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Abstract 

 

The evolution of Machine Learning and the widespread dominance of its applications 

in our everyday lives has led to the need for more sophisticated algorithms and 

mathematical models for achieving optimal performance. However, boosting 

performance comes with higher demands in terms of computational power, while at 

the same time request processing of real-time applications becomes slower, as 

complex Machine Learning models are deployed further away from data sources. To 

overcome these undesired effects, along with the development of applications’ 

infrastructure, research has focused on the effective deployment of Machine Learning 

applications spreading from Cloud to the Edge and IoT devices. This leads in better 

performance, with the least possible energy consumption, and therefore lower cost. 

 

This diploma thesis focuses on the implementation of an algorithm that aims to 

distribute the components of a Machine Learning application across the computing 

continuum, to adapt effectively to the application’s needs. This way, energy intensive 

processes are deployed in a computer cluster featuring the necessary computing 

resources. At the same time, processes requiring low latency, but exhibit low cpu and 

memory utilization are deployed at the Edge, closer to the end user. This achieves 

better resource management, optimal performance, and overall better user 

experience. 
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Περίληψη 

 

Στη σημερινή εποχή οι εφαρμογές Μηχανικής Μάθησης αυξάνονται ολοένα και 

περισσότερο. Αυτό οδηγεί στην ανάπτυξη αλγορίθμων και μαθηματικών μοντέλων για 

την καλύτερη απόδοση αυτών των εφαρμογών. Καλύτερη απόδοση όμως, σημαίνει 

μεγαλύτερες απαιτήσεις ως προς την επεξεργαστική ισχύ που χρειάζονται, αλλά και 

στον χρόνο αναμονής της επεξεργασίας αιτημάτων. Η δημιουργία αυτών των αναγκών, 

σε συνδυασμό με την ανάπτυξη διαφόρων τεχνολογιών για την υποδομή των 

εφαρμογών, οδήγησε στην αναζήτηση για τεχνικές που κατανέμουν τις λειτουργίες 

αυτών των εφαρμογών ανάλογα με τις απαιτήσεις τους. Αυτό έχει ως αποτέλεσμα, την 

καλύτερη απόδοση, με την λιγότερη δυνατή κατανάλωση ενέργειας, αρα και μικρότερο 

κόστος. 

 

Σκοπός αυτής της διπλωματικής είναι η υλοποίηση ενός αλγορίθμου με στόχο την 

κατανομή των κομματιών μιας εφαρμογής Μηχανικής Μάθησης στην κατάλληλη 

συστοιχία υπολογιστών ανάλογα με τις απαιτήσεις της. Με αυτόν τον τρόπο, οι 

ενεργειακά απαιτητικές διεργασίες θα ανατίθενται σε συστοιχίες υπολογιστών που 

διαθέτουν τους αναγκαίους υπολογιστικούς πόρους. Παράλληλα οι διεργασίες που 

απαιτούν μικρό χρόνο αναμονής, και λιγότερους πόρους θα ανατίθενται σε συσκευές 

που βρίσκονται πιο κοντά στον τελικό χρήστη. Με αυτόν τον τρόπο επιτυγχάνεται 

καλύτερη διαχείριση των πόρων και βελτιώνεται η εμπειρία του χρήστη της εφαρμογής. 
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CHAPTER 1 

CHAPTER 1: INTRODUCTION 

 

1.1: Background 

 

The evolution of Machine Learning in the last few years, is rapid. From the old days, 

researchers were interested in having machines learn from data. They wanted to make 

computer systems that can mimic human behavior. That is what we call nowadays 

Artificial Intelligence. Out of the quest for Artificial Intelligence, a new subfield grew 

rapidly, Machine Learning. This field enables computer systems to learn from past data 

(historical, numbers, images etc.) or experiences without being explicitly programmed. 

It uses algorithms and network models with the purpose to increase the performance 

of computer systems and give accurate outputs. All these algorithms and models are 

often used by different people (developers, researchers etc.) to create applications that 

are going to be used by end users. We can give some examples of such applications. 

First, we have facial recognition that allows social platforms to help users tag and share 

photos between friends. Recommendation systems, with the help of machine learning, 

suggest movies or series to users, based on their preference from past movies and 

series selections. Finally, self-driving cars have dominated the field. Cars, powered by 

machine learning, navigate without human intervention. Already today, some people 

have bought self-driving cars and use them in their everyday life. 

 

Another field that has seen great growth in recent years is Cloud Computing [1]. 

Cloud or fog computing was the first network infrastructure that offered on-demand 

services through the internet. The most important ones are data storage and 

computational power, but the list does not stop there. Cloud computing brought 

revolution to the way we handle data, and the way businesses provide applications 

and services to their customers. Cloud Customers do not own the physical 

infrastructure, but they rent the usage from third party providers. There are a lot of 

applications of cloud computing in today’s world. Some of these applications are using 

the cloud for storage, like Gmail or Dropbox, others for networking like healthcare 
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services, and others just for virtual machines that are hosted in the cloud. The 

popularity of cloud computing grows day by day due to numerous benefits and we are 

going to see a lot more people integrating their applications to the cloud as the time 

passes. 

 

As we mentioned before, cloud computing services are increasing rapidly as we 

discover new ways to use them. However, cloud computing users as they go deeper, 

and use more of these services, will face limitations such as higher latency, network 

congestion and lower bandwidth that will prevent technology from fulfilling business 

requirements. Because of that, and because of the fast evolution of IoT technology, 

and end devices, a new data center infrastructure rose. This new type of computing 

was named Edge Computing [2]. The idea behind edge computing is distributed 

computation and data storage across the entire network, instead of centralizing it, into 

cloud. This aims to mitigate the latency and bottlenecks of an application and provides 

better user experience. Today, the use cases of edge computing are too many. One 

important example of edge computing use case is the Smart Grid. Sensors and IoT 

devices are connected with an edge infrastructure and provide better energy 

consumption. Another important example is content delivery networks. You may have 

seen them as CDNs which is their abbreviation. CDNs are caching content (e.g., music, 

video stream, web pages) at the edge, which provides lower latency and flexibility. 

These are only a few of the examples of edge computing that we meet every day, but 

it helps us understand how important it is. 

 

Separately, each of these topics make a profound impact in the world. However, many 

times, they are combining their strengths to create some form of a computing 

continuum on which disruptive machine learning applications can be built. 
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1.2: Motivation 

 

Machine learning applications, as the years go by, become more and more demanding 

in terms of the processing power they consume. Many of these applications are 

processing large amounts of data and performing heavy processes to achieve the 

desired output. Also, as if the processing power requirements were not enough, some 

of them require low latency, to provide better user experience. So, these two 

requirements raise the question: Where should we deploy our machine learning 

application? To understand how challenging the selection of an infrastructure, for such 

applications, is, we will use an example of real-time application. 

 

One application that combines heavy computations and the need of low latency is an 

example of augmented reality application [3]. This real-time application explores the 

points of interest (POIs) that a tourist is currently visiting. This application involves 

heavy image processing that extracts features from captured images and a trained 

network-model that matches features from an extensive object catalog. This is a 

perfect example for our case because it is computation-intensive and latency-sensitive. 

An application like that is demanding a lot of resources, something that a home 

computer cannot provide. Also, to provide a quality experience to the end user, some 

functionality needs to be close to the user. For the purpose of this Thesis, we are going 

to analyze only the choices of cloud and edge infrastructure. 

 

One idea is to deploy this application to the cloud. There, there is the illusion of infinite 

resources, thanks to Horizontal Scaling. So, an operation like image processing will be 

done relatively fast. However, while the cloud can provide vast computational 

resources, accessing those resources may involve multiple hops through the network. 

This will lead to an increase of latency in the processing of client requests. In an 

application like that, this is a problem, because as we said we need an infrastructure 

for a latency-sensitive application, where fast responses will be required. So, the cloud 

is not the optimal solution.  Another idea is to deploy the whole application to the edge. 
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In edge computing [4], resources are scarce through the network and must be 

managed very efficiently. Especially for mobile devices, where the battery is limited to 

a certain amount. Here we have the advantage of fast response, as the application is 

closer to the client. However, in this scenario we face another problem. The 

computational resources are not enough for heavy processes. That will slow down the 

image processing of such an application, and might not even work, if the resources are 

not enough. 

 

The ideal environment for such an application, as we might think, will be the cloud, for 

heavy image processing and the edge for the latency-sensitive part of the application. 

We could break this into two components and deploy each component above the right 

infrastructure. With this logic, the processing part will be fast and optimal, as the 

response part, so the user can enjoy an improved quality of experience. 

 

Like the example above, every machine learning application can be broken down into 

7 processing steps, from inception to practical application. By name these steps are: 

Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper- 

parameter Tuning, Prediction. Each of these steps is demanding different amounts 

of resources, as well as latency levels. 

 

That was the motivation behind this thesis. To utilize tools and find techniques that 

distribute machine learning application’s components based on the resource and 

latency demands of each component, to achieve better user experience. So, we 

created a scheduling algorithm that decides for us, where each part of the machine 

learning application will be scheduled either at a cloud environment or at an edge 

environment. 

 

 

 



 

  

 5 

 

CHAPTER 1 

1.3: Content Overview 

 

This Thesis is organized into five chapters, each one of those includes smaller sections 

and possibly subsections.  

• Chapter 1: makes an introduction to the machine learning world and how it is 

connected to the cloud and edge environments. Also, reference is made to the 

motivation of this thesis that led to this specific implementation. 

• Chapter 2: reference is made to the technical background and tools that the 

reader should be aware of, to completely understand the work behind the 

research. 

• Chapter 3: is an important section of the document. First, it describes the 

infrastructure that was used for the research steps. Also, it analyzes the use of 

various tools, as well as how they interact between them, to reach the desired 

implementation. Finally, it describes in detail the methodology which was used 

to create our algorithm. 

• Chapter 4: results and metrics are presented from the validation of the algorithm 

and the execution of a machine learning application, under the supervision of 

this specific algorithm. 

• Chapter 5: presents the conclusions that emerged throughout the research, as 

well as what emerged from experiments. Also, are mentioned some future 

additions that can be made to the algorithm, in order the algorithm to become 

more global to the scheduling of machine learning application.
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CHAPTER 2: TECHNICHAL BACKGROUND & TOOLS 

 

2.1: Introduction 

 

This chapter refers to the tools and the technical background that the reader of this 

thesis must have to understand it. It describes and analyzes some technologies that 

have been used to achieve the solution with the implementation of the algorithm. 

 

2.2: OS-Level Virtualization 

 

2.2.1: Overview 

 

Operating system1 level virtualization is a technology paradigm in which the kernel 

allows multiple isolated user-space instances to co-exist. These instances, also known 

as Containers, look like real computers from the point of view of programs and 

processes that run inside them. But this is an illusion as we will see in more detail 

below. Each Container shares the host’s OS. This means that it uses the OS’s normal 

system call interface and does not need to be subjected to emulation or be run in an 

intermediate virtual machine. This makes Containers very lightweight, since they 

require less overhead to be launched, in comparison to full virtualization technologies. 

 

Containers [5] offer a logical packaging mechanism in which applications can be 

abstracted from the environment in which they run. This decoupling allows container-

based applications to be deployed easily and consistently, regardless of the target 

environment. 

 

 

 
1 Operating System:  OS 
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2.2.1: Building blocks 

 

As mentioned earlier, Containers are essentially just a way of partitioning up a system 

into a few sandboxed execution environments with their own resource limits, while all 

these environments share a single operating system. That is why we talked about an 

illusion. But how this new illusion-virtualization is done. The base of this new 

technology is three fundamental kernel features: namespaces, cgroups and union 

filesystem. 

• Namespace [6]: The Linux Namespaces are a kernel mechanism that, at a high 

level, limits the visibility that a group of processes has on the rest of the system. 

This mechanism does not restrict access to resources like CPU or disks. it 

achieves isolation by exposing a specific subset of them to processes that run 

inside the namespace. For example, you can limit visibility to certain process 

trees, network interfaces, user IDs or filesystem mount. 

• Cgroups [6]: Cgroups, which stands for control groups, is another Linux Kernel 

feature that limits and measures the total resources (CPU, memory, disk I/O, 

network, etc.) used by a group of processes running on a system. With cgroups, 

administrators can set limits to a set of processes as to how many resources 

they can consume. 

• Union filesystem [7]: Unification filesystem is a service of Linux that allows files 

and directories of separate file systems, known as branches, to be transparently 

overlaid, forming a single coherent file system. Contents of directories which 

have the same path within the merged branches will be seen together in a single 

merged directory, within the new, virtual filesystem. 
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2.3: Docker 

 

2.3.1: Overview 

 

Docker [8] is a set of platforms as a service (PaaS)2 products that use OS-level 

virtualization to deliver software in packages. Docker uses the building blocks 

mentioned above to create an interface on top, to make it easier to manipulate and 

parameterize the lifetime of Containers. Docker can be installed in any operating 

system. We have already talked a little about these containers but let us give a more 

in-depth description of them and the difference between them and virtual machines. 

 

2.3.2: Container 

 

A container is a standard unit of software that packages up code and all its 

dependencies so the application can run quickly and reliably from one computing 

environment to another. Users can use this, without the fear of what environment exists 

underneath. This gives flexibility and portability to their application. This is very 

important, because it lets developers focus more on the development side of the 

project and not how to set up the application to different environments. 

 

Emphasis should be given to the difference between Container and Virtual machine. 

Virtual Computers need an operating system to work, which makes them very slow to 

start and large in capacity. Also, they contain packages that many applications do not 

use, which add more burden to the system. Finally, they create, many times, problems 

in their portability from system to system and it is difficult to expand. The different 

architectures of the two components are shown in the pictures3 below: 

 

 
2 PaaS: Provide cloud services to certain software. 
3 https://www.docker.com/resources/what-container 

https://www.docker.com/resources/what-container
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2.3.3: Images 

 

Docker containers are based on Docker images. Docker Image is just a series of 

instructions that a docker container must follow. It is a binary that includes all of the 

requirements for running a single Docker container, as well as metadata describing its 

needs and capabilities. It has information on both the structure of the filesystem that 

will be used, as well as which processes will be started inside the Container. The Image 

is an immutable file which essentially is a snapshot of the Container. You can think of 

it as a packaging technology. Docker containers only have access to resources defined 

in the image unless you give the container additional access when creating it. 

 

A Docker image is built up from a series of layers. Each layer represents an instruction 

in the image’s Dockerfile. Let us see an example to understand more about this 

layering. Consider the following Dockerfile: 

 

# syntax=docker/dockerfile:1 
FROM ubuntu:18.04 
COPY. /app 
RUN make /app 
CMD python /app/app.py 

 
Figure 1: Container Architecture 

 
Figure 2: Virtual Machine Architecture 
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This Dockerfile contains four commands. Each of these commands creates a layer. 

From top to bottom it has the FROM statement. This statement starts out by creating 

a layer from the ubuntu:18.04 Image. This is a prebuilt image that exists in a public 

registry called DockerHub and we pull it from there. After that it has the COPY 

command which adds some files from the Docker client’s current directory. The RUN 

command builds your application using the make command. Finally, it has the last layer 

that specifies what command to run within the container. Each layer is only a set of 

differences from the layer before it. The layers are stacked on top of each other. These 

layers are read-only as shown in the image below. When a user creates a new 

container, he/she adds a new writable layer on top of the underlying layers. This layer 

is often called the “container layer”. All changes made to the running container, such 

as writing new files, modifying existing files, and deleting files, are written to this thin 

writable container layer. The image4 below shows a container based on the Ubuntu 

15.04 image. 

 

 
4 https://docs.docker.com/storage/storagedriver/ 

Figure 3: Docker Image Layers 

https://docs.docker.com/storage/storagedriver/
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After the analysis of docker images, the next thing that comes to our minds is, where 

those images can be stored for fast access and reusability. Docker registries come to 

the rescue. The next section describes how they accomplish that. 

 

2.3.4: Registries 

 

Docker is using a distributed system for storing Docker images. This storage is called 

Docker registry and contains named Docker Images. Each one of these images might 

have multiple different versions, identified by their tags. A Docker registry is organized 

into Docker repositories , where a repository holds all the versions of a specific image. 

Users can pull images from there. The registry allows Docker users to pull images 

locally, as well as push new images to the registry. In this thesis the DockerHub was 

used , for storing the needed images and pulling from there. DockerHub is a just cloud-

based public registry. 

 

2.4: Kubernetes 

 

2.4.1: Overview 

 

Kubernetes [9], or else K8s, is an open-source project that helps at the organization of 

containers running inside nodes that belong to the same cluster. It was originally 

created by Google, with version 1.0 launched in 2015 and is now maintained by the 

Cloud Native Computing Foundation (CNCF) 5 . It has a large, rapidly growing 

ecosystem. This tool has many capabilities that every user can learn and use very 

easily. Each user can define which service wants to execute, at how many nodes, with 

how much resource power and other parameters. In general, K8s orchestrates 

computing, networking, and storage infrastructure on behalf of users’ containerized 

workloads. 

 
5 Cloud Native Computing Foundation (CNCF)  

https://wiki.aquasec.com/display/containers/Docker+Image+Repositories
https://www.cncf.io/
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2.4.2: Architecture 

 

Kubernetes follows a client-server architecture. It consists of a master node and a set 

of worker machines, called nodes that run containerized applications. It is possible to 

have a multi-master setup, but by default there is a single master node which is the 

“brain” that controls the cluster.  

 

Master Nodes provide the cluster’s control plane. They make decisions about the 

cluster, and they detect and respond to cluster events. All these decisions are made 

with the help of some components called Control plane components. These can be run 

on any machine in the cluster. However, for simplicity, set up scripts typically start all 

control plane components on the same machine, and do not run user containers on 

this machine. 

 

 
6 Kubernetes Architecture Image 

Figure 4: Kubernetes Architecture6 

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-architecture/
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Master Node Components 

 

Below are the main components found on the master node: 

• kube-apiserver: As the name suggests is the component that exposes the 

Kubernetes API. This is the front-end for the Kubernetes control-plane. Kube-

apiserver is designed to scale horizontally that is, it scales by deploying more 

instances. You can have many instances of kube-apiserver to balance the traffic 

between those instances. 

• Etcd: Etcd is a simple, distributed key-value store, used as Kubernetes backing 

store for cluster data (such as number of pods, their desired state, namespace, 

etc.). Periodically it is important to back up those data, in case of disaster 

scenarios, such as losing all the control plane nodes. So, we can recover the 

Kubernetes cluster. 

• Kube-scheduler: Κube-scheduler watches for newly created pods with no 

assigned node and selects the best fit node for them, based on resource 

utilization and other parameters like hardware/software/policy constraints, 

affinity and anti-affinity specifications, data locality, inter-workload interference 

and deadlines. The kube-scheduler uses an algorithm for this decision. More 

about this algorithm at Chapter 3: Implementation. 

• Kube-controller-manager: Kube-controller-manager is a control plane 

component that runs and manages controller processes. Controllers are control 

loops that watch the state of your cluster, then make or request changes where 

needed. Each controller tries to move the current cluster state closer to the 

desired state. Logically, each controller is a separate process, but to reduce 

complexity, they are all compiled into a single binary and run in a single 

process.  

• Cloud-controller-manager: This control-plane component does not appear in 

the image below, but it is very important, especially for the production 

environments where cloud providers are present. Cloud-controller-manager 

embeds cloud-specific control-logic. The cloud controller manager lets you link 

https://kubernetes.io/docs/concepts/architecture/controller/
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your cluster into your cloud provider's API and separates out the components 

that interact with that cloud platform from components that only interact with 

your cluster. 

 

Worker Node Components 

 

Below are the main components found on every node: 

• Kubelet: Κubelet is an agent that runs on each node in the cluster. It makes 

sure that containers are running in a pod. Kubelet is responsible only for 

containers that were created from Kubernetes. Also, it is the component that 

starts the pod after the selection of the feasible node from the kube-scheduler. 

• Kube-proxy: Κube-proxy is a network proxy that runs on each node in your 

cluster, implementing part of the Kubernetes network service. kube-proxy 

maintains network rules on nodes. These network rules allow network 

communication to your Pods from network sessions inside or outside of your 

cluster. 

• Container Runtime: The container runtime is the software that is responsible 

for running containers. Kubernetes supports several container runtimes: 

Docker, containerd7, CRI-O8, and any implementation of the Kubernetes CRI 

(Container Runtime Interface). 

 

2.4.3: Concepts 

 

Kubernetes constantly monitors itself and tries to achieve the desired state of the 

application. This desired state is presented in a YAML file with different types of 

abstractions. So, it is important to understand these abstractions that are used to 

represent the state of the system-application such as pods, services, deployments, 

and namespaces. 

 
7 https://containerd.io/docs/ 
8 https://cri-o.io/#what-is-cri-o 

https://containerd.io/docs/
https://cri-o.io/%23what-is-cri-o
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• Pods:  Pods are the smallest deployable units of computing that you can create 

and manage in Kubernetes. A pod is a group of one or more containers, with 

shared storage and network resources, and a specification for how to run the 

containers. 

• Services: Services is just an abstract way to expose an application running on 

a set of Pods as a network service. The question here is “Why don't we use the 

pods itself?”. Kubernetes Pods are created and destroyed to match the desired 

state of your cluster. So, they cannot have permanent IP. That is why we use 

services that give as a permanent IP, that we can use to access our functionality 

in our application. We have four types of Services in Kubernetes: 

o ClusterIP (default): Exposes a service that is accessible only from 

inside the Cluster. 

o NodePort: Exposes a service with each Node's IP with a static Port. This 

type of service is accessible from outside the cluster. 

o LoadBalancer: It uses the cloud’s provider load balancer to expose the 

service. This type of service is accessible externally. 

o ExternalName: It maps the Service to the contents of a predetermined 

externalName field by returning a value for the CNAME record. 

• Deployments: Deployment is a way to describe the desired state of a pod or a 

replica set. Deployment Controller changes the state of the environment by 

deleting or creating replicas, until it achieves the desired state. 

• Namespace: Namespace is just a virtual environment backed by the same 

physical cluster. 

 

2.4.4: Storage 

 

2.4.4.1: Volume 

 

On-disk, files in a container are ephemeral, which presents some problems for non-

trivial applications when running in containers. First if a container crashes the user will 
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lose all the data inside. Kubelet will restart the container with a clean state. Second it 

creates some problems when we want to share files between the containers that run 

in the same Pod. Kubernetes face these problems with the help of volumes. 

 

Kubernetes offers different types of volumes. A pod can use any number of volumes 

simultaneously. It can use both persistent and non-persistent volumes. Non-persistent 

volumes are ephemeral which means that Kubernetes is going to delete them in case 

a pod ceases to exist. However, Kubernetes does not destroy persistent volumes. To 

use a volume, specify the volumes to provide for the Pod in .spec.volumes and declare 

where to mount those volumes into containers in .spec.containers[*].volumeMounts. 

 

2.4.4.2: Persistent Volume 

 

Kubernetes wanted to abstract the details of how storage is provided from how it is 

consumed. That is why K8s introduced two new API resources: Persistent Volumes 

and Persistent Volume Claims.  Persistent Volume (PV) is just another piece of 

resource in the cluster, like a node is a cluster resource. You can provision this type of 

storage as an administrator or dynamically with the help of storage classes. The 

difference between PVs and Volumes is that PVs have a lifecycle independent of any 

individual Pod that uses the PV. So even if the pod crashes, the linked PV will remain 

untouched. 

 

Persistent Volume Claims (PVC) is a request for storage by a user. It is like a Pod. 

Pods consume node resources and PVCs consume PV resources. Also, a pod can 

request a specific level of resources (CPU and Memory) like a Claim can request 

specific size and access modes (e.g., they can be mounted ReadWriteOnce, 

ReadOnlyMany or ReadWriteMany). Each type of storage can accept specific access 

modes. 

• ReadWriteOnce: The volume can be mounted as read-write by a single node. 

• ReadOnlyMany: The volume can be mounted read-only by many nodes. 
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• ReadWriteMany:  The volume can be mounted as read-write by many nodes. 

 

2.4.4.3: Storage Class 

 

Storage class is the dynamic way to provision a Persistent Volume. A cluster 

administrator can define as many storage classes as needed inside the cluster. This 

resource is provided as an Object from the storage.k8s.io API group. Each one of these 

storage classes has a provisioner (AWSElasticBlockStore, NFS 9 , Local etc.) that 

decides what volume plugin is going to be used for the provisioning of a persistent 

volume. Also, we can provide some parameters for the specific provisioner. Finally, we 

can specify a reclaim policy which is going to decide what will happen to the PV after 

it has been released from its claim (PVC). 

 

2.5: Machine Learning 

 

2.5.1: Overview 

 

Machine learning is one of the most important fields in modern computer science. It is 

a vast field with many applications in our everyday life (medicine, e-commerce, banking 

etc.) which grows everyday more and more. Although machine learning is part of 

computer science, it differs from traditional computational approaches where 

algorithms are built to calculate things or solve problems. In machine learning, 

algorithms are used to train the computer, based on some data inputs, and produce 

models that will be used for decision making processes. But how does it work under 

the hood? Each Machine Learning application can be broken down in a sequence of 

steps [10] that describe the application from inception to practical application. 

 

 
9 NFS: Network File System 
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2.5.2: Steps of machine learning application 

 

Step 1: Data Collection 

 

This is by far the most important step for developing the machine learning model. A 

user needs to gather relevant data that will help to create the most appropriate model 

for his/her purpose. Mistakes such as choosing the incorrect features may lead to an 

ineffective model. That is why it is crucial that the necessary considerations are made 

when gathering data as the errors made in this stage would only increase as we 

progress to later stages. 

 

Step 2: Preparing Data 

 

Once the user has gathered the data, he/she needs to prepare them. The user needs 

to make sure that his/her data are not biased, and they are random. This is because 

the users do not want the order to affect the model’s decision. Also, the user needs to 

make sure that the data are not skewed over a specific feature .This skewness may 

give correct results for a particular feature but not for the rest of them. Finally, he/she 

needs to break the data into two parts. The training data that are going to be used for 

the model training, and the test data for evaluation purposes. Someone can 

understand that well-prepared data will improve the model’s efficiency and accuracy at 

the prediction step.  

 

Step 3: Choosing a Model 

 

This step is also important for the model, because here it will be decided what logic the 

model will use to train itself. There are different and various models, developed by data 

scientists and researchers, that have been created for various purposes. Some of them 

are well suited for image data, others for numerical data, others for sequences (text 
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etc.) and other text-based data. Someone needs to make sure that the right choice is 

made. 

 

Step 4: Training 

 

The core of a machine learning application is the training step. Here the step uses the 

training data from the Data preparation step, to train the model to differentiate between 

the features. The process of training is iterative. A user trains the model repeatedly 

with different input from the data, until the model reaches the desired level of accuracy. 

So, anyone can understand that this is a long process with a lot of experimentation. 

 

Step 5: Evaluation 

 

Once the training is complete, it is time to see if the model is any good, with Evaluation. 

In this step the user uses the test data that has never been used for training. This 

metric will show how the model might perform in real world situations, where data are 

not known to the model. If the results of the evaluation step are not satisfactory, he/she 

needs to revisit the prior steps, and find the root that causes this underperformance of 

the model. 

 

Step 6: Hyperparameter Tuning 

 

At the Hyperparameter Tuning step someone can change different parameters to 

improve the model accuracy. Two important parameters are the number of training 

steps and learning rate. The first one is how many times we run through the training 

dataset during training. This may lead to higher accuracy. The second one is important 

for the size of each step at each iteration. How much a user shifts his/her step, based 

on the information from the previous training step. There are a lot more parameters 

that we can use for this step but those two are the most important ones. All these 

parameters play an important role in how accurate the model can be. 



 

  

 20 

 

CHAPTER 2 

Step 7: Prediction 

 

The final step of a machine learning application is the prediction. This is the step where 

the user uses the model for real world and practical applications. The model should be 

ready to answer questions, without human interference. This is also the challenge for 

machine learning applications, to be able to outperform or at least match human 

judgment in different scenarios. 

 

These seven steps describe a complete real world machine learning process. This is 

a highly collaborative process that demands efficient communication between 

engineers that are working on each step.  Below we will describe a tool that can break 

these steps in different components and how it connects these components for an 

efficient workflow. 

 

2.6: Kubeflow 

 

2.6.1: Overview 

 

Kubeflow [11] is a free and open-source project designed to orchestrate complicated 

Machine Learning workflows running on Kubernetes. Kubeflow was first released in 

2017, built by developers from Google, Cisco, IBM, Red Hat and more that continue to 

contribute to Kubeflow project. Since then, it has expanded into a multi-architecture, 

multi-cloud framework for running huge machine learning pipelines. But what exactly 

is Kubeflow? 

 

Kubeflow is just a platform for data scientists who want to build and experiment with 

machine learning pipelines. Also, Kubeflow can help operational teams and machine 

learning engineers to deploy their machine learning workflow to different environments 

for development, testing and production-level serving. We can think of it as a machine 
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learning toolkit for Kubernetes that simplifies the deployment process of machine 

learning applications on K8s. 

 

2.6.2: Architecture 

 

Kubeflow aims to provide a cohesive experience regarding creation, management, and 

deployment of machine learning applications on Kubernetes. To achieve this, it 

provides a wide set of machine learning tools that are deployed on top of Kubernetes. 

We know that machine learning workflow consists of several stages, that is why we 

have different Kubeflow tools for each of these stages. Some of these tools are Jupyter 

Notebooks, TensorBoard, kfServing, Pipelines and more. 

 

Reference must be made to the Central Dashboard that Kubeflow Deployment 

provides us. This Kubeflow UI provides quick access to Kubeflow components that are 

deployed in our cluster. Except for the shortcuts, this component displays a list of 

recent pipelines, notebook servers, and metrics, that gives us an overview of our jobs, 

and our cluster. 

 

Below we briefly describe the UI components of the central dashboard - Kubeflow UI.  

• Home:  Kubeflow Dashboard for navigation between components. 

• Pipelines: Kubeflow Pipelines dashboard (Upload, Deletion, management of 

pipelines). 

• Notebook Servers: Dashboard for creation and delete of Kubeflow Servers. 

• Katib: Tool for hyperparameter Tuning. 

• Artifact Store: Tool for tracking artifact metadata. 

• Manage Contributors: Share user access across namespaces. 

• GitHub: Open-source project repository 
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2.6.3: Notebook Servers 

 

One of the most important components in Kubeflow is Notebook Servers. Enterprise 

environments have benefited a lot from the integration of Jupyter notebooks in the 

Kubeflow. First, it is much easier to deploy a Jupyter notebook directly into our cluster, 

rather than locally on our workstations. It is much faster and simpler. Each admin can 

provide a standard notebook image for each developer in their organization. After that 

with some credentials each user will have access to different notebooks. Overall, 

Kubeflow - hosted notebooks are better integrated with other components while 

providing extensibility for notebook images. 

 

Below we set up an example Notebook within our cluster. 

 

When we first login, we see the home page of the central dashboard. In the left-hand 

panel we select the Notebook Servers choice to access the Jupyter Notebook 

services that are deployed in the Kubeflow. 

Figure 5: Kubeflow Central Dashboard 
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Before we select the NEW SERVER choice, we must select the namespace that 

corresponds to our Kubeflow Profile. For this example, we created a profile called: 

kubeflow-nickangelopoulos as we can see from the image below.  

 

 

 

After that select, the NEW SERVER button on the Notebook Server page to access the 

configuration page where we can specify the details for our new Notebook Server. 

 

 

Figure 6: Notebook Server UI 

Figure 7: Jupyter Notebook Configuration Page 
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Here we can specify some details for our Notebook Server: 

• Name: Enter the name of our choice. 

• Namespace: Kubeflow automatically updates the value in the namespace field 

to be the same as the namespace that we selected in a previous step. 

• Image: We specify the docker image of our choice, for the baseline deployment 

of our notebook server. We have two choices: 

o Custom Image: We must specify a custom image in the form of 

registry/image: tag. 

o Standard Image: Kubeflow provides us with a list of available images, 

that include typical machine learning packages that we can use within 

our Jupyter notebooks. For this example, we selected one from the 

standard Images. 

o Resources: One of the most important details we can specify are the 

resources of the Jupyter Notebook. How much CPU or MEMORY this 

Notebook can utilize? 

o Workspace: Finally, we can specify a workspace volume to hold our 

work inside the Jupyter Notebook. This type of workspace is persistent, 

which ensures that you can retain data even if you destroy the notebook. 

These are the necessary details we must specify in this configuration page. This page 

provides us also, with some optional choices, that we are not going to analyze here. 

After that we press the Launch button and wait until the Notebook is deployed like the 

image below. 

 

 

Figure 8: Deployed Notebook Server 
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2.6.4: Kubeflow Pipelines 

 

In general, in programming, a pipeline is a set of data processing components, 

connected in a series. Each component has some outputs that are the inputs of another 

element. In Kubeflow we have the Kubeflow Pipeline which is a description of a 

Machine Learning workflow. This component is the most important component in 

Kubeflow that helps Machine Learning engineers and operations systems to describe 

their Machine Learning workflows as a simple graph. From a technical perspective 

when we run a machine learning pipeline, the system launches one or more 

Kubernetes Pods, corresponding to the steps of our workflow. 

Below we represent a simple example of a pipeline. The example pipeline is one of the 

Kubeflow’s examples called [Tutorial] Data passing in a python component. First, 

we click the name of the sample on the Pipeline UI. 

 

 

 

After that we see the pipeline in the form of a graph, where each component connects 

with other components with arrows. There we see that we have some choices for our 

pipeline. 

Figure 9: Pipeline UI 
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• Create run: Create a sample run for our pipeline. 

• Upload Version: Upload a new version of a pipeline, where we could have 

made some modifications for this specific pipeline. 

• Create experiment: An experiment where we can run a lot of run samples. 

• Delete: Remove this pipeline from our workstation. 

 

 

 

After the end of the experiment, we click the name of the run from the experiment's 

dashboard. This leads us into a graph dashboard, where we can explore the graph and 

other aspects of our run, by clicking on the components. 

Figure 10: Machine Learning Pipeline in the form of a graph 
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After we have seen this example, we can understand that Kubeflow pipelines want to 

create an environment where the machine learning development and management will 

be simpler and easier. To achieve this, they provide this end-to-end orchestration 

system which is easy to understand and use with the help of UIs. 

 

2.6.5: Software Define Kit 

 

If we want to define SDK, we could say that it is a collection of software development 

tools in one installable package. Kubeflow provides us with an SDK that consists of 

python packages that we can use to specify and run our Machine Learning workflows. 

These tools help us to convert our python machine learning application into a YAML 

file  that the pipeline interface will understand. Also, some of these packages help us 

use already existing YAML, pipeline components from other developers. Below we will 

name and give a definition for some of these packages. 

Packages 

• kfp.compiler: Consists of classes and methods that will be used to compile 

pipeline DSL into a workflow YAML. 

Figure 11: Graph after the end of the experiment 
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• kfp.components: Consists of classes and methods that will be used to interact 

with pipeline components. 

• kfp.dsl: contains the domain-specific language (DSL) that you can use to define 

and interact with pipelines and components. 

• kfp.client: Contains Python libraries that every user can use to interact with the 

Kubeflow Pipelines API. 

 

2.7: Metrics & Display 

 

Monitoring your jobs that run inside a cluster is very important. A user can understand 

which node or specific job consumes more resources, and after that the user can 

improve the performance or optimize the deployment, based on the information. There 

are many tools on the internet that can scrape data from a running cluster. The cluster 

at this Thesis uses Prometheus for  scraping the metrics and Grafana to display them. 

 

2.7.1: Prometheus 

 

Prometheus [12] is the de facto standard metrics solution in the cloud . It is an open-

source project that provides  a monitoring and alerting toolkit based on a time-series 

data model. Since its inception in 2012, many companies and organizations have 

added Prometheus in their stack. Also, like Kubernetes, that we analyzed before, 

Prometheus joined Cloud Native Computing Foundation in 2016 which is a vendor 

home for fast-growing open-source projects. 

 

Prometheus collects data from different services and stores them inside his server with 

a specific format. Metric name and  a millisecond-precision time stamp. This storage 

system allows Prometheus to query metrics fast and efficiently.  Unlike other 

monitoring tools which communicate with an agent deployed  on the service’s host 

machine, Prometheus uses exporters to receive the metrics. Also, it provides an 
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interface that a user can use to query metrics from the server. This interface is 

presented with an image below: 

 

 

 

 

2.7.2: Grafana 

 

Grafana [13] is a powerful tool for displaying time-series data. It is  the platform that 

you need when you want to visualize and analyze the metrics. Grafana query the 

metrics from the Prometheus server and display them to the dashboard. Also, it comes 

with the ability to upload existing dashboards with unique ids based on your needs. 

Below we can see an example of the dashboard that this system uses. 

 

Figure 12: Prometheus UI 

Figure 13: Grafana Dashboard 
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CHAPTER 3: IMPLEMENTATION 

 

3.1: Introduction 

 

In this chapter, we are going to cover all the steps that we followed, to achieve the 

implementation of this algorithm. More specifically, we divided our implementation in 

three stages. In the first stage, we talk about the support infrastructure, on which all 

the tools were installed and analyze each of these tools.  In the second stage, 

we  analyze the machine learning application that was used for the whole research. 

Finally, we are describing the process, and the development of the algorithm, from 

Kubernetes Scheduler to our implementation. 

 

3.2: Stage 1: Setup Infrastructure 

 

3.2.1: NITOS Testbed 

 

For our implementation we used 3 nodes, from the NITOS testbed [14]. The NITOS 

Testbed consists of 2 wireless testbeds, one indoor and one outdoor,  for 

experimentation with heterogeneous technologies. It was conceived and developed 

from NITLab (Network implementation Testbed Laboratory). The indoor testbed 

consists of high-processing-powered and cutting-edge nodes and is located at NITLab 

building.The outdoor testbed is located at the exterior of University of Thessaly (UTH) 

campus building. It features WiMAX, Wi-Fi, and LTE support. Both testbeds are a 

powerful tool that enables the experimentation and the implementation of different 

algorithms and protocols, in a large-scale environment. 
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3.2.2: Tools & Versions 

 

3.2.2.1: Kubernetes 

 

The cloud consists of many computers, who must be connected with some kind of 

networking, in order to utilize their resources like a group and not as single entities. 

Kubernetes is the best tool for this job. It can create a group of computers, called 

clusters, so that users can deploy their applications in the form of containers. So, on 

top of our three nodes infrastructure, we installed Kubernetes. Specifically, we 

installed the version 1.14.10 because this version was compatible with the Kubeflow 

version 1.0 that we installed above the Kubernetes cluster. 

  

After the installation process we had to find a way to create a viable Kubernetes cluster. 

For this purpose, we used the Kubeadm [15]  tool. This is a great tool, for an automatic 

way of setting up a cluster for testing and experimentation purposes. Below we display 

the commands that we should run to start our Kubernetes cluster. 

 

Figure 14: NITOS Architecture 
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$ kubeadm init --apiserver-advertise-address=10.64.X.X --pod-network=192.168.0.0/16 

 

With the above command we initialize the control plane node, which is the master node 

of our cluster. The first argument specifies the network interface that will advertise the 

API server of the control plane. This argument is optional, which means that if we do 

not define it, it is going to be the default gateway of the node. The second argument, 

which is also optional, specifies the range of IPs for the pods that is going to be 

created.  

 

Now it is time for kubeadm to run some pre-flight tests,  to ensure that the computer is 

ready to host a Kubernetes cluster. These tests will expose warnings and exits on 

errors. After these tests, the  command will automatically create the necessary cluster 

resources  that a minimum viable Kubernetes cluster should have, to run smoothly. 

These components are: kube-scheduler, kube-controller-manager, kube-

apiserver, etcd for the control plane and kubelet, kube-proxy and container runtime 

for all nodes. Below we display the results from our terminal. 

 

Your Kubernetes control-plane has initialized successfully! 

 

To start using your cluster, you need to run the following as a regular user: 

  mkdir -p $HOME/.kube 

  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config 

  sudo chown $(id -u):$(id -g) $HOME/.kube/config 

 

Then you can join any number of worker nodes by running the following on each as root: 

 

kubeadm join 10.64.93.90:6443 --token 6uaumt.przrqldf307zh9q0 \  --discovery-token-ca-cert-

hash sha256:ce044c74233831bf9e779edf798e373aa88217e7df90849fd73ed6c0a0b87f5d 

 

We can easily understand that the control-plane has been initialized successfully with 

the necessary components. Next, we must create the ./kube directory and copy the 

configuration file from the master node into our machine. This will enable us to send 
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requests to our cluster as regular users through the API Server. After the initialization 

of the control plane, it is time to add some workers inside our cluster. Kubeadm 

provides us with the join. This simple command  lets us add a new worker node, inside 

our cluster. The user is now ready to check the status  of the cluster with the command 

below. This command will list the nodes in our running cluster and provide us 

with  some information about them, like the duration that the node is active, the status, 

the role of the node and the version of Kubernetes. 

 

$ kubectl get nodes 

NAME        STATUS     ROLES    AGE     VERSION 

node081   NotReady   master     18m       v1.14.10 

node082   NotReady   <none>   2m42s    v1.14.10 

node083   NotReady   <none>    114s       v1.14.10 

 

From the above list of nodes , we observe the Not Ready status, at the status column. 

This is because we have not configured our nodes with a network policy, and they will 

not be able to communicate with each other. So, for network configuration, we choose 

the Calico Network. This is a container network solution for Kubernetes clusters. To 

deploy this network, we must create the calico.yaml , which we took from the official 

calico website10. 

 

$ kubectl create -f https://docs.projectcalico.org/v3.14/manifests/calico.yaml 

  

After the deployment of the Calico Network, we can check the status of Kubernetes 

cluster, with the same kubectl get nodes  command and see that all the nodes are 

ready now to host some pods, except of course, the master node. Finally, we can check 

the running pods inside our cluster with the command below. This command informs 

us about the health of our pod, the namespace that is deployed, how many times it 

restarted before starting to run, and the age of the pod. 

 
10 https://www.projectcalico.org/ 

https://www.projectcalico.org/
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$ kubectl get pods -A 

NAMESPACE             NAME                                                          READY         STATUS      RESTARTS   AGE 

kube-system   calico-kube-controllers-865795499c-6gqcb          1/1              Running               0             18m 

kube-system   calico-node-7fzvg                                                    1/1              Running               0             18m 

kube-system   calico-node-sltwl                                                     1/1              Running               0             18m 

kube-system   calico-node-vthgd                                                   1/1              Running               0             18m 

kube-system   coredns-6dcc67dcbc-jkqgn                                   1/1              Running                0             46m 

kube-system   coredns-6dcc67dcbc-pwjnk                                  1/1              Running                0             46m 

kube-system   etcd-node081                                                          1/1              Running                0             45m 

kube-system   kube-apiserver-node081                                        1/1              Running                0            45m 

kube-system   kube-controller-manager-node081                       1/1              Running                0             45m 

kube-system   kube-proxy-7rxc5                                                   1/1              Running                0             30m 

kube-system   kube-proxy-fvvxn                                                   1/1              Running                0             46m 

kube-system   kube-proxy-qkkkl                                                   1/1              Running                0            29m 

kube-system   kube-scheduler-node081                                       1/1             Running                 0            45m 

 

3.2.2.2: Kubeflow 

 

As we already described, in the Chapter 2: Technical Background, every machine 

learning application can be broken down in a sequence of steps. Each step has 

different resource requirements like individual operations. So, our idea  was to find a 

tool that would allow us to define each ML step as a separate process. The perfect tool 

for this job is Kubeflow. This platform with the pipeline feature will give us the 

opportunity to  define components that will encapsulate each ML step. In general, 

each one of these components is a kubernetes container inside our cluster. But more 

on that in the next Stages. Now we must deploy Kubeflow on top of the Kubernetes 

cluster that we initialized in the previous section. 

 

Before starting with the deployment process, it is important to say that the Kubeflow 

deployment requires dynamic persistent volume provisioning. We need a 

StorageClass for that purpose. So first we create a Storage class deployment. By 

default, the provisioner will be installed at the namespace local-path-storage. 

 



 

  

 35 

 

CHAPTER 3 

$  kubectl apply -f  

https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-

storage.yaml11 

 

After the installation we can check if the storage class is deployed successfully: 

 

$ kubectl get sc 

NAME                           PROVISIONER             AGE 

local-path (default)   rancher.io/local-path       4s 

 

Storage class needs to be default, to be able to provision resources dynamically. Now 

it is time to follow the installation process for the Kubeflow deployment. First, we should 

download the binary kfctl. This binary will be used to create the deployment. After that 

we create the environment variables, that is going to make the installation process 

much easier: 

 

$ export KF_NAME= Kubeflow 

$ export BASE_DIR= ~/Kubeflow/ 

$ export KF_DIR= ${BASE_DIR}/${KF_NAME} 

 

We can check the resources deployed in the Kubeflow namespace. These are only a 

few of the pods from the Kubeflow deployment. 

 

$ kubectl -n kubeflow get all 

NAME                                                                              READY      STATUS       RESTARTS     AGE 

admission-webhook-bootstrap-stateful-set-0                1/1          Running              0               15m 

admission-webhook-deployment-64cb96ddbf-v9k88    1/1          Running              0               15m 

application-controller-stateful-set-0                                1/1          Running              0               16m 

argo-ui-778676df64-jbk5d                                                 1/1          Running              0               15m 

……. 

tf-job-operator-7d7c8fb8bb-gkqhd                                  1/1          Running              0               15m 

workflow-controller-945c84565-9f5kq                             1/1          Running              0               15m 

 
11 https://github.com/rancher 

https://github.com/rancher
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Like any application that we want to access outside of our cluster, Kubeflow needs to 

have a NodePort Service that exports its application. As we already mentioned, 

NodePort is a Type of  Kubernetes Service that enables an application to be accessible 

outside of the cluster. This is provided to us from the istio-ingress gateway service at 

port 31380. 

 

3.2.2.3: Prometheus & Grafana 

 

The final step, in the setup process, is to deploy monitoring tools for research purposes. 

As we already mentioned, there are many tools for this job. However, Prometheus and 

Grafana are the best ones, because they integrate very well with Kubernetes. 

Together, they provide  a set of tools and graphs that makes fetching and display of 

metrics very simple. Grafana query the data that the Prometheus server exports from 

each node  and depicts them on different types of  custom graphs. 

 

There are many ways to install applications on top of Kubernetes clusters, but Helm is 

the easiest one. Helm is a Kubernetes package manager. It is the Kubernetes 

equivalent of apt command in Ubuntu machines. Helm gives us the opportunity to 

install packaged applications in the form of charts. Each of these charts are simple 

Kubernetes YAML files, combined in a single package that can be advertised in your 

Kubernetes cluster. This makes the installation process of containerized applications 

much easier and simpler. 

 

After the Helm installation we are ready to start with the Prometheus-Grafana 

installation process. The first step is to add the chart’s repositories. Each repository 

contains the charts for each tool and is maintained by open-source contributors. The 

second step is to fetch the values of the charts locally to our computer, to make some 

configuration changes. We must export the Prometheus and Grafana services outside 

of our cluster. For this purpose, we again use a NodePort Service that is provided by 

Kubernetes. We are going to export those two services at two different ports (31323 - 
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31322) .  Finally, we need to deploy the values.yaml to Kubernetes cluster and wait 

until both tools are up and running.  

 

Prometheus-Steps 

• helm repo add prometheus-community 

https://prometheus/community.github.io/helm-charts 

• helm inspect values prometheus-community/prometheus > 

/tmp/prometheus.values 

o vim /tmp/prometheus.values 

o search: Service 

o Service(NodePort): 

▪ nodePort: 32323 (external port)  

• helm install prometheus-community/prometheus --name prometheus --

values=/tmp/prometheus.values 

 

Grafana-Steps 

• helm repo add grafana https://grafana.github.io/helm-charts 

• helm inspect values grafana/grafana > /tmp/grafana.values 

o vim /tmp/prometheus.values 

o search: Service 

o Service(NodePort): 

▪ nodePort: 32322 (external port)  

• helm install grafana/grafana --name grafana --values=/tmp/grafana.values 
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Now we can access Kubeflow, prometheus and grafana dashboards from the URLs 

below. 

 

TOOLS URLs 

Kubeflow Dashboard http://cluster_node_ip:31380 

Prometheus Dashboard http://cluster_node_ip:32323 

Grafana Dashboard http://cluster_node_ip:32322 

 

 

3.3: Stage 2: Machine Learning Application 

 

3.3.1: Application Description 

 

After the deployment of the tools in the Kubernetes Cluster, we had to create or find a 

machine learning application which we would use both at the research and at the 

experimental stage. This application was selected according to some criteria that we 

needed for the research: 

• The application should be able to break in the steps that constitute a machine 

learning application(Data Fetching, Training, Evaluation etc.), with the help of 

Kubeflow, to deploy each step as a separate process. 

• Also, we should be able to change the computational power that the training 

step needs, by modifying only some parameters. This will help us take 

measurements and evaluate the algorithm in the experimental stage. 

 

For our scenario we used one of the  Kubeflow pipelines examples. This example was 

already converted in a Kubeflow pipeline, which helped us a lot. The only thing that we 

Table 1: Access URLs for Kubeflow, Prometheus and Grafana 
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had to do, was to modify the code and  the steps according to our needs. The purpose 

of the example was to train an initial model with XGBOOST algorithm, evaluate it and 

calculate the metrics. If the model error was  too high, then more training was 

performed until the model was good. For this sample, the Taxi Trips dataset from 

Chicago12, was used and the predictions were made for the taxi drivers tips. So, the 

next step was to modify this pipeline to match our needs. After the changes, the 

Machine Learning application included the following steps: 

• Data Fetching: This step is responsible for  fetching the Train and  Test data 

from the Taxi drivers dataset. The first one will be used for the training process, 

and the second one for the evaluation. Here it is important to emphasize that 

the data fetching was broken into two different processes with the help of 

Kubeflow. One for fetching Training Data, and the other  one for fetching Test 

Data. 

• Training: This step uses  the same algorithm as the example, the XGBOOST 

algorithm. XGBoost stands for “Extreme Gradient Boosting”.  It is a decision-

tree based, machine learning algorithm. This algorithm is very popular with 

structured/tabular data. From technical perspective it was used the xgboost 

library13, which is an optimized distributed algorithm, designed to be flexible and 

portable. 

• True Values Preparation: The Preparation step is also broken down into two 

different processes like the Data Fetching Step. This process cleans the test 

data by removing the not needed header. Next, it extracts the true values 

column from the data set , which will be used at the evaluation step. 

• Prediction:  This step is responsible for taking the model that the training step 

generated and the test data and producing predictions. These predicted values 

are going to be used in the next step. 

 
12 Chicago Taxi Trips Dataset 
13 https://xgboost.ai/ 

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://xgboost.ai/
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• Evaluation:  Last but not least, it evaluates the prediction  with the help of true 

values that it extracted from a previous step and creates an accuracy 

percentage. 

 

According to the above, this application satisfies one of the two criteria of the research 

requirements, that we listed above. For the second need, the XGBoost provides  two 

parameters that a user can modify, to change the computational demands of the 

application. These parameters are the learning rate and number of iterations.  

• Number of iterations: Number of training steps. More steps mean, heavier 

training process. 

• Learning Rate: It is a configurable hyperparameter, used in the training 

process. The learning rate controls how fast the model is adapted to the 

problem. It is like the magnitude of each  training step in a training process. In 

general, someone needs the lowest possible learning rate. However, this means 

that it needs more steps, to reach the optimal training (heavier training process). 

 

3.3.2: Deploy Process 

 

After the explanation of the used machine learning application, it is time to deploy it, 

as separate processes with the help of Kubeflow. As already mentioned, Kubeflow, 

provides a Software define kit that includes a set of packages, which a user can use 

to convert the machine learning application in a Pipeline. From these packages we 

used the kfp.dsl.pipeline for defining the pipeline inside a python file: 

 

 

Figure 15: Machine Learning Pipeline definition - Python file 
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For each component of the pipeline, we used  the library components from the kfp 

package. This lets  us import all the YAML files for each component of the machine 

learning app. Here it is important to emphasize that all the YAML-pipeline components 

were taken from the Kubeflow GitHub repository14 which is open-sourced. An example 

of such an addition is the following: 

 

 

 

Also, after the addition, we need to define and use  this component inside the pipeline. 

Below we provide a code example of adding the above component as a pipeline step. 

 

 

 

All the above variables (where,select,limit) are predefined variables from the imported 

YAML file. The first one specifies what part of the dataset we want. The second one 

declares the features that we want and the last one the maximum amount of data.  

 

In the same way, we imported and declared the other components of the machine 

learning application. The Fetching of test data, the training step, values preparation 

step ,the prediction step, and the evaluation step. After defining the pipeline in Python, 

we must compile the pipeline to an intermediate representation before we can submit 

it to the Kubeflow. This representation is a workflow specification in the form of a YAML 

 
14 https://github.com/kubeflow/kubeflow 

Figure 16: Import example of Pipeline component 

Figure 17: Declaration example of Pipeline component 

https://github.com/kubeflow/kubeflow
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file compressed into a .tar.gz file. For this process we need to install the Kubeflow 

Pipelines SDK and run the below command at the terminal: 

 

$  dsl-compile --py=demo_machine_learning.py --output=demo.tar.gz 

 

Next, we upload the demo.tar.gz file to the Kubeflow Dashboard and generate the 

pipeline. The process is the same as we have shown at the 2.6.4: Kubeflow Pipelines.  

Now we can look at the graph of our application in the Pipeline UI. 

 

 

 

 

3.4: Stage 3: Scheduling Algorithm 

 

3.4.1: Introduction 

 

Kubernetes is an ideal tool for running cloud applications. But how does it decide where 

each application will be executed ? kubernetes implements its own scheduling module. 

This module is called Kubernetes-Scheduler and it is responsible for assigning 

pods(applications) to suitable nodes. This chapter analyzes the kubernetes algorithm 

behind kube-scheduler and how it was extended , with the addition of the algorithm. 

Figure 18: Machine Learning Application in the form of a graph 
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3.4.2: Kubernetes Scheduling Algorithm 

 

Kube-scheduler is running as an independent component usually inside the master 

node. For every newly created pod or other unscheduled pods , kube-scheduler selects 

an optimal node for them to run. However, every pod and every container, inside each 

pod, has different resource requirements. So, the kube-scheduler must do some 

filtering and selection to find the optimal nodes. 

 

Kube-scheduler continuously monitors a waiting queue that contains all the pods that 

need allocation.  After that it follows a 2-step operation to select a node for each pod: 

 

1. Filtering: The first step is called the filtering. In this step, the kube-scheduler 

verifies which nodes can run this pod and discards the other ones. For this 

purpose, it uses some properties called predicates. An example of a predicate 

is the PodFitsResources. This filter checks whether a candidate Node has 

enough available resources to meet a Pod's specific resource request. After this 

step, the node list contains any suitable Nodes, often, there will be more than 

one. There is always a possibility that a pod  deployment might not be 

scheduled. In that case, kube-scheduler triggers an event that explains the 

reason for failed scheduling and the pod remains unscheduled.  

 

2. Scoring: if the list of suitable nodes contains more than one node, then the 

kube-scheduler forwards at the node priority calculation (Scoring). At this step, 

kube-scheduler takes the list of nodes from the filter step, and scores them 

based on some properties called priorities. An example of a priority is the 

NodeAffinityPriority. The node is scored according to node-affinity rules .For 

example, a node with a specific label is scored higher than others.  The node 

with the highest scoring is chosen to run the specific pod. With this scoring step 

the algorithm selects the most suitable node for our pod.  
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Finally, kubernetes scheduler assigns the pod to the highest-ranking node. If there is 

more than one node  with equal scores, then it selects one node at random. After that 

Kubelet is responsible for starting the pod inside the node. 

 

Another great feature of Kubernetes, that helps Kube-scheduler make better decisions 

in terms of scheduling, is resource limits and requests. For example, machine 

learning engineers can specify resource requests and limits on the machine learning 

pod configuration file The resource limit is the maximum number of resources(CPU & 

Memory)that can be allocated for the containers inside the pod. The resource request 

is the minimum number of resources that a node should have to host this specific pod. 

This feature is a double-edged sword, because if a developer sets up incorrect 

resource  rules, he/she may allocate resources that the pod does not need. It is a great 

feature, but it should be used carefully. 

 

3.4.3: Kubernetes-Scheduler-Extension 

 

Although kubernetes-scheduler provides a range of features for scheduling pods inside 

the cluster, the metrics applied  in  the  decision-making process are limited. The kube-

scheduling services are using only CPU and RAM usage rates to decide. Kube-

scheduler does not concern about other parameters like Latency of the application. 

However, it is crucial for latency-sensitive machine learning  applications to be 

deployed on nodes that can provide low response times in predictions. If this does not 

happen, then the specific application can become unstable, and predictions may arrive 

too late. So, in this thesis we propose an extension of Kubernetes scheduler, that 

makes scheduling decisions, not only based on CPU-RAM, but according to Latency 

sensitivity too. We named it LAS (Latency - Awareness - Scheduler). There are 

three proposed ways of extending Kubernetes Scheduler [16]: 

1. Adding new scheduler policies(predicates/priorities) to the Kube-scheduler and 

recompiling it. 
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2. Implementing a different scheduling process, that runs instead of, or alongside 

of Kube-scheduler. 

3. Implementing a “scheduler-extender” , that the kubernetes scheduler calls as a 

final step before making the decision. 

The third approach is used when the scheduler needs to make decisions based on 

resources that are not managed directly from Kubernetes Scheduler. Our scheduler is 

based on the third approach, because it needs to make decisions based on network 

parameters like latency.  But how exactly does it work ? When the Kube scheduler is 

trying to schedule a pod, the Kubernetes - extender allows  an external process to filter 

and/or prioritize the nodes. Below we display the structure of the configuration file, to 

communicate with the extender through code. This extender config contains 

parameters that will specify the behavior of the scheduling.  

 

 

 

From top to bottom, we have the URLPrefix. This is the most important parameter, 

which specifies the endpoint at which the extender will be available. After that we have 

the three verbs. The FilterVerb, the PrioritizeVerb and the BindVerb. Each of these 

verbs, specifies which function the extender will call, to do the filtering, or the prioritizing 

or the binding. If any of these verbs are unspecified or empty, then it is assumed that 

Figure 19: Extender policy file in Golang 
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the extender chose not to provide that extension. The arguments that are  passed on 

the FilterVerb on the extender are the set of nodes filtered through the Kubernetes 

Scheduler predicates and the given pod while the arguments passed on the 

PrioritizeVerb also contain the priorities of each node. Following the verbs, we have 

the weight parameter. This integer is a numeric multiplier for the node scores that the 

prioritize call creates. Next, we have two security parameters. The EnableHttps, which 

specifies whether https will be used for the communication with the extender and the 

TLSConfig which specifies the security configuration at the Transport Layer. Finally, 

we have the HTTPTimeout. As the name implies, it is the timeout duration for a call to 

the extender. 

 

This was a brief description of the kubernetes scheduler extension. Next, we are going 

to describe the logic and the usage of this extender to achieve the latency awareness 

in the scheduling part. 

 

3.4.4: Latency Awareness Scheduler 

 

The Latency Aware Scheduler has been implemented by extending the Default 

scheduler of Kubernetes through priority endpoint. This algorithm uses the help of 

Kubernetes Labels and Latency values to make a scheduling decision. Labels are just 

key/value pairs that are attached to objects, like pods, and help identify object attributes 

that are important to users. So, to identify the attributes that are important for our 

scheduling algorithm, we declare two types of labels for the pod configuration file , and 

one type of label for the node, for each location. The logic for this implementation was 

inspired by the paper Towards Network-Aware Resource Provisioning in Kubernetes 

for Fog Computing applications [17]. 

 

Pod 

The first type of label is named typeOfComponent. As the name implies, the algorithm 

uses this label, to learn what type of machine learning operation we are trying to 
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schedule. The second type of Label  is called OurLocation, and indicates the location 

we are in. The LAS will use this Label to deploy that process as close as possible to 

this location, with the help of Latency values. 

 

Node 

As we already mentioned we want to know the latency values of each node, for each 

location. So, at each individual Node we add a Label for each location we want to 

include into our algorithm with the respective Latency value . For example, let us say 

we have Location A and Location B. First, we calculate the Latency from the Node to 

each location. Let us say the latency for Location A is 0.8 ms and for Location B is 0.6 

ms. We add a label {Location : LatencyValue} for each location. So, for our example, 

we have two Labels: 

• {LocationA:0.8ms} 

• {LocationB:0.6ms} 

Algorithm 

As we already mentioned, each Machine Learning application has the following steps: 

Gathering Data, Preparing Data, Choosing a Model, Training, Evaluation, Hyper- 

parameter Tuning, Prediction.  So, the algorithm first fetches the typeOfComponent 

from the pod information. If it is not the prediction step, then we let the Default 

Scheduler decide the optimal node for scheduling, based on its predicates and 

priorities. If it is the Prediction Step, then we iterate through each node and find the 

minimum Latency based on the Location that we have configured in the pod 

configuration file at the OurLocation Label and return the node with the minimum 

Latency. Below we display the pseudocode of the algorithm in Golang. 
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Figure 20: Scheduler Algorithm Pseudocode in Golang 
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CHAPTER 4: EXPERIMENTS & RESULTS 

 

4.1: Introduction 

 

In this chapter, some experiments are presented to observe the behavior of the 

algorithm in a real machine learning application. In addition, it is found, through 

diagrams and experiments, that scheduling with our algorithm , leads to shorter  times, 

in terms of latency and training time.  Finally, it is important to emphasize that the 

experiments were performed under different conditions, regarding the computational 

requirements of the application at the training step and the size of each request at the 

prediction step. 

 

4.2: Infrastructure 

 

As for the infrastructure on which the experiments were performed, it consists of  5 

different machines. Three of the five computers are NITOS nodes, which we talked 

about in the 3.2.1: NITOS Testbed section and the other two computers are virtual 

computers set up on physical machines. The above computers consist of the following 

Hardware features: 

 

Computers CPU RAM HDD 

3 NITOS Nodes 8 cores 16GB 120GB 

2 VMs 2 cores 4GB 40GB 

 

One of the 3 NITOS Nodes, operates as Master Node, and the other 4 as Worker 

Nodes for the Cluster. These Nodes, use as operating system the Linux Ubuntu 

18.04.04 LTS. The necessary tools were installed in them,  to create a network 

Table 2: Hardware specifications 
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between them so they can communicate. These tools are the Kubernetes, Docker, 

and  Calico Network. Also, the Kubeflow was deployed on top of the cluster to break 

the machine learning Application into separate processes. Finally, the proposed 

scheduler (LAS) was deployed as a default scheduler, in order to perform the 

experiments. The pod configuration file for the LAS is shown at the Figure 22 below. 

As can be seen, the pod is composed of two containers: the extender and the 

scheduler. The extender is responsible for performing our proposed scheduling 

operation and the scheduler is the Default Scheduler of Kubernetes.  As we already 

mentioned the extender needs the policy configuration file, in order to operate 

smoothly. In Figure 21 below, the policy file for the LAS is shown. Finally, it is important 

to emphasize that the same machine learning application was used for all the 

experiments. This machine learning app was described  in detail in chapter 3.3: Stage 

2: Machine Learning Application. 

 

 

 

 

Figure 21: Policy configuration file 
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Figure 22: LAS scheduler Pod (Container: Extender & Container: Default-Scheduler) 
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4.3: Experiments 

 

4.3.1: Algorithm Verification 

 

The first experiment was responsible for the verification of the algorithm. We wanted 

to create an environment, in which our algorithm could take scheduling decisions 

based on the latency values and the resource specifications of each node.  For this 

purpose, we located the nodes at three different locations (NITOS-CLOUD, NITLAB-

EDGE, HOME-EDGE). The nitos-cloud is the cloud infrastructure of nitos, the nitlab-

edge is located at NITLab building, and the last one is at my home. The three heavy 

resourced nodes at the cloud location and the other two at the edge’s locations, 

respectively.  

 

As we already mentioned, the scheduler takes scheduling decisions based on the 

latency labels that each node has. So, the next step was to assign latency values at 

each node . For this purpose , the ping tool was used for finding an average RTT time. 

These values were assigned to each node as a label so that delay values can be 

considered in the scheduling process. Times are displayed in milli-seconds. 

 

NODE NITOS-CLOUD NITLAB-EDGE HOME-EDGE 

Nitos-Cloud-Node 0.289 2.669 89.667 

NITLab-Edge-Node 41.966 42.551 9.8 

Home-Edge-Node 2.669 0.306 42.551 

 

Once the labels have been placed at the corresponding nodes of the cluster, it is time 

to test the algorithm for different cases. According to the algorithm we can specify at 

which location we want to deploy the application, with the help of OurLocation label, 

inside the pod configuration file. However, the machine learning application is deployed 

as Kubeflow pipeline Component. So, we cannot access the pod Configuration file 

Table 3: Node Latency Values for each Location 



 

  

 53 

 

CHAPTER 4 

directly. That is why the kfp package was used to specify the labels for each process 

of the machine learning application. The number of cases that we tested the algorithm 

is equal with the number of locations. Below we display how we must configure the 

predict and the training step of our machine learning application, for each location. 

 

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”) 

Predict 
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”) 
• predict_proc.add_pod_label(“OurLocation”,”NITOS-CLOUD”) 

 

 

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”) 

Predict 
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”) 
• predict_proc.add_pod_label(“OurLocation”, “NITLAB-EDGE”) 

 

 

Training • training_proc.add_pod_label(“typeOfComponent”,”Training”) 

Predict 
• predict_proc.add_pod_label(“typeOfComponent”,”Predict”) 
• predict_proc.add_pod_label(“OurLocation”,”HOME-EDGE”) 

 

The LAS algorithm has successfully scheduled both steps at the correct nodes, as we 

can see from the kubectl get command. The heavy Training process at a cloud node, 

which has more available resources(CPU & RAM), and the Predict Step at an edge 

node, which is much closer to the location that the client requested at each case. The 

kubectl get command returns a lot of information, but we display only the important 

ones.  It is important to say that inside the cluster, the names of each step of the 

machine learning application have the format  demo-machine-learning-app-

Table 4: Configuration changes at Machine Learning Pipeline-Location:NITOS-CLOUD 

Table 5: Configuration changes at Machine Learning Pipeline-Location:NITLAB-EDGE 

Table 6: Configuration changes at Machine Learning Pipeline-Location:HOME-EDGE 
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($uniqueId), because this is the name of the pipeline to which they belong. The 

uniqueId parameter represents each step of the pipeline. However, in each command 

below we refer to each step with the real name, for easy understanding.  

 

$ kubectl -n kubeflow get pods  

NAMESPACE            NAME                        NODE 

kubeflow                   Predict                nitos-cloud-node 

kubeflow              Training Step          nitos-cloud-node 

 

$ kubectl -n kubeflow get pods  

NAMESPACE            NAME                        NODE 

kubeflow                 Predict                nitlab-edge-node 

kubeflow             Training Step         nitos-cloud-node 

 

$ kubectl -n kubeflow get pods  

NAMESPACE            NAME                        NODE 

kubeflow                 Predict                 home-edge-node 

kubeflow             Training Step          nitos-cloud-node 

 

4.3.2: Measurements 

 

Once we have verified that our algorithm is working properly and distributes the 

individual processes according to the requirements in latency and resources, it is time 

to take measurements. These measurements will provide information about the 

behavior of the machine learning Application, regarding the execution time of the 

training process and the response time of the prediction process. To achieve this , we 

divided the measurements into two experiments. At the first one , we deployed the 

Machine Learning application as an individual process, with all its steps inside a 

container. Experiment was done  first at an edge node and then at a cloud node of 

our environment. After that we calculated the completion time of the training process 

for light training and  heavy training  at each node, respectively. Also, we calculated 
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the latency response  of the predict step for different sizes of requests. At the second 

experiment, we calculated the same things but now having broken the application into 

separate processes and using the LAS algorithm. 

 

To achieve different conditions on the training process we modified the parameters 

learning rate and num_iterations. For this experiment the below values were used: 

 

Training Learning Rate Number of Iterations RMSE 

Light Training 0.01 10000 0.07478 

Heavy Training 0.001 100000 0.02578 

 

As we can see from the RMSE column above, the Heavy Training achieves a smaller 

Root Mean Square Error compared with the Light Training Process. Smaller RMSE 

means  smaller  Prediction errors , which is better for the trained model. 

 

Below we display the execution time in seconds, for each case and the response times 

after the deployment of the predict step : 

 

Table 7: Training Parameters 

Chart 1: Training process (Default Scheduler) - Execution times in Seconds 
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From the charts above, we observe that in a cloud node where the resources are much 

more, we achieve shorter execution times, than the edge node where the resources 

are much less. The same thing is observed even at the light training case which 

requires less computational resources. From the chart 1, we can see that the execution 

time is almost half at the cloud node. However, the exact opposite happens in the case 

of response time. There the edge node dominates, because it is much closer to the 

end user who makes the various prediction requests. From the chart above, as we 

increase the number of requested predictions, the response time of the edge node is 

staying almost constant and close to half a second, while at the cloud node is 

increasing and at 2.000 requested predictions it reaches almost 3 seconds. 

 

From the  above, it is understood that we cannot achieve  at the same time short 

execution and response time in a machine learning application, if we deploy it as a 

single entity. That is why we broke the application into its steps with the help of 

Kubeflow and after that we deployed it in the cluster with the help of our algorithm 

(LAS). 

Chart 2: Prediction process (Default Scheduler) - Latency values in seconds 
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At the second experiment, the machine learning application is deployed with the 

supervision of our algorithm. This time , the heavy training process will be scheduled 

at a cloud node, to achieve fast execution time, while the predict process will be 

scheduled at the edge node based on the latency values as we saw at the Verification 

Experiment. After that , the same measurements took place and showed us that both 

time parameters are shorter for better utilization of resources and for better user 

experience. Below we display another two charts for the execution and the response 

time of the heavy training process. Here it is important to emphasize that for chart 4 

we took measurements with even higher values of prediction requests, to show that 

even for these values the time remains short and increases slightly for the edge node. 

Also, we display the response time for the  cloud , to realize the big difference. 

 

 

Chart 3: Training process (LAS) - Execution times in seconds 
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Chart 4: Training process (LAS) - Execution times in seconds 
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CHAPTER 5: CONCLUSION & FUTURE WORK 

 

In this final Chapter, we present the conclusion of our work. Following that, we 

conclude by mentioning a few possible steps  that should be done in the future, to 

convert this algorithm into a more global scheduling choice. 

 

5.1: Conclusion 

 

All in all, the primary goal of this thesis was to implement an algorithm that would deploy 

the various steps of a machine learning application in the appropriate locations, 

depending on their needs (computational, latency). This would enable machine 

learning developers to deploy their applications in a more performant-optimal way. The 

goal was achieved as we can see from the experiments above. The algorithm was 

implemented and tested, and the measurements showed how important it is to deploy 

a latency sensitive application to the edge. 

 

5.2: Future Work 

 

In this Thesis a big step was taken in terms of creation and evaluation of the scheduling 

algorithm. However, there are still some steps that need to be taken in the 

implementation and the evaluation stage  before it becomes a global way of scheduling 

machine learning applications. Below we describe these future steps. 

 

First, we need to make a more extensive evaluation of the algorithm. The number of 

nodes and locations must be increased to evaluate the behavior of the algorithm in a 

more “competitive” environment where more computers will compete for the scheduled 

process . Also in future experiments, the number of applications should be increased 

to study the scheduling decision of the algorithm in a more realistic environment where 



 

  

 60 

 

CHAPTER 5 

there will not be only a single machine learning application that is trying to be 

scheduled. 

 

From implementation perspective some changes will be done in the latency 

assignment part of the nodes. So far, we place the latency values on each node for 

each location, with the help of the ping tool, hardcoded.  This latency assignment 

logic  cannot be followed  in a real environment where the locations and nodes will be 

countless. A future goal is to assign these values with predictive techniques using 

machine learning that is going to predict the latency for each location.
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