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Abstract

The main purpose of this thesis is to study machine translation. Specifically, neural ma-
chine translation using neural networks to achieve our goal. The model we used is based on
the Encoder-Decoder architecture, commonly called Sequence to Sequence. This model can
produce a sequence given as input another sequence using a variety of recurrent neural net-
works. To create a neural machine translation model a parallel text corpus is required and
the given sentences must undergo some pre-processing, which includes tokenization and en-
coding the tokens. We tested two different methods of tokenization, character level and word
level, and two methods of encoding the tokens, using one-hot vectors and embedding vectors.
A variety of tests have been performed, using different parameters, in order to achieve the
best translation results according to bilingual evaluation understudy score, a score designed
for translation tasks. Finally, after evaluating the performance of many models, we conclude

to the advantages and disadvantages of each model.

xi






Iepiinyn

O «Op10g 6KOTOG AVTNG TNG SIMAMUOTIKNG EIVaL 1] LEAETY] GLCTNUATMOV UNYOVIKNG LETA-
QPOONG. ZVYKEKPYEVO, YPNCLLOTON|GOUE GUGTILOTO VEDPOVIKNG UNYXOVIKNG HUETAPPOCTC
v va, emtevéovpie Tov 6TOY0 Hog. To povtédo mov ypnoponomcape Paciletal otnv apyite-
ktovikn Encoder-Decoder, yvootd kot cav Sequence to Sequence. Avto to HoviéLo pmopel
va dgyBel oav 16000 i akoAovBia kot va dnpovpynoet o GAAN akoAovBio ¥pnooToldv-
TG 01dpopa avadpoptka diktva. [ tnv dnpovpyio evog LovtELOL punyovikng Labnong eivat
amopaiTnTn 1 ¥PNON Lo GLAAOYNG TAPAAANA®Y TPOTAGEMY Kot 1 TPO-ENeEEPYTia TOVS. Ao-
Kipdoape dtapopeg pebddovg mpo-emeepyaciog OTMG TOV YOPIGHO KAOE Tpdtaong oe AEEELG
N O€ YOPOKTNPES. ZTNV GLVEYEIN KOOKOTOMOAUE OVTEG TIG AEEELS 1] TOVG OPOKTNPES XPNOL-
pomoldvtag otovocuato one-hot 1 dtavoouata embedding. [TpoypoatomromOnKay dtdpopeg
dokéG, aAAdlovTag KdBe POPA TOPAUETPOVS, DOTE VO ETLTLYOVIE TO KOAVTEPO ATMOTEAEGLLOL
OTIG LETAPPACELS GOUQMVA. [LE Eva KPLTNPlo diyAwoong a&toddynong mov ovoudletatr BLEU.
210 T€A0C, 0ELOAOYNOOLE TOL LOVTEADL LLOG KO OVOPEPOLE TOL TAEOVEKTILOTO KO LLELOVEKTT-

pato KaOe LovtéAov.

xiil
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Chapter 1

Introduction

Nowadays, more and more people want to communicate each other but a big barrier ex-
ists. This barrier is the variety of languages that makes communication difficult and requires
translations to be created by hand. This mundane task of translating documents to other lan-

guages must be automated in order to create the required translations quickly and efficiently.

1.1 Motivation

In this thesis we will investigate how we can solve the task of automated translation
using machine learning and all the required steps to do this. There have been many attempts
to create models for this purpose, following many different approaches like Example-based
machine translation (EBMT), Rule-based machine translation (RBMT), Statistical machine
translation (SMT) and finally Neural machine translation (NMT).

The first models developed was statistical models [[14], [[15] that are based on information
theory. These models attempt to translate documents according to a probability distribution
function where a string from the target language is the translation of a string from the source
language. Another approach, commonly called the classical approach, is creating transla-
tions using a rule-based system [|16]. A rule-based system creates translations according to
linguistic information extracted from the grammars and dictionaries of the two languages and
converts the source sentences to the targets based on morphological, syntactic, and semantic
analysis of both languages. The complete opposite of a rule-based system is an example-
based system [|17]. Such systems are not based on deep linguist analysis but instead splits

the source sentence in parts, translates each part and then combines these translated parts to

1



2 Chapter 1. Introduction

create the target sentence. Finally, neural machine translation is performed by systems that
are based in artificial neural networks [|18].
We will attempt to explain and analyse all the steps involved in creating a complete model,

from pre-processing the data to evaluating the performance of a model.

1.1.1 Contribution

The model we will develop is based on the Sequence to Sequence architecture. This ar-
chitecture is using two separate models, one that processes the input sequence and another
one that produces the output sequence. In neural machine translation a bilingual, or parallel,
text corpus is required and some pre-processing is applied to it. The pre-processing involves
many steps, like cleaning the text and remove any unnecessary character, and splitting each
sentence in tokens. Two different tokenization methods will be used. First of all, we will split
each sentence into characters, which means our tokens will consist of all unique characters,
and the model will produce the predicted sentence character by character. Secondly, each
sentence will be split into words and each unique word will be a token. Moreover, each to-
ken, in a sequence, must be encoded in a format suitable for the model. We decided to use
two different encoding formats, creating one-hot vectors or embedding vectors for each to-
ken. In the end, we will compare the different tokenization methods and encoding formats.
Finally, a metric is necessary in order to help us evaluate each model. The classic metrics,
like accuracy, are not suitable for the task of neural machine translation. This lead us to use
BLEU as a metric, which is a metric specifically designed for scoring translation tasks, to

evaluate our models.

1.2 Organization of the thesis

This thesis consist of five chapters. In the second chapter (P]) we give a general overview
of machine learning and we present the basic concepts required to understand how a machine
learning model works. Next (), we present the dataset used and the pre-processing steps re-
quired along with the two different encoding method we use. After this section, we introduce
a method of evaluating machine translation results called bilingual evaluation understudy
(BLEU). Afterwards (), we analyse how the Sequence to Sequence architecture works and

it’s components and we develop a model based on this architecture. Moreover, we present the
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results of our models, after extensive testing, using different parameters and network types.
Finally (§), we summarize our results and suggest some future actions to potentially improve

the results.






Chapter 2

Introduction to machine learning

2.1 Introduction

Machine learning (ML) is a branch of artificial intelligence (AI) (Fig. R.1)) that studies
algorithms that act without being explicitly programmed. Machine learning can be considered
a subset of artificial intelligence. Machine learning algorithms learn from experience and
build models based on a sample of data called training data”. Those models have the capacity
to constantly improve by exposing the model to new data, whereas rule-based algorithms will
perform always the same. Nowadays machine learning usage is constantly increasing and we
can find more and more fields where it is used like self-driving cars, speech recognition,

neural machine translation, effective web search, etc.

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn

without being explicitly programmed

DEEP LEARNING
Subset of machine learning
in which artificial neural
networks adapt and learn
from vast amounts of data

Figure 2.1: Relation between AI, ML and deep learning. [[]



6 Chapter 2. Introduction to machine learning

Machine learning problems are often divided in many categories, but the biggest are su-
pervised and unsupervised. In supervised problems,that include classification and regression,
we have both the training data and the expected answer. In contrast in unsupervised problems
we only have the training data and we expect algorithm to give us an answer. Unsupervised
problems include clustering, dimensionality reduction, finding relations between word vec-

tors (word embeddings), etc.

2.1.1 Machine learning models

Performing machine learning involves creating a model which is trained on some data
and then can process more data to make predictions.
There are many different models and algorithms depending on the task at hand, but the

most commonly used are the following.

Regression analysis

Regression analysis contains many statistical methods and algorithms with the purpose of
finding a relation between the input variables and their features. The most common form of
regression analysis is linear regression (Fig. 2.2), which only applies if the relation is linear,
but more advanced forms can be used like ridge regression, logistic regression, polynomial

regression.

20 -10 10 20 30 40 50 60

Figure 2.2: Linear regression. [2]
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Decision trees

Decision tree learning uses “trees” as a model to make predictions (Fig. R.3)). Each ex-
ample of the training data has its features analysed and based on this analysis the internal
nodes of the tree are created. These nodes act as a filter which guide new data presented to

the model a specific leaf, which is the prediction of the model.

gender
N
male female
- o
age survived
0.73; 36%
9.5 < age adr: <=9.5
el S
died 5
017; 61% slbsp
N
3<=sibsp sibsp<3
.

died survived
002; 2% 089, 2%

Figure 2.3: Decision trees showing the survival of the passengers on the Titanic. [3]

Clustering algorithms

Clustering analysis is a set of algorithms with their main propose to create groups (clus-
ters) from the input data (Fig. R.4)). Cluster analysis itself is not one specific algorithm but the
problem to be solved and this can be achieved with many different algorithms like k-nearest

neighbors algorithm (k-NN), Nearest-neighbor chain algorithm, Quantum clustering, etc.

] DIZI [ ll.
D[:l[] W .....
] O [ |
DE% =
B O
[ O
O Hom
| ..
Hm 0

Figure 2.4: The result of clustering. [4]



8 Chapter 2. Introduction to machine learning

Support vector machines (SVMs)

Support vector machines (SVMs) are a group of related supervised learning algorithms
that are used for classification or regression (Fig. .3). These algorithms are very powerful
binary linear classifier due to their non-probabilistic nature. Modifications to the algorithm
exists for non-linear problems. Support vector machines are also called maximum-margin
classifier due to the fact that they maximize the distance of the hyper-plane nearest data point

on each side.

X2

_\"

X

Figure 2.5: SVM maximum-margin classifier. [5]

Genetic algorithms

A Genetic algorithm is a algorithm that mimics the biological evolution. It is a search al-
gorithm and heuristic technique that uses methods such as mutation and crossover to generate

models that improve predictions.

Artificial neural networks

Artificial neural networks are systems inspired by the biological neurons that constitutes
animal brains. A artificial neural network is s system composed by many connected units
called neurons. Each connection has some inputs and one output so it can transmit informa-
tion to each other. The output is a function of it’s neuron inputs with some weights. During
training these weights are adjusted using algorithms like gradient decent. Many neurons are

grouped into layers that may perform specific tasks and many layers are grouped into a model
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(Fig.6). The signal propagates through the first layer to the last, possibly after traversing
the layers multiple times.
There are many different categories of neural network layer like a dense layer, convolution

layers and recurrent layers. Some of those layers will be analysed in the following section.

Hidden
Input

/ \ Output

4 AN
/// 4
TN /
YAV N

//\

7

Figure 2.6: Artificial neural network with one hidden layer. [6]

2.1.2 Loss function and gradient decent

Almost all machine learning models use some sort of a function, called loss function, to
estimate the parameters used by the model. This function maps an action to a real number
or calculates the difference between the real value and the prediction. The purpose of the
model is to minimize the loss function. However this function dose not have an explicit form
or may depend on a huge number of variables and calculating the minimum using analytical
mathematics may be impossible.

To solve this problem we use an algorithm called gradient descent. This algorithms uses
an iterative method to find the minimum of a function. The algorithm uses the first order
derivative of the function we try to minimize and a initial point. At each iteration we attempt
to move in the opposite direction of the derivative (eq. R.1)). To avoid overtaking the minimum

we introduce a term, A, called learning rate to reduce the size of the step.
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By calculating constantly consecutive points we will eventually reach a minimum, local or
global. Most machine learning model use a variation of gradient descent, with either changing

how the learning rate works or how each variable of the loss function affects the new point.

2.1.3 Activation functions

The output of each neuron passes though an activation function. The purpose of the ac-
tivation function is to introduce non-linearity into the output of a neuron. Some of the most

used activation functions are presented bellow.

Identity
Identity
flz) ==
Binary step
Binary step
0 ifx<O
flz) =

1 ifxz>0
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Sigmoid
Sigmoid
_ 1 R
0(2) = ==
Tanh
Tanh
P— ez*e_z > 000
tanh(z) = S5
Rectified linear unit
RelU

0 ifz<0 ’

z ifz>0 :




12

Chapter 2. Introduction to machine learning

Leaky rectified linear unit

0.01z ifx<0
f(x) =
x ifz >0
Gaussian
fla)=e
Softplus

f(@) =In(1+¢)

Softmax

Leaky RelLU a=0.1

Gaussian

Softplus

/

The Softmax function is an activation function applied to a whole layer instead of a single

neuron. This function takes as argument the outputs of all the neurons, usually of the last layer,

for which calculates a probability in order to determine the final result. For this purpose a

vector of probabilities is created, one for each potential outcome, which has a sum one.

The output of each neuron is calculated using the following equation (eq. R.2).
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s(y)i = —Zjil " (2.2)

2.2 Perceptron

The Perceptron [[19], [20] is a simple algorithm to classify data in two classes. It can be
considered the simplest neural network that consist of only one neuron and is used to train a
binary classifier using supervised learning. Perceptron is a linear classifier and will always
reach a final state if our data are linear separable. However, if the training data are not linearly
separable, which means a hyperplane cannot separate them, the algorithm will not converge
and will fail completely. A layer that consists of many perceptron units is called a dense layer.

It has a number of inputs and one output, either 1 or 0, which is a mathematical relation

between the inputs and some weights (eq. 2.3).

1 ifw-x+b>0,
f(x) = (2.3)

0 otherwise

I tl
npu X1
Wi
Input 2 Xo
w2
Input 3
X3 y Output
(9]
(9]
(8]
Input m
Xm

Figure 2.7: Perceptron. [7]

2.3 Multilayer perceptron

A multilayer perceptron neural networks is a feedforward multilayer network based on the
perceptron. It contains at least three layers one input, one output and one or more hidden layers

(fig. R.§). Feedforward networks are the most common type of networks. In these networks
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information flows from the input layer to the output without loop. The goal of feedforward
network is to find appropriate weights to approximate a function. It is proven, in the universal
approximation theorem [], that a arbitrary large multilayer perceptron with one hidden layer
can approximate every function. However it is not viable for a layer to have infinite neurons

so in practice we add additional layers to achieve this.

A
O
%
o;o

Vall
\RUX

ek
L

tput layer

hidden layer 1 hidden layer 2

input layer

Figure 2.8: A four layer perceptron network. [8]

The multilayer perceptron networks train in a similar manner to the simple perceptron,
but with an important difference. Due to the multilayer nature of the network, the output is a
function of all the wights in every layer, so the gradient updates have to move from the output

to the previous layers. This algorithm is called backpropagation.

2.3.1 Back-propagation

In multilayer neural networks the output of the network depends on the weights of all the
layers (eq. 2.4)). Due to this relation we cannot use normal gradient descent to calculate the

gradient and adjust the weights.

gz) = fEWEFLIWETE - fL(W ) 2.4)

With z being the input vector, ¥ the target vector, f! the activation function at layer [, W'
the weights at layer [ and L the number of layers.

By defining the cost function as C'(y;, g(x;)) we attempt to find the partial derivative of
C' with respect to each weight wé» .- By computing 0C'/ 8w§-  We can calculate the change we

must do to each weight in order to approach the target value y;
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Back-propagation [21], [22] is an algorithm that calculates all those gradients efficiently
and without duplicate calculations. These gradients can be used with an optimization algo-

rithm to update the weights of the network.

2.4 Recurrent neural networks

The idea behind recurrent neural networks (RNN) is to create a network that can use
sequences as inputs. These sequences may have different lengths and their values may be
related. The main difference of recurrent neural networks to feedforward networks is that
they contain loops (fig. R.9) [23]. This difference facilitates the training of neurons to handle
long term dependencies in the input sequences by allowing them to use further information.
In this way, the neurons have an internal memory created from their input, which depends on

the previous values.

e | @ || @ ® @ @

HIDDEN LAYER ” = >
OUTPUT LAYER e e Q e

«ROLLED» «UNROLLED»

Figure 2.9: Unfolded recurrent neural network. [9]

However, the problem of vanishing gradients appears in ordinary recurrent neural net-
works during training. In a very long sequence, it’s values may have long term dependencies.
When an ordinary recurrent neural network have to memorize this sequences it is possible
that these dependencies cannot be learned due to the nature of the training algorithm. A so-
lution to this problem is to create variations of the ordinary recurrent neural networks that

control how these gradients are calculated.
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2.4.1 Long short-term memory

Long short-term memory [24] is a variation of ordinary recurrent neural networks that
tries to solve the vanishing gradients problem. The long short-term memory cell is composed
of many gates that control the gradients (fig. 2.10). These gates are the input gate (eq. .3),
the output gate (eq. 2.7) and the forget gate (eq. R.6). Specifically the input gate controls the
information that enters the cell, the forget gate control the information that creates the cell
memory and the output gate that controls the output of the cell. The equations bellow describe

how these gates work.

hy

Ct

b ° hy

Xt

Figure 2.10: Long short-term memory architecture. [[10]

In the following equations [[10] the x, is the input vector, W and U are weight matrices and
b is the bias. The equations use the sigmoid function ¢ and the hyperbolic tangent function

tanh and the operator o denotes element-wise multiplication.

ir = o(Wize + Uhy—y + b;) (2.5)

Where i, is the activation of the input gate.

ft = O'(Wfl’t -+ Ufht_l + bf) (26)

Where f; is the activation of the forget gate.

0y = o(Wowy + Ushy—1 + b,) (2.7)

Where o; is the activation of the output gate.
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= froci_1+1 06
hy = o o tanh(c;) (2.8)
¢ = tanh(W,xy + Uchy—1 + be)

Where ¢; and h;, is the cell state vector and output vector (also called hidden state) vector

respectively and the ¢; the cell input activation vector.

2.4.2 Gated recurrent unit

The gated recurrent unit (GRU) [25] is a variation of LSTM designed to be simpler to
compute and implement (fig. R.11)). The main difference of gated recurrent units is that they
have only two gates instead of three. The two gates of the gated recurrent unit is the update
gate (eq. 2.9) and the reset gate (eq. 2.10). However, although recurrent neural networks with
infinite precision in the states and unbounded computation time are turing complete, it is
stated that LSTMs are strictly stronger than GRUs ([26], [27]) and in many problems, like
neural machine translation, they underperform.

In the following equations [|11] the x; is the input vector, W and U are weight matrices and
b is the bias. The equations use the sigmoid function ¢ and the hyperbolic tangent function

tanh and the operator o denotes element-wise multiplication.

A

ylt]

h[t-1] > - + T) ht]

- J

/N
x[t]

Figure 2.11: Gated recurrent unit architecture. [|11]

2z = o(W.xy + Ushy—y + b2) (2.9)
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Where z; is the activation of the update gate.

Tt = U(WT:L‘t + U'I‘ht—l + b?") (210)

Where t, is the activation of the reset gate.

hy = tanh(Wyxy + Up(ry © hy_1) + by)
@.11)

ht:<1_zt>®ht71+zt®ﬁt

Where h; is the output vector and Bt 1s the candidate activation vector.



Chapter 3

Text prepossessing and machine

translation metrics

3.1 Prepossessing raw text

The dataset used in this thesis is a parallel corpus that consists of two languages and that
contains sentences in the original language alongside their translation. Specifically exper-
iments were done using the English - Italian ANKI dataset [28] that contains 343813 pair
sentences.

The pair of sentences first must be converted to a format that is understood” by the
machine learning algorithm. There are multiple steps in processing raw text. The first step
is to keep only the characters and the punctuation that belongs to our alphabet. We may also
remove ascents that we don’t want and convert everything to lowercase.

After this process we have to tokenize our sentences and then we can proceed in two
different ways. The first way is known as one-hot encoding, while the second one is to create

embeddings.

3.2 Tokenization

In natural language processing (NLP) tokenization is the process of splitting text in small
chunks (tokens). These tokens can either be words or characters. After creating these tokens

we assign a unique number to each unique tokens, as shown below.

text data = [’"good morning’, ’'the weather today is good’]

19
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tok text = [["good’, ’'morning’],
["the’, ’'weather’, ’"today’, ’"is’, ’'good’]]

tok result = [[O0, 1],[2, 3, 4, 5, 0]]

This conversion from chunks to numbers allows us to represent text in a format which
enables us to train machine learning models using text as input. From this process we produce
categorical data, however machine learning model cannot use directly these data and these

sequences of numbers must be processed further.

3.3 Categorical data encoding

3.3.1 One-hot encoding

One way to process categorical data is to encode them to vectors using one-hot encoding.
In one-hot encoding we produce binary sparse vector, specifically vectors that only one of
their values is one and all others are zero. This conversion allows machine learning model to
extract more meaningful information from categorical variables, because their initial values
does not represent any relations and does not have any specific meaning.

The process to encode categorical data to one-hot vectors is very simple. First for every
token, we have to create a vector with its size being equal to the number of tokens we have.
Then we set all of its values being zero, except one, where the position of of this value depends

on the number assigned to this token. This is demonstrated bellow.

(6, 1y = (11, 60, 0, 0, 0, 01,10, 1, 0O, O, O, 0O]]
(2, 3, 4, 5, 0] = [0, O, 1, O, O, O],

(0, 0, 0, 1, 0, O],

(o, o, o, 0, 1, 01,

(o, o, o, 0, 0, 11,

(1, o0, 0, 0, O, 0O]]

However this encoding although very expressive can generate huge vectors with all but
one of their values zeros and this can cause problems with the training of the model or the

storage required for the dataset.
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3.3.2 Token embeddings encoding

Another way to prepossess categorical data and specifically text data is to create an em-
bedding for each token. An embedding is a vector with a relative low dimensionality that is
either created beforehand or during training [29]. With embeddings instead of representing a
token with one big binary sparse vector we attempt to map it with a smaller but denser vec-
tor. Moreover, embeddings try to capture more information (fig. B.1)) from the token like the

meaning, the interpretation of the word and even grammatical and lexicological information.

RAT walked
o @
® v, g woman "
king . O .5 -
Y walking
® queen —-—___________________'
,////hhhﬁ“““* f//// @)
swimming
Male-Female Verb tense

Figure 3.1: Embeddings capturing word semantics. [|12]

The embeddings generation process can either be a layer in our machine learning model
or we can create a new model specifically to generate those embeddings. An example of the

embedding vectors, with the output dimension being three, is presented bellow.

[0, 1] = [[0.01075683, -0.01871429, -0.0114999%¢6],
[ 0.03609798, -0.04325888, 0.04786615]]
(2, 3, 4, 5, 0] = [[ 0.01533573, -0.0149799%2, 0.04166322]7,
[-0.00210105, -0.01850808, -0.04897275],
[ 0.0454616 , 0.0019915 , -0.03638037],
[-0.00881171, 0.01351931, -0.04072988],
[ 0.01075683, -0.01871429, -0.0114999¢6]]

3.4 Machine translation metrics

In most machine learning problems, like regression or classification, it is quite easy to

evaluate the performance of a model, due to the fact that it can be calculated using a cost
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function. For instance, in a regression problem, although the fact that the output can take any
value, we can calculate the difference of this value to the expected output.

However, in machine translation, due to the complexity of the task we cannot simply
calculate such a metric without limiting our model. For example, when translating a sentence,
there are several ways to express the meaning of the sentence in the target language.

For this reason, new metric that evaluate the performance of a machine translation model

was developed and the most used of them is called Bilingual Evaluation Understudy or BLEU.

3.4.1 Bilingual evaluation understudy

Bilingual Evaluation Understudy (BLEU) is an algorithm developed to evaluate the trans-
lations of one language to another [30]. The popularity of the algorithm is high due to the fact
the the scores it produces are similar with how humans would evaluate the translation.

The final score, which is always between 0 and 1, is calculated by averaging each trans-
lated sentence’s score. Each translated sentence’s score is calculated by comparing it with a
list of reference translations, using a form of modified precision calculating what percent-
age of n-grams can be found in the reference translations. The most common version of the
algorithm BLEU uses n-grams from 1 to 4 and it is called BLEU4.

Bellow is presented an example that demonstrates how does BLEU2 works.

Reference 1: the cat jumps high
Reference 2: this cat can jump high

Translated: the cat high

First we calculate all the 1-grams of the translated sentence that exist in the reference

sentences.
1-grams counts
the 1
cat 1
high 1

Table 3.1: Number of 1-grams counts

As we can see the total number of 1-grams is 3 and the total number of 1-grams counts

is 3, so the 1-gram precision is P, = % =1
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Then we calculate all the 2-grams of the translated sentence that exist in the reference

sentences.

2-grams counts

the cat 1

cathigh | 0

Table 3.2: Number of 2-grams counts

As we can see the total number of 2-grams is 2 and the total number of 2-grams counts
is 1, so the 2-gram precision is P, = % =0.5

Finally the BLUE2 score of this sentence is @ = % =0.75

The BLEU algorithm is often applied to a collection of translated sentences and achiev-
ing a score 1 is almost impossible and many time undesirable. Human translations usually
achieve a score of 0.6 — 0.7 ([]) due to the fact that each human can translate a sentence using
different words but with the same meaning. Usually a BLEU score of 0.3 — 0.4 indicates that

the translations are understandable but the quality is not very high and a score of 0.4 — 0.5

indicates high quality translations [31]].






Chapter 4

Sequence to Sequence architecture

4.1 Sequence to Sequence

Sequence to Sequence (Seq2Seq) is a architecture designed to handle variable-length se-
quences as input and output. This architecture has two major components, the encoder and

the decoder, hence it is also called Encoder-Decoder Network.

This architecture was initially developed by Google [32] to be used in machine translation,
however it proved useful in many other tasks like summarization, conversational modeling
and 1mage captioning, due to the fact that it is not necessary for the output and the input to
be the same format. Moreover, Facebook [33] managed to use a Seq2seq model for sym-
bolic integration and solving differential equations. We used this model for neural machine

translation and bellow we will explain how the encoder and the decoder works in this task.

Y

Input > Encoder State »| Decoder > Output

Figure 4.1: The Seq2Seq architecture

The encoder takes as input a variable-length sequence and then transforms it into a fixed
length vector (hidden state), which contains all the information of the input encoded. The
decoder takes this fixed length vector and produces a variable-length sequence based on this

encoded vector [34].
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4.1.1 Encoder

The encoder is one of the two basic components of Seq2Seq. Specifically the encoder
transforms the input sequence to a fixed length vector containing all the necessary informa-
tion. In neural machine translation the input of the encoder will be the tokenized sentence
either in one-hot encoding or it will be the output of the embedding layer. Suppose we have
an input sequence 1, Ts, ..., T, Where z,, is the n'" token of the sequence. A time step n the
encoders transforms the input z,, and the hidden state h,,_; from the previous time step into

a new hidden state h,,. We can describe this with the following function (eq. §.1]).

hn = f(-rna hn—l) (41)

In essence the encoder transforms the hidden states for all time steps into a context vari-

able c (eq. f.2).

CZQ(h17h27‘“7hN) (42)

In most Seq2Seq models the context variable is the last hidden state (c = hy). This
hidden state is then passed to the decoder (fig. #.2).

Encoder

Encoder state

Figure 4.2: The encoder in a Seq2Seq model. [[13]

4.1.2 Decoder

As mentioned before, the decoder uses the context variable c to produce the output se-
quence (fig. B.3). Given the output sequence 41, ya, ..., yas, Where y,, is the m”* token of the
sequence, the probability of the decoded output y,, results from the sequence y1, ya, ..., Ym_1

and the context variable c (eq. §.3).
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P(ym | Y1y Ym—1, C) (43)

This conditional probability can be modeled using a recurrent neural network. At each
time step m of the output sequence the recurrent neural network takes y,, _; as input and its
hidden state is initialized using the context variable c. At each subsequent time step we use

the previous output to make the next prediction until we reach the end of the sequence.

Predictions
1 1 ) )
" Y, Ys Yn1 Y
s [ . 1
4N | | | |
B J | J
[
s 7
I |
|
Decoder

Figure 4.3: The decoder in a Seq2Seq model. [[13]

Moreover, the decoder contains one more layer, a single Dense layer, with the softmax

activation function to produce this conditional probability.

4.2 Attention mechanisms

Humans do not process all the information that is available in their environment but in-
stead only focus in a fraction of this information. Using attention mechanisms we try to in-
troduce this concept in machine learning algorithms and specifically in deep learning. In
machine learning attention can be seen as a mechanism to give more weight to some inputs
or in other words to introduce bias over some inputs.

In a Encoder-Decoder network used for neural machine translation from English to Italian
the sentence ”Good life” is translated to ”Bella vita”. The network maps the word ’Good”
to ”Bella” and "life” to “’vita” implicitly, but when we use attention this mapping becomes
more explicit.

The attention mechanism can be introduced in a network as an attention layer. The input

in an attention layer is called a query and for every query the attention returns an output.
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This output is based on the memory of the attention layer. This memory is encoded in the
attention layer and contains some keys £ and values v in pairs. The equation bellow, called
score function, (eq. #.4) is used to calculate the similarity between the query and the key, for

each key ky, ko, ..., ky.

a; = a(q, k;). (4.4)

The final attention output is calculated using the following equations (eq. #.3,4.6)

b = softmaz(a) 4.5)
i=1

The important part of the attention layer is the scoring function and there are many ways
to implement. The two most common attentions are the dot-product attention [35], which

uses the equation (eq. B.7) as a scoring function and the additive attention [36], which uses

the equation (eq. §.8).

2(Q,K)=QK'"/Vd (4.7)

Where Q € R™*4 contains m queries and K € R™*? has all the n keys.

a(k,q) = v tanh(W,k + W,q). (4.8)

Where W), € R*d% W, € R"*4 v € R" are learnable weights.

4.3 Our models and experiments

In this thesis we developed a Seq2Seq model (fig. f.4) from scratch with the ability to
define the type of recurrent layer used for the encoder and the decoder. The implementation of
the model can be found in the following repository https://github.com/chionkyr/
seg2seq nmt. The type of recurrent layers supported are GRU layers, LSTM layers and
bidirectional layers either GRU or LSTM. A bidirectional layer is a layer that consists of two

recurrent layers working together, with the first layer processing the input tokens in order,
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while the second layer processing the input tokens in reverse order. This enables the layer to
use information from both future and past to generate the current state.

In the experiments done, we create character level models and word level models, where
each token is a character or a word respectively. Furthermore, we tried to encode the tokens
using two different ways, one-hot vectors or embedding vectors.

All model have been tested with the same batch size of 512 and initial learning rate of
0.01, but we varied the size of the encoder and decoder between three values 128, 512, 1024.
Furthermore, the training of the model stopped if for the duration of 15 consecutive epochs
there was no improvements and the learning rate was automatically reduced, to a minimum
of 0.0001, if there was no improvements during the last 5 consecutive epochs.

An optimizer is an algorithm we use to minimize or maximize a cost function. In multi-
layer neural networks an optimization algorithm is used in conjunction with backpropagation
to update the weights properly. We used RMSprop [37] as an optimizer for our model, which
is an adaptive learning rate optimizer, and usually used when training recurrent neural net-
works.

The models demonstrated in this thesis was made with the help of TensorFlow [38], an

open-source Python library for machine learning.

Predictions
Encoder T T T T
| Y, Y, Yn1 Yn

—>
—>
—>
Encoder state
)
e =
J
: s
J
: =
C )

Historical data Decoder

Figure 4.4: The Seq2Seq model. [[13]

4.4 Character level tokenization

The first models we tested are character level models, where each token is a character.
During the tokenization the source sentences underwent minimal prepossessing, keeping any

numbers or punctuation that existed, but the characters were converted to ASCII.
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4.4.1 One-hot encoding

GRU

As we can see (table f.1)) increasing the size of the network the BLEU score increased,

which means the quality of the translations improved linearly. However the network with size

128 have BLEU scores below 0.3 and the translation quality will be low.

Seq2Seq using GRU and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4760 0.8562 0.8116 | 0.7555 | 0.6135 | 0.8143 | 0.2507
512 0.2696 0.9182 0.7333 | 0.7968 | 0.4809 | 0.8589 | 0.3430
1024 0.1272 0.9644 0.8646 | 0.7935 | 0.4832 | 0.8700 | 0.3952

Table 4.1: Metrics of a Seq2Seq model using GRU and one-hot encoding.

LSTM

All LSTM networks showed poor performance in this dataset (table #.2). Regardless of

the size used all three of our networks achieved the same BLUE score of 0.27 and could not

produce good translations.

Seq2Seq using LSTM and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4718 0.8578 0.8392 | 0.7471 | 0.6255 | 0.8099 | 0.2729
512 0.3244 0.9015 0.7929 | 0.7718 | 0.5098 | 0.8470 | 0.2755
1024 0.2415 0.9274 0.7274 | 0.8033 | 0.5315 | 0.8499 | 0.2796

Table 4.2: Metrics of a Seq2Seq model using LSTM and one-hot encoding.

Bidirectional GRU

Using a bidirectional GRU network for our encoder greatly improved the BLEU scores
(table §.3) for all network sizes however this improvements came with a increase in training

time. The biggest network with size of 1024 achieved a BLUE score of 0.4859 which means

the translations produced have acceptable quality.



4.4 Character level tokenization

31

Seq2Seq using bidirectional GRU and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3193 0.9034 0.7134 | 0.7945 | 0.5024 | 0.8499 | 0.3370
512 0.1263 0.9644 0.8529 | 0.7921 | 0.4563 | 0.8753 | 0.4175
1024 0.0039 0.9997 1.1517 | 0.7914 | 0.5592 | 0.8841 | 0.4859

Table 4.3: Metrics of a Seq2Seq model using bidirectional GRU and one-hot encoding.

Bidirectional LSTM

A bidirectional LSTM network showed the same improvement (table #.4)) over the simple

LSTM. However the bi bidirectional achieve better BLEU scores with less training time and

faster inference time.

Seq2Seq using bidirectional LSTM and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.2457 0.9273 0.6358 | 0.8159 | 0.4598 | 0.8645 | 0.3947
512 0.0755 0.9820 | 0.8278 | 0.8062 | 0.5097 | 0.8704 | 0.4171
1024 0.0247 0.9955 0.8478 | 0.8209 | 0.5233 | 0.8805 | 0.4639

Table 4.4: Metrics of a Seq2Seq model using bidirectional LSTM and one-hot encoding.

4.4.2 Embeddings

For all tests executed in this section the size of the embedding vectors was set to 30. This

number was chosen due to the fact that our unique input and output tokens was approximately

80.

GRU

We can see (table {.9) that increasing the size of the network the BLEU score increased,

however, the evolution of this growth was approximately 10%. All networks achieved average

BLUE scores with the highest value being less that 0.35.
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Seq2Seq using GRU and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4066 0.8775 0.7541 | 0.7771 | 0.5676 | 0.8296 | 0.2885
512 0.2791 0.9150 0.7381 | 0.7953 | 0.4879 | 0.8559 | 0.3083
1024 0.1841 0.9450 0.7841 | 0.8003 | 0.4807 | 0.8661 | 0.3404
Table 4.5: Metrics of a Seq2Seq model using GRU and embeddings.
LSTM

Similar to LSTM models used with the one-hot encoding, in this case we also observed

bad performance with LSTM networks and all produced bad translations and achieved bad

BLUE scores (table 4.6).
Seq2Seq using LSTM and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4009 0.8789 0.7506 | 0.7751 | 0.5637 | 0.8291 | 0.2867
512 0.3167 0.9029 0.8032 | 0.7678 | 0.5094 | 0.8459 | 0.2318
1024 0.2329 0.9289 0.7669 | 0.7894 | 0.4957 | 0.8578 | 0.2539

Table 4.6: Metrics of a Seq2Seq model using LSTM and embeddings.

Bidirectional GRU

A bidirectional GRU network improved dramatically BLEU scores here as well (table

K.7). The biggest network achieved a BLUE score of 0.3936 that indicates average translation

quality.
Seq2Seq using LSTM and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3182 0.9032 0.7066 | 0.7942 | 0.4783 0.8552 | 0.3273
512 0.1701 0.9502 0.7670 | 0.7993 | 0.4582 | 0.8697 | 0.3902
1024 0.0855 0.9781 0.9174 | 0.7927 | 0.4921 0.8725 | 0.3936
Table 4.7: Metrics of a Seq2Seq model using bidirectional GRU and embeddings.



4.5 Word level tokenization

33

Bidirectional LSTM

A bidirectional LSTM showed dramatic improvement, especially the bigger one (table

4.8). It managed to reach a BLUE score of 0.4711 which is the biggest so far.

Seq2Seq using LSTM and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3444 0.8955 0.6990 | 0.7929 | 0.5124 | 0.8450 | 0.2862
512 0.1683 0.9504 0.7942 | 0.7953 | 0.4794 | 0.8667 | 0.3159
1024 0.0089 0.9993 0.8839 | 0.8233 | 0.5068 | 0.8889 | 0.4711

Table 4.8: Metrics of a Seq2Seq model using bidirectional LSTM and embeddings.

4.5 Word level tokenization

Next we experimented with word level models, where each token is a word. During the

tokenization the source sentences underwent minimal prepossessing, keeping any numbers

or punctuation that existed, but all the characters were converted to ASCII.

4.5.1 One-hot encoding

GRU

We can see (table §.9) increasing the size of the network causes the BLEU score to in-

crease almost linearly. All networks achieved high blue scores, even the smallest one.

Seq2Seq using GRU and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.6541 0.8994 2.2979 | 0.7019 | 1.5255 | 0.7669 | 0.4251
512 0.3574 0.9445 2.2148 | 0.7179 | 13636 | 0.7916 | 0.4935
1024 0.2025 0.9705 22636 | 0.7240 | 1.3220 | 0.8027 | 0.5342

Table 4.9: Metrics of a Seq2Seq model using GRU and one-hot encoding.
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LSTM

In contrast to character level LSTM models, the networks here reached very high BLUE

scores (table {4.10)), all of them achieving more than 0.56 BLUE score, producing very good

translations.
Seq2Seq using LSTM and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4098 0.9398 2.0789 | 0.7242 | 1.2400 | 0.8074 | 0.5655
512 0.2460 0.9628 2.1114 | 0.7234 | 1.2516 | 0.8069 | 0.5664
1024 0.1009 0.9866 2.2290 | 0.7250 | 1.2732 | 0.8124 | 0.5674

Table 4.10: Metrics of a Seq2Seq model using LSTM and one-hot encoding.

Bidirectional GRU

The usage of bidirectional networks in the encoder did not produce better results (table

#.11)) than simple using of a GRU network. Moreover the training time increased greatly and

the test using 1024 neurons could not complete due to a limitation of the available resources.

Seq2Seq using bidirectional GRU and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.4530 0.9308 | 2.0371 | 0.7102 | 1.3117 | 0.7910 | 0.4880
512 0.1935 0.9719 | 2.0379 | 0.7208 | 1.2388 | 0.8082 | 0.5380

Table 4.11: Metrics of a Seq2Seq model using bidirectional GRU and one-hot encoding.

Bidirectional LSTM

A bidirectional LSTM encoder, with 128 neurons, produced the best BLEU score in these

experiments (table #.12). However, an increase in the size of the encoder produced sub par

results. Moreover, the training time was disproportional bigger and we could not finish the

training of the model with the 1024 neurons.
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Seq2Seq using bidirectional LSTM and one-hot encoding
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3428 0.9480 1.9449 | 0.1250 | 1.1654 | 0.8112 | 0.5866
512 0.1826 0.9733 2.1549 | 0.7015 | 1.1589 | 0.8157 | 0.4251

Table 4.12: Metrics of a Seq2Seq model using bidirectional LSTM and one-hot encoding.

4.5.2 Embeddings

For the tests done with word level tokenization the size of embedding vectors was set to

300 because the max size of our vocabulary was approximately 23000 [].

GRU

The word level GRU models produced slightly better results (table §.13) from the corre-

sponding character level GRU model, with the best model reaching a BLEU score of 0.54.

Seq2Seq using GRU and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3924 0.9359 2.0540 | 0.7207 | 1.3092 | 0.7917 | 0.4722
512 0.1969 0.9678 1.9853 | 0.7372 | 1.1901 0.8127 | 0.5193
1024 0.0683 0.9917 2.0578 | 0.7416 | 1.1764 | 0.8208 | 0.5459

Table 4.13: Metrics of a Seq2Seq model using GRU and embeddings.

LSTM

Similar to the GRU models the LSTM models produced comparable BLEU scores (table
4.14), although slightly lower. The best model was the middle one, with 512 neuron, achieving
a BLEU score of 0.55.

Bidirectional GRU

The bidirectional GRU models produced similar results (table #.15) with the unidirec-
tional GRU models. In contrast to the bidirectional GRU models using one-hot encoding, the
models using embeddings did not present a problem during training and all models was able

to be trained.
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Seq2Seq using LSTM and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.2697 0.9556 1.8182 | 0.7376 | 1.0951 0.8202 | 0.5699
512 0.1142 0.9818 1.9015 | 0.7368 | 1.1262 | 0.8205 | 0.5523
1024 0.1333 0.9777 1.9661 | 0.7302 | 1.2105 | 0.8080 | 0.5205
Table 4.14: Metrics of a Seq2Seq model using LSTM and embeddings.
Seq2Seq using bidirectional GRU and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.3827 0.9334 1.9373 | 0.7258 | 1.2474 | 0.7970 | 0.4697
512 0.0867 0.9885 2.0074 | 0.7322 | 1.1795 | 0.8143 | 0.5287
1024 0.0435 0.9947 2.1140 | 0.7344 | 1.2173 0.8171 | 0.5281
Table 4.15: Metrics of a Seq2Seq model using bidirectional GRU and embeddings.
Bidirectional LSTM

Similar to the character level tokenization, the bidirectional LSTM models produced the

best BLEU scores (table §.16). The highest BLEU score reached is 0.5934, which is the

highest score considering all models.

Seq2Seq using bidirectional LSTM and embeddings
RNN Size | Train loss | Train acc. | Val loss | Val acc. | Test loss | Test acc. | BLUE4
128 0.1771 0.9696 1.6653 | 0.7487 | 1.0129 | 0.8315 | 0.5893
512 0.0428 0.9948 1.9046 | 0.7377 | 1.0938 | 0.8266 | 0.5685
1024 0.0157 0.9987 1.9369 | 0.7469 | 1.0930 | 0.8347 | 0.5934

Table 4.16: Metrics of a Seq2Seq model using bidirectional LSTM and embeddings.

4.6 Reviewing the results

Based on the results from the previous section, we used the models that achieved the
best BLEU scores in order to observe how these models act given some inputs. We tried to

categorize the produced sentences so as to understand the particularities of each model.
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4.6.1 One-hot character level model

The best model, according to BLEU score, is the bidirectional GRU with 1024 neurons.
Below we demonstrate some typical sentences, with BLEU score more than 0.3, and their

translations.

Low BLEU score but understandable translation

Source: I know that you used to live in Boston.
Target: So che lei una volta viveva a Boston.
Predicted: So che hai venuto Boston.

BLEU score: 0.36

This is a sentence that although it has low BLEU score, the source sentence’s meaning is

captured and the goal, which is to transfer the meaning to the target language, is achieved.

Missing words

Source: Tom looked genuinely interested.
Target: Tom sembrava sinceramente interessato.
Predicted: Tom sembrava interessato.

BLEU score: 0.57

Source: Tom isn’t afraid of death.
Target: Tom non ha paura della morte.
Predicted: Tom non ha paura.

BLEU score: 0.47

In the above examples we can see that in the predicted sentences some words are miss-
ing. For this reason the meaning of the sentences may be affected negatively, but in some

exceptional cases the words removed may not have a vital role in the sentence.

Spelling mistakes

Source: I think we need to find a new babysitter.
Target: Penso che dobbiamo trovare una nuova babysitter.
Predicted: Penso che bbbbiamo energiare di piaggua.

BLEU score: 0.40
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Source: Tom is already there, isn’t he?
Target: Tom e gia 1i, wvero?
Predicted: Tom e gia le, vero?

BLEU score: 0.85

Due to the nature of the a character level model, spelling mistakes are quite often. This
happens because the network cannot learn the meaning of the words, but instead learns a
sequence of characters. However, as we can see above this may not cause serious problem in

Some Cases.

Perfect translation

Source: I'm not worried about Tom.
Target: Non sono preoccupato per Tom.
Predicted: Non sono preoccupato per Tom.

BLEU score: 1.00

Finally, this model can produce perfect translations even if sentences are unknown and

do not belong, as is, in the training dataset. However, this is quite rare.

4.6.2 One-hot word level model

According to the previous section the best model, that uses one-hot encoding and word
level tokenization, is a bidirectional LSTM model with 128 neurons. Below we present some

example with the most common errors.

High BLEU score but wrong translation

Source: Tom wanted something cold to drink
Target: Tom voleva qualcosa di freddo da bere
Predicted: Tom voleva qualcosa da bere bere

BLEU score: 0.75

Source: We ' ve made a very interesting discovery
Target: Abbiamo fatto una scoperta molto interessante
Predicted: Abbiamo fatto una cosa molto interessante

BLEU score: 0.83
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Something we noticed in this model is high BLEU scores on some sentences, but the
meaning of theses sentences is completely off. This happens due to the fact that a crucial,
to the meaning, word is missing from the predicted translation or it is replaced with another

irrelevant word. This may indicate a disadvantage to the BLEU algorithm.

Missing words

Source: I ' ve already started reading that book
Target: Ho gia iniziato a leggere quel libro
Predicted: Ho gia iniziato a libro

BLEU score: 0.59

Source: I wish I hadn ' t looked out the window
Target: Vorrei non aver guardato fuori dalla finestra
Predicted: Vorrei non avere la finestra

BLEU score: 0.50

As we can saw, in the one-hot word level model, we observed again the issue with missing
words. This may have a negative effect to the meaning of the sentence but in some other cases

the meaning of the translation is preserved.

Rare words
Source: That doesn ’ t seem very hygienic
Target: Non sembra molto igienico

Predicted: Non sembra molto molto

BLEU score: 0.66

Source: He was born in the 19th century
Target: E nato nel diciannovesimo secolo
Predicted: E nato nel nel

BLEU score: 0.24

Another problem we observed in the translations, is that rare words are difficult to be
predicted by the model. These rare words are usually replaced by the preceding word of the

sentence. For this reason, these sentences are not understandable.
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Perfect translation

Source: I need a pair of new shoes
Target: Ho bisogno di un nuovo paio di scarpe
Predicted: Ho bisogno di un nuovo paio di scarpe

BLEU score: 1.00

One positive aspect of this model is that it can also produce perfect translations like the

one-hot character level model.

4.6.3 Embedding character level model

The model that reached the best BLEU score (0.47) using embeddings and character level
tokenization is a bidirectional LSTM model with 1024 neuron. The following sentences rep-

resent some translations produced by the model.

Substitution with a derivative word

Source: Tom was able to pass the exam.
Target: Tom era in grado di superare 1’esame.
Predicted: Tom e stato in grado di superare 1l’esame.

BLEU score: 0.81

Source: Tom hopes that Mary won’t do that.
Target: Tom spera che Mary non lo fara.
Predicted: Tom spera che Mary non lo fa.

BLEU score: 0.91

In the sentences above the translation meaning may differ from the target translation, but
the word used in the predicted translation is a derivative of the target word. The meaning of

sentences is captured, to some extent, although not completely.

Substitution with a irrelevant word

Source: I wonder if Tom is still depressed.
Target: Mi chiedo se Tom sia ancora depresso.

Predicted: Mi chiedo se Tom sia ancora sposato.
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BLEU score: 0.78

Source: Tom couldn’t have done this without me.
Target: Tom non avrebbe potuto fare questo senza di me.
Predicted: Tom non avrebbe potuto fare questo per me.

BLEU score: 0.79

A common occurrence in this model is to produce a correct translation except one single
word. This incorrect word changes completely the meaning of the sentence. However, most

of these sentence produce high BLEU score and this may skew the overall score higher.

Incorrect translations

Source: She has a son everybody loves.
Target: Ha un figlio che amano tutti.
Predicted: Ha un giornatore con veloce.

BLEU score: 0.23

Source: Could you talk a little slower?
Target: Potresti parlare un po’ piu lentamente?
Predicted: Potresti andare a piedi fino al biuo?

BLEU score: 0.27

Another interesting remark about this model is that despite the high BLEU score it achieved,
a big portion of the predicted translations have a very low BLUE score. Moreover, we can
observe that these translations are completely wrong, which is reflected on each sentence’s

SCOres.

Perfect translation

Source: The two kissed.
Target: I due si sono baciati.
Predicted: I due si sono baciati.

BLEU score: 1.00

This model is also capable of producing perfect translations like the previous one-hot

models.
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4.6.4 Embedding word level model

The best BLEU score (0.59) using embeddings and word level tokenization was achieved
by a bidirectional LSTM model with 1024 neuron. Some example sentences are presented

bellow in order to demonstrate some common errors.

Substitution with a derivative word

Source: I 7 11 do your homework for you
Target: Faro i tuoi compiti per te
Predicted: Faro i1 miei compiti per te

BLEU score: 0.83

In this model we also observed that some words got replaced by derivatives. In this in-
stance ‘tuoi‘ got replaced by ‘miei‘, where both are possessive pronouns with the only dif-

ference being the grammatical person.

Substitution with a irrelevant word

Source: I knew Tom wouldn ’ t enjoy the party
Target: Sapevo che a Tom non sarebbe piaciuta la festa
Predicted: Sapevo che Tom non sarebbe stato festa

BLEU score: 0.67

Source: You like to hunt , don ' t you ?
Target: Ti piace cacciare , vero ?
Predicted: Ti piace disegnare , vero ?

BLEU score: 0.71

In this case words are replaced by other words with a completely different meaning. These
sentences achieve high BLEU score but the overall meaning is quite different. However, there
are some examples where these words are essential for the meaning of the sentence but in

rare cases these words may not effect the meaning negatively.

Missing words

Source: I don ' t want to be involved in this affair
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Target: Non voglio essere coinvolto in questo affare
Predicted: Non voglio essere coinvolto

BLEU score: 0.55

Source: We hope it doesn ’ t happen again
Target: Speriamo che non capiti ancora
Predicted: Speriamo che non capiti

BLEU score: 0.74

We observe, in this model, that many sentences got translated only in part. Most of them
only have a few of the first words translated correctly the rest of the sentence is missing.
This may have a negative effect to the meaning of the sentence but in some other cases the

meaning of the translation is preserved.

Rare words
Source: Tom is a very good dancer , isn ' t he ?
Target: Tom e un ballerino molto bravo , vero ?

Predicted: Tom e un molto molto , vero ?

BLEU score: 0.57

In addition to these cases there are some sentences that contains rare words. The model
produces predictions that do not approach the target translation. Rare words are difficult to

be predicted due to their low presence in the training data.

Perfect translation

Source: I really like to read
Target: Mi piace davvero leggere
Predicted: Mi piace davvero leggere

BLEU score: 1.00

Source: Tom often helps me in the garden
Target: Tom mi aiuta spesso in giardino
Predicted: Tom mi aiuta spesso in giardino

BLEU score: 1.00
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Finally, the model managed to produce perfect translations, more than any other model,

and approximately 10% of the sentences achieved a BLEU score of 1.



Chapter 5

Conclusions

In this chapter we will summarize our research on the neural machine translation domain
and the results from our experiments using Seq2Seq models with different hyperparameters

and architectures.

5.1 Summary and conclusions

The Seq2Seq architecture is a very interesting architecture that enables us to predict a se-
quence given another sequence. In this thesis we used this architecture for the task of neural
machine translation. This task requires many choices that effect how the model works and
involves some pre-processing steps. Character level or word level tokenization are two cate-
gories that we tested in order to observe the advantages and disadvantages of each method.
Furthermore, we explored two different encoding techniques for the created tokens, either
using embedding vectors or one-hot vectors.

After some extensive testing we came to some interesting conclusions. The best Seq2Seq
model, according to BLEU score, was using word level tokenization, embedding vectors
and bidirectional LSTM networks for the encoder and the decoder with 1024 neuron. This
model achieved 0.5934 BLEU score and that means very high quality, adequate, and fluent
translations.

Generally speaking the average BLEU score of the character level models was approxi-
mately 0.2 lower than word level models, but this may not reflect the real performance of the
model. Due to the fact that character level models predict characters, spelling mistakes are

not a rare occurrence. BLEU score calculates n-grams of words and for this reason spelling

45
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mistakes that change even a single letter in a word would produce a lower score. On the other
hand word level models face problems with rare words, because there are limited usages
of these words our the dataset. This probably can be solved by using a bigger dataset with
more diverse vocabulary. Moreover, due to the pre-processing required by word level mod-
els spaces are introduced in the translated sentence between words and stop-words. However,
our final observation is using word level tokenization produces better translations in compar-
ison to character level tokenization , but word level tokenization may not be not be always

feasible especially with huge vocabularies.

Comparing the two different encoding techniques we did not observe many differences
in the translations produced. However the models that used embedding vectors was able to
learn some relations between words. This can result in the model replacing the original words
with derivative words without making big difference to the meaning.

Analyzing further the models we can draw conclusions about the performance of each
recurrent network type and the encoding used. Simple GRU and LSTM networks had low
BLEU score and only achieved average scores using the highest number of neuron, irrele-
vant of the encoding used. The best performance was achieved using bidirectional models as
expected. Moreover, the size of the model influenced the scores directly but not in all cases.
Usually, the best model was the one with the highest number of neuron except when using
word level tokenization and one-hot encoding where the model with 128 neurons performed
the best. The complexity of the model and thus the training time and the inference time is
highly related to the size of the networks and the type of the encoding used. As we can see,
in the following tables (5.1, 5.7), doubling the size of the model exponentially increases the
number of it’s parameters. More specifically, in the model that uses one-hot encoding the
vocabulary size has a huge impact on the number of parameters, while using embedding the

created model is not effected that much.

5.2 Future prospects

In this thesis we described the ordinary Seq2Seq model and it’s applications in neural
machine translation. However, we can at temped to improve it in various way. One simple way
is to use multiple layer in the encoder and decoder, however this may not impact BLEU scores.

Furthermore, we can implement attention in a Seq2Seq model. Using attention, the model will
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Parameters versus size

Size | LSTM - CL | BI-LSTM - CL | LSTM - WL | BI-LSTM - WL
128 226,130 583,250 22,703,010 45,513,890
512 | 2,477,138 7,051,346 92,315,298 186,704,546
1024 | 9,148,498 26,685,522 188,801,698 385,968,802

Table 5.1: Complexity of a Seq2Seq model using LSTM or BI-LSTM and one-hot encoding.
CL: Character Level, WL: Word Level

Parameters versus size
Size | LSTM - CL-30 | BI-LSTM - CL-30 | LSTM - WL-300 | BI-LSTM - WL-300
128 178,284 482,668 14,903,754 18,443,978
512 2,271,084 6,634,348 26,704,074 44,010,698
1024 8,731,500 25,846,636 46,107,850 89,109,706

Table 5.2: Complexity of a Seq2Seq model using LSTM or BI-LSTM and embedding encod-
ing. CL: Character Level, WL: Word Level

be able produce better and more accurate translations without increasing the complexity. In

addition, we can also change the way the predicted translated sentence is created. To create

a translation we have to find the best combination of tokens. However, these tokens will not

always be the ones with the highest probability and to solve this problem we can introduce

the beam search algorithm. Finally, to deal with the neural machine translation task, we can

introduce another another family of models called transformer models [39]. These models

are based on attention and do not require to process the data in order. This can lead to faster

training time and better results.






Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Deep learning: The latest trend in ai and ml. https://www.qubole.com/blog/
deep-learning-the-latest-trend-in-ai-and-ml/. Date accessed: 25-

02-2021.

Wikipedia linear regression. https://en.wikipedia.org/wiki/Linear

regression. Date accessed: 25-02-2021.

Wikipedia decision tree learning. https://en.wikipedia.org/wiki/

Decision tree learning. Date accessed: 25-02-2021.

Wikipedia cluster analysis. https://en.wikipedia.org/wiki/Cluster
analysis. Date accessed: 25-02-2021.

Wikipedia support-vector machine. https://en.wikipedia.org/wiki/

Support-vector machine. Date accessed: 25-02-2021.

Wikipedia artificial neural network. https://en.wikipedia.org/wiki/

Artificial neural network. Date accessed: 25-02-2021.

The perceptron. https://towardsdatascience.com/the-perceptron-

3af34c84838c. Date accessed: 25-02-2021.

Knet - multilayer perceptrons. https://towardsdatascience.com/the-

perceptron-3af34c84838c. Date accessed: 25-02-2021.

Explaining recurrent neural networks. https://www.bouvet.no/bouvet-
deler/explaining-recurrent-neural-networks. Date accessed: 25-02-

2021.

Wikipedia long short-term memory. https://en.wikipedia.org/wiki/

Long short-term memory. Date accessed: 25-02-2021.

49


https://www.qubole.com/blog/deep-learning-the-latest-trend-in-ai-and-ml/
https://www.qubole.com/blog/deep-learning-the-latest-trend-in-ai-and-ml/
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://towardsdatascience.com/the-perceptron-3af34c84838c
https://towardsdatascience.com/the-perceptron-3af34c84838c
https://towardsdatascience.com/the-perceptron-3af34c84838c
https://towardsdatascience.com/the-perceptron-3af34c84838c
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory

50 Bibliography

[11] Wikipedia gated recurrent unit. https://en.wikipedia.org/wiki/Gated

recurrent unit. Date accessed: 25-02-2021.

[12] Tab-delimited bilingual sentence pairs. http://www.manythings.org/anki/.
Date accessed: 25-02-2021.

[13] seq2seq-pytorch. https://github.com/sooftware/seg2seq. Date ac-
cessed: 25-02-2021.

[14] Warren Weaver. Translation. In William N. Locke and A. Donald Boothe, editors, Ma-
chine Translation of Languages, pages 15-23. MIT Press, Cambridge, MA, 1949/1955.

Reprinted from a memorandum written by Weaver in 1949.

[15] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick
Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A statistical approach

to machine translation. Comput. Linguist., 16(2):79-85, June 1990.

[16] Sergei Nirenburg. Knowledge-based machine translation. Machine Translation, 4(1):5—
24, 1989.

[17] Makoto Nagao. A framework of a mechanical translation between japanese and english
by analogy principle. In Proc. of the International NATO Symposium on Artificial and
Human Intelligence, page 173—180, USA, 1984. Elsevier North-Holland, Inc.

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks. CoRR, abs/1409.3215, 2014.

[19] F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-

nization in the brain. Psychological review, 65 6:386—408, 1958.

[20] C. Van Der Malsburg. Frank rosenblatt: Principles of neurodynamics: Perceptrons and
the theory of brain mechanisms. In Giinther Palm and Ad Aertsen, editors, Brain The-

ory, pages 245-248, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[21] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533-536, Oct 1986.

[22] Rumelhart, David E, McClelland, and James L. Parallel distributed processing : ex-

plorations in the microstructure of cognition. Cambridge, Mass. : MIT Press, 1986.


https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Gated_recurrent_unit
http://www.manythings.org/anki/
https://github.com/sooftware/seq2seq

Bibliography 51

[23] Stanford cs 230 - deep learning - recurrent neural networks cheatsheet. https:
//stanford.edu/~shervine/teaching/cs-230/cheatsheet-

recurrent-neural-networks. Date accessed: 25-02-2021.

[24] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735-1780, 1997.

[25] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation, 2014.

[26] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of

finite precision rnns for language recognition. CoRR, abs/1805.04908, 2018.

[27] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration
of neural machine translation architectures. CoRR, abs/1703.03906, 2017.

[28] Tab-delimited bilingual sentence pairs. http://www.manythings.org/anki/.
Date accessed: 25-02-2021.

[29] Google machine learning course - embeddings. https://developers.google.
com/machine-learning/crash-course/embeddings/video-

lecture. Date accessed: 25-02-2021.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages 311-318, Philadelphia, Penn-
sylvania, USA, July 2002. Association for Computational Linguistics.

[31] Automl - evaluating models. https://cloud.google.com/translate/
automl/docs/evaluate. Date accessed: 25-02-2021.

[32] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,


https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
http://www.manythings.org/anki/
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate

52 Bibliography

Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. CoRR,

abs/1609.08144, 2016.

[33] Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics.

CoRR, abs/1912.01412, 2019.

[34] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep
Learning. Corwin Press, 0.16.1 edition, 2019.

[35] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to

attention-based neural machine translation. CoRR, abs/1508.04025, 2015.

[36] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[37] Neural networks for machine learning - lecture 6a. https://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture slides lec6.pdf. Date ac-
cessed: 25-02-2021.

[38] Tensorflow. https://www.tensorflow.org/. Date accessed: 25-02-2021.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.


https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.tensorflow.org/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction
	Motivation
	Contribution

	Organization of the thesis

	Introduction to machine learning
	Introduction
	Machine learning models
	Loss function and gradient decent
	Activation functions

	Perceptron
	Multilayer perceptron
	Back-propagation

	Recurrent neural networks
	Long short-term memory
	Gated recurrent unit


	Text prepossessing and machine translation metrics
	Prepossessing raw text
	Tokenization
	Categorical data encoding
	One-hot encoding
	Token embeddings encoding

	Machine translation metrics
	Bilingual evaluation understudy


	Sequence to Sequence architecture
	Sequence to Sequence
	Encoder
	Decoder

	Attention mechanisms
	Our models and experiments
	Character level tokenization
	Οne-hot encoding
	Embeddings

	Word level tokenization
	Οne-hot encoding
	Embeddings

	Reviewing the results
	One-hot character level model
	One-hot word level model
	Embedding character level model
	Embedding word level model


	Conclusions
	Summary and conclusions
	Future prospects

	Bibliography

