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ITEPIAHYH

H emkowovia givor o onuaviikn wtoyn g kadnuepivig Cong. Amd T ToAld
rpévo, To avBpdmiva dvta tpoomafodv va Ppovv TPOTOVE VA ETKOIVOVIGOLV HETAED
TOVG YEYOVOC TOV 00N YNGE OTI ONLoVPYia TOV YAOGS®Y. O1 TEPICGOTEPES OVEMTVYUEVEG
YADGGEC EEAPTMOVTOL OO TN AEKTIKT EMKOVOVIO, KOOIGTOVTOG TIG AOVVATEG Y ¥p1oT| 0md
TOVG K®POVG Kol amd To dropa pe wpoPAnuato oty ophia. T'a va Eemepactel duokoAin
aVTY, OMUOVPYNONKAV VONUOTIKEG YADCOEG EMTPEMOVTOG OTOVS KOPOVS/LOVYKOVG Vol
EMKOWVMOVOVV HETAED TOVS Kat VoL cuvOeBovV e TNV Kotvavia. Aedopévou 0Tt 01 KOOt Kot
ot povyyol AvOp®MOL AMOTEAOVV PELOVOTNTO, 1| SLOACKOALL TOV VONUATIKOV YADGGOV OEV
glval amopoitntn , ONUovVPYOVTOS €161 TPOPANUOTA Kol OVGKOAES GTNV EmMKOV®Vio
HETAED TV KOPOV/LOVYKOV KoL TOV ATOU®OV TOV O& Yvmpilovy KATo1o VO UOTIKH YADGGA.
To mpdPAnpa avtd £yl AMACYOANGEL APKETOVG EPELYNTES, OL OTOT0L TPOSTAHOHV VA TO
EEMePAGOLV dNUOVPYADVTOS GUGTNHLOTO OVAYVADPLONG VONLATIKNG YADGGOC.

H nmapovoa epyacio emikevipoveTar otnv aA@dapnto e Apepucovikng Nompotikng
[Nwocag wor mpoteivel éva vEO  HOVIEAO avayvVOPIONG  VONUOTIKNG  YAMGGOG
xpnoworowmvtag epappoyés tng MediaPipe ko Deep Learning (Bafid Madnon). Bivteo
OV OVOTTAPIGTOVY T YPOUUOTE TNG AUEPIKOVIKNG OAPABNTOV GTN VONUATIKY] YAMGGO
emA&yOnkav, Ta omoio 6T CLVEYELD LETATPATKOY G 0KOoAOVOiEg elkOVaV. Ot e1kdVEG TOL
TPOEKLY AV TPOPOdOTHONKAV 6TV epappoyn g MediaPipe ywa avayvdpion tov onueiov
xepwdv (Hands solution) , n omoia emiotpépet 21 tprodidotato onpeio, T0 Kabéva amd To
omoia avTITpoc®neHEL o ApBpwon oTnV TOAQUY, cvureptiapfavorévng g apdpwong
tov Koapmov. EmumAéov, moapovcialovtor VO VvEa YOPOKINPOTIKA HE Pdon Tig
ocvvtetaypéveg tov onueiov. o kabe yapoktnplotikd onuovpyndnke pwor Paon
dedopévav (dataset), ypnoomoidvrag onuocto dStbéoipa Bivieo and to Youtube . o v
TaVOUNOT TOV YOPOKTNPIOTIKAOV G€ Ypdppata TS Apepikdvikng Nonpatikng aAoafntov
yPNooTomOnKay d00 SLPOPETIKEG TOTOAOYIEG VO ToAveTimedov perceptron (MLP). H
axpifela otV avayvoplon Tov YPapUdTov aAeafnitov g Apepikovikng NonUoTikng

'doocag, nrov 99% kot 94% o kKGbe YopaKTNPLOTIKO , OVTIGTOLYA.

Aé€arg - Kihewowd: Apepicaviky Nonupoatikr) [ocoa, aiedpntog, Pabid pabnon,

MediaPipe, onueia yep1ob, Nevpwvikd Aiktvo
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SUMMARY

Communication is an important aspect of everyday life. Since the beginning of time,
human beings are trying to find ways to communicate with each other. Most developed
languages depend on verbal communication, making them impossible for deaf and mute
people to use. To overcome this difficulty, sign languages were created allowing those
people to convey messages and to connect with society. Since deaf and mute people are a
minority, sign languages are not commonly learned, thus creating miscommunication and
difficulties in the society between deaf and most of people who cannot use the sign language
(non-signers). This problem has been focused by many researchers, who try to overcome it
by creating computer-based sign language recognition systems.

This thesis focuses on American Sign Language alphabet and proposes a new model
for sign language recognition using Mediapipe’s solutions and deep learning. Several
videos were selected and turned into image sequences. The resulting images were fed into
Mediapipe’s Hands solution python API, which returns 21 3D landmarks, each representing
a joint in the palm including the wrist joint. This thesis presents two new features based on
the coordinates of the landmarks. A dataset was created for each proposed feature
definition, using videos publicly available from Youtube to extract the features. Two
different topologies of a multi-layer perceptron (MLP) were used to classify the features
into one of the ALS alphabet. The achieved accuracy in recognizing American Sign

Language alphabet letters, was 99% and 94% respectively.

Keywords: American Sign Language, alphabet, deep learning, MediaPipe, hand

landmarks, neural network
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.  INTRODUCTION

As a social being, communication and understanding are essential to human
socialization. In deaf communities, the form of communication is non-verbal as the deaf
communicates through Sign Language. Sign Language is a visual language that use the
hands, face, head, and upper torso. It is visually processed and has been developed as a
language to meet the communication need of the Deaf. The awareness arises when a deaf
person is trying to communicate with someone with normal hearing but does not understand
sign language. In these cases, the sign language interpreter would come in handy. Except
for a person, a computer can also be an interpreter, between a deaf and a non-signer person,

using computer vision and deep learning.

a) Atrtificial Intelligence

Deep Learning is a subset of Machine Learning, which by itself is a subset of
Artificial Intelligence as it is shown in the figure 1. Artificial Intelligence (Al) is a general
term that refers to algorithm-based intelligence demonstrated by machines, unlike the
natural intelligence exhibited by humans and animals. Leading Al textbooks define the field
of Al as the study of "intelligent agents™: any device that perceives its environment and
takes actions that maximize its chance of successfully achieving its goals. In other words,
the term artificial intelligence is often used to describe machines or computers that mimic
cognitive functions that humans associate with the human mind, such as "learning” and
"problem-solving". In recent years, the requirements of computer applications have become
increasingly complex, which led to a number of emerging trends in Al research and their
adoption. Some of the applications of Al are:

* Robotics

* Problem solving

* Neural Network design

* Intelligent agent systems
» Computer Vision

* Big Data

12
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Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

Machine Learning:
the study and constiuction of
algorithms that can learn from data
and make predictions

Deep Learning:
A techmique to perform

machine learning inspired
by humnan's neural network

Figure 1. The difference between Al, Machine Learning and Deep Learning

Machine learning (ML) is a subfield of computer science, developed from the study
of pattern recognition and computational learning theory in Al. ML explores the study and
construction of algorithms that can learn from data and generate predictions from them.
Such algorithms work by constructing models from experimental data to make predictions
based on data or to make decisions that are expressed as the result. ML enables algorithms
to learn and improve from experience without being explicitly programmed. Therefore, it
is the tool to make Al applications. Machine Learning algorithms can be classified as
supervised and unsupervised.

Supervised ML algorithms are trained on labeled exemplar data and can apply what
has been learned in the past to label or predict new. A supervised ML algorithm compares
its output to the correct output and uses the error to modify its model accordingly. In this
way it produces an inferred function to make predictions based on the input data. The model
can predict labels or decide actions for any new, unseen input after sufficient training.

In contrast, unsupervised ML algorithms are used when no label information is
available for training in the input data. Unsupervised learning studies how systems can infer
a function to describe a hidden structure from unlabeled data. The system can't figure out
the right output, but it can draw inferences from datasets to describe hidden structures from
unlabeled data, by exploring them.

Semi-supervised machine learning algorithms fall somewhere in between supervised

and unsupervised learning since they use both labeled and unlabeled data for training. The
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systems that use this method can improve learning accuracy considerably. Usually, semi-
supervised learning is chosen when the acquired labeled data requires skilled and relevant

resources to learn from it.

b) Computer Vision

Computer Vision (CV) is the application of Artificial Intelligence and ML to digital
images and videos, acquired by cameras, or other imaging systems. CV and recently deep-
learning models can be used to train computers to interpret and understand the visual world,
i.e., accurately detect, identify/classify, segment, or track objects in images and videos in
the same way that humans do. In order to perform these tasks, CV algorithms are trained
by processing labelled data multiple times until they discern distinctions and ultimately
perform the required image-related task. Deep learning is an essential technology to

accomplish this.

c) Deep Learning

Deep Learning (DL) is an application of Machine Learning inspired by the structure
of the human brain. Deep learning algorithms attempt to draw similar conclusions and
enable computers to perform tasks that come naturally to humans: learn by example. To
achieve this, DL uses artificial neural networks (ANN), a multi-layered structure of
algorithms. An artificial neural network is not pre-trained and, until configured and trained
by the user, has no practical function on its own. Like biological neural networks, artificial
neural networks rely on neurons to function. An artificial neuron is an algorithmic construct
that supports its basic principles in the fundamental functions of the biological neuron. It is
the fundamental processing unit in neural networks. Like biological neurons, artificial
neurons receive signals from other neurons and transmit signals to subsequent neurons with
which they are connected. A neural network has in general three kinds of layers: The input
layer, the hidden layers, and the output layer. The input layer contains a number of neurons
equal to the dimensionality of the feature vector, which receive the input data that transmits
them to the hidden neurons of the next layer. The hidden layers add non-linearity to the
behavior of an ANN. A neural network can have multiple hidden layers, which directly
affects its effectiveness and precision. The output layer consists of output neurons, which

generate the ANN’s output (regression, or classification result).

14
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An artificial neuron or else a perceptron is a linear classifier the most basic of all
neural networks, being a fundamental building block of more complex neural networks. It
simply connects an input cell and an output cell, as it is shown in Figure 3. The response of
a perceptron to one of its inputs is declared as:

(1 ifw-x+b>0
f(x)—{ 0 i else

There are three basic rules for training a perceptron:

1. If the output for an input X is 1 and should be 1, its synaptic weight remains the same
2. If the output is 0 while it should be 1, the synaptic weight increases.

3. Otherwise, if it is 1 while it should be 0, it decreases.

A modified simple model of perceptron is shown in Figure 2. Every connection has a
weight attached with a positive or negative value. Positive weights activate the neuron,
while negative weights inhibit it. Weights are equivalent to biological synaptic weights,

Bias

PN

(b)

ot =
x, o—{(, )\\;7
Inputs < v ,& z >—’ (0(°) ,v
,.\ il Output
\ X O—’(Ur S Activation

Function

Weights

Figure 2. Architecture of a simple neuron

where the influence of each signal depends on how good the connection is between the
neuron-sender and the neuron-receiver of the signal. These weights are not fixed, their
values are being adapted during training, to minimize output error and equivalently get the
desired result. Figure 2 shows the detailed model of a typical artificial neuron with inputs
(X1, X2, ..., Xm) being connected to neuron with weights on each connection. The neuron sums
all the signals it receives, with each signal being multiplied by its associated weights on the
connection. This output is then passed through a transfer or activation function that is
normally non-linear to give the final output, y. A transfer function can be any kind of

15
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function, depending on the topology and the purposes of the network, and implements the
calculation of the proper response according to the inputs. The most commonly used
function is the sigmoid (logistic function) because of its easily differentiable properties. For
the training process in a neural network, it is necessary to split the dataset into three parts:

e The training dataset, along with the correct output is presented to the ANN during
training to adjust the weights between the nodes/neurons and the biases.

e The validation dataset, contains unseen data, and it is used for fine-tuning the
network's performance and determine the termination of training.

e Test dataset, is used to calculate the accuracy and the loss of the trained ANN.

Neural Network Architectures

Although there are numerous neural network architectures, bellow are presented some
of the most popular ones, split into three general categories: the standard networks, the

recurrent networks, and the convolutional networks.

The Standard Networks

Feed-Forward Networks: The feed-forward networks are a collection of perceptrons
and are the commonest type of neural network in practical applications. In this type of
network, there are three fundamental types of layers: input layers, hidden layers, and
output layers. If there is more than one hidden layer, they are called “deep” neural
networks. During each connection, the signal from the previous layer is multiplied by a
weight, added to a bias, and passed through an activation function. They compute a
series of transformations that change the similarities between cases. Feed-forward
networks use backpropagation to iteratively update the parameters until it achieves a

desirable performance.

16



Sign Language Recognition using Neural Networks
Toutou Evangelia

Input Layer

I
Hidden Layer

Figure 3. A Feed-Forward Network

Recurrent Networks

The Recurrent Neural Network: A recurrent neural network is a specialized type of

network that has directed cycles in its connection graph which means it can
sometimes get back to where it started by following the arrows, and that is why it is
called recurrent. Allowing for information to be stored in the network, RNNs are
using reasoning from previous training to make better and more informed decisions
about upcoming events using the previous predictions as ‘context signals’. They are
more biologically realistic and are equivalent to very deep nets with one hidden
layer per time slice, except that they use the same weights at every time slice and
they get input at every time slice. They can remember information in their hidden
state for a long time but is hard to train them to use this potential. Because of their
nature, RNNs are commonly used to handle sequential tasks and can handle inputs

of any size.
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Recurrent Cells

Input Layer

|
‘ Hidden Layer ‘

Contex Signal

Figure 4. A Recurrent Neural Network

The Long Short Term Memory Network (LSTM): Even with good initial weights,

RNNs have difficulty dealing with long-range dependencies. The influence
(backpropagated error) of a given input on an input of the hidden layer, either blows
up exponentially, or decays to zero as it is cycled around the network’s connections.
The solution to this problem is a Long Short-Term Memory Network or an LSTM.
This RNN architecture is specifically designed to address the vanishing gradient
problem, providing the structure with memory blocks. These blocks are using
logistic and linear units with multiplicative interactions and having three gates:
input, output and forget, which are equivalent to write, read, and reset respectively.
Information enters the cell whenever its “write” gate is on and can be read from the

cell by turning on its “read” gate.

Output
Layer

Input Layer

Memory Cells

Figure 5. The LSTM Network
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Convolutional Neural Networks

Convolutional Neural Networks (CNNS) is a class of Neural Networks that specialize
in processing data that has a grid-like topology, such as an image. A CNN typically consists
of three types of layers: a convolutional layer, a pooling layer, and a fully connected layer.
The Convolutional layer is the first layer to extract features from an input image and
performs a dot product between two matrices (equivalent to the operator of convolution).
One of the matrices is the set of learnable parameters, known as a kernel or filter, and the
other matrix is a restricted portion of the image called receptive field. The kernel is spatially
smaller than an image has the same depth as the image i.e., if the image is composed of
three channels (RGB) the filter will also have 3 channels.

The Pooling layer is responsible for the parameter’s reduction of the input image
without losing important information. This can be with different types of pooling: max
pooling, average pooling and sum pooling. Max pooling takes the largest element from the
rectified feature map. Average pooling involves calculating the average for each patch of
the feature map and sum of all elements in the feature map call as sum pooling. The pooling
layer is usually followed by the activation layer. Several repetitions of these three layers
are built in succession, until the dimensionality of the image has been adequately reduced.

A small number of fully connected layers follow, similar to a feed forward network,
whose input is the flattened (1-dimensional) output of the last pooling layer. The final layer
of the fully connected layer classifies the image using the softmax activation function. This

function is used to get probabilities of the input being in a particular class (classification).
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Figure 6. Architecture of a Convolutional Neural Network [16]
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d) Tensorflow & Keras

Implementing a successful complex deep neural network model is a challenging task
that thanks to the modular structure of the networks and standard inference tools, several
software frameworks are available that speed up the design and training of deep neural
networks. TensorFlow [1] is the newest addition to this toolbox and is an open-source
library developed by Google, primarily for deep learning applications. It can be used across
a range of tasks but has a particular focus on training and inference of deep neural networks,
while it also supports traditional machine learning. It provides several improvements, such
as graphical visualization and improved compilation time. Tensorflow is nominally used
for the Python programming language, although there is access to the underlying C++ API.

Keras is a deep learning API written in Python, running on top of the machine learning
platform TensorFlow. It was developed with a focus on enabling fast experimentation.
More specifically, Keras is the high-level API of the newest version of Tensorflow,
Tensorflow 2: an approachable, highly-productive interface for solving machine learning
problems, with a focus on modern deep learning. It provides essential building blocks for
developing and shipping machine learning solutions with high iteration velocity. The core
data structures of Keras are layers, for example, the input layer, the dropout layer, and the
dense layer, and models like the Sequential model which is the simplest type of model
consisting of a linear stack of layers. In addition to standard neural networks, Keras has
support for convolutional and recurrent neural networks. It supports other common utility
layers like dropout, batch normalization, and pooling.

This work was implemented using the Python programming language and the

construction of neural network was achieved using both Keras and Tensorflow API's.

e) MediaPipe

MediaPipe is a cross-platform framework for building machine learning applications
for the analysis of multimodal data, like video, audio, or any time-series data. With
MediaPipe, a perception pipeline can be built as a graph of modular components, including
inference models, for example, Tensorflow, and media processing functions. At the time of
writing MediaPipe offers a number of solutions [2] for real-time object detection, such as

Face Mesh, Face Detection, Iris tracking, hand tracking, Pose, Holistic, Hair Segmentation,
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Object Detection, Box Tracking, Instant Motion Tracking, and 3D Object Detection
(Objectron).

MediaPipe can be easily implemented in a Python environment as it offers ready-to-
use yet customizable Python solutions as a prebuilt Python package. In this work, the Hands
MediaPipe solution [3], which employs machine learning (ML) to infer 21 3D landmarks
of a hand from just a single frame, is used for American Sign Language Recognition. The

figure 8 depicts the landmarks of the hand and their code names and it was taken from [4].
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Figure 7. Hand Landmarks [4]

The end goal of this work is to create a vision-based system, able to recognize
American Sign Language alphabet letters in video sequences, acquired under normal every-
day conditions. To this end we resorted to Mediapipe’s Hands solution for the detection of
hand landmarks combined with Artificial Neural Networks for the classification of the
signed letters. Our priority is to propose a feature invariant in translation, rotation and scale
so as to be more useful and easily implemented in daily life applications for sign language
recognition (SLR).
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Il. RELATED WORK

Literature review of the problem shows that there have been several approaches to
address the issue of miscommunication between deaf / mute people and non - sign language
speakers (non —signers). In [5] the authors used Microsoft Kinect, a low-cost depth camera,
to create a new method for ASL (American Sign Language) alphabet recognition. More
specifically, they first obtained a segmented hand configuration by using a depth contrast
feature based per-pixel classification algorithm. Then they developed a method to localize
hand joint positions under kinematic constrains. The results were implemented to a Random
Forest classifier, built to recognize ASL signs using the joint angles, and managed to
achieve above 90% accuracy in recognizing 24 static ASL alphabet signs.

Sarfaraz Masood, Harish Chandra Thuwal and Adhyan Srivastava in their work [6]
created a system based on vision to identify finger — spelled letters of ASL. To achieve this,
they used [7], a contribution to a dataset of standard American Sign Language (ASL) hand
gestures containing 2425 images from 5 individuals. These images were used as input for
the pre-trained VGG16 model, a vision model developed by the Vision Geometry Group
from oxford. The accuracy of the model obtained using the Convolution Neural Network
was about 96%.

In [8] the authors also used Deep Learning and Computer Vision to create a vision-
based application which offers sign language translation to text thus aiding communication
between signers and non-signers. The proposed model of this work takes video sequences
and extracts temporal and spatial features. More specifically, they proposed to use a
Convolutional Neural Network (CNN) model named Inception to extract spatial features
from the video stream. Then by using a LSTM (Long Short — Term Memory), a Recurrent
Neural Network model, the temporal features are extracted using the outputs from the
Softmax and the Pool layer of the CNN, respectively. The dataset used is the American
Sign Language Dataset.

Teak-Wei Chong and Boon-Giin Lee in [9] developed a sign language recognition
prototype using the Leap Motion Controller (LMC) and aimed for full American Sign
Language (ASL) recognition, which consists of 26 letters (both static and dynamic) and 10
digits. The features were extracted from the LMC device, which was connected to a desktop
PC and placed on the table to detect and track the hand and finger gestures and then were
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implemented in Support Vector Machine (SVM) and Deep Neural Network (DNNE
classifiers, who were compared for ASL recognition. The experimental results revealed that
the sign language recognition rates for the 26 letters using a support vector machine (SVM)
and a deep neural network (DNN) are 80.30% and 93.81%, respectively. As for the
recognition rates for a combination of 26 letters and 10 digits they were 72.79% for the
SVM and 88.79% for the DNN.

In a similar work, Luis Quesada, Gustavo Lopez and Luis Guerrero [10], developed a
system based on hand tracking devices, Leap Motion and Intel RealSense, used for signs
recognition. The system uses a Support Vector Machine for sign classification. In this paper
three types of evaluations of the system were performed: (1) hand trackers recognition
potential using both the Leap Motion and Intel RealSense, (2) SVM classification potential,
executed by the researchers using the Leap Motion and the Intel RealSense, and (3) a user
assessment was performed by external participants using only the Leap Motion. The results
were remarkable with 100% accuracy achieved in recognizing some signs.

In another noticeable work [11] authors showed that a late fusion approach to
multimodality in sign language recognition improves the overall ability of the model in
comparison to the singular approaches of image classification and Leap Motion data
classification. More precisely, the dataset was created with 18 BSL (British Sign Language)
gestures collected from multiple subject and two deep neural networks (the Vision model
and the Leap Motion model) were benchmarked and compared to derive a best topology for
each. The Vision model was implemented by a Convolutional Neural Network and
optimized Artificial Neural Network, and the Leap Motion model was implemented by an
evolutionary search of Artificial Neural Network topology. After this step, the authors used
transfer learning, a machine learning method where a model developed for a task is reused
as the starting point for a model on a second task and the weights trained via British Sign
language were implemented as the initial weights in a new model for American Sign
Language classification, scoring 82,55% accuracy.

Beyond American and British Sign Language, researchers have also developed
applications for other recognized sign languages, as the issue of miscommunication
between deaf people and non - sign language speakers is global. For example, Douglas F.
L. Lima et al. [12] proposed a solution for fingerspelling recognition in Brazilian Sign
Language (Libras) using Convolutional Neural Networks. This approach does not use
gloves, armbands or visual markers in the images, recognizing these Libras gestures, only
images, and considering different backgrounds, signers, hand positions and illumination
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patterns trying to approach real practical situations for Brazilian deaf users. The systerﬁ
uses a 224.000 images dataset created the authors’ team, which represents the letters of the
Libras alphabet signed by 12 people in different backgrounds, body arm, hand positions,
and lighting patterns. The results showed that this solution had an average accuracy of
approximately 99% in a dependent person scenario and had an average accuracy of 71% in
an independent person scenario.

A more general contribution to sign language translation using machine learning is [13],
where a method of handshapes recognition based on skeletal data is described and a new
feature vector is proposed. This work can be applied to any sign language as the dataset can
be created by the user. Two datasets were used in this work, one created by the authors
containing forty-eight static handshapes, occurring in Polish Finger Alphabet (PFA) and
Polish Sign Language (PSL) and the database provided in [14] which contains the
recordings of 10 letters from ASL, performed 10 times by 14 people and acquired by jointly
calibrated LMC and depth sensor. More specifically, this paper encodes the relative
differences between vectors associated with the pointing directions of the fingers and the
palm normal. Different classifiers are tested on the demanding dataset, containing 48
handshapes performed 500 times by five users and were considered two different sensor
configurations and significant variation in the hand rotation.

An overview of the main research works based on the Sign Language recognition
system can be found in [15]. In this paper every method that can be applied in sign language
recognition is discussed and the strengths and disadvantages that contribute to the system
functioning perfectly or otherwise are highlighted by invoking major problems associated
with the developed systems. In addition, a novel method for designing SLR system based
on combining EMG sensors with a data glove is proposed. This method is based on
electromyography (EMG) signals recorded from hands muscles for allocating word

boundaries for streams of words in continuous SLR.
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1.  METHODOLOGY

a) Overview of the algorithm

An overview of the suggested system’s pipeline is depicted in Fig.9. Keeping in mind
the end goal, which is to create a system that uses machine learning to recognize American
sign language alphabet letters, it is very important to carefully select the data that will be
fed into the system. In this case, four videos depicting the American Sign Language
alphabet were chosen and modified to be focused on the hand, thus clearer for the
recognition and the extraction of the landmarks. The modified videos were converted into
image sequences frame by frame and then each frame was imported to the Mediapipe’s

Hands solution which returned the 21 3D landmarks for each frame.
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Figure 8. System Pipeline
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The letters J and Z of the alphabet were excluded as they are non-static signs and

cannot be recognized by a single frame. Some examples of what was returned can be seen

in the figures below.

Figure 11. Letter ‘B’ Landmarks Figure 10. Letter ‘D’ Landmarks

Figure 9. Letter ‘Y’ Landmarks Figure 12. Letter ‘A’ Landmarks

These landmarks formed the base to feature definition process which was the next
step for sign language recognition. This process led to the extraction of the two proposed
feature vectors. Each feature vector was implemented into a neural network for alphabet

classification, thus for sign language recognition.

26



Sign Language Recognition using Neural Networks
Toutou Evangelia

b) Hand Landmark detection

In a detailed explanation of how Mediapipe’s Hands Solution works can be found.
hand tracking solution utilizes an ML pipeline consisting of two models working together:
A palm detector that operates on a full input image and locates palms via an oriented hand
bounding box and a hand landmark model that operates on the cropped hand bounding box
provided by the palm detector and returns high-fidelity 2.5D landmarks. A demonstration
of the hand landmark model’s architecture can be seen in Fig.14. the model has three
outputs sharing a feature extractor. Each head is trained by correspondent datasets marked

in the same color.

Real World Images

21 30 Landmarks
Synthatic Images

Feature Extractor Hand Presence

256x256 RGB

Hand Presence
Handedness

Handedness

Figure 13. Model's Architecture [2]
More specifically, after running palm detection over the whole image, the subsequent
hand landmark model performs precise landmark localization of 21 2.5D coordinates inside
the detected hand regions via regression. The model learns a consistent internal hand pose
representation and is robust even to partially visible hands and self-occlusions. The model
has three outputs Fig.13:
1. 21 hand landmarks consisting of x, y coordinates and relative depth (defined as the
z coordinate), all normalized with respect to image dimensions.
2. A hand flag indicating the probability of hand presence in the input image.

3. A binary classification of handedness, e.g., left or right hand.

c) Feature Definition
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The landmarks were converted to vectors to facilitate mathematical notation. The next
important step was to find a way to use these vectors in order to create features able to train
a neural network that will recognize the American Sign Language signs. The basic factor
chosen to calculate the letter signed was the angle between the vectors. The main reason
why the angle was chosen as the basic factor of the feature vectors is that the proposed
features should be invariant in any translations, rotations and change of scale, which easily
occur when the orientation or the distance of the person from the camera are changed. This
led to the definition of the following two features vectors.

1ST FEATURE VECTOR

For the extraction of the first feature vector, the angle of any two vectors, defined by
the wrist landmark and the rest of the landmarks, were considered. To this end, the first step
is to subtract the wrist’s coordinates Vo from each landmark Vi (Equation 1). The cosine of

the required angle is calculated by the dot product of the unit vectors (Equation 2).

Vi=V,—-V, @

Vi I. V_’
cos(8;;) = Wl":l 2)
0;; = cos™(6;)) ©

An example of the definition of the 0jj between the 3" (THUMB_IP) an 5™ landmark
(INDEX_FINGER_MCP) is depicted in Fig. 14.

i

Figure 14. First feature calculations
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This process resulted in 190 angles for every frame forming an entry of the training
dataset. Depending on the depicted letter, the corresponding label was added to the data
entry.

2NP FEATURE VECTOR

The second feature vector contains the angles between the vectors defined by every
two successive landmarks in each finger. First the vectors are defined as following
(Equation 4)

[ Vi-V,,i=1591317
D= oV ,i201591317 @

A similar process that was used in the extraction of the first feature was followed, that

is, the required angle was found by the dot product of the vectors.

_ —1 { Pi'Pi-1 )
= COS ——— 5
i (lpillpi—1| ©)

The proposed feature vector is defined as

F, = ¢2’¢3’¢47¢6’¢7’¢8}’\¢10’¢11’¢12’\¢14’¢15’¢16’\¢187¢19’¢20/ (6)

tht],nb indexfinger middlefinger ringﬁrnger pi\r;ky

An example of the definition of the ¢; between the 1% (THUMB_CMC) an 2" landmark
(THUMB_MCP) is depicted in Fig. 15.

Figure 15. Second Feature Calculations Example
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Consequently, 3 angles are created for each finger, resulting in 15 angles per hand in
each frame. Each set of angles represent an entry to the second training dataset. Depending

on the depicted letter, the corresponding label was given to the entry.

d) Alphabet classification using ANN

In order to achieve sign language recognition using the above features the use of a
neural network, for each feature vector was necessary. Each neural network consists of 4
layers: 1 input layer, 2 hidden layers and the output layer. Implementing two hidden layers
leads to creating a deep neural network. In the input layer, 190 neurons were used for the
first feature and 15 for the second one due to the size of the entries in the training dataset
for each feature. The two hidden layers consist of 256 and 128 neurons, respectively while
the output layer has 25 neurons for the 24 letters of the ASL alphabet (0,25). All of the
layers, except the output layer, use the rectified linear (ReLu) activation function that is a
piecewise linear function that will output the input directly if it is positive, otherwise, it will
output zero. On the contrary, the softmax activation function is used for the output layer,
an activation function that converts a vector into a vector with probabilities of each possible
outcome. It is often used as the last activation function of a neural network to normalize the
output of a network to a probability distribution over predicted output classes. The
architectures for each network are depicted in Fig.16. The only difference between the two
Neural Networks is the size of the input layer which is formed based on the entry size of

the training dataset.
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Hidden Layer 1
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Output layer 25 neurons

Input Layer
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Hidden Layer 1
256 neurons

Output Layer 25 neurons

Input Layer
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ANN Topology for the first feature vector

ANN Topology for the second feature vector

Figure 16. The two ANN topologies tested in this work.
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IV. RESULTS

a) Dataset description

To create the dataset four American Sign Language alphabet videos were selected.
Two of them were shown two or three different perspectives of the signs so they were
cropped to two and three videos, respectively, as shown in the figures 10 and 11, which
resulted in reaching the final number of seven videos that enriched the dataset. Then these
videos were converted into image sequences, with over 1500 frames for each video. The
table depicts the actual number of frames that were created per video and the number of the
frames for each ASL alphabet sign. Some of the frames were not included as they were

unclear or illustrated the transition from the current sign to the next.

A4

Cropped Video (1)

v

Original Video

Cropped Video (2)

Figure 17. Cropping Process
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Cropped Video (1)

A

Cropped Video (2)

Original Video

Cropped Video (3)

Figure 18. Cropping Process

Table 1. Number of Frames for each letter per Video

Videos
Ngg’ﬁg;’f Nol | No2 | No3 | No4 | No5 | No6 | No7
A 51 122 40 53 70 70 70
B 66 | 188 77 77 103 103 | 103
C 65 | 160 83 77 103 103 | 103
D 64 | 152 79 75 97 97 97
E 72 124 74 68 101 101 | 101
F 61 153 71 72 98 98 98
G 65 | 125 86 83 99 99 99
H 54 | 117 81 78 86 86 86
| 50 | 126 65 58 89 89 89
K 69 | 147 59 59 89 89 89
65 | 136 75 77 85 85 85
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M 43 | 121 58 65 74 74 74
N 38 | 121 67 63 99 99 99
0 53 | 107 66 56 67 67 67
P a4 | 171 63 68 59 59 59
Q 50 | 130 68 64 103 | 103 | 103
R 72 | 138 54 58 103 103 | 103
S 45 | 129 40 49 103 103 | 103
T 52 | 137 51 49 67 67 67
U 55 | 130 49 49 72 72 72
Vv 7| 132 67 70 65 65 65
W 49 | 118 61 59 90 90 90
X 50 | 126 57 55 03 03 03
Y 51 | 116 53 43 57 57 57
ol 1026 | 4g06 | 2000 | 2014 | 2479 | 2479 | 2479
Included | 1279 | 3096 | 1544 | 1525 | 2072 | 2072 | 2072
Frames

The above frames were implemented in Mediapipe’s python API for static images
and the coordinates for the twenty-one hand landmarks, in which the two features are based,
were returned. The final dataset for each feature consists of 9862 entries from which 7889

are used for training the Neural Network and the other 1973 entries are used for testing.

b) Quantitative Results

The results are remarkable as we managed to achieve 99% accuracy in sign language
recognition for the first feature and 94% for the second one. The complete results can be
seen in the figures below. Fig.20 depicts the Confusion Matrix for the first feature vector.
The predicted labels are placed on the x-axis and the true labels on the y-axis. The blue cells
running from the top left to bottom right contain the number of samples that the model
accurately predicted. The white cells contain the number of samples that were incorrectly

predicted. There are 1973 total samples in the test set. Looking at the confusion matrix, it
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is clear that the model accurately predicted 1884 out of 1973 total samples. The model
incorrectly predicted 89 out of the 1973.

Confusion Matrix of Feature 1
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Figure 19. Confusion Matrix of the first feature

Figure 20 presents the loss and the accuracy of the first feature vector in one training.
Loss of feature 1
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Figure 20. Train Loss and Accuracy of the first feature
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Figure 21 depicts the Confusion Matrix for the second feature vector. The red cells
running from the top left to bottom right contain the number of samples that the model
accurately predicted. The white cells contain the number of samples that were incorrectly

predicted. This time the model predicted accurately 1798 and 175 incorrectly out of 1973

samples.
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Figure 21. Confusion Matrix of the second feature

Figure 22 depicts the loss and the accuracy of the model for one training of the

second feature vector.
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Loss of Feature 2
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Figure 22. Train Loss and Accuracy of the second feature

To get clearer results the Neural Network was trained 10 times and the Standard
Deviation and the Average of train loss and validation loss were calculated resulting in the

figures below that demonstrate the efficacy of the network.

Average Loss of Feature 1 for 10 trainings
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Figure 23. Average Loss and Standard Deviation of the first feature for 10 trainings
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Figure 24. Average Loss and Standard Deviation of the second feature for 10 trainings

c) Demonstration of feature invariance

As it was previously mentioned, the proposed feature vectors should be invariant in
translation, rotation and scale. Figures 25, 26 and 27 demonstrate the invariance of the
selected feature vectors. More precisely, the system was tested for the recognition of the
letter B three times. The first time the letter was signed directly to the camera, just like the
videos that were used as input. The second time the letter ‘B’ was displayed translated and
rotated (see Fig. 26), whereas in Fig. 27 the same letter was signed at a different viewing
angle (side view). All three times the system managed to recognize correctly the letter
confirming the feature invariance. This is a very important feature of the proposed system,

since it can robustly identify the signed letter under very different geometric settings.
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Figure 25. Letter 'B' Signed directly to the camera.
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Figure 26. Letter 'B' signed translated and rotated.
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Figure 27. Letter 'B' signed from side view.
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d) System’s complexity and execution time

The basic operations of the system were tested to see its efficiency. Table 2 presents the

execution time for each operation.

Table 2. Average execution times

Operation Time (ms)
MediaPipe Hand landmark 40
detection
Feature extraction << 0.1
ANN forward pass Feature 1 38
ANN forward pass Feature 2 35

Table 3. Fps per feature

SLR FPS
1%t Feature Vector 12,8
2" Feature Vector 13,3
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V. DISCUSSION AND CONCLUSIONS

Computer Vision using Deep Learning is a powerful combination that can have
several applications in making daily life easier and less complicated. One such possible
application, which has not received extensive attention by researchers, is Sign Language
Recognition. It is very important to recognize real-time Sign Language through a computer
to strengthen the socialization of the deaf without the need for an extra person.

Over the last decade many works of research have been directed toward developing
a sign recognition system for different sign languages and it was concluded that such a
system is challenging for various disciplines including gestures capturing method, machine
learning classifiers, and natural language processing. The complexity in the sign recognition
system arises from the fact that sign languages are the least identical, with large
vocabularies and referential language, thus making the task of recognizing isolated or
continuous signing highly multifaceted.

The system developed in this work, exploits these technologies to recognize
successfully ASL alphabet letters. The proposed system can achieve automatic ASL letter
recognition approximately equal for both of the proposed features at 13 fps, using minimal
computer hardware, without any special camera requirements.

A possible and easily implemented expansion of the model could be the recognition
of the ASL numbers, or recognition of numbers and letters of any other static Sign

Language. The use of this system in phrase recognition could also be investigated.
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VIl. CODE

a) Code for video to frame conversion

import os
import cv2

cam = cv2.VideoCapture ("C:\\Users\\lia\\Desktop\\video
input\\aslo.mp4d")

try:
if not os.path.exists('data6'):
os.makedirs ('data6')
except OSError:

print ('Error: Creating directory of data6c')

# frame
currentframe = 0

while True:

ret, frame = cam.read()

if ret:
# if video is still left continue creating images
name = './data6/frame' + str(currentframe) + '.Jjpg'
print ('Creating...' + name)

# writing the extracted images
cv2.imwrite (name, frame)

currentframe += 1
else:

break

cam.release ()
cv2.destroyAllWindows ()

b) Code for Landmarks Detection and First Feature Vector
import mediapipe as mp
import pandas as pd
import xlsxwriter

import cv2
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import numpy as np

import math

df = pd.read csv(r'C:\Users\lia\Desktop\video
input\Entries6.txt")

a = df.loc[:, '"A']

c = df.loc[:, 'C']
d = df.loc[:, 'D']
e = df.loc[:, '"E']
f = df.loc[:, 'F']
g = df.locl[:, 'G']
h = df.loc[:, 'H']
i =df.loc[:, '"I']
k = df.loc[:, 'K']
1 =df.loc[:, '"L']
m = df.loc[:, "M']
n = df.loc[:, 'N']
o = df.loc[:, 'O']
p = df.locl[:, 'P']
g = df.locl[:, 'Q']
r = df.loc[:, 'R']
s = df.loc[:, 'S']
t = df.loc[:, '"T']
u = df.loc[:, 'U']

v = df.loc[:, 'V']

45



Sign Language Recognition using Neural Networks
Toutou Evangelia

x = df.loc[:, '"X']
y = df.loc[:, 'Y']
alphabet = [a, b, ¢, d, e, £, g, h, i, k, 1, m, n, o, p, d,

r, s, t, u, v, w, X, V]

c = -1
row = 0
col =0
qg =20

workbook = xlsxwriter.Workbook ('Angles7.xlsx")

worksheetl workbook.add worksheet ()
mp drawing = mp.solutions.drawing utils
mp hands = mp.solutions.hands
for j in alphabet:
q=q9+1
for i in j:
i = 1int (i)

file =
'C:/Users/lia/PycharmProjects/pythonProject/data6/frame' +
str(i) + '.Jjpg'

with mp hands.Hands (
static image mode=True,
max num hands=2,
min detection confidence=0.5) as hands:

# Read an image, flip it around y-axis for
correct handedness output (see

# above) .

image = cv2.flip(cv2.imread(file), 1)
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# Convert the BGR image to RGB before
processing.

results = hands.process(cv2.cvtColor (image,
cv2.COLOR_BGRZRGB))

nl = '"\n'

# Print handedness and draw hand landmarks on
the image.

print ('Handedness:', results.multi handedness)

1f not results.multi hand landmarks:

continue
image height, image width, = image.shape
annotated image = image.copy ()

for hand landmarks in
results.multi hand landmarks:

c =c¢ + 1

wristx =
hand landmarks.landmark[mp hands.HandLandmark.WRIST] .x

wristy =
hand landmarks.landmark[mp hands.HandLandmark.WRIST] .y

wristz =
hand landmarks.landmark[mp hands.HandLandmark.WRIST] .z

##THUMP
##Landmarkl : Thump cmc coordinates:

XCMCthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC].x

YCMCthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC] .y

ZCMCthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC] .z

##Landmark?2 : Thump mcp coordinates:
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hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

CP] .x

hand landmarks.

CP].y

hand landmarks.

CP].y

XMCPthumb =
landmark [mp hands.HandLandmark.THUMB MCP] .x

YMCPthumb =
landmark [mp hands.HandLandmark.THUMB MCP] .y

ZMCPthumb =
landmark [mp hands.HandLandmark.THUMB MCP] .z

##Landmark3 Thump ip coordinates:

XIPthumb =
landmark [mp hands.HandLandmark.THUMB IP].x

YIPthumb =
landmark [mp hands.HandLandmark.THUMB IP].y

ZIPthumb =
landmark [mp hands.HandLandmark.THUMB IP].z

##Landmark4 Thump tip coordinates:

XTIPthumb =
landmark [mp hands.HandLandmark.THUMB TIP].x

YTIPthumb =
landmark [mp hands.HandLandmark.THUMB TIP].y

ZTIPthumb =
landmark[mp hands.HandLandmark.THUMB TIP].z

##INDEX
##Landmark5

Index finger mcp coordinates:

XMCPindex =

landmark [mp hands.HandLandmark.INDEX FINGER M

YMCPindex =

landmark [mp hands.HandLandmark.INDEX FINGER M

ZMCPindex =

landmark [mp hands.HandLandmark.INDEX FINGER M
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##Landmark6 : Index finger pip coordinates:

XPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP] .x

YPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP].y

ZPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP].z

##Landmark7 : Index finger dip coordinates:

XDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP].x

YDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP].y

ZDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP] .z

##Landmark8 : Index finger tip coordinates:

XTIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP] .x

YTIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP].y

Z2TIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP] .z

##MIDDLE FINGER
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##Landmark9 : Middle finger mcp
coordinates:

XMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .x

YMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .y

ZMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .z

##Landmarkl0 : Middle finger pip
coordinates:

XPIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
PIP].x

YPIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
PIP] .y

ZPIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
PIP] .z

##Landmarkll : Middle finger dip
coordinates:

XDIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
DIP] .x

YDIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
DIP].y

ZzDIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
DIP] .z
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##Landmarkl2 : Middle finger tip
coordinates:

XTIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
TIP].x

YTIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
TIP].y

ZTIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
TIP].z

##RING FINGER
##Landmarkl3 : Ring finger mcp coordinates:

XMCPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER MC
P].x

YMCPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER MC
Pl.y

ZMCPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER MC
P].z

##Landmarkl4 : Ring finger pip coordinates:

XPIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER PI
P].x

YPIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER PI
Pl.y

ZPIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER PI
P].z
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##Landmarkl5 : Ring finger dip coordinates:

XDIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER DI
P].x

YDIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER DI
Pl.y

ZDIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER DI
P].z

##Landmarkl6 : Ring finger tip coordinates:

XTIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER TI
P].x

YTIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER TI
Pl.y

ZTIPring =
hand landmarks.landmark[mp hands.HandLandmark.RING FINGER TI
P].z

##PINKY
##Landmarkl7 : Pinky mcp coordinates:

XMCPpinky =
hand landmarks.landmark[mp hands.HandLandmark.PINKY MCP].x

YMCPpinky =
hand landmarks.landmark[mp hands.HandLandmark.PINKY MCP].y

ZMCPpinky =
hand landmarks.landmark[mp hands.HandLandmark.PINKY MCP].z

##Landmarkl8 : Pinky pip coordinates:
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hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

XPIPpinky =
landmark [mp hands.HandLandmark.PINKY PIP].

YPIPpinky =
landmark [mp hands.HandLandmark.PINKY PIP].

ZPIPpinky =
landmark [mp hands.HandLandmark.PINKY PIP].

##Landmarkl9 : Pinky dip coordinates:

XDIPpinky =
landmark [mp hands.HandLandmark.PINKY DIP].

YDIPpinky =
landmark[mp hands.HandLandmark.PINKY DIP].

ZDIPpinky =
landmark [mp hands.HandLandmark.PINKY DIP].

##Landmark20 : Pinky tip coordinates:

XTIPpinky =
landmark[mp hands.HandLandmark.PINKY TIP].

YTIPpinky =
landmark [mp hands.HandLandmark.PINKY TIP].

ZTIPpinky =
landmark[mp hands.HandLandmark.PINKY TIP].

##THUMB
newCMCthumbx = XCMCthumb - wristx
newCMCthumby = YCMCthumb - wristy

newCMCthumbz = ZCMCthumb - wristz

newMCPthumbx = XMCPthumb - wristx
newMCPthumby = YMCPthumb - wristy

newMCPthumbz = ZMCPthumb - wristz
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newIPthumbx = XIPthumb - wristx
newIPthumby = YIPthumb - wristy
newIPthumbz = ZIPthumb - wristz

newTIPthumbx = XTIPthumb - wristx

newTIPthumby YTIPthumb - wristy

newTIPthumbz ZTIPthumb - wristz

##INDEX FINGER

newMCPindexx = XMCPindex - wristx

newMCPindexy YMCPindex wristy
newMCPindexz ZMCPindex wristz
newPIPindexx XPIPindex wristx
newPIPindexy YPIPindex wristy
newPIPindexz ZPIPindex wristz
newDIPindexx XDIPindex wristx
newDIPindexy YDIPindex wristy
newDIPindexz ZDIPindex wristz
newTIPindexx XTIPindex wristx
newTIPindexy YTIPindex wristy
newTIPindexz ZTIPindex wristz

##MIDDLE FINGER
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newMCPmiddlex
newMCPmiddley

newMCPmiddlez

newPIPmiddlex
newPIPmiddley

newPIPmiddlez

newDIPmiddlex
newDIPmiddley

newDIPmiddlez

newTIPmiddlex
newTIPmiddley

newTIPmiddlez

##RING FNGER
newMCPringx =
newMCPringy =

newMCPringz =

newPIPringx =
newPIPringy =

newPIPringz =

newDIPringx =

newDIPringy =

XMCPmiddle

YMCPmiddle

ZMCPmiddle

XPIPmiddle

YPIPmiddle

ZPIPmiddle

XDIPmiddle

YDIPmiddle

ZPIPmiddle

XTIPmiddle

YTIPmiddle

ZTIPmiddle

wristx
wristy

wristz

wristx
wristy

wristz

wristx
wristy

wristz

wristx
wristy

wristz

XMCPring - wristx

YMCPring - wristy

ZMCPring - wristz

XPIPring - wristx

YPIPring - wristy

ZPIPring - wristz

XDIPring - wristx

YDIPring - wristy
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newDIPringz

newTIPringx
newTIPringy

newTIPringz

##PINKY
newMCPpinkyx
newMCPpinkyy

newMCPpinkyz

newPIPpinkyx
newPIPpinkyy

newPIPpinkyz

newDIPpinkyx
newDIPpinkyy

newDIPpinkyz

newTIPpinkyx
newTIPpinkyy

newTIPpinkyz

Z

X

Y

Z

DIPring

TIPring

TIPring

TIPring

XMCPpinky
YMCPpinky

ZMCPpinky

XPIPpinky
YPIPpinky

ZPIPpinky

XDIPpinky
YDIPpinky

ZDIPpinky

XTIPpinky
YTIPpinky

ZTIPpinky

wristz

wristx
wristy

wristz

- wristx
- wristy

- wristz

- wristx
- wristy

- wristz

- wristx
- wristy

- wristz

- wristx
- wristy

- wristz

thumb cmc vec =
newCMCthumbz])

np.array ( [newCMCthumbx,
newCMCthumby,

thumb mcp vec
newMCPthumbz])

np.array ( [newMCPthumbx,
newMCPthumby,
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thumb ip vec =
newIPthumby, newIPthumbz])
thumb tip vec
newTIPthumby, newTIPthumbz])
index mcp_ vec
newMCPindexy, newMCPindexz])
index pip vec
newPIPindexy, newPIPindexz])
index dip vec
newDIPindexy, newDIPindexz])
index tip vec
newTIPindexy, newTIPindexz])
middle mcp vec
newMCPmiddley, newMCPmiddlez])
middle pip vec
newPIPmiddley, newPIPmiddlez])
middle dip vec
newDIPmiddley, newDIPmiddlez])
middle tip vec
newTIPmiddley, newTIPmiddlez])
ring mcp vec =
newMCPringy, newMCPringz])
ring pip vec =
newPIPringy, newPIPringz])
ring dip vec =
newDIPringy, newDIPringz])
ring tip vec =
newTIPringy, newTIPringz])
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pinky mcp vec = np.array ([newMCPpinkyx,
newMCPpinkyy, newMCPpinkyz])

pinky pip vec np.array ([newPIPpinkyx,

newPIPpinkyy, newPIPpinkyz])

pinky dip vec np.array ([newDIPpinkyx,

newDIPpinkyy, newDIPpinkyz])

pinky tip vec = np.array([newTIPpinkyx,

newTIPpinkyy, newIIPpinkyz])

vectors = [thumb cmc vec, thumb mcp vec,
thumb ip vec, thumb tip vec, index mcp vec, index pip vec,

index dip vec, index tip vec,
middle mcp vec, middle pip vec, middle dip vec,
middle tip vec,

ring mcp vec, ring pip vec,
ring dip vec, ring tip vec, pinky mcp vec, pinky pip vec,

pinky dip vec, pinky tip vec]
list= []
for 1 in range(len(vectors) - 1):
vector = vectors[i]
for j in range(i + 1, len(vectors)):
next vector = vectors([j]]

M = (np.linalg.norm(vector) *
np.linalg.norm(next vector))

ES = np.dot (vector, next vector)

th math.acos (ES / M)
list.append([th])

worksheetl.activate ()

worksheetl.write(row + ¢, 0, Q)

for col, data in enumerate(list):
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worksheetl.write row(row + ¢, col + 1,
data)

workbook.close ()

c) Code for Landmarks Detection and Second Feature Vector

import mediapipe as mp
import pandas as pd
import xlsxwriter
import cv2

import numpy as np
import math

def Calculations (vecl,vec?2,vec3)

vecd = vec2-vecl
vecb = vec3-vec?2
M = np.linalg.norm(vec4) *np.linalg.norm(vecb)

ES = np.dot (vec4, vec))
th2 = math.acos (ES/M)
return [th2]

df = pd.read csv(r'C:\Users\lia\Desktop\video
input\Entries6.txt"')

-
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= df.loc
= df.loc
= df.loc
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= df.loc
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t = df.loc[:, '"T']

u = df.loc[:, 'U']

v = df.locl[:, 'V']

w = df.loc[:, 'W']

x = df.loc[:, 'X']

y = df.loc[:, 'Y']

alphabet = [a, b, ¢, 4, e, £, g, h, i, k, 1, m, n, o, p, d,
r, s, t, u, v, w, %, V]

c = -1

row = 0

col =0

qg=20

workbook = xlsxwriter.Workbook ('NewAngles7.xlsx"')
worksheetl = workbook.add worksheet ()

mp drawing mp.solutions.drawing utils
mp_ hands = mp.solutions.hands
for j in alphabet:

q=q9q+1
for i in j:
i = 1int (i)
file =

'C:/Users/lia/PycharmProjects/pythonProject/data6/frame’' +
str(i) + '.Jjpg'
with mp hands.Hands (

static image mode=True,

max num hands=2,

min detection confidence=0.5) as hands:

# Read an image, flip it around y-axis for

correct handedness output (see

# above) .

image = cv2.flip(cv2.imread(file), 1)

# Convert the BGR image to RGB before
processing.

results = hands.process(cv2.cvtColor (image,
cv2.COLOR BGR2RGB))

nl = "\n'

# Print handedness and draw hand landmarks on
the image.

print ('Handedness:', results.multi handedness)

if not results.multi hand landmarks:

continue
image height, image width, = image.shape
annotated image = image.copy ()

for hand landmarks in
results.multi hand landmarks:
c =c¢ + 1
wristx =
hand landmarks.landmark[mp hands.HandLandmark.WRIST] .x
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wristy =

hand landmarks.landmark[mp hands.HandLandmark.WRIST] .y
wristz =

hand landmarks.landmark[mp hands.HandLandmark.WRIST] .z
##THUMP
##Landmarkl : Thump cmc coordinates:
XCMCthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC].x
YCMCthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC] .y
ZCMCthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB CMC] .z

##Landmark2 : Thump mcp coordinates:
XMCPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB MCP] .x
YMCPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB MCP].y
ZMCPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB MCP].z

##Landmark3 : Thump ip coordinates:
XIPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB IP].x
YIPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB IP].y
ZIPthumb =

hand landmarks.landmark[mp hands.HandLandmark.THUMB IP].z

##Landmark4 : Thump tip coordinates:
XTIPthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB TIP].x
YTIPthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB TIP].y
ZTIPthumb =
hand landmarks.landmark[mp hands.HandLandmark.THUMB TIP].z
##INDEX
##Landmark5 : Index finger mcp coordinates:
XMCPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER M
CP] .x
YMCPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER M
CP].y
ZMCPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER M
CP].y
##Landmark6 : Index finger pip coordinates:
XPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP] .x
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YPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP].y

ZPIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER P
IP] .z

##Landmark7 : Index finger dip coordinates:
XDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP] .x
YDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP].y
ZDIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER D
IP] .z

##Landmark8 : Index finger tip coordinates:
XTIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP].x
YTIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP].y
ZTIPindex =
hand landmarks.landmark[mp hands.HandLandmark.INDEX FINGER T
IP] .z

##MIDDLE FINGER

##Landmark9 : Middle finger mcp
coordinates:

XMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .x

YMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .y

ZMCPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
MCP] .z

##Landmarkl0 : Middle finger pip
coordinates:

XPIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
PIP].x

YPIPmiddle =
hand landmarks.landmark[mp hands.HandLandmark.MIDDLE FINGER
PIP].y
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hand landmarks
PIP] .z

coordinates:

hand landmarks.

DIP].x

hand landmarks.

DIP] .y

hand landmarks.

DIP].z

coordinates:

hand landmarks.

TIP].x

hand landmarks.

TIP].y

hand landmarks.

TIP] .z

hand landmarks.

P].x

hand landmarks.

Pl.y

hand landmarks.

P].z

hand landmarks.

P].x

hand landmarks.

Pl.y

hand landmarks.

P].z

ZPIPmiddle =
.landmark[mp hands.HandLandmark.MIDDLE FINGER

##Landmarkll Middle finger dip

XDIPmiddle
landmark [mp hands.HandLandmark.MIDDLE FINGER

YDIPmiddle =
landmark[mp hands.HandLandmark.MIDDLE FINGER

ZDIPmiddle =
landmark [mp hands.HandLandmark.MIDDLE FINGER

##Landmarkl1?2 Middle finger tip

XTIPmiddle =
landmark [mp hands.HandLandmark.MIDDLE FINGER

YTIPmiddle =
landmark [mp hands.HandLandmark.MIDDLE FINGER

ZTIPmiddle
landmark [mp hands.HandLandmark.MIDDLE FINGER

##RING FINGER
##Landmarkl3
XMCPring =
landmark[mp hands.HandLandmark.RING FINGER MC

Ring finger mcp coordinates:

YMCPring
landmark [mp hands.HandLandmark.RING FINGER MC

ZMCPring
landmark [mp hands.HandLandmark.RING FINGER MC

##Landmarkl4
XPIPring
landmark [mp hands.HandLandmark.RING FINGER PI

Ring finger pip coordinates:

YPIPring
landmark [mp hands.HandLandmark.RING FINGER PI

ZPIPring
landmark [mp hands.HandLandmark.RING FINGER PI
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hand landmarks.

P].x

hand landmarks.

Pl.y

hand landmarks.

Pl.z

hand landmarks.

P].x

hand landmarks.

Pl.y

hand landmarks.

P].z

hand landmarks.
hand landmarks.

hand landmarks.

hand landmarks.
hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

hand landmarks.

##Landmarkl5
XDIPring =
landmark [mp hands.HandLandmark.RING FINGER DI

Ring finger dip coordinates:

YDIPring =
landmark [mp hands.HandLandmark.RING FINGER DI

ZDIPring =
landmark [mp hands.HandLandmark.RING FINGER DI

##Landmarkl6
XTIPring =
landmark [mp hands.HandLandmark.RING FINGER TI

Ring finger tip coordinates:

YTIPring =
landmark [mp hands.HandLandmark.RING FINGER TI

ZTIPring =
landmark [mp hands.HandLandmark.RING FINGER TI

##PINKY
##Landmarkl?7
XMCPpinky =
landmark [mp hands.HandLandmark.PINKY MCP] .x
YMCPpinky =
landmark [mp hands.HandLandmark.PINKY MCP].y
ZMCPpinky =
landmark [mp hands.HandLandmark.PINKY MCP].z

Pinky mcp coordinates:

##Landmark18 Pinky pip coordinates:
XPIPpinky =
landmark [mp hands.HandLandmark.PINKY PIP].x
YPIPpinky =
landmark [mp hands.HandLandmark.PINKY PIP].y
ZPIPpinky =

landmark [mp hands.HandLandmark.PINKY PIP].z

##Landmarkl9 Pinky dip coordinates:
XDIPpinky =

landmark [mp hands.HandLandmark.PINKY DIP].x
YDIPpinky =

landmark [mp hands.HandLandmark.PINKY DIP].y
ZDIPpinky =
landmark [mp hands.HandLandmark.PINKY DIP].z

##Landmark20
XTIPpinky =
landmark [mp hands.HandLandmark.PINKY TIP].x

Pinky tip coordinates:
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hand landmarks.landmark[mp hands.HandLandmark.PINKY TIP].y

hand landmarks.landmark[mp hands.HandLandmark.PINKY TIP].z

wristz])

YCMCthumb,
YMCPthumb,
ZIPthumb])

YTIPthumb,

YMCPindex,
YPIPindex,
YDIPindex,

YTIPindex,

YMCPmiddle,
YPIPmiddle,
YDIPmiddle,

YTIPmiddle,

ZMCPring])
ZPIPring])
ZDIPring])

ZTIPring])

YMCPpinky,
YPIPpinky,

YDIPpinky,

YTIPpinky

ZTIPpinky =

wrist vec

thumb cmc vec

ZCMCthumb])
thumb mcp vec

ZMCPthumb])

thumb ip vec

thumb tip vec
ZTIPthumb])

index mcp_vec

ZMCPindex])
index pip vec
ZPIPindex])
index dip vec
ZDIPindex])
index tip vec
ZTIPindex])
middle mcp ve
ZMCPmiddle])
middle pip ve
ZPIPmiddle])
middle dip ve
ZDIPmiddle])
middle tip ve
ZTIPmiddle])

ring mcp_ vec
ring pip vec
ring dip vec

ring tip vec

pinky mcp vec
ZMCPpinky])

pinky pip vec
ZPIPpinky])

pinky dip vec
ZDIPpinky])

C

C

C

C
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pinky tip vec = np.array([XTIPpinky,

YTIPpinky, ZTIPpinky])

thumb mcp vec)

thumb cmc vec,

thumb ip vec)

thumb mcp vec,

thumb tip vec)

print (wrist vec)
list = []
Calculations (wrist vec, thumb cmc vec,

list.append(Calculations (wrist vec,
thumb mcp vec))

Calculations (thumb cmc vec, thumb mcp vec,

list.append(Calculations (thumb cmc vec,
thumb ip vec))

Calculations (thumb mcp vec, thumb ip vec,

list.append(Calculations (thumb mcp vec,

thumb ip vec, thumb tip vec))

index pip vec)

index mcp_ vec,

index dip vec)

index pip vec,

index tip vec)

index dip vec,

middle pip vec)

middle mcp vec,

middle dip vec)

middle pip vec,

middle tip vec)

middle dip vec,

Calculations (wrist vec, index mcp_ vec,

list.append(Calculations (wrist vec,
index pip vec))

Calculations (index mcp vec, index pip vec,

list.append(Calculations (index mcp vec,
index dip vec))

Calculations (index pip vec, index dip vec,

list.append(Calculations (index pip vec,
index tip vec))

Calculations (wrist vec, middle mcp vec,

list.append(Calculations (wrist vec,
middle pip vec))

Calculations (middle mcp vec, middle pip vec,

list.append(Calculations (middle mcp vec,
middle dip vec))

Calculations (middle pip vec, middle dip vec,

list.append(Calculations (middle pip vec,
middle tip vec))
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Calculations (wrist vec, ring mcp vec,
ring pip vec)

list.append(Calculations (wrist vec,
ring mcp vec, ring pip vec))

Calculations (ring mcp vec, ring pip vec,
ring dip vec)

list.append(Calculations (ring mcp vec,
ring pip vec, ring dip vec))

Calculations(ring pip vec, ring dip vec,
ring tip vec)

list.append(Calculations (ring pip vec,
ring dip vec, ring tip vec))

Calculations (wrist vec, pinky mcp vec,
pinky pip vec)

list.append(Calculations (wrist vec,
pinky mcp vec, pinky pip vec))

Calculations (pinky mcp vec, pinky pip vec,
pinky dip vec)

list.append(Calculations (pinky mcp vec,
pinky pip vec, pinky dip vec))

Calculations (pinky pip vec, pinky dip vec,
pinky tip vec)

list.append(Calculations (pinky pip vec,
pinky dip vec, pinky tip vec))

print (list)

mp_drawing.draw landmarks (
annotated image, hand landmarks,
mp hands.HAND CONNECTIONS)

cv2.imwrite (
'/data6/annotated image' + str (i) +
'.png', cvZ2.flip(annotated image, 1))
cv2.imshow ('Hand Landmarks',
annotated image)
worksheetl.activate ()

worksheetl.write(row + ¢, 0, Q)
for col, data in enumerate(list):

worksheetl.write row(row + ¢, col + 1,
data)

workbook.close ()
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e) Code for First Feature’s Neural Network

import numpy as np

import keras

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt
import itertools

from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix

from ann visualizer.visualize import ann viz

import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files
(x86) /Graphviz2.38/bin/"

df = pd.read csv('C:/Users/lia/Desktop/Angles.csv',
header=None)

print (df.head)

X = np.array(df.loc[:, 1:191])

Y = np.array(df.loc[:, 0])

print (X.shape, Y.shape)

x train, x test, y train, y test = train test split(X, Y,
test size=0.2)

print (x train.shape, x test.shape)

def preprocess(x, Vy):
x = tf.cast(x, tf.float32)
% tf.cast(y, tf.inté64)

return x, y

def create dataset(xs, ys, n _classes=25):
ys = tf.one hot(ys, depth=n classes)
return tf.data.Dataset.from tensor slices((xs, ys)) \
.map (preprocess) \
.shuffle(len(ys)) \

.batch (128)
train dataset = create dataset(x train, y train)
val dataset = create dataset(x test, y test)
model = keras.Sequential ([

keras.layers.InputlLayer (input shape=(190,)),

keras.layers.Dense (units=256, activation='relu'),
keras.layers.Dense (units=128, activation='relu'),
keras.layers.Dense (units=25, activation='softmax"')

1)
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model .compile (optimizer="adam',

loss=tf.losses.CategoricalCrossentropy (from logits=True),
metrics=['accuracy'])

history = model.fit(
train dataset.repeat(),
epochs=20,
steps per epoch=1000,
validation data=val dataset.repeat(),
validation steps=2
)
ann viz (model, view=True, filename='network.gv',
title='First Feature Vector Neural Network')
# plot loss during training
plt.subplot (211)
plt.title('Train Loss of feature 1'")
plt.plot (history.history['loss'], label='Train')
plt.plot (history.history['val loss'], label='Test')
plt.ylabel ('Loss')
plt.xlabel ('Epochs')

plt.legend()

# plot accuracy during training

plt.subplot (212)

plt.title('Accuracy of feature 1'")

plt.plot (history.history|['accuracy'], label='Train')
plt.plot (history.history['val accuracy'], label='Test')
plt.ylabel ('Accuracy')

plt.xlabel ('Epochs')

plt.legend()

plt.show ()

predictions = model.predict (x test, batch size=10,
verbose=0)
rounded predictions = np.argmax (predictions, axis=-1)

def get number () :
while True:
num = input ("Pick a number that represents an entry
in test set: ")
if num.isdigit () :
num = int (num)
if 0 <= num <= 1000:
return int (num)
else:
print ("Try again...™)

def predict (model, input, correct label):
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class names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', va, va, va, va, vov, 'P', VQV, 'R', 'S', 'T', 'U',
'V', va’ va’ 'Y']
prediction = model.predict (np.array([input]))
predicted class = class names[np.argmax (prediction) ]
print ('Correct class of entry No', num, ':',

class names|[correct label], 'Predicted class of entry No',
L}

num, :', predicted class)
num = get number ()
input = x test[num]

label = y test[num]
predict (model, input, label)

cm = confusion matrix(y true=y test,
y pred=rounded predictions)

def plot confusion matrix(cm, classes,

normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar ()

tick marks = np.arange(len(classes))

plt.xticks (tick marks, classes, rotation=45)

plt.yticks(tick marks, classes)

thresh = cm.max () / 2.
for i, j in itertools.product (range (cm.shape[0]),
range (cm.shape[1l])) :
plt.text (3, i, cm[i, J1,
horizontalalignment="center",
color="white" if cm[i, J] > thresh else
"black")

plt.tight layout()

plt.ylabel ('True label')
plt.xlabel ('Predicted label')
plt.show ()

cm plot labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',

'I'] 'K'] 'L'] 'M'] 'N'] 'O', 'PV, 'Ql, 'Rl, 'SV, 'Tl, 'Ul,
'V', 'W', 'X', lYl]

plt.figure()

plot confusion matrix(cm=cm, classes=cm plot labels,

title='Confusion Matrix of Feature 1')
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f) Code for Second Feature’s Neural Network

import numpy as np

import keras

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

import itertools

import statistics

from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix

from tensorflow.python.keras.models import save model
import graphviz

import ann visualizer

from ann visualizer.visualize import ann viz

import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files
(x86) /Graphviz2.38/bin/"

df = pd.read csv('C:/Users/lia/Desktop/NewAngles.csv',
header=None)

print (df.head)

X = np.array(df.loc[:, 1:16])

Y = np.array(df.loc[:, 0])

print (X.shape, Y.shape)

x train, x test, y train, y test = train test split(X, Y,
test size=0.2)

print (x train.shape, x test.shape)

print (x test[0])

def preprocess(x, Vy):
x = tf.cast(x, tf.float32)
y tf.cast(y, tf.into64)

return x, y

def create dataset(xs, ys, n classes=25):
ys = tf.one hot(ys, depth=n classes)
return tf.data.Dataset.from tensor slices((xs, ys)) \
.map (preprocess) \
.shuffle(len(ys)) \

.batch (128)
train dataset = create dataset (x train, y train)
val dataset = create dataset(x test, y test)
model = keras.Sequential ([

keras.layers.InputLayer (input shape=(15,)),
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keras.layers.Dense (units=256, activation='relu'),
keras.layers.Dense (units=128, activation='relu'),
keras.layers.Dense (units=25, activation='softmax"')

1)

model.compile (optimizer="adam',

loss=tf.losses.CategoricalCrossentropy (from logits=True),
metrics=["accuracy'])

history = model.fit(
train dataset.repeat(),
epochs=20,
steps per epoch=1000,
validation data=val dataset.repeat(),
validation steps=2
)
ann viz (model, view=True, filename='networkl.gv',
title='Second Feature Vector Neural Network')

filepath = './saved model’
save model (model, filepath)
sum = 0

# plot loss during training

plt.subplot (211)

plt.title('Train Loss of Feature 2'")

plt.plot (history.history['loss'], label='train')
plt.plot (history.history['val loss'], label='test')
plt.ylabel ('Loss')

plt.xlabel ('Epochs')

plt.legend()

# plot accuracy during training

plt.subplot (212)

plt.title('Accuracy of Feature 2'")

plt.plot (history.history|['accuracy'], label='train')
plt.plot (history.history['val accuracy'], label='test')
plt.ylabel ('Accuracy')

plt.xlabel ('Epochs')

plt.legend()

plt.show ()

predictions = model.predict (x test, batch size=10,
verbose=0)

rounded predictions = np.argmax (predictions, axis=-1)

def get number () :
while True:

num = input ("Pick a number: ")
if num.isdigit () :
num = int (num)

if 0 <= num <= 1000:
return int (num)
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else:
print ("Try again...™)

def predict (model, input, correct label):

class names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', va, va, va, va, va, 'P', lQl, 'R', 'S', 'T', 'U',

'V', va’ va’ 'Y']

prediction = model.predict (np.array([input]))

predicted class = class names[np.argmax (prediction) ]

print ('Correct class:', class names[correct label],
'Predicted class:', predicted class)

num = get number ()

input = x test[num]

label = y test[num]

predict (model, input, label)

cm = confusion matrix(y true=y test,
y pred=rounded predictions)

def plot confusion matrix(cm, classes,

normalize=False,
title='Confusion matrix',
cmap=plt.cm.Reds) :

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar ()

tick marks = np.arange(len(classes))

plt.xticks (tick marks, classes, rotation=45)

plt.yticks (tick marks, classes)

thresh = cm.max () / 2.
for i, j in itertools.product (range (cm.shape[0]),
range (cm.shape[1l])) :
plt.text (3, i, cm[i, JI1,
horizontalalignment="center",
color="white" if cm[i, J] > thresh else
"black™)

plt.tight layout ()

plt.ylabel ('True label')
plt.xlabel ('Predicted label')
plt.show ()

cm plot labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'IT, 'KT, 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
VVV, VWV, VXV, VYV]
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plot confusion matrix(cm=cm, classes=cm plot labels,
title='Confusion Matrix of Feature 2'")

g) Code for 10 Trainings (1% Feature)

import numpy as np

import keras

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

import itertools

import statistics

from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix

loop = 0
loss lists = []
val loss lists = []
while loop < 10:

print (loop)

df = pd.read csv('C:/Users/lia/Desktop/Angles.csv’',
header=None)

X = np.array(df.loc[:, 1:191])

Y = np.array(df.loc[:, 0])

print (X.shape, Y.shape)

x train, x test, y train, y test = train test split (X,
Y, test size=0.2)

def preprocess(x, y):
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.into64)

return x, y
def create dataset(xs, ys, n _classes=25):
ys = tf.one hot(ys, depth=n classes)

return tf.data.Dataset.from tensor slices((xs, ys))

.map (preprocess) \
.shuffle(len(ys)) \

.batch (128)
train dataset = create dataset(x train, y train)
val dataset = create dataset(x test, y test)
model = keras.Sequential ([

keras.layers.Dense (units=15, activation='relu'),
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keras.layers.Dense (units=256, activation='relu'),
keras.layers.Dense (units=128, activation='relu'),
keras.layers.Dense (units=25, activation='softmax"')

1)

model.compile (optimizer="adam',

loss=tf.losses.CategoricalCrossentropy (from logits=True),
metrics=["'accuracy']

)

history = model.fit(
train dataset.repeat(),
epochs=20,
steps per epoch=100,
validation data=val dataset.repeat(),
validation steps=2

)

predictions = model.predict (x test, batch size=10,
verbose=0)
rounded predictions = np.argmax (predictions, axis=-1)

cm = confusion matrix(y true=y test,
y_pred=rounded predictions)

def plot confusion matrix(cm, classes,

normalize=False,
title='Confusion matrix',
cmap=plt.cm.Reds) :

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar ()

tick marks = np.arange(len(classes))

plt.xticks (tick marks, classes, rotation=45)

plt.yticks(tick marks, classes)

thresh = cm.max() / 2.
for i, j in itertools.product (range (cm.shape[0]),
range (cm.shape[1])) :
plt.text (3, i, cm[i, JI1,
horizontalalignment="center",
color="white" if cm[i, Jj] > thresh else
"black")

plt.tight layout()

plt.ylabel ('True label')
plt.xlabel ('Predicted label')
'"'"plt.show()'"'
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cm plot labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G',
VHV, VEV, VEV, VLV, VMV, VNV, VOV, VPV, VQV, VRV, VSV, VTV’
IUI
4
VVV’ VWV’ VXV’ VYV]
plot confusion matrix(cm=cm, classes=cm plot labels,
title='Confusion Matrix"')

loss = (history.history['loss'])
val loss = (history.history['val loss'])

loss lists.append(loss)
val loss lists.append(val loss)
loop = loop + 1

lossl = np.array(loss 1lists[0])

loss2 = np.array(loss lists[1])

loss3 = np.array(loss lists[2])

loss4 = np.array(loss lists[3])

loss5 = np.array(loss lists[4])

loss6 = np.array(loss lists[5])

loss7 = np.array(loss lists[6])

loss8 = np.array(loss lists[7])

loss9 = np.array(loss lists[8])

lossl0 = np.array(loss lists([9])

elementl = [lossl[0], loss2[0], loss3[0], loss4[0],
loss5[0], loss6[0], loss7[0], loss8[0], loss9[0], lossl0[0]]
element?2 = [lossl[1l], loss2[1l], loss3[1l], loss4d[1l],
loss5[1], loss6[1l], loss7[1], loss8[1], loss9[1], lossl0[1]]
element3 = [lossl[2], loss2[2], loss3[2], loss4d[2],
loss5[2], loss6[2], loss7[2], loss8[2], loss9[2], lossl0[2]]
elementd4d = [lossl[3], loss2[3], loss3[3], loss4d4[3],
loss5[3], loss6[3], loss7[3], loss8[3], loss9[3], lossl0[3]]
element5 = [lossl[4], loss2[4], loss3[4], loss4d[4],
loss5[4], loss6[4], loss7([4], loss8[4], loss9[4], lossl0[4]]
element6 = [lossl[5], loss2[5], loss3[5], loss4[5],
loss5[5], loss6[5], loss7[5], loss8[5], loss9[5], losslO[5]]
element7 = [lossl[6], loss2[6], loss3[6], loss4d[6],
loss5[6], losso6[6], loss7[6], loss8[6], loss9[6], losslO[6]]
element8 = [lossl[7], loss2[7], loss3[7], loss4d[7],
loss5[7], loss6[7], loss7[7], loss8[7], loss9[7], lossl0[7]]
element9 = [lossl[8], loss2([8], loss3[8], loss4[8],
loss5[8], loss6[8], loss7[8], loss8[8], loss9[8], lossl0[8]]
elementl0 = [lossl[9], loss2[9], loss3[9], loss4[9],
loss5[9], loss6[9], loss7[9], loss8[9], l1loss9[9], lossl0[9]]
elementll = [lossl1l[10], loss2[10], loss3[10], loss4[10],

loss5[10], loss6[10], loss7[10], loss8[10], loss9[10],
loss10[107]
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elementl?2 = [loss1l[11], loss2[11], loss3[11l], loss4d[1l1l],
loss5[11], loss6[11], loss7[11], loss8[11], loss9[11],
loss10[117]]

elementl3 = [loss1l[12], loss2[12], loss3[12], loss4d[1l2],
loss5[12], loss6[12], loss7[12], loss8[12], lossS9[12],
lossl10([12]]

elementld4d = [loss1l[13], loss2[13], loss3[13], loss4d4[13],
loss5[13], loss6[13], loss7[13], loss8[13], loss9[13],
loss10[13]]

elementl5 = [lossl1l[14], loss2[14], loss3[14], loss4[1l4],
loss5[14], loss6[14], loss7[14], loss8[14], loss9[14],
loss10([14]]

elementl6o = [lossl[15], loss2[15], loss3[15], loss4[1l5],
loss5[15], loss6[15], loss7[15], loss8[15], loss9[15],
loss10[15]]

elementl7 = [lossl[l6], loss2[1l6], loss3[16], loss4[lo],
loss5[16], loss6[1l6], loss7[16], loss8[lo], loss9[le],
loss1l0[16]]

elementl8 = [lossl1l[17], loss2[17], loss3[17], loss4[1l7],
loss5[17], loss6[17], loss7[17], loss8[17], loss9[17],
lossl10[17]]

elementl9 = [lossl1l[18], loss2[18], loss3[18], loss4[18],
loss5[18], loss6[18], loss7[18], loss8[18], loss9[18],
loss10([18]]

element20 = [lossl1l[19], loss2[19], loss3[19], loss4[19],
loss5[19], loss6[19], loss7[19], loss8[19], loss9[19],
loss10[19]]

loss elements = [elementl, element2, element3, element4,
element5, element6, element/, element8, element9, elementlO,
elementll, elementl2, elementl3, elementld, elementlb,
elementl6, elementl7, elementl8, elementl9, element20]

print (loss elements)

val lossl = np.array(val loss lists[0])
val lossZ2 = np.array(val loss lists[1])
val loss3 = np.array(val loss lists[2])
val loss4 = np.array(val loss lists[3])
val loss5 = np.array(val loss lists([4])
val loss6 = np.array(val loss lists[5])
val loss7 = np.array(val loss lists[6])
val loss8 = np.array(val loss lists[7])
val loss9 = np.array(val loss lists[8])
val lossl0 = np.array(val loss 1lists[9])
val elementl = [val lossl[0], val loss2[0], val loss3[0],

val loss4[0], val loss5[0], val loss6[0], val loss7[0],
val loss8[0], val loss9[0], val lossl0[0]]
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val element?
val loss4[1l],
val loss8[1],
val element3
val loss4[2],
val loss8[2],
val elementd
val loss4[3],
val loss8[3],
val elementb
val loss4[4],
val loss8[4],
val element6
val loss4[5],
val loss8[5],
val element?
val loss4[6],
val loss8[6],
val element8
val loss4d[7],
val loss8[7],
val element9
val loss4([8],
val loss8([8],
val elementlO
val loss4[9],
val loss8[9],

val elementll =

val loss3[10],
val loss7[10],

val elementl?2

val loss3[11],
val loss7/[11],

val elementl3

val loss3[12],
val loss7[12],

val elementlé

val loss3[13],
val loss7[13],

val elementl)b

val loss3[14],
val loss’/[14],

val elementl6

val loss3[15],
val loss7[15],

val elementl’

val loss3[16],
val loss7[1l6],

val elementl8

val loss3[17],
val loss7[17],

[val lossl[1],
val loss5[1],
val loss9[1],

[val lossl([Z2],
val loss5[2],
val loss9[2],

[val lossl[3],
val loss5[3],
val loss9[3],

[val lossl[4],
val loss5[4],
val loss9[4],

[val lossl[5],
val loss5[5],
val loss9[5],

[val lossl[6],
val loss5[6],
val loss9[6],

[val lossl([7],
val loss5[7],
val loss9[7]

[val lossl|[
val loss5([8
val loss9[8
[val loss
val_lossS[
val loss9[9

[val loss
val loss4|
val loss8][

[val loss
val loss4|
val loss8[11

[val lossl[1
val loss4[12],
val loss8[12],
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I

]
]
1
]
]
1
1
1
1
1

[
0
0
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val loss4[13],
val loss8[13],
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val loss8[14],

val loss4[15],
val loss8[15],
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val loss4([17],
val loss8[17],

val loss6[1
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]

]
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1]
val loss2[2],

1]
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]

]
1
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]
2
[
]
3
[
]
4
[
]
5
[
]
6
[
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7]

(81,

val loss?2

val loss2[9],

val loss5[10],
val loss9[10],
val loss2[1
val loss5[11],

11,

val loss9[1

val loss5[12],
val loss9[12],

val loss5[13],
val loss9[13],
val loss2[1
val loss5[14],
val loss9[14],
val loss2[1
val loss5[15],
val loss9[15],

val loss5[16],
val loss9[1l6],
val loss2[1
val loss5[17],
val loss9[17],
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val elementl9 = [val lossl[18], val loss2[18],
val loss3[18], val loss4[18], val loss5[18], val loss6([18],
val loss7[18], val loss8[18], val loss9[18], val lossl0[18]]
val element20 = [val lossl1[19], val loss2[19],
val loss3[19], val loss4[19], val loss5[19], val loss6[19],
val loss7[19], val loss8[19], val loss9[19], val 1lossl0[19]]

val loss elements = [val elementl, val element2,

val element3, val element4, val element5, val elemento6,

val element?7, val element8, val element9, val elementlO,
val elementll, val elementl2, val elementl3, val elementld,
val elementl5, val elementl6, val elementl’/, val elementl8§,
val elementl9, val element20]

print (val loss elements)

final loss =
lossl+loss2+loss3+lossd4+lossS5+1loss6+loss7+1loss8+1oss9+1oss10
final val loss =

val lossl+val loss2+val loss3+val loss4+loss5+val lossb6+val
loss7+val loss8+val loss9+val losslO

print (final loss, final val loss)
av_loss list = []
for value in final loss:
av_loss = value/20
av_loss list.append(av_loss)
av_val loss list = []
for value in final val loss:
av_val loss = value/20
av_val loss list.append(av_val loss)

plt.subplot (211)

plt.title('Average Loss of Feature 1 for 10 trainings')
plt.plot(av_loss list, label='Average Train Loss')
plt.plot(av_val loss 1list, label='Average Validation Loss')
plt.ylabel ('Average Loss per Epoch')

plt.xlabel ('Epochs')

plt.legend()

st dev loss list = []

for values in loss elements:
st dev _loss = statistics.stdev(values)
st dev loss list.append(st dev loss)

st dev val loss list = []
for values in val loss elements:
st dev_val loss = statistics.stdev(values)

st dev val loss list.append(st dev val loss)

plt.subplot (212)
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plt.title('Standard Deviation of Feature 1 for 10
trainings')

plt.plot (st dev loss list, label='Standard Deviation of
Train Loss')

plt.plot (st dev val loss list, label='Standard Deviation of
Validation Loss')

plt.ylabel ('Standard Deviation per Epoch')

plt.xlabel ('Epochs')

plt.legend()

plt.show ()

h) Code for 10 Trainings (2" Feature)

import numpy as np

import keras

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

import itertools

import statistics

from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix

loop = 0
loss lists = []
val loss lists = []
while loop < 10:

print (loop)

df = pd.read csv('C:/Users/lia/Desktop/NewAngles.csv',
header=None)

print (df.head)

X = np.array(df.loc[:, 1:16])

Y = np.array(df.loc[:, 0])

print (X.shape, Y.shape)

x train, x test, y train, y test = train test split (X,
Y, test size=0.2)

print (x train.shape, x test.shape)

def preprocess(x, Vy):
x = tf.cast(x, tf.float32)
% tf.cast(y, tf.int64)

return x, y

def create dataset(xs, ys, n _classes=25):
ys = tf.one hot(ys, depth=n classes)
return tf.data.Dataset.from tensor slices((xs, ys))

.map (preprocess) \
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.shuffle(len(ys)) \

.batch (128)
train dataset = create dataset(x train, y train)
val dataset = create dataset(x test, y test)
model = keras.Sequential ([

keras.layers.Dense (units=15, activation='relu'),

keras.layers.Dense (units=256, activation='relu'),

keras.layers.Dense (units=128, activation='relu'),

keras.layers.Dense (units=25, activation='softmax"')
1)

model.compile (optimizer="adam',

loss=tf.losses.CategoricalCrossentropy (from logits=True),
metrics=["'accuracy']

)

history = model.fit (
train dataset.repeat(),
epochs=20,
steps per epoch=100,
validation data=val dataset.repeat(),
validation steps=2

)

predictions = model.predict (x test, batch size=10,
verbose=0)
rounded predictions = np.argmax (predictions, axis=-1)

cm = confusion matrix(y true=y test,
y_pred=rounded predictions)

def plot confusion matrix(cm, classes,

normalize=False,
title='Confusion matrix',
cmap=plt.cm.Reds) :

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar ()

tick marks = np.arange(len(classes))

plt.xticks (tick marks, classes, rotation=45)

plt.yticks(tick marks, classes)

thresh = cm.max () / 2.
for i, j in itertools.product (range (cm.shape[0]),
range (cm.shape[1])) :
plt.text(j, i, cm[i, J1,
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horizontalalignment="center",
color="white" if cm[i, J] > thresh else
"black")

plt.tight layout ()

plt.ylabel ('True label')
plt.xlabel ('Predicted label')
'"'"plt.show () '"'

cm plot labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'E'I 'ﬁ'l 'L', 'M', 'N', 'O', 'P', 'Q'I 'R', 'S', 'T',
IUI
4
’V’, ’W’, ’X’, lYl]
plot confusion matrix(cm=cm, classes=cm plot labels,
title='Confusion Matrix"')

loss = (history.history['loss'])
val loss = (history.history['val loss'])

loss lists.append(loss)
val loss lists.append(val loss)
loop = loop + 1

lossl = np.array(loss 1lists([0])

loss2 = np.array(loss lists[1])

loss3 = np.array(loss lists[2])

loss4 = np.array(loss lists[3])

loss5 = np.array(loss lists[4])

loss6 = np.array(loss lists([5])

loss7 = np.array(loss lists([6])

loss8 = np.array(loss lists[7])

loss9 = np.array(loss lists([8])

lossl0 = np.array(loss lists[9])

elementl = [lossl[0], loss2[0], loss3[0], loss4[0],
loss5[0], loss6[0], loss7[0], loss8[0], 1loss9[0], losslO[0]]
element?2 = [lossl[1l], loss2[1l], loss3[1], loss4[1l],
loss5[1], loss6[1l], loss7[1], loss8[1], loss9[1l], losslO0[1l]]
element3 = [lossl[2], loss2[2], loss3[2], loss4d[2],
loss5[2], loss6[2], loss7[2], loss8[2], loss9[2], lossl0[2]]
elementd4 = [lossl[3], loss2[3], loss3[3], loss4[3],
loss5[3], loss6[3], loss7[3], loss8[3], loss9[3], losslO[3]]
element5 = [lossl[4], loss2[4], loss3[4], loss4d[4],
loss5[4], loss6[4], loss7[4], loss8[4], loss9[4], lossl0[4]]
element6 = [lossl[5], loss2[5], loss3[5], loss4[5],
loss5[5], loss6[5], loss7[5], loss8[5], loss9[5], lossl0[5]]
element7 = [lossl[6], loss2[6], loss3[6], loss4d[6],

loss5[6], losso6[6], loss7[6], loss8[6], loss9[6], losslO[6]]
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element8 = [lossl[7], loss2[7], loss3[7], loss4[7],
loss5[7], loss6[7], loss7[7], loss8[7], loss9[7], lossl0[7]]
element9 = [lossl[8], loss2[8], loss3[8], loss4[8],
loss5[8], loss6[8], loss7[8], loss8[8], loss9[8], lossl0[8]]
elementl0 = [lossl[9], loss2[9], loss3[9], loss4[9],
loss5[9], loss6[9], loss7[9], 1loss8[9], 1loss9[9], lossl0[9]]
elementll = [loss1[10], loss2[10], loss3[10], loss4[10],
loss5[10], loss6[10], loss7[10], loss8[10], loss9[10],
loss10[10]]

elementl?2 = [lossl1l[11l], loss2[11], loss3[11l], lossé4([1l1l],
loss5[11], loss6[11], loss7[11], loss8[11], loss9[11],
lossl10([11]]

elementl3 = [lossl[12], loss2[12], loss3[12], loss4[1l2],
loss5[12], loss6[12], loss7[12], loss8[12], loss9[12],
lossl10[12]]

elementld4 = [lossl1l[13], loss2[13], loss3[13], loss4[13],
loss5[13], loss6[13], loss7[13], loss8[13], loss9[13],
loss10[13]]

elementl5 = [lossl1l[14], loss2[14], loss3[14], loss4[1l4],
loss5[14], loss6[14], loss7[14], loss8[14], loss9[14],
lossl10([14]]

elementl6 = [lossl[15], loss2[15], loss3[15], loss4[1l5],
loss5[15], loss6[15], loss7[15], loss8[15], loss9[15],
lossl10[15]]

elementl7 = [lossl[le6], loss2[1l6], loss3[16], loss4[lo],
loss5[16], loss6[1l6], loss7[16], loss8[1l6], loss9[le],
lossl0[16]]

elementl8 = [lossl1l[17], loss2[17], loss3[17], loss4[1l7],
loss5[17], loss6[17], loss7[17], loss8[17], loss9[17],
loss10[171]1]

elementl9 = [lossl1l[18], loss2[18], loss3[18], loss4([18],
loss5[18], loss6[18], loss7[18], loss8[18], loss9[18],
loss10([18]]

element20 = [lossl1l[19], loss2[19], loss3[19], loss4[19],
loss5[19], loss6[19], loss7[19], loss8[19], loss9[19],
loss10[19]]

loss elements = [elementl, element2Z, element3, elementd,
element5, element6, element7, element8, element9, elementlO,
elementll, elementl2, elementl3, elementld4d, elementl5,
elementl6, elementl7, elementl8, elementl9, element20]

print (loss elements)

val lossl = np.array(val loss 1lists[0])
val loss2 = np.array(val loss lists[1l])
val loss3 = np.array(val loss lists[2])
val loss4 = np.array(val loss lists[3])
val loss5 = np.array(val loss lists([4])
val loss6 = np.array(val loss lists[5])
val loss7 = np.array(val loss lists[6])
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71)
81)
[91)

val loss8 = np.array(val loss lists]|
val loss9 = np.array(val loss lists]
Val_losslo np.array(val loss lists

val elementl
val loss4[0],
val loss8[0],
val element?2
val loss4[1],
val loss8[1],
val element3
val loss4([2],
val loss8[2],
val elementd
val loss4[3],
val loss8[3],
val elementb
val loss4d[4],
val loss8[4],
val elemento6
val loss4[5],
val loss8[5],
val element’/
val loss4[e6],
val loss8[6],
val element8
val loss4[7],
val loss8[7],
val element9
val loss4([8],
val loss8[8],
val elementlO

[val lossl1l[0], val loss2[0],
val loss5[0], val loss6[0
val loss9[0], val losslO]

[val lossl[1l], val loss2
val loss5[1], val loss6[
val loss9[1], val losslO]

[val lossl[2], val loss2
val loss5[2], val loss6[
val loss9[2], val losslO]

[val lossl[3], val loss2
val loss5[3], val loss6[
val loss9[3], val losslO][

[val lossl[4], val loss2
val loss5[4], val loss6[
val loss9[4], val losslO][

[val lossl[5], val loss2
val loss5[5], val loss6[
val loss9[5], val losslO]

[val lossl[6], val loss2
val loss5[6], val loss6[
val loss9[6], val losslO[

[val lossl[7], val loss2
val loss5[7], val loss6[ ,
val loss9[7], val lossl0[7]]

[val lossl[8], val loss2[8],
val loss5([8], val_loss6[8],
val loss9[8], val lossl0[8]]
[val lossl[9], val loss2[9],
val loss4[9], val loss5[9], val loss6[9],
val loss8[9], val loss9[9 val lossl0[9]]
val elementll = [val loss 01,
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1
1, val loss5[11],
]
]

[
0
0
= [
1
, val loss9[11],
= 21,

84

val loss3[0],
val loss7[0],

val loss3[1],
val loss7/[1],

val loss3[2],
val loss7/[2],

val loss3[3],
val loss7[3],

val loss3[4],
val loss7[4],

val loss3[5],
val loss7[5],

val loss3[6],
val loss7[6],

val loss3[7],
val loss7[7],

val loss3[8],
val loss7([8],

val loss3[9],

val loss7[9],

val loss2[10],

val loss6[10],
val lossl0[10]]

1, val loss2[11],

val losso6[11],
val lossl0[11]]

val loss2[12],

val loss6[12],
val lossl0[12]]

val loss2[13],

val loss6[13],
val lossl0[13]]
val loss6[14],
val lossl0[14]]
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val elementl6 = [val lossl[15], val loss2[15],
val loss3[15], val loss4[15], val loss5[15], val loss6[15],
val loss7[15], val loss8[15], val loss9[15], val lossl0[15]]
val elementl?7 = [val lossl[l6], val loss2[1l6],
val loss3[16], val loss4[1l6], val loss5[16], val loss6[1l6],
val loss7[16], val loss8[16], val loss9[16], val losslO0[1l6]]
val elementl8 = [val lossl[17], val loss2[17],
val loss3[17], val loss4[17], val loss5[17], val loss6[17],
val loss7[17], val loss8[17], val loss9[17], val lossl0[17]]
val elementl9 = [val lossl[18], val loss2[18],
val loss3[18], val loss4[18], val loss5[18], val loss6[18],
val loss7[18], val loss8[18], val loss9[18], val lossl0[18]]
val element20 = [val lossl[19], val loss2[19],
val loss3[19], val loss4[19], val loss5[19], val loss6[19],
val loss7[19], val loss8[19], val loss9[19], val 1lossl0[19]]

val loss elements = [val elementl, val element2,

val element3, val element4, val element5, val elemento6,

val element?7, val element8, val element9, val elementlO,
val elementll, val elementl2, val elementl3, val elementld,
val elementl5, val elementl6, val elementl?7, val elementl8§,
val elementl9, val element20]

print (val loss elements)

final loss =
lossl+loss2+loss3+1lossd4+lossb+lossb+loss7+1oss8+10ss9+10ss10
final val loss =

val lossl+val loss2+val loss3+val loss4+loss5+val lossb6+val
loss7+val loss8+val loss9+val losslO

print (final loss, final val loss)
av_loss list = []
for value in final loss:
av_loss = value/10
av_loss list.append(av_loss)
av_val loss list = []
for value in final val loss:
av_val loss = value/10
av_val loss list.append(av_val loss)

plt.subplot (211)

plt.title('Average Loss of Feature 2 for 10 Trainings')
plt.plot(av_loss list, label='Average Train Loss')
plt.plot(av_val loss list, label='Average Validation Loss')
plt.ylabel ('Average Loss per Epoch')

plt.xlabel ('Epochs')

plt.legend()

st dev loss list = []
for values in loss elements:
st dev loss = statistics.stdev(values)
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st dev loss list.append(st dev loss)

st dev val loss list = []

for values in val loss elements:
st dev val loss = statistics.stdev(values)
st dev val loss list.append(st dev val loss)

plt.subplot (212)

plt.title('Standard Deviation of Feature 2 for 10
Trainings')

plt.plot (st dev loss list, label='Standard Deviation of
Train Loss')

plt.plot (st dev val loss list, label='Standard Deviation of
Validation Loss')

plt.ylabel ('Standard Deviation per Epoch')

plt.xlabel ('Epochs')

plt.legend()

plt.show ()
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