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ABSTRACT 

Over the past years, music compositions have involved a number of traditional activities, 

such as the creation of melody and rhythm, voice-leading, musical arrangement or 

orchestration, and notation. Nowadays, thanks to technology, all the above activities can 

be automated by a computer on various levels and specifically algorithmic composition 

has facilitated the automated procedure of generating music compositions. The tasks of 

producing music can be applied nowadays in two ways. The first one is to generate music 

which is similar either to a number of compositions or a specific style. The second way is 

to automate composition tasks and generate compositions without the need of human 

intervention. Modeling music cognition with artificial intelligence is commonly seen as a 

way of enhancing our knowledge in the field of human psychology and intellect. In fact, 

the procedure involves taking some problem solving steps. First, we need to figure out 

how to measure music in the form of input information. The next step is to find a way to 

present that information to the computer. Moreover, it is important to know how the 

information will be represented in the computer program so that the program can come 

to some understanding of its meaning. Finally, we should focus on what the computer will 

do with all this knowledge. This thesis is bibliographical and contains information from 

already existing research on algorithmic composition. 
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ΠΕΡΙΛΗΨΗ 

Στο παρελκόν, θ μουςικι ςφνκεςθ περιλάμβανε μια ςειρά από παραδοςιακζσ 

δραςτθριότθτεσ, όπωσ τθ δθμιουργία τθσ μελωδίασ και του ρυκμοφ, τθν προςκικθ 

κφριασ φωνισ, τθ διάταξθ και ενορχιςτρωςθ, και τθ μουςικι ςθμειογραφία. Σιμερα, 

χάρθ ςτθν τεχνολογία, όλεσ οι παραπάνω δραςτθριότθτεσ μποροφν να 

αυτοματοποιθκοφν από ζνα υπολογιςτι ςε διαφορετικά επίπεδα και ςυγκεκριμζνα θ 

αλγορικμικι ςφνκεςθ ζχει διευκολφνει τθν αυτοματοποιθμζνθ διαδικαςία δθμιουργίασ 

μουςικϊν ςυνκζςεων. Οι εργαςίεσ παραγωγισ μουςικισ μποροφν να εφαρμοςτοφν 

πλζον ςιμερα  με δφο τρόπουσ. Ο πρϊτοσ τρόποσ είναι να δθμιουργιςουμε μουςικι 

που είναι όμοια είτε με ζναν αρικμό ςυνκζςεων είτε με ζνα ςυγκεκριμζνο ςτυλ. Ο 

δεφτεροσ τρόποσ είναι να αυτοματοποιιςουμε τισ εργαςίεσ ςφνκεςθσ και να 

δθμιουργιςουμε ςυνκζςεισ χωρίσ τθν ανάγκθ ανκρϊπινθσ παρζμβαςθσ. Η  

μοντελοποίθςθ τθσ μουςικισ γνωςτικισ λειτουργίασ με τθν τεχνθτι νοθμοςφνθ 

προςεγγίηεται ςυνικωσ ωσ τρόποσ αφξθςθσ των γνϊςεϊν μασ ςτον τομζα τθσ ανκρϊπινθ 

ψυχολογίασ και διάνοιασ. Στθν πραγματικότθτα, θ διαδικαςία μοντελοποίθςθσ 

περιλαμβάνει  τθν ανάγκθ να ακολουκιςουμε τζςςερα βιματα επίλυςθσ προβλιματοσ. 

Πρϊτον, πρζπει να ανακαλφψουμε πϊσ να μετριςουμε τθ μουςικι ζτςι ϊςτε να ζχει τθ 

μορφι ειςόδου πλθροφοριϊν ςτον υπολογιςτι. Το επόμενο βιμα είναι να βροφμε ζναν 

τρόπο να παρουςιάςουμε αυτζσ τισ πλθροφορίεσ ςτον υπολογιςτι. Στθ ςυνζχεια, είναι 

ςθμαντικό να γνωρίηουμε πϊσ οι πλθροφορίεσ κα αναπαραςτακοφν ςτο πρόγραμμα 

υπολογιςτι ζτςι ϊςτε το πρόγραμμα να μπορεί να κατανοιςει τθ ςθμαςία του. Τζλοσ, 

πρζπει να επικεντρωκοφμε ςε αυτό που κα κάνει ο υπολογιςτισ με όλεσ αυτζσ τισ 

γνϊςεισ. Αυτι θ διπλωματικι εργαςία είναι βιβλιογραφικι και περιζχει πλθροφορίεσ 

από ιδθ υπάρχουςεσ ζρευνεσ ςχετικζσ με τθν Αλγορικμικι ςφνκεςθ. 
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CHAPTER 1 

INTRODUCTION 

Music plays an important role in today’s society. People always find a way to express their 

inner world, through the combination of sounds, voices or instruments, to achieve beauty 

of form and expression. Music can also be defined as those temporally patterned human 

activities, which involve the production of sound and have no evident and immediate 

aim[1]. In other words, what music is for some at present is not what music is for others, 

was for our predecessors, or could be for the next generations in the future. We could 

also look at music as a multimedia activity of some patterned movements that has the 

ability and the capacity to coordinate the emotions of participants and thus lead to 

conjoinment[1]. 

Musical knowledge derives from the development of music through an individual’s 

lifetime as well as its history through the years that human species exist. Music cognition 

is an advantageous area to study, because of its relation to intuitive and learned 

knowledge. Knowledge of intuition, is commonly shared among humans as a part of our 

evolutionary history, while learned Knowledge can be diverse across cultures as it is 

produced by cultural evolution. 

What is interesting to Know about music cognition is the fact that our neural structure 

was shaped by natural selection throughout the evolution of the human species. 

According to researchers who have examined the evolution of music in our species, music 

has offered an advantage to the individual either in the social framework or via 

mechanisms of sexual selection [2]. Their studies reflect a more general trend in modern 

psychology to perceive cognitive abilities as specific adaptive solutions to evolutionary 

problems. Therefore, we can now see music as a product of cultural or mimetic 

transmission, which consists of concepts that are grounded in specific social interactions. 

Many intuitive abilities that humans apply to music perception and music composing may 

not have evolved as musical processes by definition, but rather as processing mechanisms 

and knowledge selected for their utility within other domains such as conceptual 

representation, language expression, timing and emotion. 
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This idea is similar to the concept of exaptation, which is used to describe morphological 

forms that arise not because of direct selection pressures, but rather are the inevitable 

result of selection pressures for other qualities. The study of the human brain has always 

presented interesting results, which helped science to evolve and Artificial Intelligence is 

definitely a branch of it that has a lot to present in the not too distant future. 

Nowadays, more and more researchers are trying to implement algorithms capable of 

imitating the way that the human brain works in terms of music perception and cognition. 

This thesis aims to present my research on the studies which have already been carried 

out in the specific field of computational creativity called Algorithmic Composition, as well 

as to display the results this composition has produced. 
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CHAPTER 2 

COGNITIVE SCIENCE AND MUSICAL INFORMATION 

2.1 Introduction 

Having reviewed this issue from the perspective of cognitive psychology, it is time to 

discuss how the mental algorithms related to music cognition can be implemented in the 

human brain. 

First of all, we shall define musical information and the difference it makes to us. 

Information in general is defined as one or more bits of awareness, which are combined 

by an information processor (e.g. a brain or a computer), to produce some meaning. A 

processor is required to make a difference. This difference takes place at the processing 

stage and is noted between a bit of awareness and the current state of the information 

processor. The human mind is a great example of this kind of a processor and the way it 

functions when it is aware of music information is worth mentioning.(Figure 2.1) 

 
2.1 Brain perception of musical information [3] 

2.2 How do our brains receive musical information? 

So what bits of awareness do we receive, when we listen to a piano playing? Using 

musical terminology, we hear a note with a certain pitch, duration, amplitude and timbre. 

Our brain already contains a lot of preconceived Knowledge about the specific space we 

are in, what usually happens in this space and that we are likely to hear piano sounds, 

because we know that there is a piano in the room. These new bits of awareness that 

come from a piano playing , are perceived as different  because we hear a note which is 
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different from the preceding silence. Since the piano is the only instrument in the room, 

we identify that the note has the timbre of a piano. 

We could also identify if the note was short or long (based on our knowledge about the 

sustaining capabilities of a piano), the exact pitch of the note that is being played (if we 

have a perfect pitch). In addition to this information, the difference in time between the 

two notes has added another bit of awareness. Information in the other parameters has 

provided evidence of repetition. We need to mention that the role of repetition in music 

is different from redundancy in information theory. According to Chris Dobrian (1993, p2), 

repetitive events or information in music cannot be considered redundant since 

probability and expectation are reinforced by repetition. Regarding repetition, we need to 

bear in mind that past evidence is simply evidence, not an explanation for what happened 

in the past. As for musical applications of information theories, past events do not 

determine the future because we Know , for example, that a composer can produce 

something new unexpectedly due to his free will. In this case some evidence is missing. 

We only know what has happened, but we don’t know how or why or which rules lead to 

this behavior. Therefore, the odds of repeating the pattern or not are still even after 99 

repetitions, and we can’t predict what will happen afterwards if we don’t Know the 

reason why it will happen. [4]. 

As far as musical performance is concerned, it also involves how musicians, through the 

performance, communicate structure to the listener. The written notation of Western 

music represents pitch and duration much more explicitly than it does the structural and 

expressive principles, such as phrasing and tension-relaxation. However, the performer 

provides information about these unwritten aspects of the piece to the listener, often 

through systematic variances from the notated music. In many cases the qualities that 

affect the way music is perceived by the listener, are changes in tempo, dynamics, and 

synchrony, done in a systematic way as to bring the structure of the song across to the 

listener [4]. 

2.3 Aesthetic decisions 

Two categories of computer music exist. One is about compositions that are produced 

with the help of computers and the other one is about compositions made by computers 
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alone. We can only say that a computer composes music by itself, when it has the ability 

to make choose between random options that are based on some aesthetic knowledge 

that was provided to it by the programmer, or even on information that the program 

collected through a period of time. On the other hand, if the computer program just 

follows some commands or rules and has no ability of choosing between some options, it 

is just proceeding to the performance of specific pre-ordered by the programmer tasks. 

[4]. 

What is an aesthetic decision? 

By aesthetic decision we mean a choice which attempts to achieve an interesting and 

pleasant result. Artificial intelligence is mainly concerned with the idea of explaining 

decisions with algorithms because computers just follow some orders and they don’t 

have the ability to understand the reason why.  This means that it’s the responsibility of 

the programmers to figure out how a computer is going to reach a pleasant result by 

making aesthetic decisions [4] .  

How do humans make decisions when they compose music? 

When it's time for the composer to decide about which the starting element of his/her 

song would be (e.g., tempo, pitch), he/she has to either be based on some aesthetic 

decision or on some arbitrary choice made among a corpus of ideas that he/she has 

collected. This last approach is a procedure that a computer can do way faster than a 

human-being. Therefore, we can see, that every decision that is based on some rules, 

needs to be based on some prior aesthetic or arbitrary decision in order to be made. By 

trying to trace these aesthetic or arbitrary criteria back to their prior choices, we are 

bound to reach a deadlock where we simply like the result or it doesn’t matter. In this 

case, we meet a new attribute called taste. Until this moment, this kind of decisions that 

are made using the intellect, cannot be understood by the human mind and this is why 

intuition should be considered as a dimension that is included in making decisions. In the 

case we reach a point where we cannot decide which aesthetic decision is better, we 

choose to take the path of making an arbitrary choice between them. [4]. 
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Computer programs and aesthetic decisions 

To conclude, we can understand that a decision-making program cannot be independent 

of the programmer’s taste and intuition and since the computer lacks any creative 

capability, some mechanism is needed as a substitute to human creativity for any AI 

algorithm applied to a creative problem [4]. 

 

 
 

 

 

 

 

 

 

2.4 Definitions of important attributes of music 

Among the temporal attributes of music are pitch, meter, rhythmic pattern, grouping, and 

tempo. 

Pitch Scales 

Most periodically vibrating objects, to which we attribute pitch, including the human 

vocal folds and the strings of musical instruments, vibrate at several frequencies 

simultaneously. These frequencies are approximately integer multiples (harmonics) of the 

fundamental frequency, and the complex is called a harmonic spectrum .Although each of 

these frequencies sounded alone would evoke a spectral pitch, when sounded 

simultaneously they make up a singular periodicity pitch[5]. 

Traditionally, pitch has been described as varying along a single dimension from low to 

high, called pitch height. Along this dimension, pitch is a logarithmic function of 

frequency. The Western equal-tempered tuning system divides each frequency doubling 

(octave) into twelve equally spaced steps (semitones) on a logarithmic scale, where one 

note is about 1.06 times the frequency of the preceding note [5]. 

2.3.1 Aesthetic decisions and creativity [3] 
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2.4.1 Frequencies Table [6] 

 
Meter 

Meter is a hierarchical organization of beats .The first essential characteristic of meter is 

isochrony, which means that the beats are equally spaced in time, creating a pulse at a 

particular tempo. A beat has no duration and is used to divide the music into equal time 

spans, just as in geometry a point divides a line into segments[5]. 

 

 

2.4.2 Examples of Meter [7] 
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Tempo 

With the help of the meter we can identify the tempo, which is an attribute used to 

describe the rate at which the basic pulses of the music occur[5]. 

 

 

2.4.3 Metronome for Tempo Detection[8] 

 

Rhythm Perception 

Rhythm is perceived by detecting patterns of events in time. A listener has to detect a 

basic time interval, a beat or pulse, which remains stable for some period of time in order 

to detect a target rhythm. Any method of pattern detection can classify in the same group 

musical events which belong to the same pattern. As far as the perception of rhythm is 

concerned, we use the outline of time intervals within the patterns of identical events to 

find out the perceived rhythm in a piece of music. This rhythm is then analyzed for 

patterns which may indicate organizational concepts such as pulse, beat, and meter [5]. 

 

 

2.4.4 Perceived beats from music analysis [4] 
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Many factors can determine the perception of rhythm. In the example showing in the 

picture below (Figure 2.4.5), we notice that the dynamic accents and the pitch contour 

present two different additional rhythms, a dynamic accent every three eighth notes and 

a change of pitch every four eighth notes. Almost all Western music is characterized 

frequently by this type of interplay of different rhythms [5]. 

 

2.4.5 Western music is well known for interplaying different kind of rhythms[4] 
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CHAPTER 3 

HOW DO COMPUTERS PERCEIVE MUSIC? 

3.1 How we measure musical information? 

In order to produce computer input, we must decide on one or more parameters to 

measure because we cannot measure all aspects of a piece of music in any significant 

way. Yet, we must keep in mind that culture, musical style and individual preference 

affect our definition and choice of these parameters. Inevitably, a cognitive model will 

show the personal favor of the programmer. After we decide what to measure, we must 

tackle problems of how to measure.  

We are now going to examine the representation of the input information in our 

program, and what we intend to do with it. 

 

 

3.1.1 Graphic representations of three possible measurements, in order from minimum 

information to maxim [4] 

3.2 MIDI Quantization  

The unit of measure (such as milliseconds) in most computer implementations is by far 

smaller than the smallest interval to be considered a musical pulse. As a result, the input 

data must therefore be modified and quantized to correspond with a reasonable musical 

pulse unit. The best method to perform this is MIDI quantization. MIDI uses a simple 

rounding method of quantization, in which each event is rounded to the nearest multiple 

of a basic minimum quantum. Quantize resolution tells the computer how fine the grid 

should be. For example, if we pick eighth note resolution, all notes will be moved to the 

nearest eighth note position. If we happen to have played a rhythm that includes 
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sixteenth notes, our phrase will get changed in a way we won’t intend to. A good rule is to 

quantize to the shortest note we’ve played. This means that, if the phrase features eighth 

and quarter notes, we use eighth note resolution. This method does not permit changes 

in the tempo of the performance. Once the input data has been represented in the 

computer as a time-tagged set of MIDI bytes, the data is processed by the computer 

program in order to interpret its significance. [4] 

 

3.2.1 MIDI Quantization as shown in DAW FL Studio [9] 

3.3 A rule-based expert system for music perception 

In 1988 Benjamin Miller, Jacqueline A. Jones and Don Scarborough, wrote an algorithm in 

Pascal, which aim was to take advantage of the theory of music perception and to 

illustrate a number of techniques. Their goal was to create an algorithm which perceives 

music in a similar way that human beings do. For example, a song can be divided into 

rhythmically similar half parts and each one of them will consist of two lines. Each half will 

also contain two notes per line and these notes will be equally spaced in time. This 

pattern of structure is the metric structure. What we call the grouping structure, is the 

process in which we divide these two half parts into lines, which is an essential part of 

music perception as well.  A listener could also have the ability to perceive the key of the 
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song (its tonality). When we listen to a part of a song we are familiar with, we already 

know what is the next chord of the part we perceive at this moment. These intuitions 

were formalized by Jackendoff and Lerdahl (1983) in a rule set of theories, which they 

called the “Generative Theory of Tonal Music” (GTTM). In this theory, an analysis is taking 

place, which is divided in four parts (stages). Each stage is embodied in a set of rules [10]. 

The use of a rule based system in this case, was due to the expression of the GTTM in a 

set of rules and due to the fact that rule based systems develop in rapid rhythms which 

made the researches browse through some of the available techniques. Therefore, it was 

the expression of theories as a set of rules that a rule based system supports, which made 

it appropriate for the implementation of this modular approach. The researchers wanted 

the simulation to implement the psychological processes which are related to the 

perception of music and this is the reason why their goal was to make this system 

function like a human which will perceive information in real time. As a result they 

preferred to use an architecture called Blackboard.  

3.3.1 The Algorithm 

The Blackboard 

The model of a Blackboard system is divided in three parts: 

1. A data structure which is global, the blackboard. 

2. The so called “knowledge sources” (KSs). Each one of them encloses information 

considering a specific stage of the main problem. 

3. A structure which has the role of monitoring and controlling which KSs will be 

active. 

The input information as well as information gathered as the analysis proceeds is all 

stored in different levels. Each level, in which the blackboard is divided into, represents 

different kind of knowledge. In this model that researchers implemented, information 

considering the individual notes is stored at the base of the blackboard. [10]. 
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Other levels of the blackboard represent data related to the analysis of a song, such us 

metric information, grouping information, and tonality information. Other levels are also 

being represented, meaning the ones that are based on a mixture of this information, 

referring to a higher level. Researchers stored data related to the levels within in linked 

lists and used pointers which were essential, so that the different levels of the blackboard 

could be linked and remain synchronized at the same time. As for the representation of 

the musical input, it needed to be solid, because we know that notation in music can be 

very dense, supplying the listener with a lot of data for every note that it contains. For 

instance, what a listener first perceives in a listening experience is data related to the 

pitch, the duration of the notes etc. This kind of information, represented in a symbolic 

way, is stored in the base of the blackboard. Researches also used a matrix in order to 

capture data (notes) at the time they are being captured (played). Every row of the matrix 

represents a single instrument with the sequences of the notes it plays and every column 

includes all notes that instruments play at an exact time. [10]. 

Representing this kind of information with a classic array wouldn’t be the best way to 

approach this problem, because most personal computers have limited memory and the 

result would have more cells being blank than including actual information (sparse 

matrix). Researchers tried to examine the results of representing piano music in this way. 

A 10 x 10 array was used so that it can represent the maximum amount of notes a piano 

player could play (rows) and their success in time (columns). We can see the results of 

such an example in Figure 3.3.1 below. A chord which consists of 8 notes is being played 

for two intervals, and 14 single notes follow. Therefore, we can clearly notice that the use 

of a matrix in this case would lead to an array with 130 empty cells out of the 160 

allocated.  [10]. 
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3.3.1 10x16 sparse matrix with 130 empty cells [10] 

A dynamic list with nodes that are linked with pointers with each other is what 

researchers used as a solution to this problem. The allocation of a node happens only 

when a new element, containing information, needs to be added to the list. In Figure 

3.3.2, arrows represent pointers, and each pointer is responsible for the connection 

between nodes, which is the main source of information. Pointers when followed can link 

to the next or the previous node, and this connection has the result of a linked-list being 

created. Figure 3.3.2 below shows the same example as before, but this time with the 

approach of linked lists. In this figure, the first line consists of nodes that represent events 

in the order that were captured. Every node is responsible for storing data about a note. 

An array approach would lead to the allocation of 160 cells, compared to the linked-list 

approach that saves space requiring only 46 nodes instead. Therefore, it is quite 

understandable why the linked-list approach was the preferred one here, because it set 

the researchers free of the obligation to decide how many notes will be represented and 

the maximum amount of notes that will be played in every measure. 
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3.3.2 A linked-list representation of (3.3.1) [10] 

As mentioned above, the blackboard is a global data structure which contains all 4 stages 

of this implementation (score, metric structure, grouping structure, tonality analysis). 

What researchers called the “backbone” of this structure is the so called “notochord”. 

The notochord is made of a doubly linked list , in order to capture the events that are 

happening in a specific time span in a specific time order. Every node of this list, only 

contains information about which is the time it took for an event to take place. This is 

simply the calculation of time between the previous event that started substituted from 

the time that the next event begins. This time, pointers also connect these nodes to other 

nodes with note data and to the representation of metric and grouping as well. No score 

data is included in these event boxes. On the other hand, each note node represents 

score data about a specific note that was played, and also contains a pointers’ pair, which 

role is to establish the connection of such a note to the “notochord” and to the rest of the 

notes that were played as well. [10] 
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3.3.3 The first note node for "Row, Row, Row Your Boat” in a schema [10] 

Knowledge sources 

Researchers tried to create a single KS for the implementation of every GTTM rule. A KS 

follows the "if-then" concept. Therefore, KS orders an action when some specific 

conditions take place. The following instance of a simple GTTM rule is which is presented 

by the researchers, is the algorithm below:  

“(IF n1n2n3n4 is a 4-note sequence, 

and n2, and n3, differ in duration, 

and n1, and n2 have equal durations, 

and n3, and n4 have equal durations, 

THEN there is evidence of a grouping boundary between n2 and n3)” 

In this simulation, a KS structure contains two parts: 

1. A function which role is to match patterns and to check the blackboard for a 

specified prior pattern. 

2. A consistent procedure which role is to apply all the changes that are done in the 

blackboard.  
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All these KSs needed to belong in a form-structure that will be able to make 

communication between KSs easier and this is why they chose to implement a structure 

based on “object oriented programming”. Therefore, every KS is considered an "object" 

which is responsible for the information in the structures, and encapsulates different 

methods that could be applied in each one of them. When the KS receives a specific 

message (initialize, execute, evaluate), it then applies the change that was asked to the 

data structure, a job that is simple due to the modular structure that this system is 

implemented (add replace nodes). [10] 

Control structure 

As mentioned above, a scheduling mechanism, is responsible to monitor what exactly KSs 

are about to execute and what is going to be the updated version of the blackboard. 

Although this procedure has the limitation that only a single KS can be running at a 

specific time, it is able to apply necessary changes as the analysis of song part is taking 

place. One of the most essential aspects of this implementation is the so called “window”, 

that defines which piece of the blackboard will be visible. This is the only piece of the 

blackboard that can be modified by a KS. Human beings have a short-term memory, when 

listening to music and this is the reason why researchers didn’t use unlimited memory for 

this implementation, in order to make it more familiar to the human listening experience. 

The Implementation 

At first the algorithm receives an input data file regarding the part of a song and creates 

the “notochord” of this input. Then, the window parameter is specified, and a specific 

part of the structure that was created is removed from the window. What is contained in 

the window is the exact data that a listener will first receive (researchers used windows 

that had the size of six – ten notes). The scheduling procedure maintains a task array, 

with each element of this array, being a different KS. The scheduler receives information 

from this array, such us information about the runnability and the priority of a KS and 

when it is time for a specific KS to run, a global variable is used in order to copy the task 

table there. After that, a notification is sent to the KS, informing it to execute a specific 

action (e.g., modification of the blackboard). A KS is responsible to inform the scheduler 
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in case of a modification of its status or in case of an action being completed. An overview 

of this implementation can be shown in Figure 3.3.4 below, which also shows the 

“Message Manager” which has the ability to control communication between the 

scheduler and all KSs [10]. 

 

3.3.4 The “Control Structure” of the  simulation [10] 

In this implementation, the scheduler maintains a list of all the KSs sorted, based on their 

priority and calls the one which has the highest one, allocating some specific time that 

this KS will run. After this time has passed, another KS is selected to be executed. In this 

experiment, it is not the scheduler, but the size of the window which informs the KS 

about how much data it has to work with. For instance, a small window would trick us 

into thinking that all KSs are being executed at the same time [10]. 

3.3.2 Grouping Analysis 

The rules that are responsible for the grouping of qualities such us the distance in the 

scale a song is in (e.g. C minor) among two notes, the difference of time that the notes 

are being played and the difference in the length of two notes are called grouping rules 

(sub-rules). If a boundary between some notes is found by a sub-rule, then the creation of 

a grouping node is completed, while also creating and adding this node to the list which 
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contains the boundaries that this specific rule produced. At the end, all these boundaries 

form a new structure, which is being examined by rules of a different (superior) level: A 

single linked list is created for every grouping that was made, and each of its nodes 

represents a candidate boundary it has found. Every grouping node is also connected to 

its related event in the notochord, and its nearest grouping node that the same KS 

created. Last but not least, if some other grouping rules have noticed a boundary at the 

exact event, then they already produced a node, which also needs to be connected with 

the nodes which have the same boundary. This connection of all nodes that have the 

exact same boundary makes it easier for a higher rule-set to examine the evidence at this 

given spot. Figure 3.3.5 below, illustrates the grouping analysis of song "Row, Row” that 

researchers used for this example. The most important notes, according to the rules that 

were applied by the researchers were the combination of boundaries between the 

eleventh and the twelfth note. Therefore, the piece is divided in two parts due to this 

boundary. The boundaries between the fifth and the sixth note (after "boat") and 

between the twenty-third and the twenty-fourth note (after last "merrily"), will define the 

second most important part of the piece [10]. 

 

3.3.5 “Grouping analysis” for song "Row, Row” [10] 
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3.3.3 Metric Analysis 

The direct translation of GTTM metric rules into algorithms is not possible. On the one 

hand, grouping rules include analysis algorithms, while on the other hand, metric rules’ 

role is to only point out what the form of the metric hierarchy is going to be when the 

parsing is over. Therefore, the analysis was implemented in one pass, using routines 

which are based on “the grid theory”.[11] According to Povel’s grid theory, we can try to 

fit grids of different size and of equally spaced marks to the musical events as well as to 

determine how much stress, or how good it fits, among these grids and events. 

Researchers proceeded in the modification of grid theory in different ways. For example, 

only the grids that the intervals proposed are taken into consideration and all grids that 

fit, correlate to a specific metric level in the GTTM hierarchy. In this experiment, grid 

stress is used in order to delete the parts (levels) of the hierarchy that a listener cannot 

hear. As for the way that researchers represented the metric structure, data considering 

the metric hierarchy at each beat is encapsulated in metric nodes, in addition to pointers 

which points to the notochord and to other nodes as well. The results of metric analysis 

of song "Row, Row" that researchers used for this example, is shown in the Figure 3.3.6. 

[10] 

 

3.3.6 Metric analysis of "Row, Row”. The relative rhythmic importance of the notes can be 

indicated by the number of dots [10] 
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3.3.4 Tonality Analysis 

The key of a music piece can be defined by human beings, and such thing can influence 

meter and the grouping as well. In the example we are examining, as for the metric 

structure, strong beats fall on notes C, E, and G which are the essential pitches which 

reflect the key that this song is in. The key of the song "Row, Row," is C Major and the 

piece contains twenty-five notes. What we notice in this example is that only five of the 

potential twelve chromatic notes occur (C (8), E (5) ,F ,G (5), and D). C, G, and E, when 

added, occur eighteen times out of the twenty-five notes and knowing that these 3 notes 

are the fundamentals of C Major, helps us extract the tonality of the song. Therefore, the 

most frequent notes of the chromatic scale, supply us with information about the key of 

the song part. A pitch node is used to represent every note and nodes are linked to chord 

nodes. Each one of these chord nodes gets input data from only three pitch nodes. The 

tonic, the subdominant, and dominant chords of a specific key, in groups of three chord 

nodes are linked to the key nodes. During the analysis, if notes are met in the input data, 

they activate the pitch nodes. Chord nodes are also activated by the pitch nodes and this 

finally leads to the activation of key nodes. The key node that is activated more times at 

some part of the piece sets the key that someone will perceive at any that exact point. In 

order to find the key of the piece, a single KS is designed from the researchers, and this 

mechanism is activated when new input data (notes) appear in the window. Therefore, in 

case of a new input, a new tonality calculation is done and this creates a new (temporary) 

tonality node, which is posted by the KS [10]. 
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CHAPTER 4 

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN MUSIC COMPOSITION 

4.1 How are we going to use musical information?  

So know that we know what music information consists of and how to get information 

from it, it’s time to decide what we want to do with it .This questions will influence what 

we are about to measure in musical information, the ways that these measurements are 

going to be represented, and how we are going to proceed with the data that are being 

represented. What is going to help us solve this problem is an insight into our own mental 

processes. A human-being active in music making, is always influenced by already existing 

songs he/she likes. Different kind of musical data can be used as initial inspiration 

(information) in a generative process like this. This kind of process may also be 

implemented as a compositional algorithm. 

4.2 Grammars 

In broad terms, a formal grammar may be defined as a set of rules to expand high-level 

symbols into more detailed sequences of symbols (words), representing elements of 

formal languages. Words are generated by repeatedly applying rewriting rules, in a 

sequence of so-called derivation steps. In this way, grammars are suited to represent 

systems with hierarchical structure, which is reflected in the recursive application of the 

rules [12]. 

To compose music using formal grammars, an important step is to define the set of rules 

of the grammar, which will drive the generative process. The rules are traditionally multi-

layered, defining several subsets of rules for different phases of the composition process, 

from the general themes of the composition, to the arrangement of individual notes. 

There are methods like examining a corpus of pre-existing musical compositions to distill 

a grammar able to generate compositions in the general style of the corpus, or using 

evolutionary algorithms. What is also important is the mapping between the formal 

grammar and the musical objects that it generates, which usually relates the symbols of 

the derived sequences, with elements of the music composition like notes, chords or 

melodies.  The use of the derivation tree to determine the various aspects of the musical 
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composition is another possible mapping. The problem with a grammatical approach to 

algorithmic composition is the difficulty to manually define a set of grammatical rules to 

produce good compositions. This problem can be solved by generating the rules of the 

grammar (and the way they are applied) automatically. Most styles of music are 

hierarchically structured, so the fact that formal grammar theory can be applied to music 

composition is not a surprise.                                 

4.2.1 L-Systems 

Lindenmayer Systems, also known as L-systems, is a form of grammar, which is most 

known for its feature called parallel rewriting. This means that in every step of the 

derivation, the application of all the possible rules happens at once instead of applying 

one rule per step. L-Systems have been applied successfully in experiments who examine 

the growth and shape of plants, because their structure is similar to the hierarchical one 

that these organisms have. This is the main reason why they have become so popular in 

algorithmic composition as well. Their basic function is string rewriting, which is mainly 

used for the transformation of an input based on a set of rewriting rules. This can work 

recursively with a feedback loop. If we successively replace parts of a simple initial object, 

complex objects can be defined and this makes rewriting a very powerful technique [12]. 

L-systems generate strings of symbols by repetitively substituting predecessors of given 

productions by their successors. However, there is an essential difference between L-

systems and the other known grammars. In these grammars productions are applied , one 

at a time, while in the case of L-systems productions are applied concurrently to all 

symbols in a given string. L-systems were conceived to formally describe the growth 

process of living organisms and in this context they were extensively studied by biologists 

and theoretical computer scientist. Another area which L-Systems were used was for the 

generation of realistic images of plants and trees for computer imagery purposes (Figure 

4.2.1) [12]. 

Graphical interpretation of L-Systems 

Przemyslaw Prusinkiewicz from Department of Computer Science University of Regina, in 

a paper written in 1986, presents a technique for generating musical scores with L-
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Systems, which consists of 3 steps. “At first, a string of symbols is generated by an L-

system. Then, this string is interpreted graphically as a sequence of commands controlling 

a turtle. A state of the turtle is a triplet (x, y, IX), where the Cartesian coordinates (x, y) 

represent the turtle's position, and angle IX, called the turtle's heading, is interpreted as 

the direction in which the turtle is facing.” The system Prusinkiewicz proposes would look 

the diagram in Figure 4.2.2. 

 

4.2.1 Simulation of plants using L-Systems [14] 
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4.2.2 Graphical representation of Prusinkiewicz’s algorithm [12] 

We assume that the initial state of the turtle is a string G, (κ0, λ0, α0), and b, ε are fixed 

parameters. The orders that the turtle follows (if we name the size of the step as b and 

the increase of the angle as ε) are the following: 

 F Move a step of size b, where the turtle moves to (k2, l2, α), where k2 = k1 + b* 

cos(ε) and l2 = l1 + b* sin(α) and sketches a line between (k1, l1) and (k2, l2). 

 f The same as the step above, but the turtle doesn’t sketch a line 

 + A right turn of angle ε. The turtle moves to (k1, l1, α+ε). (clockwise rotation is 

used as positive) 

 - A left turn of angle ε. The turtle moves to (k1, y1, α-ε). [13] 
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4.2.3 The turtle draws lines following the commands of the programmer [13] 

After the turtle is finished, the resulting geometric shape is traced in the order in which it 

was drawn. Then this figure is interpreted musically, as a sequence of notes with pitch 

and duration determined by the coordinates of the figure segments. 

Suppose that the Hilbert curve is traversed in the direction indicated by the arrow (as 

shown in Fig 4.2.4) and the consecutive horizontal line segments are interpreted as notes. 

The pitch of each note corresponds to the y-coordinate of the segment, and the note 

duration is proportional to the segment length. The resulting sequence of notes forms a 

simple score shown in Figures 4.2.5 and 4.2.6. Any curve consisting of horizontal and 

vertical segments can be interpreted in a similar way. In Przemyslaw Prusinkiewicz’s 

example, it is assumed that the notes belong to the C major scale and the first note is C. 

The use of a lookup table is always convenient, which allows the specification of an 

arbitrary mapping of y coordinates into note pitches. Prusinkiewicz suggests that other 

parameters, like velocity and tempo, could be controlled as well. 
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4.2.4 Traversing the Hilbert curve [13] 

 

4.2.5 The score associated with the Hilbert curve in the piano-roll notation [13] 

 

4.2.6 The score associated with the Hilbert curve in common musical notation [13] 

The scores generated using the above method, were actually interesting. Despite the 

simplicity of the underlying productions, they were relatively complex, but they also had a 

legible internal structure so that they do not make the impression of sounds accidentally 

put together .[13] 

4.2.2 Symbolic, Knowledge-Based Systems 

The implementation of algorithmic composition has been achieved with knowledge-based 

systems, because music theory as we know it is mainly based on rules that have the 

ability to control musical symbols. While the knowledge implemented in rule-based 
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systems is usually static, some of the knowledge may be dynamically changed. The 

natural term for this concept is machine learning. As for the advantages of knowledge-

based systems they have the ability to consider multiple objectives and find an optimal 

solution, which fulfills the largest number of targets. As a result, this system is able to 

consider when and how to break certain sets of rules or allocated targets, and interpret 

different rules with different levels of priority in parallel. There are also some 

computational approaches, which may never give a single optimal solution, but are able 

to propose a series of comparable scored different answers. Similarly, in music 

production, a  single generally accepted optimal mix of a music track cannot exist, but a 

series of different options that are all considered appropriate of a good mix from some 

points of view. This is due to the subjective nature of human beings and music 

production. [15] 

Automatic target mixing 

In 2009, researchers from University of London developed an algorithm which has the 

ability to mix songs without any human intervention. Songs that were used in this 

experiment consisted of many tracks and this is the reason why we refer to them as 

multi-track recordings. For example if the producers used a guitar, a piano, some drum 

hats and a flute for the construction of a song, each instrument is considered a distinct 

track and if all tracks are played simultaneously, we get the result of the whole song being 

played. For this experiment, the purpose that automatic target mixing had, was to derive 

the parameters in the mixing of a multi-track recording based on a target mix. The user 

was able to choose any audio signal as the target, due to some specific qualities like an 

equalization curve for a specific instrument or even a balance of the amplitude among 

different tracks [16]. 

How it works 

The recording which consists of many tracks is mixed according to some parameters, and 

then the extraction of some features from this mix as well as the target mix takes place. 

After calculating the distance between these features, this distance becomes input to an 

optimization algorithm. This algorithm then calculates the set of parameters which 
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minimize the distance from the target mix, in order to use this same set to build the 

estimated mix. The algorithm’s purpose is to find what gains to apply to every track which 

minimizes the Euclidean distance between the spectrum histograms of estimated and 

target mix [16]. 

 

4.2.7 Automatic Target Mixing Framework  [16] 

The Algorithm 

The Algorithm that Daniele Barchiesi and Josh Reiss implemented for this experiment is 

described below: 

Let’s assume that the gains applied to each track mi, are the components of the mix that 

we want to estimate. We are also extracting and comparing a linear feature from the mix 

and the target, that is a feature U such that: a1*U(m1) + a2*U(m2)  = U (a1*m1 + a2*m2)  

∀a ∈ R. Assuming that t = U(target mix) is what we have extracted from the target mix 

and that vi = U(mi) is the feature extracted from the i-th track of the multi-track, t can be 

designed as a vector in an M-dimensional space (M = size of the feature), as is shown in 

Figure 4.2.8. Any linear combination of the vectors vi with positive coefficients, generates 

the subspace λ. The number of tracks N, is equal to the dimensionality of λ (in general N 

<< M). The projection of t on the subspace λ is the mix which minimizes the distance from 

the target. 
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.  

4.2.8 Geometric Representation of Target Mix and Multi-track Recording [16] 

The projection vector v can be written as a linear combination of vi with the gains aˆ that 

we want to retrieve. Figure 4.2.9 a), shows this linear combination: 

 

 

 

4.2.9 a) v as a linear combination of the tracks vectors vi with the gains aˆb) A, a matrix whose 

columns are the vectors vi and v [16] 

A is a matrix which has the vectors vi and v as columns and it can be written as: v = Aaˆ, as 

shown in Figure 4.2.9. Every vector vi is orthogonal to the vector (t- v) and this is why the 

inner products between (t- v) and every vi is zero: A^T*( t- v) = 0 .If we substitute, we get 

that A^T*t –A ^T*Aαˆ = 0, which leads to: αˆ = (A ^T*A)^ (−1) * A^T *t (least squares 

method). We assume that all vectors vi are be linearly independent, which is the only 

condition for the matrix A^T*A to be invertible. 
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Target Equalization 

Researchers applied different gains to different frequency bands of the tracks. This 

extended the least squares approach to the equalization problem and had the result of 

increasing the dimension of λ, choosing pairs of orthogonal vectors wi,j ⊥ wi,k. This is 

better shown in Figure 4.2.10 below: 

 

4.2.10 Linear combination of pairs of orthogonal vectors wi,j ⊥ wi,k. P is the number of 

frequency brands [16] 

The number of frequency bands is symbolized with P. This algorithm’s aim is the 

estimation of the equalization curve which is applied to the various tracks in the target 

mix using a constant function defined by multiple sub-functions for every track. 

Researchers refer to this function as the sub-band estimator. Estimation becomes more 

accurate and more able to approximate any transfer function as P increases. FIR filters 

technique is used in this algorithm, which finds the constant values of filters which 

minimize the Euclidean distance between the estimated mix and the target mix, when 

applied to the tracks of the multi-track recording. This technique is clearly inspired by 

linear prediction. 

If v is an audio signal, its value v(n) in time n can be calculated as a linear combination of 

its S previous samples as shown in Figure 4.2.11 below: 

 

4.2.11 Audio signal written as a linear combination [16]  

What is considered as the goal of this linear predictive model,  is the finding of the 

coefficients a’j that minimizes the squared Euclidean distance between signal and 

predicted signal. A function J(α) = ||v˜ − v||^ 2  can represent this squared distance. By 
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setting the gradient ∇J(a) to zero , researchers also computed the coefficients a’. This has 

the result of solving this linear equations’ system that is shown in Figure 4.2.12 below: 

, 

4.2.12 System of linear equations that needs to be solved [16] 

With Rl we refer to the autocorrelation of the signal v and with Rj−l to the j-shifted 

autocorrelation. An FIR filter is defined by the coefficients α’ and is applied to the signal v, 

leading the researchers to the definition of a new squared distance function so that the 

target equalization problem can be solved. [16]. 

Estimation of the FIR coefficients 

Researchers continue with the estimation of the FIR coefficients: If target mix is 

symbolized with t, the length of the target is symbolized with M, N is the number of tracks 

in the multi-channel track and P is the order of the filter we want to calculate, a squared 

distance function is defined as shown in Figure 4.2.13 below: 

 

4.2.13 Squared distance function [16] 

After that, by computing the partial derivative and then by setting the gradient ∇J(α) to 0, 

researchers were lead to solve the system of linear equations which is shown in Figure 

4.2.14. 
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4.2.14 Partial derivative calculation [16] 

Correlation Cl(t, vk) between target t and the k-th track vk is represented in the first sum 

on the left side of the last equation and the shifted correlation Cj−l(vi , vk) between the i-

th track and the k-th track is represented in the sum over n on the right side. The above 

equation can be summarized as shown in Figure 4.2.15 below: 

 

4.2.15 Correlation between (t,vk) and (vi,vk) written as an equation [16] 

The correlation Cl(v, w) between two vectors v and w is the inner product between v and 

the l-shifted version of the vector w. Therefore, researchers built A, a matrix whose 

columns contained the tracks v as well as the l-shifted tracks as shown in Figure 4.2.16: 

 

4.2.16 Matrix A columns contain the tracks v as well as the l-shifted tracks [16] 
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This equation can be written in a form of a matrix: (A^T*A)*a’ = A^T*t , and the least 

square method can be used again in order to solve it: α’ = (A^T*A)^ −1*A^T*t . 

Daniele Barchiesi and Josh Reiss conclude that the estimation of FIR can be viewed as a 

generalization of the geometric approach in order to retrieve the gain settings. The norm 

of the error function J (α) in the time domain is minimized by this least squares 

estimation. As a result, the distance in the Fourier domain between target and estimated 

mix will also be minimized. P is the only parameter that we have to choose. Finally, as far 

as the sub-band estimator is concerned, we understand that the more parameters we 

have, the more accurate our algorithm is going to become, but its computational cost is 

also going to increase as well. 

4.2.3 Evolutionary and Other Population-Based Methods 

Most evolutionary algorithms follow some specific steps. At first, the generation of 

candidate solutions for the initial set takes place, which can happen from user examples 

or in more random ways. A fitness function is then used in order to measure the quality of 

each candidate. The second step is the selection, where by copying candidate solutions 

from the old set of candidate solutions, a new one is generated. After that, every 

candidate solution is copied multiple times in proportion to its fitness. The diversity of the 

population is decreased and restored in this step, with the application of specific 

operators (e.g. mutation, recombination), made to increase the variation, to a part of the 

candidate solutions. Due to the fact that the application of the steps happens repeatedly, 

best and worst fitness have the tendency to gradually increase. A common 

implementation of a fitness function is the calculation of a weighted sum of the features 

of composition. What could also be a fitness implementation, is calculating the fitness as 

the distance to a corpus of compositions or even a target composition, where the fitness 

of each one of the compositions that exist in a population. For example, if we choose to 

use pitch for our fitness function, the fitness will be calculated by adding the variation in 

pitches between a target composition and the pitches of each individual [15]. 
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Can a Genetic Algorithm (GA) mimic the way a composer thinks? 

In 2002 Gartland-Jones, implemented an experiment using GAs in order to compose 

music. Assessing fitness is one of the main problems that needs solving in the GAs area of 

composition. If we want to determine what we are going to consider as good in a specific 

genotype, we have to decide what we consider as good generally in music. 

The two most known approaches for the assessing of fitness are: 

1. The interactive way, by using a human-being to decide which members of the 

population should take the promotion to the next generation, based on his 

knowledge. (IGA) 

2. The automatic fitness assessment way, by providing the system with enough 

encoded information, so that it will be able to make the fitness assessment by 

itself, after every crossover and mutation process. (AFA) 

These are the two goals that implementations of composing music with GA try to reach: 

1. The creation of original music, which is closer to the composition of music from a 

human-being, a goal which is mainly creative and subjective. 

2. The use of a specific rules-set to compose an output, as well as the examination of 

what the results of such an output would be. This goal is referring to music theory 

and music analysis, and this is why is more objective. [17] 

The Algorithm 

Gartland-Jones decided to create an algorithm, which aim was to evolve from a starting 

musical piece towards a target musical piece (Figure 4.2.17). This, according to the 

author, makes the directing of the search as well as the creation of fitness assessment 

quite simpler. Therefore, the fitness function can be defined as the similarity of an exact 

genotype to the target piece provided.  
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4.2.17 Evolving from supplied starting musical selection, to supplied target musical selection 

[17] 

The individual steps that Andrew’s Gartland-Jones algorithm follows to reach a specific 

target music fragment are detailed below: 

1. At first a two-bar, four-part MIDI file is used by the algorithm, for the creation of 

the initial population of identical genotypes. 

2. The second step is the performance of mutation and crossover operators to a 

selected population member, which is selected in turn. Mutation operations have 

taken the form of methods used in musical composition, like adding and deleting 

notes, to transposing and reversing. Furthermore, as for selecting new pitches, the 

operators that are required in such selection are based on a harmonic assessment 

of the target. 

3. Evaluation of fitness of the population member that is being mutated, by 

comparing the similarity of the genotype to a musical target that is provided to 

the Algorithm. 

4. The fourth step, checks the fitness value of the member that is being mutated. If 

this value is higher than the lowest fitness that exists in the population, then the 

low fitness member is replaced and stored as a musical point on the evolutionary 

path to the target. In any different scenario, it is discarded. 

5. If the target isn’t reached yet, all steps are repeated. When the Algorithm is done, 

the musical fragments that it produced are converted to MIDI files that become 

available for further use. [17] 
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Fitness Assessment 

As mentioned above, the evaluation of fitness of a genotype is made considering the 

similarity it has with a specific target. Each object that represents a note in  the genotype 

encapsulates its fitness value. This note has a fitness of value 1 if it has the same pitch as 

the note in the target musical piece which has the same position. Otherwise, the note has 

a fitness of value 0 . This is also described below: 

Musical Section fitness = numSection / numTarget, where: 

numSection = num of notes in Musical Section with a Fitness of 1 

numTarget = num of notes in the Target 

Therefore, we are referring to the notes in the target piece, that have a matching pitches 

with the notes in the genotype. [17] 

The Mutation Operators 

The goal of this Algorithm is not only to reach a target, but also produce interesting 

results. In order for this to happen, the author used some mutation operators that make 

it more possible to produce a musically pleasing output. These mutation operators 

include: 

 The addition of a note 

 A swap between 2 neighbor notes 

 Changing the pitch of a note by an arbitrary interval  

 Changing the pitch of a note by an octave 

 The mutation of the velocity of a specific note 

 The change of the position of a note 

 The reversion of some notes between a start point and an end point that are selected 

in an arbitrary way 

 The inversion of some notes between a start point and an end point 

 The mutation of the duration of a specific note. 

 The deletion of a selected note 
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These mutations are applied to single notes or to groups of notes, when a user specifies a 

probability and only when their application will not modify the notes that already have a 

target fitness value equal to 1, because these notes are not being mutated any more. 

After every mutation, the algorithm calculates the fitness of every genotype again until it 

has the value of 1 [17]. 

Selecting New Pitches 

At first, the system makes an analysis of the musical target we are trying to reach. This is 

followed by the construction of a table (Figure 4.2.18) where every table location 

encloses  what is the target’s degree of membership of that scale type (Minor or Major), 

for that scale degree (from C to B).  

 

4.2.18 Table representing the degree of membership of the target analyzed [17] 

These analysis values, combined with weightings that users supplied, help find the 

probability as to which scale a new pitch should be taken from when creating a new note 

or when transposing a pitch within an octave. After the selection of a scale is done, a 

similar process is used to choose the final pitch within that scale. As a result, this table 

consists of an analysis of the other notes in the musical section being mutated, instead of 

the target music being analyzed. This is done for the part that the note is present in, when 

tending to create melodies from the same scale type, and the chord that this pitch will 

become part of, when tending to create harmonies from the same scale type. Because of 

the fact that estimating harmonic analysis is rough, new pitches are allowed to be 

selected by the user, which are more likely to be met in the target music. At the end, 

when all mutations are done, the application of a random crossover to the population 
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takes place and this is where population members exchange note patters between each 

other [17]. 

4.3 The Magma Algorithm 

MAGMA (Multi-AlGorithmic Music Arranger) is an experimental AI system to compose 

music, designed by Richard Fox and Adil Khan. In order to generate songs, MAGMA is 

based on Markov chains, a routine planning algorithm, and a genetic algorithm. The input 

of the system is user specifications, while the output is a MIDI file. [18] 

 

4.3.1 AI algorithms used in MAGMA 

MARKOV CHAINS 

A Markov chain is a static model and is defined as a diagram with probabilities in its 

edges, which represents the transitions from one state to another. Figure 4.3.1 below, 

shows a daily weather Markov chain. By looking at this diagram, we can get information 

about the probabilities of the transition from one state to another.  

 

4.3.1 A simple Markov chain of daily weather pattern [4] 

Markov chains can be used to analyze the chord changes from a corpus of songs (MIDI 

input), in order generate a new structure, by finding the frequency in which each 

sequence of chords occurs. After this, they are able to produce/compose a progression of 

chords, that is going to contain these sequences in the same relative proportions of 

occurrence,  a procedure which doesn’t ensure that the result is going to be aesthetically 

pleasing.  As a result, although composition with the use of Markov chains includes the 
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recognizable elements that were extracted from the analysis of the model, it doesn’t have 

the same aesthetic result with a model composed by a human being [4]. 

Routine planning 

According to Chris Dobrian, routine planning is a knowledge-based approach which 

mimics the way that an expert with routine knowledge would solve a problem designing 

an artifact. This routine knowledge is split in categories. At first, the representation of the 

plan decomposition takes place, which shows that by designing every component and 

sub-component we can construct a given artifact. Furthermore, for every component that 

is going to be designed, some plan steps need to be made by the expert. Each component 

can have many different steps. In order to select the appropriate plan, the expert needs 

to take into consideration the pattern-matching information/knowledge which identifies 

the plan step, that has the greatest chance to  provide success to the designed object, 

meeting user specifications, as well as the decisions that were already made on the 

design of other components. 

 

4.3.2 Routine planning captures the prototypical sequence of problem solving activities that a 

domain expert might undertake in planning or designing an artifact [4] 
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Genetic Algorithm 

In the genetic algorithm approach, the use of a natural selection is preferred in order to 

reach a better solution. The way that the GA model works is better described in section 

4.2.3 of this thesis. 

 

4.3.3 The genetic algorithm uses a form of natural selection to evolve a better solution [4] 

Having discussed the basics of these three algorithms, it is time to proceed as to how the 

MAGMA algorithm is implemented. 

To begin with, the user specifications define the type of song the users will select. The 

following five preferences are rated on a 5 point scale each.  

 1. Transition: It determines the size of a transition from one chord or note to the other. 

Thus, a higher transition would lead to a song with a more inharmonious sound while a 

small transition could make a song dull. 

2. Repetition: It dictates the likelihood of chords/notes to repeat before a transition 

happends. A more creative a song would include less repetition.  

3.  Variety: It has an impact on the amount of chords or notes or song components which 

are generated. A higher variety results to a song with more parts and it can add diversity 

within its parts. A simple song will usually be the result of lower variety. 

4. Range:  Range controls the number of octaves in which the chrods/notes belong and 

the instruments that the algorithm is going to choose for the MIDI file. 

5. Mood: If we make the choice of a sad mood the tempo is usually going to be slow. The 

opposite effect (a faster tempo and a major key) would be the result of an upbeat mood 
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while an intermediate mood can generate both types of keys for the different 

components of a song, like the verse or the chorus.  Another thing that mood impacts are 

the instruments being selected. 

Eventually, it depends on the user which of the three algorithms to utilize (stochastic 

approach, planning approach, genetic algorithm approach) [4]. 

 

4.3.4 The MAGMA Algorithm in a nutshell. User selects a preferred algorithm to proceed. 

MAGMA then produces an output MIDI file [4] 

4.3.2 The MAGMA Algorithm 

After receiving the user’s specifications, the program is ready to apply the algorithms to 

generate the song by performing the following steps. 

 Initially, the process involves generating the song’s general structure which can be simple 

or elaborate depending on the order or repetition of its basic components, namely, the 

introductions symbolized as I, verses symbolized as V, choruses symbolized as C, bridges 

symbolized as B, solo sections symbolized as S and outros symbolized as O. A plain 

structure would be I-C-V-C-V-C while a more complicated one would be  I-C-V-B-C-V-B-S-

C-S-O. 

After that, it is time to generate the structure of the separate song components which is 

associated with the number of measures and the fact that these measures may be the 

same, or they may switch between various chords/notes. The generation of the chords of 
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every measure follows next. Each measure is made of a number of beats. In a measure 

which consists of 4 quarter notes or 8 eighth notes or 1 whole note (4/4 timing) , the 

existence of chords with the same duration or longer and shorter duration will be 

determined by the variety.   

When the chords chapter is completed, it is time for a melody sequence to be generated 

over the chords, independently of their sequence but in accordance to the chord 

sequence’s duration and the song’s key.  

Although each of the three algorithms (stochastic, planning, genetic algorithm) performs 

the above four steps in different ways, they all follow the same order of performance, as 

it can be shown in Figure 4.3.5 below. 

 

4.3.5 The steps that all three algorithms perform [4] 

The stochastic algorithm uses Markov chains for every of its four steps, each of which was 

generated using a plain algorithm from a corpus of songs. The parser provides the Markov 

chains as transition probabilities matrixes (e.g., chord transition probabilities), as shown 

in Figure 4.3.6. MAGMA uses four transition probabilities matrixes in total, one for the 

song’s structure, one for the measure structure, one for the generation of the chords and 

one for the creation of the melody. For every song that is produced, the probabilities of 
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the matrixes can change depending on the specifications of the user in order to suit the 

user’s preferences [4]. 

 

4.3.6 Markov chains as transition probability matrixes, provided by the parser [4] 

The planning approach involves plan steps in order to define specific sequences of the 

song’s structure: measures, chord sequences and note sequences all of which are 

selected in a way that matches the user specifications as closely as possible.  

The Genetic Algorithm approach includes four types of chromosomes for the structure of 

the song and its contents, as well as the sequences of the chords/notes. The approach 

makes use of five fitness functions, one for each type of user preference, which are 

combined using a weighted average. At this stage, each member of the final chromosome 

represents a distinct measure for the song component. The generation of a chord 

sequence for a given measure is the next stage and it is also influenced by the user in 

terms of repetition, variety and transition preference.  a chord sequence repetition and 

variety will also affect the size of the chromosome. The same factors influence the 

chromosome composing the melody in a chord sequence on the next stage. The melody 

that is generated might be trimmed in order to fit the duration of the chords in the 

measure, for every measure. Chromosomes take values between 0 and 1 in every phase 

and in order for this number to be produced, the algorithm takes into consideration the 

user’s preferences. The use of Nashville notation helps with the required calculations, 

where negative numbers are used to represent lower octaves while numbers greater than 

seven represent higher octaves. 

The initial population for each section of song generation is created in a random order by 

the genetic algorithm and it consists of 10 chromosomes. 4 parents are chosen from the 
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algorithm’s starting population, and splits them in 2 parts, with the one having a higher 

fitness level than the other. This leads to the generation of 6 children by crossover, and 

the generation of 4 more children by mutation. This is usually repeated 12-15 times as far 

as the song structure and components are concerned, and 100 times for the production 

of the chords/melody. [4]. 

 

4.3.7 The Nashville Number System [19] 

4.3.3 MAGMA Examples 

These are instances of what the MAGMA algorithm generated for song structure, 

according to some specific user preferences. R symbolizes repetition, and V is used to 

symbolize variety. 

 {R=2,V=3}=I|V|C|V|C|O 

 {R=2,V=4}=I|V|C|V|C|B|C|O 

 {R=1,V=5}=I|V|C|B|O 

 

As for the generation of the chords and the melody, the algorithm deals with the pitch 

and the rhythm. In the examples that follow, numbers are used to symbolize which 

chords are being played. For example, if our key is D a 3 is an F chord and 6 is an B chord, 

while 0 is a rest. The duration of the chord/note that is being played is symbolized with a 
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letter following the (w = whole note, h = half note, q = quarter note, i = eighth note, s = 

sixteenth note). The three lists below are examples of chord sequences and melody 

sequences as well. 

 {R=1,T=1,V=2,H=3}=4q|4q|5q|5q 

 {R=1,T=1,V=2,H=2}=5h|6h 

 {R=1,T=1,V=1,H=1}=5w 

The algorithm uses 3 more procedures, so that the match of the melody with the chords 

is guaranteed. 

1.  The first one is responsible for trimming the melody according to the duration of 

the measure in the chord sequence phase.   

2. The second one makes sure that the rules of music theory are applied and this is 

why its mechanism matches the melody that is generated, to the key of every 

song component. For instance, a melody that is being played in a verse with a key 

of B must agree to this key. 

3. The third procedure is responsible for transitioning from one song component to 

another, by modifying the sequence of chords that are involved in this transition. 

An example would be a transition from a verse to chorus. 
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    CHAPTER 5 

CONCLUSIONS 

To conclude, it seems that Algorithmic composition can imitate, to some degree, the way 

that the human brain perceives and processes music. Researchers all over the world have 

accomplished to automate various music composition tasks mainly by applying two 

approaches. According to the first approach, music can be generated by imitating a 

corpus of compositions of a specific style. This approach has been tackled with many 

different methods, which have frequently turned out to be reasonably successful. The 

second approach refers to the automation of composition tasks to varying degrees, from 

designing a base for human composers, to generating compositions without human 

intervention. The latter approach needs further improvement since the results produced 

by computers and algorithms have sparked controversy. This is due to the fact that the 

concept of artistic creativity eludes a formal and effective definition that can be widely 

acknowledged, which means that the evaluation of these systems can scarcely be 

achieved in a precise way. Although it is still debatable whether the point at which a 

computational system may become truly creative , it is easy to see that the amount of 

systems capable of independent creativity will increase in the future. This should not be 

seen as another case of computers replacing humans in a sophisticated activity, but as an 

opportunity for human artists, because if computers reach a point of composing human-

like music, this will enrich their catalogue with new songs and therefore it will enhance 

their own creative music compositions and innovative ideas. 
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