

UNIVERSITY OF THESSALY

DEVELOPMENT OF TECHNIQUES FOR THE OPTIMIZATION OF THE

EXECUTION OF MACHINE LEARNING APPLICATIONS IN CLOUD AND

EDGE ENVIRONMENTS

Diploma Thesis

Nikolaos P. Angelopoulos

Supervisor

Associate Professor Korakis Athanasios

A Thesis submitted in fulfillment of the requirements for the degree of

Diploma Thesis in the

Network Implementation Testbed Laboratory (NITLab)

Department of Electrical and Computer Engineering

Volos, 2021

Πανεπιστήμιο Θεσσαλίας

ΑΝΑΠΤΥΞΗ ΤΕΧΝΙΚΩΝ ΓΙΑ ΤΗΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΗΣ

ΕΚΤΕΛΕΣΗΣ ΕΦΑΡΜΟΓΩΝ ΜΗΧΑΝΙΚΗΣ ΕΚΜΑΘΗΣΗΣ ΣΕ CLOUD

και EDGE ΠΕΡΙΒΑΛΛΟΝΤΑ

Διπλωματική Εργασία

Νικόλαος Π. Αγγελόπουλος

Επιβλέπων

Αναπληρωτής Καθηγητής Κοράκης Αθανάσιος

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 2 Ιουλίου 2021

……………………………

Αναπληρωτής Καθηγητής

Κοράκης Αθανάσιος

……………………………

Αναπληρωτής Καθηγητής

Αργυρίου Αντώνιος

……………………………

Αναπληρωτής Καθηγητής

Μπαργιώτας Δημήτριος

Βόλος, 2021

iii

This Thesis is dedicated to me and my family.

iv

v

Acknowledgments

First and foremost, I would like to express my immeasurable appreciation and deepest

gratitude to my supervisor Professor Korakis Athanasios for giving me the chance to

work on this thesis that was a perfect match for my interests. His guidance and

patience were crucial for the completion of this Thesis. I would also wish to express

my gratitude to my advisor Ιlias Syrigos for his constant guidance, his valuable

comments, and key suggestions throughout all stages of this work.

Also, I would like to thank my family for their unconditional love, support, understanding

and unwavering belief in me throughout all those years. Finally, I am more than thankful

to my friends for their constant support, who are by my side and help me in any problem

that arises.

vi

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this

diploma thesis, as well as the electronic files and source codes developed or modified

in the course of this thesis, are solely the product of my personal work and do not

infringe any rights of intellectual property, personality and personal data of third parties,

do not contain work / contributions of third parties for which the permission of the

authors / beneficiaries is required and are not a product of partial or complete

plagiarism, while the sources used are limited to the bibliographic references only and

meet the rules of scientific citing. The 11 points where I have used ideas, text, files and

/ or sources of other authors are clearly mentioned in the text with the appropriate

citation and the relevant complete reference is included in the bibliographic references

section. I fully, individually and personally undertake all legal and administrative

consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism.

The Declarant

Nikolaos Angelopoulos

2 July 2021

vii

viii

Abstract

The evolution of Machine Learning and the widespread dominance of its applications

in our everyday lives has led to the need for more sophisticated algorithms and

mathematical models for achieving optimal performance. However, boosting

performance comes with higher demands in terms of computational power, while at

the same time request processing of real-time applications becomes slower, as

complex Machine Learning models are deployed further away from data sources. To

overcome these undesired effects, along with the development of applications’

infrastructure, research has focused on the effective deployment of Machine Learning

applications spreading from Cloud to the Edge and IoT devices. This leads in better

performance, with the least possible energy consumption, and therefore lower cost.

This diploma thesis focuses on the implementation of an algorithm that aims to

distribute the components of a Machine Learning application across the computing

continuum, to adapt effectively to the application’s needs. This way, energy intensive

processes are deployed in a computer cluster featuring the necessary computing

resources. At the same time, processes requiring low latency, but exhibit low cpu and

memory utilization are deployed at the Edge, closer to the end user. This achieves

better resource management, optimal performance, and overall better user

experience.

ix

Περίληψη

Στη σημερινή εποχή οι εφαρμογές Μηχανικής Μάθησης αυξάνονται ολοένα και

περισσότερο. Αυτό οδηγεί στην ανάπτυξη αλγορίθμων και μαθηματικών μοντέλων για

την καλύτερη απόδοση αυτών των εφαρμογών. Καλύτερη απόδοση όμως, σημαίνει

μεγαλύτερες απαιτήσεις ως προς την επεξεργαστική ισχύ που χρειάζονται, αλλά και

στον χρόνο αναμονής της επεξεργασίας αιτημάτων. Η δημιουργία αυτών των αναγκών,

σε συνδυασμό με την ανάπτυξη διαφόρων τεχνολογιών για την υποδομή των

εφαρμογών, οδήγησε στην αναζήτηση για τεχνικές που κατανέμουν τις λειτουργίες

αυτών των εφαρμογών ανάλογα με τις απαιτήσεις τους. Αυτό έχει ως αποτέλεσμα, την

καλύτερη απόδοση, με την λιγότερη δυνατή κατανάλωση ενέργειας, αρα και μικρότερο

κόστος.

Σκοπός αυτής της διπλωματικής είναι η υλοποίηση ενός αλγορίθμου με στόχο την

κατανομή των κομματιών μιας εφαρμογής Μηχανικής Μάθησης στην κατάλληλη

συστοιχία υπολογιστών ανάλογα με τις απαιτήσεις της. Με αυτόν τον τρόπο, οι

ενεργειακά απαιτητικές διεργασίες θα ανατίθενται σε συστοιχίες υπολογιστών που

διαθέτουν τους αναγκαίους υπολογιστικούς πόρους. Παράλληλα οι διεργασίες που

απαιτούν μικρό χρόνο αναμονής, και λιγότερους πόρους θα ανατίθενται σε συσκευές

που βρίσκονται πιο κοντά στον τελικό χρήστη. Με αυτόν τον τρόπο επιτυγχάνεται

καλύτερη διαχείριση των πόρων και βελτιώνεται η εμπειρία του χρήστη της εφαρμογής.

x

Contents

Acknowledgments ... v

Abstract ... viii

Περίληψη ... ix

List of Figures ... xiii

List of Charts .. xiv

List of Tables .. xiv

CHAPTER 1: INTRODUCTION .. 1

1.1: Background .. 1

1.2: Motivation .. 3

1.3: Content Overview .. 5

CHAPTER 2: TECHNICHAL BACKGROUND & TOOLS... 6

2.1: Introduction .. 6

2.2: OS-Level Virtualization ... 6

2.2.1: Overview ... 6

2.2.1: Building blocks ... 7

2.3: Docker .. 8

2.3.1: Overview ... 8

2.3.2: Container .. 8

2.3.3: Images .. 9

2.3.4: Registries .. 11

2.4: Kubernetes ... 11

2.4.1: Overview ... 11

2.4.2: Architecture .. 12

2.4.3: Concepts ... 14

2.4.4: Storage ... 15

2.4.4.1: Volume .. 15

2.4.4.2: Persistent Volume.. 16

xi

2.4.4.3: Storage Class ... 17

2.5: Machine Learning ... 17

2.5.1: Overview ... 17

2.5.2: Steps of machine learning application ... 18

2.6: Kubeflow .. 20

2.6.1: Overview ... 20

2.6.2: Architecture .. 21

2.6.3: Notebook Servers .. 22

2.6.4: Kubeflow Pipelines .. 25

2.6.5: Software Define Kit ... 27

2.7: Metrics & Display .. 28

2.7.1: Prometheus .. 28

2.7.2: Grafana ... 29

CHAPTER 3: IMPLEMENTATION .. 30

3.1: Introduction ... 30

3.2: Stage 1: Setup Infrastructure .. 30

3.2.1: NITOS Testbed .. 30

3.2.2: Tools & Versions ... 31

3.2.2.1: Kubernetes ... 31

3.2.2.2: Kubeflow ... 34

3.2.2.3: Prometheus & Grafana ... 36

3.3: Stage 2: Machine Learning Application .. 38

3.3.1: Application Description ... 38

3.3.2: Deploy Process .. 40

3.4: Stage 3: Scheduling Algorithm .. 42

3.4.1: Introduction ... 42

3.4.2: Kubernetes Scheduling Algorithm .. 43

3.4.3: Kubernetes-Scheduler-Extension ... 44

3.4.4: Latency Awareness Scheduler .. 46

CHAPTER 4: EXPERIMENTS & RESULTS ... 49

4.1: Introduction ... 49

xii

4.2: Infrastructure ... 49

4.3: Experiments ... 52

4.3.1: Algorithm Verification .. 52

4.3.2: Measurements ... 54

CHAPTER 5: CONCLUSION & FUTURE WORK .. 59

5.1: Conclusion ... 59

5.2: Future Work ... 59

Bibliography .. 61

xiii

List of Figures

Figure 1: Container Architecture .. 9

Figure 2: Virtual Machine Architecture .. 9

Figure 3: Docker Image Layers ... 10

Figure 4: Kubernetes Architecture ... 12

Figure 5: Kubeflow Central Dashboard ... 22

Figure 6: Notebook Server UI .. 23

Figure 7: Jupyter Notebook Configuration Page .. 23

Figure 8: Deployed Notebook Server .. 24

Figure 9: Pipeline UI .. 25

Figure 10: Machine Learning Pipeline in the form of a graph 26

Figure 11: Graph after the end of the experiment .. 27

Figure 12: Prometheus UI ... 29

Figure 13: Grafana Dashboard .. 29

Figure 14: NITOS Architecture .. 31

Figure 15: Machine Learning Pipeline definition - Python file 40

Figure 16: Import example of Pipeline component .. 41

Figure 17: Declaration example of Pipeline component .. 41

Figure 18: Machine Learning Application in the form of a graph 42

Figure 19: Extender policy file in Golang ... 45

Figure 20: Scheduler Algorithm Pseudocode in Golang .. 48

Figure 21: Policy configuration file ... 50

Figure 22: LAS scheduler Pod (Container: Extender & Container: Default-Scheduler)

 .. 51

xiv

List of Charts

Chart 1: Training process (Default Scheduler) - Execution times in Seconds 55

Chart 2: Prediction process (Default Scheduler) - Latency values in seconds 56

Chart 3: Training process (LAS) - Execution times in seconds.................................. 57

Chart 4: Training process (LAS) - Execution times in seconds.................................. 58

List of Tables

Table 1: Access URLs for Kubeflow, Prometheus and Grafana 38

Table 2: Hardware specifications .. 49

Table 3: Node Latency Values for each Location .. 52

Table 4: Configuration changes at Machine Learning Pipeline-Location:NITOS-

CLOUD .. 53

Table 5: Configuration changes at Machine Learning Pipeline-Location:NITLAB-

EDGE .. 53

Table 6: Configuration changes at Machine Learning Pipeline-Location:HOME-EDGE

 .. 53

Table 7: Training Parameters .. 55

 1

CHAPTER 1

CHAPTER 1: INTRODUCTION

1.1: Background

The evolution of Machine Learning in the last few years, is rapid. From the old days,

researchers were interested in having machines learn from data. They wanted to make

computer systems that can mimic human behavior. That is what we call nowadays

Artificial Intelligence. Out of the quest for Artificial Intelligence, a new subfield grew

rapidly, Machine Learning. This field enables computer systems to learn from past data

(historical, numbers, images etc.) or experiences without being explicitly programmed.

It uses algorithms and network models with the purpose to increase the performance

of computer systems and give accurate outputs. All these algorithms and models are

often used by different people (developers, researchers etc.) to create applications that

are going to be used by end users. We can give some examples of such applications.

First, we have facial recognition that allows social platforms to help users tag and share

photos between friends. Recommendation systems, with the help of machine learning,

suggest movies or series to users, based on their preference from past movies and

series selections. Finally, self-driving cars have dominated the field. Cars, powered by

machine learning, navigate without human intervention. Already today, some people

have bought self-driving cars and use them in their everyday life.

Another field that has seen great growth in recent years is Cloud Computing [1].

Cloud or fog computing was the first network infrastructure that offered on-demand

services through the internet. The most important ones are data storage and

computational power, but the list does not stop there. Cloud computing brought

revolution to the way we handle data, and the way businesses provide applications

and services to their customers. Cloud Customers do not own the physical

infrastructure, but they rent the usage from third party providers. There are a lot of

applications of cloud computing in today’s world. Some of these applications are using

the cloud for storage, like Gmail or Dropbox, others for networking like healthcare

 2

CHAPTER 1

services, and others just for virtual machines that are hosted in the cloud. The

popularity of cloud computing grows day by day due to numerous benefits and we are

going to see a lot more people integrating their applications to the cloud as the time

passes.

As we mentioned before, cloud computing services are increasing rapidly as we

discover new ways to use them. However, cloud computing users as they go deeper,

and use more of these services, will face limitations such as higher latency, network

congestion and lower bandwidth that will prevent technology from fulfilling business

requirements. Because of that, and because of the fast evolution of IoT technology,

and end devices, a new data center infrastructure rose. This new type of computing

was named Edge Computing [2]. The idea behind edge computing is distributed

computation and data storage across the entire network, instead of centralizing it, into

cloud. This aims to mitigate the latency and bottlenecks of an application and provides

better user experience. Today, the use cases of edge computing are too many. One

important example of edge computing use case is the Smart Grid. Sensors and IoT

devices are connected with an edge infrastructure and provide better energy

consumption. Another important example is content delivery networks. You may have

seen them as CDNs which is their abbreviation. CDNs are caching content (e.g., music,

video stream, web pages) at the edge, which provides lower latency and flexibility.

These are only a few of the examples of edge computing that we meet every day, but

it helps us understand how important it is.

Separately, each of these topics make a profound impact in the world. However, many

times, they are combining their strengths to create some form of a computing

continuum on which disruptive machine learning applications can be built.

 3

CHAPTER 1

1.2: Motivation

Machine learning applications, as the years go by, become more and more demanding

in terms of the processing power they consume. Many of these applications are

processing large amounts of data and performing heavy processes to achieve the

desired output. Also, as if the processing power requirements were not enough, some

of them require low latency, to provide better user experience. So, these two

requirements raise the question: Where should we deploy our machine learning

application? To understand how challenging the selection of an infrastructure, for such

applications, is, we will use an example of real-time application.

One application that combines heavy computations and the need of low latency is an

example of augmented reality application [3]. This real-time application explores the

points of interest (POIs) that a tourist is currently visiting. This application involves

heavy image processing that extracts features from captured images and a trained

network-model that matches features from an extensive object catalog. This is a

perfect example for our case because it is computation-intensive and latency-sensitive.

An application like that is demanding a lot of resources, something that a home

computer cannot provide. Also, to provide a quality experience to the end user, some

functionality needs to be close to the user. For the purpose of this Thesis, we are going

to analyze only the choices of cloud and edge infrastructure.

One idea is to deploy this application to the cloud. There, there is the illusion of infinite

resources, thanks to Horizontal Scaling. So, an operation like image processing will be

done relatively fast. However, while the cloud can provide vast computational

resources, accessing those resources may involve multiple hops through the network.

This will lead to an increase of latency in the processing of client requests. In an

application like that, this is a problem, because as we said we need an infrastructure

for a latency-sensitive application, where fast responses will be required. So, the cloud

is not the optimal solution. Another idea is to deploy the whole application to the edge.

 4

CHAPTER 1

In edge computing [4], resources are scarce through the network and must be

managed very efficiently. Especially for mobile devices, where the battery is limited to

a certain amount. Here we have the advantage of fast response, as the application is

closer to the client. However, in this scenario we face another problem. The

computational resources are not enough for heavy processes. That will slow down the

image processing of such an application, and might not even work, if the resources are

not enough.

The ideal environment for such an application, as we might think, will be the cloud, for

heavy image processing and the edge for the latency-sensitive part of the application.

We could break this into two components and deploy each component above the right

infrastructure. With this logic, the processing part will be fast and optimal, as the

response part, so the user can enjoy an improved quality of experience.

Like the example above, every machine learning application can be broken down into

7 processing steps, from inception to practical application. By name these steps are:

Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper-

parameter Tuning, Prediction. Each of these steps is demanding different amounts

of resources, as well as latency levels.

That was the motivation behind this thesis. To utilize tools and find techniques that

distribute machine learning application’s components based on the resource and

latency demands of each component, to achieve better user experience. So, we

created a scheduling algorithm that decides for us, where each part of the machine

learning application will be scheduled either at a cloud environment or at an edge

environment.

 5

CHAPTER 1

1.3: Content Overview

This Thesis is organized into five chapters, each one of those includes smaller sections

and possibly subsections.

• Chapter 1: makes an introduction to the machine learning world and how it is

connected to the cloud and edge environments. Also, reference is made to the

motivation of this thesis that led to this specific implementation.

• Chapter 2: reference is made to the technical background and tools that the

reader should be aware of, to completely understand the work behind the

research.

• Chapter 3: is an important section of the document. First, it describes the

infrastructure that was used for the research steps. Also, it analyzes the use of

various tools, as well as how they interact between them, to reach the desired

implementation. Finally, it describes in detail the methodology which was used

to create our algorithm.

• Chapter 4: results and metrics are presented from the validation of the algorithm

and the execution of a machine learning application, under the supervision of

this specific algorithm.

• Chapter 5: presents the conclusions that emerged throughout the research, as

well as what emerged from experiments. Also, are mentioned some future

additions that can be made to the algorithm, in order the algorithm to become

more global to the scheduling of machine learning application.

 6

CHAPTER 2

CHAPTER 2: TECHNICHAL BACKGROUND & TOOLS

2.1: Introduction

This chapter refers to the tools and the technical background that the reader of this

thesis must have to understand it. It describes and analyzes some technologies that

have been used to achieve the solution with the implementation of the algorithm.

2.2: OS-Level Virtualization

2.2.1: Overview

Operating system1 level virtualization is a technology paradigm in which the kernel

allows multiple isolated user-space instances to co-exist. These instances, also known

as Containers, look like real computers from the point of view of programs and

processes that run inside them. But this is an illusion as we will see in more detail

below. Each Container shares the host’s OS. This means that it uses the OS’s normal

system call interface and does not need to be subjected to emulation or be run in an

intermediate virtual machine. This makes Containers very lightweight, since they

require less overhead to be launched, in comparison to full virtualization technologies.

Containers [5] offer a logical packaging mechanism in which applications can be

abstracted from the environment in which they run. This decoupling allows container-

based applications to be deployed easily and consistently, regardless of the target

environment.

1 Operating System: OS

 7

CHAPTER 2

2.2.1: Building blocks

As mentioned earlier, Containers are essentially just a way of partitioning up a system

into a few sandboxed execution environments with their own resource limits, while all

these environments share a single operating system. That is why we talked about an

illusion. But how this new illusion-virtualization is done. The base of this new

technology is three fundamental kernel features: namespaces, cgroups and union

filesystem.

• Namespace [6]: The Linux Namespaces are a kernel mechanism that, at a high

level, limits the visibility that a group of processes has on the rest of the system.

This mechanism does not restrict access to resources like CPU or disks. it

achieves isolation by exposing a specific subset of them to processes that run

inside the namespace. For example, you can limit visibility to certain process

trees, network interfaces, user IDs or filesystem mount.

• Cgroups [6]: Cgroups, which stands for control groups, is another Linux Kernel

feature that limits and measures the total resources (CPU, memory, disk I/O,

network, etc.) used by a group of processes running on a system. With cgroups,

administrators can set limits to a set of processes as to how many resources

they can consume.

• Union filesystem [7]: Unification filesystem is a service of Linux that allows files

and directories of separate file systems, known as branches, to be transparently

overlaid, forming a single coherent file system. Contents of directories which

have the same path within the merged branches will be seen together in a single

merged directory, within the new, virtual filesystem.

 8

CHAPTER 2

2.3: Docker

2.3.1: Overview

Docker [8] is a set of platforms as a service (PaaS)2 products that use OS-level

virtualization to deliver software in packages. Docker uses the building blocks

mentioned above to create an interface on top, to make it easier to manipulate and

parameterize the lifetime of Containers. Docker can be installed in any operating

system. We have already talked a little about these containers but let us give a more

in-depth description of them and the difference between them and virtual machines.

2.3.2: Container

A container is a standard unit of software that packages up code and all its

dependencies so the application can run quickly and reliably from one computing

environment to another. Users can use this, without the fear of what environment exists

underneath. This gives flexibility and portability to their application. This is very

important, because it lets developers focus more on the development side of the

project and not how to set up the application to different environments.

Emphasis should be given to the difference between Container and Virtual machine.

Virtual Computers need an operating system to work, which makes them very slow to

start and large in capacity. Also, they contain packages that many applications do not

use, which add more burden to the system. Finally, they create, many times, problems

in their portability from system to system and it is difficult to expand. The different

architectures of the two components are shown in the pictures3 below:

2 PaaS: Provide cloud services to certain software.
3 https://www.docker.com/resources/what-container

https://www.docker.com/resources/what-container

 9

CHAPTER 2

2.3.3: Images

Docker containers are based on Docker images. Docker Image is just a series of

instructions that a docker container must follow. It is a binary that includes all of the

requirements for running a single Docker container, as well as metadata describing its

needs and capabilities. It has information on both the structure of the filesystem that

will be used, as well as which processes will be started inside the Container. The Image

is an immutable file which essentially is a snapshot of the Container. You can think of

it as a packaging technology. Docker containers only have access to resources defined

in the image unless you give the container additional access when creating it.

A Docker image is built up from a series of layers. Each layer represents an instruction

in the image’s Dockerfile. Let us see an example to understand more about this

layering. Consider the following Dockerfile:

syntax=docker/dockerfile:1
FROM ubuntu:18.04
COPY. /app
RUN make /app
CMD python /app/app.py

Figure 1: Container Architecture

Figure 2: Virtual Machine Architecture

 10

CHAPTER 2

This Dockerfile contains four commands. Each of these commands creates a layer.

From top to bottom it has the FROM statement. This statement starts out by creating

a layer from the ubuntu:18.04 Image. This is a prebuilt image that exists in a public

registry called DockerHub and we pull it from there. After that it has the COPY

command which adds some files from the Docker client’s current directory. The RUN

command builds your application using the make command. Finally, it has the last layer

that specifies what command to run within the container. Each layer is only a set of

differences from the layer before it. The layers are stacked on top of each other. These

layers are read-only as shown in the image below. When a user creates a new

container, he/she adds a new writable layer on top of the underlying layers. This layer

is often called the “container layer”. All changes made to the running container, such

as writing new files, modifying existing files, and deleting files, are written to this thin

writable container layer. The image4 below shows a container based on the Ubuntu

15.04 image.

4 https://docs.docker.com/storage/storagedriver/

Figure 3: Docker Image Layers

https://docs.docker.com/storage/storagedriver/

 11

CHAPTER 2

After the analysis of docker images, the next thing that comes to our minds is, where

those images can be stored for fast access and reusability. Docker registries come to

the rescue. The next section describes how they accomplish that.

2.3.4: Registries

Docker is using a distributed system for storing Docker images. This storage is called

Docker registry and contains named Docker Images. Each one of these images might

have multiple different versions, identified by their tags. A Docker registry is organized

into Docker repositories , where a repository holds all the versions of a specific image.

Users can pull images from there. The registry allows Docker users to pull images

locally, as well as push new images to the registry. In this thesis the DockerHub was

used , for storing the needed images and pulling from there. DockerHub is a just cloud-

based public registry.

2.4: Kubernetes

2.4.1: Overview

Kubernetes [9], or else K8s, is an open-source project that helps at the organization of

containers running inside nodes that belong to the same cluster. It was originally

created by Google, with version 1.0 launched in 2015 and is now maintained by the

Cloud Native Computing Foundation (CNCF) 5 . It has a large, rapidly growing

ecosystem. This tool has many capabilities that every user can learn and use very

easily. Each user can define which service wants to execute, at how many nodes, with

how much resource power and other parameters. In general, K8s orchestrates

computing, networking, and storage infrastructure on behalf of users’ containerized

workloads.

5 Cloud Native Computing Foundation (CNCF)

https://wiki.aquasec.com/display/containers/Docker+Image+Repositories
https://www.cncf.io/

 12

CHAPTER 2

2.4.2: Architecture

Kubernetes follows a client-server architecture. It consists of a master node and a set

of worker machines, called nodes that run containerized applications. It is possible to

have a multi-master setup, but by default there is a single master node which is the

“brain” that controls the cluster.

Master Nodes provide the cluster’s control plane. They make decisions about the

cluster, and they detect and respond to cluster events. All these decisions are made

with the help of some components called Control plane components. These can be run

on any machine in the cluster. However, for simplicity, set up scripts typically start all

control plane components on the same machine, and do not run user containers on

this machine.

6 Kubernetes Architecture Image

Figure 4: Kubernetes Architecture6

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-architecture/

 13

CHAPTER 2

Master Node Components

Below are the main components found on the master node:

• kube-apiserver: As the name suggests is the component that exposes the

Kubernetes API. This is the front-end for the Kubernetes control-plane. Kube-

apiserver is designed to scale horizontally that is, it scales by deploying more

instances. You can have many instances of kube-apiserver to balance the traffic

between those instances.

• Etcd: Etcd is a simple, distributed key-value store, used as Kubernetes backing

store for cluster data (such as number of pods, their desired state, namespace,

etc.). Periodically it is important to back up those data, in case of disaster

scenarios, such as losing all the control plane nodes. So, we can recover the

Kubernetes cluster.

• Kube-scheduler: Κube-scheduler watches for newly created pods with no

assigned node and selects the best fit node for them, based on resource

utilization and other parameters like hardware/software/policy constraints,

affinity and anti-affinity specifications, data locality, inter-workload interference

and deadlines. The kube-scheduler uses an algorithm for this decision. More

about this algorithm at Chapter 3: Implementation.

• Kube-controller-manager: Kube-controller-manager is a control plane

component that runs and manages controller processes. Controllers are control

loops that watch the state of your cluster, then make or request changes where

needed. Each controller tries to move the current cluster state closer to the

desired state. Logically, each controller is a separate process, but to reduce

complexity, they are all compiled into a single binary and run in a single

process.

• Cloud-controller-manager: This control-plane component does not appear in

the image below, but it is very important, especially for the production

environments where cloud providers are present. Cloud-controller-manager

embeds cloud-specific control-logic. The cloud controller manager lets you link

https://kubernetes.io/docs/concepts/architecture/controller/

 14

CHAPTER 2

your cluster into your cloud provider's API and separates out the components

that interact with that cloud platform from components that only interact with

your cluster.

Worker Node Components

Below are the main components found on every node:

• Kubelet: Κubelet is an agent that runs on each node in the cluster. It makes

sure that containers are running in a pod. Kubelet is responsible only for

containers that were created from Kubernetes. Also, it is the component that

starts the pod after the selection of the feasible node from the kube-scheduler.

• Kube-proxy: Κube-proxy is a network proxy that runs on each node in your

cluster, implementing part of the Kubernetes network service. kube-proxy

maintains network rules on nodes. These network rules allow network

communication to your Pods from network sessions inside or outside of your

cluster.

• Container Runtime: The container runtime is the software that is responsible

for running containers. Kubernetes supports several container runtimes:

Docker, containerd7, CRI-O8, and any implementation of the Kubernetes CRI

(Container Runtime Interface).

2.4.3: Concepts

Kubernetes constantly monitors itself and tries to achieve the desired state of the

application. This desired state is presented in a YAML file with different types of

abstractions. So, it is important to understand these abstractions that are used to

represent the state of the system-application such as pods, services, deployments,

and namespaces.

7 https://containerd.io/docs/
8 https://cri-o.io/#what-is-cri-o

https://containerd.io/docs/
https://cri-o.io/%23what-is-cri-o

 15

CHAPTER 2

• Pods: Pods are the smallest deployable units of computing that you can create

and manage in Kubernetes. A pod is a group of one or more containers, with

shared storage and network resources, and a specification for how to run the

containers.

• Services: Services is just an abstract way to expose an application running on

a set of Pods as a network service. The question here is “Why don't we use the

pods itself?”. Kubernetes Pods are created and destroyed to match the desired

state of your cluster. So, they cannot have permanent IP. That is why we use

services that give as a permanent IP, that we can use to access our functionality

in our application. We have four types of Services in Kubernetes:

o ClusterIP (default): Exposes a service that is accessible only from

inside the Cluster.

o NodePort: Exposes a service with each Node's IP with a static Port. This

type of service is accessible from outside the cluster.

o LoadBalancer: It uses the cloud’s provider load balancer to expose the

service. This type of service is accessible externally.

o ExternalName: It maps the Service to the contents of a predetermined

externalName field by returning a value for the CNAME record.

• Deployments: Deployment is a way to describe the desired state of a pod or a

replica set. Deployment Controller changes the state of the environment by

deleting or creating replicas, until it achieves the desired state.

• Namespace: Namespace is just a virtual environment backed by the same

physical cluster.

2.4.4: Storage

2.4.4.1: Volume

On-disk, files in a container are ephemeral, which presents some problems for non-

trivial applications when running in containers. First if a container crashes the user will

 16

CHAPTER 2

lose all the data inside. Kubelet will restart the container with a clean state. Second it

creates some problems when we want to share files between the containers that run

in the same Pod. Kubernetes face these problems with the help of volumes.

Kubernetes offers different types of volumes. A pod can use any number of volumes

simultaneously. It can use both persistent and non-persistent volumes. Non-persistent

volumes are ephemeral which means that Kubernetes is going to delete them in case

a pod ceases to exist. However, Kubernetes does not destroy persistent volumes. To

use a volume, specify the volumes to provide for the Pod in .spec.volumes and declare

where to mount those volumes into containers in .spec.containers[*].volumeMounts.

2.4.4.2: Persistent Volume

Kubernetes wanted to abstract the details of how storage is provided from how it is

consumed. That is why K8s introduced two new API resources: Persistent Volumes

and Persistent Volume Claims. Persistent Volume (PV) is just another piece of

resource in the cluster, like a node is a cluster resource. You can provision this type of

storage as an administrator or dynamically with the help of storage classes. The

difference between PVs and Volumes is that PVs have a lifecycle independent of any

individual Pod that uses the PV. So even if the pod crashes, the linked PV will remain

untouched.

Persistent Volume Claims (PVC) is a request for storage by a user. It is like a Pod.

Pods consume node resources and PVCs consume PV resources. Also, a pod can

request a specific level of resources (CPU and Memory) like a Claim can request

specific size and access modes (e.g., they can be mounted ReadWriteOnce,

ReadOnlyMany or ReadWriteMany). Each type of storage can accept specific access

modes.

• ReadWriteOnce: The volume can be mounted as read-write by a single node.

• ReadOnlyMany: The volume can be mounted read-only by many nodes.

 17

CHAPTER 2

• ReadWriteMany: The volume can be mounted as read-write by many nodes.

2.4.4.3: Storage Class

Storage class is the dynamic way to provision a Persistent Volume. A cluster

administrator can define as many storage classes as needed inside the cluster. This

resource is provided as an Object from the storage.k8s.io API group. Each one of these

storage classes has a provisioner (AWSElasticBlockStore, NFS 9 , Local etc.) that

decides what volume plugin is going to be used for the provisioning of a persistent

volume. Also, we can provide some parameters for the specific provisioner. Finally, we

can specify a reclaim policy which is going to decide what will happen to the PV after

it has been released from its claim (PVC).

2.5: Machine Learning

2.5.1: Overview

Machine learning is one of the most important fields in modern computer science. It is

a vast field with many applications in our everyday life (medicine, e-commerce, banking

etc.) which grows everyday more and more. Although machine learning is part of

computer science, it differs from traditional computational approaches where

algorithms are built to calculate things or solve problems. In machine learning,

algorithms are used to train the computer, based on some data inputs, and produce

models that will be used for decision making processes. But how does it work under

the hood? Each Machine Learning application can be broken down in a sequence of

steps [10] that describe the application from inception to practical application.

9 NFS: Network File System

 18

CHAPTER 2

2.5.2: Steps of machine learning application

Step 1: Data Collection

This is by far the most important step for developing the machine learning model. A

user needs to gather relevant data that will help to create the most appropriate model

for his/her purpose. Mistakes such as choosing the incorrect features may lead to an

ineffective model. That is why it is crucial that the necessary considerations are made

when gathering data as the errors made in this stage would only increase as we

progress to later stages.

Step 2: Preparing Data

Once the user has gathered the data, he/she needs to prepare them. The user needs

to make sure that his/her data are not biased, and they are random. This is because

the users do not want the order to affect the model’s decision. Also, the user needs to

make sure that the data are not skewed over a specific feature .This skewness may

give correct results for a particular feature but not for the rest of them. Finally, he/she

needs to break the data into two parts. The training data that are going to be used for

the model training, and the test data for evaluation purposes. Someone can

understand that well-prepared data will improve the model’s efficiency and accuracy at

the prediction step.

Step 3: Choosing a Model

This step is also important for the model, because here it will be decided what logic the

model will use to train itself. There are different and various models, developed by data

scientists and researchers, that have been created for various purposes. Some of them

are well suited for image data, others for numerical data, others for sequences (text

 19

CHAPTER 2

etc.) and other text-based data. Someone needs to make sure that the right choice is

made.

Step 4: Training

The core of a machine learning application is the training step. Here the step uses the

training data from the Data preparation step, to train the model to differentiate between

the features. The process of training is iterative. A user trains the model repeatedly

with different input from the data, until the model reaches the desired level of accuracy.

So, anyone can understand that this is a long process with a lot of experimentation.

Step 5: Evaluation

Once the training is complete, it is time to see if the model is any good, with Evaluation.

In this step the user uses the test data that has never been used for training. This

metric will show how the model might perform in real world situations, where data are

not known to the model. If the results of the evaluation step are not satisfactory, he/she

needs to revisit the prior steps, and find the root that causes this underperformance of

the model.

Step 6: Hyperparameter Tuning

At the Hyperparameter Tuning step someone can change different parameters to

improve the model accuracy. Two important parameters are the number of training

steps and learning rate. The first one is how many times we run through the training

dataset during training. This may lead to higher accuracy. The second one is important

for the size of each step at each iteration. How much a user shifts his/her step, based

on the information from the previous training step. There are a lot more parameters

that we can use for this step but those two are the most important ones. All these

parameters play an important role in how accurate the model can be.

 20

CHAPTER 2

Step 7: Prediction

The final step of a machine learning application is the prediction. This is the step where

the user uses the model for real world and practical applications. The model should be

ready to answer questions, without human interference. This is also the challenge for

machine learning applications, to be able to outperform or at least match human

judgment in different scenarios.

These seven steps describe a complete real world machine learning process. This is

a highly collaborative process that demands efficient communication between

engineers that are working on each step. Below we will describe a tool that can break

these steps in different components and how it connects these components for an

efficient workflow.

2.6: Kubeflow

2.6.1: Overview

Kubeflow [11] is a free and open-source project designed to orchestrate complicated

Machine Learning workflows running on Kubernetes. Kubeflow was first released in

2017, built by developers from Google, Cisco, IBM, Red Hat and more that continue to

contribute to Kubeflow project. Since then, it has expanded into a multi-architecture,

multi-cloud framework for running huge machine learning pipelines. But what exactly

is Kubeflow?

Kubeflow is just a platform for data scientists who want to build and experiment with

machine learning pipelines. Also, Kubeflow can help operational teams and machine

learning engineers to deploy their machine learning workflow to different environments

for development, testing and production-level serving. We can think of it as a machine

 21

CHAPTER 2

learning toolkit for Kubernetes that simplifies the deployment process of machine

learning applications on K8s.

2.6.2: Architecture

Kubeflow aims to provide a cohesive experience regarding creation, management, and

deployment of machine learning applications on Kubernetes. To achieve this, it

provides a wide set of machine learning tools that are deployed on top of Kubernetes.

We know that machine learning workflow consists of several stages, that is why we

have different Kubeflow tools for each of these stages. Some of these tools are Jupyter

Notebooks, TensorBoard, kfServing, Pipelines and more.

Reference must be made to the Central Dashboard that Kubeflow Deployment

provides us. This Kubeflow UI provides quick access to Kubeflow components that are

deployed in our cluster. Except for the shortcuts, this component displays a list of

recent pipelines, notebook servers, and metrics, that gives us an overview of our jobs,

and our cluster.

Below we briefly describe the UI components of the central dashboard - Kubeflow UI.

• Home: Kubeflow Dashboard for navigation between components.

• Pipelines: Kubeflow Pipelines dashboard (Upload, Deletion, management of

pipelines).

• Notebook Servers: Dashboard for creation and delete of Kubeflow Servers.

• Katib: Tool for hyperparameter Tuning.

• Artifact Store: Tool for tracking artifact metadata.

• Manage Contributors: Share user access across namespaces.

• GitHub: Open-source project repository

 22

CHAPTER 2

2.6.3: Notebook Servers

One of the most important components in Kubeflow is Notebook Servers. Enterprise

environments have benefited a lot from the integration of Jupyter notebooks in the

Kubeflow. First, it is much easier to deploy a Jupyter notebook directly into our cluster,

rather than locally on our workstations. It is much faster and simpler. Each admin can

provide a standard notebook image for each developer in their organization. After that

with some credentials each user will have access to different notebooks. Overall,

Kubeflow - hosted notebooks are better integrated with other components while

providing extensibility for notebook images.

Below we set up an example Notebook within our cluster.

When we first login, we see the home page of the central dashboard. In the left-hand

panel we select the Notebook Servers choice to access the Jupyter Notebook

services that are deployed in the Kubeflow.

Figure 5: Kubeflow Central Dashboard

 23

CHAPTER 2

Before we select the NEW SERVER choice, we must select the namespace that

corresponds to our Kubeflow Profile. For this example, we created a profile called:

kubeflow-nickangelopoulos as we can see from the image below.

After that select, the NEW SERVER button on the Notebook Server page to access the

configuration page where we can specify the details for our new Notebook Server.

Figure 6: Notebook Server UI

Figure 7: Jupyter Notebook Configuration Page

 24

CHAPTER 2

Here we can specify some details for our Notebook Server:

• Name: Enter the name of our choice.

• Namespace: Kubeflow automatically updates the value in the namespace field

to be the same as the namespace that we selected in a previous step.

• Image: We specify the docker image of our choice, for the baseline deployment

of our notebook server. We have two choices:

o Custom Image: We must specify a custom image in the form of

registry/image: tag.

o Standard Image: Kubeflow provides us with a list of available images,

that include typical machine learning packages that we can use within

our Jupyter notebooks. For this example, we selected one from the

standard Images.

o Resources: One of the most important details we can specify are the

resources of the Jupyter Notebook. How much CPU or MEMORY this

Notebook can utilize?

o Workspace: Finally, we can specify a workspace volume to hold our

work inside the Jupyter Notebook. This type of workspace is persistent,

which ensures that you can retain data even if you destroy the notebook.

These are the necessary details we must specify in this configuration page. This page

provides us also, with some optional choices, that we are not going to analyze here.

After that we press the Launch button and wait until the Notebook is deployed like the

image below.

Figure 8: Deployed Notebook Server

 25

CHAPTER 2

2.6.4: Kubeflow Pipelines

In general, in programming, a pipeline is a set of data processing components,

connected in a series. Each component has some outputs that are the inputs of another

element. In Kubeflow we have the Kubeflow Pipeline which is a description of a

Machine Learning workflow. This component is the most important component in

Kubeflow that helps Machine Learning engineers and operations systems to describe

their Machine Learning workflows as a simple graph. From a technical perspective

when we run a machine learning pipeline, the system launches one or more

Kubernetes Pods, corresponding to the steps of our workflow.

Below we represent a simple example of a pipeline. The example pipeline is one of the

Kubeflow’s examples called [Tutorial] Data passing in a python component. First,

we click the name of the sample on the Pipeline UI.

After that we see the pipeline in the form of a graph, where each component connects

with other components with arrows. There we see that we have some choices for our

pipeline.

Figure 9: Pipeline UI

 26

CHAPTER 2

• Create run: Create a sample run for our pipeline.

• Upload Version: Upload a new version of a pipeline, where we could have

made some modifications for this specific pipeline.

• Create experiment: An experiment where we can run a lot of run samples.

• Delete: Remove this pipeline from our workstation.

After the end of the experiment, we click the name of the run from the experiment's

dashboard. This leads us into a graph dashboard, where we can explore the graph and

other aspects of our run, by clicking on the components.

Figure 10: Machine Learning Pipeline in the form of a graph

 27

CHAPTER 2

After we have seen this example, we can understand that Kubeflow pipelines want to

create an environment where the machine learning development and management will

be simpler and easier. To achieve this, they provide this end-to-end orchestration

system which is easy to understand and use with the help of UIs.

2.6.5: Software Define Kit

If we want to define SDK, we could say that it is a collection of software development

tools in one installable package. Kubeflow provides us with an SDK that consists of

python packages that we can use to specify and run our Machine Learning workflows.

These tools help us to convert our python machine learning application into a YAML

file that the pipeline interface will understand. Also, some of these packages help us

use already existing YAML, pipeline components from other developers. Below we will

name and give a definition for some of these packages.

Packages

• kfp.compiler: Consists of classes and methods that will be used to compile

pipeline DSL into a workflow YAML.

Figure 11: Graph after the end of the experiment

 28

CHAPTER 2

• kfp.components: Consists of classes and methods that will be used to interact

with pipeline components.

• kfp.dsl: contains the domain-specific language (DSL) that you can use to define

and interact with pipelines and components.

• kfp.client: Contains Python libraries that every user can use to interact with the

Kubeflow Pipelines API.

2.7: Metrics & Display

Monitoring your jobs that run inside a cluster is very important. A user can understand

which node or specific job consumes more resources, and after that the user can

improve the performance or optimize the deployment, based on the information. There

are many tools on the internet that can scrape data from a running cluster. The cluster

at this Thesis uses Prometheus for scraping the metrics and Grafana to display them.

2.7.1: Prometheus

Prometheus [12] is the de facto standard metrics solution in the cloud . It is an open-

source project that provides a monitoring and alerting toolkit based on a time-series

data model. Since its inception in 2012, many companies and organizations have

added Prometheus in their stack. Also, like Kubernetes, that we analyzed before,

Prometheus joined Cloud Native Computing Foundation in 2016 which is a vendor

home for fast-growing open-source projects.

Prometheus collects data from different services and stores them inside his server with

a specific format. Metric name and a millisecond-precision time stamp. This storage

system allows Prometheus to query metrics fast and efficiently. Unlike other

monitoring tools which communicate with an agent deployed on the service’s host

machine, Prometheus uses exporters to receive the metrics. Also, it provides an

 29

CHAPTER 2

interface that a user can use to query metrics from the server. This interface is

presented with an image below:

2.7.2: Grafana

Grafana [13] is a powerful tool for displaying time-series data. It is the platform that

you need when you want to visualize and analyze the metrics. Grafana query the

metrics from the Prometheus server and display them to the dashboard. Also, it comes

with the ability to upload existing dashboards with unique ids based on your needs.

Below we can see an example of the dashboard that this system uses.

Figure 12: Prometheus UI

Figure 13: Grafana Dashboard

 30

CHAPTER 3

CHAPTER 3: IMPLEMENTATION

3.1: Introduction

In this chapter, we are going to cover all the steps that we followed, to achieve the

implementation of this algorithm. More specifically, we divided our implementation in

three stages. In the first stage, we talk about the support infrastructure, on which all

the tools were installed and analyze each of these tools. In the second stage,

we analyze the machine learning application that was used for the whole research.

Finally, we are describing the process, and the development of the algorithm, from

Kubernetes Scheduler to our implementation.

3.2: Stage 1: Setup Infrastructure

3.2.1: NITOS Testbed

For our implementation we used 3 nodes, from the NITOS testbed [14]. The NITOS

Testbed consists of 2 wireless testbeds, one indoor and one outdoor, for

experimentation with heterogeneous technologies. It was conceived and developed

from NITLab (Network implementation Testbed Laboratory). The indoor testbed

consists of high-processing-powered and cutting-edge nodes and is located at NITLab

building.The outdoor testbed is located at the exterior of University of Thessaly (UTH)

campus building. It features WiMAX, Wi-Fi, and LTE support. Both testbeds are a

powerful tool that enables the experimentation and the implementation of different

algorithms and protocols, in a large-scale environment.

 31

CHAPTER 3

3.2.2: Tools & Versions

3.2.2.1: Kubernetes

The cloud consists of many computers, who must be connected with some kind of

networking, in order to utilize their resources like a group and not as single entities.

Kubernetes is the best tool for this job. It can create a group of computers, called

clusters, so that users can deploy their applications in the form of containers. So, on

top of our three nodes infrastructure, we installed Kubernetes. Specifically, we

installed the version 1.14.10 because this version was compatible with the Kubeflow

version 1.0 that we installed above the Kubernetes cluster.

After the installation process we had to find a way to create a viable Kubernetes cluster.

For this purpose, we used the Kubeadm [15] tool. This is a great tool, for an automatic

way of setting up a cluster for testing and experimentation purposes. Below we display

the commands that we should run to start our Kubernetes cluster.

Figure 14: NITOS Architecture

 32

CHAPTER 3

$ kubeadm init --apiserver-advertise-address=10.64.X.X --pod-network=192.168.0.0/16

With the above command we initialize the control plane node, which is the master node

of our cluster. The first argument specifies the network interface that will advertise the

API server of the control plane. This argument is optional, which means that if we do

not define it, it is going to be the default gateway of the node. The second argument,

which is also optional, specifies the range of IPs for the pods that is going to be

created.

Now it is time for kubeadm to run some pre-flight tests, to ensure that the computer is

ready to host a Kubernetes cluster. These tests will expose warnings and exits on

errors. After these tests, the command will automatically create the necessary cluster

resources that a minimum viable Kubernetes cluster should have, to run smoothly.

These components are: kube-scheduler, kube-controller-manager, kube-

apiserver, etcd for the control plane and kubelet, kube-proxy and container runtime

for all nodes. Below we display the results from our terminal.

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

 mkdir -p $HOME/.kube

 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

 sudo chown $(id -u):$(id -g) $HOME/.kube/config

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 10.64.93.90:6443 --token 6uaumt.przrqldf307zh9q0 \ --discovery-token-ca-cert-

hash sha256:ce044c74233831bf9e779edf798e373aa88217e7df90849fd73ed6c0a0b87f5d

We can easily understand that the control-plane has been initialized successfully with

the necessary components. Next, we must create the ./kube directory and copy the

configuration file from the master node into our machine. This will enable us to send

 33

CHAPTER 3

requests to our cluster as regular users through the API Server. After the initialization

of the control plane, it is time to add some workers inside our cluster. Kubeadm

provides us with the join. This simple command lets us add a new worker node, inside

our cluster. The user is now ready to check the status of the cluster with the command

below. This command will list the nodes in our running cluster and provide us

with some information about them, like the duration that the node is active, the status,

the role of the node and the version of Kubernetes.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

node081 NotReady master 18m v1.14.10

node082 NotReady <none> 2m42s v1.14.10

node083 NotReady <none> 114s v1.14.10

From the above list of nodes , we observe the Not Ready status, at the status column.

This is because we have not configured our nodes with a network policy, and they will

not be able to communicate with each other. So, for network configuration, we choose

the Calico Network. This is a container network solution for Kubernetes clusters. To

deploy this network, we must create the calico.yaml , which we took from the official

calico website10.

$ kubectl create -f https://docs.projectcalico.org/v3.14/manifests/calico.yaml

After the deployment of the Calico Network, we can check the status of Kubernetes

cluster, with the same kubectl get nodes command and see that all the nodes are

ready now to host some pods, except of course, the master node. Finally, we can check

the running pods inside our cluster with the command below. This command informs

us about the health of our pod, the namespace that is deployed, how many times it

restarted before starting to run, and the age of the pod.

10 https://www.projectcalico.org/

https://www.projectcalico.org/

 34

CHAPTER 3

$ kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

kube-system calico-kube-controllers-865795499c-6gqcb 1/1 Running 0 18m

kube-system calico-node-7fzvg 1/1 Running 0 18m

kube-system calico-node-sltwl 1/1 Running 0 18m

kube-system calico-node-vthgd 1/1 Running 0 18m

kube-system coredns-6dcc67dcbc-jkqgn 1/1 Running 0 46m

kube-system coredns-6dcc67dcbc-pwjnk 1/1 Running 0 46m

kube-system etcd-node081 1/1 Running 0 45m

kube-system kube-apiserver-node081 1/1 Running 0 45m

kube-system kube-controller-manager-node081 1/1 Running 0 45m

kube-system kube-proxy-7rxc5 1/1 Running 0 30m

kube-system kube-proxy-fvvxn 1/1 Running 0 46m

kube-system kube-proxy-qkkkl 1/1 Running 0 29m

kube-system kube-scheduler-node081 1/1 Running 0 45m

3.2.2.2: Kubeflow

As we already described, in the Chapter 2: Technical Background, every machine

learning application can be broken down in a sequence of steps. Each step has

different resource requirements like individual operations. So, our idea was to find a

tool that would allow us to define each ML step as a separate process. The perfect tool

for this job is Kubeflow. This platform with the pipeline feature will give us the

opportunity to define components that will encapsulate each ML step. In general,

each one of these components is a kubernetes container inside our cluster. But more

on that in the next Stages. Now we must deploy Kubeflow on top of the Kubernetes

cluster that we initialized in the previous section.

Before starting with the deployment process, it is important to say that the Kubeflow

deployment requires dynamic persistent volume provisioning. We need a

StorageClass for that purpose. So first we create a Storage class deployment. By

default, the provisioner will be installed at the namespace local-path-storage.

 35

CHAPTER 3

$ kubectl apply -f

https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-

storage.yaml11

After the installation we can check if the storage class is deployed successfully:

$ kubectl get sc

NAME PROVISIONER AGE

local-path (default) rancher.io/local-path 4s

Storage class needs to be default, to be able to provision resources dynamically. Now

it is time to follow the installation process for the Kubeflow deployment. First, we should

download the binary kfctl. This binary will be used to create the deployment. After that

we create the environment variables, that is going to make the installation process

much easier:

$ export KF_NAME= Kubeflow

$ export BASE_DIR= ~/Kubeflow/

$ export KF_DIR= ${BASE_DIR}/${KF_NAME}

We can check the resources deployed in the Kubeflow namespace. These are only a

few of the pods from the Kubeflow deployment.

$ kubectl -n kubeflow get all

NAME READY STATUS RESTARTS AGE

admission-webhook-bootstrap-stateful-set-0 1/1 Running 0 15m

admission-webhook-deployment-64cb96ddbf-v9k88 1/1 Running 0 15m

application-controller-stateful-set-0 1/1 Running 0 16m

argo-ui-778676df64-jbk5d 1/1 Running 0 15m

…….

tf-job-operator-7d7c8fb8bb-gkqhd 1/1 Running 0 15m

workflow-controller-945c84565-9f5kq 1/1 Running 0 15m

11 https://github.com/rancher

https://github.com/rancher

 36

CHAPTER 3

Like any application that we want to access outside of our cluster, Kubeflow needs to

have a NodePort Service that exports its application. As we already mentioned,

NodePort is a Type of Kubernetes Service that enables an application to be accessible

outside of the cluster. This is provided to us from the istio-ingress gateway service at

port 31380.

3.2.2.3: Prometheus & Grafana

The final step, in the setup process, is to deploy monitoring tools for research purposes.

As we already mentioned, there are many tools for this job. However, Prometheus and

Grafana are the best ones, because they integrate very well with Kubernetes.

Together, they provide a set of tools and graphs that makes fetching and display of

metrics very simple. Grafana query the data that the Prometheus server exports from

each node and depicts them on different types of custom graphs.

There are many ways to install applications on top of Kubernetes clusters, but Helm is

the easiest one. Helm is a Kubernetes package manager. It is the Kubernetes

equivalent of apt command in Ubuntu machines. Helm gives us the opportunity to

install packaged applications in the form of charts. Each of these charts are simple

Kubernetes YAML files, combined in a single package that can be advertised in your

Kubernetes cluster. This makes the installation process of containerized applications

much easier and simpler.

After the Helm installation we are ready to start with the Prometheus-Grafana

installation process. The first step is to add the chart’s repositories. Each repository

contains the charts for each tool and is maintained by open-source contributors. The

second step is to fetch the values of the charts locally to our computer, to make some

configuration changes. We must export the Prometheus and Grafana services outside

of our cluster. For this purpose, we again use a NodePort Service that is provided by

Kubernetes. We are going to export those two services at two different ports (31323 -

 37

CHAPTER 3

31322) . Finally, we need to deploy the values.yaml to Kubernetes cluster and wait

until both tools are up and running.

Prometheus-Steps

• helm repo add prometheus-community

https://prometheus/community.github.io/helm-charts

• helm inspect values prometheus-community/prometheus >

/tmp/prometheus.values

o vim /tmp/prometheus.values

o search: Service

o Service(NodePort):

▪ nodePort: 32323 (external port)

• helm install prometheus-community/prometheus --name prometheus --

values=/tmp/prometheus.values

Grafana-Steps

• helm repo add grafana https://grafana.github.io/helm-charts

• helm inspect values grafana/grafana > /tmp/grafana.values

o vim /tmp/prometheus.values

o search: Service

o Service(NodePort):

▪ nodePort: 32322 (external port)

• helm install grafana/grafana --name grafana --values=/tmp/grafana.values

 38

CHAPTER 3

Now we can access Kubeflow, prometheus and grafana dashboards from the URLs

below.

TOOLS URLs

Kubeflow Dashboard http://cluster_node_ip:31380

Prometheus Dashboard http://cluster_node_ip:32323

Grafana Dashboard http://cluster_node_ip:32322

3.3: Stage 2: Machine Learning Application

3.3.1: Application Description

After the deployment of the tools in the Kubernetes Cluster, we had to create or find a

machine learning application which we would use both at the research and at the

experimental stage. This application was selected according to some criteria that we

needed for the research:

• The application should be able to break in the steps that constitute a machine

learning application(Data Fetching, Training, Evaluation etc.), with the help of

Kubeflow, to deploy each step as a separate process.

• Also, we should be able to change the computational power that the training

step needs, by modifying only some parameters. This will help us take

measurements and evaluate the algorithm in the experimental stage.

For our scenario we used one of the Kubeflow pipelines examples. This example was

already converted in a Kubeflow pipeline, which helped us a lot. The only thing that we

Table 1: Access URLs for Kubeflow, Prometheus and Grafana

 39

CHAPTER 3

had to do, was to modify the code and the steps according to our needs. The purpose

of the example was to train an initial model with XGBOOST algorithm, evaluate it and

calculate the metrics. If the model error was too high, then more training was

performed until the model was good. For this sample, the Taxi Trips dataset from

Chicago12, was used and the predictions were made for the taxi drivers tips. So, the

next step was to modify this pipeline to match our needs. After the changes, the

Machine Learning application included the following steps:

• Data Fetching: This step is responsible for fetching the Train and Test data

from the Taxi drivers dataset. The first one will be used for the training process,

and the second one for the evaluation. Here it is important to emphasize that

the data fetching was broken into two different processes with the help of

Kubeflow. One for fetching Training Data, and the other one for fetching Test

Data.

• Training: This step uses the same algorithm as the example, the XGBOOST

algorithm. XGBoost stands for “Extreme Gradient Boosting”. It is a decision-

tree based, machine learning algorithm. This algorithm is very popular with

structured/tabular data. From technical perspective it was used the xgboost

library13, which is an optimized distributed algorithm, designed to be flexible and

portable.

• True Values Preparation: The Preparation step is also broken down into two

different processes like the Data Fetching Step. This process cleans the test

data by removing the not needed header. Next, it extracts the true values

column from the data set , which will be used at the evaluation step.

• Prediction: This step is responsible for taking the model that the training step

generated and the test data and producing predictions. These predicted values

are going to be used in the next step.

12 Chicago Taxi Trips Dataset
13 https://xgboost.ai/

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://xgboost.ai/

 40

CHAPTER 3

• Evaluation: Last but not least, it evaluates the prediction with the help of true

values that it extracted from a previous step and creates an accuracy

percentage.

According to the above, this application satisfies one of the two criteria of the research

requirements, that we listed above. For the second need, the XGBoost provides two

parameters that a user can modify, to change the computational demands of the

application. These parameters are the learning rate and number of iterations.

• Number of iterations: Number of training steps. More steps mean, heavier

training process.

• Learning Rate: It is a configurable hyperparameter, used in the training

process. The learning rate controls how fast the model is adapted to the

problem. It is like the magnitude of each training step in a training process. In

general, someone needs the lowest possible learning rate. However, this means

that it needs more steps, to reach the optimal training (heavier training process).

3.3.2: Deploy Process

After the explanation of the used machine learning application, it is time to deploy it,

as separate processes with the help of Kubeflow. As already mentioned, Kubeflow,

provides a Software define kit that includes a set of packages, which a user can use

to convert the machine learning application in a Pipeline. From these packages we

used the kfp.dsl.pipeline for defining the pipeline inside a python file:

Figure 15: Machine Learning Pipeline definition - Python file

 41

CHAPTER 3

For each component of the pipeline, we used the library components from the kfp

package. This lets us import all the YAML files for each component of the machine

learning app. Here it is important to emphasize that all the YAML-pipeline components

were taken from the Kubeflow GitHub repository14 which is open-sourced. An example

of such an addition is the following:

Also, after the addition, we need to define and use this component inside the pipeline.

Below we provide a code example of adding the above component as a pipeline step.

All the above variables (where,select,limit) are predefined variables from the imported

YAML file. The first one specifies what part of the dataset we want. The second one

declares the features that we want and the last one the maximum amount of data.

In the same way, we imported and declared the other components of the machine

learning application. The Fetching of test data, the training step, values preparation

step ,the prediction step, and the evaluation step. After defining the pipeline in Python,

we must compile the pipeline to an intermediate representation before we can submit

it to the Kubeflow. This representation is a workflow specification in the form of a YAML

14 https://github.com/kubeflow/kubeflow

Figure 16: Import example of Pipeline component

Figure 17: Declaration example of Pipeline component

https://github.com/kubeflow/kubeflow

 42

CHAPTER 3

file compressed into a .tar.gz file. For this process we need to install the Kubeflow

Pipelines SDK and run the below command at the terminal:

$ dsl-compile --py=demo_machine_learning.py --output=demo.tar.gz

Next, we upload the demo.tar.gz file to the Kubeflow Dashboard and generate the

pipeline. The process is the same as we have shown at the 2.6.4: Kubeflow Pipelines.

Now we can look at the graph of our application in the Pipeline UI.

3.4: Stage 3: Scheduling Algorithm

3.4.1: Introduction

Kubernetes is an ideal tool for running cloud applications. But how does it decide where

each application will be executed ? kubernetes implements its own scheduling module.

This module is called Kubernetes-Scheduler and it is responsible for assigning

pods(applications) to suitable nodes. This chapter analyzes the kubernetes algorithm

behind kube-scheduler and how it was extended , with the addition of the algorithm.

Figure 18: Machine Learning Application in the form of a graph

 43

CHAPTER 3

3.4.2: Kubernetes Scheduling Algorithm

Kube-scheduler is running as an independent component usually inside the master

node. For every newly created pod or other unscheduled pods , kube-scheduler selects

an optimal node for them to run. However, every pod and every container, inside each

pod, has different resource requirements. So, the kube-scheduler must do some

filtering and selection to find the optimal nodes.

Kube-scheduler continuously monitors a waiting queue that contains all the pods that

need allocation. After that it follows a 2-step operation to select a node for each pod:

1. Filtering: The first step is called the filtering. In this step, the kube-scheduler

verifies which nodes can run this pod and discards the other ones. For this

purpose, it uses some properties called predicates. An example of a predicate

is the PodFitsResources. This filter checks whether a candidate Node has

enough available resources to meet a Pod's specific resource request. After this

step, the node list contains any suitable Nodes, often, there will be more than

one. There is always a possibility that a pod deployment might not be

scheduled. In that case, kube-scheduler triggers an event that explains the

reason for failed scheduling and the pod remains unscheduled.

2. Scoring: if the list of suitable nodes contains more than one node, then the

kube-scheduler forwards at the node priority calculation (Scoring). At this step,

kube-scheduler takes the list of nodes from the filter step, and scores them

based on some properties called priorities. An example of a priority is the

NodeAffinityPriority. The node is scored according to node-affinity rules .For

example, a node with a specific label is scored higher than others. The node

with the highest scoring is chosen to run the specific pod. With this scoring step

the algorithm selects the most suitable node for our pod.

 44

CHAPTER 3

Finally, kubernetes scheduler assigns the pod to the highest-ranking node. If there is

more than one node with equal scores, then it selects one node at random. After that

Kubelet is responsible for starting the pod inside the node.

Another great feature of Kubernetes, that helps Kube-scheduler make better decisions

in terms of scheduling, is resource limits and requests. For example, machine

learning engineers can specify resource requests and limits on the machine learning

pod configuration file The resource limit is the maximum number of resources(CPU &

Memory)that can be allocated for the containers inside the pod. The resource request

is the minimum number of resources that a node should have to host this specific pod.

This feature is a double-edged sword, because if a developer sets up incorrect

resource rules, he/she may allocate resources that the pod does not need. It is a great

feature, but it should be used carefully.

3.4.3: Kubernetes-Scheduler-Extension

Although kubernetes-scheduler provides a range of features for scheduling pods inside

the cluster, the metrics applied in the decision-making process are limited. The kube-

scheduling services are using only CPU and RAM usage rates to decide. Kube-

scheduler does not concern about other parameters like Latency of the application.

However, it is crucial for latency-sensitive machine learning applications to be

deployed on nodes that can provide low response times in predictions. If this does not

happen, then the specific application can become unstable, and predictions may arrive

too late. So, in this thesis we propose an extension of Kubernetes scheduler, that

makes scheduling decisions, not only based on CPU-RAM, but according to Latency

sensitivity too. We named it LAS (Latency - Awareness - Scheduler). There are

three proposed ways of extending Kubernetes Scheduler [16]:

1. Adding new scheduler policies(predicates/priorities) to the Kube-scheduler and

recompiling it.

 45

CHAPTER 3

2. Implementing a different scheduling process, that runs instead of, or alongside

of Kube-scheduler.

3. Implementing a “scheduler-extender” , that the kubernetes scheduler calls as a

final step before making the decision.

The third approach is used when the scheduler needs to make decisions based on

resources that are not managed directly from Kubernetes Scheduler. Our scheduler is

based on the third approach, because it needs to make decisions based on network

parameters like latency. But how exactly does it work ? When the Kube scheduler is

trying to schedule a pod, the Kubernetes - extender allows an external process to filter

and/or prioritize the nodes. Below we display the structure of the configuration file, to

communicate with the extender through code. This extender config contains

parameters that will specify the behavior of the scheduling.

From top to bottom, we have the URLPrefix. This is the most important parameter,

which specifies the endpoint at which the extender will be available. After that we have

the three verbs. The FilterVerb, the PrioritizeVerb and the BindVerb. Each of these

verbs, specifies which function the extender will call, to do the filtering, or the prioritizing

or the binding. If any of these verbs are unspecified or empty, then it is assumed that

Figure 19: Extender policy file in Golang

 46

CHAPTER 3

the extender chose not to provide that extension. The arguments that are passed on

the FilterVerb on the extender are the set of nodes filtered through the Kubernetes

Scheduler predicates and the given pod while the arguments passed on the

PrioritizeVerb also contain the priorities of each node. Following the verbs, we have

the weight parameter. This integer is a numeric multiplier for the node scores that the

prioritize call creates. Next, we have two security parameters. The EnableHttps, which

specifies whether https will be used for the communication with the extender and the

TLSConfig which specifies the security configuration at the Transport Layer. Finally,

we have the HTTPTimeout. As the name implies, it is the timeout duration for a call to

the extender.

This was a brief description of the kubernetes scheduler extension. Next, we are going

to describe the logic and the usage of this extender to achieve the latency awareness

in the scheduling part.

3.4.4: Latency Awareness Scheduler

The Latency Aware Scheduler has been implemented by extending the Default

scheduler of Kubernetes through priority endpoint. This algorithm uses the help of

Kubernetes Labels and Latency values to make a scheduling decision. Labels are just

key/value pairs that are attached to objects, like pods, and help identify object attributes

that are important to users. So, to identify the attributes that are important for our

scheduling algorithm, we declare two types of labels for the pod configuration file , and

one type of label for the node, for each location. The logic for this implementation was

inspired by the paper Towards Network-Aware Resource Provisioning in Kubernetes

for Fog Computing applications [17].

Pod

The first type of label is named typeOfComponent. As the name implies, the algorithm

uses this label, to learn what type of machine learning operation we are trying to

 47

CHAPTER 3

schedule. The second type of Label is called OurLocation, and indicates the location

we are in. The LAS will use this Label to deploy that process as close as possible to

this location, with the help of Latency values.

Node

As we already mentioned we want to know the latency values of each node, for each

location. So, at each individual Node we add a Label for each location we want to

include into our algorithm with the respective Latency value . For example, let us say

we have Location A and Location B. First, we calculate the Latency from the Node to

each location. Let us say the latency for Location A is 0.8 ms and for Location B is 0.6

ms. We add a label {Location : LatencyValue} for each location. So, for our example,

we have two Labels:

• {LocationA:0.8ms}

• {LocationB:0.6ms}

Algorithm

As we already mentioned, each Machine Learning application has the following steps:

Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper-

parameter Tuning, Prediction. So, the algorithm first fetches the typeOfComponent

from the pod information. If it is not the prediction step, then we let the Default

Scheduler decide the optimal node for scheduling, based on its predicates and

priorities. If it is the Prediction Step, then we iterate through each node and find the

minimum Latency based on the Location that we have configured in the pod

configuration file at the OurLocation Label and return the node with the minimum

Latency. Below we display the pseudocode of the algorithm in Golang.

 48

CHAPTER 3

Figure 20: Scheduler Algorithm Pseudocode in Golang

 49

CHAPTER 4

CHAPTER 4: EXPERIMENTS & RESULTS

4.1: Introduction

In this chapter, some experiments are presented to observe the behavior of the

algorithm in a real machine learning application. In addition, it is found, through

diagrams and experiments, that scheduling with our algorithm , leads to shorter times,

in terms of latency and training time. Finally, it is important to emphasize that the

experiments were performed under different conditions, regarding the computational

requirements of the application at the training step and the size of each request at the

prediction step.

4.2: Infrastructure

As for the infrastructure on which the experiments were performed, it consists of 5

different machines. Three of the five computers are NITOS nodes, which we talked

about in the 3.2.1: NITOS Testbed section and the other two computers are virtual

computers set up on physical machines. The above computers consist of the following

Hardware features:

Computers CPU RAM HDD

3 NITOS Nodes 8 cores 16GB 120GB

2 VMs 2 cores 4GB 40GB

One of the 3 NITOS Nodes, operates as Master Node, and the other 4 as Worker

Nodes for the Cluster. These Nodes, use as operating system the Linux Ubuntu

18.04.04 LTS. The necessary tools were installed in them, to create a network

Table 2: Hardware specifications

 50

CHAPTER 4

between them so they can communicate. These tools are the Kubernetes, Docker,

and Calico Network. Also, the Kubeflow was deployed on top of the cluster to break

the machine learning Application into separate processes. Finally, the proposed

scheduler (LAS) was deployed as a default scheduler, in order to perform the

experiments. The pod configuration file for the LAS is shown at the Figure 22 below.

As can be seen, the pod is composed of two containers: the extender and the

scheduler. The extender is responsible for performing our proposed scheduling

operation and the scheduler is the Default Scheduler of Kubernetes. As we already

mentioned the extender needs the policy configuration file, in order to operate

smoothly. In Figure 21 below, the policy file for the LAS is shown. Finally, it is important

to emphasize that the same machine learning application was used for all the

experiments. This machine learning app was described in detail in chapter 3.3: Stage

2: Machine Learning Application.

Figure 21: Policy configuration file

 51

CHAPTER 4

Figure 22: LAS scheduler Pod (Container: Extender & Container: Default-Scheduler)

 52

CHAPTER 4

4.3: Experiments

4.3.1: Algorithm Verification

The first experiment was responsible for the verification of the algorithm. We wanted

to create an environment, in which our algorithm could take scheduling decisions

based on the latency values and the resource specifications of each node. For this

purpose, we located the nodes at three different locations (NITOS-CLOUD, NITLAB-

EDGE, HOME-EDGE). The nitos-cloud is the cloud infrastructure of nitos, the nitlab-

edge is located at NITLab building, and the last one is at my home. The three heavy

resourced nodes at the cloud location and the other two at the edge’s locations,

respectively.

As we already mentioned, the scheduler takes scheduling decisions based on the

latency labels that each node has. So, the next step was to assign latency values at

each node . For this purpose , the ping tool was used for finding an average RTT time.

These values were assigned to each node as a label so that delay values can be

considered in the scheduling process. Times are displayed in milli-seconds.

NODE NITOS-CLOUD NITLAB-EDGE HOME-EDGE

Nitos-Cloud-Node 0.289 2.669 89.667

NITLab-Edge-Node 41.966 42.551 9.8

Home-Edge-Node 2.669 0.306 42.551

Once the labels have been placed at the corresponding nodes of the cluster, it is time

to test the algorithm for different cases. According to the algorithm we can specify at

which location we want to deploy the application, with the help of OurLocation label,

inside the pod configuration file. However, the machine learning application is deployed

as Kubeflow pipeline Component. So, we cannot access the pod Configuration file

Table 3: Node Latency Values for each Location

 53

CHAPTER 4

directly. That is why the kfp package was used to specify the labels for each process

of the machine learning application. The number of cases that we tested the algorithm

is equal with the number of locations. Below we display how we must configure the

predict and the training step of our machine learning application, for each location.

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”)

Predict
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”)
• predict_proc.add_pod_label(“OurLocation”,”NITOS-CLOUD”)

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”)

Predict
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”)
• predict_proc.add_pod_label(“OurLocation”, “NITLAB-EDGE”)

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”)

Predict
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”)
• predict_proc.add_pod_label(“OurLocation”,”HOME-EDGE”)

The LAS algorithm has successfully scheduled both steps at the correct nodes, as we

can see from the kubectl get command. The heavy Training process at a cloud node,

which has more available resources(CPU & RAM), and the Predict Step at an edge

node, which is much closer to the location that the client requested at each case. The

kubectl get command returns a lot of information, but we display only the important

ones. It is important to say that inside the cluster, the names of each step of the

machine learning application have the format demo-machine-learning-app-

Table 4: Configuration changes at Machine Learning Pipeline-Location:NITOS-CLOUD

Table 5: Configuration changes at Machine Learning Pipeline-Location:NITLAB-EDGE

Table 6: Configuration changes at Machine Learning Pipeline-Location:HOME-EDGE

 54

CHAPTER 4

($uniqueId), because this is the name of the pipeline to which they belong. The

uniqueId parameter represents each step of the pipeline. However, in each command

below we refer to each step with the real name, for easy understanding.

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE

kubeflow Predict nitos-cloud-node

kubeflow Training Step nitos-cloud-node

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE

kubeflow Predict nitlab-edge-node

kubeflow Training Step nitos-cloud-node

$ kubectl -n kubeflow get pods

NAMESPACE NAME NODE

kubeflow Predict home-edge-node

kubeflow Training Step nitos-cloud-node

4.3.2: Measurements

Once we have verified that our algorithm is working properly and distributes the

individual processes according to the requirements in latency and resources, it is time

to take measurements. These measurements will provide information about the

behavior of the machine learning Application, regarding the execution time of the

training process and the response time of the prediction process. To achieve this , we

divided the measurements into two experiments. At the first one , we deployed the

Machine Learning application as an individual process, with all its steps inside a

container. Experiment was done first at an edge node and then at a cloud node of

our environment. After that we calculated the completion time of the training process

for light training and heavy training at each node, respectively. Also, we calculated

 55

CHAPTER 4

the latency response of the predict step for different sizes of requests. At the second

experiment, we calculated the same things but now having broken the application into

separate processes and using the LAS algorithm.

To achieve different conditions on the training process we modified the parameters

learning rate and num_iterations. For this experiment the below values were used:

Training Learning Rate Number of Iterations RMSE

Light Training 0.01 10000 0.07478

Heavy Training 0.001 100000 0.02578

As we can see from the RMSE column above, the Heavy Training achieves a smaller

Root Mean Square Error compared with the Light Training Process. Smaller RMSE

means smaller Prediction errors , which is better for the trained model.

Below we display the execution time in seconds, for each case and the response times

after the deployment of the predict step :

Table 7: Training Parameters

Chart 1: Training process (Default Scheduler) - Execution times in Seconds

 56

CHAPTER 4

From the charts above, we observe that in a cloud node where the resources are much

more, we achieve shorter execution times, than the edge node where the resources

are much less. The same thing is observed even at the light training case which

requires less computational resources. From the chart 1, we can see that the execution

time is almost half at the cloud node. However, the exact opposite happens in the case

of response time. There the edge node dominates, because it is much closer to the

end user who makes the various prediction requests. From the chart above, as we

increase the number of requested predictions, the response time of the edge node is

staying almost constant and close to half a second, while at the cloud node is

increasing and at 2.000 requested predictions it reaches almost 3 seconds.

From the above, it is understood that we cannot achieve at the same time short

execution and response time in a machine learning application, if we deploy it as a

single entity. That is why we broke the application into its steps with the help of

Kubeflow and after that we deployed it in the cluster with the help of our algorithm

(LAS).

Chart 2: Prediction process (Default Scheduler) - Latency values in seconds

 57

CHAPTER 4

At the second experiment, the machine learning application is deployed with the

supervision of our algorithm. This time , the heavy training process will be scheduled

at a cloud node, to achieve fast execution time, while the predict process will be

scheduled at the edge node based on the latency values as we saw at the Verification

Experiment. After that , the same measurements took place and showed us that both

time parameters are shorter for better utilization of resources and for better user

experience. Below we display another two charts for the execution and the response

time of the heavy training process. Here it is important to emphasize that for chart 4

we took measurements with even higher values of prediction requests, to show that

even for these values the time remains short and increases slightly for the edge node.

Also, we display the response time for the cloud , to realize the big difference.

Chart 3: Training process (LAS) - Execution times in seconds

 58

CHAPTER 4

Chart 4: Training process (LAS) - Execution times in seconds

 59

CHAPTER 5

CHAPTER 5: CONCLUSION & FUTURE WORK

In this final Chapter, we present the conclusion of our work. Following that, we

conclude by mentioning a few possible steps that should be done in the future, to

convert this algorithm into a more global scheduling choice.

5.1: Conclusion

All in all, the primary goal of this thesis was to implement an algorithm that would deploy

the various steps of a machine learning application in the appropriate locations,

depending on their needs (computational, latency). This would enable machine

learning developers to deploy their applications in a more performant-optimal way. The

goal was achieved as we can see from the experiments above. The algorithm was

implemented and tested, and the measurements showed how important it is to deploy

a latency sensitive application to the edge.

5.2: Future Work

In this Thesis a big step was taken in terms of creation and evaluation of the scheduling

algorithm. However, there are still some steps that need to be taken in the

implementation and the evaluation stage before it becomes a global way of scheduling

machine learning applications. Below we describe these future steps.

First, we need to make a more extensive evaluation of the algorithm. The number of

nodes and locations must be increased to evaluate the behavior of the algorithm in a

more “competitive” environment where more computers will compete for the scheduled

process . Also in future experiments, the number of applications should be increased

to study the scheduling decision of the algorithm in a more realistic environment where

 60

CHAPTER 5

there will not be only a single machine learning application that is trying to be

scheduled.

From implementation perspective some changes will be done in the latency

assignment part of the nodes. So far, we place the latency values on each node for

each location, with the help of the ping tool, hardcoded. This latency assignment

logic cannot be followed in a real environment where the locations and nodes will be

countless. A future goal is to assign these values with predictive techniques using

machine learning that is going to predict the latency for each location.

 61

BIBLIOGRAPHY

Bibliography

[1] Microsoft Azure, "What is cloud computing?," [Online].

Available: https://azure.microsoft.com/en-us/overview/what-is-cloud-

computing/.

[Accessed 13 May 2021].

[2] Red Hat, "What is edge computing?," [Online].

Available: https://www.redhat.com/en/topics/edge-computing/what-is-edge-

computing.

[Accessed 14 May 2021].

[3] L. Baresi, D. F. Mendonça and . M. Garriga, "Empowering Low-Latency

Applications Through a Serverless Edge Computing Architecture.," in 6th

European Conference on Service-Oriented and Cloud Computing (ESOCC),

Oslo, Norway, September 2017.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and

Challenges," in IEEE Internet of Things Journal, 2016.

[5] docker, "What is a Container?," 2013. [Online].

Available: https://www.docker.com/resources/what-container.

[Accessed 6 May 2021].

[6] D. M. "Silicon UK," 18 February 2016. [Online].

Available: https://www.silicon.co.uk/software/open-source/linux-kernel-cgroups-

namespaces-containers-186240.

[Accessed 16 April 2021].

 62

BIBLIOGRAPHY

[7] Wikipedia, "UnionFS," 10 January 2021. [Online].

Available: https://en.wikipedia.org/wiki/UnionFS.

[Accessed 18 April 2021].

[8] Docker, "Docker," 2013. [Online].

Available: https://www.docker.com/.

[Accessed 16 February 2021].

[9] Kubernetes, "Production-Grade Container Orchestration," 2021. [Online].

Available: https://kubernetes.io/.

[Accessed 15 March 2021].

[10] J. C. Martinez, "7 Steps of Machine Learning," 2 January 2020. [Online].

Available: https://livecodestream.dev/post/7-steps-of-machine-learning/.

[Accessed 14 April 2021].

[11] Kubeflow, "Kubeflow," 2018-2020. [Online].

Available: https://v1-0-branch.kubeflow.org/.

[Accessed 30 January 2021].

[12] Prometheus, "From metrics to insight," 2014. [Online].

Available: https://prometheus.io/.

[Accessed February 5 2021].

[13] Grafana, "Your observability wherever you need it," [Online].

Available: https://grafana.com/.

[Accessed 29 March 2021].

[14] NITLAB, "Network Implementation Testbed Laboratory," 2015. [Online].

Available: https://nitlab.inf.uth.gr/NITlab/.

[Accessed 15 November 2020].

 63

BIBLIOGRAPHY

[15] Kubernetes, "Overview of kubeadm.," 2018. [Online].

Available: https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/.

[Accessed 29 March 2021].

[16] Github - Kubernetes, "Scheduler Extender," 2019. [Online].

Available:https://github.com/kubernetes/community/blob/master/contributors/de

sign-proposals/scheduling/scheduler_extender.md.

[Accessed 10 May 2021].

[17] J. S. T. W. B. V. and F. D. T. , "Towards Network-Aware Resource Provisioning in

Kubernetes for Fog Computing applications," in IEEE Conference on Network

Softwarization (NetSoft), Ghent, Belgium, 2019.

