
University of Thessaly
Greece, Winter 2020

Audio-Visual Speaker Diarization in Meeting Data

Οπτικο-ακουστική Καταλογοποίηση Ομιλητή σε

Δεδομένα Συναντήσεων

Giorgos Gkountouras

Supervisor: Gerasimos Potamianos

Committee Members: Nikolaos Bellas, Georgios Stamoulis

Diploma Thesis

Department of Electrical and Computer Engineering

University of Thesssaly

Volos, Greece

This Thesis is submitted to University of Thessaly as part of the requirements for the

Diploma of Electrical and Computer Engineering.

https://www.linkedin.com/in/giorgos-gkountouras-1879171a2/
https://faculty.e-ce.uth.gr/gpotamianos/
https://faculty.e-ce.uth.gr/nbellas/
https://www.e-ce.uth.gr/department/faculty/georges/
https://www.e-ce.uth.gr/
http://www.uth.gr/

i

Figure 0.1: Conservez toujours une égalité machinale...

ii

Περίληψη

΄Ενα ενδιαφέρον πρόβλημα Μηχανικής Μάθησης είναι η καταλογοποίηση ομιλητή. Η

καταλογοποίηση απαντάει το ερώτημα του "ποιός μιλάει και πότε " σε δεδομένα ήχου ή βίντεο

όταν η διάρκεια ομιλίας και ο αριθμός των ομιλητών δεν είναι γνωστά εκ των προτέρων. Τα

τυπικά συστήματα οπτικο-ακουστικής καταλογοποίησης ομιλίας αποτελούνται από πολλά

στάδια: πρώτα εξάγονται χρήσιμα χαρακτηριστικά από τα δεδομένα ήχου και εικόνας, στη

συνέχεια μια σειρά από βήματα διαχωρισμού κατηγοριοποιούν την ομιλία και τους ομιλητές,

και τέλος το πλήρες σύστημα αξιολογείται.

Στην παρούσα διπλωματική εργασία αναπτύξαμε 3 ξεχωριστές μεθόδους καταλογοποίησης

ομιλητή. Η πρώτη από αυτές χρησιμοποιεί μόνο δεδομένα ήχου, η δεύτερη χρησιμοποιεί

μόνο δεδομένα εικόνας, και η τελευταία χρησιμοποιεί τον συνδυασμό και των δύο. Για

την προσέγγιση με τα ηχητικά δεδομένα χρησιμοποίησαμε ενα εργαλείο καταλογοποίσης

ομιλητή που αναπτύχθηκε στο Πανεπιστήμιο του Le Mans της Γαλλίας και λέγεται LIUM

SpkDiarization toolkit [1]. 13 συντελεστές MFCC χρησιμοποιήθηκαν ως είσοδος για αυτό

το σύστημα.

Στην οπτική προσέγγιση, υλοποιήσαμε ένα διαφορετικό σύστημα. Σε αυτό το σύστημα,

η περιοχή γύρω από το στόμα επιλέχθηκε ως περιοχή ενδιαφέροντος. Υλοποιήθηκε μια

τεχνική οπτικής ροής (optical flow) η οποία ανιχνεύει τις μετατοπίσεις που σημειώνονται

στα pixels της περιοχής ενδιαφέροντος από καρέ σε καρέ. Αυτές χρησιμοποιούνται ως οπτικά

χαρακτηριστικά του συστήματος. Μία Μηχανή Διανυσματικής Στήριξης (SVM) ταξινομεί

τους ομιλητές σε 2 ομάδες, ανάλογα με το αν μιλούν ή όχι.

Το οπτικο-ακουστικό σύστημα καταλογοποίησης ομιλητή συνδύασε και τους δύο τύπους

πληροφορίας χρησιμοποιώντας μια μέθοδο πρώιμης ένωσης. Ειδικότερα, η οπτική μέθοδος

βελτιώθηκε με την προσθήκη ακουστικής πληροφορίας με τη μορφή συντελεστών MFCC.

΄Επειτα, ένα άλλο SVM εκπαιδεύτηκε και χρησιμοποιήθηκε για την ανίχνευση ομιλίας.

΄Ολα τα συστήματα καταλογοποίησης αξιολογήθηκαν μετρώντας το Ρυθμό Σφάλματος

Καταλογοποίησης (DER) σε βίντεο που κατασκευάστηκαν ενώνοντας μαζί βίντεο κοντινής

λήψης από συναντήσεις, τα οποία προέρχονται από τη συλλογή AMI [2].

iii

Abstract

An interesting Machine Learning problem is speaker diarization. Diarization answers

the question of "who is talking and when" in audio or video data when the duration of

speech and the number of speakers isn’t known in advance. Typical audio-visual speech

diarization systems consist of multiple stages: first, the features are extracted from audio

and video data, then a series of segmentation steps classifies the speech and speakers, and

finally the "end-to-end" system is evaluated.

In this Thesis we have developed 3 distinct speaker diarization methods. One of them

uses audio-only data, another utilises video-only data, and the last uses a fusion of both.

In the audio-only approach, we employed a speaker diarization toolkit developed by The

University of Le Mans, which is based in France. It is called LIUM SpkDiarization toolkit

[1]. 13 MFCC coefficients were used as input for this system.

In the visual-only approach, we implemented a different system. In that system, the

mouth area was chosen as the region of interest. An optical flow technique was developed

that tracks the frame-by-frame pixel displacements in the region of interest. These are

used as features of the visual method. An SVM is employed in order to classify the

speakers into 2 classes, depending on whether they speak or not.

The audio-visual diarization system combined both types of information using an

early fusion approach. Specifically, the visual-only method was augmented with audio

information in the form of MFCC features. Then, another SVM was trained and employed

to determine the speech status.

All diarization systems were evaluated by measuring the Diarization Error Rate (DER)

in multi-camera clips that were constructed by splicing together close-camera meeting

videos from the AMI corpus [2].

iv

Acknowledgments

First, I would like to express my deep gratitude to my Principal Thesis Advisor, associate

professor Potamianos Gerasimos for his guidance and imparting his invaluable knowledge

and expertise during the development of this diploma thesis.

I would like to give special thanks to my fellow friend and colleague Charalampos Vossos

for our collaboration and the insights we shared during the past year.

Without the unending support of my family, this work would not have been possible.

Finally, I would also like to express my appreciation for my friends and colleagues at the

University of Thessaly for their support, encouragement and advice that helped this effort.

Contents

1 Introduction 1
1.1 The Speaker Diarization Task . 1
1.2 Thesis Contribution . 2
1.3 Related Work . 2
1.4 Thesis Overview . 4

2 Dataset 6
2.1 Dataset Description . 6

2.1.1 Overview . 6
2.1.2 Meeting description . 6
2.1.3 Streams and additional files . 7
2.1.4 Transcriptions . 7
2.1.5 Stream and file selection . 8
2.1.6 Clip selection . 8
2.1.7 Video scenarios . 8
2.1.8 Additional cameras for each scenario 9

2.2 Transcription Files . 12
2.3 Ground Truth . 12
2.4 Reference Annotations . 13

3 Audio Speaker Diarization 16
3.1 LIUM Speaker Diarization Toolkit . 16
3.2 MFCC Features Extraction . 17

3.2.1 Sphinx 4 MFCC module . 17
3.2.2 Human voice properties . 17
3.2.3 MFCC computation steps . 18

3.3 Main Components of the LIUM Toolkit 19
3.4 Audio Dataset . 22

3.4.1 File formats . 22
3.4.2 Audio stream selection . 23
3.4.3 Individual speaker videos . 24
3.4.4 Audio, video and transcription match 25
3.4.5 Transcription parsing script . 27
3.4.6 Pre-processing via audio gate . 28
3.4.7 Audio diarization testing . 31

4 Visual Speaker Diarization 32
4.1 Preliminaries . 32

v

Contents vi

4.1.1 Convolutional neural networks . 32
4.2 Dlib Face Detection . 35

4.2.1 Dlib overview . 35
4.2.2 HOG face detection . 36
4.2.3 CNN Face Detection . 36
4.2.4 CNN face detection accuracy . 40
4.2.5 CNN face detection CPU performance 41
4.2.6 Cloud deployment . 41

4.3 ROI Selection . 42
4.4 Optical Flow . 43
4.5 SVM Visual Diarization . 46

4.5.1 Speech detection features . 46
4.5.2 Speech detection SVM training 46
4.5.3 Speech detection SVM testing . 47

5 Audio-Visual Speaker Diarization 48
5.1 Motivation for Audio-Visual Fusion . 48
5.2 Custom MFCC Feature Extraction . 49

5.2.1 Reasoning for custom MFCC computation 49
5.2.2 Librosa . 49

5.3 Audio and Video Synchronization . 50
5.4 SVM Audio-Visual Diarization . 52

5.4.1 Speech detection features . 52
5.4.2 Speech detection SVM training 52
5.4.3 Speech detection SVM testing . 53

6 Evaluation 54
6.1 Diarization Error Rate . 54
6.2 Audio-Only Evaluation . 55
6.3 Visual-Only Evaluation . 56
6.4 Audio-Visual Evaluation . 57
6.5 Performance Concerns . 58

7 Conclusion and Future Work 59
References . 61

List of Figures

0.1 Conservez toujours une égalité machinale... i

2.1 Two cases of video frames. In (a) there is a frame from the personal camera
of a single participant and in (b) a frame from the edited video with all
four personal cameras. 11

2.2 A visualization of an annotation . 14

3.1 The complete audio diarization method of LIUM 22

4.1 A typical Convolutional Neural Network architecture (Figure from [3]) . 33
4.2 Convolution operation (Figure from [3]) 34
4.3 Examples of activation functions (Figure from [3]) 34
4.4 Max pooling operation (Figure from [3]) 35
4.5 An image pyramid (Figure from [4]) . 37
4.6 Example frames with CNN face recognition 40
4.7 The optical flow with SVM visual diarization method 46

5.1 The synchronization process between audio and video streams 51
5.2 Audio-visual fusion using MFCC information 52

vii

List of Tables

6.1 Results of audio-only diarization. 55
6.2 Results of visual-only diarization. 57
6.3 Results of audio-visual diarization. 58

viii

Chapter 1

Introduction

1.1 The Speaker Diarization Task

The Speaker Diarization task is a common problem in pattern recognition. It has received

considerable attention in the literature during the last decades. The problem can be

concisely described as finding out who speaks and when in an audio or video stream. In

our increasingly data-driven world, diarization is expected to reach commodity hi-tech

devices such as mobile phones, laptops and cameras. Thus, we are tasked to develop

robust solutions that meet those needs. A typical speaker diarization system based on

audio data includes the following steps:

• The audio signal is classified into either speech or non-speech segments.

• Segments of the same speaker are grouped into the same cluster.

It has been observed that it is easier for people to recognize speech when they have visual

contact with the speaker. Recently, the same effect was observed in speaker diarization

systems. Therefore, various new speaker diarization approaches utilize a combination

of both modalities. Indeed, it is expected that audio-only or video-only solutions would

struggle with challenging situations.

In particular, audio-only diarization approaches face numerous complications, such as

many moving speakers that may occupy different locations, noisy environments and

overlapping speech. However, video-only diarization also has problems, considering that

1

1.2. Thesis Contribution 2

it only works with the information present in the face and especially around the mouth

area. This makes it inappropriate for occasions where a high-quality camera to record lip

movements isn’t available (e.g. mobile phones).

Modern approaches in the diarization space combine both modalities to implement powerful

audio-visual systems. These can have the form of early fusion, which is a combination in

the feature extraction stage, or late fusion, in which both systems decide separately and

then those decisions are combined. In this thesis, we present a method of the early fusion

variety.

1.2 Thesis Contribution

The main focus of this thesis is to use audio-visual early fusion methods for the speaker

diarization task (finding who speaks and when in a video). First, we explored systems

with audio-only or video-only cues. In the audio case, speaker identities were discovered

through open-source tools by the University of Le Mans Laboratoire d’Informatique de

l’Université du Mans called LIUM SpkDiarization. In the video case, the motion of lips

was detected and used as indication of speech. A visual solution utilizing SVMs was

developed. As for the audio-visual method, the visual-only approach was augmented with

audio information in the form of MFCC features. Finally, all methods we developed were

evaluated in multi-panel videos that were created by editing meeting data from the AMI

Meeting Corpus [2].

1.3 Related Work

The goal of speaker diarization is to find speech segments and form clusters of them that

correspond to the same speaker. This can be achieved in various manners. These include

using audio information, visual information, or a combination of both. A typical choice

of features in the audio-only case are the Mel Frequency Cepstral Coefficients (MFCCs)

in situations where each speech segment belongs to a single speaker. Such a method

was implemented in [5]. The authors extracted an MFCC feature vector for each frame,

1.3. Related Work 3

then used agglomerative clustering, to ensure that each generated cluster belongs to a

different speaker. Then, consecutive speech frames were classified either into same speaker

segments, or into another speaker cluster via a Hidden Markov Model (HMM).

Visual speech diarization was addressed in [6]. The authors proposed a method for the

detection of speech activity in the context of television panel conversations. First, they

detected the facial features with a detector based on the Active Shape Model (ASM) [7].

Then, they extracted the facial features using the OpenCV library implementation of the

Viola-Jones algorithm. This was followed by facial pose estimation by matching the faces

to a pre-trained location model with 68 facial landmarks. The lip region was specifically

selected as the region of interest (ROI). They calculated pixel displacement in the ROI

with optical flow techniques in order to measure lip motion. Subsequently, they summed

the entropy of pixel displacement in each region. The final step was a binary classification

into ’speech’ and ’non-speech’ classes in two different ways. One was a simple thresholding

function, and the other involved computing the mean squared difference between pixels in

consecutive mouth regions. The introduced method performed better in real data than

simply measuring the difference between pixels. Thus, mouth activity was shown to have

a positive correlation with the presence of speech.

When it comes to audio-visual diarization, one approach was presented in [8]. Its authors

implemented two synchronization methods of audio and visual features. The first was

mutual information and the second was Canonical Correlation Analysis (CCA). The

results of the two methods were compared separately. They employed MFCCs for audio

features. For visual features, they utilized the Kanade–Lucas–Tomasi (KLT) Optical Flow

algorithm along with skin color detection techniques to find the lips region motion. Their

solution was efficient, since they only used useful parts of the image, rather than the entire

image. Following that, they used vertical and horizontal movements and measured their

correlation with the audio features. They arrived at the conclusion that audio features

are more correlated with the vertical motion of lips. During the evaluation step of their

research, they employed mutual information and Canonical Correlation Analysis.

Another multimodal speaker diarization approach on a dataset featuring talk shows was

introduced in [9]. The proposed solution was split into feature extraction (audio and

visual), model creation, and speech segment classification for the show. The extracted

1.4. Thesis Overview 4

features in the audio domain were MFCCs. In the visual part, they found that features

that characterize the participants’ clothing work best. During the training step, they

collected shots with large duration that contain faces in the foreground and detected the

lip activity in them. Afterwards, the data were clustered in order to have a different

speaker for each cluster. Finally, all parts of the talk show not used so far were employed

in a classification step involving an SVM classifier. This paper showcased the effectiveness

of kernel-based methods in speaker diarization.

Yet another multimodal speaker diarization approach was proposed in [10]. As in this

thesis, the training and testing dataset contained meeting videos. In those videos all

participants are seen in full body motion and in a non-frontal facial pose. For audio

features, they used MFCCs. In the video domain, the features were extracted using the

grey-scale difference image algorithm for computational efficiency. In the next step, the

audio and visual features were concatenated. Afterwards, an agglomerative clustering

algorithm was employed in order to group the different speakers. Lastly, the system was

evaluated on meeting data featuring 2 subjects. The method was important because it

featured real-world meeting data, which usually contains more side views of the participants

than television panels.

1.4 Thesis Overview

This thesis is split into 7 chapters. After this introductory chapter, it has the following

structure:

• In chapter 2, we describe the meeting dataset we used in detail, the edits we

made to create the video clips, and the type of the accompanying transcription files.

Additionally, we explain how we parsed the transcriptions to create ground truth

annotations.

• In chapter 3, we present the audio-only approach. We introduce the LIUM

SpkDiarization pipeline. Furthermore, we provide a short description of the

extraction of audio features, the probabilistic models used, and the clustering

algorithms employed.

1.4. Thesis Overview 5

• In chapter 4, we analyze a video-only approach. We introduce Convolutional

Neural Networks (CNNs). Then, we present a meticulous description of our method

(face detection through the dlib library, cloud deployment, and optical flow). Finally,

we describe the steps involved in the implemented diarization system.

• In chapter 5, we introduce our main contribution, the combination of audio and

visual modalities. To that end, we augment the visual-only approach with MFCC

information from the audio domain to improve the detection of short speech segments.

• In chapter 6, we present the results of all 3 implemented diarization methods,

compare and comment on the results.

• In chapter 7, we conclude with a summary of our findings. We also provide some

ideas for future work on speaker diarization.

Chapter 2

Dataset

2.1 Dataset Description

2.1.1 Overview

For the training and evaluation steps of this thesis we used the AMI Meeting Corpus

[2]. This consists of 100 hours of videos of English meetings. 11 video clips with a total

duration of 1 hour and 24 minutes were extracted from 6 of these videos. Each clip is in a

Matroska video container. The video is encoded as MPEG-4 and the audio is encoded as

MPEG-4 AAC at 48000 samples per second (48 kHz). All video clips have 30 frames per

second (FPS) and a resolution of 1280× 720. Their duration ranges from 3 to 10 minutes.

All clips are continuous parts of the main meeting data. Note that the dataset contains

multiple video streams and multiple audio streams (see Section 2.1.3). Stream selection is

covered in detail separately (Section 2.1.5). The videos were edited using Openshot and

cut using avidemux. Both programs are free, open source video editors.

2.1.2 Meeting description

Each meeting involves four participants around a table that speak in turns. It is recorded

in English and includes mostly non-native speakers. An additional complication for any

diarization attempt is overlapping speech between different participants in some occasions.

6

2.1. Dataset Description 7

There might also be silent segments. There are several meeting scenarios (e.g. designing a

product, selecting a movie). The participants play the different roles of a design team

or take parts in a naturally occurring scenario of some domain. Each meeting begins

with a short introduction of the participants and preparation of their lapel microphones.

Afterwards, the meeting is conducted with the participants discussing the topics according

to their roles. Note that earlier topics may be repeated as new information arises in a

natural fashion. The meeting ends with a conclusion and removing the recording devices.

2.1.3 Streams and additional files

Multiple video and audio streams are present in the corpus. The video streams include

a close camera for each of the four participants (Figure 2.1a), plus additional cameras

depending on the scenario. The close camera focuses on their face, but it shows their entire

upper body. The audio streams include far-talking microphones (2 microphone array

streams of 8 microphones each) and close-talking microphones worn by each participant

(lapel and headset). There is also a mix of the headset recordings and a mix of the lapel

recordings. The microphone arrays are placed on the table around which the meeting is

conducted. Additionally, the dataset includes written notes by the participants, projection

slides used to aid the discussion, data from a whiteboard used for sketches and short

notes, and shared computer files (spreadsheets, e-mails, documents, databases).

2.1.4 Transcriptions

The AMI corpus includes automatic as well as high quality, manual, orthographic

transcriptions of the dialogue in the meetings. It also contains annotations for various

events such as dialog acts and head movement. The manual transcriptions were transformed

to speaker annotations and used for the system’s training and the evaluation of its

performance (Section 2.2).

2.1. Dataset Description 8

2.1.5 Stream and file selection

In this thesis, the four close camera streams were stitched into one video, resembling the

arrangement of broadcast news videos (Figure 2.1b). Audio from the first microphone of

the first microphone array was initially used. However, we later discovered that individual

face cameras and personal headset microphones performed better for our use case (Section

3.4.3). No other video streams, audio streams or additional files were used, with the

exception of transcriptions, during the evaluation stage.

2.1.6 Clip selection

The corpus includes many videos, but only some clips of them were used for the purposes

of this thesis. The clips were chosen to be frontal face views from the close cameras.

Participants are allowed to turn sideways toward other participants while they speak, look

at the slides as they discuss them, move their hands as they speak, approach the camera or

move away from it, cover their mouth with their hands while speaking, take written notes

with their pens, use their laptops, play with their pens, or, in one case, chew gum. This

allows assessment of the algorithm’s performance in a realistic environment. In contrast,

clips where the participant gets up and turns toward the whiteboard as they present

or leave the room while speaking are considered outside the scope of this thesis, while

presenting an interesting challenge for later work involving location of the participants.

2.1.7 Video scenarios

These are the videos used, followed by a short description of the corresponding scenario.

• ES2002a - Design of a remote control. The participants go over the project’s stated

goals, draw on the whiteboard for the remote’s design, raise their concerns over

possible issues with the project’s goals and come up with initial ideas for the remote

control’s design.

• ES2002c - Design of a remote control. The participants raise concerns over

equipment issues, watch the trends of the European market, discuss the proposed

2.1. Dataset Description 9

features of the remote control and evaluate other existing products in the market.

This is followed by a presentation on industrial design, an in-depth discussion of the

remote’s components, materials and the power source, decisions about its conceptual

design and finally a discussion of the jog dial as a user interface.

• IB4010 - Selection of a movie. The participants judge the movie options presented

based on many criteria, including their plot, cast, soundtrack, genre, popularity,

directors, length, posters and awards received.

• IS1009b - Design of a remote control. The participants discuss the product’s

marketing strategy, its functionality and industrial design considerations. They

suggest designs, go over the components of the remote and its user interface, focus

on the target group for remotes and present alternative designs.

• IS1009c - Design of a remote control. The participants suggest the option of a speech

recognition interface for the device as well as other user interface options. They

go over its basic functionality, its components, industrial design and a marketing

presentation. They conclude with decisions on how to proceed.

• IS1009d - Design of a remote control. The participants present a prototype, describe

its look and feel and list its features. Consequently, they evaluate the prototype,

and talk about the meeting’s agenda. Finally, they give an estimate of the product’s

cost and the cost of adding speech recognition to it, rate the prototype’s properties

and evaluate the entire project.

Note that in the product design videos the participants are role-playing. They are assigned

the roles of a fictitious design team (industrial designer, interface designer, marketing, or

project manager). In contrast, the movie selection video involves a naturally occurring

meeting. As we’ve mentioned previously, continuous clips are utilized rather than the

entire videos mentioned here. More than one of those clips may belong to the same video.

2.1.8 Additional cameras for each scenario

Each scenario has cameras specific to that scenario:

• ES2002a, ES2002c - An overhead camera with a top-down view of the table and

2.1. Dataset Description 10

the participants, and a corner camera with a view of the room and its participants.

• IB4010, IS1009b, IS1009c, IS1009d - Left and right cameras, each focusing on

two of the four participants, as well as a center camera showing a side view of all

four participants and the projected slides.

As mentioned before, these cameras are not used for this thesis.

2.1. Dataset Description 11

(a)

(b)

Figure 2.1: Two cases of video frames. In (a) there is a frame from the personal camera
of a single participant and in (b) a frame from the edited video with all four personal
cameras.

2.2. Transcription Files 12

2.2 Transcription Files

Each of the 6 meeting videos used to create the clips corresponds to an XML transcription

file. This file contains the topics of discussion, as they come up naturally during the

meetings. The beginning of this file holds a header with metadata, including encoding

and XML version. In our case the encoding is ISO-8859-1 (Latin, ASCII-based). Each

topic is split into turns of speech. Each turn has a speaker, the first word’s identifier and

the last word’s identifier. If there is just one word in that speaker’s turn, only that word’s

identifier is included instead.

The word identifiers are references to different files containing the words themselves. Each

of the 6 videos has 4 XML word files, corresponding to the 4 meeting participants in the

video. Similarly to the transcription file, the beginning of a word file contains metadata.

It is also encoded as ISO-8859-1. The word file for a speaker includes the words spoken

by that speaker, along with their unique identifiers, their start times and their end times.

It also includes information about whether the transcribed word is a punctuation mark,

which we did not utilize.

2.3 Ground Truth

In a supervised machine learning system training is accomplished via target outputs that

are known to be correct. These targets are known as the ground truth of the system. We

expect a machine learning system trained on the ground truth to be able to generalize

its insights to real data it has never seen before. Importantly, ground truth labels are

also used for the evaluation of the system. We can compare its predictions to the ground

truth and measure the error as the difference.

In our case, the files belonged to the XML document type. XML is a hierarchical format

that can be parsed to a tree data structure using programming language utilities. Thus,

it is possible to cross-reference a topic file and its corresponding word files (see Section

2.2). For that purpose, we created a parser in python. The parser outputs a reference

speech file. Each line of that file contains a turn, with its start time, its end time and

2.4. Reference Annotations 13

the participant that was speaking during the turn. Note that for each clip, we only parse

from the start time to the end time of that clip. In case of overlapping speech, we can

only find that the turn times overlap after this parsing step. It is not obvious from the

topic file alone.

Special care must be taken to ensure that the ground truth (training targets) is in a

suitable format for the supervised learning algorithm to learn from. In this thesis, we have

chosen binary labels that indicate the presence or lack of speech for the corresponding

participant in a frame. In order to create the target data, we used the parsed values from

the transcriptions (start time, end time, frames, speaker name) in the following manner:

• A numpy vector is initialized with zeros. This vector has a size equal to the number

of speakers multiplied by the total number of video frames.

• For each frame where the transcription indicates speech, we set the speaker’s target

label for the current frame to 1.

Obviously, in overlapping speech cases we set the target values to 1 for all overlapping

speakers in the frame.

2.4 Reference Annotations

Subsequently, we converted the values from the reference speech file (speech start,

speaker end, speaker id) into an annotation (see Figure 2.2) by assigning the speaker

id to the corresponding time of speech. The annotation was created using the

pyannote python library. The speech segment had to be converted into an appropriate

pyannote.core.Segment class in order to be inserted into the annotation. This describes a

segment with the following form:

[00:00:00.000 – 00:01:30.425]

The time is formatted as hours:minutes:seconds.milliseconds.

Afterwards, we created the reference annotations. Each annotation is represented by the

2.4. Reference Annotations 14

Figure 2.2: A visualization of an annotation

pyannote.core.Annotation class. That class has the following features:

• The segments are sorted by start time or, if tied, by end time.

• It’s impossible to add the same track twice.

• Only non-empty tracks can be inserted.

A track is a combination of support and name, where support is the speech segment

represented by start time and end time) and name is the speaker’s id. Note that many

different speaker ids may correspond to the same support in cases of overlapping speech

segments. This is an example of a partial reference annotation file:

[00:00:00.000 – 00:00:41.847] - spk0

[00:00:41.847 – 00:01:05.100] - spk56

[00:01:05.100 – 00:01:13.041] - spk0

[00:01:13.041 – 00:02:09.172] - spk12

[00:02:09.172 – 00:02:24.267] - spk0

[00:02:24.267 – 00:03:54.692] - spk21

[00:03:54.692 – 00:03:57.578] 0 spk21

[00:03:54.692 – 00:03:57.578] 1 spk12

[00:03:57.578 – 00:04:25.656] - spk21

The reference annotation enables us to evaluate the system’s performance by comparing it

to the hypothesis annotation. The hypothesis annotation is produced by our diarization

2.4. Reference Annotations 15

system. Both annotations were inserted into a metrics tool in order to measure the

effectiveness of our system. In this thesis, the Diarization Error Rate (DER) metric, as

computed by the ’pyannote metrics’ python library, was used.

Chapter 3

Audio Speaker Diarization

This chapter introduces our first diarization solution, which is only based on audio data.

Our method uses the LIUM speaker diarization toolkit, with additional pre-processing to

address the particulars of the AMI Meeting Corpus dataset.

We begin with a high-level description of the toolkit and the specific problem it solves.

This is followed by an enumeration of the steps in the LIUM toolkit pipeline, focusing

mainly on the extraction of audio features. The later stages of the framework are presented

in summary. Complete mathematical expressions can be found in the literature [1, 11].

Moreover, we cover the creation of the audio-specific dataset from the AMI Corpus.

Specifically, we include details on correcting the 3-way mismatch between audio clips,

video clips and manual transcriptions. Finally, we provide a description of the pre-

processing stage. This step is necessary, as the framework’s machine learning models

have been trained on a broadcast news dataset, whereas we use them in the context of

meetings.

3.1 LIUM Speaker Diarization Toolkit

LIUM SpkDiarization ([1], with later improvements in [11]) is a framework for speaker

diarization developed by the Laboratoire d’Informatique de l’Université du Mans. It is free,

open-source and written in the Java programming language. In addition to uncovering

the identities of the speakers and the duration of their speech, the toolkit can also find

16

3.2. MFCC Features Extraction 17

the speaker’s gender, the channel type (narrow or wide bandwidth), as well as detect the

presence of music. Since the default configuration is tuned to discover a single speaker in

a single channel, we edited our dataset to match that description (Section 3.4.3).

At the time of its publication, LIUM SpkDiarization possessed state-of-the-art results

for the diarization task in the domain of broadcast news, as evidenced in the ESTER2

evaluation campaign [12]. However, the authors of the framework caution that while it

is optimized for television and radio shows, its performance degrades when evaluated

on phone conversations and meetings. This is in agreement with our findings when we

adopted LIUM SpkDiarization in the context of meetings for this thesis. We discovered

that additional pre-processing (Section 3.4.6) was required in order to maintain acceptable

error rates. We should also note that SpkDiarization was trained by minimizing the

Cross-Likelihood Ratio (CLR) and normalized Cross-Likelihood Ratio (NCLR) metrics

[13, 14], whereas we evaluated our solution with the DER metric.

3.2 MFCC Features Extraction

3.2.1 Sphinx 4 MFCC module

The first stage of LIUM’s diarization pipeline computes feature vectors from the audio

waveform. To that end, it employs the open-source Sphinx 4 tools, which were developed by

Carnegie Mellon University. This is acknowledged in the overview of the LIUM diarization

effort after the ESTER2 campaign [15]. LIUM SpkDiarization uses Mel Frequency Cepstral

Coefficients (MFCCs) as audio features, a common input for diarization and general audio

processing work [16, 17, 18].

3.2.2 Human voice properties

As the name implies, the MFCC uses the Mel scale to divide the frequency spectrum into

spectral sub-bands. The Mel scale is optimized for the way frequencies are perceived by

the human ear. While humans can hear from 20Hz to about 20kHz, depending on their age,

their ability to distinguish between close frequencies is not linear. It is easier to distinguish

3.2. MFCC Features Extraction 18

between lower frequency tones (e.g. 150Hz and 300Hz), than higher frequency tones (e.g.

16kHz and 16.1kHz). The adult human voice fundamental tones are in the range of 85Hz

to 255Hz (85Hz to 180Hz for male and 165Hz to 255Hz for female). Harmonics are integral

multiples of the fundamental frequency. For example, a fundamental frequency of 150Hz

has a 2nd harmonic at 300Hz and a 3rd harmonic at 450Hz. In 1937, Stevens, Volkmann

and Newmann proposed the Mel scale, featuring equidistant pitches as interpreted by

subjective listening tests.

3.2.3 MFCC computation steps

MFCC feature extraction can be subdivided in the following steps:

• Audio Framing: Audio is a non-stationary process, however we can assume that

the audio signal is stationary for relatively small durations. We split the signal

into small segments, known as frames. Audio frames overlap at the edges. This

counteracts the effect of windowing, which can lose information. We set the frame

window to 25ms, the hop size to 10ms and the overlap to 15ms for the Sphinx4

toolkit at a sample rate of 16kHz, per LIUM’s recommendations. Therefore, window

length can be calculated as 0.025 * 16000 = 400 samples.

• Discrete Fourier Transform (DFT): Next, we convert each frame from the time

domain to the frequency domain using the DFT. In practice, we prefer the Fast

Fourier Transform (FFT) algorithm, which computes the DFT more efficiently

(O(N log2N) calculations) than the naive approach (O(N2) calculations). We apply

a Hamming window function to each frame to prevent high frequency distortions.

This ensures that the start and end of the frame are near zero before the FFT. Note

that shorter frames produce fewer frequency bands in the FFT and lower ability

to discriminate between close frequencies, while in longer frames the frequency

composition varies too much within the window.

• Mel filterbank: Afterwards, we apply the Mel filterbank to the frequency spectra.

The FFT bins inside a region are isolated with a triangular filter and summed

to calculate the energy of that frequency range. The filters are wider at higher

frequencies and their center frequencies are spaced according to the Mel scale.

3.3. Main Components of the LIUM Toolkit 19

This reflects the human auditory system’s inability to distinguish between higher

frequencies that are closely spaced.

• Logarithm of filterbank energies: In the next step, we calculate the logarithm

of the energy in each filterbank region. As with region spacing, this is motivated by

the human auditory system: loudness is not perceived linearly, but in a logarithmic

fashion. Large variations in energy could lead to small perceptual changes. While

using logarithms enables us to utilize Cepstral Mean Subtraction (CMS) in a

normalization step, we do not employ it in this project.

• Discrete Cosine Transform (DCT): Finally, we calculate the DCT of the log-

filterbank energies. The energies of the filterbanks are correlated, since they are

overlapping. Including a DCT step can help decorrelate them. Diagonal covariance

matrices can be used to model the features in an HMM classifier. Another use of the

DCT is feature dimensionality reduction by dropping its higher coefficients (faster

changes). However, no such step happens in this project.

• Deltas calculation: Deltas, also known as velocity coefficients, are the first

derivatives of the MFCCs. Accordingly, delta-deltas, or acceleration coefficients, are

the second derivatives. As energies in the power spectrum of each frame change over

time, it is expected that this change will reflect additional information hidden in

the signal. If they are used, computed deltas and delta-deltas are appended to the

MFCCs to create a complete audio discriminating feature vector.

The first 3 stages of the LIUM toolkit (segmentation based on the Bayesian Information

Criterion (BIC) [19], BIC clustering and segmentation based on Viterbi decoding) use

13 MFCCs as features. The first coefficient, C0, is acting as energy. No features are

normalized via CMS or warping. Additionally, neither first nor second derivatives are

used for these stages.

3.3 Main Components of the LIUM Toolkit

With the exception of feature extraction as described in the previous section, we only give

an outline of the system introduced in [1]. The stages involved are:

3.3. Main Components of the LIUM Toolkit 20

• Generalized Likelihood Ratio (GLR) Segmentation: The audio is split into

separate segments, each assumed to have exactly one speaker. The first segmentation

pass is based on GLR with full covariance Gaussians calculated over a 5-second

sliding window. GLR measures the distance between adjacent speech segments.

When it peaks, the algorithm splits the audio into two segments at the middle of

the window.

• BIC Segmentation: A second segmentation pass fuses consecutive segments with

the same speaker. It is based on BIC distances [19] between speakers. As in the

first step, full covariance Gaussians are employed. Unlike [19], LIUM SpkDiarization

only uses the lengths ni and nj of the candidate clusters to merge as a penalty

factor. Experimentally [20, 21], this change produces better results than penalizing

the entire data length N .

• Hierarchical Agglomerative Clustering: It is evident that speech segments can

belong to the same speaker without being consecutive. This step models speakers

with full covariance Gaussians. Initially, each segment is assigned to a different

cluster. At each iteration, the two closest clusters, i and j, are merged. This is

repeated until ∆BICi,j [22] is positive.

• Viterbi Decoding: Next, a Viterbi decoding step produces a new segmentation.

Note that the features used are 12 of the MFCCs with deltas. Energy C0 is dropped.

Each cluster is modeled by a Hidden Markov Model (HMM) with one hidden state

and the HMM log-penalty set in an experimental manner. The state is in turn

modeled by a Gaussian Mixture Model (GMM) featuring 8 components and diagonal

covariance. The GMM is trained using the Expectation-Maximization algorithm

(EM), trained on the output of the previous step.

• Speech/Music/Silence Segmentation and Filtering: As before, C0 is removed.

Only 12 MFCCs and their first derivatives are employed. A second Viterbi decoding

splits segments into two distinct classes, speech/non-speech. This step utilizes 8

HMMs: 2 silence models (narrowband and wideband), 3 models featuring wideband

speech (clean, speech with noise, speech over music), 1 narrowband speech model,

1 model of jingles and 1 music model. Jingle and music models were developed to

address radio and television shows. They don’t aid in our meeting scenarios. Each

3.3. Main Components of the LIUM Toolkit 21

HMM has 1 hidden state, modeled by a GMM with 64 Gaussians. All Gaussians

have a diagonal covariance matrix. Another point of note: LIUM SpkDiarization’s

authors moved this step after speaker segmentation after they noticed that speaker

segmentation was negatively affected by the processing. Finally, segments without

speech are removed (segmentation filtering). The segment padding and the minimum

length for silence segments are both set equal to 1 MFCC window (25 ms). The

minimum speech segment length is set to 150 ms.

• Gender and Bandwidth Detection: This stage also uses 12 MFCCs alongside

deltas and no C0. It predicts gender (male or female) and bandwidth (narrowband

or wideband) for a total of 4 combinations. Therefore, a GMM is employed to

predict each corresponding class (4 GMMs total). Each GMM is pre-trained with

the ESTER dataset [12] and features a diagonal covariance and 128 Gaussians. A

label is predicted for each cluster such that the likelihood of the cluster’s features

is maximized. Additionally, features are warped with a 3-second window to fix

variations, as recommended in [23] and normalized through centering and reduction.

• Integer Linear Programming Clustering: The last stage uses 12 MFCCs with

first order derivatives and no energy. These features are augmented with information

about speaker gender and speech bandwidth from the previous stage. The clustering

method of [24] is adopted to frame the clustering as an Integer Linear Programming

problem, which is then solved. In contrast, the first version of SpkDiarization [1] used

a Universal Background Model (UBM), with clustering based on the Cross Likelihood

Ratio (CLR) and the Cross Entropy in addition to Normalized CLR (CE/NCLR).

In ILP clustering, i-vectors [25], which are low-dimensional representations of the

features that retain critical details, are utilized as a measure of cluster similarity. In

the original task that LIUM SpkDiarization addresses (radio and broadcast shows)

the number of speakers is generally unknown. After a first speaker segmentation,

each cluster is converted to an i-vector using 12 MFCCs without energy or delta

information and a GMM-UBM with 1024 components. In the following step, the

N i-vectors are normalized via an iterative process [26]. A final clustering step

attempts to simultaneously minimize the number K of resulting clusters and the

intra-cluster distribution. A complete mathematical derivation of the ILP equations

3.4. Audio Dataset 22

Figure 3.1: The complete audio diarization method of LIUM

can be found in [11].

The complete diarization process of LIUM SpkDiarization is illustrated in Figure 3.1.

3.4 Audio Dataset

3.4.1 File formats

The original dataset included multiple data streams of 4-person meetings. The audio

dataset was created from AVI files with each individual speaker. The properties of the

original video file type in the AMI Meeting Corpus were the following:

• Container - AVI (Audio Video Interleave)

• Dimensions - 352 × 288 pixels

• Codec - DivX MPEG-4 Version 4

• Framerate - 25 frames per second

• Bitrate - 155 kbps

The video files were combined with audio files to create video files with audio. The original

audio files in the AMI Meeting Corpus had the following properties:

3.4. Audio Dataset 23

• Container - WAV (Waveform Audio File)

• Codec - WAV

• Channels - Mono

• Sample rate - 16000 Hz

• Bitrate - 256 kbps

3.4.2 Audio stream selection

Our original system arranged the 4 speakers in 4 windows, one at each corner of the

screen. This was an attempt to recreate the configuration of an earlier successful broadcast

news diarization project [27]. The AMI Meeting Corpus dataset included an array of 8

microphones placed at the center of the meeting room. The orientations of the microphones

were equally spaced (0 degrees, 45 degrees, 90 degrees and so on). The audio recordings

utilized for this stage were captured from the first microphone from the array. We

speculated that one microphone would capture all speakers in the room and treated this

stream as a room microphone.

Unfortunately, while the room microphone captured all speakers adequately, we discovered

that the overlap in speech resulted in inconclusive diarization output. Moreover, the

microphone captured a lot of ambient noise in the room, which further muddied input to

the LIUM algorithm. Another possible reason for the unfavorable results is that the LIUM

framework was trained on broadcast news datasets. It is not expected to generalize to

realistic meeting scenarios. Finally, the microphone is directional. Quality from speakers

behind the microphone’s direction is lower, since it can only capture reflected sound as it

bounces around the room, instead of the original audio. We postulate that this mostly

affects higher frequencies, that are absorbed more than lower frequencies, in addition to

being reflected. Those higher frequencies are critical when it comes to speech recognition.

Note that only 1 out of 8 streams was used as a room microphone. Our experiments showed

that which microphone gets chosen doesn’t drastically change the results. Therefore, the

first microphone was chosen for simplicity. An interesting idea was mixing the streams

(linear addition) or combining them in a similar manner. This prospect was abandoned,

3.4. Audio Dataset 24

as the distance from each of the 8 microphones to each of the 4 speakers is different. Even

if we consider the room’s frequency response as linear (an assumption that isn’t far from

the truth), we would still have the nontrivial problem of lining up the 4× 8 = 32 different

delays. However, this very echolocation provides an interesting future research area.

3.4.3 Individual speaker videos

The lack of results from using room microphone audio streams indicated the need for

a new approach. We observed that the dataset had different video and audio streams

for each speaker (Section 2.1.3). Consequently, these streams could be employed to

conduct diarization separately for each speaker. The 4 resulting diarizations could then be

combined in a late fusion stage to produce the complete diarization output of the system.

This increase in pipeline modularity offers numerous benefits. Firstly, the issue of having

8 room microphones with no easy way to combine them due to speaker delays is resolved

gracefully. This comes from the insight that we can use different audio files from the

dataset that more closely match the nature of 4 close-up videos of speakers. Audio from

the personal microphone of each speaker is used instead (Section 2.1.5). Secondly, the

change permits piecewise pre-processing and post-processing of individual clips, both in

the video and in the audio modalities. This adds flexibility to the development of the

final method. Finally, the problem involving ambient room noise disappears for the most

part via a careful selection of microphones.

We shall expand further about this selection. The dataset included 2 candidate microphone

positions:

• Headset - Audio from a headset worn by a speaker

• Lapel - Audio from a lapel microphone worn by a speaker

We chose the first of those 2, speculating that headset microphones produce less noise. A

lapel microphone is more likely to pick up rustling sounds as the speaker moves, whereas

a headset microphone is closer to the speaker’s mouth and has a higher signal-to-noise

ratio. We noted that the lapel microphones might be utilized in addition or instead of the

headset microphones, with proper pre-processing to remove noise, ambient or otherwise.

3.4. Audio Dataset 25

Our first efforts focused on producing a mix of the 4 resulting headset microphones and

evaluating the performance of LIUM diarization on it. On one hand, the amounts of

ambient room noise that close microphones picked up was insignificant. On the other hand,

this did not resolve the issue of speech overlap. In particular, the headset microphones

were sensitive enough to pick up the other speakers in the room. This resulted in a

muddy headset mix of 4× 4 = 16 speakers from 4 microphones. LIUM produced mediocre

diarizations, failing to reconstruct the speakers’ identities (or even their number) correctly.

Therefore, a decision was made to utilize the microphone of each speaker separately.

Other speakers in the recording are removed via pre-processing the file with an audio

gate (Section 3.4.6). However, this approach is not without its disadvantages. Chief

among them is an increase in the complexity of the resulting pipeline. There are numerous

files to process and many parameters to fine-tune. A careful combination of manual and

automatic hyperparameter search was required to produce a working audio method.

3.4.4 Audio, video and transcription match

In order to suitably compare the audio and visual methods, the duration of the video clips

and the corresponding audio clips should match. The same is required for early fusion of

the 2 methods into an audiovisual method. An exact match isn’t required. Indeed, either

file can be longer by a few milliseconds. If the audio file is longer, then it can be trimmed.

If it is shorter, it can be padded with silence to compensate. Thus, our method ignores

such length differences.

Videos without audio in mp4 format were combined with headset audio in WAV format

using the avidemux editor. The properties of those files were defined in Section 3.4.1.

This resulted in mp4 files with the following properties:

• Container - Quicktime

• Video Dimensions - 1280 × 720 pixels

• Video Codec - H.264 (High Profile)

• Framerate - 30 frames per second

• Video Bitrate - 13758 kbps

3.4. Audio Dataset 26

• Audio Codec - MPEG-4 AAC

• Channels - Stereo

• Sample rate - 48000 Hz

• Audio Bitrate - 192 kbps

Subsequently, the videos with audio were cut to the correct duration with the Openshot

editor to create video clips with audio in mkv format. This resulted in the files with the

following properties:

• Container - Matroska

• Video Dimensions - 1280 × 720 pixels

• Video Codec - H.264 (High Profile)

• Framerate - 30 frames per second

• Video Bitrate - N/A

• Audio Codec - MPEG-4 AAC

• Channels - Stereo

• Sample rate - 48000 Hz

• Audio Bitrate - N/A

The audio from these clips was extracted using the VLC player as an offline converter.

The resulting files from this process had the following properties:

• Container - WAV (Waveform Audio File)

• Codec - WAV

• Channels - Stereo

• Sample rate - 44100 Hz

• Bitrate - 1411 kbps

After the previous steps, the audio and video clips were a temporal match. However,

careful manual observation of the resulting files revealed a different type of mismatch. The

3.4. Audio Dataset 27

audio, video and transcription files did not always correspond to the speakers indicated

by their names. This 3-way mismatch was a dataset error, not part of the problem’s

description. Thus, it was resolved by manual inspection of each clip and transcription

and manual renaming of the corresponding files.

Specifically, these mismatches were corrected:

• Video ES2002a, clip 1 - Videos 1-2-3-4→ Headsets 1-3-4-2→ Transcripts 1-3-4-2

• Video ES2002c, clip 1 - Videos 1-2-3-4→ Headsets 1-3-4-2→ Transcripts 1-3-4-2

• Video ES2002c, clip 2 - Videos 1-2-3-4→ Headsets 3-1-4-2→ Transcripts 3-1-4-2

Note that in all cases of mismatch, the transcriptions match the headset audio files. Both

of them were changed to match the speakers in the video clips, which were treated as a

reference. Another point of interest is that the speakers change their positions between

clips 1 and 2 of video ES2002c. The headset audio files and the transcriptions files don’t

change, resulting in different, yet also mismatching, corresponding video clips. This is

not noticeable above, since the speakers, as they appear in the video clips, are considered

the single source of truth. Therefore, it appears as if the headset audio clips and the

transcriptions change.

3.4.5 Transcription parsing script

Ground truth files are needed for the evaluation of our pipeline. The manual transcriptions

in the AMI Meeting Corpus were used for this purpose. A special script was created to

parse the transcriptions. The files containing the speakers’ words had 3 different kinds of

interjections:

• vocalsound

• disfmarker

• gap

Examples of vocalsound interjections include the speaker laughing or coughing. Vocalsound

interjections could appear in a segment with a single word. In addition, they could be in

the middle of a speech segment, but without a duration of their own, thus not affecting the

3.4. Audio Dataset 28

durations in the transcription. Zero-duration vocalsound interjections could also appear

at the beginning of a speech segment, also not affecting the transcriptions. Finally, 2

vocalsound interjections could appear in a row. As an example, 2 vocalsound interjections

at the start of a speech segment had the unfortunate consequence of classifying the empty

space between them as speech.

A disfmarker (discontinuity marker) interjection indicates that the utterance wasn’t

completed. It can also be used to identify a grammatically correct sentence when the

speaker’s intonation suggests that there might have been more to follow. 2 disfmarker

interjections could appear in a sequence, but never belonging to the same speaker. Words

with the disfmarker characterization had no special meaning, so they were ignored by the

parsing script. Gap interjections were also removed, since they appeared at the middle of

speech and they didn’t affect its duration. Vocalsound interjections were too complicated

to treat in an automatic fashion. Therefore, they were manually changed after careful

inspection to closely match the videos.

At this point, we should note that the topic files don’t include the speech segments in

chronological order. Furthermore, the topics include sub-topics recursively, according to

the hierarchical nature of XML files. Our transcription parser handles these situations

gracefully.

3.4.6 Pre-processing via audio gate

As alluded to in Section 3.4.3, audio clips from headset microphones are chosen because

they contain clear audio by the speaker. However, a new problem arises from this choice.

The headset microphone that belongs to a speaker picks up speech from other speakers in

the room.

This is analogous to crossfeed in a stereo audio processing system. In crossfeed, audio

from the left output is mixed back into the right channel, and audio from the right output

is mixed back into the left channel. Crossfeed in the meeting headset microphones is even

worse, since speech from each of the 4 speakers is mixed into each of the 4 microphones.

This results in a total of 4 × 4 = 16 speakers in the 4 audio clips.

In order to resolve this issue, we added a separate pre-processing module to suppress

3.4. Audio Dataset 29

crossfeed. The module consists of an audio gate. Specifically, we selected ReaGate [28], a

freely available audio processing effect plug-in. Audio gates silence audio when it falls

below a predefined threshold. We speculated that the crossfeed audio would be at a lower

volume than that of a speaker talking into the own headset microphone. Therefore, by

setting the threshold appropriately, we could remove the other speakers in the room from

the audio clip without affecting the main speaker associated with that microphone. We

experimented with 3 parameters in the gates we used:

• threshold - When the input’s amplitude falls below this level, the output drops to

0.

• attack - The time it takes from the audio falling below the threshold to the gate

silencing the audio. Note that the audio starts diminishing in amplitude immediately

after it crosses the threshold, not after the attack time is over.

• release - The time it takes for the output to recover after the input rises above the

threshold again.

After manually experimenting with various combinations of these parameters, it became

obvious that attack time can be too fast for effective diarization. In effect, an attack

time of 3 ms produces an audible distortion, as the audio goes silent almost instantly.

Accordingly, the speaker segmentation module of LIUM diarization fails to categorize the

speakers accurately. Our manual experiments included 4 other attack times:

• 10 ms

• 15 ms

• 20 ms

• 25 ms

The first 2 of the above produced equally satisfactory outcomes, with the others trailing

in accuracy. We selected 10 ms for this hyperparameter.

The release hyperparameter was left to the default setting of 100 ms. According to

manual tests, it was not as critical as attack time for the speaker segmentation step.

The threshold hyperparameter proved more challenging to configure. Among the main

3.4. Audio Dataset 30

concerns was the major difference in audio levels between videos. In particular, clips that

were created from the following videos had much lower loudness (and average amplitude)

levels than the other audio clips:

• ES2002a

• ES2002c

While lower audio levels are not by themselves troubling for the LIUM pipeline, they

make it impossible to select a common threshold for the gates that would work for all

audio clips. On one hand, setting the threshold too high would mute all audio in the quiet

clips. On the other hand, setting it too low would not prevent crossfeed in the loud clips.

We wanted our method to be effective without any assumptions about audio clip levels.

In order to achieve that, we prepended the gate module with a step that automatically

determines the ideal gate threshold for each audio clip separately. This step utilizes

polynomial regression to predict the thresholds for the gates that would result in lower

diarization error rates. Linear regression was also attempted, but proved insufficient for

robust threshold prediction. The parameters used for the polynomial regression are:

• Integrated loudness

• Loudness range

• True peak

• Maximum short-term loudness

• Maximum momentary loudness

Naturally, these predictors are not independent. Indeed, we should expect them not to

be. Clips can be quiet in the short-term as well as in their entirety. Conversely, they can

be loud both short-term and long-term. In other words, there is correlation between the

features. If required, this can be fixed with an orthogonalization step. Our tests indicated

that such a measure was not needed.

An interesting subject is whether the polynomial regression method for automated

hyperparameter search is expected to generalize for the diarization task in other settings.

We posit that it will produce accurate results, especially for other meetings in a company

3.4. Audio Dataset 31

setting. However, further research is required in order to evaluate it in other contexts,

such as broadcast news.

3.4.7 Audio diarization testing

For each audio clip in the dataset, we applied gate pre-processing with the predicted

threshold (Section 3.4.6) to remove other speakers. Then, we used LIUM diarization to

find speech (or lack thereof) for each speaker individually. The 4 predictions for each

video clip (one per speaker) were concatenated into a complete hypothesis annotation

for the clip. Finally, this annotation was compared to the manual transcription in the

dataset, which was acting as a reference annotation, to measure the diarization error rate

(Section 6.2).

Chapter 4

Visual Speaker Diarization

This chapter introduces our second diarization solution, which is based solely on video

data. First, we cover the theoretical background of the dlib library and explain how it

enables face recognition. Then, we describe our experimentally derived technique for

detecting the mouth area. Afterwards, we focus on scaling the mouth area for consistency

across frames.

In addition, we present in full detail the mathematical formulation for calculating optical

flow features from two consecutive mouth areas. This is followed by a summary of feature

post-processing. Finally, we focus on training and testing a classifier based on Support

Vector Machines.

4.1 Preliminaries

4.1.1 Convolutional neural networks

Convolutional Neural Networks (CNNs, or ConvNets) are a special class of Deep Neural

Networks (DNNs). They are dominant in the field of computer vision, with common

applications including image and video recognition, image classification and image analysis.

CNNs take their inspiration from biological processes, where the visual cortex of animals

has layers of connected neurons that only respond to a restricted area of visual stimuli.

Similarly, convolutional networks can learn the spatial hierarchies in image data through

32

4.1. Preliminaries 33

backpropagation by using multiple simple transformation components. These building

blocks include:

1. Convolution layer.

2. Activation function.

3. Pooling layer.

4. Fully-Connected (Dense) layer.

A typical Convolutional Neural Network along with its components is shown in Figure 4.1.

Figure 4.1: A typical Convolutional Neural Network architecture (Figure from [3])

The convolution layer of a CNN (Figure 4.2) includes a filter, known as the convolutional

kernel, that is usually much smaller spatially than the input. An element-wise product

between each element of the kernel and the input image is calculated at each image

location and summed to obtain the final value in the corresponding position of the output,

which is also called a feature map. Multiple kernels can be used instead to increase the

depth of the feature map.

Many convolution layers can be cascaded. Each linear convolution is passed through

a non-linear activation function (Figure 4.3). Some examples of activation functions

commonly employed in artificial neural networks are:

4.1. Preliminaries 34

Figure 4.2: Convolution operation (Figure from [3])

1. Binary step

y =

0 if x < 0

1 if x ≥ 0

(4.1)

2. Sigmoid

y =
1

1 + e−x
(4.2)

3. Identity

y = x (4.3)

4. ReLU

y =

0 if x < 0

x if x ≥ 0

(4.4)

Figure 4.3: Examples of activation functions (Figure from [3])

4.2. Dlib Face Detection 35

A pooling layer (Figure 4.4) reduces the dimensionality of the feature map through

downsampling. It simultaneously decreases the computational cost of the network and

diminishes the possibility of overfitting. Common variants of functions in this layer include

Max Pooling and Average Pooling. Note that pooling layers do not contain any learnable

parameters.

Figure 4.4: Max pooling operation (Figure from [3])

Typically, the output of the last convolution or pooling layer is flattened to a 1-dimensional

vector. Then it is connected to 1 or more cascaded fully connected layers, also known as

dense layers. In a fully connected layer, every input is connected to every output via a

learnable weight. Each dense layer is followed by a non-linear activation function, as with

convolution layers.

4.2 Dlib Face Detection

4.2.1 Dlib overview

Dlib is a C++ framework with machine learning implementations to tackle real world

problems. It is popular in both industrial and academic contexts. Dlib has many features

that make it attractive for our application. It is free and open source, capable of accurate

results and features a convenient high-level python API. An additional benefit is the ease

of finding examples using dlib on github, due to the large community around it.

4.2. Dlib Face Detection 36

4.2.2 HOG face detection

Our first attempt was based on a dlib face detector that was pre-trained via Histogram

of Oriented Gradients (HOG) [29]. The detector also employed a latent SVM classifier

(LSVM) trained via gradient descent, an image pyramid (Figure 4.5) and detection during

a sliding window. The algorithm used by dlib is an improved version [30] of the original.

It features a convolutional kernel that is applied at multiple positions and scales of the

input image to compute gradients. In addition to the "root" shape detection filter, "part"

filters can detect parts of the original shape. As an example, for a bicycle detector, each

filter might detect a wheel. The dlib solution tries to independently match each part to

the parts of the input image, then fixes the root location and finalizes the locations of the

parts relative to their root. The output of the detector is a bounding box for every face in

the image.

The HOG detector was initially chosen for its simplicity and fast detection. However,

early testing showed that this method was insufficient for detecting faces in the dataset.

Indeed, the face detection error rate was over 80% for a clip with the participant in all

10500 frames. In other words, the algorithm consistently missed a face that would be

obvious for a human to detect. This can be explained by the challenging nature of the

dataset. The realistic meeting scenarios in the AMI Corpus feature speakers that do

not face the camera directly, rotate their heads to address other speakers or follow the

conversation and, in some cases, cover part of their face with their hands. At this point,

it was evident that a different face recognition method was required in order to proceed

with region of interest (ROI) extraction.

4.2.3 CNN Face Detection

Our search for a more robust face recognition module led us to dlib’s max-margin human

detector, which is based on Max-Margin Object Detection (MMOD) [31]. It should be

noted that this iteration of MMOD utilizes CNNs instead of the original dlib MMOD

implementation with HOG followed by a linear filter. The benefits of this new method are

higher generality (no need to train multiple detectors for different poses), lower amount of

4.2. Dlib Face Detection 37

Figure 4.5: An image pyramid (Figure from [4])

required training data and higher recall than other methods (at the time of publication)

such as Face Detection with the Faster R-CNN [32].

Unlike earlier methods that trained on a subset of image windows (sub-sampling) and

thus could not optimize the entire behavior of an object recognition system, MMOD runs

over all detection windows. Moreover, it jointly minimizes missed detections and false

alarms, which leads to higher recall and higher accuracy respectively. Additionally, it

offers an elegant solution to partially overlapping object detections, which are neither

completely true detections or false alarms. Finally, MMOD is flexible enough to work

with HOG, bag-of-visual-word models or, in our case, CNNs.

Non-maximum suppression is a common practice in the object detection domain to prevent

labeling of overlapping items. MMOD defines rectangles r1 and r2 as not overlapping

when:
Area(r1 ∩ r2)
Area(r1 ∪ r2)

< 0.5. (4.5)

where

Area(r1 ∩ r2) (4.6)

is the overlapping area of r1 and r2 and

Area(r1 ∪ r2) (4.7)

is the total area. Therefore, MMOD uses an intersection-over-union metric.

4.2. Dlib Face Detection 38

Let f be a window scoring function, x an image, y a labeling and Y the set of all valid

labelings. The object detection procedure is defined as:

y∗ = arg max
y∈Y

∑
r∈y

f(x, r). (4.8)

While an algorithm for finding the f that optimally jointly minimizes the number of

false alarms and missed detections is computationally intractable, MMOD features an

optimized version of the greedy peak sorting algorithm that works well in practice.

The original Max-Margin Object Detection [31] used only linear mappings for window

scoring:

f(x, r) = 〈w, φ(x, r)〉 (4.9)

where φ extracts a feature vector from the sliding window rectangular area r in image x,

and w is a vector of parameters. We call F (x, y) the sum of scores for a set y of rectangles.

Therefore, the detection procedure becomes:

y∗ = arg max
y∈Y

F (x, y) = arg max
y∈Y

∑
r∈y

〈w, φ(x, r)〉. (4.10)

We’re trying to train a parameter vector w to minimize detection errors (false positives

and false negatives). Note that in the dlib detector we use for this thesis, a Convolutional

Neural Network is trained instead of w. For every image xi with label pair (xi, yi) ∈ X ×Y

we want the correct labeling to have a higher score than all incorrect labelings. In

mathematical terms, we are trying to maximize the occurrences of:

F (xi, yi) > max
y 6=yi

F (xi, y) (4.11)

For a set of images {x1, x2, . . . , xn} ∈ X with respective labels {y1, y2, . . . , yn} ∈ Y , the

max-margin [33] algorithm attempts to find the parameters w that make correct predictions

when presented with the training samples. The Max-Margin Objection Detection method

defines a convex optimization problem:

min
w

1

2
‖w‖2

s.t. F (xi, yi) ≥ max
y∈Y

[F (xi, y) +4(y, yi)], ∀i
(4.12)

4.2. Dlib Face Detection 39

with 4(y, yi) signifying the cost of a false labeling of y instead of the correct yi. This loss

is defined as:

4(y, yi) = Lmiss · (# of missed detections) + Lfa · (# of false alarms) (4.13)

where Lmiss and Lfa are the relative weights to control for high recall versus high precision

respectively.

For data in the real world that is noisy, not perfectly separable or contains outliers, we

prefer a soft-margin approach to the hard-margin problem formulation of (4.12). Thus,

the soft-margin formulation for Max-Margin Object Detection (MMOD) becomes:

min
w, ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. F (xi, yi) ≥ max
y∈Y

[F (xi, y) +4(y, yi)]− ξi, ∀i,

ξi ≥ 0, ∀i

(4.14)

where C controls the tradeoff between fitting the training data and maximizing the margin,

as in SVMs. Each ξi is an upper limit to the loss caused by training with the pair (xi, yi)

of example and true label. To prove this (let g(x) = maxy∈Y F (x, y))

ξi ≥ max
y∈Y

[F (xi, y) +4(y, yi)]− F (xi, yi) (4.15)

ξi ≥ [F (xi, g(xi)) +4(g(xi), yi)]− F (xi, yi) (4.16)

ξi ≥ 4(g(xi), yi) (4.17)

In the last substitution, g(xi) is defined as the element of set Y that maximizes F (xi, ·)

and therefore F (xi, g(xi))− F (xi, yi) ≥ 0.

This makes the soft-margin MMOD objective function (4.14) a convex upper bound on

the average loss per training image

C

n

n∑
i=1

4(arg max
y∈Y

F (xi, y), yi). (4.18)

4.2. Dlib Face Detection 40

When ξi is zero, the detector produces the correct result for the training example (xi, yi).

The max-margin method was not originally introduced in MMOD. It had been successfully

used in other domains [33, 34].

As mentioned in Section 4.2.2, a HOG system using MMOD as a loss function did not

achieve sufficient accuracy for our intended purpose. Since we ended up using an improved

implementation of MMOD with the HOG feature extraction replaced with a CNN [35],

we will not reproduce the mathematical expressions for solving the original MMOD

optimization problem. They can be found in [31].

4.2.4 CNN face detection accuracy

At this junction, we will examine the accuracy of the dlib MMOD implementation with a

CNN feature extractor in our test data. Empirically, it produces excellent results (Figure

4.6a). In 1 of the 4 video clips we tested, the face recognition algorithm had only 7

missed detections in 10500 frames. Upon closer examination, it was revealed that all of

those cases involved the speaker hiding most of their face with their hand (Figure 4.6c).

Surprisingly, the face detector worked in slightly less pathological cases where the speaker

was still covering part of their face with their hand (Figure 4.6b).

In another clip, the algorithm only missed 1 out of 10500 frames. Finally, tests for the

last 2 speakers exhibited perfect recall.

(a) Normal detection (b) Detection with occlusion (c) Missed detection

Figure 4.6: Example frames with CNN face recognition

Evidently, the face detector was excellent for our needs. However, before we could proceed

to feature pre-processing we had to overcome the extreme performance demands of this

algorithm in practice.

4.2. Dlib Face Detection 41

4.2.5 CNN face detection CPU performance

While the CNN method was very accurate (Section 4.2.4), it was also rather demanding

in computing resources. The initial tests were performed using the CPU of a standard

consumer desktop PC that was relatively old.

According to our tests, one frame could be processed in approximately 7 seconds. The

video clip framerate was 30 frames per second. Therefore, it would take 30 ∗ 7 = 210

seconds = 3 minutes and 30 seconds to process a single second of video. The duration of

each video clip tested is 3 minutes and 20 seconds = 200 seconds. Simple calculations

reveal that it would take 200 ∗ 210 = 42000 seconds = 700 minutes = 11.667 hours

of computation to process only one video clip. Hence, a different course of action was

required.

4.2.6 Cloud deployment

In the previous section we calculated the time to process a single video clip. It was evident

that an iteration time of over 11.5 hours would have been untenable for developing the

face recognition part of our solution. An additional requirement was being able to process

multiple video clips, not exclusively the one we tested on. Thus, we began exploring

alternatives to using our desktop CPU.

One option would have been looking into workstation-grade GPUs. We decided not to

pursue that avenue because it had different tradeoffs than our needs. While buying a

desktop GPU would enable faster computation time, it was difficult to justify the cost

for a one-off project. On the other hand, using university hardware meant working with

reservations around the timeline of other experiments, sacrificing flexibility.

The solution we arrived at when looking for higher hardware performance as well as

flexibility was deploying our algorithm to a cloud computing platform. In particular,

we chose Google Colaboratory [36] (Google Colab in short), a platform for students,

data scientists and AI researchers. Importantly, it offered a free tier with GPUs that

were sufficiently performant for our needs. Another convenience was that many libraries,

including all of the ones we were using, were already installed in Colaboratory by default.

4.3. ROI Selection 42

This enabled us to take our existing python code and run it directly on the cloud platform

without changing anything.

Since our training and testing data involved videos, we had to find a way to load them on

the cloud platform. To that end, we transferred the local data to a Google Drive account.

Then, using the Google Drive integration in Google Colab, we imported the data so that

our scripts could use it.

The result was a marked improvement in speed. The 10500-frame video clip that would

take over 11.5 hours to process locally could now processed in the cloud in only 7 minutes.

Effectively, this represented a 100-fold speedup. With this new iteration time, we could

proceed to feature pre-processing.

From the above, we conclude that older GPU hardware or even CPU hardware can be

used to run simple machine learning models. On the other hand, state-of-the-art face

detection models that depend on deep neural networks can achieve dramatic speedups by

moving to modern hardware designed for them. Finally, we note that while it was possible

to reserve even more computing resources, it would have exceeded the capabilities of the

free tier in Google Colab. A research team should be mindful of costs and evaluate all

options carefully.

4.3 ROI Selection

The dlib CNN face detector (Section 4.2.3) finds human faces in a frame and returns

bounding boxes for each face. In our meeting dataset, each participant has their own face

cameras, so the detector finds at most one person per frame. This represents an advantage

that might not be immediately obvious. Normally, in an image containing multiple faces,

we would have to implement a face tracking algorithm to ensure that the face id of the

same person does not switch from one frame to the next. Conversely, we can assume one

face id per video clip in our meetings.

We chose to extract the useful information about speech from an area (known as ROI,

or region of interest) around the mouth of each face in every frame. This is a common

practice in the field of visual speaker diarization [18].

4.4. Optical Flow 43

Note that dlib includes a pose estimator based on the Ensemble of Regression Trees

methodology [37] and trained on the iBUG 300 face landmark dataset [38]. This estimator

matches the pose of a face in a bounding box to 68 facial landmarks. However, we did not

utilize this method to locate the mouth area, as it was designed to work with the HOG

face detector (Section 4.2.2) and not the CNN face detector (Section 4.2.3) we employed

in the preceding stage.

In order to find the mouth of each face, we used manual placement. The number of pixels

selected is potentially different in every frame, because it is a function of the size of the

bounding box in each direction (vertically and horizontally). To alleviate this, the ROI

is rescaled to the same size (32 × 32 pixels) and normalized. The custom orthogonal

mouth areas are designed to be larger vertically than horizontally, since we intuitively

expect vertical mouth motion to have higher correlation with speech than other random

movement. According to our experiments, this assumption was proven to be correct.

4.4 Optical Flow

After extracting the mouth area (ROI), we needed to find a way to measure movement

within it, which would reveal the presence of speech. A natural solution arrived in the form

of optical flow [39] techniques. These enable estimating the movement of an object from

its pixel displacement in two consecutive frames. Crucially, no additional spatiotemporal

information is required.

The neighborhood of a pixel is approximated via polynomial expansion. The local signal

model in the form of a quadratic polynomial, expressed in a local coordinate system, is:

f(x) ∼ xTAx + bTx + c, (4.19)

where A is a matrix, b is a vector, and c is scalar. The coefficients of the model are

estimated by fitting a least squares model to the neighborhood signal. That model features

two weighting parameters, certainty and applicability, which are the same as in normalized

convolution [40]. Certainty refers to signals in the neighborhood and should be set to zero

outside the image. Applicability selects the relative importance of pixels based on where

4.4. Optical Flow 44

they are in the neighborhood. Generally, we want to bias in favor of the center pixel

and have the weights decrease as the radius grows, with the width of the applicability

controlling the size of the receptive field.

We assume the function in a neighborhood is approximated by a polynomial and examine

what happens when it undergoes a displacement d. Afterwards, we can solve for the global

displacement d. However, this global translation is an unrealistic scenario when applying

the algorithm to real signals. Therefore, we replace the global polynomial with a local

variant. Then, we attempt to solve a polynomial expansion of two images, considering the

approximation:

A(x) =
A1(x) + A2(x)

2
, (4.20)

where A1(x) refers to the matrix of the polynomial of the first image and A2(x) to the

matrix of the polynomial of the second image. Additionally, we can set:

∆b(x) = −1

2
(b2(x)− b1(x)) (4.21)

to obtain the primary constraint:

A(x)d(x) = ∆b(x). (4.22)

Note that the global displacement is also replaced by a spatially varying displacement

field.

The error due to noise from computing the quadratic polynomial in a pointwise manner is

too large. To fix that, we assume that in every neighborhood the displacement field is

only slowly varying. This means that we can integrate the information about each pixel

over a neighborhood. Then, we minimize the weighted square error.

We can increase robustness through parameterizing the displacement field according to

4.4. Optical Flow 45

the eight-parameter motion model in two dimensions:

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2.

(4.23)

Or, in matrix notation:

d = Sp, (4.24)

S =

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

 , (4.25)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
. (4.26)

The weighted square error is:

∑
i

wi

∥∥∥AiSip−∆bi

∥∥∥2, (4.27)

where i iterates over the neighborhood pixels. Minimization of that error leads to the

solution:

p = (
∑
i

wiST
i A

T
i AiSi)

−1
∑
i

wiST
i A

T
i ∆bi. (4.28)

Both STATAS and STAT∆bi can be computed at each point and then averaged according

to the weights w.

4.5. SVM Visual Diarization 46

Figure 4.7: The optical flow with SVM visual diarization method

4.5 SVM Visual Diarization

4.5.1 Speech detection features

We begin by detecting the faces of each participant in each frame and selecting the

mouth area via manual placement (Section 4.3) of the region of interest (ROI). As already

mentioned, these mouth regions have been resized and normalized into a 32× 32 image

for consistency. Then, we calculate the displacement of every pixel in the mouth region

(ROI). The displacement of each pixel is a complex number, having both magnitude and

orientation. All the displacements together constitute the optical flow features used as

input for the algorithm. Finally, we include a dimensionality reduction step to downsample

the optical flow features down to 16× 16 = 256. This is achieved via an average pooling

layer that calculates the average of four pixels in every 2× 2 square neighborhood.

The complete optical flow with SVM diarization method is illustrated in Figure 4.7.

4.5.2 Speech detection SVM training

These optical flow features were used to train an SVM classifier. In total, about 6000

reduced feature vectors from face cameras with conversation in meetings were used to

train the classifier. In particular, each of the following 3 videos contributed about 2000

training examples to the training procedure:

• ES2002c, 2nd clip (5 minutes) - 2 speaker videos

• IS1009b, 1st clip (6 minutes) - 1 speaker video

4.5. SVM Visual Diarization 47

In this thesis, the Radial-Basis Function network (RBF) kernel was employed to train the

SVM with python’s sklearn library. The target labels for each frame were:

0, if not speaking

1, if speaking

4.5.3 Speech detection SVM testing

There is one potential speaker in each video. For each person and the corresponding

selected ROI (Section 4.3) in every frame, we used the SVM model to reach a binary

prediction between speech/non-speech. Afterwards, the predictions for each person

separately were summed within a window of N frames. The person with the maximum

value in a window was designated the speaker of that window. The target labels were

chosen to be the same that were used during the training phase. The following 4 videos

(one for each individual speaker) were used for testing our visual diarization method:

• ES2002c, 1st clip (3 minutes) - 4 speaker videos

We ensured that every participant of the meeting speaks in the test clip. Then, we created

the hypothesis annotations with binary labels from the clips. The hypothesis annotations

were then compared to the reference annotation from the dataset (see Section 3.4.5) to

measure the diarization error rate (DER). The results appear in Section 6.3.

Chapter 5

Audio-Visual Speaker Diarization

Our audio-visual solution to the diarization task is chiefly based on the visual only mode

and relies on improving it though the addition of audio information. In this chapter,

we begin by covering the motivation for audio-visual fusion. Afterwards, we introduce

the framework we employed for audio analysis and expand on the reasons for choosing

it. We continue by explaining audio feature extraction in detail. In particular, we focus

on the problem of synchronization between the audio and video streams, which run at

different rates. Finally, we elucidate training and testing the proposed classifier with the

augmented information.

5.1 Motivation for Audio-Visual Fusion

Throughout our measurements, we observed that the visual modality achieved good results.

However, it missed shorter speech segments, including interjections. In contrast, the audio

method could locate speakers even when face detection failed. On the other hand, it was

incapable of discovering the correct number of speakers in some extreme cases. In order

to combine the strengths of both the modalities and address their respective weaknesses,

we opted to add audio information to the visual implementation.

48

5.2. Custom MFCC Feature Extraction 49

5.2 Custom MFCC Feature Extraction

5.2.1 Reasoning for custom MFCC computation

In theory, we could have utilized the MFCC computation stage of LIUM SpkDiarization

that employs the open-source Sphinx 4 toolkit (see Section 3.2.1). SpkDiarization itself

is open-source and designed in a modular fashion to encourage exploration of different

diarization architectures. Unfortunately, it is implemented in the Java programming

language. In order to keep our code base consistent, as well as have complete control of

the diarization pipeline, we decided to write a custom python script that extracts the

MFCC features (Section 3.2.3) from the audio dataset. To that end, we employed the

widely used librosa python package for music and audio analysis.

5.2.2 Librosa

In our search for MFCC extraction libraries, we came across librosa, a python collection

of submodules targeting a variety of interrelated audio tasks:

• Tempo and beat detection

• Harmonic-percussive source separation (HPSS) and generic spectrogram

decomposition

• Visualization

• Audio processing effects (e.g. pitch shifting, time stretching)

• Feature extraction (including MFCC)

• Filter-bank generation

• Onset detection and onset strength computation

• Structural segmentation

• Sequential modeling

• Additional utilities (e.g. normalization, padding)

5.3. Audio and Video Synchronization 50

Librosa presents numerous advantages for our use case. These include a low barrier to entry

for scientific researchers, standardized parameters and interfaces, backwards compatibility

with reference implementations, subscription to modern development practices around

testing and documentation as well as modularity [41]. The last feature was especially

important for us, since we wanted to use only parts of the framework. In more practical

considerations, librosa is also free and open-source.

For the most part, we employed the default MFCC extractor configuration. We had to

tune the hop_length parameter during the synchronization of the audio and video streams

(Section 5.3). In the name of reproducibility, we should also mention that version 0.8.0

[42] of librosa was used in our python script.

5.3 Audio and Video Synchronization

After extracting the MFCC audio features from the dataset, we had to select a process to

combine them with the existing visual features. In the literature, we found an algorithm

that duplicated video features to match every audio window inside a longer video window

[43]. Following that, both the audio and video models of a classifier are jointly optimized.

Another paper [44] included two ways of performing the audio-visual fusion: a late fusion

approach that combined the results of two separately trained models and an early fusion

method that combined the parameter training to maximize the global performance of the

system.

In our system, we considered that MFCCs are extracted from a window of audio samples.

As a result, there should be overlap between consecutive windows, with the features

strongly correlating to the center of each window. We opted for matching an audio window

to every video difference frame.

Note that we refer to the optical flow difference features (Section 4.5.1) between two

consecutive video frames. Evidently, N + 1 actual video frames are required to produce

N difference frames. This implementation detail doesn’t affect the following calculations.

The audio files we were working with featured a sample rate of 44100 Hz, while the video

frame rate was 30 frames per second. This is covered in detail in Section 3.4.4. We set

5.3. Audio and Video Synchronization 51

Figure 5.1: The synchronization process between audio and video streams

the hop_size parameter to 44100/(30× 2) = 735 samples, exactly half the length of each

MFCC sliding window, 1470 samples.

There is one final complication to address. There are frames where the detector doesn’t

find any faces. Since there are at most 7 missed detections in a test clip of multiple

thousands of video frames (see Section 4.2.4 for more details), the error will not be majorly

affected. We chose to fill any missing optical flow features via zero-padding.

The synchronization process can be seen in Figure 5.1.

The complete audio-visual diarization solution is illustrated in Figure 5.2.

5.4. SVM Audio-Visual Diarization 52

Figure 5.2: Audio-visual fusion using MFCC information

5.4 SVM Audio-Visual Diarization

5.4.1 Speech detection features

The first step in feature extraction is detecting the participant faces and locating the

mouth of each person (see Section 4.3). Next, the displacement of each pixel in the resized

32× 32 mouth region (ROI) is computed as magnitude and orientation. Following that,

an average pooling stage reduces the dimensionality of the optical flow features to 16× 16.

Until this point, all steps have been equivalent to the visual method (Section 4.5.1). Now,

we choose to add zero padding to the visual features which is key to the synchronization

of the two different modalities (audio and video). Indeed, we cannot have detection gaps

in only one of the streams. Finally, we augment the optical flow features by concatenating

them with the MFCC features obtained via librosa.

5.4.2 Speech detection SVM training

These concatenated audio-visual vectors were used as the training examples for an SVM

classifier. In total, about 42000 combined feature vectors from face cameras and headset

microphones in company meetings were used to train the classifier. In particular, each of

these 4 videos contributed about 10500 training examples to the training routine:

• ES2002c, 2nd clip (5 minutes) - 4 speaker videos

5.4. SVM Audio-Visual Diarization 53

As in the visual-only case (Section 4.5.2), an RBF kernel was chosen to train the SVM

with sklearn. The binary target labels were also the same.

5.4.3 Speech detection SVM testing

In order to test the complete audio-visual algorithm, we used the following 4 videos (one

for each individual speaker):

• ES2002c, 1st clip (3 minutes) - 4 speaker videos

All participants of the meeting speak at least once during the test clip. In the audio-visual

fusion stage, we augmented the video information with audio features (as seen in Figure

5.2). Afterwards, we used the classifier on the test clips, obtaining binary speech/non-

speech labels as output. Next, we created hypothesis annotations from those predicted

labels. Finally, we compared the hypothesis annotations to the reference (manually created)

annotations from the AMI Meeting Corpus dataset. We observed that audio-visual fusion

results in an improved DER, as well greater temporal accuracy (Section 6.4).

Chapter 6

Evaluation

6.1 Diarization Error Rate

The dataset derived from the AMI Meeting Corpus, as described in chapter 2, was used

for the purpose of evaluating of the speaker diarization systems we developed. In order to

measure the error rate of our methods, we chose the Diarization Error Rate (DER) [45]

metric, a very common measure of diarization tool accuracy that is defined as follows:

DER =
false alarm + missed detection + confusion

total
, (6.1)

where the equation’s terms have the following definitions:

• false alarm - The duration when a person was labeled as speaker, but wasn’t

speaking in these frames.

• missed detection - The duration when speech exists but the diarization system

labeled it as non-speech.

• confusion - The duration when the diarization system labeled a speaker incorrectly.

54

6.2. Audio-Only Evaluation 55

6.2 Audio-Only Evaluation

During the evaluation of our audio method featuring the LIUM SpkDiarization framework,

we first calculated the DER of each speaker separately. Each audio file included one of

the 4 speakers in the test clip, the 1st clip of the ES2002c video. Note that video

and audio from this same span of the dataset was selected for all methods we developed.

This enabled us to compare their accuracy in a fair manner.

In addition, we created a total hypothesis annotation by combining the audio hypothesis

annotations for all 4 speakers (Section 3.4.7). Then, we compared the audio hypothesis

annotations to the corresponding reference annotations, both for each speaker separately

and in total. The python DiarizationErrorRate function was employed to calculate the

DER metric. The following table 6.1 contains a summary of the results of the audio-only

approach:

audio DER (%)
speaker 1 37
speaker 2 25
speaker 3 71
speaker 4 70

total 33

Table 6.1: Results of audio-only diarization.

At first, the algorithm seems to mislabel the speech segments of the 3rd and 4th speakers.

Upon further examination, we found that those speakers rarely speak (other than

interjections) during the 3 minutes of the test clip. As a consequence, a single false

alarm or missed detection can cause the duration-based error percentage to explode. Our

methodology is relatively stable when it comes to the 1st and 2nd speaker, who each have

greater duration speech segments. The total DER, which is duration-weighted and not a

simple average, confirms this.

Still, performance of the LIUM method isn’t perfect. This can be partly attributed to the

challenging nature of the dataset and its realistic interruptions. Another reason for the

mistakes is that the LIUM SpkDiarization machine learning models have been pre-trained

on broadcast news. Considering that diarization in company meetings is not their intended

use case, they perform reasonably in that task.

6.3. Visual-Only Evaluation 56

It must be pointed out that overlapping speech segments from different speakers should

also be discovered by an ideal algorithm. In our case, however, LIUM SpkDiarization

does not include that capability. As a result, the DER is expected to be at least equal

to the duration of the overlapping segments. This can only be prevented by choosing an

alternative method. In practice, meetings only include small amounts of overlap, mainly

centered around interjections. As the typical duration of overlapping speech is a few

seconds, it has little effect on overall results.

Specifically for our test clip, only one instance of nontrivial overlap exists, and that is

arguably due to labelling error. In particular, 3 different 1-second interjections in 15

seconds of the manual reference annotation are denoted as overlapping speech for the

entire 15-second segment. This manifests as increased error in our measurements.

6.3 Visual-Only Evaluation

In order to measure the Diarization Error Rate (DER), we first created 4 hypothesis

annotations, one from each video, through our optical flow SVM solution. We should

remark that every video featured a single speaker. Then, we concatenated the 4 hypothesis

annotations into a total hypothesis annotation for the test video clip, the 1st clip of

the ES2002c video (Section 4.5.3). Correspondingly, we wrote a python script to

compile a 4-person reference annotation for the same clip utilising information from the

meeting dataset (Section 2.4). Finally, we compared the total hypothesis annotation to

the reference annotation for the clip.

We chose to evaluate the optical flow method featuring an SVM model with the DER

metric, computed via the DiarizationErrorRate python function. For better evaluation

of the system accuracy, we decided to measure the DER for five different window sizes.

The size N of the windows, measured in frames, was 200, 250, 300, 350 and 400. These

windows correspond to 6.66, 8.33, 10, 11.6 and 13.33 seconds respectively, at the clip’s

stated framerate of 30 frames per second.

In table 6.2 we can see the DER results for the 5 different window lengths.

We conclude that the 350-frame window outperforms the other four cases (N=200, N=250,

6.4. Audio-Visual Evaluation 57

Window Length 4-speaker DER (%)
200 35.83
250 29.13
300 28.30
350 25.21
400 29.81

Table 6.2: Results of visual-only diarization.

N=300, N=400). This means that the optical flow method cannot easily distinguish

between the rapid changes of active speaker in a realistic meeting environment. Indeed,

even humans might find the task of detecting speech from image frames difficult.

In constrast, raising the window length allows the algorithm to correctly discover longer

passages of contiguous speech (∼20 seconds) by a single speaker. As expected, this only

works up to a point. The largest, 400-frame window leads to labeling failure, as it drives

the algorithm to examine very large segments (∼13 seconds per segment). Therefore,

it lacks the granularity required to correctly estimate speech durations when speakers

change.

6.4 Audio-Visual Evaluation

In order to evaluate the complete audio-visual diarization solution, we measured the

4-speaker Diarization Error Rate. For comparison purposes, we used the same test clip as

in the audio-only and visual-only approaches, the 1st clip of the ES2002c video. As

before, we created 4 hypothesis annotations from the output of our system. Then, we

assembled them into one hypothesis annotation for the entire clip. Lastly, we compared

the total hypothesis annotation to the reference annotations from the transcriptions in

the dataset.

The python DiarizationErrorRate function was employed to compute the DER metric. For

a more accurate representation of the performance of our system, we chose to benchmark

five different window sizes. These include 50, 100, 150, 200 and 250 frames. The five

windows correspond to 1.66, 3.33, 5, 6.66 and 8.33 seconds respectively, at a clip framerate

of 30 frames per second. Observe that some of the window sizes N in the audio-visual

method are different than those employed for the visual method (Section 6.3).

6.5. Performance Concerns 58

This new method augmented the information from the visual-only algorithm with

additional MFCC information. The following table 6.3 covers the DER results for the 5

different window lengths:

Window Length 4-speaker DER (%)
50 26.98
100 23.12
150 23.07
200 25.83
250 26.68

Table 6.3: Results of audio-visual diarization.

We can observe a marked improvement in two distinct directions. First, the Diarization

Error Rate is better than in the visual-only evaluation, both overall and in the best

possible case. Indeed, the worst error in the audio-visual solution is comparable to the

best error in the visual method. Second, the diarization results happen over a smaller

MFCC window. This implies an improvement in temporal accuracy, with the best case

corresponding to classification of 5-second segments, instead of 11.6 in the visual case.

6.5 Performance Concerns

Evaluating the computational performance of all 3 approaches (audio, visual and audio-

visual), none can be considered online (or realtime) algorithms. The first is based on

the clustering sections of LIUM SpkDiarization, which require the entire audio clip to

be present in order to function. The latter two have a bottleneck in the face detector

that leverages the free tier in Google Colab (Section 4.2.6). The face detector runs at

an approximate 0.5×realtime rate. We assume, but have not tested, that more modern

hardware can achieve realtime detection.

Chapter 7

Conclusion and Future Work

In this thesis we developed a complete audio-visual speaker diarization solution for

meetings with many participants.

We started by examining the effects of using each modality separately. In the audio-only

approach, we employed the LIUM SpkDiarization toolkit. This features a complete audio

diarization pipeline. Its stages include feature extraction, audio segmentation, speaker

clustering and a final ILP clustering that enables diarization. In the video-only diarization

system, we explored a different system, leveraging cloud resources for faster iteration. It

utilizes the dlib face recognition library and selects the mouth area as region of interest.

Then, it uses an optical flow technique to extract the features for an SVM classifier.

Afterwards, we combined the audio and visual modalities to create an audio-visual

approach. The visual method was extended with MFCC features to aid the detection of

small speech segments. That information was recovered from the audio via a custom script

and then synchronized to the video frames, with special consideration for overlapping

MFCC windows.

We measured the accuracy of the system via the diarization error rate (DER) metric.

Comparison of our methods leads to the conclusion that the audio-visual fusion performs

better than using audio or video information separately.

A possible future extension for this system is augmenting the diarization process with

location information. This can be discovered from the microphone array streams already

present in the AMI corpus. There is additional room for improvement by exploring recent

59

60

advances in neural network structures. In particular, Recurrent Neural Networks (RNNs)

is an approach that has led to very good performance in the speaker diarization task in

the literature, especially in combination with CNNs.

Another idea is taking speech overlap into consideration. Neither our system nor LIUM

SpkDiarization have this capability. However, a more general diarization solution will be

expected to deal with multiple concurrent speakers. Finally, we could explore matching

the algorithm to the nature of the meeting diarization task. In particular, our current

system struggles with some common events, particularly interjections. Special handling of

these cases could potentially improve results.

Bibliography

[1] S. Meignier and T. Merlin, “LIUM spkdiarization: an open source toolkit for

diarization,” in Proc. CMU SPUD Workshop, 2010.

[2] The AMI corpus [online] available at: http://groups.inf.ed.ac.uk/ami/corpus/.

[3] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural

networks: an overview and application in radiology,” Insights into Imaging, vol. 9,

2018.

[4] V. J. Hodge, G. Hollier, J. Austin, and J. Eakins, “Identifying perceptual structures

in trademark images,” in Proceedings of the Fifth IASTED International Conference

on Signal Processing, Pattern Recognition and Applications, ser. SPPRA ’08. USA:

ACTA Press, 2008, p. 81–86.

[5] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diarization system,” in Proc.

Multimodal Technologies for Perception of Humans, 2008, pp. 509–519.

[6] M. Bendris, D. Charlet, and G. Chollet, “Lip activity detection for talking faces

classification in TV-content,” in Proc. of International Conference on Machine Vision,

2010, pp. 187–190.

[7] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models

- their training and application,” Comput. Vis. Image Underst., vol. 61, no. 1, pp.

38–59, 1995.

[8] G. Garau, A. Dielmann, and H. Bourlard, “Audio-visual synchronisation for speaker

diarisation,” in Proc. INTERSPEECH, 2010.

[9] F. Vallet, S. Essid, and J. Carrive, “A multimodal approach to speaker diarization on

TV talk-shows,” IEEE Transactions on Multimedia, vol. 15, no. 3, pp. 509–520, 2013.

61

http://groups.inf.ed.ac.uk/ami/corpus/

Bibliography 62

[10] H. Vajaria, T. Islam, S. Sarkar, R. Sankar, and R. Kasturi, “Audio segmentation and

speaker localization in meeting videos,” in Proc. 18th International Conference on

Pattern Recognition, 2006, pp. 1150–1153.

[11] M. Rouvier, G. Dupuy, P. Gay, E. el Khoury, T. Merlin, and S. Meignier,

“An open-source state-of-the-art toolbox for broadcast news diarization,” in Proc.

INTERSPEECH, 2013.

[12] S. Galliano, G. Gravier, and L. Chaubard, “The ESTER 2 evaluation campaign for

the rich transcription of French radio broadcasts,” in Proc. INTERSPEECH, 2009,

pp. 2583–2586.

[13] D. Reynolds, E. Singer, B. Carlson, G. O’Leary, J. McLaughlin, and M. Zissman,

“Blind clustering of speech utterances based on speaker and language characteristics.”

in Proc. of the 5th International Conference on Spoken Language Processing, 1998.

[14] V. B. Le, O. Mella, and D. Fohr, “Speaker diarization using normalized cross likelihood

ratio,” in Proc. INTERSPEECH, 2007, pp. 1869–1872.

[15] P. Deléglise, Y. Estève, S. Meignier, and T. Merlin, “Improvements to the LIUM

French asr system based on CMU Sphinx: what helps to significantly reduce the

word error rate?” in Proc. INTERSPEECH, 2009.

[16] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development, 1st ed. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 2001.

[17] S. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, 1980.

[18] G. Potamianos, E. Marcheret, Y. Mroueh, V. Goel, A. Koumbaroulis,

A. Vartholomaios, and S. Thermos, “Audio and visual modality combination in speech

processing applications,” in The Handbook of Multimodal-Multisensor Interfaces:

Foundations, User Modeling, and Common Modality Combinations - Volume 1,

S. Oviatt, B. Schuller, P. R. Cohen, D. Sonntag, G. Potamianos, and A. Krüger, Eds.

Association for Computing Machinery and Morgan & Claypool, 2017, pp. 489–543.

Bibliography 63

[19] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environment and channel change

detection and clustering via the Bayesian information criterion,” in Proc. DARPA

Broadcast News Transcription and Understanding Workshop, 1998, pp. 127–132.

[20] C. Barras, X. Zhu, S. Meignier, and J. L. Gauvain, “Multistage speaker diarization of

broadcast news,” Trans. Audio, Speech and Lang. Proc., vol. 14, no. 5, pp. 1505–1512,

2006.

[21] S. Tranter and D. A. Reynolds, “Speaker diarisation for broadcast news,” in Proc.

Odyssey Speaker and Language Recognition Workshop, 2004, pp. 337–344.

[22] T. Stafylakis, G. Tzimiropoulos, V. Katsouros, and G. Carayannis, “A new penalty

term for the BIC with respect to speaker diarization,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing, 2010, pp. 4978–4981.

[23] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verification,” in

IEEE Odyssey: The Speaker and Language Recognition Workshop, 2001, pp. 213–218.

[24] M. Rouvier and S. Meignier, “A global optimization framework for speaker diarization,”

in Proc. Odyssey Workshop, 2012.

[25] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor

analysis for speaker verification,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 19, no. 4, pp. 788–798, 2011.

[26] P.-M. Bousquet, M. Driss, and J.-F. Bonastre, “Intersession compensation and

scoring methods in the i-vectors space for speaker recognition,” in Proc. International

Conference on Speech Communication and Technology, 2011, pp. 485–488.

[27] C. Vossos, “Audio visual speaker diarization in broadcast news,” Diploma Thesis,

University of Thessaly, Volos, Greece, 2019.

[28] REAPER [online] available at: https://www.reaper.fm/reaplugs/.

[29] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), vol. 1, 2005, pp. 886–893.

[30] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection

https://www.reaper.fm/reaplugs/

Bibliography 64

with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 32, no. 9, pp. 1627–1645, 2010.

[31] D. E. King, “Max-margin object detection,” CoRR, vol. abs/1502.00046, 2015.

[Online]. Available: http://arxiv.org/abs/1502.00046

[32] H. Jiang and E. Learned-Miller, “Face detection with the faster R-CNN,” in Proc.

12th IEEE International Conference on Automatic Face & Gesture Recognition (FG

2017), 2017, pp. 650–657.

[33] T. Joachims, T. Hofmann, Y. Yue, and C.-N. Yu, “Predicting structured objects with

support vector machines,” Commun. ACM, vol. 52, pp. 97–104, 11 2009.

[34] Y. Altun, I. Tsochantaridis, and T. Hofmann, “Hidden Markov support vector

machines,” in Proc. Twentieth International Conference on Machine Learning, vol. 1,

2003.

[35] DLib [online] available at: http://blog.dlib.net/2016/10/

easily-create-high-quality-object.html.

[36] Google Colaboratory [online] available at: https://colab.research.google.com.

[37] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of

regression trees,” in Proc. of the 2014 IEEE Conference on Computer Vision and

Pattern Recognition, 2014, pp. 1867–1874.

[38] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 faces

in-the-wild challenge: Database and results,” Image and Vision Computing (IMAVIS),

2016.

[39] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in

Proc. Image Analysis, J. Bigun and T. Gustavsson, Eds. Berlin, Heidelberg: Springer,

2003, pp. 363–370.

[40] H. Knutsson and C.-F. Westin, “Normalized and differential convolution: methods

for interpolation and filtering of incomplete and uncertain data,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1993.

[41] Brian McFee, Colin Raffel, Dawen Liang, Daniel P.W. Ellis, Matt McVicar, Eric

http://arxiv.org/abs/1502.00046
http://blog.dlib.net/2016/10/easily-create-high-quality-object.html
http://blog.dlib.net/2016/10/easily-create-high-quality-object.html
https://colab.research.google.com

Bibliography 65

Battenberg, and Oriol Nieto, “librosa: Audio and Music Signal Analysis in Python,”

in Proceedings of the 14th Python in Science Conference, Kathryn Huff and James

Bergstra, Eds., 2015, pp. 18 – 24.

[42] B. McFee, V. Lostanlen, A. Metsai, M. McVicar, S. Balke, C. Thomé, C. Raffel,

F. Zalkow, A. Malek, Dana, K. Lee, O. Nieto, J. Mason, D. Ellis, E. Battenberg,

S. Seyfarth, R. Yamamoto, K. Choi, V. Morozov, J. Moore, R. Bittner,

S. Hidaka, Z. Wei, nullmightybofo, D. Hereñú, F.-R. Stöter, P. Friesch, A. Weiss,

M. Vollrath, and T. Kim, “librosa/librosa: 0.8.0,” Jul. 2020. [Online]. Available:

https://doi.org/10.5281/zenodo.3955228

[43] G. Friedland, C. Yeo, and H. Hung, “Dialocalization: Acoustic speaker diarization

and visual localization as joint optimization problem,” ACM Trans. Multim. Comput.

Commun. Appl., vol. 6, pp. 27:1–27:18, 2010.

[44] P. Ercolessi, C. Senac, and P. Joly, “Segmenting TV series into scenes using speaker

diarization,” in Proc. International Workshop on Image Analysis for Multimedia

Interactive Services, 2011.

[45] H. Bredin, “pyannote.metrics: a toolkit for reproducible evaluation, diagnostic, and

error analysis of speaker diarization systems,” in Proc. Interspeech, 2017, pp. 3587–

3591.

https://doi.org/10.5281/zenodo.3955228

	Introduction
	The Speaker Diarization Task
	Thesis Contribution
	Related Work
	Thesis Overview

	Dataset
	Dataset Description
	Overview
	Meeting description
	Streams and additional files
	Transcriptions
	Stream and file selection
	Clip selection
	Video scenarios
	Additional cameras for each scenario

	Transcription Files
	Ground Truth
	Reference Annotations

	Audio Speaker Diarization
	LIUM Speaker Diarization Toolkit
	MFCC Features Extraction
	Sphinx 4 MFCC module
	Human voice properties
	MFCC computation steps

	Main Components of the LIUM Toolkit
	Audio Dataset
	File formats
	Audio stream selection
	Individual speaker videos
	Audio, video and transcription match
	Transcription parsing script
	Pre-processing via audio gate
	Audio diarization testing

	Visual Speaker Diarization
	Preliminaries
	Convolutional neural networks

	Dlib Face Detection
	Dlib overview
	HOG face detection
	CNN Face Detection
	CNN face detection accuracy
	CNN face detection CPU performance
	Cloud deployment

	ROI Selection
	Optical Flow
	SVM Visual Diarization
	Speech detection features
	Speech detection SVM training
	Speech detection SVM testing

	Audio-Visual Speaker Diarization
	Motivation for Audio-Visual Fusion
	Custom MFCC Feature Extraction
	Reasoning for custom MFCC computation
	Librosa

	Audio and Video Synchronization
	SVM Audio-Visual Diarization
	Speech detection features
	Speech detection SVM training
	Speech detection SVM testing

	Evaluation
	Diarization Error Rate
	Audio-Only Evaluation
	Visual-Only Evaluation
	Audio-Visual Evaluation
	Performance Concerns

	Conclusion and Future Work
	References

