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ΠΕΡΙΛΗΨΗ 

Κατά τη διάρκεια των τελευταίων δεκαετιών πολλοί τομείς της άμυνας, έρευνας και υπηρεσιών 

εξαρτώνται από την τηλεπισκόπιση. Η Υπερφασματική και Πολυφασματική απεικόνιση αποτελεί 

σημαντικό εργαλείο για τη συλλογή πληροφοριών για την επιφάνεια της γης. Η αυξανόμενη χωρική 

και φασματική ανάλυση των αισθητήρων ωθεί προς την υιοθέτηση πιο αποδοτικών αλγορίθμων για 

επεξεργασία, συμπίεση και μετάδοση του μεγάλου όγκου δεδομένων που παράγετε. Σε απάντηση 

στις αυξανόμενες ανάγκες, η CCSDS δημοσίευσε μια σειρά από στάνταρντ για τη μετάδοση, προ-

επεξεργασία και συμπίεσή δεδομένων. 

Ο στόχος μας για αυτή τη διπλωματική εργασία είναι η υλοποίηση του στάνταρ συμπίεσης δίχως-

απώλειες για Υπερφασματικά και Πολυφασματικά δεδομένα. Η κατεύθυνση που ακολουθήθηκε 

ήταν η υλοποίηση του στάνταρ στο καινούργιάo space-suitable RC σύστημα HPDH. Κατά τη διάρκεια 

της υλοποίησης προσπαθήσαμε να χρησιμοποιήσουμε τα ειδικά χαρακτηριστικά που προσέφερε η 

επιλεγμένη αρχιτεκτονική ώστε να μπορέσουμε να πλησιάσουμε το θεωρητικό μέγιστο όριο 

επίδοσης. 
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ABSTRACT 

For the past decades many aspects of our defence, research and services have come to depend on 

remote sensing technologies. Hyperspectral and Multispectral imaging are an important asset for 

collecting earth surface data. The Increasing spatial and spectral resolution of the sensors though is 

constantly pushing for ever more efficient algorithms for processing, compressing, and transmitting 

the large amount of data generated. In response to the increasing requirements, CCSDS have released 

a series of standards concerning the aspects of transition, pre-processing, and compression.  

Or goal with this thesis is the implementation of the lossless-compression standard for 

Hyperspectral/multispectral data released by the CCSDS. The approach we follow is the 

implementation of the standard on the new space-suitable RC device HPDP. During the 

implementation we try to utilize the features provided by the chosen architecture in order to come 

close to the theoretical maximum performance that we can achieve.    
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Abbreviations 
 

This section defines the acronyms used in this document. 

Acronym Description 

ALU  Arithmetic Logic Unit 

ASIC  Application specific Intergraded Circuit 

CCSDS  Consultative Committee for Space Data Systems 

FPGA  Field programmable Array 

CLB  Configurable Logic Block 

XPP  eXtreme Processing Platform 

HPDP  High Performance Data Processing 

DMA  Direct Memory Access 

FL  Fast Lossless 

ESA  European Space Agency 

JPEG-LS  Joint Photographic Experts Group – LosslesS 

ALU  Arithmetic Logic Unit 

PLD  Programmable Logic Device 

PAE  Processing Array Element 

(S)CM  (Supervising) Configuration Manager 

HS  Hyper-Spectral 

MS  Multispectral 
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Mathematical Notation 
 

The largest integer 𝑛 such 𝑛 ≤ 𝑥 :  𝑛 = ⌊𝑥⌋  

The largest integer 𝑛 such 𝑛 ≥ 𝑥 :  𝑛 = ⌈𝑥⌉ 

The modulus of an integer M with respect to a positive integer divisor n:  

𝑀 𝑚𝑜𝑑 𝑛 = 𝑀 − 𝑛⌊𝑀/𝑛⌋ 

 

For any integer x and positive integer R, the function 𝑚𝑜𝑑∗ [𝑥] is defined as:  

𝑚𝑜𝑑∗ [𝑥] = (𝑥 + 2 )𝑚𝑜𝑑 2 − 2  

 

The notation 𝑐𝑙𝑖𝑝(𝑥, {𝑥 , 𝑥 })clip denotes the clipping of an integer number x to the range 

[𝑥 , 𝑥 ]: 

𝑐𝑙𝑖𝑝(𝑥, {𝑥 , 𝑥 }) =

𝑥 ,             𝑥 < 𝑥
𝑥,    𝑥 ≤ 𝑥 ≤ 𝑥
𝑥 ,            𝑥 > 𝑥

 

 

The notation 𝑠𝑔𝑛(𝑥) is defined as: 

𝑠𝑔𝑛(𝑥) =
1,   𝑥 > 0
0,   𝑥 = 0

−1,   𝑥 < 0
 

 

Finally, the notation 𝑠𝑔𝑛 (𝑥) is defined as: 

𝑠𝑔𝑛 (𝑥) =
  1,   𝑥 ≥ 0
−1,   𝑥 < 0
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CHAPTER 1: Introduction 
1.1 Problem Description 
 

In today's world more and more aspects of our infrastructure, agriculture, defense, and 

environmental research begin to rely on earth observing technologies. The main source of 

data for this case is remote sensing devices i.e. orbiting or geostationary satellites. One of 

the ways that satellites provide information is by carrying specialized hyper-spectral imaging 

sensors that can provide us with much “richer” data about the surface of the earth, than a 

simple picture in the visible spectrum. This innovation though brings a challenge for the on-

board computational units (OBCUs) and the downlinks to earth stations, as the huge amount 

of data is generated by HS sensors. The solution is the inclusion of an inline compression 

step in the on-board processing pipeline. Compression algorithms are though 

computationally intensive, and the computational units limited by power consumption 

restrictions do not offer efficient solutions. 

 

1.2 Thesis contribution 
 

Conventional satellite payloads using ASICs for greater performance/power consumption 

ratios have very little flexibility when it comes to adapting to changing standards and 

application evolution [1]. One possible solution comes in the form of reconfigurable 

technologies. The contribution of this thesis is the implementation of state-of-the-art 

compression standards of hyper spectral imagery used for scientific research on a Unique 

reconfigurable architecture integrated in a space suitable system. 

 

1.3 Thesis structure 
 

The main body of the thesis is composed of 4 chapters. 

• Chapter 2 includes an introduction to the XPP(RC) architecture and then dives 

deeper in the specifics of the architecture. 

• Chapter 3 includes an introduction in the technology behind 

Hyperspectral/Multispectral imaging and after that, it defines in detail the 

compression standard. 
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• Chapter 4 describes the implementation of the standard on the HPDP architecture as 

well as difficulties encountered during the development phase. 

• Chapter 5 includes results for the tests performed, conclusion of the thesis and 

possible improvements that can be implemented in future work. 
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CHAPTER 2: Introduction to XPP(RC) architecture 
 

2.1 Introduction to Reconfigurable Computing 
 

During the mid 1980’s a new technology called field programmable gate array (FPGA) was 

introduced. These devices when introduced were smaller and slower than the existing Mask 

programmable gate arrays (MPGAs) and larger and more expensive than PLDs. The 

advantage of the FPGAs over MPGAs was the configuration process. MPGAs were designed 

to handle larger logic circuits and consist of an array of prefabricated transistors that could 

be customized to implement a specific logic. The customization of the interconnection 

among the rows of transistors took place during fabrication making the setup cost for an 

MPGA far larger than the user programmable equivalent FPGA [2]. Many FPGAs were 

initially configured using static random-access memory (SRAM) cells in the array. This 

configuration medium was the key for many applications as it allows for the programming of 

an FPGA by a completely electrical process. That meant that the programming or 

configuration of the FPGA could change and configured to suit multiple applications [3]. So, 

a setup using an FPGA and a read-only memory that stores multiple configurations could 

function as a multimode hardware able to change depending on the current demands of a 

specific application. Another advantage is the ability for systems that include FPGAs to 

adapt to new data processing standards or communication protocols expanding the abilities 

of older already deployed systems. Apart from superior adaptability and application specific 

performance gains over general purpose computational units, one more application that 

showed great potential was logic emulation or chip verification. This process is becoming 

more and more complex and computationally intensive when software tools are used. The 

solution offered by FPGAs is the ability to directly map the desired circuit on a system of 

FPGAs. This way the tested circuit can run in real-time and minimize the time between test 

cycles [3]. 

2.1.1 FPGA Technology 
This section briefly presents the technology of the SRAM based FPGAs which is the most 

common programming technology. Most of the descriptions of architectural abstractions 
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are applicable two all other Technologies [4]. In general, all FPGA architectures consist of 

configurable logic blocks, configurable I/O blocks and programmable interconnect. 

Additional circuitry is also present for controlling clock signals as well as special purpose 

blocks like ALUs, Floating point arithmetic blocks, memory and for certain applications, 

digital signal processing (DSP) blocks (DSPs usually come in the form of an embedded core). 

These blocks are organized in a matrix of configurable logic blocks (CLBs) interconnected by 

configurable interconnection circuitry. A generic illustration is given in figure (1). 

 

Figure 1: Generic FPGA architecture. 

CLBs are the blocks that implement the logic of the FPGA, they are the basic FPGA cell. They 

implement macros and other design functions. Each CLB consists of several look up tables 

(LUTs) whose outputs are multiplexed (reprogrammable routing control).  

 

Figure 2: Generic CLB [5] 
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The CLBs are connected between them using the programmable interconnect. The 

interconnect resources can be used either as connection for far CLBs or can be used as 

internal bus. The connections are turned on or off using transistors. For CLBs that are 

physically close together, shorter lines exist. Those lines are a source of delay in a FPGA 

design as connection between CLBs may have to go through multiple interconnect 

transistors.  

2.2 XPP architecture Overview 
 

This next section offers a basic introduction to the eXtreme Processing Platform (XPP) and it 

is based on the introduction of the XPP architecture by PACT in 2003 [6].  

The limitations of conventional processors and the rising importance of stream-based 

applications like digital signal processing and multimedia, increase the need for a faster and 

more efficient alternative. This alternative can come in the form of reconfigurable 

architectures as they combine the performance benefits of Application Specific Intergraded 

Circuits (ASICs) and the applications flexibility of processors [6]. The XPP architecture 

created by the French company PACT provides all the advantages of RC architecture 

providing additional functionality by including the ability of run-time reconfiguration and/or 

self-reconfiguration. This feature combined with the coarse grain, adaptive computing 

elements and the packet-oriented communication makes this architecture well suited for 

DSP applications, graphics and other stream based applications as different types of 

parallelism like, pipelining, instruction level, data flow, task level parallelism are supported 

[6]. 

The basic elements of the XPP architecture consists of reconfigurable ALUs which 

implement one of many possible basic machine operations like ADDITION, SHIFT and AND. 

The ALUs communicate via a packet-oriented communication network which feature 

automatic packet synchronization. This feature offers a level of abstraction giving greater 

freedom for programmers coming from higher level languages to get familiarized and 

implement applications on this architecture. In abstract, the description of the operations to 

be configured in each ALU as well as the interconnection scheme is described by a 
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configuration file. All this information in derived and can be translated by the data-flow 

graph of the implemented algorithm. This means that a great deal of focus is given to the 

dataflow generation of each algorithm. The figure (3) below shows the dataflow for the 

simple polynomial expressions  5𝑥 + 6𝑥 + 1 applied to a stream of data imported trough 

I/O elements. 

 

Figure 3: A configuration for polynomial expression calculation 

As mentioned above one of the unique features of the XPP architecture is the ability for run-

time reconfiguration. This allows for multiple configurations to be executed sequentially [6]. 

By breaking down the algorithm into smaller, inherently parallelizable segments, each 

processing a stream of data*, a greater data throughput can be achieved while spreading 

the overhead of multiple reconfigurations. According to reference [6]this programming 

paradigm can be described as a configuration flow, opposite to instruction flow embodied in 

the classical Von-Neuman architecture ** . The overhead added due to multiple 

reconfigurations I minimized because of caching next configurations making them available 

instantly. Figure (4) illustrates the difference between instruction and configuration flow. 

 

Figure 4: Difference between instruction and configuration flow. 
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*This concept is particularly important for the comprehension of the direction selected for the 

development of the CCSDS123 standard using the XPP architecture. 

** The term von-Neuman architecture has evolved to mean any stored-program computer in which 

an instruction fetch, and a data operation cannot occur at the same time because they share a 

common bus. In this case we use the term “instruction flow” to describe the typical execution of a 

process using multiple instruction cycles. 

2.2.1 Architecture comparison 
Field programmable gate arrays: 

 Root of all reconfigurable computing devices 

 Use fine grained cells and operate in date level 

 They only allow complete configuration and cannot hold internal data during reconfiguration 

 The resulting performance was only acceptable for algorithms well suited to the FPGA 

architecture 

Partially reconfigurable FPGAs: 

 Only required resources need to be configured. 

Multi-context PLDs: 

 They typically use fine grained architecture. 

 They contain multiple planes of context memory. 

 A configuration can be changes on the fly by switching planes  

Microcontrollers and FPGAs combination: 

 First step toward a complete programmable reconfigurable system. 

 The microcontroller manages and executes the configuration and reconfigurations 

of the state of the FPGA. 

 This approach cannot be a real solution for the reconfiguration and synchronization 

issues. 

Reconfigurable processors: 

 Most advanced class of reconfigurable architecture. 

 Use coarse grained architecture and work at the top level. 

 Size of configuration files is smaller, so the reconfigurations time is shorter. 
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XPP architecture: 

 Belongs into the “Reconfigurable processors” class 

 Main difference is the automatic packet-handling mechanism and its sophisticated 

hierarchical configuration protocols for full or partial runtime and self-

reconfiguration. 

2.2.2 Array structure 
 
The reconfigurable array is based on a hierarchical array of coarse grain, adaptive computing 

elements called processing array elements (PAEs). The PAEs are typical grouped into blocks 

called processing array clusters (PACs). An XPP device is made up of multiple PACs. The 

configuration control is carried out by a hierarchical network of configuration managers 

(CMs) which are embedded in the array. So, each PAC is connected to a CM which is 

responsible for the loading of configuration data into the PAC. In multi-PAC devices 

additional CMs are added for the concurrent configuration data handling, each PAC is also 

connected to neighboring PACs. The root CM is called supervising configuration manager 

(SCM) and is directly connected to external memory containing configuration data. Figure 

(5) shown below depicts an abstract representation of a multi-PAC device. 

 

Figure 5: Basic structure of an XPP device 

Every PAE in an XPP device is made of multiple configurable elements. The typical case of 

PAE contain two vertical routing objects, one back register(BREG) and one forward 
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register(FREG) as well as on ALU object for performing the actual calculations which include 

standard fixed point arithmetic, logical operations and some special opcodes like counters. 

Depending on the opcode implemented by each ALU and the result produced, event signals 

are generated, marking states like a classical microprocessor. The next case of PAE replaces 

the ALU processing element with a PAE memory object. This object can be used either as 

FIFO or as an internal RAM for look-up tables and temporary storage in an application. 

 

Figure 6: PAE structure 

2.2.3 PAE communication 
 
The structures described in the above section communicate via a packet communication 

network which carries two types packets, data packets and event packets. The packets 

carrying data have bit-width specific to the device while the event packets a just one bit 

wide. The event signals/packets add extra flexibility for data steam control. This gives the 

ability for merging/ demultiplexing and in general controlling the flow of data throughout 

the array, giving the choice of conditional computations depending on results of previous 

operations. This flexibility of the computations and control over the stream of data becomes 

possible due to the self-synchronization feature added to all PAE objects. This feature 

“holds” values until all required inputs for an operation are filled and only then an output 

value is produced and passed on. This minimizes the need for explicit scheduling of 

operations throughout the dataflow thus simplifying the development process for 

applications.  
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2.2.4 Configuration Method 
 
A critical aspect of a reconfigurable systems affecting the performance, is the configurations 

and reconfigurations methods used. Especially devices that belong to the “reconfigurable 

processors” class cannot have slow conjurations methods as this would limit their use to 

very specific applications with the minimum computation to configuration ratio. The optimal 

case is devices which support concurrent computation and configuration. One way that the 

XPP optimizes the configuration process is by getting every PAE that has been configured to 

start computations while the rest of the array is still getting configured. Hardware protocols 

ensure packet integrity for the partially configured applications. More about the 

configuration methods can be found in [6]. 

2.2.5 Application mapping and programming tools 
 
As with every reconfigurable architecture, the developer has to create a dataflow of the 

applications according to the regulations and limitations posed by the architecture, and 

then in turn, map the dataflow to the available fundamental elements. For this purpose, 

PACT has developed the Native Mapping Language (NML) which gives direct access to all 

hardware features to the programmer. A compiler for higher level of abstraction (C 

compiler) is also available, useful for simpler applications. A configuration consists of 

modules which contain PAE objects. The objects are explicitly allocated, optionally placed 

and their connections specified. Each configuration may contain more than one module, a 

sequence of initially configured modules and pre-fetched requests. The configurations 

handling is an explicit part of the application program. 

2.2.6 Algorithm to diagram to mapping 
 
The process of mapping an application to the device starts with the algorithm diagram. This 

diagram’ s nodes must be the available opcodes implemented to the arrays PAE objects. 

Once this step is complete then the diagram can be broken to segments that can be refined 

for parallel computations. Once the segments are connected, each gets “translated” to a 

configuration ready to be mapped to the device. A simple example is presented below.  

For this example, I implement a simple digital filter, a FIR filter. The FIR filter can be 

described by the equation: 
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⌊𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]⌋ 

From this equation I can derive the dataflow and subsequently the configurations to be 

loaded to the device. 

 

Figure 7: Dataflow to Configuration example. 

2.2.7 Integration of the XPP core IP 
 
The XPP architecture introduced in this chapter describes a RC core. The integration of the 

core is an important design aspect which allows us to take advantage of the features of the 

IP. HPDP is an array-based processor developed by Airbus Defense and space GmbH in 

Munich and ISD, SA in Greece. The development of HPDP has been initiated by the European 

Space Agency(ESA) and DLR to address  the need for a flexible and re-programmable high 

performance data processor [1]. This architecture integrates an XPP RC processing core IP as 

well as memory interfaces and space suitable peripherals [7]. The XPP IP included in the 

design of the HPDP consists of 40 ALU elements and 16 RAM elements. For carrying out 

flow-control tasks, two Harvard type VLIW 16-bit processor cores (FNC-PAE) are included in 

the system. In general, the features of the HPDP include: 

• Array Processor Based on the XPP III from Pact XPP Technologies (40 ALUs Processing 

elements 16-bit), 2 FNC-PAEs and 256 Kbit high speed on-chip RAM (with error 
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correction) 

• 4x 1.6Gbit/s Streaming Ports 

• 3 SpaceWire interfaces operating @ 100Mbps 

• Fully reprogrammable platform 

 

 

Figure 8: Overview of HPDP architecture [7] 

 

 

2.2.7 XPP application mapping 

 

For the implementation of the Compression algorithm the XPP SDK. The kit includes C 

compiler for the code running in the FNC-PAEs, a mapper that maps configuration files on 

the devices and most important of all, it includes a graphic simulator making possible to 

ensure validation of the implementation in a cycle by cycle level. Figure (9) offers a snapshot 

in the array simulator. In chapter 4, diagrams are used for describing the implementation. In 

these diagrams, as mentioned in this chapter, each distinct Block implements a calculation, 

a comparison, data routing and more. Each of these blocks are directly mapped to the 

objects shown above. The functionality of each block is included in the diagram when is non 

intuitive operations are performed i.e. counters, data routing, event generation. 
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Figure 9: Snapshot from XPP array simulation [8]. 
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CHAPTER 3: Introduction to the CCSDS123 standard 

3.1 Introduction to Multispectral/Hyperspectral imaging 
 
The term multispectral or spectral imaging describes the process of selecting information 

across a wide range of the electromagnetic spectrum. The early development of Spectral 

imaging begun nearly 50 years ago and until the end of the 1980s the use of this technology 

was mainly restricted to military use as well as use from astrophysics for enhancing remote 

sensing capabilities. The main difference with conventional imaging is the size of the 

electromagnetic spectrum covered by the sensing devices. While common imaging sensors 

can only “sense” information in the visible spectrum, specifically three narrow bands i.e. 

Red, Green and Blue, a multispectral sensor can perceive a much wider range of 

electromagnetic frequencies in the form of multiple bands [9] . Multispectral imaging 

measures discrete spectral bands and hyperspectral imaging measures “continues” spectral 

band. [10] 

 Below a series of images of the city of Volos are included, captured by the Sentinel-2 

mission* at 03/01/2021. The first image is the RGB true colour image and the following 

three combinations of spectral bands information. Each combination of bands shows the 

reflectivity of the earth’s surface and atmosphere at a specific spectrum range. This is turn 

can enable us to analyse changes on the environment or atmosphere. (the colormaps used 

in the three images do not convey information other than the magnitude of the index value) 

 

Figure 10: Same location in different spectral bands 
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* “The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites 

placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring 

variability in land surface conditions, and its wide swath width (290 km) and high revisit time (10 

days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions which 

results in 2-3 days at mid-latitudes) will support monitoring  of Earth's surface changes.” [11]  

 

3.2 CCSDS 
 
The Consultative Committee for Space Data Systems (CCSDS) is a “multi-national forum 

aimed at the development of communication and data systems standards for space flight”. 

It was found at 1982 and at this moment is comprised of “eleven member agencies, twenty-

eight observer agencies, and over 140 industrial associates " [11] . The CCSDS has developed 

and formalize a variety of standards covering areas like data compression, data 

transmission, data collection and management. The CCSDS123 standard is one of the 

recommended standards developed of lossless data compression. The current members of 

the committee are the: 

 United Kingdom Space Agency (UKSA) 

 State Space Corporation (ROSCOSMOS) 

 National Aeronautics and Space Administration (NASA) 

 Japan Aerospace Exploration Agency (JAXA) 

 Instituto Nacional de Pesquisas Espaciais (INPE) 

 European Space Agency (ESA) 

 Deutsche Zentrum für Luft- und Raumfahrt (DLR) 

 China National Space Administration (CNSA) 

 Centre National d'Etudes Spatiales (CNES) 

 Canadian Space Agency (CSA) 

 Agenzia Spaziale Italiana (ASI) 
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3.3 Need for CCSDS 123 standard 
 
In this section we describe the CCSDS123, a standard designed for implementation onboard 

satellite computational systems. The importance of compression algorithms lies upon the 

restriction that these systems pose, as on-board memory is limited, and the downlink 

resources are spread thin across multiple on-board applications sending simultaneously 

data to station, usually during limited time windows. One important aspect of spectral 

imaging is that it generates a large amount of data, which may be difficult to handle [13]. 

The size of a spectral image “cube” can easily reach several tens of megabytes [2]. The 

standard proposed is a good compromise as it enables us to reduce the memory needs, 

minimizing the contact time need for communication with the station as well as reducing 

the data archival volume.  

In addition, researchers using data generated by HS imaging devices need lossless 

compression methods for experiments. The standard proposed by the CCSDS achieve 

effective lossless compression using low-complexity methods. This entails the preservation 

of data accuracy while reducing data redundancy.  

 

2.2 Definition of CCSDS123 standard 

 

The building blocks of a typical image compression system consist of decorrelation, 

quantization and entropy encoding. The decorrelation stage may be a transformation like 

Discrete Wavelength, Discrete Cosine (used in JPEG) or Karhunen-Loeve transform [12]. The 

CCSDS-123 is using a predictive scheme based on Fast-lossless(FL) algorithm (NASA) [13] and 

for the entropy encoder stage, a sample adaptive encoder and a block-adaptive encoder 

(CCSDS 121.0-B) [14]. Sections 2.2.1-2.2.5 present an overview of the CCSDS-123 and do not 

attempt to explain the theory underlying the compression algorithm. 

2.2.1 General Overview 
 
  The CCSDS123 standard defines a payload data compressor. The input of the compressor 

consists of a three-dimensional “cube” of integer data points called samples. The output of 

the compressor consists of a stream of bits containing the compressed samples as well as 

header containing information about the parameter used during compression, needed for 
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the retrieval of the original data. The compressor is tuneable, meaning that the user can 

vary the parameters to meet fidelity constrains  [12] or to adjust to device limitations. The 

variation of these parameters will change the length of the final compressed bitstream. For 

our case, the limitation set by the device used (XPP), restricted the number of parameters 

we could tune and still ensure an overflow free compression cycle. 

The compressor defined in the standard uses a three step process to compress the input 

image. These steps include: 

 an adaptive linear predictor 

 a quantizer and  

 an entropy encoder. 

 

2.2.2 Parameters 
 
An important aspect of the CCSDS123 standard is the tuneable parameters. These 

parameters allow us to control the performance and the compressor behaviour. It is 

important for any hardware implementations, to know which parameters have a greater 

impact on the performance and the compress ratio so we can adjust the design processes 

accordingly. Using data from [15] default parameters to be hard-coded into the 

implementation have been chosen. The table below includes definition and values chosen 

for every tuneable parameter. 

 

 

Parameter 

 

Value Range 

Default for 

implementation 

 

Conclusion 

Number of bands for 

prediction 

[0,15] 3 For P>3 no major gains found 

Prediction mode full, reduced full - 

Local Sum Mode Neighbour, column column - 

Figure 11: Schematic of the compressor 
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Weight resolution(Ω) [4,19] 4 Larger value yields more compression but the 16 bit 

architecture don't allow for larger values 

Weight update scaling 

exponent Vmin and Vmax 

[-6, - 9] 3 (both) Do not have a significant impact 

Initial count exponent (γ0) [1,8] 1 Sets initial counter value. No major impact 

Accumulator initialization 

constant (K) 

[4-9] 4 Sets initial accumulator value. No major impact 

Rescaling counter size (γ*) [4-9] ΧΧΧ - 

Unary length limit (Umax) [8-32] 8 Input samples are 8-bit wide, so no larger value is needed 

 

 

2.2.3 Input specifications 

 

The input to the processor as mentioned, is an HSI cube which extends to three dimensions 

with the size described by Nx, Ny, Nz where the Nz is the number of bands retrieved for each 

sample (as shown int the figure (12)).  The indexing used to describe the pixels spatial 

information is the following, for the sample S(x,y,z) the z indicates the spectral band and the 

(x,y) the spatial coordinates, the pair x, y is also combined to one index t  

where 𝑡 = 𝑦 ∗ 𝑁 + 𝑥. 

 

The input data can also vary in the order that they are stored in memory, with the two most 

common ordering schemes being the BSQ and the BIP. BSQ stands for Band SeQuential and 

this method stores all the data for a band in continuous memory spaces meaning that in 

order to go from 𝑆(𝑥 , 𝑦 , 𝑧 ) to 𝑆(𝑥 , 𝑦 , 𝑧 + 1) , then we have to skip 𝑁𝑥 ∗ 𝑁𝑦 samples. 

Figure 12: Abstract representation of MS image 
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Files using the BIP (Band Interleaved Pixel) method store the all the band samples for a 

particular spatial point in continuous positions. 

 

 

 

2.2.4 Predictor 

 

First stage of the compressor is the sample prediction. The predictor is similar in form to 

previous algorithms like Lossless JPEG. In general, this prediction model generates a 

prediction for the value of one pixel/sample based on a set number of neighbouring 

samples. In this case, prediction a sample 𝑆 (𝑡)depends on the values of nearby samples 

in the same spactral band and P preceding spectral bands (P is user specified parameter). 

The first step is the calculation of the local sum 𝜎 (𝑡) which is a weighed sum of previous 

sample values in the band z . The three possible methods for calculating local sum are the 

Wide neighbour-oriented, Narrow neighbour-oriented and column oriented. Each method 

adds a different level of complexity and requirements during the implementation phase. 

 

 

Figure 14: The 3 local sum modes. 

Figure 13: Input sample ordering 
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When using neighbour-oriented local sum: 

 

When using Narrow neighbour-oriented local sum: 

 

When using Column oriented local sum: 

 

 

Using the calculated local sum, I can derive the local and directional differences. I take the 

directional differences from the band of the current sample and the central differences form 

the previous P bands and I combine them to create the difference vector. Directional 

difference is the difference of the local sum to the neighbouring samples of the current 

sample. The labels N, NW, W are used to define the positions of neighbouring samples. So, 

for a sample 𝑆 (𝑡)the central and directional differences are the following. 

Equation 1:Neighbour-oriented local sub 

Equation 2: Narrow neighbour local sum 

Equation 3: Column oriented local sum 
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Directional differences: 

 

Central difference: 

 

The local difference vector 𝑈 (𝑡) is used to store the computed differences. Under reduced 

mode the 𝑈 (𝑡) contains only the P central differences computed by the P previous bands. 

Under full mode the local differences from the current band are included. For 𝑡 > 0,we can 

now calculate the central local difference 𝑑 (𝑡)which is equal to the inner product of the  

weight vector 𝑊 (𝑡)with the 𝑈 (𝑡). The scaled predicted value 𝑆 (𝑡)can now be 

calculated given that: 

 

The double-resolution resolution predicted sample value is: 

Equation 4: Directional differences 

Equation 5: Central difference 

Equation 6: Scaled prediction 

Equation 7: Double resolution prediction 
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and finally, the predicted sample values 𝑆 (𝑡)is equal to 
( )

. 

2.2.5 Weight Initialization 
 
For the initialization of the weight vector 𝑊 (𝑡) we can use either the default weight 

initialization or the Custom Weight Initialization. When the default weight initialization is 

used, for each spectral band Z, initial vector components values must be assigned: 

For weights corresponding to central differences: 

 

For weights corresponding to directional differences: 

 

2.2.6 Weight Update 
 
Every prediction cycle for each sample includes the dynamic update of the weight vector 

using the double-resolution prediction error of the previous prediction 𝑒 (𝑡)where 

𝑒 (𝑡) = 2𝑆 (𝑡) − 𝑆 (𝑡). 

The updated value of each weight component is corrected by: 

 

Where 𝜌(𝑡) is the update scaling exponent and controls convergence speed and is given by: 

 

 

Equation 8: Central default Weights 

Equation 9: Directional default weights 

Equation 10: Weight update 

Equation 11: Scaling exponent 
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2.2.7 Residual Mapping 
 
The prediction residual 𝛥 (𝑡) is the difference between the predicted and the actual sample 

values. 

 

The method for fidelity control will not be presented as we are only interested in the lossless 

aspect of the compressor, so the next step is the mapping of the residuals to a D-bit 

unsigned integer producing a mapped residual 𝛿 (𝑡). 

 

where 

 

 

2.2.8 Entropy encoder 

 
After prediction, the mapped residuals defined above are then passed to the entropy 

encoder. In the CCSDS123 standard two methods are defined. First method is the block-

adaptive entropy encoder. This method breaks down the 𝑁 ∗ 𝑁 ∗ 𝑁  residuals into 

blocks of a set size, and after calculating the encoded size of the block for several encoding  

methods, it uses the most efficient. It also includes special encoding for all-zero blocks. 

These characteristics make the block-adaptive the superior method for many applications, 

Equation 12: Mapped Residual 

Figure 15: Schematic of Entropy encoder 
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especially applications with low entropy inputs,  but the implementation in this thesis make 

use of the second encoding method as the block-adaptive method is not suited for devices 

with restricted memory and computing elements. The extra computation time needed for 

the multiple encoding scheme efficiency tests makes this method unsuitable for high 

throughput applications. The second entropy encoding method which we focus on is the 

adaptive entropy encoder based on RICE code (figure (15)). Rice coding is a subset of 

Golomb codes. The difference between the two is that while the Golomb code has a 

parameter that can be any possible positive integer, the Rice code is using parameters only 

divisible by two. This makes this method very “convenient” for use with binary arithmetic. 

 

2.2.8.1 Rice codes overview 
 
This section given an overview of the rice codes in the fashion used in the adaptive entropy 

encoder. Rice coding by limiting the tuneable parameter k to multiplicands of 2, offers the 

advantage of substituting the divisions needed with shift operations. 

Given an input parameter N and the tuneable parameter M (multiple of 2): 

𝑞 = 𝑓𝑙𝑜𝑜𝑟(𝑁 ÷ 𝑀)  𝑟 = 𝑁𝑚𝑜𝑑𝑀 

The final codeword has two parts the q encoded in unary code (q 0s followed by 1) and then 

the r using an K bit representation. Bellow an example is illustrated. 

 

The coding performer to the samples is length-limited, the length limitation is introduced by 

the parameter 𝑈 . The length of the unary part of the codeword defined above as q is 

capped to 𝑈𝑚𝑎𝑥. When 𝑞 ≥ 𝑈𝑚𝑎𝑥 the codeword will consist of 𝑈  zeros followed by 

the original D-bit representation of the mapped residual. 

Figure 16: RICE coding example 



27 
 

2.2.8.2 Sample-adaptive coding procedure 
 
The Sample adaptive part of the encoder defined in the standard is referred to the dynamic 

adjustment of the tuneable parameter K (defined above).  The choice of the parameter K is 

carried out by the first stage of the entropy encoder which takes the average sample value of 

the residuals in each band. The average is calculated by the accumulation of sample values 

𝛴 (𝑡) and dividing the result by the number of the processed samples 𝛤(𝑡). 

The counter 𝛤(𝑡) in incremented for every sample by one for 𝛤(𝑡) < 2 − 1 where the 

rescaling counter size 𝛾 determines the maximum value of the counter. The accumulator 

then is defined as: 

 

and the counter is defined as: 

 

The initial value for the counter and accumulator is given as: 

 

After defining the 𝛴 (𝑡)and 𝛤(𝑡)metrics the parameter 𝑘 (𝑡)is defined as: 

Equation 13: Sample adaptive accumulator 

Equation 14: Sample adaptive counter 

Equation 15: Counter and Accumulator initialisation 

Equation 16: K parameter calculation 
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otherwise 𝑘 (𝑡)is the largest positive integer 𝑘 (𝑡) ≤ 𝐷 − 2.such that: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 17: K parameter calculation 
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CHAPTER 4: Proposed Implementation 
4.1 Executive Summary  
 
During the development of the proposed implementation, many versions were tested, each 

offering advantages in memory requirements, array coverage and data throughput. 

The one presented in this chapter achieves a good compromise between memory 

requirements and coverage while offering a competitive throughput for low energy 

applications. 

 The first configuration includes the prediction stage and receives samples in BIP order 

and outputs mapped residual values. The BIP order of the input data stream is an important 

aspect of the implementation as the dependency of the prediction computation on P previous 

bands (central differences) would create memory deficit in case BSQ was to be used. For 

example, for Nx=1000 Ny=1000 and P=2, 2M samples should be stored before the calculation 

of the first prediction. This I not viable  as the HDPD provide 256Kbit on-chip RAM [7] The 

residuals produced by the first configuration are stored to external memory via DMA. After 

the full stream have passed through the predictor and all the residual values are stored, the 

configuration is removed from the XPP array and the loading of the second configuration 

begins. For the majority of reconfigurable architectures this step would add a major overhead. 

On the contrary, reconfiguration overhead for the XPP architecture, due to the optimizations 

mentions in chapter 2, is for most cases less than 0.5 % of the total computation time giving 

us the flexibility of multiple configurations for different processes in the same dataset in the 

same device. The second configuration receives mapped residuals from external memory via 

DMA and caries out the adaptive entropy encoding stage. 

 As mentioned in chapter 2 the HPDP architecture provides the XPP III array 

processor as well as 2 Harvard VLIW 16-bit processor cores (FNC-PAEs). Both 

implementations described in this chapter do not utilize the FNC-PAEs for heavy 

computations, their main purpose is the DMA initialization and 

configuration/reconfiguration of the XPP III array. 

Bellow I include a brief description for the high-level modules that comprise the final 

implementation (Figure ()). 
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Configuration 1 – Prediction: 

• ISDM – Input Store Delay Module 

This module is in charge of storing samples in FIFOs so we can compute expressions that 

require a neighboring sample from the current one. The use of FIFOs allows us to decrease 

the memory accesses. 

• EGM – Event Generation Module 

The event generation module keeps track of the position of each sample and generates the 

appropriate events for all conditional multi-branch equations (Local Sum). 

• LSM - Local Sum Module 

Implements the column oriented Local Sum for simplicity Eq. (3). 

• DVM - Difference Vector Module 

This module constructs the difference vector using previous samples and current Local Sum. 

After the vector is constructed then the dot product between the difference and weight 

vectors. 

• WUM - Weight Update Module 

This Module receives the Difference vector and the error Sign and apply correction to the 

weight vector. This Module creates a feedback loop which present the main source of delay 

factor of this configuration. 

• RMM – Residual Mapping Module 

The final part of the configuration is the residual mapping which receives the scaled prediction 

error and outputs a mapped residual that gets stored to external memory. 

 

Configuration 2 – Entropy encoder: 

• KM - K module 

This Module uses the Counter and Accumulator to calculate the K parameter for the entropy 

encoder. After the calculation of the parameter K the Counter and Accumulator get updated. 

• RCM – RICE Code Module 

This module receives the mapped residuals the a parameter K and calculates the RICE code 

for the specific inputs, taking into account limitations set by the standard. 

• BPM – Byte Packing Module 

The last Module of the configuration is the most complex part of the implementation due to 
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the difficult task of packing codewords of non-static length in a streaming fashion using a 

coarse grain architecture. The obvious obstacle in the process is the data dependency that a 

dynamic code length creates. The main delay in the Packing module is the update of the 

available bits is every new byte that gets packed. For the proposed implementation the 

packets created are 16-bit wide for efficiency. The implementation calculate the updated value 

using (S(t) : Size, A(t): Available bits) : 

 

 

 

Figure 17: High level Implementation schematic 
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CHAPTER 5: Results, Conclusion, and future work 
5.1 Results 
 

For the test results, the implemented standard was tested against a compressor written in c 

using the same parameters as the hardwired parameters chosen for the proposed 

implementation. The compressor was run on Linux VM (intel i7-8550U @ 1.80GHz, 16GB 

memory). All input files had 8-bit dynamic range. The table below includes the 

performances results for test images of different dimensions. Compress ratio is not included 

as the test images were constructed by us. For tests carried out with real datasets, the 

compress rate is in the range [3.9 – 5.3 bits/sample]. Compress rate is mainly depended on 

the entropy of the input data and on the fact that we use 8-bit samples and sample-

adaptive entropy encoding.  

Test Nx Ny Nz PC runs 
(time) 

HPDH runs 
(time) 

PC runs 
(bits/s) 

HPDP runs 
(bits/s) 

0 100 1000 3 122.60 ms 19.20 ms 19.57 Mb/s 124.83 Mb/s 
1 100 1000 9 367.70 ms 19.22 ms 19.58 Mb/s 374.49 Mb/s 
2 100 1000 18 809.57 ms 22.42ms 17.78 Mb/s 642.11 Mb/s 
3 100 1000 24 1.025 s 24.82ms 18.73 Mb/s 773.38 Mb/s 
4 100 1000 36 1.572 s 30.02ms 18.32 Mb/s 959.16 Mb/s 
5 100 1000 45 1.831 s 37.22 ms 19.65 Mb/s 967.06 Mb/s 
6 100 1000 72 2.831 s 58.82 ms 20.34 Mb/s 979.15 Mb/s 
7 512  2048 45 18.46 s 386.30 ms 20.44 Mb/s 977.18 Mb/s 
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Figure 18: Comparison of performance 

 

 

Figure 19: HPDP performance vs Nz 

From the test performed is clear the performance advantage of the HPDP over the Simple 

PC setup. The conclusion that we extract from these results is the clear relationship 

between the Nz and the performance when it comes to the proposed implementation. It is 

shown in both Figure (36) and Figure (37) that after the point of 35 Nz we can achieve 

complete saturation of the device meaning that we need around one cycle per sample for 

prediction and one cycle for encoding. The differences in the throughput seen for inputs 

with Nz greater than 35 can be attributed to overhead delays and the delay of reconfiguring. 

The length of the delays is fixed and is not depended on the input’s dimensions. This means 

that for larger inputs the delays are a smaller percentage of the run time contributing to 

greater throughput. The theoretical limit for the proposed implementation is around 1Gb/s. 

5.2 Conclusion 
 
In conclusion, given the importance of Remote sensing technologies and especially 

Hyperspectral/Multispectral imagery, there has been a need for the development of new 

algorithms, technics, and standards so we can process, store and analyze the huge amount of 

data generated. Older system unable to adapt to these new standards create the need for a 

more versatile and efficient solution. This thesis reports our efforts to create a solution that 

tackles both problems by providing an implementation of a state-of-the-art low-complexity 
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lossless compression standard, ideal for scientific research, adapted to the features provided 

by a new space-suitable reconfigurable device. This combination allowed us to offer a 

competitive solution achieving high throughput at low power usage. 

5.3 Future word 
 
During the implementation phase of the compression standard, restrictions posed by the 

device’s memory and available computing elements restricted us from implementing the 

coding configuration that would yield better compression rates. The block-adaptive 

encoding scheme would improve the compression rate considerably especially for low 

entropy inputs and large block sizes. The smallest encoded sample is caused mainly by ‘zero’ 

mapped residuals. For the current implementation the smallest possible code for a residual 

is 1 bit as even for mapped residual = 0 the RICE code produced for K=0 is ‘1’. For a low 

entropy input that produces many ‘zero’ residuals, this creates redundancy. The block -

adaptive encoder deals with this issue by recognising all zero blocks and series of all zero 

blocks, encoding them with special codewords. That mean that depending on the chosen 

block size, the minimum number of bits per sample can be closer to 0.1 bit per residual. 

The second extension of the current implementation is the supporting of 16-bit images. The 

current implementation is limited to 8-bit samples by the 16-bit arithmetic units. The 

limitation to 8-bit samples comes from the dot product of the weight and difference vector 

which will overflow for Weigh resolution larger than 4 or samples larger than 8-bit. In order 

to support 16-image the input should be split into the high and low bytes and then the two 

streams can be compressed individually in parallel, in two devices. This approach would 

create two streams with different level of entropy each. This happens because low bytes of 

16-bit sample contains “higher frequency” information or “higher entropy”. On the other 

hand, high bits usually show lower variability. Bellow part of a 16-bit hyperspectral image is 

presented as an example. It obvious that the high bytes (bold) exhibit very low variation. 

00000000  00 bc 00 c3 00 c2 00 be  00 bf 00 bc 00 ba 00 ba   
00000010  00 bc 00 b7 00 bf 00 bc  00 c1 00 bf 00 bc 00 c0   
00000020  00 b9 00 bf 00 c0 00 b8  00 be 00 c1 00 c0 00 c1   
00000030  00 be 00 bf 00 c1 00 c1  00 be 00 c4 00 c4 00 be   
00000040  00 bc 00 c3 00 c2 00 bf  00 bc 00 bb 00 c0 00 bf   
00000050  00 c0 00 bd 00 c0 00 be  00 c1 00 c1 00 bb 00 bf  
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This approach can possibly allow us to achieve good compression rates without sacrificing 

any of the performance. 
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