
i

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΑΝΑΠΤΥΣΗ ΤΟΥ ΑΡΓΟΡΙΘΜΟΥ CCSDS123 ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ

XPP-III

Διπλωματική Εργασία

Τηλέμαχος Τσιάπρας

Επιβλέπων: Γεώργιος Σταμούλης

Βόλος 2021

ii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DEVELOPEMENT OF THE CCSDS 123 ALGORITHM ON XPP-III

ARCHITECTURE

Diploma Thesis

Tilemachos Tsiapras

Supervisor: Georgios Stamoulis

Volos 2021

iii

Εγκρίνεται από την Επιτροπή Εξέτασης:

Επιβλέπων Γεώργιος Σταμούλης
Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανι-
κών και Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Νέστωρ Ευμορφόπουλος
Αναπληρωτής Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανι-
κών και Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Αντώνιος Δαδαλιάρης
Επίκουρος Καθηγητής, Τμήμα Πληροφορικής και Τηλέπικοινωνιών,
Πανεπιστήμιο Θεσσαλίας

Ημερομηνία έγκρισης: 05-03-2021

iv

Supervising committee:

Supervisor Georgios Stamoulis
Professor, Department of electrical and computer
engineering, University of Thessaly

Co-supervisor Nestoras Eumorfopoulos
Associate Professor, Department of electrical and computer
engineering, University of Thessaly

Co-supervisor Αntotions Dadaliaris
Assistant professor, Department of Computer Science and
Telecommunication, University of Thessaly

v

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ
ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω ρητά ότι η
παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που
αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί αποκλειστικά προϊόν
προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα διανοητικής ιδιοκτησίας,
προσωπικότητας και προσωπικών δεδομένων τρίτων, δεν περιέχει έργα/εισφορές τρίτων για τα
οποία απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής
αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και
μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα σημεία όπου έχω χρησιμοποιήσει
ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την
κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών
αναφορών με πλήρη περιγραφή. Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις νομικές και
διοικητικές συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί,
διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής.

Ο Δηλών

Τηλέμαχος Τσιάπρας
05/03/2021

vi

ΠΕΡΙΛΗΨΗ

Κατά τη διάρκεια των τελευταίων δεκαετιών πολλοί τομείς της άμυνας, έρευνας και υπηρεσιών

εξαρτώνται από την τηλεπισκόπιση. Η Υπερφασματική και Πολυφασματική απεικόνιση αποτελεί

σημαντικό εργαλείο για τη συλλογή πληροφοριών για την επιφάνεια της γης. Η αυξανόμενη χωρική

και φασματική ανάλυση των αισθητήρων ωθεί προς την υιοθέτηση πιο αποδοτικών αλγορίθμων για

επεξεργασία, συμπίεση και μετάδοση του μεγάλου όγκου δεδομένων που παράγετε. Σε απάντηση

στις αυξανόμενες ανάγκες, η CCSDS δημοσίευσε μια σειρά από στάνταρντ για τη μετάδοση, προ-

επεξεργασία και συμπίεσή δεδομένων.

Ο στόχος μας για αυτή τη διπλωματική εργασία είναι η υλοποίηση του στάνταρ συμπίεσης δίχως-

απώλειες για Υπερφασματικά και Πολυφασματικά δεδομένα. Η κατεύθυνση που ακολουθήθηκε

ήταν η υλοποίηση του στάνταρ στο καινούργιάo space-suitable RC σύστημα HPDH. Κατά τη διάρκεια

της υλοποίησης προσπαθήσαμε να χρησιμοποιήσουμε τα ειδικά χαρακτηριστικά που προσέφερε η

επιλεγμένη αρχιτεκτονική ώστε να μπορέσουμε να πλησιάσουμε το θεωρητικό μέγιστο όριο

επίδοσης.

vii

ABSTRACT

For the past decades many aspects of our defence, research and services have come to depend on

remote sensing technologies. Hyperspectral and Multispectral imaging are an important asset for

collecting earth surface data. The Increasing spatial and spectral resolution of the sensors though is

constantly pushing for ever more efficient algorithms for processing, compressing, and transmitting

the large amount of data generated. In response to the increasing requirements, CCSDS have released

a series of standards concerning the aspects of transition, pre-processing, and compression.

Or goal with this thesis is the implementation of the lossless-compression standard for

Hyperspectral/multispectral data released by the CCSDS. The approach we follow is the

implementation of the standard on the new space-suitable RC device HPDP. During the

implementation we try to utilize the features provided by the chosen architecture in order to come

close to the theoretical maximum performance that we can achieve.

viii

Table of Contents
ΠΕΡΙΛΗΨΗ .. vi

ABSTRACT .. vii

Abbreviations .. 1

Mathematical Notation ... 2

CHAPTER 1: Introduction .. 3

1.1 Problem Description ... 3

1.2 Thesis contribution ... 3

1.3 Thesis structure ... 3

CHAPTER 2: Introduction to XPP(RC) architecture ... 5

2.1 Introduction to Reconfigurable Computing .. 5

2.1.1 FPGA Technology ... 5

2.2 XPP architecture Overview ... 7

2.2.1 Architecture comparison ... 9

2.2.2 Array structure ... 10

2.2.3 PAE communication ... 11

2.2.4 Configuration Method ... 12

2.2.5 Application mapping and programming tools ... 12

2.2.6 Algorithm to diagram to mapping ... 12

2.2.7 Integration of the XPP core IP .. 13

2.2.7 XPP application mapping ... 14

CHAPTER 3: Introduction to the CCSDS123 standard ... 16

3.1 Introduction to Multispectral/Hyperspectral imaging .. 16

3.2 CCSDS .. 17

3.3 Need for CCSDS 123 standard ... 18

2.2 Definition of CCSDS123 standard .. 18

2.2.1 General Overview .. 18

2.2.2 Parameters ... 19

2.2.3 Input specifications .. 20

2.2.4 Predictor ... 21

2.2.5 Weight Initialization ... 24

2.2.6 Weight Update ... 24

2.2.7 Residual Mapping ... 25

2.2.8 Entropy encoder... 25

CHAPTER 4: Proposed Implementation .. 29

4.1 Executive Summary ... 29

ix

CHAPTER 5: Results, Conclusion, and future work ... 32

5.1 Results ... 32

5.2 Conclusion ... 33

5.3 Future word .. 34

Bibliography .. 36

x

List of figures

Figure 1: Generic FPGA architecture. .. 6
Figure 2: Generic CLB [5] ... 6
Figure 3: A configuration for polynomial expression calculation ... 8
Figure 4: Difference between instruction and configuration flow. .. 8
Figure 5: Basic structure of an XPP device .. 10
Figure 6: PAE structure ... 11
Figure 7: Dataflow to Configuration example. .. 13
Figure 8: Overview of HPDP architecture [7] .. 14
Figure 9: Snapshot from XPP array simulation [8]. ... 15
Figure 10: Same location in different spectral bands ... 16
Figure 11: Schematic of the compressor .. 19
Figure 12: Abstract representation of MS image .. 20
Figure 13: Input sample ordering.. 21
Figure 14: The 3 local sum modes... 21
Figure 15: Schematic of Entropy encoder ... 25
Figure 16: RICE coding example .. 26
Figure 17: High level Implementation schematic ... 31
Figure 18: Comparison of performance .. 33
Figure 19: HPDP performance vs Nz ... 33

1

Abbreviations

This section defines the acronyms used in this document.

Acronym Description

ALU Arithmetic Logic Unit

ASIC Application specific Intergraded Circuit

CCSDS Consultative Committee for Space Data Systems

FPGA Field programmable Array

CLB Configurable Logic Block

XPP eXtreme Processing Platform

HPDP High Performance Data Processing

DMA Direct Memory Access

FL Fast Lossless

ESA European Space Agency

JPEG-LS Joint Photographic Experts Group – LosslesS

ALU Arithmetic Logic Unit

PLD Programmable Logic Device

PAE Processing Array Element

(S)CM (Supervising) Configuration Manager

HS Hyper-Spectral

MS Multispectral

2

Mathematical Notation

The largest integer 𝑛 such 𝑛 ≤ 𝑥 : 𝑛 = ⌊𝑥⌋

The largest integer 𝑛 such 𝑛 ≥ 𝑥 : 𝑛 = ⌈𝑥⌉

The modulus of an integer M with respect to a positive integer divisor n:

𝑀 𝑚𝑜𝑑 𝑛 = 𝑀 − 𝑛⌊𝑀/𝑛⌋

For any integer x and positive integer R, the function 𝑚𝑜𝑑∗ [𝑥] is defined as:

𝑚𝑜𝑑∗ [𝑥] = (𝑥 + 2)𝑚𝑜𝑑 2 − 2

The notation 𝑐𝑙𝑖𝑝(𝑥, {𝑥 , 𝑥 })clip denotes the clipping of an integer number x to the range

[𝑥 , 𝑥]:

𝑐𝑙𝑖𝑝(𝑥, {𝑥 , 𝑥 }) =

𝑥 , 𝑥 < 𝑥
𝑥, 𝑥 ≤ 𝑥 ≤ 𝑥
𝑥 , 𝑥 > 𝑥

The notation 𝑠𝑔𝑛(𝑥) is defined as:

𝑠𝑔𝑛(𝑥) =
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑥 < 0

Finally, the notation 𝑠𝑔𝑛 (𝑥) is defined as:

𝑠𝑔𝑛 (𝑥) =
 1, 𝑥 ≥ 0
−1, 𝑥 < 0

3

CHAPTER 1: Introduction
1.1 Problem Description

In today's world more and more aspects of our infrastructure, agriculture, defense, and

environmental research begin to rely on earth observing technologies. The main source of

data for this case is remote sensing devices i.e. orbiting or geostationary satellites. One of

the ways that satellites provide information is by carrying specialized hyper-spectral imaging

sensors that can provide us with much “richer” data about the surface of the earth, than a

simple picture in the visible spectrum. This innovation though brings a challenge for the on-

board computational units (OBCUs) and the downlinks to earth stations, as the huge amount

of data is generated by HS sensors. The solution is the inclusion of an inline compression

step in the on-board processing pipeline. Compression algorithms are though

computationally intensive, and the computational units limited by power consumption

restrictions do not offer efficient solutions.

1.2 Thesis contribution

Conventional satellite payloads using ASICs for greater performance/power consumption

ratios have very little flexibility when it comes to adapting to changing standards and

application evolution [1]. One possible solution comes in the form of reconfigurable

technologies. The contribution of this thesis is the implementation of state-of-the-art

compression standards of hyper spectral imagery used for scientific research on a Unique

reconfigurable architecture integrated in a space suitable system.

1.3 Thesis structure

The main body of the thesis is composed of 4 chapters.

• Chapter 2 includes an introduction to the XPP(RC) architecture and then dives

deeper in the specifics of the architecture.

• Chapter 3 includes an introduction in the technology behind

Hyperspectral/Multispectral imaging and after that, it defines in detail the

compression standard.

4

• Chapter 4 describes the implementation of the standard on the HPDP architecture as

well as difficulties encountered during the development phase.

• Chapter 5 includes results for the tests performed, conclusion of the thesis and

possible improvements that can be implemented in future work.

5

CHAPTER 2: Introduction to XPP(RC) architecture

2.1 Introduction to Reconfigurable Computing

During the mid 1980’s a new technology called field programmable gate array (FPGA) was

introduced. These devices when introduced were smaller and slower than the existing Mask

programmable gate arrays (MPGAs) and larger and more expensive than PLDs. The

advantage of the FPGAs over MPGAs was the configuration process. MPGAs were designed

to handle larger logic circuits and consist of an array of prefabricated transistors that could

be customized to implement a specific logic. The customization of the interconnection

among the rows of transistors took place during fabrication making the setup cost for an

MPGA far larger than the user programmable equivalent FPGA [2]. Many FPGAs were

initially configured using static random-access memory (SRAM) cells in the array. This

configuration medium was the key for many applications as it allows for the programming of

an FPGA by a completely electrical process. That meant that the programming or

configuration of the FPGA could change and configured to suit multiple applications [3]. So,

a setup using an FPGA and a read-only memory that stores multiple configurations could

function as a multimode hardware able to change depending on the current demands of a

specific application. Another advantage is the ability for systems that include FPGAs to

adapt to new data processing standards or communication protocols expanding the abilities

of older already deployed systems. Apart from superior adaptability and application specific

performance gains over general purpose computational units, one more application that

showed great potential was logic emulation or chip verification. This process is becoming

more and more complex and computationally intensive when software tools are used. The

solution offered by FPGAs is the ability to directly map the desired circuit on a system of

FPGAs. This way the tested circuit can run in real-time and minimize the time between test

cycles [3].

2.1.1 FPGA Technology
This section briefly presents the technology of the SRAM based FPGAs which is the most

common programming technology. Most of the descriptions of architectural abstractions

6

are applicable two all other Technologies [4]. In general, all FPGA architectures consist of

configurable logic blocks, configurable I/O blocks and programmable interconnect.

Additional circuitry is also present for controlling clock signals as well as special purpose

blocks like ALUs, Floating point arithmetic blocks, memory and for certain applications,

digital signal processing (DSP) blocks (DSPs usually come in the form of an embedded core).

These blocks are organized in a matrix of configurable logic blocks (CLBs) interconnected by

configurable interconnection circuitry. A generic illustration is given in figure (1).

Figure 1: Generic FPGA architecture.

CLBs are the blocks that implement the logic of the FPGA, they are the basic FPGA cell. They

implement macros and other design functions. Each CLB consists of several look up tables

(LUTs) whose outputs are multiplexed (reprogrammable routing control).

Figure 2: Generic CLB [5]

7

The CLBs are connected between them using the programmable interconnect. The

interconnect resources can be used either as connection for far CLBs or can be used as

internal bus. The connections are turned on or off using transistors. For CLBs that are

physically close together, shorter lines exist. Those lines are a source of delay in a FPGA

design as connection between CLBs may have to go through multiple interconnect

transistors.

2.2 XPP architecture Overview

This next section offers a basic introduction to the eXtreme Processing Platform (XPP) and it

is based on the introduction of the XPP architecture by PACT in 2003 [6].

The limitations of conventional processors and the rising importance of stream-based

applications like digital signal processing and multimedia, increase the need for a faster and

more efficient alternative. This alternative can come in the form of reconfigurable

architectures as they combine the performance benefits of Application Specific Intergraded

Circuits (ASICs) and the applications flexibility of processors [6]. The XPP architecture

created by the French company PACT provides all the advantages of RC architecture

providing additional functionality by including the ability of run-time reconfiguration and/or

self-reconfiguration. This feature combined with the coarse grain, adaptive computing

elements and the packet-oriented communication makes this architecture well suited for

DSP applications, graphics and other stream based applications as different types of

parallelism like, pipelining, instruction level, data flow, task level parallelism are supported

[6].

The basic elements of the XPP architecture consists of reconfigurable ALUs which

implement one of many possible basic machine operations like ADDITION, SHIFT and AND.

The ALUs communicate via a packet-oriented communication network which feature

automatic packet synchronization. This feature offers a level of abstraction giving greater

freedom for programmers coming from higher level languages to get familiarized and

implement applications on this architecture. In abstract, the description of the operations to

be configured in each ALU as well as the interconnection scheme is described by a

8

configuration file. All this information in derived and can be translated by the data-flow

graph of the implemented algorithm. This means that a great deal of focus is given to the

dataflow generation of each algorithm. The figure (3) below shows the dataflow for the

simple polynomial expressions 5𝑥 + 6𝑥 + 1 applied to a stream of data imported trough

I/O elements.

Figure 3: A configuration for polynomial expression calculation

As mentioned above one of the unique features of the XPP architecture is the ability for run-

time reconfiguration. This allows for multiple configurations to be executed sequentially [6].

By breaking down the algorithm into smaller, inherently parallelizable segments, each

processing a stream of data*, a greater data throughput can be achieved while spreading

the overhead of multiple reconfigurations. According to reference [6]this programming

paradigm can be described as a configuration flow, opposite to instruction flow embodied in

the classical Von-Neuman architecture ** . The overhead added due to multiple

reconfigurations I minimized because of caching next configurations making them available

instantly. Figure (4) illustrates the difference between instruction and configuration flow.

Figure 4: Difference between instruction and configuration flow.

9

*This concept is particularly important for the comprehension of the direction selected for the

development of the CCSDS123 standard using the XPP architecture.

** The term von-Neuman architecture has evolved to mean any stored-program computer in which

an instruction fetch, and a data operation cannot occur at the same time because they share a

common bus. In this case we use the term “instruction flow” to describe the typical execution of a

process using multiple instruction cycles.

2.2.1 Architecture comparison
Field programmable gate arrays:

 Root of all reconfigurable computing devices

 Use fine grained cells and operate in date level

 They only allow complete configuration and cannot hold internal data during reconfiguration

 The resulting performance was only acceptable for algorithms well suited to the FPGA

architecture

Partially reconfigurable FPGAs:

 Only required resources need to be configured.

Multi-context PLDs:

 They typically use fine grained architecture.

 They contain multiple planes of context memory.

 A configuration can be changes on the fly by switching planes

Microcontrollers and FPGAs combination:

 First step toward a complete programmable reconfigurable system.

 The microcontroller manages and executes the configuration and reconfigurations

of the state of the FPGA.

 This approach cannot be a real solution for the reconfiguration and synchronization

issues.

Reconfigurable processors:

 Most advanced class of reconfigurable architecture.

 Use coarse grained architecture and work at the top level.

 Size of configuration files is smaller, so the reconfigurations time is shorter.

10

XPP architecture:

 Belongs into the “Reconfigurable processors” class

 Main difference is the automatic packet-handling mechanism and its sophisticated

hierarchical configuration protocols for full or partial runtime and self-

reconfiguration.

2.2.2 Array structure

The reconfigurable array is based on a hierarchical array of coarse grain, adaptive computing

elements called processing array elements (PAEs). The PAEs are typical grouped into blocks

called processing array clusters (PACs). An XPP device is made up of multiple PACs. The

configuration control is carried out by a hierarchical network of configuration managers

(CMs) which are embedded in the array. So, each PAC is connected to a CM which is

responsible for the loading of configuration data into the PAC. In multi-PAC devices

additional CMs are added for the concurrent configuration data handling, each PAC is also

connected to neighboring PACs. The root CM is called supervising configuration manager

(SCM) and is directly connected to external memory containing configuration data. Figure

(5) shown below depicts an abstract representation of a multi-PAC device.

Figure 5: Basic structure of an XPP device

Every PAE in an XPP device is made of multiple configurable elements. The typical case of

PAE contain two vertical routing objects, one back register(BREG) and one forward

11

register(FREG) as well as on ALU object for performing the actual calculations which include

standard fixed point arithmetic, logical operations and some special opcodes like counters.

Depending on the opcode implemented by each ALU and the result produced, event signals

are generated, marking states like a classical microprocessor. The next case of PAE replaces

the ALU processing element with a PAE memory object. This object can be used either as

FIFO or as an internal RAM for look-up tables and temporary storage in an application.

Figure 6: PAE structure

2.2.3 PAE communication

The structures described in the above section communicate via a packet communication

network which carries two types packets, data packets and event packets. The packets

carrying data have bit-width specific to the device while the event packets a just one bit

wide. The event signals/packets add extra flexibility for data steam control. This gives the

ability for merging/ demultiplexing and in general controlling the flow of data throughout

the array, giving the choice of conditional computations depending on results of previous

operations. This flexibility of the computations and control over the stream of data becomes

possible due to the self-synchronization feature added to all PAE objects. This feature

“holds” values until all required inputs for an operation are filled and only then an output

value is produced and passed on. This minimizes the need for explicit scheduling of

operations throughout the dataflow thus simplifying the development process for

applications.

12

2.2.4 Configuration Method

A critical aspect of a reconfigurable systems affecting the performance, is the configurations

and reconfigurations methods used. Especially devices that belong to the “reconfigurable

processors” class cannot have slow conjurations methods as this would limit their use to

very specific applications with the minimum computation to configuration ratio. The optimal

case is devices which support concurrent computation and configuration. One way that the

XPP optimizes the configuration process is by getting every PAE that has been configured to

start computations while the rest of the array is still getting configured. Hardware protocols

ensure packet integrity for the partially configured applications. More about the

configuration methods can be found in [6].

2.2.5 Application mapping and programming tools

As with every reconfigurable architecture, the developer has to create a dataflow of the

applications according to the regulations and limitations posed by the architecture, and

then in turn, map the dataflow to the available fundamental elements. For this purpose,

PACT has developed the Native Mapping Language (NML) which gives direct access to all

hardware features to the programmer. A compiler for higher level of abstraction (C

compiler) is also available, useful for simpler applications. A configuration consists of

modules which contain PAE objects. The objects are explicitly allocated, optionally placed

and their connections specified. Each configuration may contain more than one module, a

sequence of initially configured modules and pre-fetched requests. The configurations

handling is an explicit part of the application program.

2.2.6 Algorithm to diagram to mapping

The process of mapping an application to the device starts with the algorithm diagram. This

diagram’ s nodes must be the available opcodes implemented to the arrays PAE objects.

Once this step is complete then the diagram can be broken to segments that can be refined

for parallel computations. Once the segments are connected, each gets “translated” to a

configuration ready to be mapped to the device. A simple example is presented below.

For this example, I implement a simple digital filter, a FIR filter. The FIR filter can be

described by the equation:

13

⌊𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]⌋

From this equation I can derive the dataflow and subsequently the configurations to be

loaded to the device.

Figure 7: Dataflow to Configuration example.

2.2.7 Integration of the XPP core IP

The XPP architecture introduced in this chapter describes a RC core. The integration of the

core is an important design aspect which allows us to take advantage of the features of the

IP. HPDP is an array-based processor developed by Airbus Defense and space GmbH in

Munich and ISD, SA in Greece. The development of HPDP has been initiated by the European

Space Agency(ESA) and DLR to address the need for a flexible and re-programmable high

performance data processor [1]. This architecture integrates an XPP RC processing core IP as

well as memory interfaces and space suitable peripherals [7]. The XPP IP included in the

design of the HPDP consists of 40 ALU elements and 16 RAM elements. For carrying out

flow-control tasks, two Harvard type VLIW 16-bit processor cores (FNC-PAE) are included in

the system. In general, the features of the HPDP include:

• Array Processor Based on the XPP III from Pact XPP Technologies (40 ALUs Processing

elements 16-bit), 2 FNC-PAEs and 256 Kbit high speed on-chip RAM (with error

14

correction)

• 4x 1.6Gbit/s Streaming Ports

• 3 SpaceWire interfaces operating @ 100Mbps

• Fully reprogrammable platform

Figure 8: Overview of HPDP architecture [7]

2.2.7 XPP application mapping

For the implementation of the Compression algorithm the XPP SDK. The kit includes C

compiler for the code running in the FNC-PAEs, a mapper that maps configuration files on

the devices and most important of all, it includes a graphic simulator making possible to

ensure validation of the implementation in a cycle by cycle level. Figure (9) offers a snapshot

in the array simulator. In chapter 4, diagrams are used for describing the implementation. In

these diagrams, as mentioned in this chapter, each distinct Block implements a calculation,

a comparison, data routing and more. Each of these blocks are directly mapped to the

objects shown above. The functionality of each block is included in the diagram when is non

intuitive operations are performed i.e. counters, data routing, event generation.

15

Figure 9: Snapshot from XPP array simulation [8].

16

CHAPTER 3: Introduction to the CCSDS123 standard

3.1 Introduction to Multispectral/Hyperspectral imaging

The term multispectral or spectral imaging describes the process of selecting information

across a wide range of the electromagnetic spectrum. The early development of Spectral

imaging begun nearly 50 years ago and until the end of the 1980s the use of this technology

was mainly restricted to military use as well as use from astrophysics for enhancing remote

sensing capabilities. The main difference with conventional imaging is the size of the

electromagnetic spectrum covered by the sensing devices. While common imaging sensors

can only “sense” information in the visible spectrum, specifically three narrow bands i.e.

Red, Green and Blue, a multispectral sensor can perceive a much wider range of

electromagnetic frequencies in the form of multiple bands [9] . Multispectral imaging

measures discrete spectral bands and hyperspectral imaging measures “continues” spectral

band. [10]

 Below a series of images of the city of Volos are included, captured by the Sentinel-2

mission* at 03/01/2021. The first image is the RGB true colour image and the following

three combinations of spectral bands information. Each combination of bands shows the

reflectivity of the earth’s surface and atmosphere at a specific spectrum range. This is turn

can enable us to analyse changes on the environment or atmosphere. (the colormaps used

in the three images do not convey information other than the magnitude of the index value)

Figure 10: Same location in different spectral bands

17

* “The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites

placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring

variability in land surface conditions, and its wide swath width (290 km) and high revisit time (10

days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions which

results in 2-3 days at mid-latitudes) will support monitoring of Earth's surface changes.” [11]

3.2 CCSDS

The Consultative Committee for Space Data Systems (CCSDS) is a “multi-national forum

aimed at the development of communication and data systems standards for space flight”.

It was found at 1982 and at this moment is comprised of “eleven member agencies, twenty-

eight observer agencies, and over 140 industrial associates " [11] . The CCSDS has developed

and formalize a variety of standards covering areas like data compression, data

transmission, data collection and management. The CCSDS123 standard is one of the

recommended standards developed of lossless data compression. The current members of

the committee are the:

 United Kingdom Space Agency (UKSA)

 State Space Corporation (ROSCOSMOS)

 National Aeronautics and Space Administration (NASA)

 Japan Aerospace Exploration Agency (JAXA)

 Instituto Nacional de Pesquisas Espaciais (INPE)

 European Space Agency (ESA)

 Deutsche Zentrum für Luft- und Raumfahrt (DLR)

 China National Space Administration (CNSA)

 Centre National d'Etudes Spatiales (CNES)

 Canadian Space Agency (CSA)

 Agenzia Spaziale Italiana (ASI)

18

3.3 Need for CCSDS 123 standard

In this section we describe the CCSDS123, a standard designed for implementation onboard

satellite computational systems. The importance of compression algorithms lies upon the

restriction that these systems pose, as on-board memory is limited, and the downlink

resources are spread thin across multiple on-board applications sending simultaneously

data to station, usually during limited time windows. One important aspect of spectral

imaging is that it generates a large amount of data, which may be difficult to handle [13].

The size of a spectral image “cube” can easily reach several tens of megabytes [2]. The

standard proposed is a good compromise as it enables us to reduce the memory needs,

minimizing the contact time need for communication with the station as well as reducing

the data archival volume.

In addition, researchers using data generated by HS imaging devices need lossless

compression methods for experiments. The standard proposed by the CCSDS achieve

effective lossless compression using low-complexity methods. This entails the preservation

of data accuracy while reducing data redundancy.

2.2 Definition of CCSDS123 standard

The building blocks of a typical image compression system consist of decorrelation,

quantization and entropy encoding. The decorrelation stage may be a transformation like

Discrete Wavelength, Discrete Cosine (used in JPEG) or Karhunen-Loeve transform [12]. The

CCSDS-123 is using a predictive scheme based on Fast-lossless(FL) algorithm (NASA) [13] and

for the entropy encoder stage, a sample adaptive encoder and a block-adaptive encoder

(CCSDS 121.0-B) [14]. Sections 2.2.1-2.2.5 present an overview of the CCSDS-123 and do not

attempt to explain the theory underlying the compression algorithm.

2.2.1 General Overview

 The CCSDS123 standard defines a payload data compressor. The input of the compressor

consists of a three-dimensional “cube” of integer data points called samples. The output of

the compressor consists of a stream of bits containing the compressed samples as well as

header containing information about the parameter used during compression, needed for

19

the retrieval of the original data. The compressor is tuneable, meaning that the user can

vary the parameters to meet fidelity constrains [12] or to adjust to device limitations. The

variation of these parameters will change the length of the final compressed bitstream. For

our case, the limitation set by the device used (XPP), restricted the number of parameters

we could tune and still ensure an overflow free compression cycle.

The compressor defined in the standard uses a three step process to compress the input

image. These steps include:

 an adaptive linear predictor

 a quantizer and

 an entropy encoder.

2.2.2 Parameters

An important aspect of the CCSDS123 standard is the tuneable parameters. These

parameters allow us to control the performance and the compressor behaviour. It is

important for any hardware implementations, to know which parameters have a greater

impact on the performance and the compress ratio so we can adjust the design processes

accordingly. Using data from [15] default parameters to be hard-coded into the

implementation have been chosen. The table below includes definition and values chosen

for every tuneable parameter.

Parameter

Value Range

Default for

implementation

Conclusion

Number of bands for

prediction

[0,15] 3 For P>3 no major gains found

Prediction mode full, reduced full -

Local Sum Mode Neighbour, column column -

Figure 11: Schematic of the compressor

20

Weight resolution(Ω) [4,19] 4 Larger value yields more compression but the 16 bit

architecture don't allow for larger values

Weight update scaling

exponent Vmin and Vmax

[-6, - 9] 3 (both) Do not have a significant impact

Initial count exponent (γ0) [1,8] 1 Sets initial counter value. No major impact

Accumulator initialization

constant (K)

[4-9] 4 Sets initial accumulator value. No major impact

Rescaling counter size (γ*) [4-9] ΧΧΧ -

Unary length limit (Umax) [8-32] 8 Input samples are 8-bit wide, so no larger value is needed

2.2.3 Input specifications

The input to the processor as mentioned, is an HSI cube which extends to three dimensions

with the size described by Nx, Ny, Nz where the Nz is the number of bands retrieved for each

sample (as shown int the figure (12)). The indexing used to describe the pixels spatial

information is the following, for the sample S(x,y,z) the z indicates the spectral band and the

(x,y) the spatial coordinates, the pair x, y is also combined to one index t

where 𝑡 = 𝑦 ∗ 𝑁 + 𝑥.

The input data can also vary in the order that they are stored in memory, with the two most

common ordering schemes being the BSQ and the BIP. BSQ stands for Band SeQuential and

this method stores all the data for a band in continuous memory spaces meaning that in

order to go from 𝑆(𝑥 , 𝑦 , 𝑧) to 𝑆(𝑥 , 𝑦 , 𝑧 + 1) , then we have to skip 𝑁𝑥 ∗ 𝑁𝑦 samples.

Figure 12: Abstract representation of MS image

21

Files using the BIP (Band Interleaved Pixel) method store the all the band samples for a

particular spatial point in continuous positions.

2.2.4 Predictor

First stage of the compressor is the sample prediction. The predictor is similar in form to

previous algorithms like Lossless JPEG. In general, this prediction model generates a

prediction for the value of one pixel/sample based on a set number of neighbouring

samples. In this case, prediction a sample 𝑆 (𝑡)depends on the values of nearby samples

in the same spactral band and P preceding spectral bands (P is user specified parameter).

The first step is the calculation of the local sum 𝜎 (𝑡) which is a weighed sum of previous

sample values in the band z . The three possible methods for calculating local sum are the

Wide neighbour-oriented, Narrow neighbour-oriented and column oriented. Each method

adds a different level of complexity and requirements during the implementation phase.

Figure 14: The 3 local sum modes.

Figure 13: Input sample ordering

22

When using neighbour-oriented local sum:

When using Narrow neighbour-oriented local sum:

When using Column oriented local sum:

Using the calculated local sum, I can derive the local and directional differences. I take the

directional differences from the band of the current sample and the central differences form

the previous P bands and I combine them to create the difference vector. Directional

difference is the difference of the local sum to the neighbouring samples of the current

sample. The labels N, NW, W are used to define the positions of neighbouring samples. So,

for a sample 𝑆 (𝑡)the central and directional differences are the following.

Equation 1:Neighbour-oriented local sub

Equation 2: Narrow neighbour local sum

Equation 3: Column oriented local sum

23

Directional differences:

Central difference:

The local difference vector 𝑈 (𝑡) is used to store the computed differences. Under reduced

mode the 𝑈 (𝑡) contains only the P central differences computed by the P previous bands.

Under full mode the local differences from the current band are included. For 𝑡 > 0,we can

now calculate the central local difference 𝑑 (𝑡)which is equal to the inner product of the

weight vector 𝑊 (𝑡)with the 𝑈 (𝑡). The scaled predicted value 𝑆 (𝑡)can now be

calculated given that:

The double-resolution resolution predicted sample value is:

Equation 4: Directional differences

Equation 5: Central difference

Equation 6: Scaled prediction

Equation 7: Double resolution prediction

24

and finally, the predicted sample values 𝑆 (𝑡)is equal to
()

.

2.2.5 Weight Initialization

For the initialization of the weight vector 𝑊 (𝑡) we can use either the default weight

initialization or the Custom Weight Initialization. When the default weight initialization is

used, for each spectral band Z, initial vector components values must be assigned:

For weights corresponding to central differences:

For weights corresponding to directional differences:

2.2.6 Weight Update

Every prediction cycle for each sample includes the dynamic update of the weight vector

using the double-resolution prediction error of the previous prediction 𝑒 (𝑡)where

𝑒 (𝑡) = 2𝑆 (𝑡) − 𝑆 (𝑡).

The updated value of each weight component is corrected by:

Where 𝜌(𝑡) is the update scaling exponent and controls convergence speed and is given by:

Equation 8: Central default Weights

Equation 9: Directional default weights

Equation 10: Weight update

Equation 11: Scaling exponent

25

2.2.7 Residual Mapping

The prediction residual 𝛥 (𝑡) is the difference between the predicted and the actual sample

values.

The method for fidelity control will not be presented as we are only interested in the lossless

aspect of the compressor, so the next step is the mapping of the residuals to a D-bit

unsigned integer producing a mapped residual 𝛿 (𝑡).

where

2.2.8 Entropy encoder

After prediction, the mapped residuals defined above are then passed to the entropy

encoder. In the CCSDS123 standard two methods are defined. First method is the block-

adaptive entropy encoder. This method breaks down the 𝑁 ∗ 𝑁 ∗ 𝑁 residuals into

blocks of a set size, and after calculating the encoded size of the block for several encoding

methods, it uses the most efficient. It also includes special encoding for all-zero blocks.

These characteristics make the block-adaptive the superior method for many applications,

Equation 12: Mapped Residual

Figure 15: Schematic of Entropy encoder

26

especially applications with low entropy inputs, but the implementation in this thesis make

use of the second encoding method as the block-adaptive method is not suited for devices

with restricted memory and computing elements. The extra computation time needed for

the multiple encoding scheme efficiency tests makes this method unsuitable for high

throughput applications. The second entropy encoding method which we focus on is the

adaptive entropy encoder based on RICE code (figure (15)). Rice coding is a subset of

Golomb codes. The difference between the two is that while the Golomb code has a

parameter that can be any possible positive integer, the Rice code is using parameters only

divisible by two. This makes this method very “convenient” for use with binary arithmetic.

2.2.8.1 Rice codes overview

This section given an overview of the rice codes in the fashion used in the adaptive entropy

encoder. Rice coding by limiting the tuneable parameter k to multiplicands of 2, offers the

advantage of substituting the divisions needed with shift operations.

Given an input parameter N and the tuneable parameter M (multiple of 2):

𝑞 = 𝑓𝑙𝑜𝑜𝑟(𝑁 ÷ 𝑀) 𝑟 = 𝑁𝑚𝑜𝑑𝑀

The final codeword has two parts the q encoded in unary code (q 0s followed by 1) and then

the r using an K bit representation. Bellow an example is illustrated.

The coding performer to the samples is length-limited, the length limitation is introduced by

the parameter 𝑈 . The length of the unary part of the codeword defined above as q is

capped to 𝑈𝑚𝑎𝑥. When 𝑞 ≥ 𝑈𝑚𝑎𝑥 the codeword will consist of 𝑈 zeros followed by

the original D-bit representation of the mapped residual.

Figure 16: RICE coding example

27

2.2.8.2 Sample-adaptive coding procedure

The Sample adaptive part of the encoder defined in the standard is referred to the dynamic

adjustment of the tuneable parameter K (defined above). The choice of the parameter K is

carried out by the first stage of the entropy encoder which takes the average sample value of

the residuals in each band. The average is calculated by the accumulation of sample values

𝛴 (𝑡) and dividing the result by the number of the processed samples 𝛤(𝑡).

The counter 𝛤(𝑡) in incremented for every sample by one for 𝛤(𝑡) < 2 − 1 where the

rescaling counter size 𝛾 determines the maximum value of the counter. The accumulator

then is defined as:

and the counter is defined as:

The initial value for the counter and accumulator is given as:

After defining the 𝛴 (𝑡)and 𝛤(𝑡)metrics the parameter 𝑘 (𝑡)is defined as:

Equation 13: Sample adaptive accumulator

Equation 14: Sample adaptive counter

Equation 15: Counter and Accumulator initialisation

Equation 16: K parameter calculation

28

otherwise 𝑘 (𝑡)is the largest positive integer 𝑘 (𝑡) ≤ 𝐷 − 2.such that:

Equation 17: K parameter calculation

29

CHAPTER 4: Proposed Implementation
4.1 Executive Summary

During the development of the proposed implementation, many versions were tested, each

offering advantages in memory requirements, array coverage and data throughput.

The one presented in this chapter achieves a good compromise between memory

requirements and coverage while offering a competitive throughput for low energy

applications.

 The first configuration includes the prediction stage and receives samples in BIP order

and outputs mapped residual values. The BIP order of the input data stream is an important

aspect of the implementation as the dependency of the prediction computation on P previous

bands (central differences) would create memory deficit in case BSQ was to be used. For

example, for Nx=1000 Ny=1000 and P=2, 2M samples should be stored before the calculation

of the first prediction. This I not viable as the HDPD provide 256Kbit on-chip RAM [7] The

residuals produced by the first configuration are stored to external memory via DMA. After

the full stream have passed through the predictor and all the residual values are stored, the

configuration is removed from the XPP array and the loading of the second configuration

begins. For the majority of reconfigurable architectures this step would add a major overhead.

On the contrary, reconfiguration overhead for the XPP architecture, due to the optimizations

mentions in chapter 2, is for most cases less than 0.5 % of the total computation time giving

us the flexibility of multiple configurations for different processes in the same dataset in the

same device. The second configuration receives mapped residuals from external memory via

DMA and caries out the adaptive entropy encoding stage.

 As mentioned in chapter 2 the HPDP architecture provides the XPP III array

processor as well as 2 Harvard VLIW 16-bit processor cores (FNC-PAEs). Both

implementations described in this chapter do not utilize the FNC-PAEs for heavy

computations, their main purpose is the DMA initialization and

configuration/reconfiguration of the XPP III array.

Bellow I include a brief description for the high-level modules that comprise the final

implementation (Figure ()).

30

Configuration 1 – Prediction:

• ISDM – Input Store Delay Module

This module is in charge of storing samples in FIFOs so we can compute expressions that

require a neighboring sample from the current one. The use of FIFOs allows us to decrease

the memory accesses.

• EGM – Event Generation Module

The event generation module keeps track of the position of each sample and generates the

appropriate events for all conditional multi-branch equations (Local Sum).

• LSM - Local Sum Module

Implements the column oriented Local Sum for simplicity Eq. (3).

• DVM - Difference Vector Module

This module constructs the difference vector using previous samples and current Local Sum.

After the vector is constructed then the dot product between the difference and weight

vectors.

• WUM - Weight Update Module

This Module receives the Difference vector and the error Sign and apply correction to the

weight vector. This Module creates a feedback loop which present the main source of delay

factor of this configuration.

• RMM – Residual Mapping Module

The final part of the configuration is the residual mapping which receives the scaled prediction

error and outputs a mapped residual that gets stored to external memory.

Configuration 2 – Entropy encoder:

• KM - K module

This Module uses the Counter and Accumulator to calculate the K parameter for the entropy

encoder. After the calculation of the parameter K the Counter and Accumulator get updated.

• RCM – RICE Code Module

This module receives the mapped residuals the a parameter K and calculates the RICE code

for the specific inputs, taking into account limitations set by the standard.

• BPM – Byte Packing Module

The last Module of the configuration is the most complex part of the implementation due to

31

the difficult task of packing codewords of non-static length in a streaming fashion using a

coarse grain architecture. The obvious obstacle in the process is the data dependency that a

dynamic code length creates. The main delay in the Packing module is the update of the

available bits is every new byte that gets packed. For the proposed implementation the

packets created are 16-bit wide for efficiency. The implementation calculate the updated value

using (S(t) : Size, A(t): Available bits) :

Figure 17: High level Implementation schematic

32

CHAPTER 5: Results, Conclusion, and future work
5.1 Results

For the test results, the implemented standard was tested against a compressor written in c

using the same parameters as the hardwired parameters chosen for the proposed

implementation. The compressor was run on Linux VM (intel i7-8550U @ 1.80GHz, 16GB

memory). All input files had 8-bit dynamic range. The table below includes the

performances results for test images of different dimensions. Compress ratio is not included

as the test images were constructed by us. For tests carried out with real datasets, the

compress rate is in the range [3.9 – 5.3 bits/sample]. Compress rate is mainly depended on

the entropy of the input data and on the fact that we use 8-bit samples and sample-

adaptive entropy encoding.

Test Nx Ny Nz PC runs
(time)

HPDH runs
(time)

PC runs
(bits/s)

HPDP runs
(bits/s)

0 100 1000 3 122.60 ms 19.20 ms 19.57 Mb/s 124.83 Mb/s
1 100 1000 9 367.70 ms 19.22 ms 19.58 Mb/s 374.49 Mb/s
2 100 1000 18 809.57 ms 22.42ms 17.78 Mb/s 642.11 Mb/s
3 100 1000 24 1.025 s 24.82ms 18.73 Mb/s 773.38 Mb/s
4 100 1000 36 1.572 s 30.02ms 18.32 Mb/s 959.16 Mb/s
5 100 1000 45 1.831 s 37.22 ms 19.65 Mb/s 967.06 Mb/s
6 100 1000 72 2.831 s 58.82 ms 20.34 Mb/s 979.15 Mb/s
7 512 2048 45 18.46 s 386.30 ms 20.44 Mb/s 977.18 Mb/s

33

Figure 18: Comparison of performance

Figure 19: HPDP performance vs Nz

From the test performed is clear the performance advantage of the HPDP over the Simple

PC setup. The conclusion that we extract from these results is the clear relationship

between the Nz and the performance when it comes to the proposed implementation. It is

shown in both Figure (36) and Figure (37) that after the point of 35 Nz we can achieve

complete saturation of the device meaning that we need around one cycle per sample for

prediction and one cycle for encoding. The differences in the throughput seen for inputs

with Nz greater than 35 can be attributed to overhead delays and the delay of reconfiguring.

The length of the delays is fixed and is not depended on the input’s dimensions. This means

that for larger inputs the delays are a smaller percentage of the run time contributing to

greater throughput. The theoretical limit for the proposed implementation is around 1Gb/s.

5.2 Conclusion

In conclusion, given the importance of Remote sensing technologies and especially

Hyperspectral/Multispectral imagery, there has been a need for the development of new

algorithms, technics, and standards so we can process, store and analyze the huge amount of

data generated. Older system unable to adapt to these new standards create the need for a

more versatile and efficient solution. This thesis reports our efforts to create a solution that

tackles both problems by providing an implementation of a state-of-the-art low-complexity

34

lossless compression standard, ideal for scientific research, adapted to the features provided

by a new space-suitable reconfigurable device. This combination allowed us to offer a

competitive solution achieving high throughput at low power usage.

5.3 Future word

During the implementation phase of the compression standard, restrictions posed by the

device’s memory and available computing elements restricted us from implementing the

coding configuration that would yield better compression rates. The block-adaptive

encoding scheme would improve the compression rate considerably especially for low

entropy inputs and large block sizes. The smallest encoded sample is caused mainly by ‘zero’

mapped residuals. For the current implementation the smallest possible code for a residual

is 1 bit as even for mapped residual = 0 the RICE code produced for K=0 is ‘1’. For a low

entropy input that produces many ‘zero’ residuals, this creates redundancy. The block -

adaptive encoder deals with this issue by recognising all zero blocks and series of all zero

blocks, encoding them with special codewords. That mean that depending on the chosen

block size, the minimum number of bits per sample can be closer to 0.1 bit per residual.

The second extension of the current implementation is the supporting of 16-bit images. The

current implementation is limited to 8-bit samples by the 16-bit arithmetic units. The

limitation to 8-bit samples comes from the dot product of the weight and difference vector

which will overflow for Weigh resolution larger than 4 or samples larger than 8-bit. In order

to support 16-image the input should be split into the high and low bytes and then the two

streams can be compressed individually in parallel, in two devices. This approach would

create two streams with different level of entropy each. This happens because low bytes of

16-bit sample contains “higher frequency” information or “higher entropy”. On the other

hand, high bits usually show lower variability. Bellow part of a 16-bit hyperspectral image is

presented as an example. It obvious that the high bytes (bold) exhibit very low variation.

00000000 00 bc 00 c3 00 c2 00 be 00 bf 00 bc 00 ba 00 ba
00000010 00 bc 00 b7 00 bf 00 bc 00 c1 00 bf 00 bc 00 c0
00000020 00 b9 00 bf 00 c0 00 b8 00 be 00 c1 00 c0 00 c1
00000030 00 be 00 bf 00 c1 00 c1 00 be 00 c4 00 c4 00 be
00000040 00 bc 00 c3 00 c2 00 bf 00 bc 00 bb 00 c0 00 bf
00000050 00 c0 00 bd 00 c0 00 be 00 c1 00 c1 00 bb 00 bf

35

This approach can possibly allow us to achieve good compression rates without sacrificing

any of the performance.

36

Bibliography

[1] T. Helfers, G. Vines and C. Papadas, “HPDP-40 High Performance Data Processor-A New
Generation Space Processor in Demonstration,” in OBPD, ESTEC, 2019.

[2] “FPGA Central,” 16 February 2008. [Online]. Available: http://www.fpgacentral.com/pld-
types/mpga-mask-programmable-gate-array. [Accessed 20 December 2020].

[3] S. Hauck, “The roles of FPGAs in reprogrammable systems,” Proceedings of the IEEE, vol. 86,
no. 4, pp. 615-638, April 1998.

[4] B. Zeidman, “EE Times,” 22 3 2006. [Online]. Available: https://www.eetimes.com/all-about-
fpgas/. [Accessed 20 12 2020].

[5] “General Technoligies,” [Online]. Available:
https://www.generatecnologias.es/en/fpga_architecture.html.

[6] V. Baumgarte, G. Ehlers, F. May and e. al., “PACT XPP—A Self-Reconfigurable Data Processing
Architecture.,” The Journal of Supercomputing, vol. 26, p. 167–184, 2003.

[7] G. V. Vallduriola, T. Helfers, D. Bretz, M. Syed, D. Witsh, C. Papadas, V. Perel and S. Bartels,
High performance data processor (HPDP)-Image processing applications of a new generation
space processor.

[8] D. Suárez, T. Helfers, D. J. Weidendorfer, D. Bretz and D. J. Utzmann, “Space Debris Detection
on the HPDP, a Coarse-Grained Reconfigurable Array Architecture for Space,” in DSP Day 2016,
Gothenburg, 2016.

[9] C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in
conservation: current research and potential applications, Studies in Conservation,”
tandfonline, 13 Dec 2006. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1179/sic.2006.51.Supplement-1.3.

[10] N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Optical
Engineering, vol. 52, no. 9, 2013.

[11] “CCSDS,” [Online]. Available: https://public.ccsds.org. [Accessed 10 10 2020].

[12] J. Fjeldtvedt, M. Orlandić and T. A. Johansen, “An Efficient Real-Time FPGA Implementation of
the CCSDS-123 Compression Standard for Hyperspectral Images,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 11, pp. 3841-3852, 2018.

[13] N. Aranki, A. Bakhshi, D. Keymeulen and M. Klimesh, “Fast and Adaptive Lossless On-board
Hyperspectral Data Compression System for Space Applications”.

[14] CCSDS, Lossless Data Compression CCSDS 121.0-B-3, Washington: CCSDS, 2020.

[15] A. García, L. Santos, S. López, G. Marrero, J. F. López and R. Sarmiento, “High level modular
implementation of a lossy hyperspectral image compression,” in 5th Workshop on

37

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
Gainesville, 2013.

[16] CCSDS, Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image
Compression., Washington: CCSDS, 2019.

[17] P. Mouroulis, B. V. Gorp, R. O. Green, H. Dierssen, D. W. Wilson, M. Eastwood, J. Boardman, B.-
C. Gao, D. Cohen, B. Franklin, F. Loya, S. Lundeen, A. Mazer, I. McCubbin, D. Randall and B.
Richardson, “Portable Remote Imaging Spectrometer coastal ocean sensor: design,
characteristics, and first flight results,” Appl. Opt, vol. 53, pp. 1363-1380, 2014.

[18] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, 2007.

