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YNEYOYNH AHAQZH NEPI AKAAHMAIKHZ AEONTOAOTIAZ KAI MNEYMATIKQN
AIKAIQMATQN

Me mAnpn eniyvwon Twv CUVETTELWY TOU VOUOU TTEPL TTVEUUOTIKWY SIKALWUATWY, SNAWVW pNTd OTL N
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NEPINHWH

Katd tn Slapkela Twv TeAeUTAlWY SeKAETLWV TIOAAOL TOMELG TNG GUUVAC, £PEUVAG KOL UTINPECLWV
gfaptwvtol amo tnv thAemniokonion. H Yreppaouotiky Kot MoAUDACUATIKY ATEIKOVION OTMOTEAEL
onUavTLko epyaldeio yla tn cuAdoyn mAnpodoplwy yla tnv enidaveta tng ync. H avfavopevn xwpikn
Kot paopatikn avaluon Twv alcdntipwv wbel mpog TNV uLoBETNoN Mo amodotikwy aAyopiBuwy yla
enetepyaoia, cupnieon kot LeT@doon Tou PHeyAAou OYKou SeSOUEVWY TIOU TIOPAYETE. € OMAVINGN
OTLG au&avopeveg avaykeg, n CCSDS Snuooileuoe pla Opd amd OTAVIAPVT yla Th HeTadoaon, mpo-

enetepyacia kaL cupmnieon dedougvwy.

O 0TOX0G pag ylo auTh TN SUTAWHOTLKA €pyacia eival n uAomoinon Tou otavtap cuumnieong Sixwc-
anwAeleg yla Yrneppaopotikd kat NoAuvdaopatikd dedopéva. H katevBuvon mou akoAoubrBnke
Tav n uAomoinon Tou oTAvVTop OTo KawoUpyLdo space-suitable RC cuotnua HPDH. Katad t didpketa
NG vAomoinong MPooMaBCaUE VA XPNOLLOTIOL)COUE T ELSIKA XAPOAKTNPLOTIKA TTOU TIPOCEDEPE N
ETUAEYUEVN OPXLTEKTOVIKI) WOTE VO UMOPECOUNE VA TIANCLACOUUE TO BewpnTikO HEYLOTO Oplo

enidoonc.
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ABSTRACT

For the past decades many aspects of our defence, research and services have come to depend on
remote sensing technologies. Hyperspectral and Multispectral imaging are an important asset for
collecting earth surface data. The Increasing spatial and spectral resolution of the sensors though is
constantly pushing for ever more efficient algorithms for processing, compressing, and transmitting
the large amount of data generated. In response to the increasing requirements, CCSDS have released

a series of standards concerning the aspects of transition, pre-processing, and compression.

Or goal with this thesis is the implementation of the lossless-compression standard for
Hyperspectral/multispectral data released by the CCSDS. The approach we follow is the
implementation of the standard on the new space-suitable RC device HPDP. During the
implementation we try to utilize the features provided by the chosen architecture in order to come

close to the theoretical maximum performance that we can achieve.

vil



Table of Contents

TTEPIAHWH ...ttt h e sttt st et et e s bt e sbe e s bt e be e be e e e e eatesate e b e e beenbeenneenneens vi
ABSTRACT ...ttt ettt sttt et ettt e b e e s bt e b e e b et she e st e s bt e a et ea et et e e nbe e eh e e he e b et ehe e et e saresreeaneens vii
FiY o] o]V - 1 4[] o[- PO PP TP 1
Mathematical NOTAtiON......coc.uiiiiieiee e e e s e et e s e st e e see e e sreeenees 2
CHAPTER 1: INtrOQUCTION .ttt st st st e st e e st e e sne e e sre e e smneeeareeeabeeenneeeaneas 3
1.1 o] o1 [T g J D L=TYol o) d o TP SRR 3
1.2 Thesis CONTIBULION ..couiiiiie e s st e 3
G B I o T T T o W ot (U T PR U PO USRPPRR 3
CHAPTER 2: Introduction to XPP(RC) @rchit@CIUIE ..........uviiieiiieeetiee ettt ettt 5
2.1 Introduction to Reconfigurable COMPULING........coociiiiiiiiiie ettt e e 5

2 0 R € N =Yl o T To] [0 = USSR 5

2.2 XPP archit@Cture OVEIVIEW ......cocuieiiieieeieesieeniee sttt ettt ettt st e st e st e sae e s sreeseesanesmneennees 7
2.2.1 Archit@Cture COMPATISON ...uieiieieecciiiieeeeeeeeecttrtee e e e e eseetbreeeeeeeesetaseeeeeesssnntaeseeeessaannsseneseeeeaans 9
G A N4 - V3 8 [ 1 =S 10
2.2.3 PAE COMMUNICATION ..ceiiiiiiiiiiiiiiiiiiic it ar e sabe e e 11
2.2.4 Configuration IMETNOM ......ccooiiiiiiceee et e e e aa e e s e e e s e aaeeeeas 12
2.2.5 Application mapping and programming tOOIS ..........ceveciieiiiciiiie e 12
2.2.6 Algorithm to diagram t0 MaAPPING ..eeeeeeeei e rrre e e e e e et aree e e e e eeaas 12
2.2.7 Integration Of the XPP COME P ... .. ittt e et e e e e e e e enrare e e e e e e 13
P20 A o =T o o] [Tor: 1A o Ta W aF-T ] o] o= T 14
CHAPTER 3: Introduction to the CCSDS123 Standard .........ccocueeeeruieiieneeenieenieeniee et 16
3.1 Introduction to Multispectral/Hyperspectral imaging.......ccccevveeereeeeieeeeceeeeeree et 16
BL2 CCSDS ...ttt et ettt et he e he b e e b e e bt e eh et et e e be e b e e bt e ebeeaaeenheesheeehteeheesateeane 17
3.3 Need for CCSDS 123 StANTard.......cceereireeiieeiteeee ettt ettt st st sttt st e be b et e b e 18
2.2 Definition of CCSDS123 Standard......c..ccouerieeieenieieeiieeeiee sttt sttt sree e e s 18
2.2.1 GENEIAl OVEIVIEW ..ottt ettt sttt sttt ettt e sb e bt be e sre e st e san e e s enteenaeenae 18
B A - [ =T 4 =] =T PP OPRSPUPRSE 19
2.2.3 INPUL SPECITICATIONS ..eiiiiiiiiieciee e ettt e e et e e ate e e et b ee e e eareeeeesbeeeeenseeasnsseaaans 20
B N o = To [ ot o OSSPSR U PR OPPPR PP 21
2.2.5 Weight INitialization .....cc.ueei ittt e et e e e te e e e sb e e e s eareeeeans 24
B AT\ Lo F={ o A U T oo I TN 24
A s (T o L1 Y =T o oo VRS 25
B <3 Y Y o] o VAN =T s T Yo [T SRR 25
CHAPTER 4: Proposed IMplementation ...........eiiicciieiiiiieeeeceee ettt e et ee s e e saaaee s e e e e s snraeeean 29
4.1 EXECULIVE SUMMAIY i ittt eee e e e eee e sess s e e s s s sttt st s besabebasebeberannnes 29



CHAPTER 5: Results, Conclusion, and fUTUIE WOIK ..........ieeeeiiiiiiiiiiirieierirerereveveeesereeeseeseseeeeseeeees 32

DL RESUIES 1.ttt r e st s sttt et e et b e nr e s ane st sanennne 32
5.2 CONCIUSION ...ttt ettt e s e st e s bt e e st e e sareesbeeesbeeesabeeeabeeeanaeesnseesareeenneean 33
5.3 FULUIE WOIA ..ttt ettt ettt ettt e st e e bt e e sabe e eab e e eabe e easeeesabeesaneeenaeesabeesaneeenneas 34
23] o oY =4 =T o] o1V 36

X



List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

(1Y =T A (ol 3 2 €7 =T (e a1 = U [ =P 6

(T oL (o O = 3 1= PR 6
A configuration for polynomial expression calculation .........ccccuveeeiciieiicieeccccee e, 8
Difference between instruction and configuration flow. .........ccccoiiiiiiiiiiiii e, 8
Basic Structure of an XPP dEVICE ....cccovuiiiiiiiee ettt e s 10
PAE STFUCTUIE ...ttt e e s st ee e e s e s e e e e e e s s e snnnreeeeeeeas 11
Dataflow to Configuration @Xample.........eeeeiciiiiie e e 13
Overview of HPDP archit@CtUre [7]..cccocuveeie ettt e e e 14
Snapshot from XPP array simulation [8]........ccciueiiiiiiieieiiiieeciee e 15

Same location in different spectral bands ..........coociiieiciiii e 16
Schematic Of the COMPIESSOr .....cii e et rae e e 19
Abstract representation of MS IMage.........uuviiiii i 20
FaT oYUy =T o oY o] [=Io ] o [<T o T o = R 21
The 310Cal SUM MOAES.....ciiiiiiiiiiiiirt ettt st st esbe e s sbe e s saee s sneesnbeeesbaeens 21
Schematic Of ENtropY ENCOEN ... ...uiii it e e e crree e e e e s e araeeae e e e enas 25
RICE COAING EXAMIPIE ...eiiiieiee ettt ettt e e e e e ee e s et e e e e e abe e e e sasaeeesenneeas 26
High level Implementation schematiC ........cccooccuiee i 31
Comparison Of PEIFOIMANCE........ccuiiieeeee ettt e et e et e e e b e e e e araaaean 33
HPDP Performance VS NZ .......coccuiiiiieieie ettt ettt e e ete e ettt e e s ite e s s aee e e abee e e sanaaeesennneas 33



Abbreviations

This section defines the acronyms used in this document.

Acronym Description

ALU Arithmetic Logic Unit

ASIC Application specific Intergraded Circuit
CCSDS Consultative Committee for Space Data Systems
FPGA Field programmable Array

CLB Configurable Logic Block

XPP eXtreme Processing Platform

HPDP High Performance Data Processing

DMA Direct Memory Access

FL Fast Lossless

ESA European Space Agency

JPEG-LS Joint Photographic Experts Group — LosslesS
ALU Arithmetic Logic Unit

PLD Programmable Logic Device

PAE Processing Array Element

(S)cm (Supervising) Configuration Manager

HS Hyper-Spectral

MS Multispectral



Mathematical Notation

The largest integernsuchn < x: n = | x|
The largest integer n suchn = x : n = [x]
The modulus of an integer M with respect to a positive integer divisor n:

M modn =M —n|M/n|

For any integer x and positive integer R, the function modpy[x] is defined as:

modp[x] = ((x + 28"1)mod 28) — 281

The notation clip (x, {Xmin, Xmax})clip denotes the clipping of an integer number x to the range

[Xmins Xmax]:

Xmins X < Xmin
clip(x, {Xmins Xmax}) =31%  Xmin < X < Xmax
xmaxJ x> xmax
The notation sgn(x) is defined as:
1, x>0
sgn(x) = { 0, x=0
-1, x<0
Finally, the notation sgn* (x) is defined as:
1, x=0
sgn*(x) = {—1 x<0



CHAPTER 1: Introduction

1.1 Problem Description

In today's world more and more aspects of our infrastructure, agriculture, defense, and
environmental research begin to rely on earth observing technologies. The main source of
data for this case is remote sensing devices i.e. orbiting or geostationary satellites. One of
the ways that satellites provide information is by carrying specialized hyper-spectral imaging
sensors that can provide us with much “richer” data about the surface of the earth, than a
simple picture in the visible spectrum. This innovation though brings a challenge for the on-
board computational units (OBCUs) and the downlinks to earth stations, as the huge amount
of data is generated by HS sensors. The solution is the inclusion of an inline compression
step in the on-board processing pipeline. Compression algorithms are though
computationally intensive, and the computational units limited by power consumption

restrictions do not offer efficient solutions.

1.2 Thesis contribution

Conventional satellite payloads using ASICs for greater performance/power consumption
ratios have very little flexibility when it comes to adapting to changing standards and
application evolution [1]. One possible solution comes in the form of reconfigurable
technologies. The contribution of this thesis is the implementation of state-of-the-art
compression standards of hyper spectral imagery used for scientific research on a Unique

reconfigurable architecture integrated in a space suitable system.

1.3 Thesis structure

The main body of the thesis is composed of 4 chapters.
Chapter 2 includes an introduction to the XPP(RC) architecture and then dives
deeper in the specifics of the architecture.
Chapter 3 includes an introduction in the technology behind
Hyperspectral/Multispectral imaging and after that, it defines in detail the

compression standard.



Chapter 4 describes the implementation of the standard on the HPDP architecture as
well as difficulties encountered during the development phase.
Chapter 5 includes results for the tests performed, conclusion of the thesis and

possible improvements that can be implemented in future work.



CHAPTER 2: Introduction to XPP(RC) architecture

2.1 Introduction to Reconfigurable Computing

During the mid 1980’s a new technology called field programmable gate array (FPGA) was
introduced. These devices when introduced were smaller and slower than the existing Mask
programmable gate arrays (MPGAs) and larger and more expensive than PLDs. The
advantage of the FPGAs over MPGAs was the configuration process. MPGAs were designed
to handle larger logic circuits and consist of an array of prefabricated transistors that could
be customized to implement a specific logic. The customization of the interconnection
among the rows of transistors took place during fabrication making the setup cost for an
MPGA far larger than the user programmable equivalent FPGA [2]. Many FPGAs were
initially configured using static random-access memory (SRAM) cells in the array. This
configuration medium was the key for many applications as it allows for the programming of
an FPGA by a completely electrical process. That meant that the programming or
configuration of the FPGA could change and configured to suit multiple applications [3]. So,
a setup using an FPGA and a read-only memory that stores multiple configurations could
function as a multimode hardware able to change depending on the current demands of a
specific application. Another advantage is the ability for systems that include FPGAs to
adapt to new data processing standards or communication protocols expanding the abilities
of older already deployed systems. Apart from superior adaptability and application specific
performance gains over general purpose computational units, one more application that
showed great potential was logic emulation or chip verification. This process is becoming
more and more complex and computationally intensive when software tools are used. The
solution offered by FPGAs is the ability to directly map the desired circuit on a system of
FPGAs. This way the tested circuit can run in real-time and minimize the time between test
cycles [3].

2.1.1 FPGA Technology

This section briefly presents the technology of the SRAM based FPGAs which is the most

common programming technology. Most of the descriptions of architectural abstractions



are applicable two all other Technologies [4]. In general, all FPGA architectures consist of
configurable logic blocks, configurable I/0 blocks and programmable interconnect.
Additional circuitry is also present for controlling clock signals as well as special purpose
blocks like ALUs, Floating point arithmetic blocks, memory and for certain applications,
digital signal processing (DSP) blocks (DSPs usually come in the form of an embedded core).
These blocks are organized in a matrix of configurable logic blocks (CLBs) interconnected by

configurable interconnection circuitry. A generic illustration is given in figure (1).
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Figure 1: Generic FPGA architecture.

CLBs are the blocks that implement the logic of the FPGA, they are the basic FPGA cell. They
implement macros and other design functions. Each CLB consists of several look up tables

(LUTs) whose outputs are multiplexed (reprogrammable routing control).
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Figure 2: Generic CLB [5]



The CLBs are connected between them using the programmable interconnect. The
interconnect resources can be used either as connection for far CLBs or can be used as
internal bus. The connections are turned on or off using transistors. For CLBs that are
physically close together, shorter lines exist. Those lines are a source of delay in a FPGA
design as connection between CLBs may have to go through multiple interconnect

transistors.

2.2 XPP architecture Overview

This next section offers a basic introduction to the eXtreme Processing Platform (XPP) and it

is based on the introduction of the XPP architecture by PACT in 2003 [6].

The limitations of conventional processors and the rising importance of stream-based
applications like digital signal processing and multimedia, increase the need for a faster and
more efficient alternative. This alternative can come in the form of reconfigurable
architectures as they combine the performance benefits of Application Specific Intergraded
Circuits (ASICs) and the applications flexibility of processors [6]. The XPP architecture
created by the French company PACT provides all the advantages of RC architecture
providing additional functionality by including the ability of run-time reconfiguration and/or
self-reconfiguration. This feature combined with the coarse grain, adaptive computing
elements and the packet-oriented communication makes this architecture well suited for
DSP applications, graphics and other stream based applications as different types of
parallelism like, pipelining, instruction level, data flow, task level parallelism are supported

[6].

The basic elements of the XPP architecture consists of reconfigurable ALUs which
implement one of many possible basic machine operations like ADDITION, SHIFT and AND.
The ALUs communicate via a packet-oriented communication network which feature
automatic packet synchronization. This feature offers a level of abstraction giving greater
freedom for programmers coming from higher level languages to get familiarized and
implement applications on this architecture. In abstract, the description of the operations to

be configured in each ALU as well as the interconnection scheme is described by a



configuration file. All this information in derived and can be translated by the data-flow
graph of the implemented algorithm. This means that a great deal of focus is given to the
dataflow generation of each algorithm. The figure (3) below shows the dataflow for the
simple polynomial expressions 5x? + 6x + 1 applied to a stream of data imported trough

I/O elements.

110 6
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Figure 3: A configuration for polynomial expression calculation
As mentioned above one of the unique features of the XPP architecture is the ability for run-
time reconfiguration. This allows for multiple configurations to be executed sequentially [6].
By breaking down the algorithm into smaller, inherently parallelizable segments, each
processing a stream of data*, a greater data throughput can be achieved while spreading
the overhead of multiple reconfigurations. According to reference [6]this programming
paradigm can be described as a configuration flow, opposite to instruction flow embodied in
the classical Von-Neuman architecture ** . The overhead added due to multiple
reconfigurations | minimized because of caching next configurations making them available
instantly. Figure (4) illustrates the difference between instruction and configuration flow.
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Instruction AND Configuration | | DECODE

J ) ) register | i

Instruction AND Configuration FILTER

l ‘ >] register | i k

Instruction AND Configuration | [ ENCODE

external RAM

internal RAM |

internal RAM I

RAM external RAM

Figure 4: Difference between instruction and configuration flow.



*This concept is particularly important for the comprehension of the direction selected for the

development of the CCSDS123 standard using the XPP architecture.

** The term von-Neuman architecture has evolved to mean any stored-program computer in which
an instruction fetch, and a data operation cannot occur at the same time because they share a
common bus. In this case we use the term “instruction flow” to describe the typical execution of a

process using multiple instruction cycles.

2.2.1 Architecture comparison
Field programmable gate arrays:

e Root of all reconfigurable computing devices

e Use fine grained cells and operate in date level

e They only allow complete configuration and cannot hold internal data during reconfiguration
e The resulting performance was only acceptable for algorithms well suited to the FPGA

architecture
Partially reconfigurable FPGAs:
e Only required resources need to be configured.
Multi-context PLDs:

e They typically use fine grained architecture.
e They contain multiple planes of context memory.

e A configuration can be changes on the fly by switching planes
Microcontrollers and FPGAs combination:

e First step toward a complete programmable reconfigurable system.

e The microcontroller manages and executes the configuration and reconfigurations
of the state of the FPGA.

e This approach cannot be a real solution for the reconfiguration and synchronization

issues.
Reconfigurable processors:

e Most advanced class of reconfigurable architecture.
e Use coarse grained architecture and work at the top level.

e Size of configuration files is smaller, so the reconfigurations time is shorter.



XPP architecture:

e Belongs into the “Reconfigurable processors” class
e Main difference is the automatic packet-handling mechanism and its sophisticated
hierarchical configuration protocols for full or partial runtime and self-

reconfiguration.

2.2.2 Array structure

The reconfigurable array is based on a hierarchical array of coarse grain, adaptive computing

elements called processing array elements (PAEs). The PAEs are typical grouped into blocks

called processing array clusters (PACs). An XPP device is made up of multiple PACs. The
configuration control is carried out by a hierarchical network of configuration managers
(CMs) which are embedded in the array. So, each PAC is connected to a CM which is
responsible for the loading of configuration data into the PAC. In multi-PAC devices
additional CMs are added for the concurrent configuration data handling, each PAC is also
connected to neighboring PACs. The root CM is called supervising configuration manager
(SCM) and is directly connected to external memory containing configuration data. Figure

(5) shown below depicts an abstract representation of a multi-PAC device.

XPP device
PAC |« > PAC
A A A A A A
CcM CcM
—
SCM
~—
cM CcM
Yyvy Yyvy
PAC |« > PAC

Figure 5: Basic structure of an XPP device

Every PAE in an XPP device is made of multiple configurable elements. The typical case of

PAE contain two vertical routing objects, one back register(BREG) and one forward

10



register(FREG) as well as on ALU object for performing the actual calculations which include
standard fixed point arithmetic, logical operations and some special opcodes like counters.
Depending on the opcode implemented by each ALU and the result produced, event signals
are generated, marking states like a classical microprocessor. The next case of PAE replaces
the ALU processing element with a PAE memory object. This object can be used either as

FIFO or as an internal RAM for look-up tables and temporary storage in an application.

R, y ttt t
LEEEE (€] ele[e]E

D D D
D D D D D
~FREGI: a ALU E ~BREG
D D D

[e[eTeTE] €] elefele
RER ' ! Pttt

event bus
[D] : data bus

Figure 6: PAE structure

2.2.3 PAE communication

The structures described in the above section communicate via a packet communication
network which carries two types packets, data packets and event packets. The packets
carrying data have bit-width specific to the device while the event packets a just one bit
wide. The event signals/packets add extra flexibility for data steam control. This gives the
ability for merging/ demultiplexing and in general controlling the flow of data throughout
the array, giving the choice of conditional computations depending on results of previous
operations. This flexibility of the computations and control over the stream of data becomes
possible due to the self-synchronization feature added to all PAE objects. This feature
“holds” values until all required inputs for an operation are filled and only then an output
value is produced and passed on. This minimizes the need for explicit scheduling of
operations throughout the dataflow thus simplifying the development process for

applications.

11



2.2.4 Configuration Method

A critical aspect of a reconfigurable systems affecting the performance, is the configurations
and reconfigurations methods used. Especially devices that belong to the “reconfigurable
processors” class cannot have slow conjurations methods as this would limit their use to
very specific applications with the minimum computation to configuration ratio. The optimal
case is devices which support concurrent computation and configuration. One way that the
XPP optimizes the configuration process is by getting every PAE that has been configured to
start computations while the rest of the array is still getting configured. Hardware protocols
ensure packet integrity for the partially configured applications. More about the

configuration methods can be found in [6].

2.2.5 Application mapping and programming tools

As with every reconfigurable architecture, the developer has to create a dataflow of the
applications according to the regulations and limitations posed by the architecture, and
then in turn, map the dataflow to the available fundamental elements. For this purpose,
PACT has developed the Native Mapping Language (NML) which gives direct access to all
hardware features to the programmer. A compiler for higher level of abstraction (C
compiler) is also available, useful for simpler applications. A configuration consists of
modules which contain PAE objects. The objects are explicitly allocated, optionally placed
and their connections specified. Each configuration may contain more than one module, a
sequence of initially configured modules and pre-fetched requests. The configurations

handling is an explicit part of the application program.

2.2.6 Algorithm to diagram to mapping

The process of mapping an application to the device starts with the algorithm diagram. This
diagram’ s nodes must be the available opcodes implemented to the arrays PAE objects.
Once this step is complete then the diagram can be broken to segments that can be refined
for parallel computations. Once the segments are connected, each gets “translated” to a

configuration ready to be mapped to the device. A simple example is presented below.

For this example, | implement a simple digital filter, a FIR filter. The FIR filter can be

described by the equation:
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ly[n] = x[n] + x[n — 1] + x[n — 2]|

From this equation | can derive the dataflow and subsequently the configurations to be

loaded to the device.

Dataflow Configuration

110
XIn] [
-
U
l r. reqg.
1
I
X[n-1] + [KI [_']_ preload to 0
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Y
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X[n-2] —» + ‘ Ir_elg
v preload to 0
o
ADD
Yin] [l

O]

170

Figure 7: Dataflow to Configuration example.
2.2.7 Integration of the XPP core IP

The XPP architecture introduced in this chapter describes a RC core. The integration of the
core is an important design aspect which allows us to take advantage of the features of the
IP. HPDP is an array-based processor developed by Airbus Defense and space GmbH in
Munich and ISD, SA in Greece. The development of HPDP has been initiated by the European
Space Agency(ESA) and DLR to address the need for a flexible and re-programmable high
performance data processor [1]. This architecture integrates an XPP RC processing core IP as
well as memory interfaces and space suitable peripherals [7]. The XPP IP included in the
design of the HPDP consists of 40 ALU elements and 16 RAM elements. For carrying out
flow-control tasks, two Harvard type VLIW 16-bit processor cores (FNC-PAE) are included in
the system. In general, the features of the HPDP include:

« Array Processor Based on the XPP Ill from Pact XPP Technologies (40 ALUs Processing

elements 16-bit), 2 FNC-PAEs and 256 Kbit high speed on-chip RAM (with error
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correction)
« 4x 1.6Gbit/s Streaming Ports
. 3 SpaceWire interfaces operating @ 100Mbps
«  Fully reprogrammable platform

aney 89 2 FNC-PAEs

il \av/d \v/d \ov/A v\ \ e _CPU icacke | [ |_|SpaceWire e»
v 7 A /,/r', 277 (| 257 || 527/ \\. \, V7 |
e T LT )| . —{ MEM-IF }<>1

7 / - v'",«;'}' \V/ 1 ICACHE (
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RAM = 4D-DMA | Lﬁ FFO  — System-Control
Pheripherals

Figure 8: Overview of HPDP architecture [7]

2.2.7 XPP application mapping

For the implementation of the Compression algorithm the XPP SDK. The kit includes C
compiler for the code running in the FNC-PAEs, a mapper that maps configuration files on
the devices and most important of all, it includes a graphic simulator making possible to
ensure validation of the implementation in a cycle by cycle level. Figure (9) offers a snapshot
in the array simulator. In chapter 4, diagrams are used for describing the implementation. In
these diagrams, as mentioned in this chapter, each distinct Block implements a calculation,
a comparison, data routing and more. Each of these blocks are directly mapped to the
objects shown above. The functionality of each block is included in the diagram when is non

intuitive operations are performed i.e. counters, data routing, event generation.
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Figure 9: Snapshot from XPP array simulation [8].
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CHAPTER 3: Introduction to the CCSDS123 standard

3.1 Introduction to Multispectral/Hyperspectral imaging

The term multispectral or spectral imaging describes the process of selecting information
across a wide range of the electromagnetic spectrum. The early development of Spectral
imaging begun nearly 50 years ago and until the end of the 1980s the use of this technology
was mainly restricted to military use as well as use from astrophysics for enhancing remote
sensing capabilities. The main difference with conventional imaging is the size of the
electromagnetic spectrum covered by the sensing devices. While common imaging sensors
can only “sense” information in the visible spectrum, specifically three narrow bands i.e.
Red, Green and Blue, a multispectral sensor can perceive a much wider range of
electromagnetic frequencies in the form of multiple bands [9] . Multispectral imaging
measures discrete spectral bands and hyperspectral imaging measures “continues” spectral
band. [10]

Below a series of images of the city of Volos are included, captured by the Sentinel-2
mission* at 03/01/2021. The first image is the RGB true colour image and the following
three combinations of spectral bands information. Each combination of bands shows the
reflectivity of the earth’s surface and atmosphere at a specific spectrum range. This is turn
can enable us to analyse changes on the environment or atmosphere. (the colormaps used

in the three images do not convey information other than the magnitude of the index value)

.

Atospheric penetration

True colour Image Agrucaltural

Figure 10: Same location in different spectral bands

16



* “The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites
placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring
variability in land surface conditions, and its wide swath width (290 km) and high revisit time (10
days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions which

results in 2-3 days at mid-latitudes) will support monitoring of Earth's surface changes.” [11]

3.2 CCSDS

The Consultative Committee for Space Data Systems (CCSDS) is a “multi-national forum
aimed at the development of communication and data systems standards for space flight”.
It was found at 1982 and at this moment is comprised of “eleven member agencies, twenty-
eight observer agencies, and over 140 industrial associates " [11] . The CCSDS has developed
and formalize a variety of standards covering areas like data compression, data
transmission, data collection and management. The CCSDS123 standard is one of the
recommended standards developed of lossless data compression. The current members of

the committee are the:

e United Kingdom Space Agency (UKSA)

e State Space Corporation (ROSCOSMOQS)

e National Aeronautics and Space Administration (NASA)
e Japan Aerospace Exploration Agency (JAXA)

e Instituto Nacional de Pesquisas Espaciais (INPE)

e European Space Agency (ESA)

e Deutsche Zentrum fir Luft- und Raumfahrt (DLR)

e China National Space Administration (CNSA)

e Centre National d'Etudes Spatiales (CNES)

e Canadian Space Agency (CSA)

e Agenzia Spaziale Italiana (ASI)
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3.3 Need for CCSDS 123 standard

In this section we describe the CCSDS123, a standard designed for implementation onboard
satellite computational systems. The importance of compression algorithms lies upon the
restriction that these systems pose, as on-board memory is limited, and the downlink
resources are spread thin across multiple on-board applications sending simultaneously
data to station, usually during limited time windows. One important aspect of spectral
imaging is that it generates a large amount of data, which may be difficult to handle [13].
The size of a spectral image “cube” can easily reach several tens of megabytes [2]. The
standard proposed is a good compromise as it enables us to reduce the memory needs,
minimizing the contact time need for communication with the station as well as reducing
the data archival volume.

In addition, researchers using data generated by HS imaging devices need lossless
compression methods for experiments. The standard proposed by the CCSDS achieve
effective lossless compression using low-complexity methods. This entails the preservation

of data accuracy while reducing data redundancy.

2.2 Definition of CCSDS123 standard

The building blocks of a typical image compression system consist of decorrelation,
guantization and entropy encoding. The decorrelation stage may be a transformation like
Discrete Wavelength, Discrete Cosine (used in JPEG) or Karhunen-Loeve transform [12]. The
CCSDS-123 is using a predictive scheme based on Fast-lossless(FL) algorithm (NASA) [13] and
for the entropy encoder stage, a sample adaptive encoder and a block-adaptive encoder
(CCSDS 121.0-B) [14]. Sections 2.2.1-2.2.5 present an overview of the CCSDS-123 and do not

attempt to explain the theory underlying the compression algorithm.

2.2.1 General Overview

The CCSDS123 standard defines a payload data compressor. The input of the compressor
consists of a three-dimensional “cube” of integer data points called samples. The output of
the compressor consists of a stream of bits containing the compressed samples as well as

header containing information about the parameter used during compression, needed for
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the retrieval of the original data. The compressor is tuneable, meaning that the user can
vary the parameters to meet fidelity constrains [12] or to adjust to device limitations. The
variation of these parameters will change the length of the final compressed bitstream. For
our case, the limitation set by the device used (XPP), restricted the number of parameters
we could tune and still ensure an overflow free compression cycle.
The compressor defined in the standard uses a three step process to compress the input
image. These steps include:

e an adaptive linear predictor

e aquantizer and

e an entropy encoder.

Sample ! Restdua
.| Adaptive Residual Entro
Sz(t) "| Prediction - | ’ encodl?ayr
» =+ Quantizer

Figure 11: Schematic of the compressor

2.2.2 Parameters

An important aspect of the CCSDS123 standard is the tuneable parameters. These
parameters allow us to control the performance and the compressor behaviour. It is
important for any hardware implementations, to know which parameters have a greater
impact on the performance and the compress ratio so we can adjust the design processes
accordingly. Using data from [15] default parameters to be hard-coded into the
implementation have been chosen. The table below includes definition and values chosen

for every tuneable parameter.

Default for
Parameter Value Range implementation Conclusion
Number of bands for [0,15] 3 For P>3 no major gains found
prediction
Prediction mode full, reduced full -
Local Sum Mode Neighbour, column column -
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Weight resolution(Q) [4,19] 4 Larger value yields more compression but the 16 bit
architecture don't allow for larger values
Weight update scaling [-6,-9] 3 (both) Do not have a significant impact
exponent Vmin and Vmax
Initial count exponent (y0) [1,8] 1 Sets initial counter value. No major impact
Accumulator initialization [4-9] 4 Sets initial accumulator value. No major impact
constant (K)
Rescaling counter size (y*) [4-9] XXX -
Unary length limit (Umax) [8-32] 8 Input samples are 8-bit wide, so no larger value is needed

2.2.3 Input specifications

The input to the processor as mentioned, is an HSI cube which extends to three dimensions
with the size described by Nx, Ny, Nz where the Nz is the number of bands retrieved for each
sample (as shown int the figure (12)). The indexing used to describe the pixels spatial
information is the following, for the sample S(x,y,z) the z indicates the spectral band and the
(x,y) the spatial coordinates, the pair x, y is also combined to one index t

wheret =y * N, + x.

' J Nz

Figure 12: Abstract representation of MS image

The input data can also vary in the order that they are stored in memory, with the two most
common ordering schemes being the BSQ and the BIP. BSQ stands for Band SeQuential and
this method stores all the data for a band in continuous memory spaces meaning that in

order to go from S(x;,y;,z;) to S(x;,y;, z; + 1) , then we have to skip Nx * Ny samples.
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Files using the BIP (Band Interleaved Pixel) method store the all the band samples for a

particular spatial point in continuous positions.

Nz-A|Ny-1]Nz-4 Nz-A|Nz-A [Nz
Ly [l e ‘Nx-3,Nx-2,Nx-1’ 0 ’ i { o ‘ °'3‘ l,Nx-Bl,Nx-ZI,NH‘

BSQ
Nz-1 Nz-1/Nz-1 Nz-1/Nz-1/Nz-1
00101702103 |~~~ |nygnx2iNe1| 90 010203 === | ny 3 Nx-2l Nxct

00|00 00 /000101 01/01 02|02 02/02|,..

. . INz=1|Nz-1 Nz-1|Nz-1/Nz-1|Nz-1 Nz-1/Nz-1|Nz-1|Nz-1 Nz-1|Nz-1
NX-3|NX-3 Nx-3 Nx-3  Nx-2| Nx-2 Nx-2 , Nx-2 | Nx-1/, Nx-1 ,Nx-1, Nx-1

Figure 13: Input sample ordering

BIP

2.2.4 Predictor

First stage of the compressor is the sample prediction. The predictor is similar in form to
previous algorithms like Lossless JPEG. In general, this prediction model generates a
prediction for the value of one pixel/sample based on a set number of neighbouring
samples. In this case, prediction a sample S, (t)depends on the values of nearby samples
in the same spactral band and P preceding spectral bands (P is user specified parameter).
The first step is the calculation of the local sum azyx(t) which is a weighed sum of previous
sample values in the band z . The three possible methods for calculating local sum are the
Wide neighbour-oriented, Narrow neighbour-oriented and column oriented. Each method

adds a different level of complexity and requirements during the implementation phase.

X [ X | x| | x| 2x | x ax
1X S S S
Neighbor-oriented Narrow neighbor Column oriented

oriented

Figure 14: The 3 local sum modes.

21



When using neighbour-oriented local sum:

(" o n o . " AT
‘S:A)'..\‘—l * 'S:Ay—l..\‘—l + ‘S:._\'—l..\' + ‘S:‘_\'-l..\'+1‘ J = O’ 0 <xX< ‘NX _l
AN L .

45:.}‘,7«‘—1‘ J - 0 x> O

O =
Z,y.x v ” , .

2 ('S:._\'—l..\‘ % ‘S:._\'—l..\'+l ) .‘ > 0‘ X = O
N B ¢ 9, N s — E .
LA . oRPPE, . RN y>0,x=Ny -1

Equation 1:Neighbour-oriented local sub

When using Narrow neighbour-oriented local sum:

S i1t 28 8 s ¥>0,0<x< Ny -1
4s; 1y 215 y=0,x>0,z>0

O 5= 2 (‘Sv-i,-y—l.x + S.Y.,\'—l._\-+l ) y>0,x=0
2(‘5‘_1,.,\‘—1..\-—1 L ) Yyl x=N,~1
S i y=0,x>0,z=

Equation 2: Narrow neighbour local sum

When using Column oriented local sum:
/ ." .
_ J,4‘S:,,\'—14.\" J > O

O-:_A\:.\‘ - 145” y= 0.x>0

z,y.x-1°

Equation 3: Column oriented local sum

Using the calculated local sum, | can derive the local and directional differences. | take the
directional differences from the band of the current sample and the central differences form
the previous P bands and | combine them to create the difference vector. Directional
difference is the difference of the local sum to the neighbouring samples of the current
sample. The labels N, NW, W are used to define the positions of neighbouring samples. So,

for a sample S, (t)the central and directional differences are the following.
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Directional differences:

dN' ~ '4.5':”\__1“‘ = O':--‘.“‘._ y> 0
Zyx 0. = 0 .

J 4s; 41— 0., x>0,y>0
d, . =44sl, ,.,—-0.,.. x=0,y>0,and
IO. y=0
38, vy O 30,750
de\‘ = 4‘5':.;~-1.x ~Gyyzs X= 0.y>0.
0. y=0

Equétion 4: Directional differences

Central difference:

d. .=4s =~ e

Zyx Z,¥,X

Equation 5: Central difference

The local difference vector U, (t) is used to store the computed differences. Under reduced
mode the U, (t) contains only the P central differences computed by the P previous bands.

Under full mode the local differences from the current band are included. For t > 0,we can
now calculate the central local difference a;(t)which is equal to the inner product of the

weight vector W, (t)with the U, (t). The scaled predicted value S, (t)can now be

calculated given that:

5. (1) = clip mod [d () +22 (0. ()~ 4s.., )} $2%25 4290 (000 000 400

4 = min max )

Equation 6: Scaled prediction

The double-resolution resolution predicted sample value is:

f:(f’)J. (>0
2_-+1

& =22¢ (1) =0P>02z>0
25 . t=0and (P=0o0rz=0)

Equation 7: Double resolution prediction
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~ S,(t
and finally, the predicted sample values Sz(t)is equal to Zz( ).
2.2.5 Weight Initialization

For the initialization of the weight vector W, (t) we can use either the default weight
initialization or the Custom Weight Initialization. When the default weight initialization is
used, for each spectral band Z, initial vector components values must be assigned:

For weights corresponding to central differences:

7

*

P (1) ==2°, a)fi)(l):[én)_fi'l)(l)J.z':2.3 ..... P

o |

Equation 8: Central default Weights

For weights corresponding to directional differences:
(D= 1=V (1)=0.

Equation 9: Directional default weights

2.2.6 Weight Update

Every prediction cycle for each sample includes the dynamic update of the weight vector

using the double-resolution prediction error of the previous prediction e, (t)where

e,(t) = 25,(t) — S, (D).

The updated value of each weight component is corrected by:
= 1 + a—p(t) =
AW.(H) = |5 (sentfe=()] - 2770 - U. () + 1)

Equation 10: Weight update

Where p(t) is the update scaling exponent and controls convergence speed and is given by:

t — N,
/)(f) _ C“]) <I/min + \\ - J s {I/min~ Vm(u‘}) i D + Sz

fin(‘

Equation 11: Scaling exponent
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2.2.7 Residual Mapping

The prediction residual 4,(t) is the difference between the predicted and the actual sample

values.

A.()=s(t)—s.(1).

The method for fidelity control will not be presented as we are only interested in the lossless
aspect of the compressor, so the next step is the mapping of the residuals to a D-bit

unsigned integer producing a mapped residual §,(t).

[A:(B)] +6:(t), [A(#)] > 0.(2),
0:(t) = ¢ 2|A(8)]; 0 < (=1)*>WA,(t) <0.(2),
2|A(

t)| -1, otherwise,

Equation 12: Mapped Residual

where
min{s. (0) =S, Spax —5-(0)} =i}
0.()= ¢ (D=5 . 3
() min s.(t)—s,, +m. (1) ’ Sy = S. (1) +m_(7) 0
2m_(1)+1 2m_(1)+1

2.2.8 Entropy encoder

zIr K

update = calculation | Lo
Mapped | Codeword
Residual >

Yy

Figure 15: Schematic of Entropy encoder

After prediction, the mapped residuals defined above are then passed to the entropy

encoder. In the CCSDS123 standard two methods are defined. First method is the block-
adaptive entropy encoder. This method breaks down the N, * Ny, * N residuals into

blocks of a set size, and after calculating the encoded size of the block for several encoding
methods, it uses the most efficient. It also includes special encoding for all-zero blocks.

These characteristics make the block-adaptive the superior method for many applications,
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especially applications with low entropy inputs, but the implementation in this thesis make
use of the second encoding method as the block-adaptive method is not suited for devices
with restricted memory and computing elements. The extra computation time needed for
the multiple encoding scheme efficiency tests makes this method unsuitable for high
throughput applications. The second entropy encoding method which we focus on is the
adaptive entropy encoder based on RICE code (figure (15)). Rice coding is a subset of
Golomb codes. The difference between the two is that while the Golomb code has a
parameter that can be any possible positive integer, the Rice code is using parameters only

divisible by two. This makes this method very “convenient” for use with binary arithmetic.

2.2.8.1 Rice codes overview

This section given an overview of the rice codes in the fashion used in the adaptive entropy
encoder. Rice coding by limiting the tuneable parameter k to multiplicands of 2, offers the
advantage of substituting the divisions needed with shift operations.
Given an input parameter N and the tuneable parameter M (multiple of 2):

q = floor(N + M) r = NmodM
The final codeword has two parts the g encoded in unary code (g Os followed by 1) and then

the r using an K bit representation. Bellow an example is illustrated.

45
00101101

N = 45 (00101101)
M=16 N>>K " Klastbits
K=log2(M) q: 0010 r: 1101
q = floor(NM) = N>>K
r=NmodK =N & (2"K-1) unary code l

001

|

Final codeword 001 1101
Figure 16: RICE coding example

The coding performer to the samples is length-limited, the length limitation is introduced by
the parameter Uy, ;- The length of the unary part of the codeword defined above as q is

capped to Upax- When q = Upygy the codeword will consist of Uy, zeros followed by

the original D-bit representation of the mapped residual.

26



2.2.8.2 Sample-adaptive coding procedure

The Sample adaptive part of the encoder defined in the standard is referred to the dynamic
adjustment of the tuneable parameter K (defined above). The choice of the parameter K is
carried out by the first stage of the entropy encoder which takes the average sample value of
the residuals in each band. The average is calculated by the accumulation of sample values
2, (t) and dividing the result by the number of the processed samples I'(t).

The counter I'(t) in incremented for every sample by one for I'(t) < 2¥* — 1 where the
rescaling counter size y*determines the maximum value of the counter. The accumulator

then is defined as:

[z:u—q)+1%(r—1) I —1j <2 —1
2.(O)=9| =.¢t-D+5.(t-1)+1 A
1{ : J. T(t-1)=2" -1

Equation 13: Sample adaptive accumulator

and the counter is defined as:
r¢-D+1, T@E-D)<2 -1

Ii= = .
(1) {F(r 71)+1J. C¢-1)=2" -1

Equation 14: Sample adaptive counter
The initial value for the counter and accumulator is given as:

T'(1) = 2",

§L<1>=:{5%(3-2“+6-49>F<1ﬁ

Equation 15: Counter and Accumulator initialisation
After defining the X, (t)and I'(t)metrics the parameter k,(t)is defined as:

k(t)=0 1f 2I'(¢) > Z:(r)+ﬁ—?l‘(r)J

Equation 16: K parameter calculation
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otherwise k,(t)is the largest positive integer k,(t) < D — 2.such that:

T@®25® <z ) +[i’—?r(r) J

Equation 17: K parameter calculation

28



CHAPTER 4: Proposed Implementation
4.1 Executive Summary

During the development of the proposed implementation, many versions were tested, each
offering advantages in memory requirements, array coverage and data throughput.

The one presented in this chapter achieves a good compromise between memory
requirements and coverage while offering a competitive throughput for low energy
applications.

The first configuration includes the prediction stage and receives samples in BIP order
and outputs mapped residual values. The BIP order of the input data stream is an important
aspect of the implementation as the dependency of the prediction computation on P previous
bands (central differences) would create memory deficit in case BSQ was to be used. For
example, for Nx=1000 Ny=1000 and P=2, 2M samples should be stored before the calculation
of the first prediction. This | not viable as the HDPD provide 256Kbit on-chip RAM [7] The
residuals produced by the first configuration are stored to external memory via DMA. After
the full stream have passed through the predictor and all the residual values are stored, the
configuration is removed from the XPP array and the loading of the second configuration
begins. For the majority of reconfigurable architectures this step would add a major overhead.
On the contrary, reconfiguration overhead for the XPP architecture, due to the optimizations
mentions in chapter 2, is for most cases less than 0.5 % of the total computation time giving
us the flexibility of multiple configurations for different processes in the same dataset in the
same device. The second configuration receives mapped residuals from external memory via
DMA and caries out the adaptive entropy encoding stage.

As mentioned in chapter 2 the HPDP architecture provides the XPP IIl array
processor as well as 2 Harvard VLIW 16-bit processor cores (FNC-PAEs). Both
implementations described in this chapter do not utilize the FNC-PAEs for heavy
computations, their main purpose is the DMA initialization and

configuration/reconfiguration of the XPP Il array.

Bellow | include a brief description for the high-level modules that comprise the final

implementation (Figure ()).
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Configuration 1 — Prediction:

« ISDM — Input Store Delay Module
This module is in charge of storing samples in FIFOs so we can compute expressions that
require a neighboring sample from the current one. The use of FIFOs allows us to decrease
the memory accesses.

« EGM - Event Generation Module
The event generation module keeps track of the position of each sample and generates the
appropriate events for all conditional multi-branch equations (Local Sum).

LSM - Local Sum Module
Implements the column oriented Local Sum for simplicity Eq. (3).
DVM - Difference Vector Module

This module constructs the difference vector using previous samples and current Local Sum.
After the vector is constructed then the dot product between the difference and weight
vectors.

«  WUM - Weight Update Module
This Module receives the Difference vector and the error Sign and apply correction to the
weight vector. This Module creates a feedback loop which present the main source of delay
factor of this configuration.

«  RMM - Residual Mapping Module
The final part of the configuration is the residual mapping which receives the scaled prediction

error and outputs a mapped residual that gets stored to external memory.

Configuration 2 — Entropy encoder:
« KM - Kmodule

This Module uses the Counter and Accumulator to calculate the K parameter for the entropy
encoder. After the calculation of the parameter K the Counter and Accumulator get updated.

RCM - RICE Code Module
This module receives the mapped residuals the a parameter K and calculates the RICE code
for the specific inputs, taking into account limitations set by the standard.

BPM - Byte Packing Module

The last Module of the configuration is the most complex part of the implementation due to
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the difficult task of packing codewords of non-static length in a streaming fashion using a
coarse grain architecture. The obvious obstacle in the process is the data dependency that a
dynamic code length creates. The main delay in the Packing module is the update of the
available bits is every new byte that gets packed. For the proposed implementation the

packets created are 16-bit wide for efficiency. The implementation calculate the updated value

using (S(t) : Size, A(t): Available bits) :

At +1) = S(t) —A(t)] . S(t) < A(t)
'+ 16 — [S(t) — A(t)] , S(t) = A(t)

Sz,x,y
ISDM
o K leler EGM
= 8 N ~$ <
3¢ = o3 - — P<
< < > > | —
> LSM |=
Y Y Y Y Y
DVM <
.
-
A4 5
RMM |« >» WUM
A Y
KM > RCM

—

BPM

Figure 17: High level Implementation schematic
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CHAPTER 5: Results, Conclusion, and future work
5.1 Results

For the test results, the implemented standard was tested against a compressor written in ¢
using the same parameters as the hardwired parameters chosen for the proposed
implementation. The compressor was run on Linux VM (intel i7-8550U @ 1.80GHz, 16GB
memory). All input files had 8-bit dynamic range. The table below includes the
performances results for test images of different dimensions. Compress ratio is not included
as the test images were constructed by us. For tests carried out with real datasets, the

compress rate is in the range [3.9 — 5.3 bits/sample]. Compress rate is mainly depended on

the entropy of the input data and on the fact that we use 8-bit samples and sample-

adaptive entropy encoding.

Test | Nx Ny Nz PC runs HPDH runs PC runs HPDP runs
(time) (time) (bits/s) (bits/s)
0 100 | 1000 | 3 122.60 ms 19.20 ms 19.57 Mb/s 124.83 Mb/s
1 100 | 1000 | 9 367.70 ms 19.22 ms 19.58 Mb/s 374.49 Mb/s
2 100 | 1000 | 18 | 809.57 ms 22.42ms 17.78 Mb/s 642.11 Mb/s
3 100 | 1000 | 24 1.025s 24.82ms 18.73 Mb/s 773.38 Mb/s
4 100 | 1000 | 36 1.572s 30.02ms 18.32 Mb/s 959.16 Mb/s
5 100 | 1000 | 45 1.831s 37.22ms 19.65 Mb/s 967.06 Mb/s
6 100 | 1000 | 72 2.831s 58.82 ms 20.34 Mb/s 979.15 Mb/s
7 512 | 2048 | 45 18.46s 386.30 ms 20.44 Mb/s 977.18 Mb/s
Performance Gain vs Nz
1,000 HPDP
— PC
800
600
1]
s
=
400
200
0
20 40 60

NOF bands (Nz)
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Figure 18: Comparison of performance

HPDP performance.
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Figure 19: HPDP performance vs Nz

From the test performed is clear the performance advantage of the HPDP over the Simple
PC setup. The conclusion that we extract from these results is the clear relationship
between the Nz and the performance when it comes to the proposed implementation. It is
shown in both Figure (36) and Figure (37) that after the point of 35 Nz we can achieve
complete saturation of the device meaning that we need around one cycle per sample for
prediction and one cycle for encoding. The differences in the throughput seen for inputs
with Nz greater than 35 can be attributed to overhead delays and the delay of reconfiguring.
The length of the delays is fixed and is not depended on the input’s dimensions. This means
that for larger inputs the delays are a smaller percentage of the run time contributing to

greater throughput. The theoretical limit for the proposed implementation is around 1Gb/s.
5.2 Conclusion

In conclusion, given the importance of Remote sensing technologies and especially
Hyperspectral/Multispectral imagery, there has been a need for the development of new
algorithms, technics, and standards so we can process, store and analyze the huge amount of
data generated. Older system unable to adapt to these new standards create the need for a
more versatile and efficient solution. This thesis reports our efforts to create a solution that

tackles both problems by providing an implementation of a state-of-the-art low-complexity
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lossless compression standard, ideal for scientific research, adapted to the features provided
by a new space-suitable reconfigurable device. This combination allowed us to offer a

competitive solution achieving high throughput at low power usage.
5.3 Future word

During the implementation phase of the compression standard, restrictions posed by the
device’s memory and available computing elements restricted us from implementing the
coding configuration that would yield better compression rates. The block-adaptive
encoding scheme would improve the compression rate considerably especially for low
entropy inputs and large block sizes. The smallest encoded sample is caused mainly by ‘zero’
mapped residuals. For the current implementation the smallest possible code for a residual
is 1 bit as even for mapped residual = 0 the RICE code produced for K=0is ‘1’. For a low
entropy input that produces many ‘zero’ residuals, this creates redundancy. The block -
adaptive encoder deals with this issue by recognising all zero blocks and series of all zero
blocks, encoding them with special codewords. That mean that depending on the chosen

block size, the minimum number of bits per sample can be closer to 0.1 bit per residual.

The second extension of the current implementation is the supporting of 16-bit images. The
current implementation is limited to 8-bit samples by the 16-bit arithmetic units. The
limitation to 8-bit samples comes from the dot product of the weight and difference vector
which will overflow for Weigh resolution larger than 4 or samples larger than 8-bit. In order
to support 16-image the input should be split into the high and low bytes and then the two
streams can be compressed individually in parallel, in two devices. This approach would
create two streams with different level of entropy each. This happens because low bytes of
16-bit sample contains “higher frequency” information or “higher entropy”. On the other
hand, high bits usually show lower variability. Bellow part of a 16-bit hyperspectral image is

presented as an example. It obvious that the high bytes (bold) exhibit very low variation.

00000000 00 bc 00 c3 00 c2 00 be 00 bf 00 bc 00 ba 00 ba
00000010 00 bc 00 b7 00 bf 00 bc 00 c1 00 bf 00 bc 00 cO
00000020 00 b9 00 bf 00 cO 00 b8 00 be 00 c1 00 cO 00 c1
00000030 00 be 00 bf 00 c1 00 c1 00 be 00 c4 00 c4 00 be
00000040 00 bc 00 c¢3 00 c2 00 bf 00 bc 00 bb 00 cO 00 bf
00000050 00 cO 00 bd 00 cO 00 be 00 cl1 00 c1 00 bb 00 bf
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This approach can possibly allow us to achieve good compression rates without sacrificing

any of the performance.
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