method, one for the local and one for the remote execution. This makes it possible to exploit

the differences and special capabilities of the respective hardware platforms.

Similar to our work, the above frameworks take offloading decisions at runtime, based on

both offline and online profiling information. However, the key optimization objective is to

minimize the energy consumption, rather than to reduce the execution time. From a software

engineering perspective, our work is closer to Cuckoo in that it allows to use a different

implementation for the service running on the server. Moreover, we adopt a serviceoriented

approach that further decouples the software technologies used in the drone and the server

platform. In particular, it is straightforward to change our implementation to use a pure web

27



28 Chapter 5. Related Work

based invocation protocol [17], allowing the service on the server to be implemented using

a different programming language and runtime system.

In [18], a unified model is presented for managing a computing infrastructure that con

sists of mobile, edge and cloud resources. To address the inherent heterogeneity of the com

puting environment and to enable a flexible placement and invocation of applicationlevel

functionality on the available nodes, the proposed approach is designed around the concept

of stateless functions, which are offered to the mobile devices in the formmicroservices. Our

work also assumes stateless services that can be started/invoked in a flexible way on nearby

servers that are discovered on the fly. An important difference is that our policy is aware of

the servers that are located in the area where the drone operates, and exploits this information

to take educated offloading decisions.

Computation offloading has also been studied in the context of mobile robots and UAVs.

In [19], a mobile robot captures images from a camera and processes them in order to calcu

late the path for following a moving object. Part of the processing pipeline always executes

on the robot, while the more heavyweight tasks can be executed either on the robot or on a

remote server. The system offloads these computations via RPCs, based on an online estima

tion of the computational complexity for a particular image and the network conditions so as

to meet a specified deadline. However, the estimation of the computing/communication time

as well as the offloading decisions are deeply integrated into the application logic, rather than

this being done transparently under the hood.

In [20], an aerial surveillance application running on the UAV captures a video stream

from an onboard camera and detects the number of people in the frames using a video co

processor (VPU). If the number of people exceeds a threshold, the next three seconds of

the video stream are offloaded to a server for further analysis. A similar offloading strategy

is followed in [21], where a UAV detects objects in real time. The application captures a

lowresolution video stream and performs lightweight processing locally to estimate the ex

istence of objects of interest. If the probability of object existence is high, the UAV captures

a highresolution image and offloads it to a server that executes the more heavyweight object

detection process. In both cases, full server availability is needed as the application is stat

ically designed to always offload certain computations without considering the possibility

of local execution at all. In contrast, our mechanism preserves the application autonomy by

taking offloading decisions at runtime and can flexibly switch to a local invocation if needed.
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This is done in a transparent way for the application program.

The authors of [22] focus on a specific mission where a small swarm of drones collabo

rate to perform visual inertial odometry in an unknown area through image capture and IMU

readings. Offloading to a nearby edge server or/and ground station is performed through LTE

and WiFi, respectively. The task at hand is split into different independent subtasks, and for

each one a separate offloading decision is taken based on the respective processing delay and

data transfer latency over the available wireless links. Our approach naturally allows to imple

ment a differentiated offloading policy, by modelling each subtask as a separate service. Also,

more complex services can be implemented in a structured way, based on simpler ones for

which separate/individual offloading decisions are taken at runtime. [23] studies how UAVs

can be used as mobile servers to support aMEC system for other resourceconstrained mobile

devices. The objective is to minimize the average weighted energy consumption, by jointly

considering stochastic computation offloading, resource allocation, and trajectory schedul

ing of the UAVs. Unlike our work, in this case, the UAVs play the role of servers / service

providers that can be used to offload the computations of mobile devices.

A containerbased edge offloading framework for autonomous driving is presented in

[24]. To meet the efficiency, security and privacy requirements of autonomous driving, ve

hicles are allowed to offload parts of the applications to edge servers. In the general case, the

vehicles have to consult a central entity that performs the server selection. Also, the respec

tive containers are prerun on the servers in order to reduce the respective load/boot times

due to a cold start. In our work, offloading decisions are taken exclusively by the vehicle

itself, without any intermediate coordinator. Our mechanism coldstarts a service, if needed,

but this is done in the background without any negative interference with the execution of the

mission program. The system transparently switches to remote invocation when the server

becomes ready.





Chapter 6

Conclusion

We have presented a serviceoriented approach for task offloading, implemented as part

of a full software stack for autonomous drones. The decision whether to invoke a service lo

cally or on a nearby server is taken at runtime, based on server availability and the estimated

invocation delay. Our evaluation, using both a HITL/SITL and simulation setup, shows that

the proposed approach can lead to a significant reduction of the mission time. Also, the re

sults obtained using the simulation setup proved to be very consistent with those from the

HITL/SITL setup.

As a direction for future work, one might explore more advanced offloading policies,

which take into account the service call rate. Also, one could combine our offloading ap

proach with higherlevel server allocation and pathplanning algorithms, to support smarter

offloading in the presence ofmultiple drones that operate concurrently in overlappingmission

areas.

31





Bibliography

[1] M. Kulbacki, J. Segen, W. Knieć, R. Klempous, K. Kluwak, J. Nikodem, J. Kulbacka,

and A. Serester. Survey of drones for agriculture automation from planting to harvest.

In Proc. IEEE Intl Conf on Intelligent Engineering Systems (INES), pages 000353–

000358, 2018.

[2] Muhammad Imran Majid, Yunfei Chen, Osama Mahfooz, and Wajahat Ahmed. Uav

based smart environmental monitoring. In Employing Recent Technologies for Im

proved Digital Governance, pages 317–335. IGI Global, 2020.

[3] Marzena Półka, Szymon Ptak, and Łukasz Kuziora. The use of uav’s for search and

rescue operations. Procedia Engineering, 192:748–752, 2017.

[4] Thomas Erl. ServiceOriented Architecture: Concepts, Technology, and Design. Pren

tice Hall, 2005.

[5] Dronekitpython documentation. https://dronekit.netlify.app/.

[6] Python remote objects project. https://pypi.org/project/Pyro4/.

[7] Linux container management. https://linuxcontainers.org/LXD.

[8] Ardupilot web site. https://ardupilot.org/.

[9] Mavlink developer guide. https://mavlink.io/en/.

[10] M. Koutsoubelias N. Grigoropoulos and S. Lalis. A modular simulation environment

for multiple uavs with virtual wifi and sensing capability. In Proc. IEEE Sensors Ap

plications Symposium, 2018.

[11] ns3 network simulator. https://www.nsnam.org/.

33



34 Bibliography

[12] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv,

(arXiv:1804.02767), 2018.

[13] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution

between mobile device and cloud. In Proc. ACMConf on Computer Systems (EuroSys),

pages 301–314, 2011.

[14] H. Qian and D. Andresen. Jade: Reducing energy consumption of android app. Intl

Journal of Networked and Distributed Computing, 3(3):150–158, 2015.

[15] E. Cuervo, A. Balasubramanian, D.K. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl. Maui: making smartphones last longer with code offload. In Proc. ACM Int

Conf on Mobile Systems, Applications and Services (MobiSys), pages 49–62, 2010.

[16] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a computation offloading

framework for smartphones. In Proc. Intl ICST Conf on Mobile Computing, Applica

tions and Services (MobiCASE), pages 59–79, 2010.

[17] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services.

Springer Science Business Media, 2004.

[18] L. Baresi, D. F. Mendonca, M. Garriga, S. Guinea, and G. Quattrocchi. A unified

model for the mobileedgecloud continuum. ACM Transactions on Internet Technol

ogy, 19(2), Article Nr. 29, 2019.

[19] Y. Nimmagadda, K. Kumar, Y.H. Lu, and C. G. Lee. Realtime moving object recog

nition and tracking using computation offloading. In Proc. IEEE/RSJ Intl Conf on In

telligent Robots and Systems, pages 2449–2455, 2010.

[20] M. S. Alam, B. Natesha, T. Ashwin, and R. M. R. Guddeti. Uav based costeffective

realtime abnormal event detection using edge computing. Multimedia Tools and Ap

plications, 78(24):35119–35134, 2019.

[21] J. Lee, J. Wang, D. Crandall, S. Sabanovic, and G. Fox. Realtime, cloudbased object

detection for unmanned aerial vehicles. In Proc. IEEE Intl Conf on Robotic Computing

(IRC), pages 36–43, 2017.



Bibliography 35

[22] M. A. Messous, H. Hellwagner, S.M. Senouci, D. Emini, and D. Schnieders. Edge

computing for visual navigation and mapping in a uav network. In Proc. IEEE Intl

Conf on Communications (ICC), pages 1–6, 2020.

[23] J. Zhang, L. Zhou, Q. Tang, E. C.H. Ngai, X. Hu, H. Zhao, and J. Wei. Stochastic com

putation offloading and trajectory scheduling for uavassisted mobile edge computing.

IEEE Internet of Things Journal, 6(2):3688–3699, 2019.

[24] J. Tang, R. Yu, S. Liu, and J.L. Gaudio. A container based edge offloading framework

for autonomous driving. IEEE Access, 8:33713–33726, 2020.


	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction 
	Motivation
	Contribution
	Thesis Structure

	System Model
	Implementation
	Software architecture
	State management
	Server selection policy
	Service invocation

	Evaluation
	HITL/SITL setup
	Simulation setup
	Mission template and services
	HITL/SITL experiments
	Both servers at full capacity
	One of the servers is loaded
	Simulation experiments
	Results summary


	Related Work
	Conclusion
	Bibliography

