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Abstract

The evolution of Machine Learning and the widespread dominance of its applications
in our everyday lives has led to the need for more sophisticated algorithms and
mathematical models for achieving optimal performance. However, boosting
performance comes with higher demands in terms of computational power, while at
the same time request processing of real-time applications becomes slower, as
complex Machine Learning models are deployed further away from data sources. To
overcome these undesired effects, along with the development of applications’
infrastructure, research has focused on the effective deployment of Machine Learning
applications spreading from Cloud to the Edge and loT devices. This leads in better
performance, with the least possible energy consumption, and therefore lower cost.

This diploma thesis focuses on the implementation of an algorithm that aims to
distribute the components of a Machine Learning application across the computing
continuum, to adapt effectively to the application’s needs. This way, energy intensive
processes are deployed in a computer cluster featuring the necessary computing
resources. At the same time, processes requiring low latency, but exhibit low cpu and
memory utilization are deployed at the Edge, closer to the end user. This achieves
better resource management, optimal performance, and overall better user

experience.
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MepiAnyn

2Tn onuepiv) €1oxf o1 €@apuoyég Mnxavikng Mdabnong aufdvovtal oAoéva Kal
TTEPICTOTEPO. AUTO 0BNYEI OTNV AVATITUEN AAYOPIBUWY KAl JaBNUATIKWY PJOVTEAWV YId
TNV KAAUTEPN AtTOd00N AUTWY TWV EQAPPOoYwWY. KaAuTepn atmdédoon OPwG, OnUaivel
MEYAAUTEPES ATTAITACEIS WG TTPOG TNV ETTECEPYQOTIKN 10XU TTOU XPEIGdovTal, aAAd Kal
OTOV XPOVO QVAUOVNG TNG ETTECEPYATiag airnudatwy. H dnuioupyia autwy Twv avaykwy,
o¢ ouvduaoud Me TNV avamTuén Ol1a@OpwV TEXVOAOYIWV Yia TNV UTTOOOMN TWwV
eQapuoywy, odNynoe oTnv avalntnaon yia TEXVIKEG TTOU KATAVEUOUV TIG AEITOUPYIES
AUTWYV TWV EQEAPHOYWY avAAoya HE TIG ATTAITAOEIG TOUG. AUTO £XEI WG ATTOTEAEOUQA, TNV
KaAUTEPN atrddoaon, Je TNV AlyoTepn duvaTr) KOTAVAAWON EVEPYEIAG, AP KAl JIKPOTEPO

KOOTOG.

2KOTTOG auTAG TNG OITTAWMOTIKAG €ival n uhotroinon evog aAyopibuou pe otdéxo TNV
KATOVOMI TWV KOPUATIWV MIag €@apuoyns Mnxavikng Maenong otnv KatdAAnAn
ouaoTolyia uttoAoyloTwy avaloya pe TIG ammaitioelg TeG. Mg autdv Tov TPOTTO, Ol
EVEPYEIOKA aTTaITNTIKEG dlEpyadiec Ba avatiBevral g€ CUOTOIXIEG UTTOAOYIOTWY TTOU
O10B£TOUV TOUG avayKaioug UTTOAOYIOTIKOUG TTOpouc. MapdAAnAa o1 digpyaacieg TTou
ATTAITOUV UIKPO XPOVO avapovAg, Kal AlyoTepoug TTOpoug Ba avaTiBevTal 0€ CUOKEUEG
TTOU BpioKovTal TTI0 KOVTA OToV TEAIKO XpAOoTn. Me autdv Tov TPOTTO ETTITUYXAVETAI

KaAUTEPN Blaxeipion Twv TTOPWV Kal BEATILOVETAI N EPTTEIPIA TOU XPHOTN TNG EQAPHOYNG.
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CHAPTER 1

CHAPTER 1: INTRODUCTION

1.1: Background

The evolution of Machine Learning in the last few years, is rapid. From the old days,
researchers were interested in having machines learn from data. They wanted to make
computer systems that can mimic human behavior. That is what we call nowadays
Artificial Intelligence. Out of the quest for Artificial Intelligence, a new subfield grew
rapidly, Machine Learning. This field enables computer systems to learn from past data
(historical, numbers, images etc.) or experiences without being explicitly programmed.
It uses algorithms and network models with the purpose to increase the performance
of computer systems and give accurate outputs. All these algorithms and models are
often used by different people (developers, researchers etc.) to create applications that
are going to be used by end users. We can give some examples of such applications.
First, we have facial recognition that allows social platforms to help users tag and share
photos between friends. Recommendation systems, with the help of machine learning,
suggest movies or series to users, based on their preference from past movies and
series selections. Finally, self-driving cars have dominated the field. Cars, powered by
machine learning, navigate without human intervention. Already today, some people

have bought self-driving cars and use them in their everyday life.

Another field that has seen great growth in recent years is Cloud Computing [1].
Cloud or fog computing was the first network infrastructure that offered on-demand
services through the internet. The most important ones are data storage and
computational power, but the list does not stop there. Cloud computing brought
revolution to the way we handle data, and the way businesses provide applications
and services to their customers. Cloud Customers do not own the physical
infrastructure, but they rent the usage from third party providers. There are a lot of
applications of cloud computing in today’s world. Some of these applications are using

the cloud for storage, like Gmail or Dropbox, others for networking like healthcare
I ——
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CHAPTER 1

services, and others just for virtual machines that are hosted in the cloud. The
popularity of cloud computing grows day by day due to numerous benefits and we are
going to see a lot more people integrating their applications to the cloud as the time

passes.

As we mentioned before, cloud computing services are increasing rapidly as we
discover new ways to use them. However, cloud computing users as they go deeper,
and use more of these services, will face limitations such as higher latency, network
congestion and lower bandwidth that will prevent technology from fulfilling business
requirements. Because of that, and because of the fast evolution of 0T technology,
and end devices, a new data center infrastructure rose. This new type of computing
was named Edge Computing [2]. The idea behind edge computing is distributed
computation and data storage across the entire network, instead of centralizing it, into
cloud. This aims to mitigate the latency and bottlenecks of an application and provides
better user experience. Today, the use cases of edge computing are too many. One
important example of edge computing use case is the Smart Grid. Sensors and loT
devices are connected with an edge infrastructure and provide better energy
consumption. Another important example is content delivery networks. You may have
seen them as CDNs which is their abbreviation. CDNs are caching content (e.g., music,
video stream, web pages) at the edge, which provides lower latency and flexibility.
These are only a few of the examples of edge computing that we meet every day, but

it helps us understand how important it is.

Separately, each of these topics make a profound impact in the world. However, many
times, they are combining their strengths to create some form of a computing

continuum on which disruptive machine learning applications can be built.
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1.2: Motivation

Machine learning applications, as the years go by, become more and more demanding
in terms of the processing power they consume. Many of these applications are
processing large amounts of data and performing heavy processes to achieve the
desired output. Also, as if the processing power requirements were not enough, some
of them require low latency, to provide better user experience. So, these two
requirements raise the question: Where should we deploy our machine learning
application? To understand how challenging the selection of an infrastructure, for such

applications, is, we will use an example of real-time application.

One application that combines heavy computations and the need of low latency is an
example of augmented reality application [3]. This real-time application explores the
points of interest (POIs) that a tourist is currently visiting. This application involves
heavy image processing that extracts features from captured images and a trained
network-model that matches features from an extensive object catalog. This is a
perfect example for our case because it is computation-intensive and latency-sensitive.
An application like that is demanding a lot of resources, something that a home
computer cannot provide. Also, to provide a quality experience to the end user, some
functionality needs to be close to the user. For the purpose of this Thesis, we are going

to analyze only the choices of cloud and edge infrastructure.

One idea is to deploy this application to the cloud. There, there is the illusion of infinite
resources, thanks to Horizontal Scaling. So, an operation like image processing will be
done relatively fast. However, while the cloud can provide vast computational
resources, accessing those resources may involve multiple hops through the network.
This will lead to an increase of latency in the processing of client requests. In an
application like that, this is a problem, because as we said we need an infrastructure
for a latency-sensitive application, where fast responses will be required. So, the cloud
is not the optimal solution. Another idea is to deploy the whole application to the edge.

1 —
3
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In edge computing [4], resources are scarce through the network and must be
managed very efficiently. Especially for mobile devices, where the battery is limited to
a certain amount. Here we have the advantage of fast response, as the application is
closer to the client. However, in this scenario we face another problem. The
computational resources are not enough for heavy processes. That will slow down the
image processing of such an application, and might not even work, if the resources are

not enough.

The ideal environment for such an application, as we might think, will be the cloud, for
heavy image processing and the edge for the latency-sensitive part of the application.
We could break this into two components and deploy each component above the right
infrastructure. With this logic, the processing part will be fast and optimal, as the

response part, so the user can enjoy an improved quality of experience.

Like the example above, every machine learning application can be broken down into
7 processing steps, from inception to practical application. By name these steps are:
Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper-
parameter Tuning, Prediction. Each of these steps is demanding different amounts

of resources, as well as latency levels.

That was the motivation behind this thesis. To utilize tools and find techniques that
distribute machine learning application’s components based on the resource and
latency demands of each component, to achieve better user experience. So, we
created a scheduling algorithm that decides for us, where each part of the machine
learning application will be scheduled either at a cloud environment or at an edge

environment.
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1.3: Content Overview

This Thesis is organized into five chapters, each one of those includes smaller sections

and possibly subsections.

Chapter 1: makes an introduction to the machine learning world and how it is
connected to the cloud and edge environments. Also, reference is made to the
motivation of this thesis that led to this specific implementation.

Chapter 2: reference is made to the technical background and tools that the
reader should be aware of, to completely understand the work behind the
research.

Chapter 3: is an important section of the document. First, it describes the
infrastructure that was used for the research steps. Also, it analyzes the use of
various tools, as well as how they interact between them, to reach the desired
implementation. Finally, it describes in detail the methodology which was used
to create our algorithm.

Chapter 4: results and metrics are presented from the validation of the algorithm
and the execution of a machine learning application, under the supervision of
this specific algorithm.

Chapter 5: presents the conclusions that emerged throughout the research, as
well as what emerged from experiments. Also, are mentioned some future
additions that can be made to the algorithm, in order the algorithm to become

more global to the scheduling of machine learning application.



CHAPTER 2

CHAPTER 2: TECHNICHAL BACKGROUND & TOOLS

2.1: Introduction

This chapter refers to the tools and the technical background that the reader of this
thesis must have to understand it. It describes and analyzes some technologies that

have been used to achieve the solution with the implementation of the algorithm.
2.2: OS-Level Virtualization

2.2.1: Overview

Operating system? level virtualization is a technology paradigm in which the kernel
allows multiple isolated user-space instances to co-exist. These instances, also known
as Containers, look like real computers from the point of view of programs and
processes that run inside them. But this is an illusion as we will see in more detail
below. Each Container shares the host’'s OS. This means that it uses the OS’s normal
system call interface and does not need to be subjected to emulation or be run in an
intermediate virtual machine. This makes Containers very lightweight, since they

require less overhead to be launched, in comparison to full virtualization technologies.

Containers [5] offer a logical packaging mechanism in which applications can be
abstracted from the environment in which they run. This decoupling allows container-
based applications to be deployed easily and consistently, regardless of the target

environment.

1 Oﬁerating sttem: oS
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2.2.1: Building blocks

As mentioned earlier, Containers are essentially just a way of partitioning up a system

into a few sandboxed execution environments with their own resource limits, while all

these environments share a single operating system. That is why we talked about an

illusion. But how this new illusion-virtualization is done. The base of this new

technology is three fundamental kernel features: namespaces, cgroups and union

filesystem.

Namespace [6]: The Linux Namespaces are a kernel mechanism that, at a high
level, limits the visibility that a group of processes has on the rest of the system.
This mechanism does not restrict access to resources like CPU or disks. it
achieves isolation by exposing a specific subset of them to processes that run
inside the namespace. For example, you can limit visibility to certain process
trees, network interfaces, user IDs or filesystem mount.

Cgroups [6]: Cgroups, which stands for control groups, is another Linux Kernel
feature that limits and measures the total resources (CPU, memory, disk 1/O,
network, etc.) used by a group of processes running on a system. With cgroups,
administrators can set limits to a set of processes as to how many resources
they can consume.

Union filesystem [7]: Unification filesystem is a service of Linux that allows files
and directories of separate file systems, known as branches, to be transparently
overlaid, forming a single coherent file system. Contents of directories which
have the same path within the merged branches will be seen together in a single

merged directory, within the new, virtual filesystem.
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2.3: Docker

2.3.1: Overview

Docker [8] is a set of platforms as a service (PaaS)? products that use OS-level
virtualization to deliver software in packages. Docker uses the building blocks
mentioned above to create an interface on top, to make it easier to manipulate and
parameterize the lifetime of Containers. Docker can be installed in any operating
system. We have already talked a little about these containers but let us give a more

in-depth description of them and the difference between them and virtual machines.

2.3.2: Container

A container is a standard unit of software that packages up code and all its
dependencies so the application can run quickly and reliably from one computing
environment to another. Users can use this, without the fear of what environment exists
underneath. This gives flexibility and portability to their application. This is very
important, because it lets developers focus more on the development side of the
project and not how to set up the application to different environments.

Emphasis should be given to the difference between Container and Virtual machine.
Virtual Computers need an operating system to work, which makes them very slow to
start and large in capacity. Also, they contain packages that many applications do not
use, which add more burden to the system. Finally, they create, many times, problems
in their portability from system to system and it is difficult to expand. The different

architectures of the two components are shown in the pictures?® below:

2 PaaS: Provide cloud services to certain software.

3 httgs://www.docker.com/resources/what—container
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Containerized Applications

Virtual Machine

Virtual Machine

Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Host Operating System

Infrastructure

Figure 1: Container Architecture

Infrastructure

Figure 2: Virtual Machine Architecture

2.3.3: Images

Docker containers are based on Docker images. Docker Image is just a series of
instructions that a docker container must follow. It is a binary that includes all of the
requirements for running a single Docker container, as well as metadata describing its
needs and capabilities. It has information on both the structure of the filesystem that
will be used, as well as which processes will be started inside the Container. The Image
is an immutable file which essentially is a snapshot of the Container. You can think of
it as a packaging technology. Docker containers only have access to resources defined
in the image unless you give the container additional access when creating it.

A Docker image is built up from a series of layers. Each layer represents an instruction
in the image’s Dockerfile. Let us see an example to understand more about this

layering. Consider the following Dockerfile:

# syntax=docker/dockerfile:1
FROM ubuntu:18.04

COPY. /app

RUN make /app

CMD python /app/app.py




CHAPTER 2

This Dockerfile contains four commands. Each of these commands creates a layer.
From top to bottom it has the FROM statement. This statement starts out by creating
a layer from the ubuntu:18.04 Image. This is a prebuilt image that exists in a public
registry called DockerHub and we pull it from there. After that it has the COPY
command which adds some files from the Docker client’s current directory. The RUN
command builds your application using the make command. Finally, it has the last layer
that specifies what command to run within the container. Each layer is only a set of
differences from the layer before it. The layers are stacked on top of each other. These
layers are read-only as shown in the image below. When a user creates a new
container, he/she adds a new writable layer on top of the underlying layers. This layer
is often called the “container layer”. All changes made to the running container, such
as writing new files, modifying existing files, and deleting files, are written to this thin
writable container layer. The image* below shows a container based on the Ubuntu
15.04 image.

E Thin R/W layer i «—— Container layer

91e54dfb1179

d74508fb6632 1.895 KB

> Image layers (R/O)
c22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

b

ubuntu:15.04

Container
(based on ubuntu:15.04 image)

Figure 3: Docker Image Layers

4 httgs://docs.docker.com/storage/storagedriver/
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After the analysis of docker images, the next thing that comes to our minds is, where
those images can be stored for fast access and reusability. Docker registries come to

the rescue. The next section describes how they accomplish that.

2.3.4: Registries

Docker is using a distributed system for storing Docker images. This storage is called
Docker registry and contains named Docker Images. Each one of these images might
have multiple different versions, identified by their tags. A Docker registry is organized
into Docker repositories , where a repository holds all the versions of a specific image.
Users can pull images from there. The registry allows Docker users to pull images
locally, as well as push new images to the registry. In this thesis the DockerHub was
used , for storing the needed images and pulling from there. DockerHub is a just cloud-

based public registry.
2.4:. Kubernetes

2.4.1: Overview

Kubernetes [9], or else K8s, is an open-source project that helps at the organization of
containers running inside nodes that belong to the same cluster. It was originally
created by Google, with version 1.0 launched in 2015 and is now maintained by the
Cloud Native Computing Foundation (CNCF)®. It has a large, rapidly growing
ecosystem. This tool has many capabilities that every user can learn and use very
easily. Each user can define which service wants to execute, at how many nodes, with
how much resource power and other parameters. In general, K8s orchestrates
computing, networking, and storage infrastructure on behalf of users’ containerized

workloads.

5 Cloud Native ComEuting Foundation SCNCFz
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2.4.2: Architecture

Kubernetes follows a client-server architecture. It consists of a master node and a set
of worker machines, called nodes that run containerized applications. It is possible to
have a multi-master setup, but by default there is a single master node which is the
“brain” that controls the cluster.

Master Nodes provide the cluster’s control plane. They make decisions about the
cluster, and they detect and respond to cluster events. All these decisions are made
with the help of some components called Control plane components. These can be run
on any machine in the cluster. However, for simplicity, set up scripts typically start all
control plane components on the same machine, and do not run user containers on

this machine.

Figure 4: Kubernetes Architecture®

6 Kubernetes Architecture Image

12


https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-architecture/

CHAPTER 2

Master Node Components

Below are the main components found on the master node:

kube-apiserver: As the name suggests is the component that exposes the
Kubernetes API. This is the front-end for the Kubernetes control-plane. Kube-
apiserver is designed to scale horizontally that is, it scales by deploying more
instances. You can have many instances of kube-apiserver to balance the traffic
between those instances.

Etcd: Etcd is a simple, distributed key-value store, used as Kubernetes backing
store for cluster data (such as number of pods, their desired state, namespace,
etc.). Periodically it is important to back up those data, in case of disaster
scenarios, such as losing all the control plane nodes. So, we can recover the
Kubernetes cluster.

Kube-scheduler: Kube-scheduler watches for newly created pods with no
assigned node and selects the best fit node for them, based on resource
utilization and other parameters like hardware/software/policy constraints,
affinity and anti-affinity specifications, data locality, inter-workload interference
and deadlines. The kube-scheduler uses an algorithm for this decision. More

about this algorithm at Chapter 3: Implementation.

Kube-controller-manager: Kube-controller-manager is a control plane
component that runs and manages controller processes. Controllers are control
loops that watch the state of your cluster, then make or request changes where
needed. Each controller tries to move the current cluster state closer to the
desired state. Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single
process.

Cloud-controller-manager: This control-plane component does not appear in
the image below, but it is very important, especially for the production
environments where cloud providers are present. Cloud-controller-manager

embeds cloud-specific control-logic. The cloud controller manager lets you link
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your cluster into your cloud provider's APl and separates out the components
that interact with that cloud platform from components that only interact with

your cluster.

Worker Node Components

Below are the main components found on every node:

Kubelet: Kubelet is an agent that runs on each node in the cluster. It makes
sure that containers are running in a pod. Kubelet is responsible only for
containers that were created from Kubernetes. Also, it is the component that
starts the pod after the selection of the feasible node from the kube-scheduler.
Kube-proxy: Kube-proxy is a network proxy that runs on each node in your
cluster, implementing part of the Kubernetes network service. kube-proxy
maintains network rules on nodes. These network rules allow network
communication to your Pods from network sessions inside or outside of your
cluster.

Container Runtime: The container runtime is the software that is responsible
for running containers. Kubernetes supports several container runtimes:
Docker, containerd’, CRI-O8, and any implementation of the Kubernetes CRI

(Container Runtime Interface).

2.4.3: Concepts

Kubernetes constantly monitors itself and tries to achieve the desired state of the

application. This desired state is presented in a YAML file with different types of

abstractions. So, it is important to understand these abstractions that are used to

represent the state of the system-application such as pods, services, deployments,

and namespaces.

7 https://containerd.io/docs/

8 httgs://cri-o.io/#what-is-cri-o
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Pods: Pods are the smallest deployable units of computing that you can create
and manage in Kubernetes. A pod is a group of one or more containers, with
shared storage and network resources, and a specification for how to run the
containers.
Services: Services is just an abstract way to expose an application running on
a set of Pods as a network service. The question here is “Why don't we use the
pods itself?”. Kubernetes Pods are created and destroyed to match the desired
state of your cluster. So, they cannot have permanent IP. That is why we use
services that give as a permanent IP, that we can use to access our functionality
in our application. We have four types of Services in Kubernetes:
o ClusterlP (default): Exposes a service that is accessible only from
inside the Cluster.
o NodePort: Exposes a service with each Node's IP with a static Port. This
type of service is accessible from outside the cluster.
o LoadBalancer: It uses the cloud’s provider load balancer to expose the
service. This type of service is accessible externally.
o ExternalName: It maps the Service to the contents of a predetermined
externalName field by returning a value for the CNAME record.
Deployments: Deployment is a way to describe the desired state of a pod or a
replica set. Deployment Controller changes the state of the environment by
deleting or creating replicas, until it achieves the desired state.
Namespace: Namespace is just a virtual environment backed by the same

physical cluster.

2.4.4: Storage

2.4.4.1: Volume

On-disk, files in a container are ephemeral, which presents some problems for non-

trivial applications when running in containers. First if a container crashes the user will
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lose all the data inside. Kubelet will restart the container with a clean state. Second it
creates some problems when we want to share files between the containers that run

in the same Pod. Kubernetes face these problems with the help of volumes.

Kubernetes offers different types of volumes. A pod can use any number of volumes
simultaneously. It can use both persistent and non-persistent volumes. Non-persistent
volumes are ephemeral which means that Kubernetes is going to delete them in case
a pod ceases to exist. However, Kubernetes does not destroy persistent volumes. To
use a volume, specify the volumes to provide for the Pod in .spec.volumes and declare

where to mount those volumes into containers in .spec.containers[*].volumeMounts.

2.4.4.2: Persistent Volume

Kubernetes wanted to abstract the details of how storage is provided from how it is
consumed. That is why K8s introduced two new API resources: Persistent Volumes
and Persistent Volume Claims. Persistent Volume (PV) is just another piece of
resource in the cluster, like a node is a cluster resource. You can provision this type of
storage as an administrator or dynamically with the help of storage classes. The
difference between PVs and Volumes is that PVs have a lifecycle independent of any
individual Pod that uses the PV. So even if the pod crashes, the linked PV will remain

untouched.

Persistent Volume Claims (PVC) is a request for storage by a user. It is like a Pod.
Pods consume node resources and PVCs consume PV resources. Also, a pod can
request a specific level of resources (CPU and Memory) like a Claim can request
specific size and access modes (e.g., they can be mounted ReadWriteOnce,
ReadOnlyMany or ReadWriteMany). Each type of storage can accept specific access
modes.

e ReadWriteOnce: The volume can be mounted as read-write by a single node.

e ReadOnlyMany: The volume can be mounted read-only by many nodes.

1 —
16



CHAPTER 2

e ReadWriteMany: The volume can be mounted as read-write by many nodes.

2.4.4.3: Storage Class

Storage class is the dynamic way to provision a Persistent Volume. A cluster
administrator can define as many storage classes as needed inside the cluster. This
resource is provided as an Object from the storage.k8s.io API group. Each one of these
storage classes has a provisioner (AWSElasticBlockStore, NFS?®, Local etc.) that
decides what volume plugin is going to be used for the provisioning of a persistent
volume. Also, we can provide some parameters for the specific provisioner. Finally, we
can specify a reclaim policy which is going to decide what will happen to the PV after
it has been released from its claim (PVC).

2.5: Machine Learning

2.5.1: Overview

Machine learning is one of the most important fields in modern computer science. It is
a vast field with many applications in our everyday life (medicine, e-commerce, banking
etc.) which grows everyday more and more. Although machine learning is part of
computer science, it differs from traditional computational approaches where
algorithms are built to calculate things or solve problems. In machine learning,
algorithms are used to train the computer, based on some data inputs, and produce
models that will be used for decision making processes. But how does it work under
the hood? Each Machine Learning application can be broken down in a sequence of

steps [10] that describe the application from inception to practical application.

9 NFS: Network File sttem
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2.5.2: Steps of machine learning application

Step 1: Data Collection

This is by far the most important step for developing the machine learning model. A
user needs to gather relevant data that will help to create the most appropriate model
for his/her purpose. Mistakes such as choosing the incorrect features may lead to an
ineffective model. That is why it is crucial that the necessary considerations are made
when gathering data as the errors made in this stage would only increase as we

progress to later stages.

Step 2: Preparing Data

Once the user has gathered the data, he/she needs to prepare them. The user needs
to make sure that his/her data are not biased, and they are random. This is because
the users do not want the order to affect the model’s decision. Also, the user needs to
make sure that the data are not skewed over a specific feature .This skewness may
give correct results for a particular feature but not for the rest of them. Finally, he/she
needs to break the data into two parts. The training data that are going to be used for
the model training, and the test data for evaluation purposes. Someone can
understand that well-prepared data will improve the model’s efficiency and accuracy at

the prediction step.

Step 3: Choosing a Model

This step is also important for the model, because here it will be decided what logic the
model will use to train itself. There are different and various models, developed by data
scientists and researchers, that have been created for various purposes. Some of them
are well suited for image data, others for numerical data, others for sequences (text
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etc.) and other text-based data. Someone needs to make sure that the right choice is

made.

Step 4: Training

The core of a machine learning application is the training step. Here the step uses the
training data from the Data preparation step, to train the model to differentiate between
the features. The process of training is iterative. A user trains the model repeatedly
with different input from the data, until the model reaches the desired level of accuracy.

So, anyone can understand that this is a long process with a lot of experimentation.

Step 5: Evaluation

Once the training is complete, it is time to see if the model is any good, with Evaluation.
In this step the user uses the test data that has never been used for training. This
metric will show how the model might perform in real world situations, where data are
not known to the model. If the results of the evaluation step are not satisfactory, he/she
needs to revisit the prior steps, and find the root that causes this underperformance of
the model.

Step 6: Hyperparameter Tuning

At the Hyperparameter Tuning step someone can change different parameters to
improve the model accuracy. Two important parameters are the number of training
steps and learning rate. The first one is how many times we run through the training
dataset during training. This may lead to higher accuracy. The second one is important
for the size of each step at each iteration. How much a user shifts his/her step, based
on the information from the previous training step. There are a lot more parameters
that we can use for this step but those two are the most important ones. All these

parameters play an important role in how accurate the model can be.

1 —
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Step 7: Prediction

The final step of a machine learning application is the prediction. This is the step where
the user uses the model for real world and practical applications. The model should be
ready to answer questions, without human interference. This is also the challenge for
machine learning applications, to be able to outperform or at least match human

judgment in different scenarios.

These seven steps describe a complete real world machine learning process. This is
a highly collaborative process that demands efficient communication between
engineers that are working on each step. Below we will describe a tool that can break
these steps in different components and how it connects these components for an

efficient workflow.

2.6: Kubeflow

2.6.1: Overview

Kubeflow [11] is a free and open-source project designed to orchestrate complicated
Machine Learning workflows running on Kubernetes. Kubeflow was first released in
2017, built by developers from Google, Cisco, IBM, Red Hat and more that continue to
contribute to Kubeflow project. Since then, it has expanded into a multi-architecture,
multi-cloud framework for running huge machine learning pipelines. But what exactly

is Kubeflow?

Kubeflow is just a platform for data scientists who want to build and experiment with
machine learning pipelines. Also, Kubeflow can help operational teams and machine
learning engineers to deploy their machine learning workflow to different environments

for development, testing and production-level serving. We can think of it as a machine
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learning toolkit for Kubernetes that simplifies the deployment process of machine

learning applications on K8s.

2.6.2: Architecture

Kubeflow aims to provide a cohesive experience regarding creation, management, and
deployment of machine learning applications on Kubernetes. To achieve this, it
provides a wide set of machine learning tools that are deployed on top of Kubernetes.
We know that machine learning workflow consists of several stages, that is why we
have different Kubeflow tools for each of these stages. Some of these tools are Jupyter

Notebooks, TensorBoard, kfServing, Pipelines and more.

Reference must be made to the Central Dashboard that Kubeflow Deployment
provides us. This Kubeflow Ul provides quick access to Kubeflow components that are
deployed in our cluster. Except for the shortcuts, this component displays a list of
recent pipelines, notebook servers, and metrics, that gives us an overview of our jobs,

and our cluster.

Below we briefly describe the Ul components of the central dashboard - Kubeflow UI.
« Home: Kubeflow Dashboard for navigation between components.
e Pipelines: Kubeflow Pipelines dashboard (Upload, Deletion, management of
pipelines).
« Notebook Servers: Dashboard for creation and delete of Kubeflow Servers.
o Katib: Tool for hyperparameter Tuning.
o Artifact Store: Tool for tracking artifact metadata.
« Manage Contributors: Share user access across namespaces.
e GitHub: Open-source project repository
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4 Upload a pipeline Getting Started with Kubeflow
running on Kubeflow
4 View all pipeline runs MiniKF
ipelines Recent Pipelines A fast and easy way to deploy Kubeflow (4
locally
4 Create a new Notebook server .
tebook Server o [Sample] Basic - Exit Handler Microkas for Kubeflow -
+ View Katib Studies TR
Katit of Basic - Conditi i inikube for Kubefl
Created 22/12/2019, 06:50:1 Quickly get Kubeflow running locally Z
4 View Metadata Artifacts
Artifact Store o [Sample] Basic - Parallel execution Kubeflow on GCP
Created 22 2019, 06:50:1¢€ Running Kubeflow on Kubernetes Engine and Z
Google Cloud Platform
Y ] Basic - 2 :
. ey : ENAE Kubeflow on AWS

Created 22/12/2019, 06:50:1¢
Running Kubeflow on Elastic Container @
Service and Ama Web Services

.1: [Sample] ML - XGBoost - Training with ...
Created 22 )19, 06:50:14

Requirements for Kubeflow
-

Figure 5: Kubeflow Central Dashboard

2.6.3: Notebook Servers

One of the most important components in Kubeflow is Notebook Servers. Enterprise
environments have benefited a lot from the integration of Jupyter notebooks in the
Kubeflow. First, it is much easier to deploy a Jupyter notebook directly into our cluster,
rather than locally on our workstations. It is much faster and simpler. Each admin can
provide a standard notebook image for each developer in their organization. After that
with some credentials each user will have access to different notebooks. Overall,
Kubeflow - hosted notebooks are better integrated with other components while

providing extensibility for notebook images.
Below we set up an example Notebook within our cluster.
When we first login, we see the home page of the central dashboard. In the left-hand

panel we select the Notebook Servers choice to access the Jupyter Notebook
services that are deployed in the Kubeflow.
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Before we select the NEW SERVER choice, we must select the namespace that
corresponds to our Kubeflow Profile. For this example, we created a profile called:

kubeflow-nickangelopoulos as we can see from the image below.

= {7 Kubeflow (B kubeflow-nickangelopoulos ~

e

anonymous
Notebook Servers + NEW SERVER

kubeflow-nickangelopoulos

Figure 6: Notebook Server Ul

After that select, the NEW SERVER button on the Notebook Server page to access the
configuration page where we can specify the details for our new Notebook Server.

& Name
Specify the name of the Notebook Server and the Namespace it will belong to.
Name Namespace
example-notebook kubeflow-nickangelopoulos
& Image

A starter Jupyter Docker Image with a baseline deployment and typical ML packages.

[J Custom Image

Image

ger.io/kubeflow-images-public/tensorflow-2.1.0-notebook-cpu:1.0.0 h

i CPU/RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5).

CPU Memory
{q.s 1.0Gi

=1 Workspace Volume

Configure the Volume to be mounted as your personal Workspace.

[] Don't use Persistent Storage for User's home

Type Name Size Mode Mount Paint

New workspace-example-noteb 10Gi ReadWriteOnce e /home/jovyan

Figure 7: Jupyter Notebook Configuration Page
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Here we can specify some details for our Notebook Server:
« Name: Enter the name of our choice.
« Namespace: Kubeflow automatically updates the value in the namespace field
to be the same as the namespace that we selected in a previous step.
« Image: We specify the docker image of our choice, for the baseline deployment
of our notebook server. We have two choices:

o Custom Image: We must specify a custom image in the form of
registry/image: tag.

o Standard Image: Kubeflow provides us with a list of available images,
that include typical machine learning packages that we can use within
our Jupyter notebooks. For this example, we selected one from the
standard Images.

o Resources: One of the most important details we can specify are the
resources of the Jupyter Notebook. How much CPU or MEMORY this
Notebook can utilize?

o Workspace: Finally, we can specify a workspace volume to hold our
work inside the Jupyter Notebook. This type of workspace is persistent,
which ensures that you can retain data even if you destroy the notebook.

These are the necessary details we must specify in this configuration page. This page
provides us also, with some optional choices, that we are not going to analyze here.
After that we press the Launch button and wait until the Notebook is deployed like the

image below.

$ kubeflow-nickangelopoul... ~

Notebook Servers + NEW SERVER
Status  Name Age Image CPU Memory Volumes

o example-notebook just now tensorflow-2.1.0-notebook-cpu:1.0.0 0.5 1.0Gi H CONNECT i

Figure 8: Deployed Notebook Server
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2.6.4: Kubeflow Pipelines

In general, in programming, a pipeline is a set of data processing components,
connected in a series. Each component has some outputs that are the inputs of another
element. In Kubeflow we have the Kubeflow Pipeline which is a description of a
Machine Learning workflow. This component is the most important component in
Kubeflow that helps Machine Learning engineers and operations systems to describe
their Machine Learning workflows as a simple graph. From a technical perspective
when we run a machine learning pipeline, the system launches one or more
Kubernetes Pods, corresponding to the steps of our workflow.

Below we represent a simple example of a pipeline. The example pipeline is one of the
Kubeflow’s examples called [Tutorial] Data passing in a python component. First,

we click the name of the sample on the Pipeline Ul.

= {7 Kubeflow @ kubeflow-nickangelopoulos v

G Pipelines Pipelines + Upload pipeline  Refresh
O Pipeline name Description Uploaded on ¥
> xecution: a » [Tutorial] DSL - Control structures I 21 2:1
a » [Tutorial] Data passing in python com 1 52:17 PM
[+ ] ch ao» [Demo) TFX - Taxi Tip Prediction Mod...  sou hat 1 2:16
a » [Demo] XGBoost - Training with Conf. ! E 21 1 '
B Rows 0
(9]

Figure 9: Pipeline Ul

After that we see the pipeline in the form of a graph, where each component connects
with other components with arrows. There we see that we have some choices for our
pipeline.
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«§  Pipelines

Create run: Create a sample run for our pipeline.

Upload Version: Upload a new version of a pipeline, where we could have
made some modifications for this specific pipeline.

Create experiment: An experiment where we can run a lot of run samples.

Delete: Remove this pipeline from our workstation.

{7 Kubeflow @ kubeflow-nickangelopoulos v

< [Tutorial] Data passing in python components ([Tutorial] Data passing in pytho.

Graph YAML

tepeat-ine splitdextines wiite-numbers

l 7 T 0™

printtext print-text-2 print-text-3 printtext-4 sum-numbers

Summary Hide

Figure 10: Machine Learning Pipeline in the form of a graph

After the end of the experiment, we click the name of the run from the experiment's

dashboard. This leads us into a graph dashboard, where we can explore the graph and

other aspects of our run, by clicking on the components.
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= % Kibeflow (B kubeflownckangelopoulos =

< © Runof [Tutorial] Data passing in python components (eéa21)

Figure 11: Graph after the end of the experiment

After we have seen this example, we can understand that Kubeflow pipelines want to
create an environment where the machine learning development and management will
be simpler and easier. To achieve this, they provide this end-to-end orchestration

system which is easy to understand and use with the help of Uls.

2.6.5: Software Define Kit

If we want to define SDK, we could say that it is a collection of software development
tools in one installable package. Kubeflow provides us with an SDK that consists of
python packages that we can use to specify and run our Machine Learning workflows.
These tools help us to convert our python machine learning application into a YAML
file that the pipeline interface will understand. Also, some of these packages help us
use already existing YAML, pipeline components from other developers. Below we will
name and give a definition for some of these packages.

Packages
o Kkfp.compiler: Consists of classes and methods that will be used to compile

pipeline DSL into a workflow YAML.
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o kfp.components: Consists of classes and methods that will be used to interact

with pipeline components.

o Kkfp.dsl: contains the domain-specific language (DSL) that you can use to define
and interact with pipelines and components.

« kfp.client: Contains Python libraries that every user can use to interact with the
Kubeflow Pipelines API.

2.7: Metrics & Display

Monitoring your jobs that run inside a cluster is very important. A user can understand
which node or specific job consumes more resources, and after that the user can
improve the performance or optimize the deployment, based on the information. There
are many tools on the internet that can scrape data from a running cluster. The cluster

at this Thesis uses Prometheus for scraping the metrics and Grafana to display them.

2.7.1: Prometheus

Prometheus [12] is the de facto standard metrics solution in the cloud . It is an open-
source project that provides a monitoring and alerting toolkit based on a time-series
data model. Since its inception in 2012, many companies and organizations have
added Prometheus in their stack. Also, like Kubernetes, that we analyzed before,
Prometheus joined Cloud Native Computing Foundation in 2016 which is a vendor

home for fast-growing open-source projects.

Prometheus collects data from different services and stores them inside his server with
a specific format. Metric name and a millisecond-precision time stamp. This storage
system allows Prometheus to query metrics fast and efficiently. Unlike other
monitoring tools which communicate with an agent deployed on the service’'s host
machine, Prometheus uses exporters to receive the metrics. Also, it provides an
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interface that a user can use to query metrics from the server. This interface is
presented with an image below:

Figure 12: Prometheus Ul

2.7.2: Grafana

Grafana [13] is a powerful tool for displaying time-series data. It is the platform that
you need when you want to visualize and analyze the metrics. Grafana query the
metrics from the Prometheus server and display them to the dashboard. Also, it comes
with the ability to upload existing dashboards with unique ids based on your needs.

Below we can see an example of the dashboard that this system uses.

Figure 13: Grafana Dashboard
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CHAPTER 3: IMPLEMENTATION

3.1: Introduction

In this chapter, we are going to cover all the steps that we followed, to achieve the
implementation of this algorithm. More specifically, we divided our implementation in
three stages. In the first stage, we talk about the support infrastructure, on which all
the tools were installed and analyze each of these tools. In the second stage,
we analyze the machine learning application that was used for the whole research.
Finally, we are describing the process, and the development of the algorithm, from

Kubernetes Scheduler to our implementation.
3.2: Stage 1: Setup Infrastructure

3.2.1: NITOS Testbed

For our implementation we used 3 nodes, from the NITOS testbed [14]. The NITOS
Testbed consists of 2 wireless testbeds, one indoor and one outdoor, for
experimentation with heterogeneous technologies. It was conceived and developed
from NITLab (Network implementation Testbed Laboratory). The indoor testbed
consists of high-processing-powered and cutting-edge nodes and is located at NITLab
building.The outdoor testbed is located at the exterior of University of Thessaly (UTH)
campus building. It features WIMAX, Wi-Fi, and LTE support. Both testbeds are a
powerful tool that enables the experimentation and the implementation of different

algorithms and protocols, in a large-scale environment.
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Figure 14: NITOS Architecture
3.2.2: Tools & Versions
3.2.2.1: Kubernetes

The cloud consists of many computers, who must be connected with some kind of
networking, in order to utilize their resources like a group and not as single entities.
Kubernetes is the best tool for this job. It can create a group of computers, called
clusters, so that users can deploy their applications in the form of containers. So, on
top of our three nodes infrastructure, we installed Kubernetes. Specifically, we
installed the version 1.14.10 because this version was compatible with the Kubeflow
version 1.0 that we installed above the Kubernetes cluster.

After the installation process we had to find a way to create a viable Kubernetes cluster.
For this purpose, we used the Kubeadm [15] tool. This is a great tool, for an automatic
way of setting up a cluster for testing and experimentation purposes. Below we display
the commands that we should run to start our Kubernetes cluster.
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$ kubeadm init --apiserver-advertise-address=10.64.X.X --pod-network=192.168.0.0/16

With the above command we initialize the control plane node, which is the master node
of our cluster. The first argument specifies the network interface that will advertise the
API server of the control plane. This argument is optional, which means that if we do
not define it, it is going to be the default gateway of the node. The second argument,
which is also optional, specifies the range of IPs for the pods that is going to be
created.

Now it is time for kubeadm to run some pre-flight tests, to ensure that the computer is
ready to host a Kubernetes cluster. These tests will expose warnings and exits on
errors. After these tests, the command will automatically create the necessary cluster
resources that a minimum viable Kubernetes cluster should have, to run smoothly.
These components are: kube-scheduler, kube-controller-manager, kube-
apiserver, etcd for the control plane and kubelet, kube-proxy and container runtime
for all nodes. Below we display the results from our terminal.

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $SHOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 10.64.93.90:6443 --token 6uaumt.przrqldf307zh9q0 \ --discovery-token-ca-cert-
hash sha256:ce044c74233831bf9e779edf798e373aa88217e7df90849fd73ed6c0a0b87f5d

We can easily understand that the control-plane has been initialized successfully with
the necessary components. Next, we must create the ./kube directory and copy the

configuration file from the master node into our machine. This will enable us to send
I ——
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requests to our cluster as regular users through the API Server. After the initialization
of the control plane, it is time to add some workers inside our cluster. Kubeadm
provides us with the join. This simple command lets us add a new worker node, inside
our cluster. The user is now ready to check the status of the cluster with the command
below. This command will list the nodes in our running cluster and provide us
with some information about them, like the duration that the node is active, the status,

the role of the node and the version of Kubernetes.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION
node081 NotReady master 18m v1.14.10
node082 NotReady <none> 2m42s v1.14.10
node083 NotReady <none> 114s v1.14.10

From the above list of nodes , we observe the Not Ready status, at the status column.
This is because we have not configured our nodes with a network policy, and they will
not be able to communicate with each other. So, for network configuration, we choose
the Calico Network. This is a container network solution for Kubernetes clusters. To
deploy this network, we must create the calico.yaml , which we took from the official

calico website1©.

$ kubectl create -f https://docs.projectcalico.org/v3.14/manifests/calico.yaml

After the deployment of the Calico Network, we can check the status of Kubernetes
cluster, with the same kubectl get nodes command and see that all the nodes are
ready now to host some pods, except of course, the master node. Finally, we can check
the running pods inside our cluster with the command below. This command informs
us about the health of our pod, the namespace that is deployed, how many times it

restarted before starting to run, and the age of the pod.

10 httgs://www.%roiectcalico.org/
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$ kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-kube-controllers-865795499c-6gqch 1/1 Running 0 18m
kube-system calico-node-7fzvg 1/1 Running 0 18m
kube-system calico-node-sltwl 1/1 Running 0 18m
kube-system calico-node-vthgd 1/1 Running 0 18m
kube-system coredns-6dcc67dcbc-jkggn 1/1 Running 0 46m
kube-system coredns-6dcc67dcbc-pwjnk 11 Running 0 46m
kube-system etcd-node081 1/1 Running 0 45m
kube-system kube-apiserver-node081 1/1 Running 0 45m
kube-system kube-controller-manager-node081 1/1 Running 0 45m
kube-system kube-proxy-7rxc5 1/1 Running 0 30m
kube-system kube-proxy-fvvxn 1/1 Running 0 46m
kube-system kube-proxy-gkkkl 1/1 Running 0 29m
kube-system kube-scheduler-node081 1/1 Running 0 45m

3.2.2.2: Kubeflow

As we already described, in the Chapter 2. Technical Background, every machine

learning application can be broken down in a sequence of steps. Each step has
different resource requirements like individual operations. So, our idea was to find a
tool that would allow us to define each ML step as a separate process. The perfect tool
for this job is Kubeflow. This platform with the pipeline feature will give us the
opportunity to define components that will encapsulate each ML step. In general,
each one of these components is a kubernetes container inside our cluster. But more
on that in the next Stages. Now we must deploy Kubeflow on top of the Kubernetes

cluster that we initialized in the previous section.

Before starting with the deployment process, it is important to say that the Kubeflow
deployment requires dynamic persistent volume provisioning. We need a
StorageClass for that purpose. So first we create a Storage class deployment. By

default, the provisioner will be installed at the namespace local-path-storage.
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$ kubectl apply -f

https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-

storage.yam|*!

After the installation we can check if the storage class is deployed successfully:

$ kubectl get sc
NAME PROVISIONER AGE
local-path (default) rancher.io/local-path 4s

Storage class needs to be default, to be able to provision resources dynamically. Now
itis time to follow the installation process for the Kubeflow deployment. First, we should
download the binary kfctl. This binary will be used to create the deployment. After that
we create the environment variables, that is going to make the installation process

much easier:

$ export KF_NAME= Kubeflow
$ export BASE_DIR= ~/Kubeflow/
$ export KF_DIR= ${BASE_DIR}/${KF_NAME}

We can check the resources deployed in the Kubeflow namespace. These are only a

few of the pods from the Kubeflow deployment.

$ kubectl -n kubeflow get all

NAME READY  STATUS RESTARTS AGE
admission-webhook-bootstrap-stateful-set-0 1/1 Running 0 15m
admission-webhook-deployment-64cb96ddbf-vok88 1/1 Running 0 15m
application-controller-stateful-set-0 1/1 Running 0 16m
argo-ui-778676df64-jbk5d 1/1 Running 0 15m
tf-job-operator-7d7c8fb8bb-gkghd 1/1 Running 0 15m
workflow-controller-945c¢84565-9f5kq 1/1 Running 0 15m

1 https://github.com/rancher
]
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Like any application that we want to access outside of our cluster, Kubeflow needs to
have a NodePort Service that exports its application. As we already mentioned,
NodePort is a Type of Kubernetes Service that enables an application to be accessible
outside of the cluster. This is provided to us from the istio-ingress gateway service at
port 31380.

3.2.2.3: Prometheus & Grafana

The final step, in the setup process, is to deploy monitoring tools for research purposes.
As we already mentioned, there are many tools for this job. However, Prometheus and
Grafana are the best ones, because they integrate very well with Kubernetes.
Together, they provide a set of tools and graphs that makes fetching and display of
metrics very simple. Grafana query the data that the Prometheus server exports from

each node and depicts them on different types of custom graphs.

There are many ways to install applications on top of Kubernetes clusters, but Helm is
the easiest one. Helm is a Kubernetes package manager. It is the Kubernetes
equivalent of apt command in Ubuntu machines. Helm gives us the opportunity to
install packaged applications in the form of charts. Each of these charts are simple
Kubernetes YAML files, combined in a single package that can be advertised in your
Kubernetes cluster. This makes the installation process of containerized applications

much easier and simpler.

After the Helm installation we are ready to start with the Prometheus-Grafana
installation process. The first step is to add the chart’s repositories. Each repository
contains the charts for each tool and is maintained by open-source contributors. The
second step is to fetch the values of the charts locally to our computer, to make some
configuration changes. We must export the Prometheus and Grafana services outside
of our cluster. For this purpose, we again use a NodePort Service that is provided by
Kubernetes. We are going to export those two services at two different ports (31323 -
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31322) . Finally, we need to deploy the values.yaml to Kubernetes cluster and wait
until both tools are up and running.

Prometheus-Steps

e helm repo add prometheus-community
https://prometheus/community.github.io/helm-charts
e helm inspect values prometheus-community/prometheus >
/tmp/prometheus.values
o vim /tmp/prometheus.values
o search: Service
o Service(NodePort):
= nodePort: 32323 (external port)
e helm install prometheus-community/prometheus --name prometheus --

values=/tmp/prometheus.values

Grafana-Steps

e helm repo add grafana https://grafana.github.io/helm-charts
e helm inspect values grafana/grafana > /tmp/grafana.values
o vim /tmp/prometheus.values
o search: Service
o Service(NodePort):
= nodePort: 32322 (external port)
e helm install grafana/grafana --name grafana --values=/tmp/grafana.values
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Now we can access Kubeflow, prometheus and grafana dashboards from the URLs

below.

Table 1: Access URLs for Kubeflow, Prometheus and Grafana

Kubeflow Dashboard http://cluster_node_ip:31380
Prometheus Dashboard http://cluster_node_ip:32323
Grafana Dashboard http://cluster_node_ip:32322

3.3: Stage 2: Machine Learning Application

3.3.1: Application Description

After the deployment of the tools in the Kubernetes Cluster, we had to create or find a
machine learning application which we would use both at the research and at the
experimental stage. This application was selected according to some criteria that we
needed for the research:

e The application should be able to break in the steps that constitute a machine
learning application(Data Fetching, Training, Evaluation etc.), with the help of
Kubeflow, to deploy each step as a separate process.

e Also, we should be able to change the computational power that the training
step needs, by modifying only some parameters. This will help us take
measurements and evaluate the algorithm in the experimental stage.

For our scenario we used one of the Kubeflow pipelines examples. This example was
already converted in a Kubeflow pipeline, which helped us a lot. The only thing that we
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had to do, was to modify the code and the steps according to our needs. The purpose

of the example was to train an initial model with XGBOOST algorithm, evaluate it and

calculate the metrics. If the model error was too high, then more training was

performed until the model was good. For this sample, the Taxi Trips dataset from

Chicago?’?, was used and the predictions were made for the taxi drivers tips. So, the

next step was to modify this pipeline to match our needs. After the changes, the

Machine Learning application included the following steps:

Data Fetching: This step is responsible for fetching the Train and Test data
from the Taxi drivers dataset. The first one will be used for the training process,
and the second one for the evaluation. Here it is important to emphasize that
the data fetching was broken into two different processes with the help of
Kubeflow. One for fetching Training Data, and the other one for fetching Test
Data.

Training: This step uses the same algorithm as the example, the XGBOOST
algorithm. XGBoost stands for “Extreme Gradient Boosting”. It is a decision-
tree based, machine learning algorithm. This algorithm is very popular with
structured/tabular data. From technical perspective it was used the xgboost
library*2, which is an optimized distributed algorithm, designed to be flexible and
portable.

True Values Preparation: The Preparation step is also broken down into two
different processes like the Data Fetching Step. This process cleans the test
data by removing the not needed header. Next, it extracts the true values
column from the data set , which will be used at the evaluation step.
Prediction: This step is responsible for taking the model that the training step
generated and the test data and producing predictions. These predicted values

are going to be used in the next step.

12 Chicago Taxi Trips Dataset

13 httgs://xgboost.ai/
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e Evaluation: Last but not least, it evaluates the prediction with the help of true
values that it extracted from a previous step and creates an accuracy

percentage.

According to the above, this application satisfies one of the two criteria of the research
requirements, that we listed above. For the second need, the XGBoost provides two
parameters that a user can modify, to change the computational demands of the
application. These parameters are the learning rate and number of iterations.

e Number of iterations: Number of training steps. More steps mean, heavier
training process.

e Learning Rate: It is a configurable hyperparameter, used in the training
process. The learning rate controls how fast the model is adapted to the
problem. It is like the magnitude of each training step in a training process. In
general, someone needs the lowest possible learning rate. However, this means

that it needs more steps, to reach the optimal training (heavier training process).

3.3.2: Deploy Process

After the explanation of the used machine learning application, it is time to deploy it,
as separate processes with the help of Kubeflow. As already mentioned, Kubeflow,
provides a Software define kit that includes a set of packages, which a user can use
to convert the machine learning application in a Pipeline. From these packages we
used the kfp.dsl.pipeline for defining the pipeline inside a python file:

@kfp.dsl.pipeline(
='DEMO-MACHINE LEARNING APP',
='My machine learning pipeline’

)

def train_until_good_pipeline():

Figure 15: Machine Learning Pipeline definition - Python file
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For each component of the pipeline, we used the library components from the kfp
package. This lets us import all the YAML files for each component of the machine
learning app. Here it is important to emphasize that all the YAML-pipeline components
were taken from the Kubeflow GitHub repository** which is open-sourced. An example

of such an addition is the following:

chicago_taxi_dataset_op = components.load_component_from_file(

"./yaml_files/Dataset_Chicago_Taxi_Trips/component.yaml™)

Figure 16: Import example of Pipeline component

Also, after the addition, we need to define and use this component inside the pipeline.
Below we provide a code example of adding the above component as a pipeline step.

training_data = chicago_taxi_dataset_op(
='trip_start_timestamp >= "2819-81-81" AND trip_start_timestamp < "2019-85-81"',
='tips,trip_seconds,trip_miles, fare, tolls,extras, trip_total',

).output

Figure 17: Declaration example of Pipeline component

All the above variables (where,select,limit) are predefined variables from the imported
YAML file. The first one specifies what part of the dataset we want. The second one

declares the features that we want and the last one the maximum amount of data.

In the same way, we imported and declared the other components of the machine
learning application. The Fetching of test data, the training step, values preparation
step ,the prediction step, and the evaluation step. After defining the pipeline in Python,
we must compile the pipeline to an intermediate representation before we can submit
it to the Kubeflow. This representation is a workflow specification in the form of a YAML

14 httgs://github.com/kubeflow/kubeflow
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file compressed into a .tar.gz file. For this process we need to install the Kubeflow
Pipelines SDK and run the below command at the terminal:

$ dsl-compile --py=demo_machine_learning.py --output=demo.tar.gz

Next, we upload the demo.tar.gz file to the Kubeflow Dashboard and generate the

pipeline. The process is the same as we have shown at the 2.6.4: Kubeflow Pipelines.

Now we can look at the graph of our application in the Pipeline UI.

< Demo Machine Learning App (Demo Machine Learning App)

Graph YAML

fetching-data-step fetching-data-step-2

l N

train-step value-preparation-ste.

S !

predict-step value-preparation-ste...

S

evaluation-step

Figure 18: Machine Learning Application in the form of a graph

3.4: Stage 3: Scheduling Algorithm

3.4.1: Introduction

Kubernetes is an ideal tool for running cloud applications. But how does it decide where
each application will be executed ? kubernetes implements its own scheduling module.
This module is called Kubernetes-Scheduler and it is responsible for assigning
pods(applications) to suitable nodes. This chapter analyzes the kubernetes algorithm

behind kube-scheduler and how it was extended , with the addition of the algorithm.
I ——
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3.4.2: Kubernetes Scheduling Algorithm

Kube-scheduler is running as an independent component usually inside the master
node. For every newly created pod or other unscheduled pods , kube-scheduler selects
an optimal node for them to run. However, every pod and every container, inside each
pod, has different resource requirements. So, the kube-scheduler must do some

filtering and selection to find the optimal nodes.

Kube-scheduler continuously monitors a waiting queue that contains all the pods that
need allocation. After that it follows a 2-step operation to select a node for each pod:

1. Filtering: The first step is called the filtering. In this step, the kube-scheduler
verifies which nodes can run this pod and discards the other ones. For this
purpose, it uses some properties called predicates. An example of a predicate
is the PodFitsResources. This filter checks whether a candidate Node has
enough available resources to meet a Pod's specific resource request. After this
step, the node list contains any suitable Nodes, often, there will be more than
one. There is always a possibility that a pod deployment might not be
scheduled. In that case, kube-scheduler triggers an event that explains the

reason for failed scheduling and the pod remains unscheduled.

2. Scoring: if the list of suitable nodes contains more than one node, then the
kube-scheduler forwards at the node priority calculation (Scoring). At this step,
kube-scheduler takes the list of nodes from the filter step, and scores them
based on some properties called priorities. An example of a priority is the
NodeAffinityPriority. The node is scored according to node-affinity rules .For
example, a node with a specific label is scored higher than others. The node
with the highest scoring is chosen to run the specific pod. With this scoring step
the algorithm selects the most suitable node for our pod.
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Finally, kubernetes scheduler assigns the pod to the highest-ranking node. If there is
more than one node with equal scores, then it selects one node at random. After that

Kubelet is responsible for starting the pod inside the node.

Another great feature of Kubernetes, that helps Kube-scheduler make better decisions
in terms of scheduling, is resource limits and requests. For example, machine
learning engineers can specify resource requests and limits on the machine learning
pod configuration file The resource limit is the maximum number of resources(CPU &
Memory)that can be allocated for the containers inside the pod. The resource request
is the minimum number of resources that a node should have to host this specific pod.
This feature is a double-edged sword, because if a developer sets up incorrect
resource rules, he/she may allocate resources that the pod does not need. It is a great

feature, but it should be used carefully.

3.4.3: Kubernetes-Scheduler-Extension

Although kubernetes-scheduler provides a range of features for scheduling pods inside
the cluster, the metrics applied in the decision-making process are limited. The kube-
scheduling services are using only CPU and RAM usage rates to decide. Kube-
scheduler does not concern about other parameters like Latency of the application.
However, it is crucial for latency-sensitive machine learning applications to be
deployed on nodes that can provide low response times in predictions. If this does not
happen, then the specific application can become unstable, and predictions may arrive
too late. So, in this thesis we propose an extension of Kubernetes scheduler, that
makes scheduling decisions, not only based on CPU-RAM, but according to Latency
sensitivity too. We named it LAS (Latency - Awareness - Scheduler). There are
three proposed ways of extending Kubernetes Scheduler [16]:

1. Adding new scheduler policies(predicates/priorities) to the Kube-scheduler and

recompiling it.
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2. Implementing a different scheduling process, that runs instead of, or alongside
of Kube-scheduler.
3. Implementing a “scheduler-extender” , that the kubernetes scheduler calls as a
final step before making the decision.
The third approach is used when the scheduler needs to make decisions based on
resources that are not managed directly from Kubernetes Scheduler. Our scheduler is
based on the third approach, because it needs to make decisions based on network
parameters like latency. But how exactly does it work ? When the Kube scheduler is
trying to schedule a pod, the Kubernetes - extender allows an external process to filter
and/or prioritize the nodes. Below we display the structure of the configuration file, to
communicate with the extender through code. This extender config contains

parameters that will specify the behavior of the scheduling.

type ExtenderConfig struct {
URLPrefix string " json:™urlPrefix"’
FilterVerb string "json:"filterVerb,omitempty"’
PrioritizeVerb string " json:"prioritizeVerb, omitempty"’
BindVerb string "json:"bindVerb,omitempty"’
Weight int "json:"weight,K omitempty™’

EnableHttps bool "json:"enableHttps,omitempty™’

TLSConfig *client.TLSClientConfig json:"tlsConfig, omitempty"’

HTTPTimeout time.Duration "json:"httpTimeout,omitempty"’

Figure 19: Extender policy file in Golang

From top to bottom, we have the URLPrefix. This is the most important parameter,
which specifies the endpoint at which the extender will be available. After that we have
the three verbs. The FilterVerb, the PrioritizeVerb and the BindVerb. Each of these
verbs, specifies which function the extender will call, to do the filtering, or the prioritizing

or the binding. If any of these verbs are unspecified or empty, then it is assumed that
I ——
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the extender chose not to provide that extension. The arguments that are passed on
the FilterVerb on the extender are the set of nodes filtered through the Kubernetes
Scheduler predicates and the given pod while the arguments passed on the
PrioritizeVerb also contain the priorities of each node. Following the verbs, we have
the weight parameter. This integer is a numeric multiplier for the node scores that the
prioritize call creates. Next, we have two security parameters. The EnableHttps, which
specifies whether https will be used for the communication with the extender and the
TLSConfig which specifies the security configuration at the Transport Layer. Finally,
we have the HTTPTimeout. As the name implies, it is the timeout duration for a call to
the extender.

This was a brief description of the kubernetes scheduler extension. Next, we are going
to describe the logic and the usage of this extender to achieve the latency awareness
in the scheduling part.

3.4.4: Latency Awareness Scheduler

The Latency Aware Scheduler has been implemented by extending the Default
scheduler of Kubernetes through priority endpoint. This algorithm uses the help of
Kubernetes Labels and Latency values to make a scheduling decision. Labels are just
key/value pairs that are attached to objects, like pods, and help identify object attributes
that are important to users. So, to identify the attributes that are important for our
scheduling algorithm, we declare two types of labels for the pod configuration file , and
one type of label for the node, for each location. The logic for this implementation was
inspired by the paper Towards Network-Aware Resource Provisioning in Kubernetes
for Fog Computing applications [17].

Pod
The first type of label is named typeOfComponent. As the name implies, the algorithm
uses this label, to learn what type of machine learning operation we are trying to
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schedule. The second type of Label is called OurLocation, and indicates the location
we are in. The LAS will use this Label to deploy that process as close as possible to

this location, with the help of Latency values.

Node

As we already mentioned we want to know the latency values of each node, for each
location. So, at each individual Node we add a Label for each location we want to
include into our algorithm with the respective Latency value . For example, let us say
we have Location A and Location B. First, we calculate the Latency from the Node to
each location. Let us say the latency for Location A is 0.8 ms and for Location B is 0.6
ms. We add a label {Location : LatencyValue} for each location. So, for our example,

we have two Labels:

. {LocationA:0.8ms}
. {LocationB:0.6ms}
Algorithm

As we already mentioned, each Machine Learning application has the following steps:
Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper-
parameter Tuning, Prediction. So, the algorithm first fetches the typeOfComponent
from the pod information. If it is not the prediction step, then we let the Default
Scheduler decide the optimal node for scheduling, based on its predicates and
priorities. If it is the Prediction Step, then we iterate through each node and find the
minimum Latency based on the Location that we have configured in the pod
configuration file at the OurLocation Label and return the node with the minimum

Latency. Below we display the pseudocode of the algorithm in Golang.

selectNode(Pod, listofNodes) (selectedNode, error){

typeOfComponent, err = getTypeOfcomponent(Ped)
if err != nil {

return error
H
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if typeOfComponent == "Training" { // Scheduled By Default Hubernetes Scheduler
return nil,error.Error()
}else if typeOfComponent == "Predicting" {

OurlLocation,err = getOurlLocation(Pod)
if err != nil {
return nil,error // Scheduled By Default Kubernetes Scheduler

latencyMap := make(map[floatéu]Node)
minLatency := math.Inf(+1)

for node := range listofNodes {
currentLatency := GetLatency(node,OurLocation)

if currentLatency < min {
minLatency = currentlLatency
}

latency[currentLatency] = node

priorityList = make([]schedulerapi.HostPriority, 1)

prioritylList[8] = schedulerapi.HostPriority{
Host: LlatencyMap[min].name,
Score: 1,

}

return &prioritylList, nil
}else {

return nil,error // Scheduled By Default Kubernetes Scheduler
}

Figure 20: Scheduler Algorithm Pseudocode in Golang
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4.1: Introduction

In this chapter, some experiments are presented to observe the behavior of the
algorithm in a real machine learning application. In addition, it is found, through
diagrams and experiments, that scheduling with our algorithm , leads to shorter times,
in terms of latency and training time. Finally, it is important to emphasize that the
experiments were performed under different conditions, regarding the computational
requirements of the application at the training step and the size of each request at the

prediction step.

4.2: Infrastructure

As for the infrastructure on which the experiments were performed, it consists of 5
different machines. Three of the five computers are NITOS nodes, which we talked

about in the 3.2.1: NITOS Testbed section and the other two computers are virtual

computers set up on physical machines. The above computers consist of the following
Hardware features:

Table 2: Hardware specifications

3 NITOS Nodes 8 cores 16GB 120GB

2 VMs 2 cores 4GB 40GB

One of the 3 NITOS Nodes, operates as Master Node, and the other 4 as Worker
Nodes for the Cluster. These Nodes, use as operating system the Linux Ubuntu

18.04.04 LTS. The necessary tools were installed in them, to create a network
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between them so they can communicate. These tools are the Kubernetes, Docker,
and Calico Network. Also, the Kubeflow was deployed on top of the cluster to break
the machine learning Application into separate processes. Finally, the proposed
scheduler (LAS) was deployed as a default scheduler, in order to perform the
experiments. The pod configuration file for the LAS is shown at the Figure 22 below.
As can be seen, the pod is composed of two containers: the extender and the
scheduler. The extender is responsible for performing our proposed scheduling
operation and the scheduler is the Default Scheduler of Kubernetes. As we already
mentioned the extender needs the policy configuration file, in order to operate
smoothly. In Figure 21 below, the policy file for the LAS is shown. Finally, it is important
to emphasize that the same machine learning application was used for all the

experiments. This machine learning app was described in detail in chapter 3.3: Stage

2: Machine Learning Application.

rsion: v1
ConfigMap

my-scheduler—policy
ce: kube-system

;|

"kind"™ : "Policy",

"apiversion" : "wv1",

"priorities” : [
{"name" : "LeastRequestedPrierity", "weight" : 1},
{"name" : "BalancedResourceAllocation™, "weight" : 1},
{"name" : "ServiceSpreadingPriority", "weight"™ : 1},
{"name" : "EqualPriority”, "weight" : 1}

] ']

"extenders" : [{
"urlPrefix": "http://localhost:8888/scheduler”,
"prioritizeVerb”: "priorities/nikos_priority",
"enableHttps": false,
"weight": 1@

1,

1
3

Figure 21: Policy configuration file
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Timestamp: null

t: kube-scheduler
contrel-plane
kube-scheduler
e: kube-system

my-scheduler-extender-ctr
nickange/test-extender:7.8

kube-scheduler
—-bind-address=127.8.8.1
—-=v=5
--kubeconfig=/etc/kubernetes/scheduler.conf
--leader-elect=true
—-policy-configmap=my-scheduler-policy
nickange/test-scheduler:6.8
11 y: IfNotPresent

: kube-scheduler
1: fetc/kubernetes/scheduler.conf
kubeconfig
: system—cluster-critical

Jetc/kubernetes/scheduler. conf
: FileOrCreate
kubeconfig

Figure 22: LAS scheduler Pod (Container: Extender & Container: Default-Scheduler)
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4.3: Experiments

4.3.1: Algorithm Verification

The first experiment was responsible for the verification of the algorithm. We wanted
to create an environment, in which our algorithm could take scheduling decisions
based on the latency values and the resource specifications of each node. For this
purpose, we located the nodes at three different locations (NITOS-CLOUD, NITLAB-
EDGE, HOME-EDGE). The nitos-cloud is the cloud infrastructure of nitos, the nitlab-
edge is located at NITLab building, and the last one is at my home. The three heavy
resourced nodes at the cloud location and the other two at the edge’s locations,

respectively.

As we already mentioned, the scheduler takes scheduling decisions based on the
latency labels that each node has. So, the next step was to assign latency values at
each node . For this purpose , the ping tool was used for finding an average RTT time.
These values were assigned to each node as a label so that delay values can be

considered in the scheduling process. Times are displayed in milli-seconds.

Table 3: Node Latency Values for each Location

Nitos-Cloud-Node 0.289 2.669 89.667
NITLab-Edge-Node 41.966 42.551 9.8
Home-Edge-Node 2.669 0.306 42.551

Once the labels have been placed at the corresponding nodes of the cluster, it is time
to test the algorithm for different cases. According to the algorithm we can specify at
which location we want to deploy the application, with the help of OurLocation label,
inside the pod configuration file. However, the machine learning application is deployed

as Kubeflow pipeline Component. So, we cannot access the pod Configuration file
I ——
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directly. That is why the kfp package was used to specify the labels for each process
of the machine learning application. The number of cases that we tested the algorithm
is equal with the number of locations. Below we display how we must configure the

predict and the training step of our machine learning application, for each location.

Table 4: Configuration changes at Machine Learning Pipeline-Location:NITOS-CLOUD

Training e training_proc.add_pod_label(“typeOfComponent”,”Training”)

e predict_proc.add_pod_label(“typeOfComponent”,”Predict”)

Predict « predict_proc.add_pod_label(“OurLocation”,”NITOS-CLOUD”)

Table 5: Configuration changes at Machine Learning Pipeline-Location:NITLAB-EDGE

Training e training_proc.add_pod_label(“typeOfComponent”,”Training”)

e predict _proc.add_pod_label(“typeOfComponent”,”Predict”)

Fiele! predict_proc.add_pod_label(*OurLocation”, “NITLAB-EDGE”)

Table 6: Configuration changes at Machine Learning Pipeline-Location:HOME-EDGE

Training e training_proc.add_pod_label(“typeOfComponent”,”Training”)

e predict _proc.add_pod_label(“typeOfComponent”,”Predict”)
predict_proc.add_pod_label(“OurLocation”,”HOME-EDGE”)

Predict
The LAS algorithm has successfully scheduled both steps at the correct nodes, as we
can see from the kubectl get command. The heavy Training process at a cloud node,
which has more available resources(CPU & RAM), and the Predict Step at an edge
node, which is much closer to the location that the client requested at each case. The
kubectl get command returns a lot of information, but we display only the important
ones. It is important to say that inside the cluster, the names of each step of the

machine learning application have the format demo-machine-learning-app-
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($uniqueld), because this is the name of the pipeline to which they belong. The
uniqueld parameter represents each step of the pipeline. However, in each command

below we refer to each step with the real name, for easy understanding.

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE
kubeflow Predict nitos-cloud-node
kubeflow Training Step nitos-cloud-node

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE
kubeflow Predict nitlab-edge-node
kubeflow Training Step nitos-cloud-node

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE
kubeflow Predict home-edge-node
kubeflow Training Step nitos-cloud-node

4.3.2: Measurements

Once we have verified that our algorithm is working properly and distributes the
individual processes according to the requirements in latency and resources, it is time
to take measurements. These measurements will provide information about the
behavior of the machine learning Application, regarding the execution time of the
training process and the response time of the prediction process. To achieve this , we
divided the measurements into two experiments. At the first one , we deployed the
Machine Learning application as an individual process, with all its steps inside a
container. Experiment was done first at an edge node and then at a cloud node of
our environment. After that we calculated the completion time of the training process
for light training and heavy training at each node, respectively. Also, we calculated
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the latency response of the predict step for different sizes of requests. At the second
experiment, we calculated the same things but now having broken the application into

separate processes and using the LAS algorithm.

To achieve different conditions on the training process we modified the parameters

learning rate and num_iterations. For this experiment the below values were used:

Table 7: Training Parameters

Light Training 10000 0.07478

Heavy Training 0.001 100000 0.02578

As we can see from the RMSE column above, the Heavy Training achieves a smaller
Root Mean Square Error compared with the Light Training Process. Smaller RMSE

means smaller Prediction errors , which is better for the trained model.

Below we display the execution time in seconds, for each case and the response times
after the deployment of the predict step :

B Edge-Node-Execution-Time(DS) [l Cloud-Node-Execution-Time

500

431

400

300

Time(Seconds)

200

100

41
23

Light Training HeavyTraining

Types of Training

Chart 1: Training process (Default Scheduler) - Execution times in Seconds
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X Cloud-Node-Latency(DS) x Edge-Node-Latency(DS)

Time(Seconds)

H(_,/“WW

500 1000 1500 2000

Number of Entries

Chart 2: Prediction process (Default Scheduler) - Latency values in seconds

From the charts above, we observe that in a cloud node where the resources are much
more, we achieve shorter execution times, than the edge node where the resources
are much less. The same thing is observed even at the light training case which
requires less computational resources. From the chart 1, we can see that the execution
time is almost half at the cloud node. However, the exact opposite happens in the case
of response time. There the edge node dominates, because it is much closer to the
end user who makes the various prediction requests. From the chart above, as we
increase the number of requested predictions, the response time of the edge node is
staying almost constant and close to half a second, while at the cloud node is

increasing and at 2.000 requested predictions it reaches almost 3 seconds.

From the above, it is understood that we cannot achieve at the same time short
execution and response time in a machine learning application, if we deploy it as a
single entity. That is why we broke the application into its steps with the help of
Kubeflow and after that we deployed it in the cluster with the help of our algorithm
(LAS).
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At the second experiment, the machine learning application is deployed with the
supervision of our algorithm. This time , the heavy training process will be scheduled
at a cloud node, to achieve fast execution time, while the predict process will be
scheduled at the edge node based on the latency values as we saw at the Verification
Experiment. After that , the same measurements took place and showed us that both
time parameters are shorter for better utilization of resources and for better user
experience. Below we display another two charts for the execution and the response
time of the heavy training process. Here it is important to emphasize that for chart 4
we took measurements with even higher values of prediction requests, to show that
even for these values the time remains short and increases slightly for the edge node.

Also, we display the response time for the cloud , to realize the big difference.

B Cloud Node(LAS)

250 230
200
150

100

Time(Seconds)

48
50

Heavy Training Light Training

Types of Training

Chart 3: Training process (LAS) - Execution times in seconds
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X Cloud-Node-Latency(DS) x Edge-Node-Latency(LAS)

20

14.303

Time(Seconds)
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0 e X
2000 4000 6000 8000 10000
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Chart 4: Training process (LAS) - Execution times in seconds
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CHAPTER 5: CONCLUSION & FUTURE WORK

In this final Chapter, we present the conclusion of our work. Following that, we
conclude by mentioning a few possible steps that should be done in the future, to

convert this algorithm into a more global scheduling choice.

5.1: Conclusion

Allin all, the primary goal of this thesis was to implement an algorithm that would deploy
the various steps of a machine learning application in the appropriate locations,
depending on their needs (computational, latency). This would enable machine
learning developers to deploy their applications in a more performant-optimal way. The
goal was achieved as we can see from the experiments above. The algorithm was
implemented and tested, and the measurements showed how important it is to deploy

a latency sensitive application to the edge.

5.2: Future Work

In this Thesis a big step was taken in terms of creation and evaluation of the scheduling
algorithm. However, there are still some steps that need to be taken in the
implementation and the evaluation stage before it becomes a global way of scheduling

machine learning applications. Below we describe these future steps.

First, we need to make a more extensive evaluation of the algorithm. The number of
nodes and locations must be increased to evaluate the behavior of the algorithm in a
more “competitive” environment where more computers will compete for the scheduled
process . Also in future experiments, the number of applications should be increased

to study the scheduling decision of the algorithm in a more realistic environment where
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there will not be only a single machine learning application that is trying to be
scheduled.

From implementation perspective some changes will be done in the latency
assignment part of the nodes. So far, we place the latency values on each node for
each location, with the help of the ping tool, hardcoded. This latency assignment
logic cannot be followed in a real environment where the locations and nodes will be
countless. A future goal is to assign these values with predictive techniques using

machine learning that is going to predict the latency for each location.
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