
 
 

 
 

 

 

Deep Learning for Brain Tumor Detection 

using Semantic Segmentation of         

MRI Images 

 

Anastasios Bachtses 

 

 

Department of Electrical & Computer Engineering 

University of Thessaly 

 

Supervisor: 

Prof. Aspasia Daskalopulu 

Volos, January 14, 2021 

 

 

 



 
 

 
 

 

 

Deep Learning for Brain Tumor Detection 

using Semantic Segmentation of         

MRI Images 

 

 

Anastasios Bachtses 

 

 

Department of Electrical & Computer Engineering 

University of Thessaly 

 

Supervisor: 

Prof. Aspasia Daskalopulu 

Volos, January 14, 2021 

 

 



 
 

 
 

 

 

Βαθιά Μάθηση για Ανίχνευση         

Όγκου στον Εγκέφαλο με Σημασιολογική 

Κατάτμηση Μαγνητικών Τομογραφιών 

 

 

Μπαχτσές Αναστάσιος 

 

 

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 

Πανεπιστήμιο Θεσσαλίας 

 

Επιβλέπουσα: 

Ασπασία Δασκαλοπούλου 

Βόλος, 14 Ιανουαρίου 2021 

 

 

 



 
 

i 
 

 

 

Acknowledgements 
 

 

I would like to express my appreciation to Prof. Aspasia Daskalopulu, my 

supervisor, for her valuable suggestions and guidance through each stage of the 

process of this research work.  

 

I would also like to thank Prof. Michael Vassilakopoulos and Prof. Yota 

Tsompanopoulou for placing their trust and confidence in my abilities.  

 

Finally, I must express my profound gratitude to my family and my friends for 

providing me with wise counsel and continuous support throughout this journey of 

studies. This accomplishment would not have been possible without them. Thank 

you. 

 

 

 

  



 
 

ii 
 

 

 

 

 

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY 

RIGHTS 

 

Being fully aware of the implications of copyright laws, I expressly state that this 

diploma thesis, as well as the electronic files and source codes developed or 

modified in the course of this thesis, are solely the product of my personal work and 

do not infringe any rights of intellectual property, personality and personal data of 

third parties, do not contain work / contributions of third parties for which the 

permission of the authors / beneficiaries is required and are not a product of partial 

or complete plagiarism, while the sources used are limited to the bibliographic 

references only and meet the rules of scientific citing. The 11 points where I have 

used ideas, text, files and / or sources of other authors are clearly mentioned in the 

text with the appropriate citation and the relevant complete reference is included in 

the bibliographic references section. I fully, individually and personally undertake 

all legal and administrative consequences that may arise in the event that it is 

proven, in the course of time, that this thesis or part of it does not belong to me 

because it is a product of plagiarism. 

 

The Declarant 

  
Bachtses Anastasios 

Volos, 14 January 2021 

  



 
 

iii 
 

 

Abstract 
 

 

The last decades Brain Tumors are one of the major causes of mortality of children 

and adults. Among them, Gliomas are the most common and also aggressive, 

leading to a very short life expectancy. Thus, early diagnosis plays a determining 

role in improving possibilities for treatment and increasing the recovery rate of the 

patients. Manual identification and detection of tumor from a large amount of brain 

Magnetic Resonance Images (MRI) generated in clinical routine, is difficult, 

requires high accuracy and often depends on the experience of the doctor. Following 

astonishing successes in recent years, Deep Learning techniques are attracting 

substantial interest, proving that they can address this problem more efficiently than 

many traditional methods. In this thesis, an attempt has been made to develop a 

Deep Learning Neural Network for autonomous segmentation of Brain Tumor on 

MRI images. For this purpose, someone must be familiar with Machine Learning 

and Deep Learning terms, as well as Brain Tumor substance and Neuroimaging, 

which will be provided through the introduction. The appropriate collection of data, 

then, has to be obtained, and pre-processing techniques must be applied to the MRI 

images of the dataset, in order to transform them into useful input for the 

implemented architecture. Furthermore, this research will describe the concept of 

Neural Networks, focusing on Convolutional Neural Networks and Semantic 

Segmentation techniques. Finally, several different implementations of the model 

will be provided, evaluating the performance and analyzing the results.  

 

 

 

 

Key words: Artificial Intelligence, Semantic Segmentation, Neural Networks, Deep 

Learning, Brain Tumor, Brain MRI Segmentation, Machine Learning, LGG, 

Prediction, Detection 

 

 

 



 
 

iv 
 

 

Περίληψη 

 
Τις τελευταίες δεκαετίες, οι όγκοι του εγκεφάλου είναι μια από τις κύριες αιτίες 

θνησιμότητας παιδιών και ενηλίκων. Μεταξύ αυτών, τα γλοιώματα είναι τα πιο 

κοινά και επιθετικά, συρρικνώνοντας κατά πολύ τις πιθανότητες ανάρωσης. 

Καθίσταται σαφές, ότι η έγκαιρη διάγνωση κατέχει καταλυτικό ρόλο στη 

διαδικασία της θεραπείας και αυξάνει τις πιθανότητες επιβίωσης του ασθενούς. Η 

χειροκίνητη ανίχνευση και κατάτμιση όγκου από μια μεγάλη ποσότητα δεδομένων 

από Μαγνητικές Τομογραφίες (MRI) που παράγονται σε συνεχείς ρυθμούς 

καθημερινότητας, είναι δύσκολη, απαιτεί υψηλή ακρίβεια και πολύ συχνά εξαρτάται 

από την εμπειρία του γιατρού. Σημειώνοντας εκπληκτικές επιτυχίες τα τελευταία 

χρόνια, οι τεχνικές Deep Learning (Βαθιάς Μάθησης) προσελκύουν όλο και 

περισσότερο ενδιαφέρον, αποδεικνύοντας ότι μπορούν να προσεγγίσουν αυτό το 

πρόβλημα πιο αποτελεσματικά από πολλές παραδοσιακές μεθόδους. Στα πλαίσια 

αυτής της διπλωματικής εργασίας, παρουσιάζεται μια προσπάθεια να αναπτυχθεί 

ένα Νευρωνικό Δίκτυο Βαθιάς Μάθησης για αυτόνομη τμηματοποίηση και 

ανίχνευση όγκου στον εγκέφαλο απο εικόνες MRI. Προκειμένου να επιτευχθεί 

αυτό, κάποιος πρέπει να είναι εξοικειωμένος με τους όρους Μηχανικής Μάθησης, 

Βαθιάς Μάθησης, καθώς και να υπάρχει υπόβαθρο στην Ογκολογία και τη 

Νευροαπεικόνιση, όροι που παρέχονται στην εισαγωγή αυτής της εργασίας. Στη 

συνέχεια, θα πρέπει να συλλεχθούν τα κατάλληλα δεδομένα, συγκεκριμένα αρχεία 

Μαγνητικών Τομογραφιών και να εφαρμοστούν τεχνικές προεπεξεργασίας στα 

δεδομένα αυτά, προκειμένου να τα μετατρέψουν σε χρήσιμη είσοδο για την 

αρχιτεκτονική του δυκτύου που αναπτύχθηκε. Επιπρόσθετα, η εργασία παρέχει μία 

αναλυτική  περιγραφή των Νευρωνικών Δικτύων, εστιάζοντας στον τομέα των 

Συνελικτικών Νευρωνικών Δικτύων και της Σημασιολογικής Κατάτμησης. Τέλος, 

θα παρουσιαστεί η υλοποίηση του μοντέλου, αξιολογώντας την απόδοσή του και 

αναλύοντας τα αποτελέσματα. 

           

 

Λέξεις κλειδιά: Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Βαθιά Μάθηση, 

Κατάτμηση Εγκεφαλικών Όγκων, Σημασιολογική Κατάτμηση, Νευρωνικά Δίκτυα 

 

 

 



 
 

v 
 

 

Contents  
 

Acknowledgements .................................................................................................... i 

Abstract .................................................................................................................... iii 

1. Introduction............................................................................................................ 1 

1.1 Can machines think? .......................................................................................... 1 

1.2 Brain Tumors ..................................................................................................... 3 

1.3 Neuroimaging..................................................................................................... 5 

1.4 Related Work ..................................................................................................... 6 

2. Theory of Neural Networks .................................................................................. 8 

2.1 Definition of Neural Networks .......................................................................... 8 

2.2 How does a Neural Network work? ................................................................. 10 

2.3 Activation Functions ........................................................................................ 13 

2.4 Backpropagation .............................................................................................. 16 

2.5 Optimization Algorithms ................................................................................. 19 

2.6 Convolutional Neural Networks ...................................................................... 22 

2.7 Overfitting ........................................................................................................ 26 

2.8 Semantic Segmentation .................................................................................... 27 

2.9 U-Net ................................................................................................................ 29 

3. Dataset .................................................................................................................. 31 

3.1 TCGA Dataset .................................................................................................. 32 

3.2 Data Preparation ............................................................................................... 33 

3.3 Tools................................................................................................................. 35 

4. Implementation .................................................................................................... 36 

4.1 Network Architecture ....................................................................................... 36 

4.2 Implementations ............................................................................................... 38 

4.3 Evaluation ........................................................................................................ 40 

5. Results ................................................................................................................... 42 



 
 

vi 
 

5.1 Results .............................................................................................................. 42 

5.2 Conclusion ........................................................................................................ 45 

5.3 Future Work ..................................................................................................... 46 

Bibliography ............................................................................................................. 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

List of Figures 

 
Figure 1. 1: AI, Machine Learning, Deep Learning .................................................... 3 

Figure 1. 2: (a) Neuroimaging results (b) MRI scanner .............................................. 5 

 

Figure 2. 1: Biological neuron ..................................................................................... 8 

Figure 2. 2: Biological neuron side by side with Artificial neuron ............................. 9 

Figure 2. 3: A Neural Network with one hidden layer of five nodes, one output layer 

of two nodes, and three inputs. .................................................................................. 10 

Figure 2. 4 Common NN topologies. The Neural Network Zoo [35] ....................... 11 

Figure 2. 5: Sigmoid function returns real numbers in the range [0,1] ..................... 14 

Figure 2. 6: Tanh function returns real numbers in the range [-1,1] ......................... 15 

Figure 2. 7: ReLU function returns zero for x<0 and then it is linear with slope=1 

when x>0 ................................................................................................................... 15 

Figure 2. 8: Loss Function visualization .................................................................... 18 

Figure 2. 9: Schematic of Gradient Descent .............................................................. 18 

Figure 2. 10: CNN structure ...................................................................................... 23 

Figure 2. 11: Schematic of Convolution .................................................................... 24 

Figure 2. 12: Schematic of Max-Pooling ................................................................... 25 

Figure 2. 13: (a) Classification (b) Object Detection (c) Semantic Segmentation .... 27 

Figure 2. 14: (a) Original MRI scan (b) Segmentation of the tumor area (c) Pixel-

Level labelling for Semantic Segmentation ............................................................... 28 

Figure 2. 15: U-Net architecture ................................................................................ 29 

 

Figure 3. 1: TCGA Dataset: MRI Images and their Masks ....................................... 33 

Figure 3. 2: Dataset overview .................................................................................... 34 

 

Figure 5. 1: Results demonstration (a) Original MRI image (b) Original Mask (c) 

Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 .................................... 43 

file:///C:/Users/bahts/Desktop/HMMY/!Diplwmatiki/ptuxiaki.docx%23_Toc61545420


 
 

viii 
 

Figure 5. 2: Results demonstration (a) Original MRI image (b) Original Mask (c) 

Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 .................................... 43 

Figure 5. 3: Results demonstration (a) Original MRI image (b) Original Mask (c) 

Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 .................................... 44 

Figure 5. 4: Adam - 32 - 0.001 accuracy and loss plots ............................................ 44 

Figure 5. 5: Adam - 32 - 0.001 LGG segmentation ................................................... 45 

Figure 5. 6: Adam - 32 - 0.001 LGG segmentation ................................................... 45 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ix 
 

List of Tables 

 
Table 4. 1: The implemented architecture with convolution, dropout and pooling 

layers (a) encoder part (b) decoder part ..................................................................... 37 

Table 4. 2: 1st Implementation's hyperparameters .................................................... 39 

Table 4. 3: 2nd Implementation's hyperparameters ................................................... 39 

Table 4. 4: 3rd Implementation's hyperparameters.................................................... 39 

 

Table 5. 1: Results ..................................................................................................... 42 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

List of Acronyms 

 
ML Machine Learning 

ANN Artificial Neural Networks 

MRI Magnetic Resonance Image  

NN Neural Networks 

CNN Convolutional Neural Networks 

DNN Deep Neural Networks 

RNN Recurrent Neural Networks 

LSTM Long Short-Term Memory 

BP Backpropagation 

LGG Low-Grade Gliomas  

ReLU Rectified Linear Unit 

Adam Adaptive Moment Estimation 

GD Gradient Descent 

SGD Stochastic Gradient Descent 

FC Fully Connected  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 
 

 

 

 

 

CHAPTER 1 

Introduction 
 

 

 

1.1 Can machines think?   

 

As we are aware of, the human brain is a magnificent computational device, capable 

of handling vast amounts of data. The brain is able, without much effort, to process 

information and identify patterns in our surroundings, all of which are the basis of 

our decisions, and then to learn from the experiences that these decisions cause. This 

is of course something that composes our daily life and has helped the human 

species in survival and evolution. As technology and computers become 

increasingly powerful, the idea of imitating some of the brain’s functions and 

implement them in machines, is becoming a reality. A reality that is called Artificial 

Intelligence (AI).  

 

In 1950, and after breaking the Nazi encryption machine, Enigma, and helping 

Allied Forces win World War II, mathematician Alan Turing changed history for the 

second time asking a straightforward question: “Can machines think?” [1]. Through 

his paper “Computing Machinery and Intelligence” [1], where the famous Turing 

Test was introduced, he established the fundamental idea of Artificial Intelligence. 

A few years later, in 1956, John McCarthy coined the term AI for the first time by 

the following definition. “Artificial Intelligence is the science and engineering of 

making intelligent machines and making a machine behave in ways that would be 

called intelligent if a human were so behaving” [2]. AI is the field of Computer 

Science that studies the theories and methods which produce intelligence or 

intelligent behavior when applied through a computer.  

https://www.csee.umbc.edu/courses/471/papers/turing.pdf


1. INTRODUCTION  2 

 
 

While AI focuses on creating computers that can learn, recognize, understand, 

predict, and interact, there is an associate subset of it that permits computers to 

follow a self-learning approach without being programmed explicitly and 

autonomously learn new things from data. This subset is called Machine Learning 

(ML). According to Stanford University [3] “Machine Learning is the field of AI 

studying how computer agents can improve their perception, knowledge, thinking, 

or actions based on experience or data”. 

Frank Rosenblatt, in 1958, designed the first algorithm attempting to mimic the 

thinking process of the human brain, a binary classifier named Perceptron [4]. It was 

a function which could decide whether or not an input, represented by a vector of 

numbers, belongs to some specific class. In 1960, an early single-layer Artificial 

Neural Network introduced by Professor Bernard Windrow and his graduate student 

Ted Hoff at Stanford University, which called ADALINE (Adaptive Linear Neuron 

or later Adaptive Linear Element) [5]. It was implemented on a physical device, 

consisting of weights, biases and a summation function forming a single artificial 

neuron. We will discuss about these terms at the next chapter. Several years later, in 

1967, the nearest neighbour algorithm was conceived, aiming to identify basic 

patterns from the environment, like mapping a route in a city. It was the beginning 

of basic pattern recognition. In 1979, a robot named Stanford Cart developed by the 

students of Stanford University, being able to navigate itself around a room, while 

two years later, Gerald Dejong introduced the idea of Explanation Based Learning 

(EBL), in which a computer could analyze and discard irrelevant data from a 

provided dataset. 

Since then, and specifically during the last decade, the world has witnessed 

tremendous achievements of AI including winning professional players in complex 

games, such as Chess, Jeopardy, Go and Dota, object detection from images, 

speech-to-text transformation, products suggestions based on user’s interests, face 

recognition, virtual home assistants and many more.  

In effect, Machine Learning facilitates the computers to program themselves by 

automating the process of automation. While in traditional programming, data and 

programs are provided as input to a computer in order to produce a certain output, in 

Machine Learning, models accept both data and output in order to create the 

program itself. They use algorithms to parse over data, learn from data and then 

make smarter decisions based on what they have learnt.  

A very important part of a broader family of ML, where algorithms are used in 

structured layers in order to implement an Artificial Neural Network that can learn 

and make decisions on its own, is called Deep Learning. 

 



1. INTRODUCTION  3 

 
 

Deep Learning models are formulated by much more complex structures and has 

been proven that these architectures are very efficient with high demanding data and 

currently they are the most successful Machine Learning approach [6]. Therefore, 

they are applied to many fields of research and industry. The word “deep” is related 

to the idea of using multiple layers that contribute sequentially in the process of 

learning. The number of layers is the depth of the model. Today, Deep Learning 

models often consist of tens or even hundreds of layers that have the ability to learn 

automatically from getting exposed to data. The way these architectures achieve that 

will be discussed at the next chapter.  

 

 

Figure 1. 1: AI, Machine Learning, Deep Learning [7] 

In the Figure 1.1, it is illustrated how Deep Learning is a subset of Machine 

Learning, which is a subset of the broader Artificial Intelligence field. 

 

1.2 Brain Tumors 

 

The brain is an amazing organ that regulates the entire body functions, interprets the 

outside world's information, and controls almost each and every vital activity of the 

human body. Intelligence, senses, emotions, movement, memory, thought, speech, 

physical activity, and creativity are only a few of the many functions that are 

governed by the brain. Therefore, any kind of harm on this vital organ, will disturb 

the proper functioning of the entire human body, causing irreversible damages. To 

assist with the natural processes of our body, the brain cells grow, divide and 

multiply, repairing damages and replacing the old cells. However, during cell 

growth and division, it is possible for mistakes to be made and the process to not 

finished properly, producing abnormal cells. Fortunately, these abnormal cells are 

destroyed, most of the times, by the natural defensive mechanisms of the body, but 

occasionally the abnormal cells expand, multiply and form a lump of cells. When 

this happens in the brain, a primary brain tumor is formed. 

Among the various problems to the brain, primary brain tumors are the most 

common and also life-threatening today, including tumors that originate from the 

tissues of the brain or its immediate surroundings. They are classified as benign 



1. INTRODUCTION  4 

 
 

(noncancerous) or malignant (cancerous). The difference between the two types is 

that, benign tumors generally, do not expand to other tissues and organs, and are 

considered to be curative under complete surgical excursion, whereas malignant 

tumors are able to grow rapidly, invade and destroy nearby normal tissues, getting 

spread throughout the body and require chemotherapy, radiotherapy, or a combination 

[8]. 

 

The most common primary brain tumors are Gliomas, Meningiomas and Pituitary 

tumors. Gliomas are a group of tumors, that arise from brain tissues, other than 

nerve cells and blood vessels, and they are most of the times malignant. On the other 

hand, meningiomas are created from the membranes, that cover externally the brain 

and surround the central nervous system and they are typically benign, whereas 

pituitary tumors remain in the pituitary gland and even if benign, can cause other 

medical damage [9].  

This thesis is mainly focused on Gliomas, which are the most common brain 

tumors. More than 250.000 new cases of primary malignant brain tumors are 

diagnosed annually worldwide, 77% of which are Gliomas [10].  Arising from the 

supporting cells of the brain, glia, including astrocytes, ependymal cells and 

oligodendroglial cells, glial tumors subdivided to Astrocytomas, Ependymomas, 

Glioblastoma Multiforme (GBM), Medulloblastomas and Oligodendrogliomas. 

According to the World Health Organization (WHO) and American Brain Tumor 

Association [11], Gliomas, in order to get distinguished by their malignancy, are 

classified into scale from grade I to grade IV based on their histological properties.  

Grade I Gliomas (mainly pilocytic astrocytomas) are benign tumors, since they are 

well delineated and non-infiltrative. After completing surgical resection, they have 

an excellent prognosis. Diffuse grade II Gliomas are slow-growing infiltrative 

tumors with continuous growth [12]. They inevitably progress into a malignant 

tumor. Grade III Gliomas, or anaplastic Gliomas, are rapidly developing malignant 

tumors while grade IV Gliomas (glioblastomas multiforme) are the most aggressive 

tumors with a low treatment success rate.  

The grades I and II are being referred to as Low-Grade Gliomas (LGG) and possess a 

slow growth, while grade III and IV are also called High-Grade Gliomas (HGG) and 

possess a rapid growth of tumors. If the Low-Grade brain tumor is left untreated, it is 

probable to evolve into a High-Grade, which is a malignant brain tumor. LGG represent 

approximately 27% of all primary brain tumors, with an average age at the time of 

diagnosis ranging between 43 and 48, depending on histological subtype [13]. The 

current thesis is an attempt to autonomously detect LGG tumor areas inside the 

brain. 

 



1. INTRODUCTION  5 

 
 

 

1.3 Neuroimaging  
 

Diagnosing cancer at its earliest stages often provides the best chance for a cure. 

Considering the tumors vary widely in terms of their stature, shape and presence, it 

is actually very difficult to extract accurate measurements in order to properly 

diagnose the tumors. Manual diagnosis of tumors requires the radiologists to detect 

abnormalities through physical exams, laboratory tests, blood analysis and biopsy. 

Apart from being a time-consuming task, manual detection results are also 

dependent on the experience and the judgment of the radiologist and additional tests 

like an angiogram, spinal tap and more samples for biopsy are often needed. 

Therefore, neuroimaging tools that visualize the different structures and tissues of 

the brain are required most of the times, as shown in Figure 1.2 (a). The main 

purpose of any neuroimaging application is to scan an exact body area of the patient 

and produce images, in order the essential attributes to be extracted and the 

diagnosis to be even more accurate. Today, imaging data account for about 90% of 

all healthcare data [14] and hence is one of the most important sources.  

 

There exists a variety of neuroimaging methods. Among them, the most popular are 

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). MRI 

scanners, as shown at the Figure 1.2 (b), produce magnetic fields, magnetic field 

gradients and radio waves to capture and generate images of the organs inside the 

body. CT scanning involves ionizing radiation or X-ray technology that is based on 

the absorption of X-rays beams as they pass through the different tissues of a 

patient’s body. MRI is based on the principle of Nuclear Magnetic Resonance 

(NMR) that is commonly used in spectroscopy to study the physical and chemical 

properties of molecules, while other methods such as Positron Emission 

Tomography (PET), which also requires the usage of X-rays, can also recognize 

brain tumors. Considering all the hazards of exposing the human body to ionizing 

radiation, MRI appears to be the most convenience method, other than CT and PET 

scan.  
 

 Figure 1. 2: (a) Neuroimaging results (b) MRI scanner [15] 



1. INTRODUCTION  6 

 
 

However, the final decision is yet susceptible to human subjectivity and observation, 

while early brain tumor detection mostly depends on the experience of the 

radiologist. Additionally, Glioma is a tumor described by varying intensity profiles 

and highly heterogeneity. Composed of a necrotic core, a margin of tumor activity, 

edema tissue, different degrees of aggressiveness and heterogeneous shape and 

appearance, its imaging procedure requires multiple MRI sequences. Therefore, 

Gliomas detection and particularly, autonomous segmentation is one of the most 

challenging tasks in science today. 

 

 

1.4 Related Work  
 

Being, undoubtedly, a scientific field with increasing interest, within the last few 

years, many significant researches have been proposed Machine and Deep Learning 

techniques to develop computer-aided systems, capable of diagnosing brain tumors 

autonomously. In this section an overview of some of the recent and prominent 

studies is presented.  

During Brain Tumor Segmentation Challenge (BRATS) in 2014, Urban et al. [16] 

proposed a 3D Convolutional Neural Network (CNN) architecture for the multi-

modal MRI Glioma tumor segmentation task. In their study, they segmented the 

whole tumor area in three regions named whole tumor, core tumor and active tumor. 

Their approach involved two different CNN networks using deeply supervised 

layers. Reported average results of the two networks shows that their proposed 

method achieved the dice scores of 87% for the whole tumor region, 77% for the 

core tumor region and 73% for the active tumor region.  

 

In contrast to the high dimensional method of Urban et al., Zikic et al. [17] 

developed an interpretation method to transform 4D input data, so that standard 2D-

CNN architectures can be used to solve the brain tumor segmentation task. 

Containing two convolutional layers with 64 filters of size ( 5 𝑥 5 𝑥 4 ) and 

(3 𝑥 3 𝑥 4) respectively, separated by a max-pooling layer, followed by one FC layer 

and a soft-max layer, this approach could remove the burden of high dimensional 

CNN designs, while increasing computational efficiency. Reported results after 

training on limited data for this study indicate BRATS dice scores of 83.7% for the 

whole tumor region, 73.6% for core tumor region and 69% for active tumor region. 

 

In 2016, Havaei et al. [18]. presented a novel CNN architecture which was a fully 

automatic brain tumor segmentation method, based on Deep Neural Networks, 



1. INTRODUCTION  7 

 
 

focused on glioblastomas (both Low and High grade) pictured in MRI images. 

Using Convolutional Neural Networks that processed local details of the brain scan 

along with the larger context of brain tissue, they described a cascade architecture in 

which the output of a basic CNN is treated as an additional source of information for 

a subsequent CNN. 2D multi-modality global input patches with size (65 𝑥 65 𝑥 4) 

were first processed by a CNN to output patches with size (33 𝑥 33 𝑥 5). Those 

output patches were then concatenated with the local patches of size (33 𝑥 33 𝑥 4) 

and delivered as an input to a two-pathway CNN with convolutional layers 

containing (7 𝑥 7) sized filters in one path and (13 𝑥 13) sized filters in the other 

one. The reported result reveal that this architecture achieved 88.0% for the whole 

tumor region, 79.0% for core tumor region and 73% for active tumor region.  

 
One of the recent approaches, evaluating deeper CNN architectures, was the paper 

of Pereira et al. [19]. This approach implemented small (3 𝑥 3) sized filters in 

convolutional layers. In this way, more layers can be added to the architecture 

without reducing the effective receptive field of the traditional bigger filters. The 

proposed CNN that had 11 layers of depth (6 convolutional layers followed by 3 FC 

layers with 2 max-pooling layers) obtained BRATS dice scores of 88%, 83% and 

77% for whole tumor, core tumor and active tumor regions respectively.  

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

Theory of Neural Networks 
 
 

 
 

2.1 Definition of Neural Networks 

 
Artificial Neural Networks (ANN) are computing systems designed to simulate the 

way the human brain analyzes and processes information. They are the core and the 

fundamental mechanism behind the idea of Artificial Intelligence, nowadays 

solving problems that would prove impossible. ANNs have self-learning capabilities 

that enable them to produce better results as more data becomes available. The idea 

of Artificial Neural Networks was originally inspired by biological neural networks. 

Living organisms, from the simplest to the most complex, have a nervous system 

that is responsible for a number of processes, such as contact with the outside world, 

learning, memory and much more.  

 

 
Figure 2. 1: Biological neuron [20] 

 

The central unit of the nervous system is, of course, the brain, which is also made up 

of biological neural networks. Each neural network consists of billions of units, 



2.  THEORY OF NEURAL NETWORKS  9 

 
 

called neurons. The neuron is the smallest independent unit in the network, such as 

e.g., the atom is the smallest unit of matter. In Figure 2.1 is represented the structure 

of the biological neuron.  Over 80 billion neurons can be found in the human 

nervous system, while they are connected with approximately 1014 synapses [21]. 

Each neuron receives input signals from its dendrites and produces output signals 

along its single axon. Via the synapses, the axon connects the output of one neuron 

to the dendrites of other neurons. Neurons continuously process information, 

receiving and sending electrical signals. Each neuron has two states: one in which it 

sends a pulse of several Hz, and one that does not send a signal. In Figure 2.2 

someone can observe the correspondence between biological and artificial neuron.  

 

 

 
Figure 2. 2: Biological neuron side by side with Artificial neuron [22] 

 

In the computational model of an Artificial Neural Network a neuron is represented 

by a node. Each signal ( 𝑥𝑖  ) transmitted from one neuron to another, is multiplied 

by a corresponding weight value ( 𝑤𝑖 ) the role of which corresponds to the role of 

the synapse in the biological neuron. Now, the central processing unit, the nucleus of 

the neuron, consists of two parts: the adder ( ∑ ) and the activation function ( ƒ ). 

The adder adds all the input signals along with their weights ( 𝑥𝑖𝑤𝑖 )  by generating 

their sum ( ∑ 𝑥𝑖𝑤𝑖𝑖 ). Then an additional external parameter is added, the bias ( 𝑏 ). 

In the basic model, every neuron performs the equation: ( ∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖 ). Thus, to 

decide whether outside connections should consider this neuron as activated or not, 

the whole signal is passed through the activation function  𝑓( ∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖 ), which is 



2.  THEORY OF NEURAL NETWORKS  10 

 
 

a type of filter that forms the final value of the output. Applying a threshold, it 

transforms the total signal to On (1) or Off (0). If the function’s input is above 

threshold, the neuron becomes activated, sending a spike to the next neuron and so 

on. 

 

 

2.2 How does a Neural Network work? 

 

A neural network contains layers of interconnected nodes with the typical structure: 

the input layer, the hidden layers and then, the output layer. The input layer is the 

first layer of the network and it collects input data in the form of vectors, which may 

represent features, single values, images, time-series or other types of data. The 

number of its neurons is equal to the data variables or the number of the given 

features. Input neurons don't perform any type of computation, but only pass the 

input vector to subsequent neurons. The layer or layers between the input and the 

output layer are called hidden layers. The main computation of a neural network 

takes place in the hidden layers. Each hidden layer receives all the inputs from the 

previous layer and performs the necessary calculations to generate a result, as we 

can observe in Figure 2.3. This result is then forwarded to the next layer, and so on. 

The term “hidden” implies that they are not visible to external systems, forming the 

inner core of the network. The number of hidden layers contained in a NN and the 

number of neurons in each hidden layer is determined by the designer and depend on 

the architecture that will be chosen. The larger the number of hidden layers, the longer 

it takes for the network to produce outputs and the more complex problems the neural 

network can solve. 

 
Figure 2. 3: A Neural Network with one hidden layer of five nodes, one output layer 

of two nodes, and three inputs. [23] 

 

The last layer of the network is the output layer. Receiving input from the last 

hidden layer, it specifies the desired number of output values and contains output 

signals to which input patterns may correlate. This is where the final result is 



2.  THEORY OF NEURAL NETWORKS  11 

 
 

produced and the number of its neurons is equal to the possible output variables of 

the results. For example, in image classification problem the output layer will 

consists of the number of classes into which each image is likely to be classified.  

 

NNs are categorized according to their architecture and connectivity among its 

neurons in: 

• Feedforward Neural Networks. In this model, the signal only travels in one 

direction, towards the output layer [24]. In Feedforward networks 

the information moves directly from the input layers, through the hidden 

layers (if any) and finally to the output layers. There are no cycles, neither 

loops in the network. They are widely used in pattern recognition problems. 

 

• Recurrent Neural Networks (RNN) are a type of neural networks that 

allows previous outputs to be used as inputs while having hidden states. In a 

RNN the information cycles through a loop [25], allowing it to exhibit 

temporal dynamic behavior. Derived from feedforward neural networks, 

RNNs can use their internal state (memory) to process variable length 

sequences of inputs. This makes them applicable to tasks such as 

connected handwriting recognition or speech recognition. 

 

Apparently, the initial step on designing a neural network, is the architecture 

selection. The developer must decide how many input and output neurons should the 

network contain, how many hidden layers will be included between them and how 

the learning procedure will be designed. The number of input and output units 

usually depends on the context. For example, if the network is expected to produce a 

Boolean value, i.e. Yes or No, it should have only one output, while if the network is 

expected to produce a whole image, then the output layer should consist of a two-

dimensional matrix that represents an image. 

 
Figure 2. 4 Common NN topologies. The Neural Network Zoo [26] 



2.  THEORY OF NEURAL NETWORKS  12 

 
 

In contrast, selecting the number of hidden layers is not so obvious. In most 

situations, there is no exact way of how to determine the most effective number of 

hidden units, without training several networks and estimating the generalization 

error for each of them. Too few hidden units will produce high training error 

because network is not complex enough to start recognising patterns. Too many 

hidden units lead to low training error but still have high generalization error due to 

overfitting. These situations will be discussed more at the next sections. 

 

Once the network has been properly structured for a particular application, then it is 

ready to start learning in order to produce the responsive and desired outputs. This is 

the most genuine part of Deep Learning and also the main phase of the process and it 

is called training. Training is the ability of neural networks to learn and capture 

relationships between a dataset’s features and a target variable. It can be defined as 

the gradual improvement of the network’s skill to solve a problem (e.g., the gradual 

approach of a function). Training is an iterative process of gradually adjusting the 

parameters of the network (weights and biases) to approach values that constitute the 

solution. In order a neural network to be trained, it should learn on pairs among input 

data and its expected output (labels), which all together form the training data. There 

are two approaches of training: supervised and unsupervised. Supervised training 

involves a mechanism of providing the network with the desired output for every 

input. This is the method that was used to develop the specific models for this study. 

Unsupervised training is where the network has to make sense of the inputs without 

any outside help. 

 

The idea is significantly based on the thinking process of humans, just as children 

learn by being told what they are doing right or wrong. At the real world, as humans, 

after an action we compare what actually happened with the outcome we wanted, 

figuring out the difference between the two, and using that to change our action next 

time. Neural networks learn things in exactly the same way, typically by a procedure 

of transmitting the information forward, which is called forward propagation, and 

then backward to improve their behavior, a feedback process called 

backpropagation.  

 

At the first step of training, the forward propagation occurs when the neural network 

is exposed to training data, that flow through the entire network for their predictions 

to be calculated. When this process has been completed, having all the neurons made 

their calculations and the information has crossed all the layers, then the final layer 

will be reached with a result of prediction for those input data.  

The network, then, compares its outputs (predictions), against the desired outputs 

(labels, targets) and estimates the difference between them, calculating the loss (or 



2.  THEORY OF NEURAL NETWORKS  13 

 
 

error). The loss is one of the most important components of the training process, as 

a tool to measure how well an Artificial Neural Network is converging on the ability 

to predict the right answer, in relation to the correct result. The method which 

calculates the loss is called Loss Function. 

Once the loss has been calculated, this information is propagated back through the 

system, layer by layer, until all the neurons in the network have received a loss signal 

that describes their relative contribution to the total loss, causing the system to 

modify the weights of the connections between the nodes to the correct direction. To 

realize what the right direction is, the network uses a technique called Gradient 

Descent. Taking advantage of the derivative of the loss function this technique 

changes the weights in small increments, allowing the network to decide in which 

direction “to descend” towards the global minimum of the loss function. Over 

iterations, the backpropagation procedure compels the weights to meet more 

appropriate values, reducing the difference between actual and intended output and, 

eventually, causing the network to learn. 

During the training, applying this method, the same training data is processed 

several times. A complete pass over the whole training dataset is called an epoch. In 

every one of these iterations, the aim is to minimise the loss as close as possible to 

zero. The system continues to iterate over data, stopping only when the model 

reaches some statistically desired accuracy and loss, and under these consequences, 

producing accurate and appropriate predictions. If a network can’t solve the 

problem, perhaps the designer has to reconsider the input and output data, the 

number of hidden layers, the size of each layer, the connections between them, the 

activation functions, the loss functions, and even the initial weights themselves. 

 

2.3 Activation Functions 

 

In this section we will describe the functions that determine each neuron’s output, 

reminding the neuron model that described previously in Chapter 2.1. As long as, the 

equation  𝑌 =  ∑ 𝑖𝑛𝑝𝑢𝑡𝑖 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 +  𝑏𝑖𝑎𝑠,  can produce values ranging from  

“−𝑖𝑛𝑓” to “+𝑖𝑛𝑓”, we apply activation functions  𝑓(𝑌) on it, in order to bound that 

range and deploy it as a valuable number. For this purpose, and to be able to decide 

whether this neuron should be considered as activated or not, this signal is usually 

filtered by a threshold and finally transformed into a suitable value. The most 

common activation functions in Machine Learning are presented below: 

 

 



2.  THEORY OF NEURAL NETWORKS  14 

 
 

• Sigmoid 

One of the most widely used non-linear activation function is sigmoid. 

Sigmoid returns an output value between 0 and 1 for any given real-valued 

input number. The mathematical expression for sigmoid is: 

𝑓(𝑥) =  
1

1+ 𝑒−𝑥 

In fact, large positive numbers become 1 and large negative numbers become 

0. This means the output from the node will be a high signal, for a positive 

input, or a low one for a negative input. Mathematically, sigmoid is smooth, 

continuous, monotonic and bounded. The simplicity of its derivative allows 

the network to efficiently perform binary classification problems, because its 

output can be interpreted as a probability. 

 

 
Figure 2. 5: Sigmoid function returns real numbers in the range [0,1] 

 
 

 

• Tanh 

The hyperbolic tangent function, tanh, is a very similar function to sigmoid 

and they have many of the properties same. However, this function allows 

the network to map the input to any value between -1 and 1. It has a natural 

threshold of 0, meaning that any input value greater than 0 is considered 

high, or 1 in binary terms, and every input value smaller than 0 is considered 

as low or -1.  

𝑡𝑎𝑛ℎ(𝑥) =  
2

1+ 𝑒−2𝑥 − 1 

Tanh is smooth, continuous, bounded and monotonic while its derivative is 

not monotonic. The advantage of tanh is that negative numbers can be dealt 

with more easily. In effect, this allows the neural network to perhaps apply a 

negative penalty to the node, rather than just have the node not activated at 

all.  

 



2.  THEORY OF NEURAL NETWORKS  15 

 
 

 
Figure 2. 6: Tanh function returns real numbers in the range [-1,1] 

 

 

• ReLU 

The ReLU is the Rectified Linear Unit function, returning the input directly, 

if it is positive and 0 otherwise. It is defined as: 

𝑓(𝑥) = max(0, 𝑥) 

Typically, the most usual behavior of ReLU is that, as long as the input is 

negative, the function will convert it to 0 and the neuron does not get activated, 

but when the input rises above, then the output becomes a linear relationship 

of the form 𝑓(x) = x . This is the main advantage of using the ReLU function 

over other activation functions, as it does not activate all the neurons at the 

same time.  

 
Figure 2. 7: ReLU function returns zero for x<0 and then it is linear with 

slope=1 when x>0 

 

The ReLU has proven to work in many different situations and it is one of the 

most widely used activation functions in Deep Learning problems. 

 

 

 

 

 



2.  THEORY OF NEURAL NETWORKS  16 

 
 

 

• Softmax 

Softmax is a function which normalizes the outputs for each class between 0 

and 1, and, dividing by their sum, it returns the probability of the input value 

to belong in a specific class. The mathematical expression of the softmax is: 

𝑓(𝑥)𝑖 =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
 

Being able to handle multiple classes, this function is useful for the neurons 

of the output layer, for neural networks that need to classify inputs into 

multiple categories. It can contain numerous decision limits and return a 

probability distribution. 

 

The selection of activation function is crucial when building a neural network. The 

designer has to configure what is the appropriate activation function for every 

particular problem, in order to lead to successful training process and convergence.  

 

 

2.4 Backpropagation 

 

The backpropagation algorithm was introduced during the 1970s, but its importance 

wasn’t fully appreciated until a paper by David Rumelhart et. al. in 1986 [27]. The 

authors described the backpropagation algorithm and apply it to several neural 

networks, approaching the learning process more efficiently and proving that this 

algorithm makes it possible to solve problems which previously had been insoluble. 

Until today many important publications have been made, including Yann Le Cun 

[28] in 1985 (director of AI Research, Facebook).  

 

The idea behind this algorithm is to determine the errors of the hidden layer by 

back-propagating the errors of the output layer. This algorithm provides the ability 

for neural network to calculate efficiently the gradients of the cost function. 

Technically, the backpropagation algorithm is a method for constantly readjusting 

the weights in a multilayer feed-forward neural network. It requires a network 

structure, consisting of one or more layers, where every layer is fully connected to 

the next layer. The basic steps of the learning process including the backpropagation 

algorithm are provided below:  

 



2.  THEORY OF NEURAL NETWORKS  17 

 
 

1. Training pairs are prepared. Every input data 𝑥𝑖  forms a pair with its label-

target 𝑡i. Assume that a training set consists of 𝑁 pairs (𝑥𝑖 , 𝑡𝑖  ): 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 =  {(𝑥𝑖, 𝑡𝑖)},    𝑖 = 1, … , 𝑁,    𝑥𝑖 ∈ 𝑅𝑛,   𝑡𝑖 ∈  𝑅𝑛 

 

, where 𝑥 is the input vector, containing all the 𝑥i values from each feature, and 

𝑡 is the desired output vector, containing all the corresponding 𝑡𝑖 targets. 

 

2. Network's weights 𝑤𝑖 are initialized randomly and combined with the bias 𝑏 

they create the matrix 𝑤.  

 

3. Feed-forward computation. The input vector 𝑥  is getting passed through the 

network and sequentially the output 𝑦̂  is getting produced. Considering the 

randomness of the weights at the first iteration, the output 𝑦̂  will obviously 

differ from the desired target 𝑡.  

𝑧 =  ∑ 𝑥𝑖𝑤𝑖 =  𝑊𝑇𝑥

𝑁

𝑖=0

 

 

𝑦̂ = 𝑓(𝑧) 

The squared error is then calculated. 
 

𝐸 = (𝑦̂ − 𝑡)2 

 

4. Backpropagation. The aim for the neural network now is to identify how does 

the loss function behave and find the global minimum in order to minimize the 

error. In other words, it has to discover the combination of the weight values 

that decreases the error of the network. The main idea is creating a tool that 

detects in which direction is the most likely to find the minimum of the 

function. This process in Machine Learning is called optimization and typically 

the most common way to achieve that is by the calculation of gradient descent.  

 

An analogy for understanding this idea is a hypothetical scenario where a 

climber is stuck in the mountains and is trying to find the way to get down 

through heavy fog (in mathematical terms trying to find the global minimum). 

Considering the path down the mountain is not visible, he/she must use local 

information of his/her surroundings to find the direction. The method of 

gradient descent, involves looking at the steepness of the hill at his/her current 

position and then proceeding in the direction with the steepest descent (i.e., 

downhill). Otherwise, he/she might follow the wrong path and get lost moving 

towards the top of the mountain. However, assuming that the calculation of the 

steepness of the hill requires some time to get measured, the climber has to 



2.  THEORY OF NEURAL NETWORKS  18 

 
 

decide the frequency at which he/she should stop to perform a calculation, in 

order to get down the mountain before the night. In this analogy, the steepness 

of the hill represents the slope of the error surface at any particular point. 

Below, in Figure 2.8 we can see the visualization of the loss function. 

 
Figure 2. 8: Loss Function visualization [29] 

 

The slope of a surface, in mathematics, can be calculated using the first 

derivative, gradient, of the squared error function at that point. This method 

actually computes the gradient of the loss function with respect to each weight 

and allows neural network to take small gradual and repetitive steps until 

finding the global minimum of the function, and as a result the appropriate 

values for each weight [30]. The size of these steps is the learning rate 𝑎 of the 

algorithm. Learning rate is a number between 0 and 1 that determines how fast 

the neural network adjusts itself to the patterns from the training data. This 

parameter must be chosen carefully, because too small step will make the 

learning process slow, while too large step might lead to divergence. 

 

 
Figure 2. 9: Schematic of Gradient Descent [31] 



2.  THEORY OF NEURAL NETWORKS  19 

 
 

 

5. Weighs update. Finally, once all the neurons have the value of the gradient that 

corresponds to them, the parameters are getting updated in the opposite direction 

to that indicated by the gradient.  

 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 −  𝑎
𝜕𝐸

𝜕𝑤𝑖
𝑡
 

 

𝑏𝑡+1 = 𝑏𝑡 −  𝑎
𝜕𝐸

𝜕𝑏𝑡
 

 

In fact, the gradient, always points in the direction in which the value of the loss 

function increases. Therefore, if the network uses the negative of the gradient, it 

can get the direction in which the loss function is going to be reduced. As a 

result, it updates the weights, increasing or decreasing them accordingly. The 

update applied backwards in every layer sequentially until it reaches the input 

layer. At this time, one cycle of the procedure (one epoch), has been completed. 

These steps are repeated, for a given number of epochs, until the network 

approaches the correct weights values that produce relatively accurate outputs.  

Then the training process is finished. 

 

 

2.5 Optimization Algorithms 

 

Apart from the gradient descent fundamental method, which was described, several 

algorithms and techniques are used in the update procedure of a neural network, in 

order to reduce the loss. Some of the most efficient optimizers are described below. 

 

• SGD 

As a variation of the gradient descent algorithm, Stochastic Gradient Descent 

(SGD), similarly updates the model in through an iterative process in order 

to minimize the error of the loss function. While gradient descent has to run 

over all the samples in the training set to operate a single update for a 

parameter in a particular iteration, SGD on the other hand, uses only one 

sample from the training set to perform the update. This method, instead of 

updating the weights based on the sum of the accumulated errors over all 

samples, uses the following rule: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 −  𝑎
𝜕𝐸

𝜕𝑤𝑖
𝑡
 

 



2.  THEORY OF NEURAL NETWORKS  20 

 
 

𝑏𝑡+1 = 𝑏𝑡 −  𝑎
𝜕𝐸

𝜕𝑏𝑡
 

 

Here, the error function represents the calculated error from only one training 

sample. As an advantage, the more frequent updates, provide immediately an 

insight into the performance of the model and accomplish even faster 

learning on some problems. However, it is computationally expensive, while 

taking significantly longer to train models on large datasets. 

 

 

• Adagrad  

The Adaptive Gradient Algorithm (Adagrad) is an optimizer method that, 

contrary to gradient descent, where the learning rate stays fixed, allows it to 

adapt based on the parameters, modifying it in every weight update [32]. 

Adagrad algorithm changes the update step in every iteration, in a way that it 

will decrease if a weight is being updated too much in a short amount of time 

and it will increase if a weight is not being updated much. In Adagrad the 

neural network uses the first derivative of loss function and also uses a 

different learning rate 𝛼 for every parameter 𝑤𝑖 (or 𝑏) for every time step 𝑡. 

So, the update formula of the weights is the following: 

 

𝑔𝑡+1 = 𝑔𝑡 + (
𝜕𝐸

𝜕𝑤𝑖
𝑡
)

2

 

 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 + 
𝑎

√𝑔𝑡+1 + 𝜀
  

𝜕𝐸

𝜕𝑤𝑖
𝑡
 

 

𝑏𝑡+1 = 𝑏𝑡 + 
𝑎

√𝑔𝑡+1 + 𝜀
  

𝜕𝐸

𝜕𝑏𝑡
 

 

, where 𝑔𝑡 is the gradient of the loss function with respect to the parameter 

𝑤𝑖 at a time-step t and 𝜀 in the denominator is a very small value to ensure 

division by zero does not occur. Using this formula, the network constantly 

changes the learning rate α, keeping the gradient 𝑔𝑡 from the previous 

iteration to influence the learning rate which is calculating and updating the 

weights, as well, at the current moment.  

 

The main benefit of Adagrad is that it eliminates the need to manually tune 

the learning rate. Most implementations use a default value of 0.01 or 0.001 

and leave it constantly there. However, the main weakness is its 

accumulation of the squared gradients in the denominator. Considering 



2.  THEORY OF NEURAL NETWORKS  21 

 
 

square cannot be negative, the gradient 𝑔𝑡+1 will always increase by some 

amount during training, regardless of a weight’s past gradients 𝑔𝑡. This will 

cause the learning rate to shrink and eventually become infinitesimally small, 

at a point, where the algorithm is no longer able to acquire additional 

knowledge. The following algorithms aim to resolve this problem. 

 

• Adadelta  

Adadelta is an extension of Adagrad which tends to reduce the 

monotonically decreasing learning rate problem of it [33]. Instead of 

accumulating all past squared gradients, in Adadelta the sum of gradients is 

recursively defined as a decaying average of all the past squared gradients. 

Following this method, the network does not need to set a default learning 

rate, while the average gradient 𝐸[𝑔𝑡²] at any current iteration is calculated 

by using the average of the gradients from the previous time-steps.  

 

 

𝐸[𝑔𝑡²] = 𝛾𝐸[𝑔𝑡−1²] + (1 − 𝛾)𝑔𝑡² 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 −  
𝑎

√𝐸[𝑔𝑡²] + 𝜀
 𝑔𝑡² 

𝑏𝑡+1 = 𝑏𝑡 −  
𝑎

√𝐸[𝑔𝑡²] + 𝜀
 𝑔𝑡² 

 

The constant term γ is set around 0.9. This formula forces the training 

process to continue normally, considering the learning rate does not decay. 

The disadvantage is that computationally this method is expensive. 

 

• Adam  

Adaptive Moment Estimation (Adam) is an optimizer that computes the 

adaptive learning rate of each parameter, by estimating the first and second 

moments of the gradients [34]. Adam reduces the radically diminishing 

learning rates of Adagrad, implementing the exponential moving average of 

the gradients, in order to adjust the learning rate, instead of a simple average. 

In addition to storing an exponentially decaying average of past squared 

gradients, like Adadelta, Adam also keeps an exponentially decaying average 

of the past gradients. The algorithm first updates the exponential moving 

averages of the gradient (𝑚𝑡) and the squared gradient (𝑣𝑡 ) which is the 

estimates of the first and second moment.  



2.  THEORY OF NEURAL NETWORKS  22 

 
 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

Parameters 𝛽1 , 𝛽2  ∈  [0, 1)  control the exponential decay rates of these 

moving averages.  

Considering moving averages are initialized as 0, the moment estimates are 

biased around 0 especially during the initial time-steps. This initialization bias 

can be easily counteracted resulting in bias-corrected estimates: 

 

𝑚𝑡̂ =
𝑚𝑡

1 − 𝛽1
𝑡 

 

𝑣𝑡̂ =
𝑣𝑡

1 − 𝛽2
𝑡 

 

The algorithm then updates the weights with the following formula: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 
𝑎

√𝑣𝑡̂ + 𝜀
  𝑚𝑡̂ 

 

𝑏𝑡+1 = 𝑏𝑡 − 
𝑎

√𝑣𝑡̂ + 𝜀
  𝑚𝑡̂ 

 

Performing with computational efficiency and requiring very small amounts 

of memory, Adam optimizer is among the most popular optimization 

algorithms in Machine Learning today. In Stanford’s Deep Learning course 

titled “CS231n: Convolutional Neural Networks for Visual Recognition” 

Adam algorithm has been suggested the as the default optimization method 

for Deep Learning applications. 

 

 

2.6 Convolutional Neural Networks 

 

Working with Deep Learning on images, often requires the usage of a specific 

category of neural networks, called Convolutional Neural Networks (CNN). In 

recent years, Convolutional networks have been tremendously successful in solving 



2.  THEORY OF NEURAL NETWORKS  23 

 
 

difficult image-driven pattern recognition tasks and processing data that has a grid-

like topology. Examples include time-series data, which can be thought of as a 1D 

matrix, containing samples at regular time intervals, and image data, which can be 

thought as a 2D matrix, containing the values of each pixel. The main assumption of 

convolutional filters is that the inputs are images. Taking advantage of that 

assumption, they constrain the architecture in a more sensible way.  

 

Similarly to other typical NN architectures, they are consisted of neurons, that 

connect each other with weights and biases. Each neuron receives an amount of 

inputs, performs a dot product and is followed by an activation function [35]. The 

main difference is that the layers of a CNN architecture have neurons arranged in the 

three-dimensional space: width, height and depth. It should be noted here, that the 

word “depth” refers to the third dimension of an matrix, and it is irrelevant to the 

total number of layers in a network. In each layer, the neurons are only connected to 

a small region of the layer before it. This property generates the ability of CNN 

to successfully capture the spatial and temporal dependencies in an image through the 

application of relevant filters. Moreover, in every layer they perform an action, 

called convolution, and eventually, by the end of a CNN architecture the full image 

will be reduced into a single vector of arranged class scores.  

 

 
Figure 2. 10: CNN structure [36] 

 

Typically, as it can be observed in Figure 2.10, a simple CNN architecture 

sequentially includes the following types of layers: Convolution Layer, Pooling 

Layer, and Fully Connected (FC) Layer.  

The convolution layer is the core building block of a CNN architecture. It carries the 

main portion of the network’s computational load. Convolution is a process that 

extracts relationships from the input image, in a way, that maintains the valuable 

information, while reduces the image size. It is a mathematical operation that 



2.  THEORY OF NEURAL NETWORKS  24 

 
 

performs a dot product between two matrices. The first matrix represents the initial 

image, while the other one represents a window of the receptive field, typically a 

portion of the image with predefined size. In CNN the input is usually a 3 channel 

RGB image. The image is represented by a (𝑤𝑖𝑑𝑡ℎ 𝑥 ℎ𝑒𝑖𝑔ℎ𝑡) matrix, equal to the 

total amount of its pixels. Every pixel contains 3 values for each one of the three-

color planes Red, Green and Blue, between 0 and 255. The second matrix is called 

filter, or kernel. Kernel is a matrix of integers, spatially smaller than the input 

image, but with the same depth. 

 
Figure 2. 11: Schematic of Convolution [37] 

 

Sliding across the height and width of the image, each pixel is multiplied by the 

corresponding value in the kernel and eventually, the result is summed up creating    

a two-dimensional matrix, known as feature map (Figure 2.11). Since image 

consists of multiple channels, the network performs this process using multiple filters 

in depth. While the filter is parsing over the input image, it uses a stride value, which 

dictates by how much the filter should slide at each step. When the stride is 1, the 

filter moves one pixel at a time, when the stride is 2, the filter moves two pixels and 

so on until it covers the whole image. Considering the kernel has a defined size, 

sometimes during parsing it doesn’t perfectly fit exactly inside the frame, and as a 

result, the network tends to lose information from pixels around the margins of the 

image. To overcome this problem, it is convenient adding extra rows or columns 

consisting only of zeros 0, at all the sides of the image matrix. This idea is known as 

padding.  

By the time the feature map is generated properly, it is summed with the bias term 

and passed through a non-linear activation function. The purpose of the activation 

function is to introduce non-linearity into our network, with a decision-making 

function that determines the presence of a particular feature in the feature map. 

 



2.  THEORY OF NEURAL NETWORKS  25 

 
 

After convolution layer is completed, in a CNN architecture is often applied an 

additional reduction on the size of the current image, by a process which is called 

pooling. As it can be shown in Figure 2.12, the pooling layer performs an action of 

extracting particular values from a region of the image, forming a new matrix. A 

window (i.e., 3 𝑥 3) passes over an image according to a set stride value. At each 

step, the maximum or the average value within the window is pooled into a smaller 

matrix. That type is called Max Pooling or Average Pooling respectively. In this way 

the unneeded information is getting eliminated, counting only the features that are 

required to know. It is common technique to periodically insert a pooling layer 

between two or more convolutional layers, while implementing a CNN architecture. 

It is used to progressively reduce the spatial size of the feature array, the number of 

total parameters and eventually, the computational complexity of the network. 
 

 
Figure 2. 12: Schematic of Max-Pooling [38] 

 
For more precise feature extraction and better understanding of the input image, a 

typical CNN architecture, usually, constitutes of numerous blocks of convolutional-

pooling layers sequentially. 

 

After various convolution layers and pooling operations, the three-dimensional 

representation of the features, is eventually, converted into a feature vector that is 

delivered into a multi-layer regular neural network for classification purposes. That 

process is called flattening. The rows are combined to form a long one-dimension 

vector. If multiple input layers are present, its rows are also concatenated to form an 

even longer feature vector. 

 

At the end of the architecture, it can be found a fully connected layer. Consisting of 

a simple structure, neurons in the FC layer have full connectivity with all neurons in 

the preceding and succeeding layer. It is an ordinary neural network, usually 

building the last layer of CNN architectures, in order to perform the intended 

classification or regression task. Over a series of epochs, the network combines the 

information of the flattened feature map and eventually creates the ability to 



2.  THEORY OF NEURAL NETWORKS  26 

 
 

determines which features most correlate to a particular class. The output is 

generated again by an activation function, to classify the probabilities of every image 

as 0, 1, cat, dog, car, bicycle, tumor, no tumor etc. depending on the nature of the 

particular problem. 

 

 

 

2.7 Overfitting  

In Machine Leaning, model performance is evaluated by two important 

parameters. Accuracy and generalisation. Accuracy means how well the model 

generates the right prediction and generalisation means how well the model behaves 

on new, totally unseen data. Although, Machine Learning models are trained on 

given training data, as we described, their performance is evaluated on separated 

data, that is unseen and unknown by the perspective of the network. A model is 

considered good when it can generalize well from the training data to any data, that 

it has never seen before, and behaves nearly same way on these two, with the highest 

possible accuracy. 

 

When it does not generalize well from known to unseen data, then overfitting may 

occur. Overfitting causes the model to perform perfectly, with also high accuracy on 

training set, while fitting poorly, with low scores on testing set [39]. This happens 

because a model learns too much details out of training data, including unavoidable 

noise, insignificant patterns or even random fluctuations. In other words, the model 

is very complex and strongly influenced by the training data, in the way that it 

negatively affects its performance on new data. A method to measure the appearance 

of overfitting on a model, is the usage of a small group of unseen data, named 

“validation set”. We use this data to evaluate the model after every epoch, during the 

training process. The gap between the training and the validation accuracy indicates 

the amount of overfitting. Solutions to avoid overfitting might be expansion or 

augmentation of the data, including methods like image rotation, cropping or flipping 

and the reduction of the architecture complexity, by decreasing the number of the 

network’s layers, parameters, size, etc.  

 

An efficient technique for reducing overfitting, by preventing complex co-

adaptations on training data, is called dropout. During training, some neurons are 

randomly ignored or “dropped out”, meaning that these units are not considered 

during a particular forward or backward pass. This has the effect of making a layer to 

achieve different connectivity to the prior layer every time. In general, dropout 

forces a neural network to learn more robust useful features, in conjunction with 



2.  THEORY OF NEURAL NETWORKS  27 

 
 

many different random subsets of the other neurons. It can be implemented between 

the most types of layers, such as fully connected layers, convolutional layers, and 

recurrent layers, at any, or all hidden layers in the network, as well as the input 

layer. It is not used on the output layer though. 

 

 

2.8 Semantic Segmentation  

In recent years, Convolutional Neural Networks have shown tremendous success 

specifically in the field of Computer Vision (CV). Computer Vision tasks include 

methods for processing digital images, understanding and extracting high-

dimensional data from the real world, in order to produce numerical or symbolic 

information. Some of the most significant tasks in this area, sorted by their 

complexity of implementation, from the simplest to the most complex are: Image 

Classification, Object Detection and Semantic Segmentation. 

 

Figure 2. 13: (a) Classification (b) Object Detection (c) Semantic Segmentation [40] 

Image Classification is a technique, where the network assigns an input image to 

one specific category (Figure 2.13 (a)). Thus, the entire image is classified, as a 

whole, to one class, i.e., “Cat”. This is one of the core tasks in Computer Vision 

field, that, despite its simplicity, has a large variety of practical applications.  

Object Detection is a technique that allows recognizing objects, such as humans, 

faces, vehicles, and buildings inside an image or video (Figure 2.13 (b)). Object 

Detection algorithms typically use extracted features and learning algorithms to 

recognize and classify a part of the image into a particular class. The location of an 

object is usually presented by bounding boxes. It is highly used in applications of 

picture retrieval, item tracking, security, and autonomous vehicle systems.  



2.  THEORY OF NEURAL NETWORKS  28 

 
 

Instead of assigning a single class to the entire picture, or some part of it, Semantic 

Segmentation is the process of classifying every single pixel of the image to a 

particular label or a class (Figure 2.13 (c)). The purpose of Semantic Segmentation 

is to partition a given image into multiple segments, making it easier to analyze it. 

The various pixels that belong to the same class, are treated as single entity [41]. 

Some of its primary applications are in autonomous vehicles, human-computer 

interaction, medical applications, robotics, and photo editing tools. For example, 

Semantic Segmentation is very popular in self-driving cars and robotics, because the 

problem there, for the models, is to recognize their surroundings and understand the 

context of the environment in which they are operating. In this thesis, we work with 

Semantic Segmentation in brain MRI images. Every image consists of two specific 

classes, with each pixel being assigned to one of the them. Pixels in “tumor” area 

have the label 1, while pixels in “no tumor” area have the label 0, as shown in the 

Figure 2.14.  

 

Figure 2. 14: (a) Original MRI scan (b) Segmentation of the tumor area (c) Pixel-

Level labelling for Semantic Segmentation 

When using CNN for Semantic Segmentation, the output requires an image of the 

same resolution as the input, unlike a fixed-length vector in the case of Image 

Classification. In order to achieve that Semantic Segmentation networks are based on 

an Encoder-Decoder structure [42]. Typically, this network involves a CNN 

architecture, to divide the image, followed by a transposed CNN architecture, which 

restores and produce the image again. Through the encoder part, the network 

repeatedly, attends to reduce the input’s spatial resolution, generating smaller feature 

maps, where the different patterns can be distinguished more easily. This process is 

called downsampling and consists of a series of convolutional-pooling blocks, along 

with non-linear activation functions. The initial layers in a Convolutional Neural 

Network learn low-level features like lines, edges, colours etc., while the deeper 

layers learn high-level features like faces and objects. The encoded output is then 

delivered into the decoder part. It contains a series of transposed convolutions, 

where these feature representations increase their dimensionality, through the 

inverse process. That process is called upsampling, producing eventually the output 

image of the network. 

 



2.  THEORY OF NEURAL NETWORKS  29 

 
 

2.9 U-Net 

After convolution-pooling operations downsample the resolution of previous layers 

by summarizing local areas of the image into a single value, the upsample operations 

perform the invert action, trying to restore the resolution, by distributing a single 

value into more rows or columns. Since the first layers of the encoder have more 

information, which later will be diminished, an information loss problem will 

apparently occur. The U-Net architecture proposes the idea of providing that 

information to every upsampling layer in the decoder, directly from its 

corresponding downsampling layer in the encoder, as can be seen in the Figure 2.15 

below [43]. Enhancing the concept of Convolutional Neural Networks, that 

described at the previous section, U-Net is one of the most dominant Deep Learning 

approaches to handle medical image segmentation and detection today. 

 

 

Figure 2. 15: U-Net architecture [44] 

According to the above encoder-decoder U-Net architecture (Figure 2.15), this 

network can be divided into three basic parts:  

• The downsampling path consists of 4 blocks, where each block applies two 

3𝑥3 convolutions, followed by 2𝑥2 max pooling. The size of feature maps is 

progressively doubled at each pooling layer, after every block, as 64, 128, 

256 and so on.  

• The horizontal part, or the bottleneck, consists of two 3𝑥3  convolutions 

followed by a 2𝑥2 up-convolution.  

• The upsampling path, correspondingly to the downsampling path, also 

consists of 4 blocks, where each block consists of two 3𝑥3 convolutions, 

https://arxiv.org/abs/1505.04597


2.  THEORY OF NEURAL NETWORKS  30 

 
 

followed by 2𝑥2  upsampling (transpose convolution). The size of feature 

maps here are divided to the half after every block, 512, 256, 128 and so on.  

The important contribution of the U-Net architecture, however, is the shortcut 

connections. Building skip connections, called concatenations, directly from the 

output of each convolution block to the corresponding input of the transposed-

convolution block, it the same level, this method protects the network of losing 

information during the downsampling process, which can't be easily recovered. In 

this thesis, we built our model, working on U-Net architecture, as it will be 

described at the next chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

CHAPTER 3 

Dataset 
 

 

 

The dataset, in Machine Learning, is all the data used as input to the neural network. 

Machine Learning algorithms learn from data. They find relationships, make 

decisions and evaluate their performance from the data they’re given. Usually, the 

entire dataset is divided into three subsets, depending on how it is going to be 

supplied to the network, during the procedure of learning. These categories are 

Training dataset, Validation dataset and Test dataset. 

 

Training dataset is the data that the respective model receives as input for the 

purposes of its training. It consists, typically, by the training data, along with a 

corresponding label for each one of them. For example, in this study, the training 

data contains MRI images. It also contains a corresponding label, for every image, 

which is called, mask. The correspondence is that, each pixel of an image is related 

to the corresponding pixel of its mask.  

 

A small portion of the training dataset is usually separated, forming the validation 

dataset. During training and after every epoch, the model performs predictions on 

both the training and the validation data. The accuracy of the model’s predictions on 

the training data is called training accuracy, while the accuracy on the validation 

data is called validation accuracy. Observing these metrics, someone can inspect 

the progress of the training, estimate whether the correlation between training data 

and training labels is accurate and detect mistakes possibly made at the architecture.



3.  DATASET  32 

 
 

 

After the training has been completed and the model is eventually trained, it gets 

evaluated, in order to test its performance on unknown data. The test data is 

therefore, a dataset used only to assess the generalization ability of a fully specified 

model. In particular, the testing data must be totally new and unknown to the model, 

since it would not make any sense to check its performance on data, that it already 

knows. During the testing procedure, it demonstrates predictions, that are compared 

to the real target values, in order to estimate the model's test accuracy. 

 

Generally, the size of the dataset is apparently, an important issue in Machine 

Learning. It mainly depends on two key factors: the complexity of the problem and 

then, the complexity of the selected algorithm. However, these two factors do not 

indicate exactly, how to choose the appropriate size of the data. In case of a large 

amount of data, dropouts may be needed, so that the model to be developed properly 

and overfitting to be avoided. In case of a small dataset, the amount of data may 

need to be increased, or a more appropriate method may need to be applied, utilizing 

more efficiently the existing data.  

 

 

 

3.1 TCGA Dataset 
 

In this thesis, all the data obtained from The Cancer Genome Atlas (TCGA) dataset, 

supervised by the National Cancer Institute's Center for Cancer Genomics and the 

National Human Genome Research Institute funded by the US government [45]. 

Started in 2005, TCGA is a coordinated project to gather and catalogue genetic 

mutations responsible for cancer, using genome sequencing and bioinformatics. 

TCGA program includes genotyping, solid-tumor RNA expression, whole exome 

sequencing and methylation data, along with other clinical information. The initial 

idea was an effort to build a research community, focused on connecting cancer 

phenotypes to genotypes, by providing clinical images and medical information. 

Since then, the project, molecularly, characterized over 20,000 primary cancer and 

matched samples from 33 cancer types [46]. About 2.5 petabytes of data that 

generated through TCGA remain publicly available, for anyone in the research 

community to use. 

A subset of this project, which is used in this thesis, is The Low-Grade Glioma 

(TCGA-LGG) data collection. The dataset contains brain MRI scans of 110 patients, 

retrieved from 5 institutions. Thomas Jefferson University (TCGA-CS, 16 patients), 

Henry Ford Hospital (TCGA-DU, 45 patients), UNC (TCGA-EZ, 1 patient), Case 

Western (TCGA-FG, 14 patients) and Case Western – St. Joseph’s (TCGA-HT, 34 



3.  DATASET  33 

 
 

patients). The entire set is organized into 110 folders, named after each case ID. 

Each folder contains MRI images of Lower-Grade Glioma together with manual 

abnormality segmentation masks. Each mask corresponds to one MRI image, as it 

can be shown in Figure 3.1. Dataset of registered images, together with manual 

segmentation masks for each case, that used in this study, is available online. 

 

 

Figure 3. 1: TCGA Dataset: MRI Images and their Masks 

 

3.2 Data Preparation 

 

Apart from the dataset itself, among the most important phases in Machine Learning 

projects is pre-processing of the data. In general, the better the training data, the 

better the model will perform. However, the quality of the training data plays a 

crucial role to the success of a Machine Learning project. Even if, a vast 

collection of well-structured data has been stored, it might not behave, in a way, 

that actually works for the model. In other words, the data, in order to be useful 

for the training process, needs to be properly labelled, under a way, that all the 

information is translated into valid mathematical values, that can be managed by a 

neural network.   

 

For this Thesis the MRI images from the entire TCGA dataset combined, in order to 

create training and testing datasets, with sufficient amount of data. All images from 

the 110 clinical cases were summarised into the same folder, forming a total dataset 

of 7.860 images, both scans and masks. Then a software was developed to eliminate 

the pairs, where the region of the tumor is not appearing clearly or the pairs where 

the masks were totally black, because that kind of features would produce noise, 

confusing the performance of the neural network. Creating a parser to review every 

mask, one by one, only the masks that provide a clear assessment of the extend of 

the tumor were kept into the training dataset. Eventually, after these changes the 



3.  DATASET  34 

 
 

arising dataset consisted of 2384 MRI scans and masks. We separated these files 

into training dataset, which consists of 1870 files, and the testing dataset consisting 

of 514 files. Then, the images of the training set divided once more into two folders. 

A folder containing the MRI scans and another one containing the corresponding 

masks-targets for each scan. The final overview of the dataset is presented at the 

graph below: 

 
Figure 3. 2: Dataset overview 

 
Additionally, every image’s size was reduced to 128 𝑥 128  width and height 

respectively, because proceeding with the initial size of the images would produce 

substantial computational complexity during the training phase. Furthermore, all 

images were properly modified, so that they all have the following format. They 

were converted into RGB scale, meaning that every pixel contains 3 values, 

indicating its Red, Green and Blue intensity. Each intensity value is presented on 

a scale of 0 to 255. Considering a matrix for each colour, an entire picture is 

represented by three matrices, and when these are combined, they form a tensor. The 

architecture of the model which was used in this thesis requires a tensor, concluding 

the entire training data, with fixed input size. Thus, the input of the neural network 

will be a matrix of the following dimensions: 

 

𝑋 =  𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 =  (𝑁, 128, 128, 3) 

 

, where N is the entire number of MRI images found in the dataset, 128 𝑥 128 

represents the width and height of each image, and 3 is the number of channels for 

each picture. Note that, this matrix indicates the input features and consists only of 

the MRI images, not the masks. Now, for each input element must be provided a 

desired target. Therefore, a second tensor is going to be formed with the following 

dimensions: 

 

𝑌 =  𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 =  (𝑁, 128, 128, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) 

 

, where 𝑁  is the entire number of masks found in the dataset and 128𝑥128 

represents the width and height of each mask. The variable “𝑐𝑙𝑎𝑠𝑠𝑒𝑠” refers to the 



3.  DATASET  35 

 
 

number of different groups, in which the pixels will be classified. As it was 

mentioned previously, someone can easily assume that there are 2 groups of pixels. 

White pixels (with label in RGB scale: [255, 255, 255] ) will belong to class [1, 0] 

and otherwise, black pixels (with label in RGB scale: [0, 0, 0] ) will belong to the 

class [0, 1]. Thus, every pixel corresponds to a particular vector, indicating its target. 

After shaping both the input and the target matrix, the dataset has been prepared to 

feed the neural network. 

 

3.3 Tools 

 

Before proceeding to the implementation of the model, it would be useful to 

describe the working environment, as well as the tools that used for this study to be 

accomplished. 

 

The entire code of this project has been written in Python. Being a powerful 

programming language, with great readability, Python is used very commonly today 

in the field of data science [47]. Considering the very complex concepts of Linear 

Algebra and Calculus, its environment provides numerous libraries, to support high-

level mathematical operations and complicated data calculations. Some of the most 

common are: Pandas, which contains functions for data manipulation, NumPy, 

which offers tools for math computations and array management and Matplotlib, 

which is used to create plots, animations and interactive visualizations. 

 

Created by the Google Brain team, TensorFlow is a comprehensive open-source 

environment of tools, libraries and other resources, that provide fast numerical 

computation. Although it can be used across a range of tasks, it has a particular 

focus on training and building deep neural networks. It uses Python to provide a 

convenient front-end API for building applications, while executing those 

applications in high-performance C++. TensorFlow allows developers to create data 

structures, by describing how data flows in the structure, or a series of processing 

nodes.  

 

Running on the top of TensorFlow, there is a high-level neural network library 

called Keras. Providing high-level API, used for easily building and training 

models, Keras acts as an interface for the TensorFlow library. Developing Deep 

Learning models with Keras, facilitates quick and fast prototyping, as well as 

smooth CPU and GPU operation.  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

Implementation 
 
 

 

4.1 Network Architecture 

 

In this chapter, we will provide all the technical information about the developed 

neural network, that for this thesis. We will describe the architecture, the design and 

the required procedure, in order to, appropriately, accomplish the task of 

autonomous segmentation of LGG brain tumor in MRI scans. Moreover, several 

different approaches and implementations of the model will be presented, along with 

their accuracies, scores and evaluation.  

 

The neural network constructed with the usage of U-Net architecture, consisting of a 

contracting path on the left side, where the spatial information is reduced while 

feature information is increased, and an expansive path on the right side, where the 

feature and spatial information are combined, through a sequence of up-

convolutions and concatenations. 

 

Following the architecture of a typical Convolutional Neural Network for 

downsampling, the contracting path, consists of a repeated application of two 3 × 3 

convolutions, each followed by a rectified linear unit function (ReLU) and a 2 × 2 

max-pooling operation with stride 2. Between them a dropout operation is applied to 

eliminate a number of neurons. This entire block is repeated at each downsampling 

step, doubling the number of feature channels every time. On the other side, 



4.  IMPLEMENTATION  37 

 
 

the expansive path consists of transposed-convolution layers, performing 2 × 2    

up-convolution, that halves the number of feature channels. Each layer is followed 

by a concatenation, with the correspondingly cropped feature map, from the 

contracting path, and two 3 × 3 convolutions, each followed by a ReLU.  

 

At the final layer a 1 × 1 convolution and a soft-max function is used, to generate 

the probabilities and map each feature vector to a desired class.  

 

The input dataset, as described previously, is prepared to contribute in the process of 

training. The input matrix  𝑋 =  (𝑁, 128, 128, 3) indicates that the first layer of the 

network consists of 128 𝑥 128 𝑥 3 =  49152 neurons. The desired output for each 

image is the target matrix  𝑌 =  (𝑁, 128, 128, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠). Consisting of numerous 

hidden layers, the whole network is constructed of 1,941,122 total nodes. The 

architecture overview of the network is presented below in Figure 4.1: 

 

Architecture 

input (128 x 128 x 3) deconv2D (2 x 2) - 128 

conv2D (3x3) - 16 concatenate 

dropout 0.1 conv2D (3 x 3) - 128 

conv2D (3 x 3) - 16 dropout 0.2 

maxpool (2 x 2) conv2D (3 x 3) - 128 

conv2D (3x3) - 32 deconv2D (2 x 2) - 64 

dropout 0.1 concatenate 

conv2D (3x3) - 32 conv2D (3 x 3) - 64 

maxpool (2 x 2) dropout 0.2 

conv2D (3x3) - 64 conv2D (3 x 3) - 64 

dropout 0.2 deconv2D (2 x 2) - 32 

conv2D (3x3) - 64 concatenate 

maxpool (2 x 2) conv2D (3 x 3) - 32 

conv2D (3x3) - 128 dropout 0.1 

dropout 0.2 conv2D (3 x 3) - 32 

conv2D (3x3) - 128 deconv2D (2 x 2) - 16 

maxpool (2 x 2) concatenate 

conv2D (3x3) - 256 conv2D (3 x 3) - 16 

dropout 0.3 dropout 0.1 

conv2D (3x3) - 256 conv2D (3 x 3) - 16 

 soft-max 

 

Table 4. 1: The implemented architecture with convolution, dropout and pooling 

layers (a) encoder part (b) decoder part 



4.  IMPLEMENTATION  38 

 
 

Before starting the training, a crucial task in Deep Learning problems is setting the 

hyperparameters. Hyperparameters are basically the parameters, whose value is 

used to control the learning process. They determine how well the model is going to 

be trained, by tuning the rate of the data flow in the network, the learning rate and 

the optimization method that will be used. Learning rate defines how frequently a 

network updates its weights. A low learning rate slows down the learning process 

but converges smoothly, whereas a larger learning rate makes the learning faster but 

may not converge. Most optimizers have a default learning rate at 0.01 or 0.001, but 

it also can be manually modified. In addition, it would be inconvenient to pass the 

entire dataset into the CNN at once. Considering the large memory requirements of a 

complete iteration of forward and backward propagation, the training data is 

provided into smaller batches of data, in order to feed the network. Thus, the number 

of samples given to the network, after which the weight-update occurs, is called 

batch size. A batch size of 32, 64 or 128 is usually a fine value to start 

experimenting. Furthermore, we define the validation split at 0.1, to generate a 

validation dataset. The network uses the 10% of the training set to estimate the 

learning process, helping the best parameters to be obtained. 

 

 

 

4.2 Implementations 

 

Most of the times in Machine Learning problems, approaching the optimal model 

implies multiple implementations, setting different values of parameters each time, 

under the specified architecture and eventually choosing the most efficient. For this 

thesis experiments, all executions were exposed to the same training dataset that 

described at the previous chapter, over the U-Net architecture and the categorical 

cross-entropy. The trained model saved in .h5 file format to store the model 

configuration and its weights in a single file, which after used to produce and 

demonstrate the results on new unseen cases of the testing dataset. 

 

For the 1st implementation the data provided in batches of size 32. The applied 

optimization algorithm was Adam optimizer, with a default learning rate, equal to 

0.001. After every epoch, the model performance was evaluated on the training and 

the validation set, calculating loss and accuracy, in order to inspect its convergence, 

as well as the occurrence of overfitting. It was observed that the loss decreased 

significantly, during the first epochs and then it appeared to converge. The goal was 

to stop the training process, when the model starts to show high accuracy on the 

validation data, but before it largely overfits, which would be represented by a drop 

of validation accuracy and an increase of training accuracy. Therefore, the 

appropriate time to stop the training was at 50 epochs, having loss value at 0.41 and 



4.  IMPLEMENTATION  39 

 
 

accuracy at 98%. Then the model was exposed to the testing set. The scores of each 

implementation are presented at the next chapter. Table 4.2 provides a summary of 

the hyperparameters of the network and their values. 

 

optimizer Adam 

learning rate 0.001 

batch 32 
 

Table 4. 2: 1st Implementation's hyperparameters 

 

 

For the 2nd implementation an attempt has been made to modify the optimization 

algorithm, while maintaining the other parameters the same. Particularly, the 

selected optimizer was the Stochastic Gradient Descent (SGD), with a learning rate 

at 0.01, while the batch size remained at 32. No other changes have been made. 

During the training process, the behavior of loss and accuracy needed more time to 

be stabilized, compared to the previous implementation, reaching finally at 97% 

accuracy and 0.41 loss after 50 epochs.  

 

optimizer SGD 

learning rate 0.01 

batch 32 
 

Table 4. 3: 2nd Implementation's hyperparameters 

 

The 3rd implementation, and the last one for this thesis, used Adam optimizer 

again, since it appeared that this algorithm performed quite properly, during the 

learning procedure. This time the learning rate was 0.01, while the batch size 

increased to 64. During the training someone could observe a slight drop on 

accuracy at 96%, compared to previous experiments. The loss, however, increased 

significantly at 4.29.  

 

optimizer Adam 

learning rate 0.01 

batch 64 
 

Table 4. 4: 3rd Implementation's hyperparameters 

 

 



4.  IMPLEMENTATION  40 

 
 

4.3 Evaluation  

 

After the training procedure is completed and all the weights are finally adjusted, 

each implementation evaluated, according to its accuracy, specifically using the 

classification accuracy algorithm. Classification Accuracy is commonly the most 

obvious method to calculate the performance of a model. It is the division of number 

of correct predictions to the total number predictions made. It works well on the most 

cases and the most classification problems. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑀𝑎𝑑𝑒
 

 

However, the problem arises, when the task of the classifier is to assign all the pixels 

in a particular class and the classes are not equally distributed into the picture. For 

example, at the most cases in this thesis, the “tumor” class distribution, is much 

smaller, compared to the distribution of the “background” inside the picture. This is 

highly possible and quite an ordinary scenario, as the tumor affects a small area of 

the whole brain most of the times. Now, making the assumption, that the area of the 

tumor is, let’s say, only 2% of the entire image, and using a hypothetical classifier, 

which mistakenly always predicts “background” for every pixel, it is quite obvious 

that this classifier will not recognize any tumor pixel at all. For this binary problem, 

the classification accuracy method would estimate that, the performance of this 

classifier would be 98%. This sounds like an amazing score. However, considering 

that. in biomedical applications the cost of failing to diagnose a fatal disease is 

enormous, this is definitely, not the best value that describes the classification 

results.  

 

In this thesis, an alternative algorithm to accuracy was preferred as scoring metric, 

the Jaccard index. The Jaccard index, also called the IoU score (Intersection over 

Union) is defined as the intersection of two sets defined by their union. The basic 

idea is to regard the image masks as sets. These sets can overlap within the picture. 

The mathematical expression for IoU score is provided below. 

 

𝐽𝑎𝑐𝑐(𝑦, 𝑦̂) =  
y ∩  𝑦̂

y ∪  𝑦̂
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

, where 𝑦 is the prediction, 𝑦̂ the target of a pixel, TP the true positive, FP the false 

positive and FN the false negative values. If both masks are completely identical, 

both sets have exactly the same size and do overlap to 100%, so that intersection 

equals union. In this case, the IoU score is 1 and optimal. On the other hand, if the 

predicted mask is shifted or changed in size compared to the original mask, then the 



4.  IMPLEMENTATION  41 

 
 

union gets bigger than the intersection and the IoU score decreases. Regarding the 

previous example again, with the tumor pixels being the positive and background be 

the negative values, the classifier labels every pixel in the image as “background”. 

As a result, the sum of true positives (TP) must be 0. Therefore, the resulting Jaccard 

index is also 0. This score indicates that, the Jaccard index undoubtedly describes 

the result of this classifier more precisely than accuracy does. 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

Chapter 5 

Results 
 
 

 

5.1 Results 

 

The implementations operated in this thesis, followed different methods to train a 

Deep Learning network, in order to successfully perform Semantic Segmentation on 

LGG brain tumor. At the previous chapter, three different approaches described and 

implemented. As we specified, the optimization algorithm varied in each 

implementation, as well as the batch size and the learning rate. All the trained 

models were exposed on the testing dataset, to evaluate their performance and, 

eventually, their ability for generalization. As the Table 5.1 demonstrates, the first 

attempt, appeared to perform quite decently, achieving a Jaccard index of 75%. This 

approach was the highest of this study. Despite the very high accuracy during 

training, the score of the second attempt, reduced at 68%, operating on the testing 

data. Finally, the third model achieved a Jaccard score at 73%, which was quite 

unexpected, considering the large loss value during training. 

 

1st implementation Jaccard score: 75% 

2nd implementation  Jaccard score: 68%  

3rd implementation Jaccard score: 73%  
 

Table 5. 1: Results 

 

In addition, to reveal even practically which model appears to be the most suitable 

for the segmentation task, we operated predictions of the three approaches, in the 



5. RESULTS  43 

 
 

same, randomly chosen, samples of the testing data. For comparison purposes, 

several indicative demonstrations are going to be presented and discussed below.  

 

The Figure 5.1 shows the predictions of the three models, alongside with the original 

MRI scan and the original mask. Apparently, the more a prediction resembles to the 

original mask-target, the more precise it is, and as a consequence, the more 

appropriate the model behaves.  

 

 
Figure 5. 1: Results demonstration (a) Original MRI image (b) Original Mask        

(c) Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 

 

Observing the outputs, it can be assumed, that all the models detected the existence 

of the abnormality quite efficiently, on this particular case. Every approach achieved 

a great pixel-level distinguishment, without missing sharp edges or any other 

information.  

 

Moving on, to a more challenging example, in Figure 5.2 the divergence among the 

three approaches is appearing more clearly. As it can be shown, the                          

1st implementation performed surprisingly well, even around the very fine details, 

demonstrating a prediction, very close to the original mask. The 3rd implementation, 

also achieved a good result. At the same time, Stochastic Gradient Descent appeared 

to perform with difficulties in this particular problem, being able to detect the 

outline of the tumor area, but, missing entirely the details inside it.  

 

 
Figure 5. 2: Results demonstration (a) Original MRI image (b) Original Mask        

(c) Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 

 

 



5. RESULTS  44 

 
 

 

Another sample that, seemingly consisting of sharp demanding edges, requiring very 

sensitive approach is demonstrated in Figure 5.3. Here, the 1st implementation 

appeared to have an appropriate behavior, performing again the most similar to the 

target, segmentation of the tumor area. The other two implementations made an 

effort to approximate the desired segmentation, but as it can be observed, the 

distribution of the tumor pixels became blurry over some points, smoothing sharp 

edges and details. 

 

 
Figure 5. 3: Results demonstration (a) Original MRI image (b) Original Mask        

(c) Adam - 32 - 0.001 (d) SGD - 32 - 0.01 (e) Adam - 64 - 0.01 

 

Considering the results of each method during evaluating and testing phases, 

someone has to admit that, the usage of Adam optimizer, along with learning rate 

0.001 and batch size 32, over a U-Net architecture, appeared to be the most 

successful implementation of this thesis. Covering its learning behaviour, we have to 

also provide the plots of its training and evaluation process.   

 

 

Figure 5. 4: Adam - 32 - 0.001 accuracy and loss plots 

 

Moreover, and just for demonstration purposes, we used this particular model 

further, in more MRI scans, to inspect its performance on detecting and isolating 



5. RESULTS  45 

 
 

appropriate the tumor area. The images again, belong to the unknown, from the 

perspective of the model, data.   

 

 
Figure 5. 5: Adam - 32 - 0.001 LGG segmentation 

 

 
Figure 5. 6: Adam - 32 - 0.001 LGG segmentation 

 

5.2 Conclusion 
 

Reaching overall satisfactory Jaccard scores, the models showed their ability to 

perform autonomous segmentation of Low-Grade-Glioma from a given MRI scan. 

Through the experiments for this thesis, we tried different training approaches of 

Deep Learning models, investigating if these specific approaches would be able to 

meet the requirements of this particular task. Observing the scores and their 

behaviour, we can assume that, the trained models accomplished quite efficiently the 



5. RESULTS  46 

 
 

task of brain tumor segmentation. However, since there are still possibilities of error, 

neither doctors nor patients can undoubtedly rely on these predictions for the time 

being. Combining these models with medical examinations can lead to more 

accurate diagnosis. Concluding, the implemented methods in this thesis, shown 

pleasing, but not superlative results. Compared to Related Work researches, that 

mentioned in Chapter 1, this thesis achieved a less competitive overall performance.  

The purpose of this work was to show the ability of autonomous segmentation of 

Low-Grade Glioma using Deep Learning networks, such as Convolutional Neural 

Networks and U-Net architectures, which could contribute for future research and 

investigation. 

 

The entire Python code of this thesis is online and available at GitHub. It can be 

found through the following link:  

https://github.com/bachtses/Brain-Tumor-Segmentation-TCGA 

 

 

5.3 Future Work 
 

 

In the future, we aim to develop and restructure the implemented architecture, to 

increase accuracy, obtain more data for training, try different optimization 

algorithms, as well as loss functions, and eventually improve the performance of the 

model. Additionally, complementary information from other imaging modalities, 

such as Positron Emission Tomography (PET) and Magnetic Resonance 

Spectroscopy (MRS) may improve the current methods, eventually, leading to the 

development of clinically acceptable automatic Glioma segmentation methods for 

better diagnosis. The ideal scenario, however, is to focus Deep Learning techniques 

on early stages diagnosis, in order to develop the ability to predict the future 

existence of an abnormality, based on the tumor evolution of other cases. Under 

these circumstances, the ultimate goal is to make strong prediction models, that can 

safely help biomedical applications in cancer prediction, providing the best chance 

for a cure. 

 

 

 



 47 

 
 

Bibliography 
 

[1] Turing, A.M., 2009. Computing machinery and intelligence. In Parsing the 

Turing test (pp. 23-65). Springer, Dordrecht.  

[2] Ashby, W.R., 1956. Automata Studies: Annals of Mathematics Studies. Number 

34 (No. 34). Princeton University Press. 

[3] Manning. C., 2020. Artificial Intelligence Definitions. Stanford University. 

[4] Rosenblatt, F., 1958. The perceptron: a probabilistic model for information 

storage and organization in the brain. Psychological review, 65(6), p.386.  

[5] Widrow, B. and Hoff, M.E., 1960. Adaptive switching circuits (No. TR-1553-1). 

Stanford Univ Ca Stanford Electronics Labs.  

[6] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature, 521(7553), 

pp.436-444.  

[7] Oppermann A. (2019). Artificial Intelligence vs. Machine Learning vs. Deep 

Learning [Online]. Available at: https://towardsdatascience.com/artificial-

intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac (Accessed: 11 

January 2021). 

[8] Sinha, K. and Sinha, G.R., 2014, March. Efficient segmentation methods for 

tumor detection in MRI images. In 2014 IEEE Students' Conference on Electrical, 

Electronics and Computer Science (pp. 1-6). IEEE.  

[9] American Association of Neurological Surgeons, 2019, November. 

Classification of Brain Tumours. Available online: 

https://www.aans.org/en/Media/Classifications-of-Brain-Tumors.  

[10] Ostrom, Q.T., Bauchet, L., Davis, F.G., Deltour, I., Fisher, J.L., Langer, C.E., 

Pekmezci, M., Schwartzbaum, J.A., Turner, M.C., Walsh, K.M. and Wrensch, M.R., 

2014. The epidemiology of glioma in adults: a “state of the science” review. Neuro-

oncology, 16(7), pp.896-913.  

[11] American Brain Tumor Association, http://www.abta.org.  

[12] Mandonnet, E., Delattre, J.Y., Tanguy, M.L., Swanson, K.R., Carpentier, A.F., 

Duffau, H., Cornu, P., Van Effenterre, R., Alvord Jr, E.C. and Capelle, L., 2003. 

Continuous growth of mean tumor diameter in a subset of grade II gliomas. Annals 

of Neurology: Official Journal of the American Neurological Association and the 

Child Neurology Society, 53(4), pp.524-528.  



 48 

 
 

[13] Ostrom, Q.T., Gittleman, H., Fulop, J., Liu, M., Blanda, R., Kromer, C., 

Wolinsky, Y., Kruchko, C. and Barnholtz-Sloan, J.S., 2015. CBTRUS statistical 

report: primary brain and central nervous system tumors diagnosed in the United 

States in 2008-2012. Neuro-oncology, 17(suppl_4), pp.iv1-iv62.  

[14] EMC with Research & Analysis by IDC. 2014. The Digital Universe Driving 

Data Growth in Healthcare. https://www.emc.com/analyst-report/digital-universe-

healthcare-vertical-report-ar.pdf.  

[15] German Economic Institute. https://www.iwkoeln.de/en/topics/financial-and-

social-policy/the-pharmaceutical-and-medical-technology-industry.html 

[16] Urban, G., Bendszus, M., Hamprecht, F. and Kleesiek, J., 2014. Multi-modal 

Brain Tumor Segmentation using Deep Convolutional Neural Networks.  

[17] Zikic, D., Ioannou, Y., Brown, M. and Criminisi, A., 2014. Segmentation of 

brain tumor tissues with convolutional neural networks. Proceedings MICCAI-

BRATS, pp.36-39.  

[18] Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., 

Pal, C., Jodoin, P.M. and Larochelle, H., 2017. Brain tumor segmentation with deep 

neural networks. Medical image analysis, 35, pp.18-31.  

[19] Pereira, Sérgio, Adriano Pinto, Victor Alves, and Carlos A. Silva. "Brain tumor 

segmentation using convolutional neural networks in MRI images." IEEE 

transactions on medical imaging 35, no. 5 (2016): 1240-1251.  

[20] Chandra A. (2018). McCulloch-Pitts Neuron - Mankind’s First Mathematical 

Model of a Biological Neuron [Online]. Available 

at:  https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1 

[21] Zhang, J., 2019. Basic Neural Units of the Brain: Neurons, Synapses and 

Action Potential. arXiv preprint arXiv:1906.01703.  

[22] Marais, F. (2019). EE Publishers Available 

at:  https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-

boiler-plant-root-cause-analysis.html 

[23] Chawdary D. (2020). How to Build and Train Your First Neural Network 

Available online: https://medium.com/towards-artificial-intelligence/how-to-build-

and-train-your-first-neural-network-9a07d020c4bb 

[24] Zell, A., 1994. Simulation neuronaler netze (Vol. 1, No. 5.3). Bonn: Addison-

Wesley.  



 49 

 
 

[25] Sherstinsky, A., 2020. Fundamentals of recurrent neural network (rnn) and long 

short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404, 

p.132306.  

[26] Leijnen, S. and Veen, F.V., 2020. The Neural Network Zoo. 

In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 47, No. 1, p. 9). 

[27] Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. Learning 

representations by back-propagating errors. nature, 323(6088), pp.533-536.  

[28] LeCun, Y., Touresky, D., Hinton, G. and Sejnowski, T., 1988, June. A 

theoretical framework for back-propagation. In Proceedings of the 1988 

connectionist models summer school (Vol. 1, pp. 21-28). CMU, Pittsburgh, Pa: 

Morgan Kaufmann.  

[29] Kathuria A. (2018). Intro to optimization in deep learning: Gradient Descent 

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-

descent/ 

[30] Ruder, S., 2016. An overview of gradient descent optimization algorithms. 

arXiv preprint arXiv:1609.04747.  

[31] McCracken C. (2018). Deep Neural Networks: Choosing a Learning Rate 

https://medium.com/@colemccracken/deep-neural-networks-choosing-a-learning-

rate-172b97ef459 

[32] Ward, R., Wu, X. and Bottou, L., 2019, May. AdaGrad stepsizes: Sharp 

convergence over nonconvex landscapes. In International Conference on Machine 

Learning (pp. 6677-6686). PMLR.  

[33] Zeiler, M.D., 2012. Adadelta: an adaptive learning rate method. arXiv preprint 

arXiv:1212.5701.  

[34] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. 

arXiv preprint arXiv:1412.6980.  

[35] Valueva, M.V., Nagornov, N.N., Lyakhov, P.A., Valuev, G.V. and 

Chervyakov, N.I., 2020. Application of the residue number system to reduce 

hardware costs of the convolutional neural network implementation. Mathematics 

and Computers in Simulation, 177, pp.232-243.  

[36] Tabian J., Fu H. and Khodaei Z.S., (2019). A Convolutional Neural Network 

for Impact Detection and Characterization of Complex Composite Structures  

https://www.mdpi.com/1424-8220/19/22/4933 



 50 

 
 

[37] DataTechNotes., (2018). https://www.datatechnotes.com/2018/09/image-

convolution-example-in-r.html 

[38] Shafkat I., (2018). Intuitively Understanding Convolutions for Deep Learning 

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-

learning-1f6f42faee1 

[39] Hawkins, D.M., 2004. The problem of overfitting. Journal of chemical 

information and computer sciences, 44(1), pp.1-12.  

[40] ODSC - Open Data Science., (2020). Using the CNN Architecture in Image 

Processing https://medium.com/@ODSC/using-the-cnn-architecture-in-image-

processing-65b9eb032bdc 

[41] Long, J., Shelhamer, E. and Darrell, T., 2015. Fully convolutional networks for 

semantic segmentation. In Proceedings of the IEEE conference on computer vision 

and pattern recognition (pp. 3431-3440).  

[42] Xing, Y., Zhong, L. and Zhong, X., 2020. An Encoder-Decoder Network Based 

FCN Architecture for Semantic Segmentation. Wireless Communications and 

Mobile Computing, 2020.  

[43] Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: Convolutional 

networks for biomedical image segmentation. In International Conference on 

Medical image computing and computer-assisted intervention (pp. 234-241). 

Springer, Cham.  

[44] ReasearchGate., (2018). https://www.researchgate.net/figure/Convolutional-

neural-network-CNN-architecture-based-on-UNET-Ronneberger-et-

al_fig2_323597886 

[45] The Cancer Genome Atlas. Accessed 10 August 2020. Available from: 

http://cancergenome.nih.gov/.  

[46] Gao, G.F., Parker, J.S., Reynolds, S.M., Silva, T.C., Wang, L.B., Zhou, W., 

Akbani, R., Bailey, M., Balu, S., Berman, B.P. and Brooks, D., 2019. Before and 

after: comparison of legacy and harmonized TCGA genomic data commons’ data. 

Cell systems, 9(1), pp.24-34.  

[47] The python tutorial. Accessed: 05 September 2020. 

https://docs.python.org/3/tutorial/index.  

 


