
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Hardware Acceleration of Ray Tracing Algorithms using FPGAs

Diploma Thesis

Nikolaos Koxenoglou

Supervisor: Nikolaos Bellas

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Hardware Acceleration of Ray Tracing Algorithms using FPGAs

Diploma Thesis

Nikolaos Koxenoglou

Supervisor: Nikolaos Bellas

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Επιτάχυνση Αλγορίθμων Ray Tracing με FPGAs

Διπλωματική Εργασία

Νικόλαος Κοξένογλου

Επιβλέπων: Νικόλαος Μπέλλας

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Dimitrios Katsaros

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Date of approval: 20­2­2021

vii

Acknowledgements

I would like to take this opportunity to express my gratitude to my supervisor Prof. Niko­

laos Bellas for his unwavering support and encouragement throughout my academic career.

I would also like to thank PhD candidate Maria­Rafaela Gkeka for her help and support in

the technical aspect of my diploma thesis.

Lastly this whole journey would not at all be possible if not for my family and friends

support and I cannot thank them enough. Everyone around me showed extreme patience and

understanding while I undertook this great journey of self­discovery as well as building and

developing.

Especially I would like to thank my father Giorgos Koxenoglou and mother Antigoni So­

fokleous for all the things in the world that they selflessly given to me while I was developing

to who I am today. My sisters, Myrto and Eleni Koxenoglou, were always there supporting

me and I can’t thank them enough. Last but certainly not least I would like to thank my dear

friend Stavros Simoglou for being there all the time helping me with all aspects of life in

engineering.

Though I am ready to take on challenges previously unobtainable by my past self I am

sure there is still more to be done in order to make me a better problem solver, engineer and

most importantly a more complete person with a greater understanding of the world around

me.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Nikolaos Koxenoglou

15­2­2021

x

Abstract

In computer graphics world render APIs, mainly OpenGL and DirectX for gaming, use

rasterization to draw objects on screen. Rasterization is the process that takes a scene de­

scription usually in vector graphics and solves what we refer to as the visibility problem.

When there is a scene to be rendered, we want to project that scene to a display or a print

onto paper, we need to know what is visible from the point of view of the observer. A scene

is usually comprised of 3D polygon objects which are themselves comprised of 3­pointed

vertices known as triangles. Rasterization achieves this by projecting each 3D objects coor­

dinates to 2D plane of the screen where real time rendering is needed, but it only accounts for

the visibility problem [1]. Shading is the general process by which an object gets its colour

and texture is not a part of it, it must be computed and or approximated afterwards reducing

the realism of the scene.

This is where Ray Tracing comes in, it is focused around the image on contrast to raster­

ization which is focused on the objects in the scene [2]. To solve the visibility problem a ray

is cast from each pixel and then each object is checked to see if that ray intersects said object

or not. Afterwards if a successful intersection is made more rays spawn from that location

to evaluate what colour that pixel will be. That way the shading process is integrated in the

rendering process more neatly rather than being an afterthought.

There are a lot of Ray Tracing implementations but almost all of them involve high perfor­

mance FPGAs and processors, the question is can we bring the same results to the table with

a low power FPGA and processor combo and even achieve real time rendering? In short, the

experiment yielded interesting results about what can and can’t be done using such confided

hardware limits as well as utilising only quick­to­market solutions like High Level Synthe­

sis. Performance was not achieved with the ZedBoard ARM processor being quicker than our

peripheral the conclusions we draw illuminate a path forward on how to approach ray tracing

on hardware.

xi

Περίληψη

Στον κόσμο των γραφικών στον υπολογιστή για τη σχεδίαση στην οθόνη χρησιμοποιούν

στην πλειονότητά τους προγραμματιστικές διεπαφές που βασίζονται πάνω στο πλέγμα σά­

ρωσης (rasterization). Αυτός ο αλγόριθμος είναι στην ουσία μια διαδικασία εύρεσης για

το τι βλέπει ο παρατηρητής της εικόνας από μια τρισδιάστατη σκηνή που πρόβλημα ορατό­

τητας. Η διαδικασία ξεκάνει με τη περιγραφή των αντικειμένων σε πολύγονα από τριάδες

διανυσμάτων δηλαδή τρίγωνα. Έπειτα τα αντικείμενα προβάλλονται στην οθόνη από τον

τρισδιάστατο χώρο στον δισδιάστατο. Αυτή είναι μια γρήγορή διαδικασία για αυτό και χρη­

σιμοποιείτε σήμερα , κυρίος σε εφαρμογές ψυχαγωγίας όπου η ανάγκη για γραφικά πραγ­

ματικού χρόνου είναι μεγαλύτερη. Η διαδικασία αυτή έχει όμως ένα μεγάλο μειονέκτημα,

η απόφαση για το τι χρώμα και ύφη πρέπει να έχει το αντικείμενο στο κάθε εικονοστοιχείο

γίνετε προσεγκίστικά. Εδώ είναι που έρχεται ο αλγόριθμος ακολουθίας ακτίνας που είναι πιο

συγκεντρωμένος γύρο από την εικόνα πάρα τα αντικείμενα μέσα στη σκηνή. Για να λύσει το

πρόβλημα της ορατότητας εκπέμπει και ακολουθεί τη διαδρομή μιας ακτίνας από το σημείο

όρασης του παρατηρητή μέσα από το κάθε εικονοστοιχείο μέχρι να συναντήσει ένα αντικεί­

μενο. Όταν η ακτίνα έρθει σε επαφή με το αντικείμενο γεννιούνται περεταίρω ακτίνες για

εντοπισμό όλων των πηγών που μπορεί να επηρεάσουν το χρώμα και υφή του αντικειμένου.

Έτσι η διαδικασία εύρεσης χρώματος και υφής ενός εικονοστοιχείου είναι ακριβώς μέσα

στην διαδικασία σχεδιασμού. Υπάρχουν πολλές υλοποιήσεις του αλγορίθμου αλλά σχεδόν

όλες χρησιμοποιούν υψηλής επίδοσης και ενεργειακής κατανάλωσης υλικό. Η ερώτηση είναι

αν μπορούμε να φέρουμε τα ίδια αποτελέσματα στο τραπέζι με πολύ χαμηλότερης επίδοσης

και ενεγρειακής κλάσης υλικό. Τα πειράματα και ο σχεδιασμός έδειξαν ότι αυτό εντέλει δεν

είναι εφικτό με ένα καθόλα ενδιαφέρον τρόπο. Τα όρια του υλικού που είχαμε στη διάθεση

μάς δεν μας σε συνδυασμό με τη χρήση πιο άμεσων από σχεδίαση σε προϊόν μέθοδών δεν μας

έδωσαν την επίδοση που ψάχναμε αλλά μας έδειξαν τι πλαίσιο σκέψης και υλικό χεριάζετε.

xiii

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contribution and Content Mini­map . 2

2 Background 5

2.1 What is Ray Tracing . 5

2.2 Used Platforms . 7

2.2.1 FPGA & ZedBoard . 7

2.3 Notable Research . 9

2.3.1 FPGA . 9

2.3.2 Nvidia RTX . 10

3 Base SW Rendering Engine 13

3.1 Chosen Implementation . 13

xv

xvi Table of contents

3.2 Ray Triangle Intersection Algorithm . 14

3.3 Render system . 18

3.3.1 Testing Methodology . 26

3.4 Software Baseline & Hot­spot Analysis 26

4 HLS stage 31

4.1 HLS base accelerator . 31

4.2 Code preparation and building basic HW functionality 33

4.3 Base Performance and Optimisation Paths 35

4.3.1 Fabric Frequency . 37

4.3.2 HLS Directives . 40

4.3.3 Arbitrary/Half Precision . 40

4.3.4 1/x Elimination . 42

4.4 Multiple accelerators . 43

4.4.1 Buffer on accelerator . 43

4.4.2 Multiple accelerators No Buffer: 46

5 Conclusions 49

5.1 Closing Arguments and Conclusions . 49

5.2 Future Work . 52

Bibliography 53

APPENDICES 57

A Software Documentation 59

A.1 File Formats . 59

A.1.1 Object Options Data file . 59

A.1.2 Scene Options Data file . 59

A.1.3 Geometry file . 60

B Images 61

B.1 Sample Test Scenes . 61

B.2 FP 16 Artifatcs . 65

List of figures

2.1 Simple RT Example . 6

2.2 Some 3D Rendering Effects in Action . 6

2.3 ZedBoard Board Diagram . 8

2.4 ZedBoard Block Diagram . 9

3.1 Example polygon mesh from triangles [3] 14

3.2 RTI performance observations on 3 triangle scene 17

3.3 X86 Performance . 27

3.4 X86 Performance ­ No All Material scene 27

3.5 Function CPU time per overall CPU time in % ­ Using Class Functions . . 28

3.6 Function CPU time per overall CPU time in % ­ Using Class Functions . . 29

3.7 Function CPU time per overall CPU time in % ­ In­lined Function 30

3.8 Function CPU time per overall CPU time in % ­ In­lined Functions 30

4.1 ARM Performance . 36

4.2 ARM Performance ­ No All Materials scene 36

5.1 Performance Between Platforms 1080p 50

5.2 Performance Between Platforms 720p . 50

5.3 Performance Between accelerator Optimisations 1080p 51

5.4 Performance Between accelerator Optimisations 720p 51

B.1 Scene features a plane and a glass with reflection and refraction effect . . . 61

B.2 Simple plane scene consisting of only one object and two triangles 62

B.3 Scene features a plane and 4 glasses illuminated by distant lighting 62

B.4 Scene features a plane and 4 glasses illuminated by point lighting 63

B.5 Simple plane scene consisting of only one object and two triangles 63

xvii

xviii List of figures

B.6 Utah teapot famous render object in the world of computer graphics 64

B.7 A scene featuring illumination from point lights Phong and reflect refract

object types . 64

B.8 FP 16 Artifacts Sample Scene Simple Plane B.2 65

B.9 FP 16 Artifacts Sample Scene Simple Plane 2 B.5 65

List of tables

3.1 Baseline Software Ray Tracing Performance 26

4.1 HLS Latency Summary . 33

4.2 HLS Utilization . 33

4.3 HLS Latency Summary . 35

4.4 HLS Utilization . 35

4.5 Baseline ARM Ray Tracing Performance 37

4.6 Baseline HW accelerator Ray Tracing Performance 37

4.7 Performance runs for: simple plane 1 scene in seconds and PSNR 38

4.8 Run HLS Utilization . 38

4.9 Run Vivado Utilization . 39

4.10 HLS Latency Summary . 39

4.11 Buffer implementation Vivado Utilization 44

4.12 Loop Pipeline implementation Vivado Utilization 45

4.13 Array Partitioning implementation Vivado Utilization 46

4.14 Loop Unroll implementation Vivado Utilization 46

4.15 Multiple accelerators performance and Vivado Utilization 47

xix

Abbreviations

e.g. exempli gratia ­ for example

etc. et cetera ­ and other similar things

FPS Frames Per Second

SW Software

HW Hardware

FPGA Field Programmable Gate Array

ASIC Application­Specific Integrated Circuit

GPU Graphics Processing Unit

SLI Scalable Link Interface

CPU Central Processing Unit

SoC System­on­Chip

HLS High Level Synthesis

I/O Inpu/Output

RT Ray Tracing

RTI Ray Triangle Intersection

MT Moeller­Trumbore

BVH Bounding Volume Hierarchies

PCIe Peripheral Component Interconnect express

PCI Peripheral Component Interconnect

2D Two Dimensional

3D Three Dimensional

HP Half Precision

FP Floating Point

xxi

Chapter 1

Introduction

Our everyday life is impacted in one way or another by computer graphics. From small

things like TV commercials to feature length film and from video games to any application

that requires the rendering of 3D graphics to a 2D screen. The main methods over the years to

achieve this with is rasterization (common in PC gaming) and ray tracing (in movie animation

the first movie being Pixar’s Monsters Inc.). In other words, rasterization is mostly used

for real­time applications where frame rates must be at least above 25 FPS, the more the

better but 25 is the minimum number to achieve fluid animations, rasterization is preferred.

This is also the prevailing technology used in all graphics processors today. This technology

though can only get you so far, the last major graphics leap happened with the release of

Crysis in November 13, 2007 developed by Crytek, Saber Interactive, Crytek GmbH, after

that rasterization algorithm started to show its limitations when it comes to incorporating ever

increasing need to evolve visual effects such as advanced reflections, lighting etc.

Ray tracing is quite old as an algorithm, the first ray tracing scene was taking two weeks

to render at Bell labs in 1978. Nowadays it is still a heavy computationally procedure that

is being lifted from its mostly animation off­line rendering duties into the mainstream with

the introduction of Nvidia RTX 20 series GPUs in September 20, 2018. And with the release

of RTX 30 series in September 16, 2020 the future of real­time ray tracing is ever nearer.

More actually Nvidia’s implementation still renders a scene using rasterization but with added

hardware it can produce stunning lighting visuals.

1

2 Chapter 1. Introduction

1.1 Problem Statement

Ray tracing is an algorithm that exhibits high parallelism and is very computationally

heavy a combination favouring FPGAs and GPUs. Alas high­power GPUs [4] [5] have all

the potential in the world to develop such demanding rendering techniques due to having little

resections in area or power. Cited papers utilize powerful FPGAs also made an appearance

in research papers using systems like:

1. Multi­FPGA Xilinx Virtex­E prototyping system [6]

2. SGI RASC R100 Blade [7]

3. Xilinx Virtex­II 6000­4 FPGA [8]

With the last one achieving 20 ­ 60 FPS in some scenes. Or used low power systems, like

Xilinx Spartan­3E 1600 [9] with limited rendering capabilities.

The problem is, can a more modern but power efficient and more importantly smaller

FPGA achieve similar results while being general enough to be able to render a variety of

scenes. A general­purpose ray tracing renderer acceleratedwith the power and re­configurable

FPGA will be very useful in several scenarios. In addition to this goal modern design flows

tend to move further away from low level descriptions like Verilog HDL and VHDL to higher

level solutions like HLS.

1.2 Contribution and Content Mini­map

In the grand scheme of things, the research contacted focused on getting better than the

on­board ARM processor for starters and the use of quick to market solutions like HLS while

utilising a low power fabric in ZedBoard development board.

1. Researching various Ray Tracing implementations

2. Developing a base accelerator

3. Optimising accelerator

4. Deriving behaviour conclusions based on performance and other aspects of the design

1.2 Contribution and Content Mini­map 3

This thesis was developed and documented in the following chapters:

Chapter 1 Introductory chapter setting the stage for the project and analysing the problem

this thesis is trying to address.

Chapter 2 Background information regarding ray tracing, developments that have been

made, selected platform for development

Chapter 3 Presenting why this particular software base and implementation was selected

Chapter 4 Utilizing HLS to build and optimise a basic accelerator

Chapter 5 Using the conclusions to further understand how to best approach ray tracing

algorithms

Chapter 2

Background

2.1 What is Ray Tracing

Ray tracing produces stunning visuals in the movie industry as well as gaming using

Nvidia RTX graphics cards that can make someone believe that it is very complex. On the

contrary it is an intuitive and simple algorithm. On the most basic level it mimics the way our

eyes perceive the world by collecting light rays bouncing from various objects. Thus, what

we see is the objects colour and texture as it is affected by environmental contributions like

direct lighting, reflections from other objects indirect lighting. We also observe the objects

texture directly. Stating these obvious facts is important to help us realise that a renderer

doesn’t have this intuitive knowledge like we have and lacks the ability to observe its 3D

environment. So, in order to build a frame, the renderer needs to create the image pixel by

pixel while trying to figure out what the camera sees like Figure 2.1.

Getting more technical we start with a list of objects that comprise the scene, said objects

are part of the world. Through a viewpoint, in computer graphics world this is referred to

as camera or eye, we draw the scene. As mentioned before ray tracing is trying to solve

the visibility problem, as opposed to light transport algorithms that simulate the way light

propagates a scene. The solution to that problem is simply what the camera sees.

This way when a ray is generated for each pixel the algorithm tests for a possible inter­

section with an object. Each object is a polygon mesh of triangles. If an intersection occurs

then that objects material and other options such as texture, colour and material are used to

decide what colour it is. These are the primary rays and they serve the purpose to establish

the first contact or intersection with an object. Secondary rays are generated from that point,

5

6 Chapter 2. Background

Figure 2.1: Simple RT Example

depending on the object’s material properties, to determine the objects lighting effects Figure

2.2.

1. Shadow form other objects

2. Reflections in the case of mirrors

3. Refraction in the case of water or glass

Figure 2.2: Some 3D Rendering Effects in Action

2.2 Used Platforms 7

From that alone we can see how the process to decide what colour value each pixel ends

up having is more neatly integrated with the render algorithm. Rays that end up outside of the

view window or camera are discarded. This however is very computationally taxing notwith­

standing that it has very high degrees of parallelism.

2.2 Used Platforms

Initial experiments run on my personal laptop equipped with an Intel Core i5 6200U

dual core CPU with Hyper Threading and able to boost to 2.8 GHz on all cores and 16 GiB

of DDR3L 1600MHz RAM. Having an ultra­low voltage CPU as a starting point serves as

an example of a low power general purpose processor. Intel Vtune profiling program was

utilized to profile the algorithm and establish hot spots that can be accelerated with the use

of a hardware accelerator or many.

2.2.1 FPGA & ZedBoard

Field Programmable Gate Arrays FPGAs are somewhere between general purpose pro­

cessors running an operating system and anASIC designed for that specific application. Being

equipped with an array of re­configurable logic blocks, block ram elements as well as both

integer and floating­point arithmetic units they can be used to build hardware that comes very

close to printed silicon performance. FPGA referrers to the programmable logic chip which

doesn’t come on its own, the board is a big part of the broad appeal and varied usage scenar­

ios. It holds the fabrics I/O and interfaces with the outside world and that can also dictate the

FPGAs effectiveness and performance e.g. PCIe connectivity, SD card slots, USB, UART

serial connection etc. Notable usage scenarios include but not limited to:

1. Video & Image processing

2. High Performance Computing and Data storage

3. ASIC Prototyping

According to the application and price range there are a lot of offerings from Xilinx and

other manufacturers like Altera (Intel), and Lattice Semiconductor amongst others that vary

according to the size and capability of the FPGA programmable fabric to the number and

bandwidth of on and off board interfaces.

8 Chapter 2. Background

Figure 2.3: ZedBoard Board Diagram

ZedBoard:

The board chosen for this project is ZedBoard figure 2.3, block diagram pictured here 2.4,

using Xilinx HLS bare metal accelerator design flow. It is equipped with Xilinx Zynq­7000

(XC7Z020 [10]) all programmable SoC which contains two ARM A9 processors clocked at

667 MHz and an Artix­7 FPGA fabric with a maximum clock of 250 MHz. That value varies

depending on the design and overall fabric utilisation. It offers a good balance of performance

and power efficiency for its size requiring only passive cooling with a small aluminium heat­

sink aswell as a plethora of connection interfaces. In this particular development boardwe can

take advantage of the ARM processors and create a low overhead application that offloads

computation tasks on the hardware accelerator on the FPGA fabric and not have the need

to include an operating system like peta­Linux, used by Xilinx on their boards. Running

bare metal application means that there is a small piece of software containing addresses and

functions for hardware and board accelerators without the need for a fully­fledged operating

system. Such action also has its limitations.

2.3 Notable Research 9

Figure 2.4: ZedBoard Block Diagram

HLS:

High level synthesis is a program, in this case Xilinx Vitis HLS, that produces hard­

ware accelerators based on C/C++ source codes. Said codes need modifications to facilitate

a smooth transformation from software code to hardware description. In laments terms OS

functions and calls, variable size buffers etc. need to be removed or specified statically [11].

Ports need to set­up as to establish I/O communication with the rest of the system. Digital

design good practices also apply here as we can model the software we use as a base aimed at

creating as simple and strait forward software description for our hardware. As an automated

solution it doesn’t lend it self to much tinkering with the produced hardware making fine

control over the hardware difficult to impossible.

2.3 Notable Research

2.3.1 FPGA

Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip [8]:

Research into this topic using FPGA platforms has been attempted before with very good

results in while using dynamic scene rendering. One particularly successful is the real­time

Ray Tracing of Dynamic Scenes on an FPGA Chip by Computer Science, Saarland Uni­

10 Chapter 2. Background

versity, Germany. Utilizing high performance at the time Xilinx Virtex­II 6000­4 FPGA

contained on an Alpha Data ADM­XRC­II PCI­board they managed to have 20 ­ 60 FPS

on various dynamic scenes on a full ray tracing pipeline on a single FPGA with only 90

MHz. Expanding upon an established architecture, written with JHDL (Just­Another Hard­

ware Description Language), and using the power of the FPGA fabric to exploit the inherent

parallelism of the algorithm they achieved these impressive results.

This work is based on a powerful and large fabric with many FPU available to the user

and being connected to the PCI interface. As well as low­level structural hardware description

language. Both powerful tools in the hands of a capable digital designer.

Caching architecture for flexible FPGA ray tracing platform [12]:

Computation performance improvements were not the only area of research into FPGAs

and ray tracing, data structures and traversal were also under the microscope. It is not only

important to increase processing power of a system by increasing parallel processing of said

data, you also need high enough throughput to be able to feed that system with data. Using a

naive implementation can lead to ineffective use of available bandwidth and space.

An improved data structure, like BVH and KD trees, and access method is also needed

for an improved throughput performance. In that publication memory access patterns, differ­

ent cache types and data replacement methods. A more flexible memory controller was the

answer that took advantage of information existing only at run­time. Evaluating said exper­

imental observations that team created a novel cache structure and replacement policy that

alleviated the memory bottlenecks that accompanied performance scaling.

2.3.2 Nvidia RTX

Turing GPUs [4] made their debut with hybrid rendering combining traditional rasteri­

zation and ray tracing. While rasterization is typically faster to acquire an objects visibility,

determining that instead of the primary ray. RT is being utilized for shooting secondary rays

that it would be possible to create smooth correct reflection, refraction, shadow, and other

effects rasterization is forced to make simplifications and approximation errors. Both Tur­

ing [4] and Ampere [5] architectures feature dedicated RT cores and BVH traversal units to

accelerate RTI with the latter providing significant performance improvement when it came

to RTI. In all the above research the conclusion is the same. RT is achievable with good

performance on either powerful FPGAs with proper data structure management or powerful

2.3 Notable Research 11

GPUs with hybrid rendering. Nvidia also utilizes tensor flow cores as artificial intelligence

de­noising filter in an effort to reduce the number of rays needed for each scene as well as

preform resolution up­scaling using a smaller resolution image as a start. This improves the

performance further.

All those implementations have something in common, the usage of powerful expensive

hardware. Can we achieve similar results with the smaller and less expensive ZedBoard?

Chapter 3

Base SW Rendering Engine

3.1 Chosen Implementation

According to the research studied the main differentiating factor between RT implemen­

tations is to decide how one handles ray/object intersection. What granularity level do we

choose for our system, having a different intersection procedure according to each object

type and shape, be it sphere, cube or parallelepiped even. A complex natural scene consists

of many different objects and if performance is our goal this will have to be streamlined.

Luckily for us 3D graphics have a solution for this problem already. By creating all objects

with a simple geometry that is booth simple to intersect and versatile enough to shape other

objects with this problem is solved. Such object is the simple triangle, defined by 3 vertices

and occupying the same planemaking it easier to detect intersections as wewill see afterwards

is a very solid choice. All convectional 3D renderers render objects as polygon meshes of

triangles for example in figure 3.1.

Ray triangle intersection is the most difficult part of the Ray Tracing algorithm. Trian­

gles are not really a geometry type of their own. Rather, they are a subset of the polygon

primitive type. Intersection between triangle and a ray is simple and lends itself to various

optimizations.

Several papers [8] [6] [13] came to the conclusion that Möller­Trumbore [14] RTI

version is the most efficient and has the best performance and it offers best compatibility

with existing software platforms.

The general roadmap involves building a Ray Tracing renderer that will have its more

computationally intense parts accelerated with hardware accelerators. Internal data structures

13

14 Chapter 3. Base SW Rendering Engine

Figure 3.1: Example polygon mesh from triangles [3]

as well as their traversal will have to be optimized to achieve near real time performance. Such

tasks will be initially carried out by the ARM processor of our board.

3.2 Ray Triangle Intersection Algorithm

Based on the source code and explanation from this site [15] that provides a whole ren­

dering tutorial on the general fundamentals of rendering in both rasterization and ray­tracing

algorithms.

I took the code from the base Ray triangle intersection and future HW accelerator and run

it forming first impressions and figure out the maths behind the basic ray triangle intersection

before moving to the next more complete Ray Tracing renderer.

The initial phase the program has hardwired geometries for three triangles, it calculates

only the ray triangle intersection and returns a static colour. This is the principle essence of a

Ray Tracing algorithm among others. Thus, it was decided this was a good starting point.

The code was cleaned and documented as it was filled with code from previous steps of

this tutorial, such explanations were filled accordingly.

We start with basic equations for the ray triangle intersection. The first equation 3.1 where

t is the distance from the ray origin, O is the ray origin and R is the direction.

P = O + tR (3.1)

The MT algorithm utilizes the above equation along with the property of the parameteri­

zation of P (the intersection point in terms of barycentric coordinates with the plane) as seen

in barycentric coordinates. In equation 3.2 A, B, C are the vertices of a triangle and u, v, w

3.2 Ray Triangle Intersection Algorithm 15

the barycentric coordinates, which are usually normalized u+ v +w = 1. This property can

help us reduce operations needed to calculate w from u and v w = 1 − u − v. The u and v

coordinates

• Can’t be greater than 1 nor lower than 0

• The sum can’t be greater than 1 (u+v <= 1)

• They express coordinates of points defined inside a unit triangle

Thus 3.2 becomes 3.3

P = uA+ vB + wC (3.2)

P = (1− u− v)A+ uB + vC (3.3)

Developing we get

P = A− uA− vA+ uB + vC = A+ u(B − A) + v(C − A) (3.4)

Based on that equation and combining with 3.1 with 3.4 we get 3.5. The left side of the

equation can be viewed as the transformation that moves the triangle from its original world

space position to the origin. The other side has the effect of transforming the intersection

point from x,y,z space to t,u,v space.

O − A = −tD + u(B − A) + v(C − A) (3.5)

[
−D (B − A) (C − A)

]
t

u

v

 = O − A

The solution of a system of linear equations can be found in terms of determinant using

Cramer’s rule. Scalar triple product is defined to be the dot product of the vectors with the

cross product of the other two, it can also be understood as the determinant of a 3x3 matrix.

Thus re­writing equation 3.5 using Cramer’s rule we get
t

u

v

 =
1

(D × E2) · E1


(T × E1) · E2

(D × E2) · T

(T ×D) ·D

 (3.6)

Where T = O − A, E1 = B − A, E2 = C − A, P = (D × E2),Q = (T × E1) .

16 Chapter 3. Base SW Rendering Engine

In order to connect the maths with the code the above becomes
t

u

v

 =
1

(−dir × v0v2) · v0v1


((orig − v0)× v0v1) · v0v2
(−dir × v0v2) · (orig − v0)

((orig − v0)× v0v1) · −dir

 (3.7)

Where in the code P = pvec = (D × E2) = (−dir × v0v2), Q = gvec = (T × E2) =

((orig − v0)× v0v1), tvec = orig − v0 and det = pvec× v0v1

The intersection checks based on this equation are then simple, firstly we check if the

intersection point lies on the plane. With culling enabled

• If the dot product of the ray direction and the triangle normal (det) is, or is close to 0

the triangle and the ray are parallel

• If the dot product of the ray direction and the triangle normal (det) is negative the

triangle is back­facing

With culling disabled we only check the first condition. It is also important to note that with

culling disabled we need to normalize u by multiplying it with the inverse of det to properly

test the intersection.

Then we move to calculate u, v and t.

u = (tvec · pvec) ∗ 1/det (3.8)

v = (−dir · gvec) ∗ 1/det

t = (v0v2 · gvec) ∗ 1/det

There is no intersection

• If u is either lower or greater than 1

• If v is lower than 0 and the sum of u and v are greater 1

During this initial run we observed the Ray Triangle intersection algorithm in various sce­

narios. These involved single triangle intersection as well multiple triangle with and without

culling, culling is the idea of not rendering back­facing triangles in order to reduce intersec­

tion calculations. Back­facing triangles have their normal pointing in a different direction

than the ray direction.

3.2 Ray Triangle Intersection Algorithm 17

Figure 3.2: RTI performance observations on 3 triangle scene

We wanted to benchmark the basic ray triangle intersection to get an idea how it would

perform in a completed system with mesh of triangles and Phong effects. What can be further

optimized on this routine in order to speed up and achieve real time rendering. How much

the resolution and culling affect execution time.

We tested 3 cases with 4 different resolutions figure 3.2

1. 3 triangles with no back facing ones (No culling)

2. 3 triangles with 2 back facing ones (Culling)

3. 1 triangle not back facing (No culling)

The first is used to establish a baseline for a simple shape. The second serves the purpose

to evaluate how much performance can we gain by disregarding the back facing when calcu­

lating primary rays. The third test is to evaluate the raw performance of the algorithm with

having only one triangle in the scene.

We found that resolution affects the performance greatly. Lower resolutions have orders

of magnitude quicker execution time.Going from 1080p to 720p gained huge time advantage

and still maintaining HD spec. Culling offered less performance improvement. Going from

3 to 3 with no culling reduced the time. But even so less triangles was faster still.

18 Chapter 3. Base SW Rendering Engine

3.3 Render system

In this step I studied each of the tutorial stages:

1. Introduction to Polygon Meshes [16]

2. Ray­Tracing a Polygon Mesh [17]

3. Transforming Objects using Matrices [18]

4. Introduction to Shading [19]

5. The Phong Model, Introduction to the Concepts of Shader, Reflection Models and

BRDF [20]

6. Global Illumination and Path Tracing [21]

To build a minimal yet functional ray tracing renderer that would serve the purpose of our

gold software base. The final system includes reading, traversing, and rendering polygon

mesh as well as basic shading that includes diffuse, reflect, reflect­refract and Phong model

effects.

Global illumination and path tracing introduced additional load other that RTI which was

the focus for an initial implementation. As it stands direct lighting is the only way a scene

is illuminated. Indirect lighting is not accounted for reducing the realism but keeping the

process more straight forward. The source suggested using theMonte­Carlo method to reduce

the need for a lot of rays for the contribution calculation.

It was deemed enough to achieve a baseline performance reading on the whole idea of

Ray Tracing (ray triangle intersection, triangle traversal and shading) while having minimal

complexity as to not cause many development headaches. The base C++ source code was

expanded upon with dynamic object and scene option file input parser and argument reader.

Every bit of code was documented as to what they do. And a PSNR comparing program

was built to check each implementation result against golden samples produced by golden

software implementation.

The rendering process has two main stages, visibility (can the user see an object from his

perspective) and the shading (what colour will those pixels have). The visibility problem has

to do with the shape an object has and whenever that object is visible from the perspective of

3.3 Render system 19

the user. This is the part of the rendering equation where the ray triangle intersection comes

in.

Its ultimately concluded by calling the trace function and following the list Intersect, Ray

Triangle Intersection below to determine if an intersection occurs. When such an intersection

occurs, we need to figure out the colour of that pixel. Shading is exactly that. It is the process

in which we calculate the colour of the intersected pixel.

A more general view of the flow of the renderer:

1. Parse Data (Scene Data, Object Geometry and Option Data)

2. Render Loop (Frame Loop)

3. Cast Ray (Shading Pixel)

4. Trace (Object Loop)

5. Intersect (Triangle Loop)

6. Ray Triangle Intersection (Ray Triangle Calculations)

Data structures are set­up to use a C++ class for vectors and matrices with build in func­

tions for maths operations from addition and multiplication to dot and cross products. This

simplified the initial implementation by having this abstraction over maths operation and it

facilitated the easier implementation of visual effects.

Polygon Meshes:

The renderer relies on a polygon mesh description (format created by [16] explained in

Appendix A) in order to render objects on the screen as well as my own scene and object

data description file formats (also explained in Appendix A). This was done to facilitate

easier reading of more complex objects. All that data is parsed at the beginning of the render

process and are kept in memory. As now the renderer stands it only supports the rendering of

1 frame only. That can tell us if a potential use of the system in a renderer with user controls

and video game like setting would be real­time if 1 frame takes less than 0.033 seconds to

render.

Render:

Rendering an image is done with a double for j for height, i for width loop. As we traverse

each pixel height x width calculations need to be made to determine several parameters about

20 Chapter 3. Base SW Rendering Engine

the final image, static ones for the whole image and dynamic ones that change with each

pixel.

Static calculations, same for the whole image:

• scale is found by scale = tan(degreestoradians(FOV ∗ 0.5))

• aspect ratio of image imageaspectratio = width/height

• ray origin origin = cameratoworld ∗ zerovector

Dynamic calculations that are pixel bound and need to be calculated for every pixel

• x normalized coordinate for the pixel x = (2∗(i+0.5)/width−1)∗imageaspectratio∗

scale

• y normalized coordinate for the pixel y = (1− 2 ∗ (j + 0.5)/height) ∗ scale

• ray direction direction = cameratoworld ∗ (x, y,−1)

• ray direction normalized

After all parameters are calculated the we cast the ray by calling the castRay function which

considers these parameters: ray origin, ray direction, object list, light list, and scene options

in order to determine if there is valid intersection between a ray and and object and if there

is what colour must be shaded based on the objects, and lights properties.

Cast:

At this point we are preparing for the ray to be traced to a potential triangle intersection

checking to see if the maximum depth has been reached or not. In the case that it has been

reached we simply return the background colour.

This is where the trace function is called. It is given the ray origin, direction as well as

an object list and a struct to place intersection point data if such point exists. If a successful

intersection is found, then the function returns true based on the intersection details and object

properties we colour the pixel accordingly. The hit pint is evaluated from the ray origin,

direction and the distance to the hit point as such hitPoint = orig+dir ∗ isect.tNear. Data

like the objects normal, texture coordinates are retrieved using getSurfaceProperties from the

object list.

After that it is a simple matter of finding the object type and colouring/ illuminating the

pixel as per the effects in the Shading section.

3.3 Render system 21

Trace:

Tracing a ray in this implementation is naive yet effective. It allows us to focus our at­

tention to first solve bugs in the integration with the hardware accelerator and then choose to

upgrade them in order to achieve more performance.

It is a simple procedure to check each object from the list of objects and then Calling the

Intersect function to check each triangle within that object if that falls within the rays path

and how close it is from the origin.

Intersect:

The intersection is solved by calling the rayTriangleIntersect function, that will be later

replaced by a hardware accelerator, for each triangle in that object. That function takes care

of RTI as explained before.

Shading:

The shading effects include

• Diffuse shading using a generated pattern or solid colour

• Reflection effects

• Reflection and refraction effects

• Phong shading using a more fine tuned colour using weights for diffuse, specular ef­

fects

Diffuse:

The simple defuse shading is done through the illuminate function. It takes in to account

the hit point, light direction, light intensity and how far is it from the ray origin. This function

takes uses the type of light point or distant. Both belong in the class light which contains

information like light to world matrix, colour, intensity and the illuminate function prototype.

Then each light source has its own class with the implemented illuminate function. Different

light sources require different illuminate functions and are implemented as such.

All effects that use light sources in any way have their contribution added up in a loop.

Illuminate/ Light class:

Point light acts like a localized light source. A pint light has a position which is found by

multiplying the 0 vector with the light to world matrix. This is done due to the assumption that

point lights are created in the world origin space and then are placed in the correct position

22 Chapter 3. Base SW Rendering Engine

by the light to world matrix. It is unaffected from rotations. It lights up other diffuse objects

using the following formula:

• lighttoworldmatrix ∗ zerovector get light position

• lightdirection = Hitpoint− Lightposition

• compute the square distance r2 = lightdirectionnormalized

• normalize incident light ray direction lightdirection/ = distance

• final light intensity with square falloff lightintensity = colour∗intensity/(4∗pi∗r2)

Distant light sources are simpler they only take into account the direction of the light source,

colour and intensity. It computes direction instead of position in order to replicate the distant

nature of the light type. It acts like a sun like source as it light ups all objects from the same

direction. In oder to calculate the direction we multiply the light to world matrix with the (0,

0, ­1) and then normalized.

• lighttoworldmatrix ∗ (0, 0,−1) light direction becomes the calculated direction

• lightintensity = colour ∗ intensity light intensity is found by taking into account

the colour

• distance is equal to float max

After the illumination part is calculated we call the visibility = !trace(...) function once

again in order to determine if the intersection point is in the shadow or not. If the trace function

is evaluated as true we want to colour that pixel dark for that means it is some shadow.

A simple pattern is calculated on various geometric shapes such as (Blurry chequerboard,

Diagonal chequerboard, Stripped, Grey chequerboard, Solid Grey Colour). For simplicity we

chose to go with a solid grey colour.

hitcolour+ = visibility ∗ pattern ∗ lightIntensity

∗max(0, (hitNormal) · (−lightDirection))

3.3 Render system 23

Reflection:

Reflection is a simple effect and it is calculated using the reflect function with incident

view direction and the normal of the surface. This function is also used in the reflection and

refraction effect.

After that the hit colour is added as a contribution with a recursive call to the castRay

function with the data from that point with depth + 1. This is akin to generating rays to find

what the reflection adds to that pixel.

reflection = incidentviewdirection− 2 ∗ incidentviewdirection · objectnormal

reflection = normalizereflection

hitColor+ = 0.8 ∗ castRay(hitPoint+ hitNormal ∗ options.bias,

R, objects, lights, options, depth+ 1);

Reflection and Refraction:

This effect is a bit of amore complex affair.We need to figure out howmuch light reflected

and how much continues or transmitted, start by computing Fresnel parameters based on ray

direction hit point normal, intersected object index of refraction.

This implementation disregards the effect of light attenuation and absorption that happens

in transparent materials.

Fresnel (refracting vs reflecting light) is the effect involving transparent objects likewater,

glass or anything light can pass through and gives us the above amount. This will give us the

relation of reflected light and help us describe the transmission of light when incident on a

surface normal. When the angle of incidence decreases the transmitted light is increasing and

vice­versa.

To calculate the Fresnel parameters, we begin by clamping (limiting the position in an

area, commonly used in computer graphics) the incidentlightdirection · hitpointnormal

between ­1 and 1 values. The result of clamping helps to determine if the incident ray hits

the object from outside or inside by checking the sign.

We also set several parameters with 1 and the ior and then swap them if the incident ray

is positive that will help us calculate the kr factor using trigonometric functions.

If total internal reflection is occurring, the phenomenon where the angle of incident light

is greater the critical angle such that 100% of the light incident is reflected, kr factor is 1.

24 Chapter 3. Base SW Rendering Engine

Such an occurrence is caused by the light interacting with materials with each successive

interaction having a smaller index of reflection.

Light is simulated to travel as two waves (parallel and perpendicular polarized) perpen­

dicular to each other and to find kr will need to calculate the ratio of reflected light for these

two waves, the average gives us the ratio of reflected light.

cost = sqrtf(std :: max(0.f, 1− sint ∗ sint));

cosi = fabsf(cosi);

Rs = ((etat ∗ cosi)− (etai ∗ cost))/((etat ∗ cosi) + (etai ∗ cost));

Rp = ((etai ∗ cosi)− (etat ∗ cost))/((etai ∗ cosi) + (etat ∗ cost));

kr = (Rs ∗Rs+Rp ∗Rp)/2;

After the fresnel coefficients we must figure out if the ray is inside or outside. A shadow

bias is added to account for the shadow displacement needed for various scenes and object

properties. It is usually very small.

outside = direction · hitnormal < 0

bias = objectbias ∗ hitnormal

Finally if the value of kr coefficient is less than 1 we treat the effect as a refraction oth­

erwise as a reflection. Both make use of recursive call of the castray function , with a max

depth limit as mentioned above, in order to find the colour contribution in of the pixel.

In the case of refraction the refract function is called to find the refraction direction and

then decide if the ray is outside or not by adding or subtracting the shadow bias.

Refract:

This function serves to calculate the refraction direction. As with the Fresnel calculations

begin with clamp function and the setting of etai=1,etat=ior parameters. If the result of the

clamp function is negative that means the ray is outside the surface of the object adn the

cos(theta) must be positive. In the case of the ray being inside the surface cos(theta) is already

positive so, we just swap the refraction indices and reverse the normal direction. After that

the function simply returns the k factor.

3.3 Render system 25

In the case of reflection, the reflect function is called to find the reflection direction and

then decide of the ray is outside or not by adding or subtracting the shadow bias.

The final hit colour is determined by combining reflection colour and refraction colour

accordingly.

hitColour+ = reflectionColour ∗ kr + refractionColour ∗ (1− kr);

Phong:

Phong effects are in essence a more realistic diffuse effect in combination with specu­

lar reflections, as all objects have a diffuse and specular nature to their appearance. It adds

weights and extra calculations to determine how big the specular spot will be and how glossy

or mate a surface will look.

Determining the colour of a pixel is the same as the simple defuse effect up to the point

where we find out if the point lies in a shadow. After that we compute the diffuse component

based on if the point is under shadow or not, the objects albedo factor (the ratio of reflected

light over the amount of incident light), light intensity and the dot product of hit normal and

light direction.

diffuse+ = visibility ∗ objectalbedo ∗ lightintensity

∗max(0, hitnormal · −lightdirection)

The specular component is found by using the reflect function and calculating using the

following equation, n is the specular exponent factor, it controls the size of the specular spot

specular+ = visibility ∗ lightintensity ∗ pow(max(0, reflection · −raydirection), n)

As mentioned above the contribution of all the light sources are added up to the above

components. At the end the hit colour is determined by adding the Phong components together

along with their respected weights from each object’s properties.

hitcolour = diffuse ∗ intersectedobjectKdfactor

+specular ∗ intersectedobjectKsfactor

26 Chapter 3. Base SW Rendering Engine

3.3.1 Testing Methodology

Correction checking and scene description:

In this step the main goal was to expand the testing suit of scenes and establish a more

reliable way to measure what the actual algorithm is doing the next step.

Scenes were added using the already constructed objects geometric descriptions from

the code source but now they cover a wider range of the renderer’s capabilities. In essence

we ”activate” a more complete part of our renderer to better identify performance hot­spots

and transfer said functionality to a hardware accelerator. This is important because due to

the range of visual effects supported these scenes represent each effect from different object

materials to different type and light colour.

For that reason, after making sure by optical evaluation that the baseline golden software

is functioning correctly gold image samples were created. These samples, seen in Appendix

B are used to check the correct render outputs after hardware design and optimisation or

software optimisation runs.

3.4 Software Baseline & Hot­spot Analysis

Performance baseline was set by running seven different scenes, see Appendix B, on my

personal laptop as described in section 2.2 using the described gold software baseline.

Resolution Glass Simple 4 4 Glasses Simple Utah All

Pen Plane Glasses Point Plane 2 Teapot Materials

B.1 B.2 B.3 B.4 B.5 B.6 B.7

720p 150.64 0.07 26.24 33.33 0.08 82.15 1658.88

1080p 302.81 0.15 58.32 74.1 0.16 182.23 3745.63

Table 3.1: Baseline Software Ray Tracing Performance

3.4 Software Baseline & Hot­spot Analysis 27

Figure 3.3: X86 Performance

Figure 3.4: X86 Performance ­ No All Material scene

Hot­spot analysis:

28 Chapter 3. Base SW Rendering Engine

Figure 3.5: Function CPU time per overall CPU time in % ­ Using Class Functions

The performance hotspots of the base code were evaluated in Intel’s Vtune Analysis soft­

ware. Gold program was selected for this test. Benchmark scenes were defined as those that

required a lot of time to render giving us ample samples to work with as well as testing various

effects glass pen B.1, 4 glasses B.3 and Utah teapot B.6 initially.

The following graph shows the overall execution time for the scenes split to the functions

that were identified as performance hotspots 3.5, using bottom up analysis. Results paint an

interesting picture about the destination of spend time.

As mentioned, vectors are stored and handled by a class, Vec3f, which has maths oper­

ations build in. In this case Vtune reports these functions as different hotspots in the calling

function ray triangle intersect. Although from initial tests it is pretty apparent what function

is a performance hotspot.

To make sure no other call to the Vec3f internal functions like crosProduct and others

interfered the test was rerun with all material B.7, glass pen B.1 and Utah teapot B.6. The

function was modified by removing the calls to Vec3f functions and in­lining all math func­

tions using floats. That way we have a single function that Vtune can track for hotspots by

itself.

3.4 Software Baseline & Hot­spot Analysis 29

Figure 3.6: Function CPU time per overall CPU time in % ­ Using Class Functions

The results in figure 3.7 confirm the earlier results with the majority of CPU time being

spend in rayTriangleIntersect function, the next in the function that traverses all the triangles

of each object and the rest of the program.

30 Chapter 3. Base SW Rendering Engine

Figure 3.7: Function CPU time per overall CPU time in % ­ In­lined Function

Figure 3.8: Function CPU time per overall CPU time in % ­ In­lined Functions

Chapter 4

HLS stage

4.1 HLS base accelerator

Defining the I/O and more importantly which part of the render process to build in to

HW was decided basted on the performance and hot­spot analysis performed in the previous

phase.

Ray triangle intersection took the majority of execution time so it was a good place to

start.

That raises the need to transfer 5 inbound vectors as input

• Rays origin point

• Rays direction

• Triangles vectors (v0, v1, v2)

and 3 as output on a successful intersection

• Distance to intersection point

• Coordinates on the intersected triangle (u, v)

Software platform:

At first to have a more level playing field and give out first accelerator a fight chance

performance will be compared not with the x86 implementation but with the on­board ARM

processor of out starter development board ZedBoard. That will be the software baseline we

will try to beat.

31

32 Chapter 4. HLS stage

Initial plan:

The first part focused on using the code as it stands and producing the hardware accel­

erator with no modifications simply be using HLS. Using bare metal to use our accelerator

as a starting point is a more strait forward way to gauge the performance of a design. With

petalinux, Xilinx board compatible linux distribution, and use Ubuntu ARM existing as a

future step that will unlock OpenMP functionality.

HLS specific pragmas will be set up for the I/O ports using the Xilinx recommended

options. As the program is using class and addresses (pointers) to transfer the data back and

forth m axi was the way to go. Setting the port offset to slave and a depth multiple of 2 (the

Vec3f class contains only 3 floats as data so padding is required but is performed by Vitis

HLS). An axi lite return port must be used regardless of the return value of our accelerator.

Thus I/O will be done by using the Vitis HLS produced functions to set pointers and use

the Vec3f class as the software does.

Backup plan:

Due the complexity of today’s HLS methods and the abstraction level of C++ class data

type situations my arise a that will be beyond our control (long critical paths, hls compiler

having insufficient data) backup plan will be in­place. We can skip all the C++ complexity

and add the maths operations directly in the accelerator code to be compiled in to hardware.

Having that in mind we can also utilize a simpler port standard axi lite to transfer individual

float numbers for each coordinate we need to transfer.

Inlining the functions eliminates the need to use the Vec3f class build­in functions. After

that we can just transfer a float for each of the coordinates needed part (x, y, z).

Software role:

Initial integration on the board will be done through the ARM processor as a standalone

hardware accelerator. The on­board processor will take care of the rendering flow as de­

scribed in the flow diagram. Further optimisations can pe implemented at later stages by

instantiating more accelerators to take advantage of parallel nature of the Ray Tracing algo­

rithm, moving more time­consuming functions on the hardware or by optimizing object/tri­

angle data structure during traversal.

4.2 Code preparation and building basic HW functionality 33

Table 4.1: HLS Latency Summary

Latency (cycles) Latency (absolute) Interval (cycles)

min max min max min max

43 123 0.430us 1.23 us 44 124

Table 4.2: HLS Utilization

BRAM DSP FF LUT URAM

16 11 11 35 0

4.2 Code preparation and building basic HW functionality

Main Plan:

The main plan for this step is just make it work. We need to establish, as close to the

software golden code as possible, a performance baseline and work from there. The results

of this analysis will provide valuable information about what optimisation strategy to im­

plement, more importantly what aspects of the algorithm need modifications and at which

granularity. This stage will also revile to us which plan is more suitable as a baseline accel­

erator.

HLS stage:

In the initial stage the function RayTriangleIntersect was used as it is used in the golden

system. Utilizing Vec3f class to transfer data vectors as well as have the maths operations

build in. This is as close to the software golden sample as you can get but it’s not what can

be described as hls friendly code due to the structure of the classes in C++.

Baseline synthesis with a target 10ns period of the accelerator yielded about 130 clock

cycles needed for the result to be produced.

To ensure the correct functionality of the integrated code C simulation was run to verify

the result and the correct operation of the transition from a function in the program to a

accelerator.

Vivado stage:

Vidado is a pretty strait forward, you initialize the platform you choose with a board

preset in our initial experiment ZedBoard and after that create the block diagram containing

34 Chapter 4. HLS stage

all the necessary hardware IPs including out accelerator. IN future steps more than 1 hardware

accelerator can be used. This is also where we use the ZedBoard configuration to increase

the fabrics clock speed in later stages.

Vitis IDE stage:

Codewas prepared for the first run as mentioned in the previous step by using the function

as is. We used the same golden code as a base and appended the necessary functions to set

accelerator ports as well as functions to start the accelerator. It’s important to note that all

object and scene data parsing had to be rewritten due to Xilinxs different way of handling

file­system and file operations in general. It uses a fat based file­system and utilized specific

read, write etc functions.

The run did not run successfully due to a need to transfer float values from the software

ARM to the accelerator.

This was remedied by using typecasting and value redirection, returning the output form

the accelerator to an integer and then typecasting it to a float.

We had limited success using this method because despite the data being transferred cor­

rectly this time they suffered form possible setup/hold violations as the data were transferred

in inconsistent positions. Such a behaviour would have forced us to reduce the fabric fre­

quency reducing the potential performance gain. A timing violation implies the existence of

a long critical path which is something that is a good practice to avoid.

Back­up Plan:

The backup plan as it was described in the previous step was to inline the functionality

of the Vec3f class in the code and use simple float input and outputs.

HLS stage:

The code was first developed and tried in an equivalent C++ software implementation

with all the necessary changes to the function as well as calling said function to evaluate cor­

rect functionality. After that it was a simple plan to build the hardware accelerator according

to the new software.

The thing that becomes immediately appended is the reduction in clock cycles.

4.3 Base Performance and Optimisation Paths 35

Table 4.3: HLS Latency Summary

Latency (cycles) Latency (absolute) Interval (cycles)

min max min max min max

32 110 0.320us 1.10 us 33 111

Table 4.4: HLS Utilization

BRAM DSP FF LUT URAM

0 12 3 12 0

This reduction in latency based on the initial synthesis that targets the same clock period

shows us that this base accelerator utilized less logic to perform the same operation thus it

required less pipeline stages that can be added later to increase the clock speed.

Vivado stage:

As the main plan described the accelerator was added to the block diagram in a different

Vivado project in order to test them both separately.

Vitis IDE stage:

The modified code from the main plan was adjusted to run the new accelerator, with the

increased number of ports and the float data transfer fix already applied and executed on the

ZedBoard. The result was a correct I/O transfer and the execution of the program terminated

successfully.

Final chosen plan and why:

A the end we chose to proceeded with the back­up plan to the next stages and profile it’s

initial performance. The use of axi lite is not a big barrier and the reduced utilization is a

bigger advantage than the ability to transfer data from the master axi bus.

4.3 Base Performance and Optimisation Paths

Base accelerator performance is as shown below along with ARM.

36 Chapter 4. HLS stage

Figure 4.1: ARM Performance

Figure 4.2: ARM Performance ­ No All Materials scene

4.3 Base Performance and Optimisation Paths 37

Resolution Glass Simple 4 4 Glasses Simple Utah All

Pen Plane Glasses Point Plane 2 Teapot Materials

B.1 B.2 B.3 B.4 B.5 B.6 B.7

720p 1514.191 0.6871 675.041 989.516 0.686 977.49 36723

1080p 3406.54 1.54 1518.185 2224.497 1.5432 2200.64 50479

Table 4.5: Baseline ARM Ray Tracing Performance

Arm performance figure 4.5 shows that even with a long run­time the strategy, rendering

finished within reasonable time.

Resolution Glass Simple 4 4 Glasses Simple Utah All

Pen Plane Glasses Point Plane 2 Teapot Materials

B.1 B.2 B.3 B.4 B.5 B.6 B.7

720p N/A 10.71 N/A N/A 10.69 N/A N/A

1080p N/A 24.0236 N/A N/A 23.9776 N/A N/A

Table 4.6: Baseline HW accelerator Ray Tracing Performance

This was not the case for the baseline HW performance that required more than six hours

to even reach 50% on the less demanding scenes. Figure 4.6 N/A entry referees to that.

The General optimisation goal is to surpass the performance of the software implemen­

tation running on the ARM core of the ZedBoard. This can be achieved several ways and

there are a lot of potential areas to explore and try make better. Starting with the most basic

of design tactics in an effort to get more performance from our hardware to more in­depth

techniques.

4.3.1 Fabric Frequency

The simplest and more apparent optimisation is the clock speed the accelerator is in­

creasing either or both the target period during HLS synthesis or/and the frequency of the

Programmable Logic Fabric of the FPGA. Doing the latter without doing the former is over­

clocking. It has beed proved to be an effective way to increase performance if one does not

meet SDC Silent Data Corruption.

38 Chapter 4. HLS stage

Table 4.7: Performance runs for: simple plane 1 scene in seconds and PSNR

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

23.94 26.87 21.95 23.17 15.33 14.66 17.36

inf inf inf inf 33.75 inf inf

Table 4.8: Run HLS Utilization

Run BRAM DSP FF LUT URAM

Run 1: 0 12 3 12 0

Run 2: 0 11 4 13 0

Run 3: 0 12 3 12 0

Run 4: 0 11 4 13 0

Run 5: 0 13 4 12 0

Run 6: 0 12 3 13 0

Run 7: 0 11 5 15 0

Targeting anything below 5ns period resulted in timing violation warning from the HLS

so it was decided to be left at that.

The following tests experiments run in order to determine

• Run 1: Synthesis targeting 10ns(100MHz) ­ Fabric @ 10ns(100MHz)

• Run 2: Synthesis targeting 5ns(200MHz) ­ Fabric @ 10ns(100MHz)

• Run 3: Synthesis targeting 10ns(100MHz) ­ Fabric @ 4ns(250MHz)

• Run 4: Synthesis targeting 5ns(200MHz) ­ Fabric @ 4ns(250MHz)

• Run 5: Synthesis targeting 15ns(66.6MHz) ­ Fabric @ 4ns(250MHz)

• Run 6: Synthesis targeting 12ns(83.3MHz) ­ Fabric @ 4ns(250MHz)

• Run 7: Synthesis targeting 4.5ns(222.2Mhz) ­ Fabric @ 4.34ns(230MHz) actual (214

MHz)

Utilization figures for the above runs.

4.3 Base Performance and Optimisation Paths 39

Table 4.9: Run Vivado Utilization

Run LUT LUTRAM FF DSP BUFG Power

Run 1: 8 1 5 13 3 1.722 W

Run 2: 8 1 6 12 3 1.753 W

Run 3: 9 1 5 13 3 1.808 W

Run 4: 8 1 6 12 3 1.879 W

Run 5: 9 1 5 14 3 1.841 W

Run 6: 9 1 4 13 3 1.813 W

Run 7: 8 1 6 12 3 1.884 W

Table 4.10: HLS Latency Summary

Run
Latency (cycles) Latency (absolute) Interval (cycles)

min max min max min max

Run 1: 32 110 0.320 us 1.10 us 33 111

Run 2: 62 220 0.310 us 1.10 us 63 221

Run 3: 32 110 0.320 us 1.10 us 33 111

Run 4: 62 220 0.310 us 1.10 us 63 221

Run 5: 25 85 0.375 us 1.275 us 26 86

Run 6: 30 106 0.360 us 1.272 us 31 107

Run 7: 74 259 0.333 us 1.165 us 75 260

Testing the accelerator reviled that the simple plane scene took the least amount of run

time and the image quality was correct. The test was run for a 720p version of the scene with

no problems whatsoever.

However although there is an important performance increase that comes with overclock­

ing. Specifically when it is combined with timing violations. This is wrong from a digital de­

sign perspective despite the fact that out accelerator managed to get the best performance in

Run 6 with no image artifacts (Silent Data Corruption) whatsoever. This effectively showed

us that the run is frequency based, the faster the accelerator can run the faster we can set the

fabric frequency in order to achieve faster results.

With this knowledge at hand we chose a Run 7 that combines the performance of over­

40 Chapter 4. HLS stage

clocking with no slack violations. Reducing the clock uncertainty makes the clock margin

smaller that would normally be used to account for increase in delays derived from RTL

logic synthesis, place, and route.

Enabling unsafe math optimisations from the solution settings helped to achieve the last

run removing the slack violation in HLS with no result on the final image.

Something that also provided a performance edge was enabling ­O3 compiler optimisa­

tions for the rest of the render in Vitis IDE.

Conducting the experiments with synthesis and fabric periods gives us an idea for how

the accelerator reacts to different target synthesis periods and passing through vivado flow.

That way if this yields any additional performance we can incorporate the above best options

and have an even greater leap in performance.

AXi Interface change:

The interface we chose is AXI4 Lite. This application does not depend on high data

throughput but quick and immediate transfers. Thus there is no merit moving to a faster

interface lineMaster AXI as the I/O required will always be the same regardless. This is also

based on the analysis perspective in Vitis HLS, data input takes 1 cycle.

4.3.2 HLS Directives

In this stage of the project the accelerator consists of mathematical operations only with

buffer/registers used for storing intermediate results. For the most part HLS optimisation

directives revolve around data throughput and loops. Thus in this stage they would contribute

no performance benefit as the accelerator is called frequently to calculate data and return a

result. In future optimisation with an onboard buffer and multiple accelerators we can apply

HLS Directives effectively.

4.3.3 Arbitrary/Half Precision

Floats are a general and known problem in computation problems often leading to greater

delays due to the high amount of hardware cycles it requires to produce a result as well as the

fabric area they occupy. Thus the apparent next step was to try and use fixed point arithmetic

for the calculations. As Xilinx made FP 16­Half Precision data type deprecated we opted to

try C++ Arbitrary Precision library as a starting point.

4.3 Base Performance and Optimisation Paths 41

As calculated the minimum bits required to represent the numbers used are 12 decimal

and 9 fractional bits. Tests were conducted with values bellow and above said limit.

This yielded positive results as the cycles and latency needed to produce a result were

significantly reduced.The first number represents the total number of bits, the second number

the decimal bits, the next two are the rounding and overflow models. Utilizing a starter type

with 10 decimal bits and 6 fractional and going through the Vivado flow the results on the

image were not promising. No intersection was detected and the render came out blank. That

also removed a critical path data dependency opening up the next optimisation which is the

replacement of 1/x division.

Experimenting with various sizes and Ap Fixed rounding and overflow options we got

the same result.

• AP RND ZERO that rounds the number to the nearest representable value specifically

zero, for positive values deleting the redundant bits and adding least significant bits to

get he nearest representable value for negative values.

• AP SAT SYM that saturates the value in case of overflow to the maximum or in case

of underflow to the negative maximum.

• 16 10 Failed.

• 16 10 AP RND ZERO AP SAT SYM Failed.

• 16 13 Failed.

• 16 13 AP RND ZERO AP SAT SYM Failed.

• 21 12 Failed.

• 25 10 Failed.

• 25 10 AP RND ZERO AP SAT SYM Failed.

• 32 20 Failed.

• 32 20 AP RND ZERO AP SAT SYM Failed.

• 32 16 Failed.

• 32 16 AP RND ZERO AP SAT SYM Failed.

42 Chapter 4. HLS stage

• 64 32 Board over­utilisation.

There is loss of precision when converting a float to fixed point but no loss when con­

verting from fixed point to float. The area used for the accelerator was increased generally

increased with no increase in performance despite of the promising results in HLS Analysis

perspective and general reductions in delay and cycles.

The Ray triangle intersection was not performed as it was expected. Experiments on the

X86 gold code renderer showed that input coordinates can be truncated down to only 3­

4 fractional bits with minimal loss of precision of the final render. This showed us that the

incorrect detection of the ray triangle intersection is caused by the fact that the main algorithm

is designed to perform calculations on the unit triangle. Subsequently allocating more bits for

the fractional part and having a bigger maximum number that can be represented was not the

solution as the problem lies with the precision possible.

After all of that failed, despite being deprecated in theHLS documentation, we attempted

to use half precision data type. This data type is composted by 1 sign bit, 5 exponent and 10

mantissa as opposed to 32 bit float with 1 sign, 8 exponent and 23 mantissa.

Such action did not provide the design with a massive reduction in cycles to produce a

result nor did we did not achieve lower synthesis period. Although in theory we expected

some gains going to fp16 we did not observe such behaviour. Running at 17.9130 seconds

this is slower than the float version

Moreover the accelerator did not achieve the correct results with the final render having

visual artifacts B despite there being no timing violations whatsoever. The pattern of said

artifacts are produced at the point where we cast a ray to determine if the intersected point

lies in a shadow or not. The circular shape of the disturbances indicate that the distances cant

be represented with 16 bits and thus a point that would normally lie in the path if the distant

light source are detected to be in a shadow. Disabling unsafe math optimisation did nothing.

4.3.4 1/x Elimination

The algorithm requires the calculation of 1/determinant as such this division is something

that takes a lot of time. Another potential optimisation is to replace the 1/xwith a lookup table

of pre­calculated values [22] using a method to scale the number between 0 and 1 or 1 and

2 reducing the execution time problem to an area one. Alas such strategies can be available

to us if a data dependency on the critical path wasn’t halting the computation progress.

4.4 Multiple accelerators 43

As mentioned above the fixed point arbitrary precision and half precision data types did

not yield correct results thus leaving the division dependency unaltered.

In case of a better performance gain using other methods this can be performed to provide

a boost and free computational resources in the FPGA slice.

4.4 Multiple accelerators

Multiple accelerators can be used as the algorithm has very high parallelization potential.

Each pixel is independent from neighbouring pixels. This combined with the fact that we

have all the available data at hand we can choose at which granularity level we parallelize

and what procedure of the rendering process.

As the accelerator stands we can approach this from several angles stating with top down

view and render even and odd lines on two parallel running render loops thus effectively

splitting the render process in two. This is a more high level strategy that lends itself to more

performance gains than any other, Nvidia was using a very similar strategy in SLI connected

GPUs with Split Frame Rendering [23]. Subsequently an even­odd split of the rendering

workload will provide a performance boost to every scene it is preferable to be added at

the end and exploit potential parallelization in other more fine grained areas first, such as

eliminating the need to call the accelerator again and again for each interaction by splitting

the load to two accelerators and equipping them with buffers. This will have the advantage

of fewer data transfers needed and will give us a potential performance boost to scenes with

only one object.

Object level parallelism can be added in a further stage of the project. A potential outcome

would be to have two accelerators for Ray triangle intersection calculations in an object and

then two or four sets in order to cover the object list. This will require storing the results

and then deciding which will be the final intersection for that pixel and decide its colour

afterwords. This gives us a total of eight accelerators as a potential target.

4.4.1 Buffer on accelerator

Multiple accelerators, Triangle level granularity:

At first we tested in software a buffered implementation with a single accelerator in order

to test increased procedures going from ARM to accelerator. After a successful test we can

44 Chapter 4. HLS stage

Table 4.11: Buffer implementation Vivado Utilization

LUT LUTRAM FF BRAM DSP BUFG Power

38 42 16 99 62 3 2.65 W

spilt the load of testing the tingles of a single object to multiple accelerators. The buffer will

contain three arrays with data of two categories, static and dynamic. Static data involves data

that are calculated on a frame or pixel basis they include the ray direction and origin. Dynamic

data are comprised of an array with the vertex position in space and a list of the index to create

each triangle. Using this tactic as mentioned in previous chapters helps save space for bigger

triangle meshes.

Master axi interface will be utilised as from this point forward we will be dealing with

arrays instead of scalar variables, thus using burst mode with memcpy. In order to apply this

optimisation we used a buffer to hold all the information that would be used in the computa­

tion. As the computation takes place at the triangle level we need to store vertex position in

space for each object we need to process. Keeping the storage cost down each object has only

the absolute necessary vertex position needed to describe an object and using an index array.

Those are stored in a format different from the format that what our hardware accelerator

can realistically be able to be expected to handle. The procedure falls on the software side of

the implementation to package the input data in such a way that the accelerator can access

easley. This does introduce additional processing time but will greatly help us in the multiple

accelerator run. For floating point vertex positions it was determined that the most complex

object in our library needed 9723 vertex position floats amounting to 38 MiB of data and

12719 50 MiB going to index storage. Having that procedure take that much time it needs to

be offset by utilizing multiple accelerators splitting the processing load of determining if an

intersection occurred for that particular object.

These modifications had an undesired effect, the immediate and substantial increase in

area consumed bu the accelerator with worst performance. Utilizing almost 99 present of the

available Block RAM as seen below.

Even though the average runtime of each function intersection function was 0.0702 this

added up to the already huge hardware cycles the accelerator needed to produce a result.

Before appling the multiple accelerator run the introduction of a loop in theHLS accelera­

4.4 Multiple accelerators 45

Table 4.12: Loop Pipeline implementation Vivado Utilization

LUT LUTRAM FF BRAM DSP BUFG Power

37.42 42 16 99 62 3 2.308 W

tor unlocked several optimisation pragmas to help us increase the performance per accelerator

further. These include

• Dataflow

• Pipeline

• Loop Unroll

• Loop flatten

• Array partitioning

Dataflow:

This optimisation was not able to be applied due to dependency on previous loop iteration.

Various changes to improve that were made but none were able to mitigate this problem

without altering the functionality. Thus this optimisation was not applied.

Loop Pipeline ­ rewind:

The pipeline directive will allow Vitis HLS to reduce the interval it takes for the next

iteration of a loop by enabling concurrent execution of read, process and write tasks within

the loop. Using the rewind option further attempts to further eliminate the pause occurring

after one loop ends and the next begins thus creating a system with continues loop pipelining.

Array Partitioning:

Array partitioning splits the array into smaller arrays or even individual registers. Doing

this we can increase the throughput of the accelerator as well as enabling more memory

ports to be used. In conjuction with loop pipelining we should be able to see performance

improvements albeit with a lot of area overhead. The partitioning value was selected to be 3

due to the access pattern of the main loop which has the pipeline pragma enabled.

Loop Unroll ­ factor N:

Loop unrolling effectively copies the loop body enabling some portions of the loop to

execute in parallel. Due to the variable loop ending and the large area requirements partial

46 Chapter 4. HLS stage

Table 4.13: Array Partitioning implementation Vivado Utilization

LUT LUTRAM FF BRAM DSP BUFG Power

50 56 21 99 84 3 2.774 W

loop unrolling was selected to be tried. In Vitis HLS if array partitioning is used pars of the

loop accessing the partitioned data are unrolled. The unroll factor selection was done by

estimating the appropriate area to performance balance.

Table 4.14: Loop Unroll implementation Vivado Utilization

LUT LUTRAM FF BRAM DSP BUFG Power

73 24 42 54 100 3 3.055 W

All the above avenues of experimentation led to very high utilisation of the FPGA fabric

and even if the buffer size was reduced, DSP utilization exceeded 50% of available modules.

Effectively killing our multi­accelerator strategy.

4.4.2 Multiple accelerators No Buffer:

In this last trial we attempted to use the single accelerator with the best performance and

minimal area utilisation. This included using the ARM processor to divide the load between

the available accelerators as a load balancer would.

The plan consists of fitting as many accelerators as the ZedBoard can handle and then

using the triangle loop to activate different accelerator depending on how many triangles we

need to calculate. The correct intersection result will be chosen based on the return value of

the accelerator, true on a valid intersection and false on no intersected detected, and the final

intersected triangle would be selected based on the distance form the origin which is one of

the accelerators outputs.

This was found to be the only way to both keep the design small and simple to fit a

relatively small FPGA fabric like the one on the ZedBoard and keep it power efficient.

Alas this route proved too much for the fabric of our ZedBoard to handle. With simple

plane scene B.2 taking as much time as the single accelerator the extra overhead of setting the

accelerator ports proved to be disastrous. Due to the extended usage of the ZedBoards fabric

4.4 Multiple accelerators 47

the we couldn’t run the accelerator at its rated frequency either getting us below 200MHz and

into 150MHz. This is one other major factor why the multiple accelerator was slower.

accelerators Time LUT LUTRAM FF DSP BUFG Power

x8 26.81 s @ 100 MHz 57 5 48 95 3 2.398 W

x4 21.46 s @ 100 MHz 29 3 25 47 3 2.031 W

x2 17.03 s @ 187 MHz 15 2 12 24 3 2.031 W

x2 24.70 s @ 100 MHz 15 2 12 24 3 1.856 W

x1 17.36 s @ 214 MHz 8 1 6 12 3 1.884 W

x1 23.94 s @ 100 MHz 8 1 5 13 3 1.722 W

Table 4.15: Multiple accelerators performance and Vivado Utilization

Only Running the x2 accelerators at the highest frequency we got some tangible results

with a small improvement in performance. That being said other scenes required more than

three hours to run.

Chapter 5

Conclusions

5.1 Closing Arguments and Conclusions

Although promising, the size and available hardware on the ZedBoard’s programmable

fabric didn’t allow very much room to take advantage of the inherent parallelism offered for

such applications. The hard number crunching problem the accelerator was called to solve

didn’t lend it self to very much room for optimisations.

As stated above reduced precision data types (arbitrary and half precision) were promis­

ing they did not prove to be working with the way the algorithm handles ray ­ triangle inter­

action. Using the unit triangle to reduce the calculations needed to perform the intersection

increased the precision needed dramatically. As stated using buffered accelerators to avoid

continued and frequent data transfers to the accelerator didn’t yield the result expected and

the area utilisation skyrocketed. With very poor performance per accelerator and no room to

explore multiple accelerator options this strategy was abandoned.

The final results are produced running the basic benchmark scenes simple plane 1 B.2 and

simple plane 2 B.5 as they are the only ones that run within reasonable time in both 1080p

and 720p experiments.

Pitting the best accelerator performance achieved against ARM and X86 further proves

our point that more complex and powerful fabric is needed.

49

50 Chapter 5. Conclusions

Figure 5.1: Performance Between Platforms 1080p

Figure 5.2: Performance Between Platforms 720p

Below are all the accelerator optimisation paths against each­other, runs that produces

5.1 Closing Arguments and Conclusions 51

artifacts were omitted.

Figure 5.3: Performance Between accelerator Optimisations 1080p

Figure 5.4: Performance Between accelerator Optimisations 720p

52 Chapter 5. Conclusions

Although the results were not what we expected this shows us that Ray tracing algorithms

need excessive modifications in order to tun on low performance and power hardware effec­

tively and needs a lot more optimisations in order to level the playing field with x86. This

shows us that FPGA needs more CPU GPU type relationship and much higher performance

fabric as an extra processing part connected with a PCI Express interface.

5.2 Future Work

Future work on the project includes the usage of a smarter more efficient data structure

and traversal algorithm for each pixel to minimize the number of intersections to be checked.

Designing the accelerator with Verilog HDLwill be also on the list as HLS programs gen­

erally don’t offer the same level of performance as a good digital designer can produce. On

that note a more ”hands on” approach would make sure more parts of the algorithm would re­

ceive individual attention. Therefore designed to be also accelerated using the FPGAs fabric

instead of containing everything on on a single accelerator. Critical path control and a more

decentralized approach would help greatly in that regard. A hybrid rendering approach like

the one Nvidia uses [4] [5] would also be an option. Although an optimized pure RT im­

plementation is generally preferable in order to utilize multiple parts of our hardware design

increasing the overall system efficiency.

Certainly more powerful FPGAs can be utilized in the future with more processing power

and area than ZedBoard and with faster connectivity to the outside world e.g. PCIe. This

would unlock more powerful CPUs and access more direct access to data.

Research in this topic already has shown that this is achievable using older FPGA fabrics

more modern ones will be able to interface with modern renderers and graphical APIs to

provide RTI acceleration.

As a last future plan, expanding the rendering engines capabilities and supported effects

such as Anti Aliasing and indirect lighting is always a welcome improvement.

Bibliography

[1] Rasterization: a practical implementation. https://www.scratchapixel.

com/lessons/3d­basic­rendering/rasterization­practical­

implementation. Date Accessed: 26­08­2020.

[2] An overview of the ray­tracing rendering technique. https://www.

scratchapixel.com/lessons/3d­basic­rendering/ray­tracing­

overview. Date Accessed: 26­08­2020.

[3] Giao Pham, Suk­Hwan Lee, and Ki­Ryong Kwon. Interpolating spline curve­based

perceptual encryption for 3d printing models. Applied Sciences, 8:242, 02 2018.

[4] Nvidia turing gpu architecture. Nvidia Turing GPU Architecture whitepaper. Date

Accessed: 20­09­2020.

[5] Nvidia ampere ga102 gpu architecture. NVIDIA Ampere GA102 GPU Architecture

whitepaper. Date Accessed: 20­09­2020.

[6] J. Fender and J. Rose. A high­speed ray tracing engine built on a field­programmable

system. In Proceedings. 2003 IEEE International Conference on Field­Programmable

Technology (FPT) (IEEE Cat. No.03EX798), pages 188–195, 2003.

[7] MARKUS BILLETER OLA BÅNGDAHL. Fpga assisted ray tracing, rendering large

offline scenes. Master’s thesis, Department of Computer Engineering Computer Graph­

ics Research Group CHALMERS UNIVERSITY OF TECHNOLOGY, 2007.

[8] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang Paul, and Philipp Slusallek.

Realtime ray tracing of dynamic scenes on an fpga chip. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2004, Grenoble,

France, August 29­30, 2004, pages 95–106, 01 2004.

53

https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview

54 Bibliography

[9] Racing the beam ray tracer. https://tomverbeure.github.io/rtl/2018/

11/26/Racing­the­Beam­Ray­Tracer.html#introduction. Date Ac­

cessed: 01­04­2020.

[10] Zynq­7000 soc data sheet: Overview (ds190). https://www.xilinx.

com/support/documentation/data_sheets/ds190­Zynq­7000­

Overview.pdf. Date Accessed: 9­011­2020.

[11] Vitis hls coding styles. https://www.xilinx.com/html_docs/

xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html#

iyg1582649282811. Date Accessed: 9­011­2020.

[12] J. Liaperdos, A. Arapoyanni, and Y. Tsiatouhas. Caching architecture for flexible fpga

ray tracing platform. Journal of Parallel and Distributed Computing, 104:61–72, Jun.

2017.

[13] J. Schmittler, I. Wald, and P. Slusallek. Saarcor – a hardware architecture for ray tracing.

Proc. of the Conference on Graphics Hardware 2002, pages 27–36, 2002.

[14] Tomas Möller and Ben Trumbore. Fast, minimum storage ray­triangle intersection.

Journal of Graphics Tools, 2, 08 2005.

[15] Ray tracing: Rendering a triangle. https://www.scratchapixel.com/

lessons/3d­basic­rendering/ray­tracing­rendering­a­

triangle/moller­trumbore­ray­triangle­intersection. Date

Accessed: 26­08­2020.

[16] Introduction to polygon meshes. https://www.scratchapixel.com/

lessons/3d­basic­rendering/introduction­polygon­mesh. Date

Accessed: 26­08­2020.

[17] Ray­tracing a polygon mesh. https://www.scratchapixel.com/lessons/

3d­basic­rendering/ray­tracing­polygon­mesh. Date Accessed: 26­

08­2020.

[18] Transforming objects using matrices. https://www.scratchapixel.com/

lessons/3d­basic­rendering/transforming­objects­using­

matrices. Date Accessed: 30­08­2020.

https://tomverbeure.github.io/rtl/2018/11/26/Racing-the-Beam-Ray-Tracer.html#introduction
https://tomverbeure.github.io/rtl/2018/11/26/Racing-the-Beam-Ray-Tracer.html#introduction
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html#iyg1582649282811
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html#iyg1582649282811
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html#iyg1582649282811
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-polygon-mesh
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-polygon-mesh
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-polygon-mesh
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-polygon-mesh
https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-matrices
https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-matrices
https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-matrices

Bibliography 55

[19] Introduction to shading. https://www.scratchapixel.com/lessons/3d­

basic­rendering/introduction­to­shading. Date Accessed: 15­09­

2020.

[20] The phong model, introduction to the concepts of shader, reflection mod­

els and brdf. https://www.scratchapixel.com/lessons/3d­basic­

rendering/phong­shader­BRDF. Date Accessed: 18­09­2020.

[21] Global illumination and path tracing. https://www.scratchapixel.

com/lessons/3d­basic­rendering/global­illumination­path­

tracing. Date Accessed: 20­09­2020.

[22] M. J. Schulte and J. E. Stine. Symmetric bipartite tables for accurate function approxi­

mation. InProceedings 13th IEEE Sympsoium onComputer Arithmetic, pages 175–183,

1997.

[23] Sli: Split frame rendering. https://docs.nvidia.com/gameworks/

content/technologies/desktop/sli.htm. Date Accessed: 01­04­2020.

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading
https://www.scratchapixel.com/lessons/3d-basic-rendering/phong-shader-BRDF
https://www.scratchapixel.com/lessons/3d-basic-rendering/phong-shader-BRDF
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing
https://docs.nvidia.com/gameworks/content/technologies/desktop/sli.htm
https://docs.nvidia.com/gameworks/content/technologies/desktop/sli.htm

APPENDICES

57

Appendix A

Software Documentation

A.1 File Formats

A.1.1 Object Options Data file

Object Option data (.ood)

• Object to world coordinates

• Set the material type(0­Diffuse, 1­Reflection, 2­ReflectionAndRefraction, 3­Phong)

• Index of refraction (also sometimes referred to as ior)

• albedo = reflect light / incident light

• phong model diffuse weight

• phong model specular weight, control the size of matte lighting spot

• phong specular exponent, control the size of specular spot

A.1.2 Scene Options Data file

Scene Option data (.sod)

• Set resolution width

• Set resolution height

• Field of view changes how much of the scene is visible

59

60 Appendix A. Software Documentation

• Set background colour when no intersection occurs

• Camera to world Set the camera to a position in the scene

• Sets shadow bias

• Sets a limit to how many rays we ”chase” to find an objects contribution

• Number of lights in the scene

• Type of light

• Select the light colour

• Select the light intensity

• Light to world coordinates

A.1.3 Geometry file

Geometry file data (.geo)

• The first number defines the number of faces making up the mesh.

• The second and third line is just a series of integers representing the face index and the

vertex index arrays.

• The next line contains the vertex position data.

• The next lines contains the normal data.

• The last line contains the texture coordinates data.

Appendix B

Images

B.1 Sample Test Scenes

Figure B.1: Scene features a plane and a glass with reflection and refraction effect

61

62 Appendix B. Images

Figure B.2: Simple plane scene consisting of only one object and two triangles

Figure B.3: Scene features a plane and 4 glasses illuminated by distant lighting

B.1 Sample Test Scenes 63

Figure B.4: Scene features a plane and 4 glasses illuminated by point lighting

Figure B.5: Simple plane scene consisting of only one object and two triangles

64 Appendix B. Images

Figure B.6: Utah teapot famous render object in the world of computer graphics

Figure B.7: A scene featuring illumination from point lights Phong and reflect refract object

types

B.2 FP 16 Artifatcs 65

B.2 FP 16 Artifatcs

Figure B.8: FP 16 Artifacts Sample Scene Simple Plane B.2

Figure B.9: FP 16 Artifacts Sample Scene Simple Plane 2 B.5

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Problem Statement
	Contribution and Content Mini-map

	Background
	What is Ray Tracing
	Used Platforms
	FPGA & ZedBoard

	Notable Research
	FPGA
	Nvidia RTX

	Base SW Rendering Engine
	Chosen Implementation
	Ray Triangle Intersection Algorithm
	Render system
	Testing Methodology

	Software Baseline & Hot-spot Analysis

	HLS stage
	HLS base accelerator
	Code preparation and building basic HW functionality
	Base Performance and Optimisation Paths
	Fabric Frequency
	HLS Directives
	Arbitrary/Half Precision
	1/x Elimination

	Multiple accelerators
	Buffer on accelerator
	Multiple accelerators No Buffer:

	Conclusions
	Closing Arguments and Conclusions
	Future Work

	Bibliography
	APPENDICES
	Software Documentation
	File Formats
	Object Options Data file
	Scene Options Data file
	Geometry file

	Images
	Sample Test Scenes
	FP 16 Artifatcs

