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Abstract

Face detection and recognition are two distinct but intuitively similar and challenging

Computer Vision problems. Through the years and the variety of challenges a number of

different approaches to either detect, recognize or systems that do both, were introduced. In

this thesis, literature concerning the face detection and recognition field were examined as

well as code from different detection and recognition algorithms. The purpose of this thesis

is to provide a solid algorithmic explanation of some approaches, so as to give the reader a

view of the different methods used, spanning from the birth of the field to the most recent

advancements. The face detection and recognition algorithms to be addressed are Viola ­

Jones, LBP based detection, MTCNN and Eigenfaces, Fisherfaces respectively.
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Περίληψη

Ο εντοπισμός και η αναγνώριση προσώπου είναι δύο ξεχωριστά αλλά φαινομενικά παρό­

μοια προβλήματα του πεδίου της Όρασης Υπολογιστών. Μέσα από το πέρασμα των χρόνων

και τις διάφορες προκλήσεις, αρκετές προσεγγίσεις με σκοπό τον εντοπισμό, την αναγνώ­

ριση ή συστήματα που κάνουν και τα δύο έχουν εμφανιστεί. Σε αυτή τη διπλωματική, τόσο

βιβλιογραφία όσο και κώδικας από διάφορους αλγορίθμους εντοπισμού και αναγνώρισης

εξετάστηκαν. Ο σκοπός είναι να εξηγήσει στον αναγνώστη, από αλγοριθμική ματιά κυρίως,

κάποιες προσεγγίσεις και να του δώσει μία σκοπιά της πληθώρας των προσεγγίσεων που

χρησιμοποιήθηκαν, από την εμφάνιση του κλάδου μέχρι και τις πιο σύγχρονες εξελίξεις. Οι

αλγόριθμοι που θα εξεταστούν είναι οι Viola ­ Jones, η αναγνώριση με βάση τα LBP και ο

MTCNN οσο αναφορά το κομμάτι του εντοπισμού και οι Eigenfaces, Fisherfaces οσο ανα­

φορά το κομμάτι της αναγνώρισης.
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Chapter 1

Introduction

Face detection and recognition is one of the fastest growing technology fields. In a more

and more digital growing world, security of data has never been more important. Spanning

from security on mobile phones, buildings and services using face detection and verifica­

tion [11][12] to pedestrian, hotels, events and airlines security surveillance[13][14][15] face

detection and recognition methods are becoming state of the art for security systems. Be­

yond security, face detection and recognition is used for a great number of applications

some of which are emotion and facial expression analysis[16][17], advertising, human and

robot interaction[18] and commercial cameras auto­focus technique. It has even been used

in healthcare, from detecting diseases based on face features to useful applications for blind

people.

Face detection and recognition is a topic that was first introduced in the 1960s mainly for

security purposes. It was later expanded and improved with a variety of different approaches

like Linear Algebra, Machine Learning techniques like Support Vector Machine or boosting

and finally in the modern days with the use of Neural Networks. Through the years many

algorithms and techniques have been proposed and many of them today produce exceptional

results. Nonetheless it still is an extremely active research field today, due to its applications

usages that are of great importance and allow little to no error.

This thesis will present some of the most significant and distinct approaches that have

been taken and have led the field of face detection and recognition in the present state. The

aim is to give the reader basic algorithmic knowledge of the most innovative for their time

algorithms, as well as how Machine Learning, with great focus on Deep Learning have rev­

olutionized the field and piloted to a detection accuracy that sometimes prevails over the

1



2 Chapter 1. Introduction

human capabilities. It also aims to make a clear separation of the detection and recognition

terms and for this reason detection and recognition algorithms will be presented individually.

1.1 Structure of the thesis

The rest of the thesis will be outlined as follows. In Chapter 2, the boosting based Viola

­ Jones face detection algorithm will be explained followed by the face detection technique

with Local Binary Patterns ­ LBP with the use of Support Vector Machines. In Chapter 3 the

dimension reduction method Principal Component Analysis ­ PCA will firstly be explained

and then the similar face recognition algorithms Eigenfaces and Fisherfaces. In section 4,

a basic explanation of Neural Networks will be provided along with a brief history of their

development. Furthermore Convolutional Neural Networks architecture will be demonstrated

and each layer of the architecture will be presented. Finally, the Face detection deep learning

algorithmMulti ­ task Cascaded Convolutional Neural Networks will be explained. The final

chapter is the summary, along with thoughts of how this research could be expanded in the

future accounting the most prominent for the future technologies.



Chapter 2

Face Detection

Face detection is a special case of the Computer Vision problem of object­class detection.

The goal of any facial detection system is: Given an arbitrary image, determine whether it

contains a human face or not. Often, face detection is combined with face localization. Face

localization is the task of not only finding whether or not the image contains a face, but in

the case it does, it tries to find the location that the face resides. This is achieved by utilizing

Artificial Intelligence methods. However, this task is associated with a number of challenges.

A human face in an image can significantly vary depending on the lighting conditions and the

angle of the image, the pose and facial expression of the face, as well as the partial occlusion of

the face by other objects. These challenges proved to be a great obstacle in the development of

a face detection system, that provides adequate performance in non controlled environments.

Face detection is of great importance since it is the building block of any face recognition,

verification or tracking algorithm. In the following sections two important face detection

algorithms will be presented and explained.

2.1 Viola­Jones

Viola­Jones is the first framework used for real time face detection applications. It was

proposed in 2001 by Paul Viola and Michael Jones[19]. The basic idea was to train the com­

puter to detect faces, based on the intensity difference on peoples’ faces using Haar­like fea­

tures (see Figure 2.1). Haar features are square shape functions proposed by Alfred Haar in

1909, and were used to extract features from an image. Haar features are placed upon a grey­

scale image, where the intensity of each pixel range from 0 to 255 (or 0 to 1 when normalized)

3



4 Chapter 2. Face Detection

and return a single integer, which is equal to the sum of the intensities of all the pixels under

the black area minus the sum of the intensities of the pixels under the black area. Each Haar

feature is placed on a detection window (authors used 24 by 24 pixels), and is shifted, scaled,

rotated and inverted until all possible features are calculated. The number of these features

are more than 180.000, that need to be calculated for each 24 by 24 pixel window. To reduce

the enormous amount of computations needed, the authors presented the technologies of the

Integral Image, a customized AdaBoost algorithm, and an attentional cascading algorithm for

classifiers.

(α�) The 5 Haar features originally used by

Viola and Jones.

(β�) Haar feature used on an image to detect the nose.

Commonly the nose pixels are brighter than the pixels

on the cheek area.

Figure 2.1: Simple example of Haar features operating on an image

2.1.1 Integral Image

With a normal image, the number of the pixel values that we would need to sum up, in

order to compute a x∗y feature would be x∗y . After we shift this feature, lets say for

simplicity by 1 pixel, we would need (x+ 1)∗y more and so on, even though we had made

computations for most of the covered area in the previous iteration. To reduce this number

of repetitive computations, we use the Integral Image. The Integral Image or Summed Area

Table is produced by the original Image I (i,j), and it has a very unique characteristic. Each I

(i’, j’) represents the sum of all the pixel values which are left i ≤ i’ or below it J ≤ j’, and

as so it is derived by the mathematical equation shown below.
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I ′(x′, y′) =
∑

x′≤x,y′≤y i(x, y)
(2.1)

(α�)Example of an original 4x4 pixel Image (β�) The Integral Image produced.

Figure 2.2: Original and Integral Image values

The advantage we gain from the construction of the Integral Image, is that we are now

able to calculate the sum of intensities under a rectangular area, regardless of size in constant

time [20], using only 4 values and 3 addition operations [19]. For any rectangle area where

the top left corner is (x1,y1) and bottom right corner is (x2,y2) the sum S is equal to:

S = I ′(x2, y2) + I’(x1­1,y1­1) ­ I’(x2,y1­1) ­ I’(x1­1,y2)

(2.2)

2.1.2 Adaboost and feature classification

Even with the use of the Integral Image though, it is not possible nor efficient for a real­

time face detector to use all 180.000 haar­features for each 24x24 pixel sub­window. It can

easily be deducted that some of these features are more suitable to detect a face than others.

To find these more suited features, the authors used a slightly modified version of a machine

learning algorithm known as Adaboost[21]. Every feature can be used to produce a classifi­

cation function h(x), which for any input provides an output of 1 if it classifies the input as

a face, or a 0 if not. It is defined as follows:
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h(x) =

1, pf(x) < pθ

0, otherwise

where f is the value of the Haar feature, p is the polarity (whether the input is labeled as

face or not) and θ is the threshold value which is set manually and may differ depending

the implementation. This function is known as a weak classifier, since no feature alone can

produce a good enough classifier, Adaboost is used to choose the best of these classifiers and

make a linear combination of them, thus constructing a strong classifier H(x).

H(x) = a1h1 + a2h2 + a3h3 + ...+ anhn

In order to test and find the best performing features using Adaboost, there are needed thou­

sands of sample images both positive and negative. These sample images are initialized with

a weight representing the importance of its right classification. Each of the 180.000 features

then proceed in succession to classify all of the images and the classifier with the lowest er­

ror rate is picked and added to the strong classifier. Then the weights are updated, with the

weights of the wrong classified images having their weights increased, since in the next iter­

ation it is important to find another classifier which is able to correctly classify these images.

The procedure ends when the number of weak classifiers, which is set manually, is met. It

is to be noted, that this is a very heavy computational process that could take many hours or

even days, depending on the number of weak classifiers chosen, to be completed.

2.1.3 Cascading classifiers

A strong classifier can produce very high detection rates with less than 0.5% of the orig­

inal 180.000 features of a 24x24 pixel image. However, scanning repeatedly thousands of

sub­windows, of which the strong majority do not contain faces is still not computationally

efficient. In order to increase the performance, a heuristic algorithm is used in conjunction

with Adaboost to construct a cascade classifier[22] and reject non­face sub­windows using

only a handful of features. For example, a totally white sub­window does not need to be

tested with hundreds of features to determine that it has no intensity variations whatsoever,

and hence is impossible to contain a face. The goal is to build a series of stages, where each

stage contains an increasingly number of features. Each sub­window will begin to be tested
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by every stage individually and will proceed to the next stage if and only if the previous one

has a positive output. In essence every stage is a test of progressive difficulty.

Figure 2.3: Cascading classifiers representation

To construct each stage, a fi false positive rate threshold and a ti true positive rate thresh­

old are set, and Adaboost keeps adding classifiers to the strong classifier of each stage until

these rates are met. The algorithm stops adding stages and is terminated when a Ft target

false positive rate, set manually, is satisfied. fi is maximum at the early stages and declining,

while ti is minimum and increasing, since the goal in early stages is to find face candidates

and not to verify with certainty that it is indeed a face. It should also be pointed out, that to

further decrease the false positive rate, a technique with overlapping rectangles is used. In

order for a sub­area of the Image to be classified as face, there are needed several successful

overlapping sub­windows.
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Figure 2.4: Pseudo code for the stages creation. Create a stage and train strong classifiers until the

requirements the user set are met.

Improvements

Viola­Jones is a high performance algorithm accompanied with high detection rates[19],

that made a great breakthrough in the face detection and recognition area. However, despite

marking almost perfect results in full frontal images in different lighting conditions it dis­

plays some major weaknesses. It performs poorly on angled images, has lower detection rate

on black skinned faces, the training phase is substantially time­consuming and has a high

designing complexity. In the last decades, many improvements on both 3 stages have been



2.2 Local Binary Pattern ­ LBP 9

suggested to increase its performance. To reference a few, an extended number of features

was proposed[23][24] that showed improved results compared to the original, a modified

Adaboost algorithm[25] that displayed increased performance and a better cascading method

that used the Support Vector Machine algorithm[26].

2.2 Local Binary Pattern ­ LBP

In this section I will describe the Local Binary Pattern operator or LBP[27], its different

applications and briefly the classifying techniques used by different algorithms for face de­

tection. The core idea is to calculate a LBP code, which will be explained thoroughly below,

for each pixel image and create a histogram, each bin containing the appearances of each

code, which will be used a texture descriptor. LBP compensates for a number of disadvan­

tages that the Haar­features presented. Due to the overwhelming number of Haar­features, the

training stage is considerable time­consuming and although the features in the first stages of

the cascade are very efficient, in the last stages the computations needed to reach the wanted

detection rate are substantial. LBP features are significantly less in number in any scale of

image, simpler to calculate and with more discriminative power than Haar­features, hence

both the training time and the classification require less time to complete. Furthermore LBP

is also robust in illumination and pose changes since it does not rely on the differences be­

tween pixel intensities. Instead it encodes local or global spatial structures and micro­patterns

and was originally used to describe textures[28][27]. After Ojala et al. showed its discrimina­

tive power and the almost perfect results they got for texture classification, it was then used

widely in face detection and recognition, considering that a face and the facial features can

be represented as micro­texture patterns.

2.2.1 LBP operator

The LBP operator labels each pixel of a given greyscale image, with a binary number

known as the LBP code. To achieve that, it selects a 3x3 neighborhood and proceeds to make

binary comparisons between the pixel intensities of the center (xc, yc) and value gc with each

of the 8 pixel intensity values gi around it, replacing gi with 1 if its value is greater than this

of gc or 0 otherwise. The result is an 8bit binary number which encodes the local texture(see

Figure 2.5), and is mathematically derived by the equation below:
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LBP (xc, yc) =
∑P−1

p=0 s(gi − gc)2
p

(2.3)

where P is the total pixel number of the neighborhood, 9 in this case, and s is a sign

function

s(x) =

1, x > 0

0, otherwise

Figure 2.5: LBP original operator on 3x3 neighborhood and the corresponding LBP code

It is to be noted that the binary number appearing, is usually read clockwise starting from

the top left cell, but it is not mandatory and some scientific papers read it counter­clockwise.

These codes can indicate the occurrence of curved areas or flat areas, edges(see Figure) etc.

MB­LBP and LBP extensions

Despite the efficiency of the LBP, a problem of descriptive power emerges when it comes

to larger scaled images due to the locality of a 3x3 operator. In order to achieve that Ojala et

al.[28] came up with the LBP(P,R). It is essentially the same operator, but instead of operat­

ing on a 3x3 (8 pixel neighborhood), it can be used in any even spaced P pixel neighborhood
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Figure 2.6: Representation of a neighborhood, where black corresponds to 1 and white to 0.

within a R radius around the center pixel. This can be used in any scale of image and neigh­

borhood, thus solving the limitations of the original LBP operator.

Figure 2.7: Different combinations of P,R LBP

It is definitely worth mentioning, that this limitation was also solved with the Census

Transformation by Fröba and Ernst[29] and with the widely used Multi Block­LBP/MB­

LBP, which Zhang et al[30] applied on face detection and can be briefly explained as a LBP

for neighborhoods instead of pixels. To deal with the pixels near the boundaries of the image

where the neighborhood is off the boundaries and thus non­existent, a number of techniques

like zero padding or mirroring can be used, however the most usual path is to ignore them

since they have little to none influence on the output, resulting at a smaller in height and

width by R pixels LBP image.

Rotational Invariant LBP

In order to make the LBP efficient and robust in detecting textures in rotated images,

Ojala et al31 attempted to modify the original LBP, and demonstrated the LBP ri
P,R which is

defined by the equation below:
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LBP ri
P,R =

P−1
min
i=0

ROR(LBPP,R, i) (2.4)

where ROR(x, i) is a circular bit wise shift of x, i times. Equation (2.4), says that after

the extraction of the binary LBP code, a number of bit­wise shifts occur in order to take the

smallest possible binary number. This new LBP ri
P,R (ri denoting rotational invariant) reduces

the number of different codes and thus giving even more simplicity while maintaining the

benefits of the original LBP and being rotational invariant. However, results show that it has

its limitations, and was found to output unstable results in numerous occasions.

Uniform Patterns

Another discovery that Ojala et al[28] made, was that the LBP texture descriptors have

uneven discriminative power. They realized that in images containing texture, the percentage

of LBP codes with two or less bit­wise transitions was more than 80%, even though the num­

ber of LBP codes with more than 2 bit­wise transitions is significantly more, regardless the

scale of the neighborhood. For example, in a neighborhood of P = 8, the number of possible

codes is 2P = 256, and the number of values containing two or less bit­wise transitions are

58. These kind of patterns are known fundamental or uniform patterns. In their experiements

Ojala et al. tried to construct the histogramwith 59 bins instead the original 256. 58 were used

for each uniform LBP code LBP u2
P,R, u2 denoting uniform with at most 2 bitwise transitions,

and 1 for all other patterns. The results they had were as good if not better to using all 256

bins for the texture description. Similar results were demonstrated in a face description and

recognition application by Ahonen et al. [32] in 2006.

2.2.2 Histograms and Classification

LBP and histogram construction

As stated in the beginning, the LBP codes are displayed in a frequency histogram to

form a kind of texture descriptor. For any given image the first step is to calculate for each

pixel the LBP code and thus obtain an LBP image as seen in Figure 2.8, and construct the

corresponding histogram.
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Figure 2.8: Original Image and the output Image with LBP8,1 operation. Image taken from [1]

Figure 2.9:Histogram with 256 bins of figure2.8. (Both uniform and non­uniform patterns are treated

equally)

All the micro­patterns of the image are now encoded in the histogram and thus the his­

togram works as a descriptor. However describing a texture with such a histogram is easier

than a face, which is a product of many different micro­patterns. In order to describe the face

with more accuracy using LBP operators, Ahonen et al.[33] introduced a different and bet­

ter representation of the face with great results. They divided the image in M equally sized

regions, calculated the LBP histograms for each region and then proceeded to concatenate

them in one big frequency histogram2.10. So now, not only global information is accessible

through the histogram, but also information on pixel level through the LBP codes, and in

regional level. Specifically the regional level information can be very useful, especially in
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face recognition, since the eyes, the nose and ears and other distinct features can now be de­

scribed through a regional histogram. This technique proved to have strict limitations when

used in lower resolution images. Ahonen et al. modified their initial approach 2 years later to

successfully detect faces and in lower resolution images [32]. It is to be noted that they used

uniform LBP patterns in both of their works referenced above.

Figure 2.10: Regional and global Histograms concatenated. Image taken from [2]

Classification

There are numerous different algorithms used to classify images using the information

gained by the histograms. In this section two of the most used by the scientific community

will be presented. In this point it is important to emphasize that similar to the Viola ­ Jones al­

gorithm, a sub­window is used to scan every input image. The size of the sub­window which

indicates the region which is going to be classified, the shifting step of the sub­window and

the possibility of overlapping sub­windows are up the user to set, just like in Viola ­ Jones.

Down sampling can also be used to make it easier to locate faces on different scaled images.

These variables can affect performance greatly and should be set carefully.

Chi Square: In this approach it is first needed to build a face and a non­face model

description. Face and non­face images are used as training sample. From each such image

the concatenated histogram is calculated and labeled as face or non­face manually. Then a

mean value histogram is obtained by the faces labeled histograms and one from the non faces

labeled histograms, which will be used as models. Chi square test is used because it is very

simple in its calculation and design, and even though the classifications results are moderate,

it indicates the power of the LBP. Chi square is widely used in statistics and very efficient in

histogram comparisons. It is essentially a function that compares two histograms and outputs
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a single number indicating the difference between the two. It was used by Ahonen et al.[32]

mainly for the recognition part and Laura Sánchez López [34] who made improvements in

the Ahonen et al. algorithm, and is derived by the below equation:

X2(S,M) =
∑
i

(Si −Mi)
2

|Si +Mi|
(2.5)

where i is the feature vector corresponding to the concatenated histogram, whose size

varies depending on implementation, Si is the part of the sample input image to be examined

and is determined by the sub ­ window, andMi is the counterpart which it will be compared

to. The sample is compared to both Models, and depending on the output is classified as face

or non ­ face. Equally to the Viola ­ Jones algorithm multiple successful sub ­ windows are

needed in an area, for it to be classified as face. There are two different implementations of

the chi squared classification, which are explained with great detail in [34][35].

Support Vector Machines ­ SVM:

Support Vector Machines is a robust prediction method based on statistically learning

theory developed by Vladimir Vapnik[36][37]. Due to its successful application on different

object detection projects, Ahonen et al. first decided to use it as their classification method.

In this section, a brief explanation of the basic idea behind SVM will be provided, with fur­

ther information in the literature[37][34][38[39]. Given positive and negative input samples

placed onD dimensional space, SVM will try to to build a D− 1 hyperplane to separate the

positive and negative samples. When a new sample is to be tested, it is classified depending

on its relative position to the hyperplane. In the figure below 2.11 the |d−|+ |d+| distance is

called margin, where d− is the maximum distance from the nearest positive sample and d+

the maximum distance from the nearest negative sample. The line H0 is placed so to maxi­

mize the distance between both the negative and positive samples. However any parallel line

toH0 and between the margin could also work as a separation line. The samples which are on

H1 and H2 lines are called support vectors since they have a major role on the construction

of the separation line/boundary line, which can be represented by the following equation:
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H0 = wTx+ b (2.6)

wherewT are the parameters of the plane, so it is a constant in this example since there are

only 2 dimensions, x is a point and b is called the bias and is calculated in order to minimize

the error and maximize the distance from the support vectors. If we consider that our samples

are labeled as face or non face or yi = −1, 1 then the H1 and H2 lines can be defined as

H1 : −1 = wTx + b and H2 : 1 = wTx + b. Given a new sample and testing it on the

separation line equations, it is now possible to determine based on the sign of the output

number whether it is below or above H0 and classify it accordingly.

Figure 2.11: Green and red dots are positive and negative samples respectively. H0 = wx+ b is the

separation line.

Nonetheless face detection is not a linear problem, and more is needed to be done to apply

SVM. In order to apply SVM, Hadid et al. , used something called the Kernel trick. Kernel

functions( see Figure 2.12) are used to increase the dimensionality of the samples and find a

hyperplane in higher dimensions that best separates these samples.
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Figure 2.12: Different Kernel functions. Image taken from [3]

In this case, Hadid et al. used a second degree polynomial kernel function. Every LBP that

was extracted in the first phase, is fed to the SVM and mapped in a high dimensional space

and so a separating hyperplane is constructed. Given a new image a scanning sub­window is

shifted across the image, extracting regional LBPx features and classifying them based on

the function below:

F (LBPx) = Sign(
l∑

i=1

aiyiK(LBPx, LPBti) + b) (2.7)

where l is the total number of samples, LBPti is the LBP representation of the current i

sample, b is the bias, yi is 1 or ­1 depending on whether LPBti is labeled as a face or not and

ai are the parameters of the SVM classifier and are calculated by:

max(
l∑

i=1

ai − 1/2
l∑

i,j=1

aiajyiyjK(LBPti, LBPtj)) (2.8)

Subject to

l∑
i=1

aiyi = 0, 0 ≤ ai ≤ C

Equation 2.8 is a quadratic programming problem and is standard procedure when using

polynomial Kernel functions, while C is empirically computed and set and is called cost of

the constraints violation. In essence depending on its value, the allowance of error increases

or decreases inversely proportional to the complexity of the model. For more information

look up the literature concerning SVM proposed above.





Chapter 3

Face Recognition

Face recognition is the task of matching a detected face from an input image to a face from

a database of faces. Face recognition systems are in reality a combination of systems. The

first stage of the system consists of a face detection and localization algorithm, which is used

to locate the face in the image. Then, they process these faces to prepare them as input for the

face recognition stage and finally analyze the face’s pattern, geometry or features, depending

on the algorithm, and matches it to a face from a face database. It is important to note, that

face recognition has two main variations: a) face verification and b) face identification. Face

verification is a one to one search and is of course a faster procedure. The systemwill compare

the detected face to a single stored face and verify or not whether the detected one is the same

as the stored one. Instead, a face identification system will search a database of many faces

to identify a face detected in an input image. In the following sections, two popular and

groundbreaking for their time algorithms will be explained.

3.1 Eigenfaces

Even though face recognition was first introduced by Wilson Bledsoe in the 1960s and

was later addressed by a number of people, it wasn’t until 1991 when Turk and Pentland[4]

expanded on the idea of Eigenfaces proposed by Sirovich and Kirby[40] that the feasibility

of an automated facial recognition system was indicated. In this section an explanation of the

Eigenfaces algorithm will be provided, as well as the basic idea of PCA or Principal Compo­

nent Analysis[41][42] since it is the core of the Eigenfaces algorithm. PCA is a dimensionality

reduction method that given a large number of data samples in a high D dimensional space,

19
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will seek to map them in a new multi­axis coordinate system of D′ dimensionality, where

D′ < D without losing the data structure and the information it may contain. ThisD′ dimen­

sional sub­space is formed by n linearly independent vectors v1, v2, ..., vn, which are the basis

of this sub­space. These vectors have very distinct characteristics, which will be explained

below, and are called eigenvectors. Using this approach Turk and Pentland tried, given a

sample of face images, to create a low dimension face sub­space spanned by eigenvectors, or

as they are known eigenfaces.

3.1.1 Covariance Matrix, Eigenvectors and Eigenvalues

Given a data set of n samples withm seemingly independent attributes, it is only natural

that these samples will be mapped in am dimensional space.

An,m =



...
...

...
...

...
...

...
...

X⃗1 X⃗2 · · · X⃗m

...
...

...
...

...
...

...
...


where X⃗1, X⃗2, ..., X⃗m are nx1 vectors representing the attributes, and A is the matrix form

of the data.

PCA’s purpose is to find ”hidden” correlations between the samples’ attributes, that can­

not be deducted intuitively, and use them to construct newm′ independent vectors [u1, u2, ...,

um′ ] that span a sub­space in the m dimensional space, where the samples can be mapped

without losing any significant information. These vector will be the eigenvectors or Principal

Components. In order to calculate the Principal Components a matrix called covariance ma­

trix is used, which contains numerical values depicting variances and covariances between

the attributes. The covariance of the attributes x1 and x2 Cov(x1, x2) measures how these

variables change together or in other words move in the same direction. If the covariance is

positive, it indicates that when one variable increases the other will also increase, and the

inverse if it is negative. These values derive from the dot product of the A matrix and its

transposeAT , after a subtraction of the mean value µ from each attribute has been done. This
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subtraction, centers the attributes around the origin and achieves a new mean value of 0. The

mathematical interpretation:

µ =

∑m
i=1 X⃗i

M
(3.1)

where µ is the mean value

Σ =
AAT

M
(3.2)

where Σ is the covariance matrix (often denoted as C),

A = {X⃗ ′
1, X⃗

′
2, ..., X⃗

′
m} and X⃗ ′

i = X⃗i − µ⃗

In the figure 3.1 below, three different examples of covariance can be seen. If the vectors

forming the axis x, y are considered as the attributes and the black circles as the samples, it is

easy to understand the concept of covariance. In the first example the covariance is negative

since with the increase of the x attribute the y attribute decreases. They move in opposite

directions. Similarly, the right example has a positive covariance, while the covariance in the

middle examlpe is close to 0. It is to be noted that the covariance value does not indicate the

”strength” of change.

Figure 3.1: Covariance examples

In these spaces, if any random vector is multiplied by the respective covariance matrix Σ

multiple times, a remarkable fact can be observed. The slopes of these random vectors will

eventually converge into a value, and the vector with this slope value is the vector, or even

better dimension, with the maximum variance. Maximum variance indicates the direction
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where the data samples are most spread out. Any excessive multiplications with the covari­

ance matrix mark no change on the slope of the vector, but only on its scale. This vector with

maximum variance is the first eigenvector or Principal Component. The reason that variance

along the eigenvector, which mathematically is the average of the squared distances of the

projections of the data samples from the origin, is because it is a metric which indicates that

the relative positions of the data and thus information is preserved.

Figure 3.2: Visualizing Variance among two Principal Components

In the figure 3.2 below, it is easy to observe that PC2 is obviously on the direction that

the data spread the most. The projections of the samples are minimized while keeping their

relative positions. In contrast to PC1 where the projections of the samples lose their relative

positions and information is lost, making PC1 a far ”worse” eigenvector. In a real application

the goal is to find the k, a number set manually, eigenvectors with the highest eigenvalues.

Eigenvalues show the variance of the corresponding eigenvector. There are a number of ways

to compute eigenvectors and eigenvalues, however in this thesis the most generic one will

be presented. Given the An,m matrix form of the data samples and its covariance matrix Σ, it

is possible that m eigenvectors exist. To compute these u1, u2, ..., um eigenvectors and their

respective eigenvalues λ1, λ2, ..., λm the following procedure is followed:

The eigenvalues are computed by the equation below:

det(Σ− λI) = 0 (3.3)
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For each eigenvalue λi found, calculate an eigenvector ui :

Σu⃗i = λiu⃗i (3.4)

It should be mentioned that the eigenvectors should have unit length ûi =
u⃗i

||ui||
.Af­

ter the eigenvectors are computed, the k eigenvectors with the highest eigenvalues and thus

the highest variance are chosen as the new k­axis lower dimensional system where the data

samples are projected. In a simplistic way it can be said that PCA builds new k attributes

that summarize the original m ones, attaining a simpler environment where the data can be

observed, losing as little information as possible. It linearly transforms the m dimensional

data, in a linear combination of k eigenvectors. Each sample xi can be represented as a sum

of the mean µ and a weighted sum of the eigenvectors.

x⃗i = µ+ w1u⃗1 + w2u⃗2 + ...+ wku⃗k (3.5)

These weights are a unique combination for each unique sample and can be seen as a form

of ID for this particular sample. This is an idea that led to the use of PCA and the eigenvectors

in the field of face recognition.

3.1.2 Application to Face Recognition

In this section a step by step analysis of the eigenfaces algorithm developed by Turk and

Pentland[4] will be presented. Given a set ofM grey­scaled, centered andNxN pixel scaled

training images I1, I2, ..., IM , the first step is to transform each one to a N2x1 dimensional

vector Γ⃗i. This is achieved simply by inserting each pixel of the image Ii into the vector Γ⃗i as a

row (see 3.3). In succession, the mean face vector Ψ⃗ is computed

Figure 3.3: Image transform into vector

Ψ⃗ =
∑M

i=0 Γ⃗i

M

and subtracted from each vector Γ⃗i.

Φ⃗i = Γ⃗i − Ψ⃗

These averaged vectors form a matrix A =

{Φ⃗1, Φ⃗2, ..., ⃗ΦM} fromwhich the covariance
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matrix Σ and thus the eigenvectors and

eigenvalues will be computed. In essence

Φ⃗i contain the most prominent deviations

from the mean, or in other words the dimen­

sions that the samples differ most from the

mean.

However a covariance matrix Σ =
∑M

i=0 Φ⃗iΦ⃗T
i

M
= AAT of N2xN2 dimensions, since A is

of N2xM and AT isMxN2, would contain up to N2 eigenvalues and eigenvectors of N2x1

dimensionality. The goal is to find k eigenfaces or eigenvectors, which will make possible

to represent all samples from the data set in a low dimensional space. Doing that from such

a high dimensional covariance matrix is significantly inefficient. For example, if a training

set consisted of 100 images of 512x512 pixel resolution there would be needed k < 100

eigenfaces to build a face­space. Even so, the computation of 512x512 = 262.144 eigenvec­

tors and eigenvalues from a 262.144x262.144 covariance matrix would firstly be needed.

To avoid this problem, a covariance matrix of reduced dimensionality Σ′ = ATA can be

used. It is known from linear algebra that these two covariance matrices, Σ and Σ′ , have the

same highest eigenvalues and eigenvectors. Σ′ is a MxM matrix, since AT is MxN2 and

A is N2xM , that contains up to M eigenvectors of Mx1 dimensionality. As stated, these

M eigenvectors are also contained in Σ covariance matrix and are the ones with the highest

eigenvalues. Consequently k < M << N 2 eigenvectors can be calculated from Σ′ and then

mapped to the original N2x1 dimensionality using linear algebra. Let [u1, u2, ..., uN2 ] be

theN2x1 eigenvectors ofΣ = AAT and [v1, v2, ..., vM ] theMx1 eigenvectors ofΣ′ = ATA:

ATAv⃗i = λiv⃗i <=> AATAv⃗i = λiAv⃗i <=> ΣAvi = λiAv⃗i

And according to equation 3.4 Avi is eigenvector of Σ, thus ui = Avi. Therefore, after

the calculation of the k vi eigenvectors, they are mapped into the original dimensionality

according to ui = Avi. These eigenfaces span the face­space.

Following the creation of the face­space is the the projection of the original samples so

to be expressed as a linear combination of the eigenfaces. The weights ωi corresponding to

each projection to an eigenface are derived by the equation below
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Figure 3.4: The training set and mean face of [4]

Figure 3.5: The corresponding eigenfaces­[4]

wi = u⃗i
T (Γ⃗i − Ψ⃗)

and are stored in a vector ΩT
i = {ω1, ω2, ..., ωk}. Thus the original image can be represented

as a weighted sum (see 3.5).

Figure 3.6: Original Image expressed as linear combination of eigenfaces. Each Image comes from

an addition to the sum of a weighted eigenface. Image taken from [5] ]
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Detection and Recognition

Having the face­space and the weight vectors of the training samples computed, the only

question to be answered is how a new test image will be classified and identified. A test image

Itest is transformed into vector form, then projected into the k dimensional face­space and has

its corresponding weight vector ⃗Ωtest

T
computed. Then a simple method of classification, the

Euclidean Distance[4] is used to determine whether the test image is a face, and if yes what

is its identity. First the distance ϵδ of the image and the face­space is computed. This distance

equals to the distance of the averaged test image Φtest = Γtest −Ψ and its projection to face

space Φproj =
∑k

i=0 ωiui.

ϵδ = ||ϕtest − Φproj||

Then the distances ϵk between the weight vector of the test image and the weight vectors

of all samples, called now face classes, are calculated in succession and the minimum of these

distances is kept.

ϵk = ||Ωtest − Ωk||

If ϵδ is lower than a manually set threshold θδ and ϵk is lower than an also manually

set threshold θk then the image is classified as a face and is identified as the person whose

corresponding weight vector was Ωk (Not to be mistaken with the last kth eigenvector. It

could be any eigenvector from the k). If θk is over the threshold but ϵδ < θδ, then the person

is classified as an unknown face. If ϵk > θk and ϵδ > θδ then it is classified as a non person.

In the occasion that an image is not classified as a face but is near a face class, it is many times

considered as a false­positive. These threshold play a major role on the performance of the

algorithm. Tweaking the threshold is always a trade off between accuracy and false­positive

detections[43].

Limitations

Although eigenfaces was a major breakthrough in the field of face recognition, it is now

vastly outperformed by many systems and is very rarely used in real life automated systems.
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The biggest drawback is that it is very scale dependant. Its performance and accuracy rapidly

drop when a large scaled image is presented. Furthermore each test image needs to be pre­

processed, scaled and has its background removed or processed. It is also demonstrating drop

on performance and accuracy in significant illumination and pose changes.

3.2 Fisherfaces

Fisherfaces was an algorithm introduced by Belhumeur et. al. at 1997[44]. The authors

were greatly influenced by the Eigenfaces algorithm that had been introduced some years

before. Similar to the Eigenfaces method, they also used linear projection to project the high

dimensional face image into a low­dimensional sub­space, that is called face­space, and used

the projection’s distance from already stored data to identify the person. However, they did it

by using both PCA, exactly as it was used in the Eigenfaces algorithm, and a method heavily

used in statistics called Fisher’s Linear Discriminant analysis ­ FLD[45]. The main idea be­

hind was that, even though Eigenfaces was an excellent algorithm to represent a face into a

sum of Principal Components, its detection was greatly reliant on the person’s facial expres­

sions and the image’s lighting conditions. Two images of the same person but with different

facial expression and lightning could vary more than the picture of two different people un­

der the same conditions. Since Eigenfaces sole purpose was to maximize variance, it took

into account the lighting or facial variations of the same person in the construction of the

Principal Components. As a result, Eigenfaces proved to be an excellent image reconstruc­

tion method, but its discriminative power was not consistent. In the following section the

Fisherfaces algorithm will be explained.

3.2.1 Fisher’s Linear Discriminant analysis ­ FLD

The major difference between the two dimensionality reduction methods, FLD and PCA,

is that FLD is utilizing the concept of classes. PCA viewed each image sample individually,

while FLD discriminates the samples by assigning a class to each image. Images of the same

person, even in different conditions will be assigned under the same class. The first step in

FLD is to calculate the scatter matrices, similar to the covariance matrix calculation step in

PCA. There are two different kinds of scatter matrices: The interclass or Between class scatter

matrix and the intraclass orWithin scatter matrix. Between class scatter matrix SB shows how
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much the mean of each class µj varies from the total mean, while Within scatter matrix SW

shows how much the samples xi of a class c vary from their mean µj .

The mean of a class is:

µj =
1

Nj

Nj∑
i=1

xi (3.6)

where Nj is the total number of samples that belong in that class. The total mean is defined

as:

µj =
1∑c

i=1Ni

c∑
j=1

Njµj =
1

N

N∑
i=1

xi (3.7)

where c is the total number of classes. The Between class scatter matrix:

SB =
c∑

j=1

Nj(µj − µ)(µj − µ)T (3.8)

The Between class scatter matrix is very similar to the covariance matrix which is de­

fined in 3.2. In fact, it is just an unnormalized version of the covariance matrix, or better the

covariance matrix is a scaled interclass matrix. The Within class scatter matrix:

SW =
c∑

j=1

Nj∑
i=1

(xi − µj)(xi − µj)
T (3.9)

FLD, in similarity with PCA, will try to maximize the interclass scatter with the differ­

ence, that it will keep intraclass scatter minimized. In other words, it will attempt to find the

sub­space, where the projections of the samples will have maximized scatter, as long as their

within class scatter is minimized. An intuitive example of two classes in a two dimensional

space can be seen in the figure 3.7 below:

It can be seen that the variance is higher when using PCA, however the within class

scatter is not taken into account. FLD will try to maximize the Between class scatter, in this
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Figure 3.7: A two dimensional example of 2 classes. The green and red points are the samples of

each class while blue points represent their mean value. It can be seen the the variance with the PCA

algorithm is greater, however the in class scatter is much smaller in the projection with the FLD.

case µ1,p − µ2,p while keeping the Within class scatter minimum. Given that xi is a high

dimensional sample and yi = W Txi is the projection to the sub­space then the projected

samples’ Within class scatter of class j will be equal to:

=

Nj∑
i=1

((W T (xi − µj))(W
T (xi − µj))

T

=

Nj∑
i=1

W T (xi − µj)W (xi − µj)
T

= W T

Nj∑
i=1

(xi − µj)(xi − µj)
TW

= W TSJW

In a similar manner all the classes’ Withing scatter are calculated and the total Within

class scatter matrix will be their sum and equal to W TSWW . Following the same process

to find the Between class matrix for the projected means, where µi,p = W Tµi, it is found

that it is equal toW TSBW . The ratio of |WTSBW |
|WTSWW | is called the fisher criterion and it is this

ratio that needs to be maximized. So the optimal projectionWopt = [w1, w2, ..., wl] is

derived by:
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Wopt = argmax
W

|W TSBW |
|W TSWW |

(3.10)

Then, the derivative of 3.10 with respect toW is taken and solved for dWopt

dW = 0, which

leads to the generalized eigenvalue problem:

SBWi = λSWWi (3.11)

whereWi are the eigenvector corresponding to the highest eigenvalues. It is to be noted

that there are at most c−1 eigenvalues and eigenvectors. If SW is invertible then the classical

eigenvalue problem can be derived by multiplying 3.11 with S−1
W .

S−1
W SBWi = λWi (3.12)

However, a singularity problem occurs. SW is a singular matrix and thus can not be in­

verted. This occurs, because in face recognition problems the features of the images, which

in this case are the pixels outnumber the samples by a large margin. This leads to a very large

number of projection combinations and one will almost always find a projection where the

Withing class scatter will be zero and thus the ratio will become seemingly infinite.

To solve this problem the authors used PCA in order to interpret the images with a small

number of new compact features, as it was explained in the previous section, hence reducing

the dimensionality. Then they proceeded to use FLD to reduce the dimensionality even more,

while keeping the Within class scatter minimized. As a result, the final Wopt projection is

defined as:

Wopt = WfldWPCA (3.13)

where

Wpca = argmax
W

|W TSTW |, Wf ld = argmax
W

|W TW T
pcaSBWpcaW |

|W TW T
pcaSWWpcaW |

(3.14)
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An example of Fisherfaces can be seen in the figure below. It can be seen how Fisherfaces

differ from Eigenfaces in the sense that they retain discriminative class features like a beard,

hair, glasses or even facial expressions.

Figure 3.8: An example of 4 Fisherfaces taken from a Dataset of 100 classes. Image taken from [6]

Improvements and Limitations

It has been shown both by the original paper[44] and other comparative tests that followed

[46][47][48] that the Fisherfaces algorithm is both faster and more accurate than Eigenfaces.

It it robust to lighting and facial expression changes in a high degree. Improved versions of

this algorithm also followed. Some of them are the Laplacian faces[46], the improved­LDA

face recognition[49] and the Fuzzy­Fisherfaces[50]. These algorithms achieved low error

rates and in an adequate processing time, however they fell short in comparison with the

deep learning algorithms that were introduced some years later.





Chapter 4

Convolutional Neural Networks

After the great success of Viola and Jones in 2001, machine learning algorithms became

the standard for face detection and recognition problems. Each subsequent year new machine

learning algorithms were introduced or improvements on already existing ones were made

improving the detection rates. Despite the progress many limitations, some of which were

mentioned in previous chapters, remained unresolved in the following years. Nevertheless

with the beginning of the new decade a particular subfield of machine learning eliminated

all its competition and dominated every field in object detection and image classification,

demonstrating very exciting results. This subfield was deep learning, which are algorithms

that utilize the technology of neural networks.More specifically in object detection and image

classification, and thus face detection and recognition, a special kind of neural networks,

called convolutional neural networks ­ CNN is used. In this chapter a brief introduction to

neural networks and a more thorough explanation of CNNwill be presented, as well as a face

detection and a face recognition algorithm using these networks will be explained.

4.1 Basic idea of Convolutional Neural Networks

Convolutional neural networks met a huge surge of popularity in Computer Vision in the

early 2010s. However the conception of the basic idea was made much earlier. This idea

derived from the study of biological vision made by Hubel and Wiesel in 1959[51]. They

experimented on cat brains with hope of understanding how their visual system worked, and

which visual stimuli activated the neuron cells in their primary visual cortex area. They dis­

covered that activation of different cells of distinct complexities. The cells of least complexity

33
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Figure 4.1:Model of Movshon&Tolhurst [7]. Image taken from [8]

called simple cells were of great importance and were responsive to edges and lines of differ­

ent orientation. Simple cells have distinct receptive fields, meaning that the position of object

on the image is very crucial on whether they will activate or not. In contrast more complex

cells were spatial invariant and always activated. This observation led to the proposal that

complex cells actually use the outputs of multiple simple cells and thus the system can be

characterized as hierarchical. In the following years many experiments were conducted, and

a mathematical analysis of what is happening was investigated[7]. A simplistic depiction of

this analysis can be seen in figure 4.1.

These discoveries were the motivation for Fukushima[52] to build a neural network, sim­

ple to complex hierarchical model, which consisted of S­cells ­ Simple cells and C­cells ­

complex cells. These cells of course were mathematical operations aiming to recognise num­

bers. However this research was greatly constrained due to the low computational power of

computers at the time. Nonetheless his work was the one to inspire the creation of the first

modern Convolutional Neural Network made by Lecun et. al.[9]. This CNN would become

the foundation for all CNN used in Computer Vision later and its architecture can be seen in

figure 4.2. Details upon the technical details of CNNs will be presented later.

The purpose of this CNN was to recognize handwritten number patterns in order to sort
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Figure 4.2: The architecture used by Lecun et. al. [9]

mail automatically at the post office. The basic idea of detecting simple features like edges,

and combining them to more complex features remained the same.

For more than a decade research and updates were done on CNNs, but machine learning

algorithms remained more feasible and more accurate for most problems in the field of Com­

puter Vision. Deep learning algorithms’ performance is heavily depended on the training set.

They need incredible amounts of Data and computational power to be efficient. With the in­

creased interest on the field of Computer Vision, Data sets with labeled images became more

and more necessary. This led to the creation of large Data sets like FRGC, CIFAR­10, FERET

and ImageNet. ImageNet was completed in 2009 by Fei­Fei­Li and a research team and it was

by far the largest dataset at that time, containing more than 14 million hand­annotated pic­

tures. At the same time Graphics processing units boosted the computational power by a

large margin. All these conditions led to the creation of AlexNet, a CNN architecture created

by Alex Krizhevsky et al. [53] which proceeded to mark by far the lowest error rate at the

ImageNet Image classification challenge in 2012. Since then CNN architectures dominated

in object and face detection and recognition demonstrating good performance and excellent

detection rates, becoming the golden standard in Computer Vision.

4.2 Introduction to Neural Networks.

As stated above, CNN are a special type of neural networks. A neural network is essen­

tially a series of mathematical operations that given a fixed size input vector of n variables

[x1, x2, ..., xn], outputs a vector of k numbers. The main processing unit of a neural network

are the nodes, which are also called neurons and are mostly packed in layers. Each neuron is

connected to all other neurons of a neighboring layer, but do not communicate with neurons
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of the same layer. These connections are called synapses and have a weight wi assigned. The

neuron internal value is calculated by the summation of the weight*feature factors plus a bias

bj . This value will be filtered by an activation function ϕ that is positioned after each neuron,

then multiplied by the corresponding weight wi of the connection line and passed forward as

input into the next neuron.

Figure 4.3: A simple neuron in a neural network

The value of such a neuron cell can be derived by the following equation:

ϕ(
∑n

1 Wnxn + b) = ϕ(W⃗ x⃗+ b) where n is changing depending on the layer.

A simple neural network consists of 3 type of layers: the input layers where input is

mapped, the hidden layer where processing is done and the output layer[54]. A simple neural

network architecture can be seen in figure 4.4.

Loss function

Similar to every learning system the most critical part in neural networks is the training

process. Thousands or even millions in more complex systems of labeled training samples

are needed to train a network. Each label for any training sample contains the desired output

yi for this particular sample and thus the error is ϵ is ϵ = y′i − yi where y′i is the output of the

sample. In order to determine how well the system is fitting the data the Loss L is calculated

using a loss function Li [55][56]. Loss over a set of N samples is defined as:

L =
1

N

N∑
i

Li(f(Xi,W ), yi) (4.1)

where Xi is ith sample and f is the existing model.
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Figure 4.4: A 2­layered artificial neural network

The goal is to minimize the Loss by adjusting the Weights and bias. Since the input layer

has no tunable variables it is excluded from the layer count and a network like 4.4 is consid­

ered a 2­layer network. In literature these kind of networks are referred as ANN ­ Artificial

Neural Networks or MLP ­ Multilinear Perceptron. Mathematically, minimizing the Loss

means to adjust the variables of the multi­variable and differentiable loss function in order to

reach the global minimum. In essence it is becomes an optimization problem, which is often

solved in neural networks by using the technique of gradient descent. Gradient descent is an

iterative process where in each iteration calculates the partial derivatives of Li with respect

to each variable wi, bl and adjusts these variables to the direction of the steepest descent. This

process begins from the output layer and continues backwards to each layer. For this reason it

is called backpropagation, in contrast to the forward passing or forward propagation of values

in the first stage of the system. It is important to mention that most real applications add a

term to the Loss, called regularization term, in order to avoid overfitting.
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Figure 4.5: Overfitting problem displayed by redOverfitting[57] occurs when in the pro­

cess of minimizing the Loss, the variables

are adjusted to such extent to the details

and even the noise of the training samples

that its performance when testing new test

subjects drops. Regularization attempts to

prevent that by reducing the variance of the

samples and penalizing the complexity of

the system. It is in essence a trade off be­

tween the fitting of training samples and performance. Common regularization techniques

are L1, L2, Dropout and Max norm regularization.

Backpropagation

As stated above, the process that neural networks use to adjust the weights is called back­

propagation. The architecture of these networks makes this process very efficient, since it

utilizes the chain rule for the partial derivatives calculation and is able to reuse computed val­

ues for subsequent steps while having a fairly simple algorithmic design. The most common

algorithm used is Gradient descent ­ GD, Stochastic Gradient descent ­ SGD and Minibatch

Stochastic Gradient ­ MSGD. All these algorithms uses the same basic operation which will

be explained below. Suppose the following part of figure 4.4

Figure 4.6: A part of 4.4 figure. Here the biases and activation functions are depicted.

Let b1, b2 be the biases of the respective layers,W l
i,j be the weight of the ith to jth node of

layer l and sli, zli be the ith node’s value before and after the activation function ϕ respectively.

The chain rule states that given the differentiable functions w = f(x) and e = g(f(x)),
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then the dependence of the f function on the changes of x can be expanded and interpreted

as dependence on the independent variable t, since x is dependant on t. Mathematically it

translates as:

de

dx
=

de

dw

dw

dx

This rule can be expanded on multivariable functions and partial derivatives. Loss func­

tions are multivariable functions since they depend on multiple weights, which also depend

on the weights of previous layers’ connections. To adjust the each weight towards the direc­

tion of the steepest descent, it is needed to calculate the partial derivative of L with respect

to each weight starting with weights on the output layer[58]. Working on the example above

and starting fromW 2
1,1, so the weight on the second layer connecting the first node ­ y1 to the

previous layer’s first node.

∂L
∂W 2

1,1
= ∂L

∂z21

∂z21
∂s21

∂s21
∂W 2

1,1

The calculation of ∂L
∂z21

is trivial since for given real values it becomes a simple numerical

problem. The second term
∂z21
∂s21

is also a numerical problem. It is to be noted that since zli =

ϕsli, the sigmoid function is a very often used since its derivation is very simple σ
′(x) =

σ(x)(1−σ(x) and it also keeps the values between [0,1], which is very useful for predicting

models. Finally the third term
∂s21

∂W 2
1,1

:

For every node slj = ϕl−1(
∑k

i=0W
l
i,js

l−1
i ) + bl

where k = number of nodes in the l−1 layer, the partial derivative with respect toW l
i,j equals

∂slj

∂W l
i,j

= ϕsl−1
i = zl−1

i

So ∂L
∂W 2

1,1
is calculated and in similar way all the other partial derivatives, in this example

W 2
1,2, of the same layer can be computed. The updated weights derive from the formula w′ =

w − α ∂L
∂w

where α is called learning rate and is a trade­off value between learning time and
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optimal learning. A common value is α = 0.1. Going backwards to the previous layer, the

first partial derivative to be calculated is ∂L
∂W 1

1,1
.

∂L
∂W 1

1,1
= ∂L

∂z11

∂z11
∂s11

∂s11
∂w1

1,1

The only difference to the first operation is that ∂L
∂z11

is now affecting two nodes, h1 and

h2. So:

∂L
∂z11

= ∂L
∂z21

∂z21
∂s21

+ ∂L
∂z22

∂z22
∂s22

Using the same process and reusing some already calculated values, the weights of layer

1 are updated. In a similar way the biases are updated using the chain rule and backpropaga­

tion. The difference between GD, SGD and MSGD is that GD updates the variables after all

samples are test, SGD after each sample (so one full iteration) and MSGD after a predeter­

mined batch of samples is tested. Depending on the algorithm choice, time or better weight

optimization is gained[59].

It is clear that the more inputs are equivalent to more weights and thus the training be­

comes more and more time and power consuming. For high dimensionality inputs like im­

ages, this simple neural network architecture would be very inefficient. For an image of

256x256x3 dimensions, the weights required for the first hidden layer would be 196608 times

the number of neurons. To solve this problem, the full connectivity of the neurons is removed

and a special type of network is used called convolutional neural network.

4.3 Convolutional neural networks

The essential characteristic that differentiates the convolutional networks is the implicit

assumption that the input will be consisted of images or more generally a three dimension

input ­ width, height and depth. Therefore these type of architectures are ideal for object

detection and recognition. A CNN can be viewed as a two ­ stage network, where in the

first stage features are extracted from the image and in the second stage, probabilities of

objects being in the image based on the extracted features are computed as output. Furthering

this view, each stage is comprised of layers and thus, as any neural network a CNN can be
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viewed as a sequence of different layers. The most common layers found in a CNN are the a)

the convolutional layer b) the activation layer (also found as ReLU layer in literature) c) the

pooling layer and finally d) the dense or else the fully connected layer. Each of these layers has

a distinct purpose. In short the convolutional layer is where most of the computations heavy

processes and features extraction is done, the activation layer’s purpose is for optimized and

faster training, the pooling layer is responsible for dimensionality reduction of the data and

the dense layer for computing the output and classifying. All of these layers will be explained

more thoroughly below.

4.3.1 Convolutional Layer

The core operation in this layer is Convolution. Convolution in CNN is usually occurring

when an input X is convolved with a kernel of weights w to produce an output array. It

is essentially a matrix multiplication or else a dot product between arrays. More generally

convolution is defined as:

(f ⊛ g)(t) =

∫ ∞

−∞
f(r)g(t− r)dr

and can be intuitively thought as a way of merging two pieces of information. The neurons

in the Convolutional layer are connected only to a specific region of the input (see figure 4.7,

in contrast to the normal neural networks where they were fully connected.

Different filters are used in order to detect edges, lines, blobs of a certain color etc. These

filters could be Haar, LBP or similar like kernels that were mentioned in chapter 2. Each

filter, which in essence is a set of weights, is slided with a stride S across the whole input and

convolves with a local region to produce a dot product output. Each neuron is connected only

the the region convolved by the filter and the corresponding input and this is called receptive

field of the neuron. The receptive field is equal the the size of the filter. Filters’ height and

width have no strict value limitations, however they must always have a depth equal to the

input’s, which in images is three (RGB). Suppose an input image of 5x5x1 dimensions as one

of the three slices of the total input and a slice of the filter with 3x3x1 dimensions with S = 1

(see figure 4.8). The output will be a 3x3 array which is called feature or activation map.

Even if the depth dimension was included, the size of the activation map is not dependant
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Figure 4.7: Convolutional Layer

of the depth and would remain the same. It is important to notice that in each activation map,

each neuron is related to the same set of weights that are contained in the filter. So for the

above example and accounting the depth, each neuron has 3x3x3weights plus one bias which

equals to 28 parameteres. If it was a normal neural network it would require 5x5x3+1 = 46

parameters. Even from this extremely low dimensional example it can be deducted that the

difference in parameteres is significant.

As seen in the above example, the activation map is of lower dimensions than the input.

Consecutive convolutional layers or a stride of higher value could very rapidly lead to low

dimensions. To counter this problem, a technique called zero­padding is used. Zero­padding

is the addition of zero values rows and columns with the purpose of manipulating the dimen­

sions of the activation map and avoid losing information. For example the addition of two

zero valued rows and columns at the top, bottom, left and right of the image in figure 4.8

would result in a 5x5 activation map.

The activation map’s dimensions can be calculated by the formula:

(W ­ F + 2P)/s + 1

whereW is the size of the the input (considering it is rectangular),F is the size of the receptive

field of the neurons, S and P is the zero padding. F, P, S are called hyperparameters and are

values that are manually set that greatly affect the performance of the system.

The final hyperparameter and thus the last variable that affects the convolutional layer’s

final dimension, is the number of filters used. For each different filter, an activation map is
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Figure 4.8:A 2D example of a 5x5 Image and a 3x3 filter with bias = 0, stride = 1 and no zero padding.

The color­bordered areas are the first 3 dot products that correspond to the 3 first, also color­bordered

values in the activation map.

produced and the Convolutional layer’s depth is a result of all these activation maps stacked

one upon another. Neurons along the depth dimension are essentially connected to the same

input region and are called a depth column. Likewise neurons of same depth dimension re­

siding on the same 2D activation map plane share the same receptive field and thus share

the same weights. Each activation map is referred as a depth slice in the convolutional layer.

Consequently neurons of a depth column try to find different features in the same input re­

gion, and neurons of a depth slice try to find the same feature along of all the input.

(α�) Depth column (β�) Depth slice

Figure 4.9: Neurons of a depth column have the same input region, while neurons of a depth slice

share weights.



44 Chapter 4. Convolutional Neural Networks

The most typical values for F , S and P are 3, 5 s = 1, 2 and P = 1. It is important to

choose these values in such a combination, so that the output dimensions are integers.

In symmetry with the simple neural networks, the forward pass the main purpose of the

convolutional layer is to calculate and forward information the next layer, until an output is

produced. Furthermore like the weights of synapses had to undergo training, Convolutional

layer’s three dimensional weights must undergo training too. This is achieved in a similar

manner with the method of backpropagation and the use of the chain rule.

After the operation of convolution is done, the activation function operates. In the liter­

ature it is sometimes depicted as a separate layer after the Convolutional layer, but is often

integrated in the operation of Convolution. The activation function that is dominating in most

CNN architectures is the Rectified Linear activation function ­ ReLU.

Figure 4.10: ReLU function.

The advantage of ReLU in deeper systems like

CNN is reduced likelihood of the vanishing gra­

dient effect. A significant problem that common

used activation functions like the sigmoid or the

hyperbolic tangent are susceptible to. Moreover

ReLU discards negative values resulting in more

sparsity, while still adding non­linearity to the

system succesfully. All these advantages lead to

a faster and better training and this is the reason

that ReLU has almost become a default activation function for CNN. It is defined by:

h = max(0,a)

where a is the value of a neuron. More on activation functions can be found in the following

literature [60][61].

4.3.2 Pooling layer

Pooling layers are inserted after every few convolutional layers. Their purpose is to re­

duce the number of parameters of the system and thus the dimensionality, leading to shorter

training times and reduced chances of overfitting. Pooling layer has 2 hyperparameters but

no true parameters and this is the reason it does not impact the training negatively. These

hyperparameters are the filter size F and the stride S. Pooling also uses the technique of
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sliding window, sliding a filter along the input resulting in a downsampled output but with

little to no information lost. Max pooling is the most common pooling method and common

filter size and stride is 2x2 and 2 respectively. Low dimension filters with no zero padding

are preferred so as not to destroy too much information. It is to be noted that pooling operates

on the activation maps and does not modify the depth of the input. A max pooling example

can be seen below:

(α�) Max pooling operated on a 4x4 Activation

map with a 2x2 filter and stride 2.

(β�) Same filter applied on a 3D convolutional

layer. The depth does not change, however the

width and height are halved.

Figure 4.11: a) Max pooling 2D example b) Max pooling on a 3D example

Apart frommax pooling, general pooling or other pooling methods can be used too. How­

ever experiments have shown thatmax pooling has by far demonstrated the best results among

the pooling methods. This is mainly attributed to the fact that general pooling, which is the

second most common method, tends to smooth out edges and hence lose feature information.

There are implementations that prefer to replace pooling with bigger stride in the convolu­

tional layer in order to downsample. More information about the pooling methods can be

found in [62][63].

4.3.3 Fully Connected layer

This is the last part of the CNN andwhere the classification of the input happens. The fully

Connected layer is in reality a simple Artificial Neural Network. It is comprised of an input,

a hidden and an output layer and all the neurons are fully connected to the neurons of the next

layer. The input is the flattened output of the last layer of the CNN. Flattening is simply the

process of converting the three dimensional output into a one dimensional vector, since ANN
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require simple values as input. These values are then processed by the hidden layers, where

the activation function is also usually ReLU and fed to the output layer. The output produced

a probability vector and its size is dependant on the number of classes that were used to train

the network. The only detail that needs to be emphasized on is that the output layer does not

use the ReLU or sigmoid activation function, but the softmax activation function. Softmax is

mathematically defined as:

fi(x⃗) =
exi∑K
j=1 e

xj

where x⃗ is a vector of K real numbers. In essence the softmax function normalizes a vector

x withK real values into a probability distribution ofK probabilities fI(x⃗. Each probability

has value in range of (0, 1) and the sum of these probabilities is 1, a characteristic that is very

useful when classifying images.

4.4 Face detection with CNN

One the most innovative and groundbreaking deep learning face detection and alignment

algorithm was introduced in 2016 by Zhang et. al.[10]. It is known as MTCNN or Multi ­

task Cascaded Convolutional Neural Network. Many deep learning detection algorithms that

were developed after the popularization of CNN, like YOLO, SSD or R ­ CNN demonstrated

high accuracy in detecting faces and generally in classifying objects. However Zhang et. al.

reduced the multi ­ class detecting problem into a binary problem of face detection to achieve

even greater performance. This resulted in less complex and smaller in size filters, which led

to less computing requirements. Furthermore they emphasized on the correlation between

facial landmarks and bounding boxes and the need for an online hard sample mining meth­

ods, since it was usually done manually and hindered progress. In this section, the MTCNN

algorithm as well the methods it is utilizing will be explained thoroughly.

4.4.1 MTCNN architecture

MTCNN is consisted of three different convolutional networks and each one has a dis­

tinct task to complete. The networks are called P­net or Proposal Network, R­net or Refine

network and O­net or Output Network. P­net’s purpose is to rapidly propose bounding boxes
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around probable face areas feed forward them as input to R­net. R­net’s purpose to refine

these bounding boxes and construct new bounding boxes with higher accuracy and also pass

them as input to the next network, O­net. O­net will calculate the final bounding box and also

find five key facial features. One can make the connection of this cascaded system to Viola

­ Jones algorithm, where the first stages were meant to be quick to detect possible face areas

and the latter stages had the job to classify with higher accuracy of whether the probable ar­

eas were indeed a face or not. Following there is an explanation of each network and of the

methods of Image pyramid, Bounding box regression, Non Maximum Suppression ­ NMS

and Intersection over Union ­ IoU.

Figure 4.12: The three networks of MTCNN algorithm[10].

P ­ Net

The input of P­net is a series of different scale images that are created from an original

one. This method is called Image Pyramid and it is employed in order to detect images of

different sizes in the image. Each image is a copy of the original with a different size. As

seen in the figure 4.12 the input of P­net is a 12x12x3 Image. For each scaled image a sliding

window of these dimensionswill slide from top left to bottom right with a set valued stride and

feed them the P­net, which then tries to find a face area. The value of the stride is important,

since a high value could result into a big shift and thus to missing a face and a low value

could lead to increased computation times with no benefit. Each window is marked with a

confidence score and if the confidence score is good enough, the area is bounded by a box

and is a candidate face area. Then, NMS is conducted for each scaled image to delete high­

overlapping bounding boxes with other bounding boxes of a higher confidence score. More
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details about NMS and Bounding Box regression will be given later.

The remaining bounding boxes coordinates and sizes are then converted into the orig­

inal’s image size. This is usually done with the following process. Each copied image has

coordinates of (0,0) as top left and (1,1) as bottom right. By multiplying the bounding boxes’

coordinates of a copied image with the original image’s size, the right coordinates are ob­

tained. It is important to mention that each bounding box needs to be square and of this

reason all non square bounding boxes are squared by increasing the elongating the short side

of the parallelogram.

P ­ Net’s architecture

P­net is a Fully Convolutional Network ­ FCN[64], not to be confused with fully con­

nected networks. The main difference with the common CNN is that FCN do not have a

dense layer at the end of the network. It contains 3 Convolutional layers which use 3x3 fil­

ters and the activation function used after each Convolutional layer is the Parametric ReLU.

Max­Pooling is used only after the first Convolutional layer and the output is split into 3

categories. In the first category two neurons take part, one for classifying whether a region

is a face or not and the second for providing the confidence score. The second category is

the information about the bounding box’s top left and bottom right coordinates and its width

and height. Finally the third contains the x, y coordinates of the 5 facial landmarks. However

P­net and R­net do not really focus on the facial feature localization.

R ­ Net

The bounding boxes produced by P­net will be the input that is given to R­net. To perform

this, the bounding boxes must be resized according to the input needed in the R­net architec­

ture. It is to be noted, that it is possible for a bounding box to exceed the borders of the image.

To account for this, the missing part is usually filled with padding. R­net takes the resized

bounding boxes and similar to P­net tries to detect face areas with higher precision. To refine

the bounding boxes, it uses strict rules and discards the majority of the candidate face areas

and bounding boxes with low confidence score. Then it proceeds to convert the remaining

bounding boxes coordinates to the original image’s coordinates and performs NMS to further

decrease the candidate areas. R­net has a simple CNN architecture as seen in the figure 4.12,

which has already been explained.
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O ­ Net

Figure 4.13: An example using MTCNN system

[10].

O­net is also a simple CNN with in­

creased depth and complexity than the first

two, since in essence it is O­net that is re­

sponsible for the final output and for the

facial landmarks localization. In a similar

procedure, the bounding boxes produced

by R­net are scaled to the O­net’s required

input size and are used as input. Then O­

net with even higher accuracy and higher

facial feature preservation due to the 256

FCN, judges whether there is a face or not.

If a face is detected then through regression

and NMS, in a similar way to the previ­

ous networks, it produces the final bound­

ing box and facial landmarks coordinates.

Bounding Box Regression: This method

is used in order to calibrate the bounding boxes. In essence the systems makes a prediction

on where the bounding box should be instead of where it calculated it and computes a new

bounding box based on this prediction. In order to train[65][66] the system to make such

prediction a loss function dedicated only to the bounding boxes is inserted. This loss function

the authors chose is the euclidean loss function:

Lbox
i = ||yboxi − gboxi ||22 (4.2)

where yboxi are the top left and bottom right coordinates, the height and the width of the

predicted bounding box and gboxi and the nearest ground truth information. Ground truth in­

formation are the coordinates of the manually annotated ”right” result.

The exact same loss function and procedure is followed for the five facial landmarks’

coordinates.
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Intersection Over Union ­ IOU: Intersection Over Union is self explanatory. It is used to

calculate how much 2 regions, in this case 2 bounding boxes, overlap.

IoU =
Area of overlap

Area of Union
=

S1 ∩ S2

S1 ∪ S2

Non­Max Suppression ­ NMS: Non­Max Suppression is a technique used after each stage in

order to discard redundant, highly overlapping bounding boxes[67]. When IoU of 2 bounding

boxes is greater than a set threshold value, the bounding box with the lowest confidence score

will be discarded resulting in fewer bounding boxes without losing information.

Training and Training Data: As stated before, MTCNN has three different tasks to com­

plete. In order to train for the bounding box and face landmark regression the Euclidean dis­

tance loss function is used. For the face classification problem the cross­entropy loss function

is used and it is defined as follows:

Ldet
i = −(gdeti log(pi) + (1 − gdeti )(1 − log(pi)))

Where pi is the probability computed by the system of the image being an input and gdeti is

the ground truth and gdeti ∈ {0, 1}.

Each individual stage is focused in different tasks. For this reason, different types of

images are used samples and each task and stage is trained to differently. For example, when

a negative image is to be used for training, there is no reason to use it for the bounding box

or face landmark regression training. In this case, the Llandmark
i and Lbox

i are set to 0 and only

Ldet
i is computed. As a result, an overall loss function that takes into account all these factors

is required. The total loss function is defined:

Ltotal =
N∑
i

∑
j∈{det,box,landmark}

αj
iβ

j
iL

j
i (4.3)
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where αi is denoted the importance of the task for each stage, βi ∈ {0, 1} denoting the sample

type, Li is the corresponding Loss function to be used and N is the number of samples. For

P­net and R­net: adet = 1, abox = 0.5, alandmark = 0.5, since the main task is to find probable

faces and for O­net: adet = 1, abox = 0.5, alandmark = 1. The optimization algorithm used

is the Stochastic Gradient Descent.

The training samples used are collected from cropping parts of already labeled images

from different Datasets and are separated in four categories. In the first category there are the

negative images, where the IoU of the cropped image with the annotated ground­truth is less

than 0.3. The following two categories are the positive and part­faces and have IoU > 0.65,

0.4 < IoU < 0.65 respectively. The final category is the landmark faces, which are face

images with the five landmarks’ positions labeled and are used for facial landmark localiza­

tion task training. For bounding box regression training the positive and part­faces images

are used and for the face classification the positive and negative. The authors also utilized a

modified version of a method called Online Hard Sampling Mining. With this method, each

sample was firstly forward propagated through the system and had its loss calculated. The

30% of the samples with the lowest loss were then discarded, since it was thought that they

had little to offer in the training in comparison with 70% of the remaining hard samples.

P­net is trained with these 70% of the samples first. Then using the trained P­net, pre­

dictions are made for these samples. Following the hard samples of the generated samples

from P­net are used as training samples for R­net. Similarly O­net uses as training the hard

samples from both P­net and R­net. In [68] a slightly different approach of this method is

proposed to improve MTCNN’s efficiency, however without clear results.

Overall MTCNN is a robust, precise and extremely fast algorithm. Performance analysis

compared to other popular algorithms can be found in [10][69][70][71].





Chapter 5

Summary and the future of Face

detection and recognition

The current thesis presented and explained a number of face detection and recognition

algorithms, that used different approaches to achieve their purpose. To accomplish this, liter­

ature corresponding to each algorithm was reviewed, along with code from real applications.

The goal was to provide the reader a concise but detailed view of how each algorithm op­

erates and which technologies it utilizes, as well as how the face detection and recognition

field advanced through time.

Nonetheless, considering the extensive amount of algorithms, together with the different

versions of each algorithm, it is not plausible nor desirable to cover all of them. Certain

algorithms, that played a major role in the advancement of the field of face detection and

recognition were chosen and expanded upon. Furthermore, certain technologies like Neural

Networks that benefited to this advancement were also demonstrated to a basic degree.

A future expansion of this research could include some of the most recent variations of

deep learning algorithms, the new experimental technologies that are being employed, as

well as the new uses of such algorithms. Since the error rates are decreasing year by year and

the algorithms become more and more efficient, newer perspectives on different applications

become possible. An increasingly interesting application, that expands on the detection and

recognition of faces, is the recognition of the person’s emotions based on the structure of the

face in a present image [72][73]. This technology would further extend the efficiency of secu­

rity systems that use facial detection and would be great research material for psychologists

among other uses[74]. The most prominent new technology, that is to improve the current

53
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state is the detection using 3D space, instead of 2D images. There are still several challenges

to be confronted with 3D face recognition, however it shows that it could prove superior to

the 2D image analysis[75].

Face detection and recognition together with their applications, will with no doubt be a

major point of interest for many researchers in the future and will have a leading role in the

research of Computer Vision related problems. The future of many fields like robotics, psy­

chology, security systems and others is now closely related to the research and development

of better and faster detection and recognition algorithms.
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