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Abstract xiii

MSc Thesis

Short­Term Load Forecasting Using Artificial Neural Networks

Arvanitidis Athanasios Ioannis

Abstract

The growing needs for additional electricity has emphasized the importance of moderniz­

ing and optimizing the existing power systems. An optimal and modernized power system

will provide more controllable power electronic equipment to allow the most use of cur­

rent circuits, ensure flexibility and optimal power system efficiency, and make it easier to

integrate renewable energy resources at all voltage levels. The current revolution in com­

munication technologies, fuelled primarily by the internet, provides the opportunity for even

greater supervision and regulation in the power grid, resulting in more reliable, efficient, and

cost­effective services. One of the most critical aspects of efficient power system operation is

the ability to predict energy load requirements Load forecasting is one of the most distinctive

topics that the science community has extensively considered as it is essential for balancing

demand and supply and for deciding electricity prices. In this thesis, a novel data processing

strategy is proposed that emphasizes the importance of specific input data by applying neural

networks to load forecast. This innovative method is implemented using consumption data

from the Greek interconnected power system leading to improved forecasted values.
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Περίληψη xv

Μεταπτυχιακή Διπλωματική Εργασία

Βραχυπρόθεσμη Πρόβλεψη Φορτίου με τη Χρήση Τεχνητών

Νευρωνικών Δικτύων

Αρβανιτίδης Αθανάσιος Ιωάννης

Περίληψη

Σήμερα, η αυξανόμενη ανάγκη για επιπλέον ηλεκτρική ενέργεια έχει τονίσει την ανάγκη

για εκσυγχρονισμό και για βελτιστοποίηση των υπαρχόντων συστημάτων ενέργειας. Ένα

βέλτιστο και εκσυγχρονισμένο σύστημα ισχύος θα διασφαλίζει την ευελιξία και τη βέλτιστη

απόδοση του συστήματος ισχύος και θα διευκολύνει την ενσωμάτωση ανανεώσιμων πηγών

ενέργειας σε όλα τα επίπεδα τάσης. Η τρέχουσα επανάσταση στο τομέα των επικοινωνιών,

που αφορά κυρίως το Διαδίκτυο, παρέχει την ευκαιρία για ακόμη μεγαλύτερη επίβλεψη και

ρύθμιση στο δίκτυο ισχύος, με αποτέλεσμα πιο αξιόπιστες, αποδοτικές και οικονομικά ωφέ­

λιμες υπηρεσίες. Μία από τις πιο κρίσιμες πτυχές της αποτελεσματικής λειτουργίας του συ­

στήματος ισχύος είναι η ικανότητα πρόβλεψης φορτίου. Η πρόβλεψη φορτίου είναι ένα ιδιαί­

τερο θέμα που η επιστημονική κοινότητα έχει εξετάσει εκτενώς, καθώς είναι απαραίτητο για

την εξισορρόπηση της ζήτησης και της προσφοράς και για τη λήψη τιμών ηλεκτρικής ενέρ­

γειας. Σε αυτή την εργασία, προτείνεται μια νέα στρατηγική επεξεργασίας δεδομένων που

υπογραμμίζει τη σημασία συγκεκριμένων δεδομένων εισόδου κατά την εφαρμογή των νευ­

ρωνικών δικτύων στο ζήτημα της πρόβλεψης φορτίου. Αυτή η καινοτόμος μέθοδος εφαρμό­

ζεται σε τρεις μελέτες που βασίζονται σε δεδομένα από το ελληνικό διασυνδεδεμένο σύστημα

παράγοντας καλύτερα αποτελέσματα πρόβλεψης.
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Chapter 1

Introduction

An electric power system, or simply power system, is a network of electrical compo­

nents deployed to generate, transfer, distribute, supply, and use electric power to consumers

or customers. The generation, transmission, and distribution of electricity at the points of de­

mand, i.e. at the points of customer access to the electricity network, is the primary role of

an electricity grid.

An energy system must be built and controlled in such a way that it is safe, reliable,

environmentally friendly, and supplies high quality electricity at the lowest possible price in

order to be practical. Reliability applies not only to the quantitative coverage of consumers’

overall needs, but also to the fulfilment of temporal and local fluctuations in load. The term

”quality” refers to the observance of known limits for voltage and frequency variations, which

are usually 5% and 0.5%, respectively. To be operational, a well­designed and structured

electricity grid must fulfil the following minimum requirements:

• The device must be able to respond to changes in demand for active and reactive power

on a continuous basis.

• The system should supply power at a low cost while having a low environmental im­

pact.

• The power supplied by the electricity grid must be of high quality and is dependent on

voltage stability, network frequency, and system reliability.

The management of the electricity systems and the implementation of different meth­

ods of optimizing their operations must be constant and uninterrupted in order to be able

to satisfy the above­described requirements. System optimization adds significant economic

1
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2 Chapter 1. Introduction

benefit, with major utilities saving hundreds of millions of dollars each year in fuel costs, in­

creased operating efficiency, and system security. As a result, in terms of fuel cost reduction

and environmental protection, optimization has been critical for the service of power grid

utilities. Different optimisation problems such as economic transmission, unit engagement,

hydrothermal scheduling, optimum power flow, maintenance scheduling etc. were included

in power system operation [1].

To solve power system optimization challenges, a variety of strategies have been used,

including conventional and artificial intelligence techniques. Due to their non­linearity, op­

timization problems are complex, and dealing with them using traditional approaches is a

time­consuming procedure. Recognizing that the rapid growth of the Internet and comput­

ing power presents significant opportunities to modernize the operation of electrical net­

works has coincided with a realization that the power sector can only be evolved, devel­

oped, and de­carbonized at a reasonable cost if it is effectively monitored and controlled.

Economic dispatch, unit commitment, hydrothermal scheduling, optimal power flow, main­

tenance scheduling, and other optimization concerns have all been examined in the operation

of power systems. The optimization issue in this thesis is short­term load forecasting using

artificial neural networks.

The purpose of the master’s thesis is to investigate the effects of various input data pre­

processing approaches on the outcomes of short­term load forecasting using neural networks

in order to improve the accuracy of the forecasted values. Specifically, Chapter 2 develops

the needs that led to the creation of Smart Grids and what problems they are called to solve,

as well as emphasizes the importance of the implementation of load forecasting. Chapter 3

presents the theoretical analysis of neural networks, while Chapter 4 is an overview of the

application of neural networks in the issue of short­term load forecasting. Finally, Chapter

5 provides a novel data processing strategy that varies from previous work in that it empha­

sizes the importance of specific input data by applying neural networks to load prediction.

While proposing an improved approach to the issue, various case studies for short­term load

forecasting in the Greek Power System are reviewed. In comparison to the current literature

based on data from the Greek interconnected system, this method produces better prediction

results.
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Chapter 2

Application of Smart Grids in Existing

Electricity Systems

2.1 Introduction

This chapter presents the features of Smart Grids and the vital importance of load forecast­

ing for the smooth and uninterrupted operation of electrical power systems. The correlation

between these two issues is strong and directly affects the modernization of the power grid.

2.2 Smart Grids

The power grid developed steadily, in their current known form, since early 1900s in

many areas of the world (e.g. the United States of America and most European countries),

with the transmission and supply equipment being constructed at that moment going past its

construction life and in need of substitution. The capital costs of like­for­like replacement

would be extremely high, and it is also debatable if the requisite power equipment man­

ufacturing capability and trained personnel are already sufficient. The need to rehabilitate

transmission and supply circuits presents an obvious incentive to experiment with innova­

tive designs and operational procedures. As a result, some of the existing power transmission

and distribution lines are nearing capacity, and some renewable energy cannot be attached.

This necessitates more intelligent methods of dynamically raising the power transmission

capability of circuits and rerouting power flows into less loaded circuits.

Climate experts are unanimous in their belief that man­made greenhouse gases are caus­

3
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4 Chapter 2. Application of Smart Grids in Existing Electricity Systems

ing harmful climate change. As a result, methods of using energy more efficiently and pro­

ducing electricity without or reduced emission of CO2 must be created. Accurate knowledge

is required for efficient load management and the elimination of losses and unused energy,

while the use of significant volumes of renewable generation necessitates the inclusion of the

load in the operation of the power grid to better balance supply and demand. For this reason,

there has been a resurgence of interest in linking generation to the distribution network since

about 1990.

Overvoltages and repeated variations in power system’s frequency values may result from

integration from distributed generation. Every disturbance is expressed as a frequency vari­

ation from its nominal value (50 or 60 Hz) or abnormal flows in the tie lines connecting

the various regions of large power systems. System controllers ensures the system’s opera­

tion within strict guidelines and wherever is needed respond in order to bring it back within

operational limits. As more and more vital loads are connected, modern society needs an

extremely dependable energy supply. The conventional solution to increasing redundancy

was to install additional redundant circuits, which came at a high capital expense and had a

negative environmental effect.

An optimal and modernized power system will provide more controllable power elec­

tronic equipment to allow the most use of current circuits, ensure flexibility and optimal

power system efficiency, and make it easier to integrate renewable energy resources at all

voltage levels. To a large degree, all of these capabilities are supported by genuine and ad­

vanced power networks known as Smart Grids (Figure 2.1).

In addition to these specifications, the current revolution in communication technologies,

fuelled primarily by the internet, provides the opportunity for even greater supervision and

Figure 2.1: Typical interface of a smart grid.
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2.2 Smart Grids 5

regulation in the power grid, resulting in more reliable, efficient, and cost­effective services.

The Smart Grid represents an opportunity to revolutionize the electrical power infrastructure

by using modern Information and Communication Technologies (ICTs). The sharing of in­

formation in a Smart Grid is highly reliant on two­way contact. Real­time data must be trans­

mitted to and from massive central generators, substations, consumer loads, and distributed

generators. Power grid communication services are currently limited to central generation

and transmission systems, with some coverage of high voltage distribution networks.

The extension of communication in the distribution system and the establishment of two­

way connections with consumers through a smart meter or smart interfacing unit is a critical

development of the Smart Grid. Smart meters are an essential component of the Smart Grid

and they can provide information about the demands and, as a result, the power flows across

the network. As all of the components of the power system are controlled, the system’s condi­

tion becomes visible, and several control options arise. Obtaining information on customers’

loads, on the other hand, may be of concern to unauthorised parties and may infringe on cus­

tomers’ privacy. The opportunity to obtain access to energy usage data and consumer account

numbers opens up a plethora of opportunities for theft. Smart Grids necessitates the timely

and safe exchange of information [2].

Smart Grids have many benefits over traditional and outdated power networks. Any of

the characteristics that highlight their significance are as follows:

• They allow demand response and demand side management through the introduction

of smart meters, smart appliances and market loads, micro­generation, and power stor­

age (such as electric vehicles), as well as by providing consumers with energy usage

and price information. Customers are expected to be given knowledge and incentives

to change their consumption habits in order to alleviate any of the power system’s re­

strictions.

• They accommodate and promote both renewable energy sources, distributed genera­

tion, domestic micro­generation, and storage solutions, reducing the overall environ­

mental footprint of the power market and even provide aggregation.

• They optimize and effectively manage properties by intelligent distribution system ser­

vice.

• They ensure and increase supply stability and protection by being resilient to disrup­
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6 Chapter 2. Application of Smart Grids in Existing Electricity Systems

tions, threats, and natural disasters, forecasting and adapting to device fluctuations

(predictive maintenance and self­healing), and improving supply security by improved

transfer capacities.

• Increased transmission routes, aggregated supply and demand response programs, and

ancillary content provisions improve consumer access.

In the future, renewable energy sources, electric vehicles, and heat pumps will be increas­

ingly connected to the distribution network through the Smart Grid. More flexible loads can

be required to sustain the grid by accepting growing renewable energy supplies and monitor­

ing demand peaks. The level of supply would be critical for sensitive loads such as computers

and high­value processing plants. As a result, visibility, controllability, and stability will be

critical aspects of the future power grid, with power electronics playing an important part.

Nevertheless, converting traditional power systems to intelligent power systems is a time­

consuming procedure that necessitates extensive research and a thorough knowledge of the

issues at hand. To schedule the effective operation and sustainable capital extension of an

electric power distribution system, the system owner must be able to predict the need for

power sypply ­ how much power is required, and when and where it will be required. Load

forecasting is one of the most distinctive topics that the science community has extensively

considered.

2.3 Load Forecasting

There is much more demand from electricity suppliers to slash production cost than

they have previously had. Modern power supply providers also undergo the same regula­

tory paradigm, but have many different financial pressures to regulate their planning goals

such that they frequently have to invest even more than the conventional paradigm would

have warranted.

The idea that the system response closely matches the load specifications is one of the

most critical aspects of power system operation. As the system load increases or decreases,

the power generation increases or decreases accordingly. This on­demand power generation

necessitates having an adequate amount of generation capacity available. As a result, knowing

the load parameters in advance allows the electric utility operator to manage grid capacity

optimally [3].
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2.3 Load Forecasting 7

The forecasting of electricity loads is critical for the management of power systems. To

manage the generation and distribution of electrical power, system operators need reliable

load forecasts. Load forecasts are essential for balancing demand and supply, but they also

play an important role in deciding electricity prices. The effective modelling methodology is

determined by the implementation and the predicted horizon [4].

One of the most critical aspects of efficient power system operation is the ability to predict

energy load requirements. The accuracy of forecasts has a significant effect on the economic

feasibility and dependability of any electricity utility. Many critical operational decisions,

such as power generation scheduling, fuel purchase scheduling, maintenance scheduling, and

electricity transaction preparation, are dependent on electric load forecasting. For the reasons

mentioned above, we typically divide load forecasting approaches into three categories: short­

term load forecasting (STLF), medium­term load forecasting (MTLF), and long­term load

forecasting (LTLF). Long­term forecasts are generally necessary for the scheduling of power

systems, medium­term predictions are required for maintenance and planning of fuel supply

while short­term predictions are required for daily operations of the power system (Figure

2.2). In a deregulated environment, all parties concerned must conduct load forecasting on a

regular basis. Load forecasts are used by generation providers, transmission companies, inde­

pendent system operators (ISOs), and regional transmission organizations (RTOs) to prepare,

negotiate, and operate [5].

Therefore, it is necessary to list the parameters that directly affect the issue of Load Fore­

casting and are used appropriately by researchers in their various prediction models. Some

Figure 2.2: Categories into which load forecasting is divided.
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8 Chapter 2. Application of Smart Grids in Existing Electricity Systems

of the parameters affecting the forecasted load of future are [6]:

• Time factors such as hours of the day (day or night), day of the week (week day or

weekend), time of the year (season or month).

• Weather conditions (temperature and humidity).

• Class of customers (residential, commercial, industrial, agricultural, public, etc).

• Special events (TV programmes, public holidays, etc).

• Population.

• Economic indicators (per capita income, Gross National Product (GNP), Gross Do­

mestic Product (GDP), etc).

• Trends in using new technologies.

• Electricity price.

The capability of power systems to fulfil load specifications instantly and at all occasions

is perhaps the most difficult feature of their service. Because of the large load variations

during the day, it is important for the device operator to be mindful of the demand that will

be anticipated in the coming hours so that adequate preparation can be done. Generators,

especially fossil fuel generators, require a significant amount of time to be synchronized to

the network if they are initially decommitted for several hours.

The operation of today’s power systems is based on short­term electric load forecasting.

Previously, experienced system operators may forecast electric load specifications within

reasonable ranges (based on their experience with the particular power system). This is not

so easy these days. Load size, infrastructure specifications, tighter power efficiency require­

ments, and deregulation have all necessitated the invention of innovative load forecasting

techniques. Short­term load forecasting is so critical that no electric utility can run in a cost­

effective, safe, and stable manner without it. In addition, it has a number of key elements that

ensure power systems’ reliability, security and economic operation; such as the negotiation

between utility and regional transmission operators of bilateral agreements, studies includ­

ing economic dispatch, unit commitment, load flow analysis and safety study and operations

such as committing or decommitting generating scheduling.
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2.3 Load Forecasting 9

Electricity must be transmitted from the generating resources to the end users in the cen­

tralized power station model. The majority of these generators are located hundreds of miles

away from the actual users. This necessitates long­distance transmission of electricity. This

centralized power plant system has numerous drawbacks. In addition to the issue of long­

distance transmission, this system with large­scale power plants contributes to greenhouse

gas emissions, the production of nuclear waste, inefficiencies and power loss over the lengthy

transmission lines, environmental impact near the area where the power lines are constructed,

and security­related issues. Many of these concerns can be avoided with a distributed gener­

ation model. The challenges associated with the building of transmission lines are rendered

obsolete by placing the energy source near or at the end user location.

For a variety of reasons, there is increased interest around the world in increasing the

percentage of electricity generated by Distributed Generators (DGs), notably renewable en­

ergy sources (RESs). Globally, there is a general trend toward steady increase of renewable

energy sources, particularly wind and solar resources. Because of their traits of variability,

controllability, partial unpredictability, and locational dependency, these resources provide

significant challenges for system operation. Therefore, RESs as DG a resource pose the same

challenges while the growing proportion of RESs in DG resources may exacerbate the opera­

tional problems. As a result, DGs are expected to expand rapidly in the near future. Currently,

the emphasis is on implementing rules to define technical standards for DG connections to

distribution networks.

With the introduction of DG, many distribution networks are becoming energy harvest­

ing systems, with significantly higher variability and bidirectional power flows where DG

penetration is significant. This presents numerous new issues for utilities and necessitates the

operation of distribution networks as active distribution systems, with real­time control and

optimization of multiple dispersed energy supplies. The issue of load forecasting is intimately

related to real­time control and optimization of power systems. This optimization also entails

improving the existing network’s reliability coefficients.

Distribution system reliability is a critical issue in power engineering for both utilities

and customers. The probability of a distribution system providing continuous power without

failure for a specified period of time is defined as distribution system reliability. Because

of the growing demand for more dependable service with lower interruption frequency and

duration, the reliability assessment of future distribution networks is an essential topic. Future
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10 Chapter 2. Application of Smart Grids in Existing Electricity Systems

distribution systems are likely to be incorporated into the system in order to monitor, control,

and operate it. As a result, the reliability of future grids is projected to become amore difficult

issue in the near future, as system configurations become more intricate and the penetration

of small­scale units increases. Therefore, the urgent application of STLF­related approaches

is deemed essential for the modernisation and optimization of existing networks [7].

Furthermore, economic dispatch and unit commitment are two additional categories that

necessitate the adoption of load forecasting. The aim of real power economic dispatch is to

minimize the generator’s fuel consumption or the overall system operating cost by determin­

ing the power output of each generating unit under the constraint condition of system load

demands.

Since generators cannot be switched on and produce power instantly, unit commitment

(UC) must be planned ahead of time to ensure that enough generation is always available to

handle system demand with an adequate reserve margin in the event that generators or trans­

mission lines fail or load demand increases. UC manages a power system’s unit generation

schedule in order to minimize operating costs while meeting prevailing restrictions such as

load demand and system reserve requirements throughout a series of time periods. The clas­

sical UC problem, which belongs to a class of combinatorial optimization problems [8], is

concerned with setting the start­up and shutdown schedules of energy generator units in order

to fulfil predicted demand during specific time periods (24 h to 1 week).

The STLF question is one of the most significant problems of optimization, which is

why a number of research teams have addressed it. Optimization problems, including non­

linear objective functions and limitations of nonlinear equality and inequalities, are generally

nonlinear. Historical charging statistics are used to extrapolate trend techniques to previous

charged development trends. Simulation­based load predicting attempts to replicate or to

model the load growth process itself to predict where, when and how the load develops, and to

describe some of the reasons behind their growth. The prediction’s accuracy and speed depend

upon the degree of detail used in simulation, the selection of relevant contributing factors

(such as social and weather trends) and the level of testing conducted by various methods.

Although the concepts used in each forecaster’s development should be used mostly for all

power systems, the majority of approaches do not work well when the weight of various

influencing factors is generalised.

Seasonal input variables, such as load fluctuations induced by air conditioning and heating
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2.3 Load Forecasting 11

systems, weather forecast variables, such as temperature, humidity, wind, and cloud cover,

and historical data, such as hourly loads for the previous hour, previous date, and same day

of the previous week, are the three key types of input variables used for STLF. It should be

remembered that distinguishing weekdays from weekends and holidays requires extra care,

as the load pattern differs significantly on each form of day. The projected average load for

each hour of the day, the daily peak load, and the daily or weekly energy production are

standard outputs of short­term forecasts.

Short­term load forecasting has traditionally been performed using approaches such as

time series models, regression­based approaches, and Kalman filtering. These approaches are

often mixed with the operator’s knowledge to arrive at assumptions about effective genera­

tion scheduling. Methods based on artificial intelligence have recently become popular for

solving optimization problems. These techniques have the advantage of being able to deal

with complex challenges that traditional methods cannot overcome. Furthermore, because of

their basic mathematical nature, these methods are simple to implement and easy to integrate

with other methods to create hybrid solutions that combine the strengths of each individual

process.

There are two types of short­term load forecasting techniques: traditional or classical

methods and computational intelligence­based techniques. Methods in the first group include

time series models, regression models, and Kalman filtering­based techniques. Expert algo­

rithms, artificial neural networks, deep neural networks, fuzzy inference and fuzzy­neural

structures, and evolutionary programming are examples of computational intelligence­based

techniques.
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Chapter 3

Introduction to Artificial Neural

Networks

3.1 Introduction

Artificial Neural Networks (ANNs) are widely use deep learning methods that mimic the

learning process inspired by biological organisms. Neural networks were created to emu­

late the human nervous system for machine learning activities by treating the computational

units in a learning model similarly to human neurons, since they have proved to be capa­

ble of learning any mathematical function given enough training data. The expanded data

availability and processing efficiency of modern computers has exceeded the limitations of

conventional machine learning algorithms, which reflects a major part of neural networks’

recent performance [9].

In this chapter, we discuss single­layer, multi­layer, and radial basis function neural net­

works. A series of inputs is directly transferred to an output in a single layer network using a

simplified version of a linear function. The perceptron is another name for this basic neural

network instantiation. The neurons in multi­layer neural networks are organized in a lay­

ered manner, with the input and output layers divided by a set of hidden layers. The neural

network’s layer­wise architecture is also known as a feed­forward network.

Short­term load forecasting has traditionally been achieved using approaches such as time

series equations, regression­based approaches, and Kalman filtering. These approaches are

often mixed with the operator’s knowledge to arrive at assumptions about correct generation

scheduling. Artificial neural network approaches, as well as other computational intelligence

13
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14 Chapter 3. Introduction to Artificial Neural Networks

techniques, have emerged as potentially useful instruments in electric load forecasting in

recent years [10].

The aim of this work is to provide a solution to the problem of short­term load forecasting

using neural networks. As a result, the theoretical context and mathematical analysis of the

major neural networks used mainly in STLF should be presented thoroughly. The key metrics

for measuring their performance are presented in depth at the end of this chapter.

3.2 Perceptrons

The perceptron is the simplest neural network and was introduced in 1957 by Frank

Rosenblatt. This neural network has one input layer and one output node. Figure 3.1 depicts

the perceptron’s simple design.

The input layer contains n nodes that transmit the n features X = [x1 . . . xn] and each

input connection is associated with a weight W = [w1 . . . wn]. Firstly, a weighted sum z of

its inputs is computed at the output node as follows:

z = x1 · w1 + x2 · w2 + · · ·+ xn · wn =
n∑

i=1

xi · w1 (3.1)

Subsequently, the sign of this real value is used in order to predict the dependent variable

Figure 3.1: The most common form of a perceptron.
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3.3 Multi­layer Perceptrons 15

of X . Therefore, the prediction y is computed as follows:

y = sign(z) = sign(x1 · w1 + x2 · w2 + · · ·+ xn · wn) = sign(
n∑

i=1

xi · w1) (3.2)

where sign(z) is:

sign(z) =


−1, if z < 0.

0, if z = 0.

1, if z > 0.

(3.3)

The sign function maps a real value to either +1 or −1, which is appropriate for binary

classification. The error of the prediction is therefore:

Error(X) = yreal − ypredicted (3.4)

When the error value Error(X) is nonzero, the neural network weights must be modi­

fied in the negative direction of the error gradient. In this case, training a perceptron entails

determining the appropriate values for w0, w1, and w2. Despite the perceptron’s similarities

to conventional machine learning models, its representation as a computational device is ex­

tremely useful because it helps one to combine several units to generate much more efficient

models than are possible in traditional machine learning.

3.3 Multi­layer Perceptrons

There are several computational layers in multilayer perceptron (MLPs) neural networks.

The perceptron has an input and an output layer, with the output layer being the only one that

performs computation. The data is transmitted from the input layer to the output layer, and

all computations are entirely transparent to the user. MLPs, as opposed to Perceptrons, are

made up of the following layers:

• Input layer

• Hidden layer

• Output layer

All of the data that you want the system to learn from is fed into the input layer. Hidden

layers attempt to examine various variations of the input layer to determine which of them
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16 Chapter 3. Introduction to Artificial Neural Networks

is relevant and how much weight should be assigned to them. They accomplish this with

the assistance of weights. As a result, the hidden layers accept weighted input. When all of

the computation has completed, the output layer computes all of the program’s outputs and

calculates the results (Figure 3.2).

MLPs are suitable for regression tasks. If you want to forecast a single value (e.g., the

load of the next day) with many of its characteristics, you only need a single output neuron: its

output is the predicted value. For multivariate regression (predicting several values at once),

one output neuron is needed for each output dimension.

The principles of forward feeding and backpropagation are used by neural networks to

function. Training the network entails the system attempting to discover all possible trends

in the data and then learning them. The advantage of training is that when you provide the

system a new set of data, it attempts to adapt the previously learned patterns to the new set.

If the patterns fit, a determination is taken based on what was done to the training data after

this pattern was found.

Each node is computed by performing some operation on the node before it. As a result,

the hidden nodes are derived from the input nodes, and the output nodes are derived from

Figure 3.2: Three­layer MLP is widely used as a computational method.
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3.3 Multi­layer Perceptrons 17

the hidden nodes. Forward propagation refers to the mechanism by which the output node

is computed by the operations of previous nodes and the information supplied by the input

nodes is transferred directly to the output node. When the output nodes have been generated

and their values calculated using the forward propagation method, the gradient must be com­

puted, which necessitates information flowing backward from the output node to the input

node. This is known as backpropagation. In neural networks, calculating gradients using the

backpropagation technique is critical because it helps reduce the cost function, resulting in

much smoother and more reliable predictions.

The forecast output is compared to the training case, and the derivative of the loss function

with respect to the output is calculated. This loss’ derivative must now be calculated with

respect to the weights in all layers in the backwards process. The primary aim of the backward

step is to learn the gradient of the loss function with respect to the various weights using

differential calculus’ chain law. The weights are modified using these gradients. The aim of

backpropagation is to find a point at the bottom of the curve where the magnitude of the loss

function is as low as possible. As the value decreases, you must determine the values of the

variables that contributed to the decrease. These factors are known as weights and prejudice

in neural networks. The backpropagation algorithm employs differential calculus’ chain law,

which computes error gradients as summations of local­gradient products over various paths

from a node to the output [11].

Each neuron in the hidden or output layer has a unique activation mechanism. This aids

in determining whether the performance of a specific neuron is essential or not. The system’s

trained weights are multiplied by the input neuron value. The bias attribute is then applied.

The activation function, which decides the significance, determines the output value. When

an activation function is applied to an output neuron, it takes the output of all prior neurons

where the activation function was applied and provides a final response by computing the

weighted sum. There are several categories of activation functions, some of which are as

Sigmoid, Tanh, Softmax, ReLU and Leaky ReLU.

The curve of a sigmoid activation feature is s­shaped. It has a value spectrum of 0 to 1.

Since its higher and lower bounds are 0 and 1, it is most often found in binary classification

problems. The following equation gives the sigmoid activation function:

Sigmoid(x) =
1

1 + e−x
(3.5)

Tanh is another name for the hyperbolic tangent function. This function ranges from ­1 to
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+1. This function is used when you want to consider negative outputs. In general, using Tanh

in the hidden layers is advised because it causes the quality of various layers to be negative

as well. The following equation gives the hyperbolic tangent function:

Tanh(x) =
2

1 + e−2x
(3.6)

For dealing with binary classification problems, sigmoid functions are used. However,

if you have several classes, you can instead use softmax activation functions. A softmax

function’s contribution is the probability of each class over all classes. The formula is given

by the next equation:

Softmax(x) =
ei∑
ei

(3.7)

The lower limit of ReLU activation functions is 0, but there is no upper limit. If the

weighted sum is an integer or whole number, the same value will be returned as output.

However, if the output is less than zero, it will be translated to zero. It can be represented by

the following formula:

ReLU(x) = max(0, x) (3.8)

Leaky ReLU is the same as ReLU, only that instead of having a lower limit of exactly 0,

values will be less than 0 by taking a value and multiplying it by the initial value. It can be

represented by the following formula:

LeakyReLU(x) =

x, if x > 0.

a · x, otherwise.

(3.9)

Increasing the strength of several layers requires the use of nonlinear activation functions.

A multilayer network can be seen to simplify to linear regression if all layers use an identity

activation mechanism. A network with a single hidden layer of nonlinear units and a single

(linear) output layer has been shown to compute almost any element. As a consequence,

neural networks are often referred to as universal function approximators, despite the fact

that this theoretical assertion is not always easily translated into functional usefulness. The

key problem is that the number of secret units used to accomplish this is very high, which

raises the number of parameters to be studied. As a consequence, training the network with a

small number of data presents realistic challenges. Deeper networks, in particular, are often

chosen because they minimize the number of hidden units in each layer as well as the total

number of parameters.
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Generally, you don’t want to use any stimulation for the output neurons when creating an

MLP for regression, so that all values are free to output. You should use the ReLU activation

feature in the output layer if you want to ensure that the output will still be optimistic. In con­

clusion, you can use the logistics function or the hyperbolic tangent if you want to guarantee

that the forecasts fall within the range of values given and then scale labels into the required

ranges of 0 to 1 of the logistical function and ­1 to 1 of the hyperbolic tangents.

3.4 Radial Basis Function

Radial basis function (RBF) networks have a radically different architecture from the

previous chapters. Both of the preceding chapters make use of a feed­forward network, in

which the inputs are transferred forward from layer to layer in a similar manner to provide the

final outputs. The nonlinearity in a feed­forward network is usually provided by the repeated

composition of activation functions. An RBF network, on the other hand, usually consists of

a single input layer, a single hidden layer (with a special form of action specified by RBF

functions), and an output layer (Figure 3.3). Although the output layer can be replaced with

several feed­forward layers, as in a traditional network, the resulting network is still very

shallow, and its behaviour is heavily affected by the existence of the unique hidden layer.

Figure 3.3: A typical form of an RBF neural network.
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The nature of the calculations in hidden layers differs greatly from the feed forward net­

works we have seen to date. The structure and computations performed by the special hidden

layer are the secret to the RBF network’s strength. The RBF network is a generalization of

kernel classification and regression, much as the perceptron is a version of the linear support

vector machine. The RBF network’s layers are constructed as follows:

• Simply transmit the input layer to the hidden layers from the input functions. The num­

ber of input devices is therefore exactly the same as the dimension d of the data. As

with feed forward networks, input layers are not calculated. The input units are en­

tirely attached to the hidden units, as with all feed­forward networks, and take their

input forward.

• In the hidden layers, computations are dependent on comparisons with prototype vec­

tors. A d­dimensional prototype vector is present in each hidden unit. Let µi represent

the prototype vector of the ith secret unit. Furthermore, the ith secret unit has a band­

width denoted by σi. The activation Φi(X) of the ith hidden unit is then defined for any

input training point X as follows:

hi = Φi(X) = exp(−∥X − µi∥2

2 · σ2
i

), i = 1 . . .m. (3.10)

where, m represents the cumulative number of hidden units. Each of these m units is

intended to exert a significant impact on the cluster of points nearest to its prototype

vector. As a result,m can be thought of as the number of clusters used for simulation,

and it is a significant hyper­parameter open to the algorithm.

• Let hi be the output of the ith hidden unit for any given training point X , and the

weights of the links from the hidden to the output nodes be set towi. The RBF network’s

prediction y in the output layer is then described as follows:

ŷ =
m∑
i=1

wi · hi =
m∑
i=1

wi · Φi(X) =
m∑
i=1

wi · exp(−
∥X − µi∥2

2 · σ2
i

) (3.11)

The RBF neural network model has been shown to be a good approximator of any func­

tion. The ability of the RBF structure to recognize whether an input is near the training set or

in an untrained area of the input space gives it a considerable advantage over the MLP struc­

ture. RBF networks can also be conditioned more quickly. Because of its shorter training

period, the RBF neural network architecture is found to be a feasible option.
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3.5 Testing and Validating

The only way to determine how well a model can adopt to new cases is to test it on new

cases. A smarter choice is to divide the data into two sets: training and testing. As the names

suggest, you prepare the model with the training set and compare it with the test set. The

error rate on new cases is known as the generalization error, and you can approximate it by

testing your model on the test sample. This attribute indicates how well the model can do in

situations it has never seen before.

Despite neural networks’ formidable credibility as universal feature approximators, sig­

nificant challenges remain in training neural networks to provide this level of accuracy. These

difficulties are largely due to a number of realistic training issues, the most significant of

which are overfitting and underfitting. Overfitting occurs when the model is trained for an

excessively long period of time, while underfitting occurs when the model is not trained for

an insufficiently long period of time. In other words, overfitting may occur if the model is

trained to the point where error begins to increase. Underfitting can occur if you stop training

the model when the error is high but can still be minimized.

The data used to create the model is just a subset of all the data available in the universe.

The data can be described as incomplete and noisy. As a result, when the model is practiced,

it attempts to learn how well it generalizes to new data. In other words, if the model is able to

correctly extend the principles it has applied to new data is referred to as generalization. An

overfitting problem occurs when the model is applied to the data too well. Often there are so

many specifics in the data, as well as a lot of needless material. If the model learns from this

highly specific data, especially the details and the extra noise, it could lead to overfitting. This

negatively impacts the performance. Therefore, in this scenario, the model performs really

well in the training data but not on the unseen data.

It has long been assumed that neural networks are technically capable of approximating

any function. However, a lack of data access will lead to low results, which is one of the

reasons neural networks have only recently gained popularity. Underfitting occurs where the

model is unable to learn from the data and thus cannot perform well on new unseen data. In

general, neural networks must be carefully designed to avoid the negative consequences of

overfitting and underfitting.
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3.6 Data preprocessing

There are some critical problems involved with neural network setup, preprocessing and

initialization. The aim of data preprocessing is to make raw data more amenable to neural

networks. This covers vectorization, normalization, missing­value management, and feature

extraction. The importance of feature preprocessing and initialization cannot be overstated.

As opposed to other machine learning algorithms, neural networks have greater parameter

spaces, which magnifies the effect of preprocessing and initialization in a variety of ways.

The feature processing approaches employed in neural network training are not dissim­

ilar to those employed in other machine learning algorithms. Normalization is commonly

accomplished by dividing each function value by its standard deviation. The data is said to

be normalized when this form of function scaling is paired with mean­centering. The basic

principle is that each function is assumed to come from a regular normal distribution with

a zero mean and unit variance. Where the data must be scaled in the range [0, 1], the other

form of function normalization is useful. Let Minj and Maxj be the jth attribute’s minimal

and maximum values. Then, using min­max normalization, each function value xij for the jth

dimension of the ith point is scaled as follows:

yij =
xij −minj

maxj −minj

(3.12)

It is known as Min­Max and commonly used for short term load forecasting in the litera­

ture. The normalization of features also guarantees improved results because relative values

of features are commonly different in more than one order of magnitude. In such situations,

the learning parameter faces the issue of malconditioning, in which the loss function is more

susceptible than other parameters.

3.7 Neural Network Performance Metrics

As expected, performance measures are used to select the better network model in terms

of architecture, training algorithm, training parameters, etc. This section examines the in­

consistencies of the three most commonly used performance measures for selecting the best

possible network in terms of training parameter­tolerance [12]. For the problem of short­term

load forecasting, the metrics most frequently mentioned in the literature and which this the­

sis deals with are Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute
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Percentage Error (MAPE).

In statistics, the MSE of an estimator is defined as the sum of the squares of the errors, or

the average squared difference between the expected and actual values. MSE is almost often

purely positive due to randomness or that the estimator fails to account for facts that might

yield a more reliable result. MSE is calculated with the help of the following mathematical

formula:

MSE =
1

n

n∑
i=1

(xi − yi)
2 (3.13)

where, xi is the actual value for the ith observation and yi is the predicted value.

Furthermore, MAE is a measure of the difference in errors between paired experiments

describing the same phenomenon. MAE is calculated as follows:

MAE =

∑n
i=1 |yi − xi|

n
(3.14)

where, xi is the actual value for the ith observation and yi is the predicted value and n is the

number of samples.

In mathematics, the MAPE is an indicator of a forecasting method’s prediction accuracy.

It normally communicates accuracy as a formula­defined ratio:

MAPE =
100

n

n∑
i=1

|Ai − Fi

Ai

| (3.15)

where, At is the actual value, Ft is the forecast value and n is the number of samples.

The literature, as can be seen in subsequent chapters, focuses primarily on the presentation

of the findings and the assessment of the respective forecasting models in MAPE. All three

measurement criteria will be used to test the model presented in this master’s thesis. However,

the comparison of theMAPE seen in the numerical results with the other models in the current

literature would highlight its efficiency.
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Chapter 4

Review of Short­Term Load Forecasting

Methods Using Artificial Neural

Networks

4.1 Introduction

In recent decades, a variety of Artificial Intelligence algorithms, Deep Learning and

Neuro­Fuzzy methods seem to find application and evolve in the field of electricity systems.

Some of their main applications concern the optimal operation and management of the power

system, load forecasting and electricity price forecasting.

For instance, Miltiadis Alamaniotis, Dimitrios Bargiotas and Lefteri H. Tsoukalas pro­

pose a Gaussian process regression (GPR) and a relevance vector regression (RVR) for ap­

proaching load forecasting issue based on historical New England’s power system load data

[13]. In parallel, Dimitrios Kontogiannis et al. [14], proposes the design of a fuzzy control

system that will use environmental data, such as those of the weather, to achieve the minimum

energy consumption in buildings. This fuzzy control system relies on the parallel application

of XGBoost and decision tree metrics to determine the importance of data’s features.

In a similar effort to promote AI methods based on RVRs, Miltiadis Alamaniotis et al.,

re­use the historical data of New England’s power system to forecast the price of electricity

the next day [15]. In a later attempt [16], the author proposes a novel hybrid methodology

to address the same issue. Initially, it uses RVRs to determine the price of the next day’s

electricity. It then uses these prediction results in conjunction with a micro­genetic algorithm

25
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to enhance the prediction and determine the final value.

Despite the importance of these techniques, this chapter provides an overview of existing

STLF­based neural network methods.

4.2 Short term load forecasting using Multi­layer Percep­

trons

The first attempts to address the issue of hourly load prediction using neural networks

appeared in the early 1990s. One of the first approaches to STLF was the use of multi­layered

perceptron. In [17], D.C. Park et al., cites theoretical analysis and mathematical background

for the application of three­layer perceptrons to load prediction. Using historical load data and

temperature data their proposed systemmanaged to produce three different forecast variables

(peak load, total daily load and hourly load) with ΜΑPE values less than 3%.

In an effort to develop existing techniques, Kun­Long Ho et al., applied an adaptive learn­

ing algorithm to MLPs to enhance the ability to make more accurate predictions [18]. A dif­

ferent approach is presented in the paper [19], where a minimum distance measurement is

used to find the correlations of the data used as neuronal inputs. The differences appear in the

fact that as input data are used prior days total load and maximum and minimum temperature

as well as the predicted maximum and minimum temperature for the forecast day and with

an enhanced learning algorithm, better prediction results are noted.

A first attempt for short­term load forecasting based on the data of the Greek power sys­

tem is presented in [20]. A fully connected three­layer feedforward ANN consisting of 63

input neurons, 24 hidden neurons and 24 output neurons was proposed from Bakirtzis et al.

in order to predict the hourly values of the next day’s loads. Initially the ANNwas trained via

back­propagation algorithm using 365 input/output training patterns from the previous year.

However, improved performance of the model was observed when the ANN parameters were

updated every month and even better results were obtained when the model parameters were

updated on a daily basis. This selection of training data set gave satisfactory forecasts for reg­

ular days but resulted in high forecast errors for holidays. To eliminate these errors in STLF

an improved holiday forecasting ANN was proposed. This model trained on a special ­ for

each holiday ­ data set reduced the forecast errors of consecutive holidays and days following

a holiday.
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P. Mandal et al., based on a range of similar days to the predicted day, use a solid method

for several hours ahead energy price and load forecasting [21]. They measured the correla­

tion coefficient between the data and then integrated them into a three­layer MLP, which was

trained with the backpropagation algorithm, using historical half­hourly data for the Victo­

ria electricity sector. This study, without taking into account variables such as weather and

special days, offered a more accurate approach to the STLF issue compared to the previous

simple methods.

In a more sophisticated approach, N. Kandil et al, used a simple MLP for short term load

forecasting [22]. In this paper, they focused on increasing the important and highly correlated

data used as neural network inputs. Thus, the authors used as variable inputs an hour indicator,

a day indicator, the estimated temperature at hour k, k­1 and k­2. Special emphasis is given

to the fact that historical loads are not used as inputs.

Another work related to STLF for the Greek Intercontinental Power System is presented

in [23]. In their work, G. J. Tsekouras et al., compared various neural network training al­

gorithms to predict hourly load demand by measuring the MAPE of each separately. The

proposed neural network creation does not differ significantly in the structure and input data.

The differentiation of researchers is in the normalization of input data where they follow a

function of their own to pre­process the data.

In addition, in another attempt to approach the STLF issue Alamaniotis and Tsoukalas

[24] presented a data­driven method for minutely active power forecasting based on Gaussian

processes, highlighting therefore the importance of minute predictions while Kontogiannis et

al. [25] presented a baseline performance comparison of neural network models for minutely

active power forecasts derived from residential data.

4.3 Short term load forecasting using Radial Basis Func­

tions

Another category of neural networks that has occupied the research community in re­

cent decades and is directly applicable to load prediction is that of Radial Basis Function

Networks.

An initial analysis of the application of RBFNs (Radial Basis Function Networks) to

short­term load forecasting is presented in [26]. First, the mathematical background of their
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operation is analyzed in parallel with those of ANFIS and the necessary comparisons are

made. Then a modified ANFIS with the possibility for load adjustment and a different math­

ematical formulation to load prediction is proposed. The proposed model is applied to STLF

issue with the Load data from January to August 2004 of an Australian region giving satis­

factory results compared to the referenced literature.

In [27], Zbigniew Gontar et al, emphasizing the special importance and usefulness of

RBFNs, recorded the results obtained using as input the data of the loads of Crete. In order

to be able to identify the seasonality of the data, they proposed the creation of four neural

networks, one for each time of year. A fifth neural network was used to predict the loads on

the special days and the weekend, as well. The data used as neuronal inputs were historical

load data, mainly the data of previous hours and the previous day, the time of day, the initial

network forecast, the maximum and minimum value of the day temperature, the cumulative

density function and the variances between predicted value and previous actual load value.

In conclusion, the authors observed that with the use of RBFNs the next hour load forecast

predicted a significant improvement over conventional MLPs, as MAPE recorded a value of

2.01%.

A comparative study using RBFNs is described in [28]. The authors, trying to achieve

better generalization of data, faster execution time and less error in prediction, consider the

application of various algorithms for the training of neural networks. To evaluate the different

learning techniques, they compare the prediction results obtained from RBFNs during their

training with Decay Radial Basis Function Networks (DRBFN), Support Vector Regression

(SVR), Extreme Learning Machine (ELM), Improved Second Order algorithm (ISO) and

Error Correction algorithm respectively (ErrCor). The dataset introduced consists of New

England hourly loads, hourly temperature data for the period 2004­2011, an appropriate fea­

ture that returns the time of day, the day of the week and a variation on whether the day in

question is special day or not. The result extracted from the neural network is the hourly load

prediction for the next day. The numerical results showed that the ErrCorr modified algorithm

showed the best prediction since the value of MAPE says a value less than 2 percent.
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4.4 Short term load forecasting using Hybrid Models

A first approach to the issue of STLF with the application of hybrid models is presented

in [29]. The researchers suggest using wavelet fuzzy neural networks (WFNN) and modified

fuzzy neural networks (FNCI) to predict the next hour’s load. The researchers used load data

from the Northern Region Load Dispatch Center in Delhi, India, as well as temperature, wind

speed and humidity data to evaluate their proposed hybrid models. After introducing these

data into various models and comparing the results, they concluded that the technique they

proposed yielded better prediction results than the traditional ANFIS model, which has been

used extensively in the literature.

In [30], Ioannis P. Panapakidis proposes a robust hybrid model for forecasting day­ahead

and hour­ahead load predictions by using hourly load values of 10 buses of the Greek Power

System located in the area of Thessaloniki, North Greece. The hybrid model described is

based on the combination of historical load and temperature data clustering and embedding

in anMLP neural network. Specifically, the author recommends using the minCEntropy clus­

tering algorithm on the training set in order to formulate k clusters. A different ANN is used

for each subset. As a result, the data from the corresponding clusters is used to train k ANNs

respectively. The Euclidean distance is used to relate each pattern in the test set to k centroids,

and the results are fed into the corresponding ANN.

Following the pattern of previous researchers, an innovative approach to load prediction

comes from [31]. Xishuang Dong et al., Proposed the implementation of a convolutional neu­

ral network (CNN) enhanced with K­means clustering in order to achieve higher scalability

in the data and thus reduce the error rate in the forecast. As a first step, the data is cleaned of

noise, so that they show greater self­correlation with each other. The K­means clustering al­

gorithm is then applied to the denoised data. The now grouped data is entered into a CNN for

hourly load forecasting. The researchers measured the MAPE of the proposed hybrid model

and concluded that it offers lower error values compared to other hybrid techniques.

Another hybrid load prediction system is described in detail in [32]. In their work, the

authors emphasize the importance of preprocessing load data and propose an improved neural

network learning algorithm. The data entered in themodificationmodel refer to historical load

data per hour and exogenous data that directly affect the load behaviour, such as temperature

and humidity. The Μin ­ Max normalization is now applied to them so that their values range

between 0 and 1. Then, the data that show greater autocorrelation are entered into an MLP
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neural network, which is trained with a modified harmony search (MHS) algorithm. This

proposed model is evaluated based on data from the Pennsylvania ­ New Jersey ­ Maryland

(PJM) power system. The researchers conclude that compared to the other models analyzed

in the literature, their models show less MAPE values thanks to both the preprocessing of the

data and the modified MHS learning algorithm.

Remaining in the category of hybrid models, L. Ekonomou et al., proposed a load fore­

casting model based on the combination of MLP neural networks and wavelet analysis [33].

The researchers manipulated historical load data from the Bulgarian power system grid as

time series and applied a wavelet denoising algorithm to remove their noise and split them

into signals with different frequencies. Subsequently, they inserted these denoised data into

an improved ANN significantly increasing the success rate of the prediction. Despite the de­

tailed work of the researchers, the model does not take into consideration the crucial for the

STLF issue holiday factor.

In [34], K­shape is proposed as a new clustering technique for categorizing consumers

based on their load consumption behaviour. At the same time, various ways for network­level

load forecasting are proposed and the characteristics used as inputs of the neural network are

pointed out. More specifically, the inputs include historical load data of the previous and the

same day, the corresponding temperature data, an innovative approach to data cyclicity and

a discriminating between working days and non­working days. The researchers applied the

proposed algorithm to a series of Deep­Learning technical forecasts for the next day’s load,

concluding that the lowest value of MAPE is 2.15%.

Another hybrid approach is described in the paper [35]. Researchers use various machine

learning algorithms to optimize the data they use in short­term load forecasting. Initially, they

use the load data as time series data and decompose it based on the Intrinsic Mode Function

(IMF) technique. Then, with the help of the Particle Swarm Optimization (PSO) algorithm,

they are filtered and used by the Extended Kalman Filter (EKF), Extreme Learning Machine

with Kernel (KELM) for STLF. The authors conclude that this approach yields acceptable

forecasting accuracy and time performance. In a similar addition, the author of [36] uses day

or week ahead load data for creating clusters which he feeds to an ANN. The error resulting

from comparing this data with the actual ones is fed to a WNNwhere the final prediction and

the various error metrics are calculated. This process is repeated for various machine learning

approaches. The results of these techniques are compared with the MAPE and the nRMSE
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where the approach with the least error is chosen as preferable.

The above papers focused on the different forms of neural networks that can be used for

short­term load prediction. The bibliography is very extensive and is constantly increasing in

size as new deep learning methods approach the subject of STLF. The effects of the various

forms of data normalization, the various activation functions, and the various morphologies

of neural networks are presented in [37, 38, 39].

Following a thorough review of the literature, it was find out that a complete inestigation

of the various scaling strategies of the input data to the neural networks and the influence

they have on the prediction outcomes could be analyzed and improved.
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Chapter 5

Proposed Approach and Implementation

for Short­Term Load Forecasting

Methods

5.1 Proposed approach for STLF

Following a thorough review of the literature, an innovative data processing technique

is suggested, which differs from earlier work, highlighting the values of specific input data.

The two primary preprocessing strategies suggested concentrate on the gravity of particular

neural network input variables in relation to output variables, resulting in superior prediction

outcomes than traditional methods in the existing literature. As a result, numerical findings

highlight the significance of this work.

As mentioned in previous chapters, the aim of this master’s thesis is to examine the im­

pacts of multiple input data preprocessing approaches on the results of short­term load fore­

casting using neural networks, and to present two new improved scaling strategies that en­

hance forecast results. The cases that were studied for short­term load forecasting, as well as

the structure of the neural networks used, are presented in detail in this chapter. The cases

under consideration are the next day load forecast using the average value of daily loads,

the hourly load prediction using historical data from previous days, and the next day’s load

forecast using historical data from previous days and previous hour. The latter case is what

sets the current postgraduate thesis apart from others by proposing a more efficient approach

of normalizing the input data
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5.2 Implementation for short­term load forecasting

The data used in the above studies came from the Greek power system for the years 2013,

2014, 2015, 2016, and 2017. To make a more accurate forecast, weather data, such as temper­

ature, must be used in addition to the historical data of the loads. As stated in previously, data

is separated into training and test sets in a ratio of 80% ­ 20% of the total data. As a result,

the training set is made up of data from 2013, 2014, 2015, and 2016, while the predictions

are for 2017 (test set). Figure 5.1 illustrates the separation of data into training and test sets.

In this master’s thesis, neural networks were built using the Python programming language

and specifically the library scikit­learn.

5.2.1 Case A: Forecast of the average daily load of the following day

As a first case, different techniques of normalizing the input data for the average daily

load forecast using MLP neural networks are considered. The neural network used aims to

predict the average value of the next day’s load and is shown in Figure 5.2. The data in the

input layer is as follows:

Figure 5.1: Data is divided into two sets: training and test. The data from the previous four

years is used as a training set, while the data from the most recent year is used as a test set.
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• Date: The day of the month as an integer.

• Week Day: It is a characteristic coding to determine the day of the week. The cod­

ing is achieved by using integers from 1­7, where 1 symbolizes Sunday, 2 symbolizes

Monday, etc.

• Holiday: Binary coding of the days that are considered holidays for the Greek state

(special days and holidays). Holidays and weekends are denoted by 1, while other days

are denoted by 0.

• Temperature: The average value of the day temperature for which the forecast is made.

• D­1 Load: The average value of the previous day’s load from the forecast.

The data is initially entered into the neural network without being normalized in either

way. The results of this method are contrasted to the true average values of the loads for the

particular day. Figure 5.3 shows a schematic representation of real load values and predicted

values from the neural network, as well as a comparison of the two. The MSE, MAE, and

MAPE results are then computed and reported in Table 5.1.

The effect of a simple scaling of the input data on the neural network’s prediction out­

come is then investigated. By dividing each input variable by the maximum value of the

corresponding data set, simple scaling is achieved. This method is only used to get values in­

Figure 5.2: The structure of the proposed three­layer MLP for the average daily load forecast.
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Figure 5.3: Comparison of the real and the predicted values of the electric load for the year

2017 without any kind of normalization.

Table 5.1: MSE, MAE and MAPE values (based on MW) for the average daily load forecast.

Input data is not subject to any scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 109120.64875 250.32491 4.24 %

side the area [0,1] for the variables Temperature,D−1Load, andD−7Load. The following

mathematical relation gives the simple scaling for temperature:

Tempscaled =
Tempi
Tempmax

(5.1)

where, Tempi is the average temperature of day i and Tempmax is the maximum temperature

value of the data set. Exactly the same relationship applies to D − 1Load and D − 7Load

data.

The now­normalized data is fed into the neural network in order to estimate the average

value of the next day’s load, much as in the previous example. The corresponding results are

compared to the real load figures for 2017. The predicted outcomes are graphically depicted

in Figure 5.4, and the MSE, MAE, and MAPE equations are listed in Table 5.2. As can

be shown, relative to basic data entry without preprocessing, this form of preprocessing of

temperature and historical load data yields a higher MAPE.

In most papers of the literature review the scaling of the input data is considered necessary
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Figure 5.4: Comparison of the real and the predicted values of the electric load for the year

2017. Now the values predicted through the simple scaling method are added.

Table 5.2: MSE, MAE and MAPE values (based on MW) for the average daily load forecast

after a simple scaling of the input data.

Scaling Method MSE MAE MAPE

Unscaled 109120.64875 250.32491 4.24 %

Simple Scaling 174437.87768 289.10109 4.60 %

to achieve better predictions and reduce the error rate. For this reason, after an extensive study

of the correlation of the data but also of the way in which the neural network manages them,

this work proposes an innovative scaling method that will give the appropriate weight to the

parametersD−1Load andD−7Load greatly improving the forecast results. We investigate

whether or not the scaling techniques are affecting the accuracy of the predicted values. Based

on the Greek power system data, it turns out that a weighting factor of 10 on the load data

of existing scaling methods could greatly improve the accuracy of the forecasted values. For

different type of data possibly a new investigation could lead to different weighting factors.

In the first stage, temperature data is scaled the same as it was in the previous scaling pro­

cess. Therefore, the temperature input data are transformed according to the equation above.

After extensive study and considerable experimentation, it was observed that theD− 1Load

and D − 7Load data determine to a greater extent the effect of the neural network. There­
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fore, it is considered reasonable and necessary to give them due consideration. As a result,

the following mathematical relationship was found to be a better scaling technique for these

data:

D − 1Loadscaled =
D − 1Loadi
D − 1Loadmax

· 10 (5.2)

where, D − 1Loadi is the average value of the ith day’s load for which the forecast is made

and the maximum value of the total D − 1Load.

The data is then scaled and entered into the network. The neural network’s prediction

outcomes are related to the actual values. Figure 5.5 depicts this contrast. In Table 5.3, the

MSE, MAE, and MAPE metrics are estimated and presented. As compared to the previous

two techniques, the value of MAPE seems to drop significantly, highlighting the fact that the

proposed scaling approach performs better in estimating the average value of the next day’s

load.

Figure 5.5: Comparison of the real and the predicted values of the electric load for the year

2017. Now the values predicted through the proposed scaling method are added.

In respect of the other papers of the literature review, the min­max scaling technique is

applied to the input data separately. Therefore, a separate scaling is applied to the temperature

data from the load data. This action is desirable as it better attributes the weight of the data to

the neural network and separates the relationship between them. As mentioned in a previous

chapter, the mathematical formula for this scaling technique is as follows:

y =
x− xmin

xmax − xmin
(5.3)
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Table 5.3: MSE, MAE and MAPE values (based on MW) for the average daily load forecast

after an enhanced scaling of the input data.

Scaling Method MSE MAE MAPE

Unscaled 109120.64875 250.32491 4.24 %

Simple Scaling 174437.87768 289.10109 4.60 %

Enhanced Scaling (Proposed) 48804.36457 159.42596 2.62 %

where, y is the new scaled value, x is the initial value, xmin and xmax are the minimum and

maximum values of the set respectively. The data is fed into the neural network after this

preprocessing technique. The outcomes of the MLP neural network’s mean value of daily

load are compared to actual values for the year 2017. Figure 5.6 depicts the contrast, while

Table 5.4 summarizes the MSE, MAE, and MAPE estimates from this prediction.

Figure 5.6: Comparison of the real and the predicted values of the electric load for the year

2017. Now the values predicted through the min­max scaling method are added.

As shown in Table 5.4, the load forecast from the proposed neural network using theMin ­

Max ScalingMethod for the preprocessing of the input data shows a smallerMAPE compared

to the simple scaling technique and the case where the input data without preprocessing.

However, an important observation is the fact that our proposed enhanced scaling method has

much better prediction results than the min­max scaling technique widely used in regression

problems.
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Table 5.4: MSE, MAE and MAPE values (based on MW) for the average daily load forecast

after a min­max scaling of the input data.

Scaling Method MSE MAE MAPE

Unscaled 109120.64875 250.32491 4.24 %

Simple Scaling 174437.87768 289.10109 4.60 %

Enhanced Scaling (Proposed) 48804.36457 159.42596 2.62 %

Min – Max Scaling 104367.85298 245.74374 4.11 %

Despite the fact that min­max scaling does not seem to do as well as our proposed ap­

proach, the case of an improvedMin­Max Scaling process should be considered, stressing the

value and significance in the outcome of predicting the data that involve the inputsD−1Load,

D− 7Load. Initially, the temperature data undergoes simple min­max scaling, while the his­

torical load data undergoes the following scaling:

y =
x− xmin

xmax − xmin
· 10 (5.4)

The data is then entered into the input layer of the MLP neural network. The results have

values between [0, 10]. They reflect a scaled average value of the next day’s load. Therefore,

in order to be able to compare with the actual values of the daily load, they will have to return

to the unit of measurement, in order to obtain their real value. The following mathematical

formula is used to obtain the values in units:

x =
y · (xmax − xmin)

10
+ xmin (5.5)

Figure 5.7 illustrates the load behaviour of all scaling methods tested. Table 5.5 sum­

marizes the results of the MSE, MAE and MAPE metrics calculated from this forecast as a

measure of comparison of all scaling methods for the average n­day load forecast for the next

day.

From Table 5.5 we conclude that our proposed method gives the best forecast of average

daily load, as it displays the lowest MAPE. However, the enhanced min­max scaling tech­

nique using the result of our study on the gravity of historic load data dramatically reduces

MAPE compared to the corresponding conventional technique widely used in the literature.
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Figure 5.7: Graphical representation of the results obtained from the various methods of pre­

processing the input data.

Table 5.5: MSE, MAE and MAPE values (based on MW) for the average daily load forecast.

Scaling Method MSE MAE MAPE

Unscaled 109120.64875 250.32491 4.24 %

Simple Scaling 174437.87768 289.10109 4.60 %

Enhanced Scaling (Proposed) 48804.36457 159.42596 2.62 %

Min – Max Scaling 104367.85298 245.74374 4.11 %

Enhanced Min­Max Scaling (Proposed) 46757.39119 162.70983 2.71 %

5.2.2 Case B: Hourly load forecasting

Case B is based on the hourly load data of the Greek power system for the years 2013,

2014, 2015, 2016 in order to predict the hourly load demand of the next day for the year 2017.

For this reason, a three­layer MLP neural network (Figure 5.8) is constructed as they also

report a plethora of literature studies presented in Chapter 3. More specifically, the following

variables are introduced at the input level:

• Hour: The time of day for which the load forecast will be made. The time is entered as

an integer taking variables from 0 ­ 23.

• Week Day: As in case A, it is a characteristic coding to determine the day of the week.
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The coding is achieved by the use of integers from 1­7, where 1 symbolizes Sunday, 2

symbolizes Monday, etc.

• Holiday: Binary coding to characterize a day as a holiday or a working day. The hol­

idays of the Greek state, i.e., the days concerning national anniversaries and major

religious holidays, as well as the weekends are marked with the number 1. On the

contrary, the other days are coded with the number 0.

• Temperature: The hourly value of the temperature of the day for which the load is

forecast.

• D­1 Load: The value of the previous day’s load from that predicted at the corresponding

time. For example, if the MLP neural network predicts Wednesday at 17:00 then the

price of Tuesday load at 17:00 is entered as entry to the neural network.

• D­1 Load: The value of the load corresponding to the same day of the previous week

at the corresponding time. For example, if the output of the neural network is the load

forecast for Wednesday 12/05 at 17:00, then until then, as the input to the neural net­

work, the value of the load of Wednesday 5/05 at 17:00 is entered.

Figure 5.8: Typical structure of the proposed three­layer MLP for hourly load forecasting.

Particular attention is paid to input variables.

The coding of the neuronal input data described above differentiates the present master’s

thesis from the coding of papers [24], [28] as it has been observed, following experiments,

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 21:03:13 EEST - 3.135.182.100



5.2 Implementation for short­term load forecasting 43

that it describes the seasonality of the charge more efficiently. The season cycle of papers

[24], [28] was experimentally tested as neuronal input yielding higher MAPE values.

As in the previous case, the effect on the prediction result of the hourly value of the load

of some scaling methods on the input data is examined by calculating the metric MSE, MAE

and MAPE. Initially, the input data is not subject to any kind of configuration and is entered

as is in the three­layer perceptron. The results produced through this process are compared

with the actual hourly values of the loads of the respective day for the whole of 2017. Figure

5.9 graphically shows the real and forecasted values, while Table 5.6 summarizes the metric

calculations. The input data is then pre­processed separately using a simple scaling method.

Figure 5.9: Graphic comparison of actual and predicted hourly load values. In the first case,

the input data is entered as is.

Table 5.6: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is not subjected to any scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 111390.38535 239.36012 3.99 %

Simple scaling is performed by dividing each input variable by the maximum value of the

corresponding data set. This procedure is performed only for the variables Temperature,

D − 1Load, D − 7Load in order to get values within the field [0,1]. Equation 5.1 gives the
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simple scaling for Temperature.The corresponding relationship also applies to D − 1Load

and D − 7Load data.

The scaled data is then entered into the neuron in order to predict the hourly value of

the load. The values extracted from the proposed neural network are compared with the real

hourly values of 2017. Its graphic representation is shown in Figure 5.10. Table 5.7 summa­

rizes the results of the MSE, MAE and MAPE metrics calculated from this prediction with

the specific input data preprocessing technique.

Figure 5.10: Graphic comparison of actual and predicted hourly load values. The values pre­

dicted through the simple scaling method are added.

Table 5.7: MSE, MAE and MAPE values (based on MW) for the average daily load forecast.

Input data is subjected to a simple scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 111390.38535 239.36012 3.99 %

Simple Scaling 71917.69612 189.87314 3.17 %

From the above results it is understood that a proper preprocessing of input data can

yield better results in forecasting compared to unscaled data entry. For this reason, after an

extensive study of the correlation of the data but also of the way in which the neural network

manages them from this work, an innovative scaling method is proposed that will give the
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appropriate weight to the parametersD−1Load andD−7Load greatly improving the results

of the forecast.

In the first step the temperature data undergoes the previous preprocessing described in

the above equation. After several experiments in the data, it was observed that the variables

D−1Load andD−7Load are the ones that greatly influence the result of the prediction of the

neural network. Therefore, more weight should be given to these variables in order to obtain

a more accurate forecast. In this work, we investigate whether or not the scaling techniques

are affecting the accuracy of the predicted values. Based on the Greek power system data,

it turns out that a weighting factor of 10 on the load data of existing scaling methods could

greatly improve the accuracy of the forecasted values. For different type of data possibly a

new investigation could lead to different weighting factors. The proposed scaling technique

is described by Equation 5.2.

The scaled data is entered into the neural network. The resulting results are shown graph­

ically in Figure 5.11 in correspondence with the real hourly values of the year 2017. Table 5.8

compares the values of MSE, MAE and MAPE calculated from this forecast. MAPE values

fail because our proposed data preprocessing technique significantly improves forecasting.

Figure 5.11: Graphic comparison of actual and predicted hourly load values. The values pre­

dicted through the enhanced scaling method are added.

A common method of scaling neural network input data related to regression problems

is the Min ­ Max method. Due to the extensive references of this method in the literature, its

impact on the issue of this thesis should also be considered.
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Table 5.8: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is subjected to an enhanced scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 111390.38535 239.36012 3.99 %

Simple Scaling 71917.69612 189.87314 3.17 %

Enhanced Scaling (Proposed) 62238.40502 174.52799 2.92 %

In the first stage, the temperature data and the historical load data are subjected to a

separate Min­Max scaling through the Equation 5.3. In the next step, the scaled data are

now entered in the input layer for the forecast of the hourly load values of the year 2017.

The values of the forecast results with the help of the proposed MLP neural network are

compared graphically with the real values, as shown in the Figure 5.12. Table 5.9 summarizes

the calculated MSE, MAE and MAPE metric values.

Figure 5.12: Graphic comparison of actual and predicted hourly load values. The values pre­

dicted through the min­max scaling method are added.

Particular attention should be paid to the results in Table 5.9. Initially, it became apparent

that the Min­Max scaling method only improved the prediction compared to the case where

data is entered into the neural network without any preprocessing confirming what is stated

in the neural network theory. It also brings higher MAPE values than our proposed scaling

technique. Therefore, the conclusion that emerges is that our proposed method highlights the
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Table 5.9: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is subject to a min­max scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 111390.38535 239.36012 3.99 %

Simple Scaling 71917.69612 189.87314 3.17 %

Enhanced Scaling (Proposed) 62238.40502 174.52799 2.92 %

Min – Max Scaling 75953.72593 204.73686 3.40 %

direct correlation of historical load data in the input layer with the output of the MLP neural

network and better approaches the issue of STLF.

AlthoughMin­Max scaling does not seem to perform well compared to the other two data

preprocessing methods, the case of an enhanced Min­Max Scaling method that emphasizes

the importance of input variables such as D − 1Load and D − 7Load should also be con­

sidered. Initially, the temperature data undergoes the simple min­max scaling of Equation

5.3, while the historical load data undergoes the enhanced min­max scaling of Equation 5.4.

The variables D­1 Load and D­7 Load get values in the region [0,10] using this mathematical

relationship.

The data has now been scaled and entered into the proposed neural network. The result of

the forecast is a value within the field [0,10] and refers to the hourly load of the day for which

the forecast is executed. This value should be converted to MW in order to compare with the

corresponding actual hourly load value and to be able to correctly calculate the metrics of

MSE, MAE and MAPE. The conversion of this value in MW is done by solving the equation

Equation 5.5.

Figure 5.13 illustrates the load behaviour of all scaling methods tested. Table 5.10 sum­

marizes the results of the MSE, MAE and MAPE metrics calculated from this forecast as a

measure of comparison of all scaling methods for the hourly load forecast for 2017.

Table 5.10 is a measure of comparison of all scaling techniques presented and related

to case B. Apparently, a smaller MAPE error in the forecast shows our enhanced proposed

technique. Despite its relative simplicity, this method appropriately emphasizes the weight

and importance of the input variablesD−1Load andD−7Load in terms ofMLP output. Both

Min ­ Max Scaling and Enhanced Min ­ Max Scaling improve MAPE compared to unscaled

input data, but do not produce better predictive results for the proposed enhanced technique.
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Figure 5.13: Graphical representation of the results obtained from the various methods of

preprocessing the input data.

Table 5.10: MSE, MAE and MAPE values (based on MW) for for the hourly load forecast.

Scaling Method MSE MAE MAPE

Unscaled 111390.38535 239.36012 3.99 %

Simple Scaling 71917.69612 189.87314 3.17 %

Enhanced Scaling (Proposed) 62238.40502 174.52799 2.92 %

Min – Max Scaling 75953.72593 204.73686 3.40 %

Enhanced Min­Max Scaling (Proposed) 68369.70101 190.54487 3.17 %

Figure 5.14 is a more detailed graphical representation of all the methods examined in case

B, emphasizing the efficiency of the proposed technique.

5.2.3 Case C: Improved hourly load forecasting

In case C, a modified MLP neural network is used to predict the hourly value of the load.

The only distinction between the current neural network and the present literature is that a new

input variable calledH − 1Load is applied that refers to the value of the load in the previous

hour from that for which the prediction is made. Since the behaviour of the hourly value of

the load is represented with greater precision knowing the load of the Greek interconnected

system in the previous hour, the inclusion of this component improves the model prediction’s
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Figure 5.14: For the week of May, the hourly load demand is evaluated. The proposed ap­

proach for pre­processing input data more closely resembles the curve of real values.

success. The improved neural network model proposed in this thesis is illustrated in Figure

5.15 and consists of the following output variables:

• Hour: The time of day for which the load forecast will be made. The time is expressed

as an integer with values ranging from 0 to 23.

• Week Day: It’s a characteristic coding to decide the day of the week, much as in case

A. The coding is done with integers ranging from 1 to 7, with 1 denoting Sunday, 2

denoting Monday, and so on.

• Holiday: Binary coding is used to indicate whether a day is a holiday or a working day.

The number 1 is used to designate Greek state holidays, such as national anniversaries

and major religious holidays, as well as weekends. The other days, on the other hand,

are coded with number 0.

• Temperature: The hourly value of the temperature of the day for which the load is

forecast.

• D­1 Load: The value of the previous day’s load from that predicted at the corresponding

time. For example, if the MLP neural network predicts Wednesday at 17:00 then the

value of Tuesday load at 17:00 is entered as entry to the neural network.
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• D­7 Load: The value of the load at the corresponding time on the same day of the

previous week. If the load prediction for Wednesday 12/05 at 17:00 is the output of the

neural network, then the value of the load for Wednesday 5/05 at 17:00 is entered as

the neural network’s input.

• H­1 Load: The value of the previous hour’s load on which the forecast is based. If the

load prediction for Wednesday 12/05 at 17:00 is the neural network’s output, then the

value of the load onWednesday 12/05 at 16:00 is entered as the neural network’s input.

Figure 5.15: The form of MLP remains unchanged. However, the H − 1Load variable is

added to the input data to improve the forecast.

TheMLP neural network architecture used to predict the hourly value of the load is shown

in Figure 5.16. An input layer, a hidden layer, and an output layer represent the three layers of

a neural network. Seven neurons make up the input level. Each neuron is associated with one

of the variables listed above. There are 100 neurons in the hidden layer. The value 100 was

chosen experimentally as it was found to produce better predictive values by dramatically

reducing error. As can be seen from the papers in Chapter 4, neural networks with a single

hidden layer approach the STLF problem quite accurately. The output layer is composed of

a single neuron and refers to the hourly load value for which the prediction is developed.
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Figure 5.16: The structure of the proposed MLP neural network.

The aim of this study is to try to forecast hourly electricity prices for a year using data from

the Greek power system. The forecast for 2017 (test set) is based on data from the previous

four years, namely 2013, 2014, 2015, and 2016. (training set). The preprocessing techniques

for the data entered into the neural network are of particular interest in order to develop the

current prediction model for the Greek interconnected power system. As a result, the MSE,

MAE, andMAPEmetrics are used to compare the various scaling methods for the input data.

As previously mentioned, the impact of some scaling methods in the input data on the

outcome of the prediction of the hourly value of the load by measuring the metrics MSE,

MAE, and MAPE is investigated in this MSc Thesis. The input data is not subjected to some

kind of modification at first, and it is entered into the three­layer perceptron as is. The results

of this method are compared to the real hourly load values for the respective day for the entire

year of 2017. The real and forecasted values are graphically depicted in Figure 5.17, while

the metric equations are summarized in Table 5.11.

Next, the effect of a simple scaling of the input data on the prediction result of the neu­

ral network is studied. Simple scaling is performed by dividing each input variable by the

maximum value of the corresponding data set. This procedure is performed only for the

Temperature, D − 1Load, D − 7Load and H − 1Load variables in order to obtain val­

ues within the field [0,1]. Equation 5.1 gives the simple scaling for temperature.
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Figure 5.17: Graphic comparison of actual and predicted hourly load values for the year 2017.

The input data is entered as is.

Table 5.11: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is not subjected to any scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44111.39451 160.99752 2.72 %

The scaled data is then fed into a neural network, which predicts the load’s hourly value.

The results of the proposed neural network are compared to real­time hourly values from

2017. Figure 5.18 depicts its graphic display. The MSE, MAE, and MAPE metrics calculated

from this forecast using the same input data preprocessing technique are summarized in Table

5.12.

Table 5.12: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is is subjected to a simple scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44111.39451 160.99752 2.72 %

Simple Scaling 8208.88762 131.14385 2.24 %

As a result of the above findings, it is clear that proper preprocessing of input data can

produce better forecasting results than unoptimized data entry. As a result of this work, an
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Figure 5.18: Graphic comparison of actual and predicted hourly load values for the year 2017.

The values predicted through the simple scaling method are added.

innovative scaling method is proposed that will give the appropriate weight to the parameters

D−1Load,D−7Load, andH−1Load, greatly improving the forecast results, following an

extensive study of the correlation of the data as well as the way in which the neural network

manages them.

In the first step, the temperature data is preprocessed as described in the previous equation.

Following several data experiments, it was discovered that the variables D − 1Load, D −

7Load, and H − 1Load have a significant impact on the neural network’s prediction result.

As a result, these variables should be valued more highly in order to obtain a more accurate

forecast. According to the findings of this study, similar to the previous cases, the coefficient

10 fully attributes the weight of these variables. Equation 5.2 describes the proposed scaling

technique.

Afterwards, the scaled data is fed into the neural network. Figure 5.19 graphically depicts

the resulting outcomes, which correspond to real and predicted hourly values for the year

2017. The MSE, MAE, and MAPE values calculated from this forecast are compared in

Table 5.13. Our proposed data preprocessing technique improves forecasting significantly,

so MAPE values fail.

The Min ­ Max method is a popular way of scaling neural network input data for regres­

sion problems. Because of the method’s numerous references in the literature, its impact on

the topic of this thesis should be considered as well. The temperature data and historical load

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 21:03:13 EEST - 3.135.182.100



54
Chapter 5. Proposed Approach and Implementation for Short­Term Load Forecasting

Methods

Figure 5.19: Graphic comparison of actual and predicted hourly load values for the year 2017.

The values predicted through the proposed scaling method are added.

Table 5.13: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is subjected to an enhanced scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44111.39451 160.99752 2.72 %

Simple Scaling 8208.88762 131.14385 2.24 %

Enhanced Scaling (Proposed) 22111.66683 112.91976 1.92 %

data are subjected to a separate Min­Max scaling through the mathematical relation 5.3. The

scaled data will now be inserted into the input layer to predict hourly load values for the year

2017. As shown in Figure 5.20, the values of the forecast results using the proposed MLP

neural network are graphically compared to the real values. The values of the estimatedMSE,

MAE, and MAPE metrics are summarized in Table 5.14.

While Min­Max scaling does not seem to do as well as the other two data preprocessing

methods, an improved Min­Max Scaling approach that stresses the value and weight of input

variablesD−1Load andD−7Load in the forecast outcome should also be considered. The

temperature data is first scaled using the basic min­max equation, while the historical load

data is scaled using the following formula 5.4.The variablesD− 1Load andD− 7Load get

values in the field [0,10] using this mathematical relationship.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 21:03:13 EEST - 3.135.182.100



5.2 Implementation for short­term load forecasting 55

Figure 5.20: Graphic comparison of actual and predicted hourly load values for the year 2017.

The values predicted through the min­max scaling method are added.

Table 5.14: MSE, MAE and MAPE values (based on MW) for the hourly load forecast. Input

data is subjected to a min­max scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44111.39451 160.99752 2.72 %

Simple Scaling 8208.88762 131.14385 2.24 %

Enhanced Scaling (Proposed) 22111.66683 112.91976 1.92 %

Min – Max Scaling 40720.48741 159.61260 2.73 %

The data has now been scaled and entered into the proposed neural network. The forecast’s

outcome is a value in the region [0,10] that corresponds to the day’s hourly load on which

the forecast is conducted. This value can be translated to MW so that it can be compared

to the corresponding real hourly load value and the MSE, MAE, and MAPE metrics can be

calculated correctly. Equation 5.5 is used to convert this value to MW.

The load behaviour of all scalingmethods evaluated is depicted in Figure 5.21. The results

of the metrics MSE, MAE, and MAPE calculated are summarized in 5.15, which serve as a

measure of reference with all scaling approaches for the hourly load forecast for 2017. Figure

5.22 and Figure 5.23 show the value of the weight attached to the input data in greater detail.

Our improved Min­Max Scaling strategy, it turns out, produces a lower MAPE value in
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the prediction. In terms of MLP performance, this approach sufficiently stresses the weight

and value of the input variablesD− 1Load,D− 7Load, andH− 1Load, despite its relative

simplicity. It’s worth noting that when this improved MLP neural network is combined with

our proposed enhanced scaling approach, the MAPE value drops below 2%, resulting in the

lowest prediction value in the literature, based on data from the Greek interconnected power

system.

Figure 5.21: Graphic comparison of actual and predicted hourly load values for the year 2017.

All preprocessing methods of the examined data are illustrated graphically.

Table 5.15: MSE, MAE and MAPE values (based on MW) for the hourly load forecast.The

metrics for each scaling approach investigated are aggregated.

Scaling Method MSE MAE MAPE

Unscaled 44111.39451 160.99752 2.72 %

Simple Scaling 8208.88762 131.14385 2.24 %

Enhanced Scaling (Proposed) 22111.66683 112.91976 1.92 %

Min – Max Scaling 40720.48741 159.61260 2.73 %

Enhanced Min­Max Scaling (Proposed) 18985.37885 103.60419 1.76 %
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Figure 5.22: The various load curves for 2 weeks of 2017. The proposed method effectively

follows the actual load curve.

Figure 5.23: A more detailed depiction of the various load curves.
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Chapter 6

Conclusion

Modelling, identification, and performance analysis are all used in developing statistical

load forecasting models. For all stages, the system’s active power generation matches the

active power load. On an hourly basis, whole units must be brought online or rendered in­

accessible, and load estimation over those time periods is critical. STLF based on 24­hour

forecasts is needed for unit commitment and spinning reserve allocation. To predict sensitive

conditions and take corrective action, security assessments depend on a priori awareness of

planned bus load values ranging from 15 minutes to a few hours. Short­term load forecasting

is a growing area of study that is expected to increase in the coming years. Because of their

ability to generalize and simulate nonlinear dynamics, computational intelligence approaches

are expected to be the driving force behind this field’s study.

Because not every user is affected in the same way by time and weather effects, the be­

haviour of an electric power system load is affected by factors such as time, weather, and

small random disturbances reflecting the inherent statistical nature of the load. Weekly peri­

odicity and seasonal variations are examples of time factors. Temperature, humidity, light in­

tensity, wind speed, precipitation, and cloud cover are all weather­related variables that have

been shown to influence power consumption. The non­triviality of the forecasting problem

has resulted in a plethora of methods for predicting load demand. These approaches can be di­

vided into two categories: traditional intelligence techniques and computational intelligence

techniques. Even today, it is unclear which method is the most effective. Those strategies

perform well in some situations but are ineffective in others. Hybrid methods seem to have

rekindled the interest of researchers in recent years, as they address the topic of STLF with

high precision. The level of detail used in modelling, the collection of relevant influencing
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60 Chapter 6. Conclusion

factors, such as social patterns and weather variables, and the level of testing that the methods

undergo all influence the precision and pace of the forecast.

The results of various data preprocessing techniques on the outcome of the daily and

hourly load prediction of the Greek electricity power system are presented in this master’s

thesis. The proposed neural network is based on historical load data from the day before,

the week before, and the hour before. The architecture based on the suggested preprocessing

techniques, with similar MLP architecture as in literature, provides even better prediction

performance. In comparison to existing works, the MLP model, in conjunction with an im­

proved method of preprocessing input data, greatly improves the forecast with the predicted

loads being more accurate and closer to the real ones, effectively reducing the MAPE below

2%.
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