
UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering
MSc Studies in Science and Technology of ECE

Master Thesis

Design and Implementation of Networking

Protocols with the P4 Programming Language

and the ONOS SDN Controller

Panagiotis Karamichailidis

supervised by

Athanasios Korakis,

Associate Professor

Volos, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Τµηµα Ηλεκτρολογων Μηχανικων & Μηχανικων Υπολογιστων
Προγραµµα Μεταπτυχιακων Σπουδων στην Επιστηµη & Τεχνολογια

Ηλεκτρολογου Μηχανικου & Μηχανικου Υπολογιστων

Μεταπτυχιακή ∆ιπλωµατική Εργασία

Σχεδιασµός και Υλοποίσηση δικτυακών

πρωτοκόλλων µε χρήση της γλώσσας

προγραµµατισµού P4 και του ONOS διαχειριστή

δικτύων προγραµµατιζόµενων από λογισµικό

Παναγιώτης Καραµιχαηλίδης

επιβλέπων

Αθανάσιος Κορακης,
Αναπληρωτής Καθηγητής

Βόλος, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Ευχαριστίες

Με την ολοκλήρωση της διπλωµατικής µου εργασίας, ϑα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή µου

κ. Αθανάσιο Κοράκη για την ευκαιρία που µου έδωσε αναθέτοντας µου το συγκεκριµένο ϑέµα, καθώς, επίσης,

και για την εµπιστοσύνη που µου έδειξε.

Είµαι ευγνώµων στον κ. Νικόλαο Μακρή, η πολύτιµη ϐοήθειά του και οι γνώσεις που απέκτησα χάρη σε αυτόν,

καθ΄ όλη τη διάρκεια µιας άψογης συνεργασίας, σε πολυάριθµες ώρες διδακτικών συζητήσεων, είναι πολύτιµες.

Η επιστηµονική και ηθική ενθάρρυνση, αλλά και η συνεισφορά του στην εκπόνηση της παρούσας µελέτης είναι

ανεκτίµητη.

Ακόµα, ϑα ήθελα να ευχαριστήσω όλους τους καθηγητές και συµφοιτητές ανεξαιρέτως για όλα αυτά που µου

πρόσφεραν, ο καθένας µε το δικό του τρόπο, στα χρόνια ϕοίτησής µου.

Θα ήθελα να ευχαριστήσω την οικογένεια και τους ϕίλους µου για την κατανόηση και την ενθάρρυνση που

έδειξαν όλο αυτό το διάστηµα, αλλά και την οικονοµική υποστήριξη που µου παρείχαν όλα αυτά τα χρόνια.

Στην οικογένεια και τους ϕίλους µου.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Περίληψη Το σηµερινό ∆ιαδίκτυο απαιτεί εύκολα διαχειρίσιµα και απλά επεκτάσιµα συστήµατα ελέγχου δι-

κτύου. Το Software-Defined Networking (SDN) είναι µια αναδυόµενη αρχιτεκτονική που στοχεύει στη δηµιουργία

ενός συστήµατος για τις επερχόµενες ανάγκες, προσφέροντας έναν άµεσα προγραµµατιζόµενο, ευέλικτο, κεντρικά

διαχειριζόµενο και προγραµµατισµένο τρόπο για τους χειριστές να ελέγχουν το δίκτυό τους [6]. Το SDN αποσυν-

δέει τις λειτουργίες ελέγχου δικτύου και προώθησης, γεγονός που διευκολύνει τη δηµιουργία νέων αφαιρέσεων

στη δικτύωση, απλοποιώντας τη διαχείριση και διευκολύνοντας την πρόοδο του δικτύου.

Οι συσκευές SDN µπορούν να προγραµµατιστούν µέσω µιας ειδικής διεπαφής, µε ένα συγκεκριµένο πρω-

τόκολλο, το οποίο είναι το OpenFlow [1]. Το µεγαλύτερο πρόβληµα µε το OpenFlow είναι ότι δεν υποστηρίζει

νέους ορισµούς κεφαλίδας (headers), κάτι που είναι απαραίτητο για τους χειριστές δικτύου να εφαρµόζουν νέες

ενθυλακώσεις πακέτων (packet encapsulations). Για να ξεπεραστούν αυτά τα Ϲητήµατα µε το OpenFlow, δηµιουρ-

γήθηκε µια νέα γλώσσα υψηλού επιπέδου: Programming Protocol-independent Packet Processor (P4). Αυτή η

γλώσσα υποστηρίζει έναν πλήρως προγραµµατιζόµενο πρόγραµµα ανάλυσης, ο οποίος µας καθιστά σε ϑέση να

ορίσουµε νέες κεφαλίδες χωρίς πρόβληµα.

Σε αυτή τη διατριβή παρουσιάζουµε πώς τα P4 και SDN µπορούν να συνδυαστούν για να δηµιουργήσουν µια

καλή λύση για τους χειριστές δικτύου.

i

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Abstract In our day and age, Internet requires network control systems that are both easily manageable

and extensible to cover contemporary needs [6]. To this end, a promising architecture, known as Software-

Defined Networking (SDN), has been introduced, which offers several noteworthy advantages, such as directly

programmability and flexibility for the operators to control their network. The creation of new abstractions in

networking is easier, since SDN decouples the network control and forwarding functions. Furthermore, the

management is simplified and the network advancement is easier.

However, there are many issues that arise using this technology, due to the fact that SDN devices are

programmable through a dedicated interface using a particular protocol, known as the OpenFlow [1]. The

biggest problem concerns the fact that OpenFlow does not support new header definitions, which is mandatory

for network operators to apply new packet encapsulations. In order to address these issues, a new high-level

language Programming Protocol-independent Packet Processors (P4) has been created. The main advantage

of this technology is that it supports a fully programmable parser, which gives the opportunity to smoothly

define new headers.

The objective in this thesis is the integration of P4 and SDN technologies in a combined framework in order

to create a good solution for network operators.

ii

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 1

2 Software Defined Networking 2

2.1 Overview of SDN . 2

2.2 SDN Architecture . 2

2.3 SDN Applications . 3

2.4 SDN Controllers . 4

2.5 Challenges Associated with SDN . 5

3 Network Functions Virtualization 6

3.1 Overview of NFV . 6

3.2 VNFs . 6

3.3 Network Services in NFV . 6

3.4 The Benefits of NFV . 8

3.5 Challenges Associated with NFV . 8

3.6 NFV vs SDN . 8

4 Programming Protocol-Independent Packet Processors 9

4.1 Overview . 9

4.2 Behavioral Model . 10

4.3 V1model . 11

4.3.1 Architecture . 11

4.3.2 Standard Metadata . 11

4.3.3 Program Template . 12

4.3.4 Basic Example . 13

4.3.5 Basic and Header Types . 14

4.3.6 Other Types . 15

4.3.7 Parser . 15

4.3.8 Simple Actions . 16

4.3.9 Tables . 17

4.3.10Deparser . 19

4.4 P4 Runtime . 20

5 Open Network Operating System 22

5.1 Overview of ONOS . 22

5.2 ONOS Design . 22

5.3 ONOS System Components . 23

5.4 Subsystem structure . 23

5.5 Network State Construction . 25

5.6 Device Subsystem . 26

5.7 Device Driver Subsystem . 27

6 Next Generation Software Defined Networking 28

6.1 Stratum . 28

6.2 YANG . 37

6.3 OpenConfig . 39

6.3.1 gNMI . 40

6.4 ONOS as the control plane . 44

6.4.1 Enable Packet I/O . 45

6.4.2 L2 Bridging . 56

6.5 IPv6 Routing . 64

6.6 Segment Routing v6 . 81

7 Conclusion and Future Work 92

iii

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

1 Introduction

1.1 Motivation

Significant changes have been made to traditional networks, with the emergence of Software-Defined-

Networking (SDN) [7]. SDN is a multiple structured architecture consisting of three layers, namely the in-

frastracture (or physical), the control and the application layer. Between the physical and the control layer,

the most common protocol used for providing the interface, which is called Southbound APIs, is OpenFlow

Protocol. Between the control and the application layer, the provided interface is called Northbound APIs. The

controller, which represents the intelligent part or the "brain" of the network, configures and manages the flow

of the network through network devices, which are present in the physical layer. Decoupling the forwarding

hardware (data plane) from the control logic of the network (control plane), which is the basic idea of the

approach, the integration of the network is achieved. Therefore, several limitations of traditional networks

are addressed with this sophisticated technology, which offers promising tools for well-managed networks

described by reliability, security and flexibility.

However, there are many issues to be considered about the use of SDN [12]. The main concern regards the

required time for implementing new protocols or the extension of their functionality. The aforementioned tasks

require a significant amount of time, as each protocol goes first through a long process concerning the IETF

board. To define an official standard, an implementation in ASICs is needed, for which real world examples,

such as VXLAN, suggest that this takes up to a couple of years to do so. On top of that, it is not certain

whether or not protocol modifications will be needed. Another issue that needs to be taken into consideration

when it comes to enterprise networks is their dependency upon network chip vendors. The emergence of P4

language is a good example of joined forces to overcome the above problems.

P4 (Programming Protocol-Independent Packet Processors) is a domain-specific language that is designed

to fit on a great spectrum of applications, such as hardware/software switches, routers, network interface

cards (NICs), or network appliances, offering a number of significant advantages [12], [33]. An important

benefit of P4 language is that it gives the ability to implement a network stack in switching hardware using

a basic set of tools. That means that user-defined keys can be associated with actions, counters and so on,

operating abstractions as header types, parsers and tables. Furthermore, P4 language completely ignores the

appearance of Ethernet or IP headers. It is the developer who informs silicon about the headers and how to

parse, and to further match and construct a header for the outgoing packet and where to forward the packet.

Compared to other solutions, such as hardware solutions or traditional fixed-function switches, the afore-

mentioned programmability of P4 language opens up completely new possibilities for enterprise, such as

flexibility of network stack and upgradability that no longer demands the purchase of new switches since P4

software can be easily updated [12].

1.2 Thesis Outline

The rest of the thesis is organized as follows: Section 2 presents a briefly introduction to SDN; in section

3, NVF is presented, which is followed by a comparison of NVF to SDN; in section 4, P4 language is presented;

section 5 presents ONOS an SDN controller; in section 6 some network protocols are implemented with the

SDN and P4, whereas section 7 summarizes the conclusions of the current study, and provides plans for

future work.

1

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

2 Software Defined Networking

2.1 Overview of SDN

The success of particular technologies, as for example is cloud computing severely depends on network

systems [2]. However, the slow development of scalable IT infrastructure, give rise to several issues, SDN

technology comes to address such issues by giving new functions to the whole, network topology. Furthermore,

administrators have the ability to abstract the underlying network infrastructure for applications and network

services.

The commercialization of SDN, as well as its development and standardization, stems from The Open

Networking Foundation (ONF), which is a non-profit consortium [3]. Based on ONF, the definition of SDN is

the following: "SDN is an emerging network architecture where network control is decoupled from forwarding

and is directly programmable.Per this definition, SDN is defined by two characteristics,namely decoupling of

control and data planes, and programmability on the control plane".

In literature, a variety of benefits of SDN are mentioned [3]. For instance, a greater control of a network

through programming is offered from the inherent decoupling of control plane from data plane. This, in turn,

give, rise to other benefits of improved configuration and enhanced performance. Specifically, SDN control

technology may bypass the barrier of layers by performing both a packet forwarding at a switching level and

link tuning at a data link level. Also, SDN is capable of acquiring instantaneous network status, permitting

a real-time centralized control of a network allowing for consideration of user defined policies, as well. The

aforementioned benefit, give, the opportunity to further optimize network configurations and improve network

performance, in general. SDN programmability also offers a handy platform for either experimenting new

techniques or designing new ones.

SDN allows network programmability via the, API. The administrator has the freedom of configuring the

devices dynamically as per the demands from the users. This brings agility and robustness to the functionality

of the network [4] . The administrator has access to the centralized SDN controller to distribute policies

to the switches that are connected to the controller. The dynamic updates of rules facilitate rerouting of

traffic to improve network performance. Figure 1 illustrates the overview of network programmability in SDN

network. It depicts the network administrator programming the SDN OpenFlow data plane devices via the

SDN controller to schedule, reroute and to split, traffic across available links according to the user demands

and the requirement in order to achieve optimal performance.

2.2 SDN Architecture

In the SDN architecture, the control and data forwarding functions are splitted and this splitting is referred

to as dis-aggregation [13]. The benefit of this architecture, is that it gives the applications more information

about network state from the controller and not only application-aware, compared to traditional networks

where the network. The analysis of SND, architecture is based on [13] and the interested reader is referred to

the original source.

More specifically, SDN architecture consists of three layers, namely the application layer, the control layer

Figure 1: SDN Overview

2

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

and the infrastructure layer and are presented below [5] as shown in Figure 2.

Application Layer: SDN applications communicate behaviors and other needed resources with the SDN

controller via application programming interfaces (APIs). On top of that, by collecting information from the

controller, the applications can build an abstracted view of the network system. Such applications may

be networking management, or enterprise applications used to run large data centers. For instance, an

application for security purposes can be built in order to recognize suspicious network activity. Due to its

nature, as it can dictates the behavior of the network, the application layer is also referred to as management

plane and, as such, it also directs the controller to dynamically make decisions.

Control Layer: The control layer consists of a centralized SDN Controller, which acts as the logic of the

network or its "brain" and lies in a server which contains the control logic. It is responsible for the management

of network policies and the control of flow of traffic in the network. It also programs the infrastructure layer

devices to transmit the traffic. Moreover, the SDN controller software extracts information about the network

from the hardware devices and communicates back to the SDN applications with an abstract view of the

network.

Infrastructure Layer: It consists of a set of networking equipment or hardware, such as switches, routers

and middle-ware appliances in a network. The control plane dictates instructions and the infrastructure layer

forwards packets. Due to its nature, it is also called data plane layer and is responsible for forwarding and

processing of the data path.

As stated in [13], "the SDN architecture APIs are often referred to as northbound and southbound in-

terfaces, defining the communication among the applications, controllers, and networking systems. A north-

bound interface is defined as the connection between the controller and applications, whereas the southbound

interface is the connection between the controller and the physical networking hardware". It is because of the

virtualized nature of architecture SDN, these elements do not have to be physically located in the same place.

2.3 SDN Applications

In this section several case examples, in which SDN is implemented are presented. The list is based on

[14].

Hyper-Converged storage/Converged storage. Converged storage is a storage architecture consisting

of computing resources and storage into an integrated framework and it can be used for development of

platforms for storage or server centric or combined workloads. SDN begins to be used by a large number of

well-known data services, for the creation of programmable technologies. The agility of keeping up the server

is achieved by using virtual environments, which can as well virtualize the storage. For instance, Edgenet
1

(a

globally distributed edge cloud) to create such a system have utilized a Programmable Flow SDN Ecosystem

that makes use of the Openflow controller, along with strong and efficient switching to guarantee smooth and

correct network effectiveness.

Video applications. A new application of SDN for video and collaboration applications is introduced by

Sonus Networks (d/b/a Ribbon Communications
2
), which operates in real-time communications as a unified

communications and control vendor. Their approach unifies the network virtualization platform of Juniper
3

1
https://edge-net.org/

2
https://ribboncommunications.com/

3
https://www.juniper.net/us/en/

Figure 2: SDN Architecture

3

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

and their session border controllers, which results in great capacity creation for communication sessions.

What is interested about their approach is that the use of SDN allows them to ensure the maintenance of the

Quality of Service (QoS). On top of that, the usage of SDN gives the opportunity to assume control over the

network and other pivotal agreements. Due to the fact that network space cab be allocated merely based on

the need, overall effectiveness and capacity of the system can be further improved.

Orchestration of mobile network services SDN and as well as network functions virtualizations (NVFs)

have both entered the mobile network operator (MNO) and many vendors have started to implement them in

order to set up more robust networks in the bid, assuring both maximum resource utilization and dynamic

provisioning. Using a combined framework of SDN and NVF, vendors can now provide the lead times. Apart

from that, this unified framework provides companies with the unprecedented ability to separate their appli-

cation logic. To conclude, catering the needs of vendors and an overall faster performance of platforms are

possible through an efficient orchestration of services.

Data center networks’ scalability. The wired infrastructure of data center networks can be replaced

using SDN systems. Researches at the University of Illinois have investigated the usage of SDN switches to

test a data center network. The scaling of bandwidth between servers can be guaranteed avoiding too much

hardware cost. Many Pica8
4

switches have been installed consisting of hundered of ports. Access speeds are

likely to be a lot higher as both load balancing and bandwidth scaling will be guaranteed.

Network of any enterprise. The extensive study of SDN advantages, such as better control and efficiency

of operations, have made enterprise companies to switch to SDN as a network infrastructure and therefore

many SDN vendors make use of a software operated networking system for business instead of the old physical

networking infrastructure.

2.4 SDN Controllers

In a software-defined network, it is the SDN Controller that acts as a strategic control point and, hence,

it is the "brain" of the network [15]. In order to deploy intelligent networks, "an SDN controller is used to

manage flow control to the switches/routers ‘below’ (via southbound APIs) and the applications and business

logic ‘above’ (via northbound APIs); they consolidate and mediate between different controller domains using

common application interfaces" [15].

OpenFlow and Open Virtual Switch Database (OVSDB) are two of the most well-known protocols used

by SDN controllers to communicate with the switches/routers. Many other controller protocols are being

currently developed as for example the Internet Engineering Task Force (IETF) working group (the Interface to

the Routing System (i2rs)) developed an SDN standard that enables a controller to leverage proven protocols,

such as OSPF, and many others, across a variety of SDN platforms [15].

The overall architecture of the network can be influenced by the type of protocols [15]. For instance,

OpenFlow operates in a different way as opposed to i2rs. The former attempts to totally, centralize packet-

forwarding decisions, while the latter splits the decision making by leveraging traditional routing protocols to

execute distributed routing and allowing applications to modify routing decision.

An SDN Controller platform consists of a collection of modules that can be plugged into the system and

perform different network tasks [15]. Some of the basic tasks including inventorying what devices are within

the network and the capabilities of each, gathering network statistics, and other monitoring functions, etc.

Extensions can be inserted that enhance the functionality and support more advanced capabilities, such as

running algorithms to perform analytics and orchestrating new rules throughout the network.

It is not mandatory that a controller platform and an application be, from the same company [15]. In this

way, interoperability and flexibility are ensured. For instance, Cisco, offers an open-source controller built by

OpenDaylight, being interoperable with many applications.

The first SDN controller was NOX, which was initially developed by Nicira Networks, alongside with Open-

Flow and it has since become the basis for many SDN controllers. However, ONIX (an association of NTT,

Google and Nicira Networks) the base for the Nicira/VMware controller is not open source [15].

On the other hand, there is a large number of open source controllers currently available. Next, a list of

open and community driven initiatives of SDN controllers follows:

• Beacon

• Faucet

• ONOS

• Open vSwitch

• lighty-core

• Cherry

• NOX/POX

• OpenContrail

• RUNOS

• Ryu-

Controller

• The Fast Data

Project

• OpenDaylight

• OpenKilda

• Project Calico

• Project Flood-

light

• vneio/sdnc

4
https://www.pica8.com/

4

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

2.5 Challenges Associated with SDN

There are many challenges associated with SDN applications, some of which are discussed briefly below.

Reliability: Based on its definition, reliability of a software is stated as "...the probability of failure-free

software operation for a specified period of time in a specified environment" [48]. Software reliability is of a

great importance when it comes to software development. System developers must ensure the reliability and

quality of their software, and should any failure comes up, following an automatic solution, the users should

be informed. Hence, SDN, controller must be able should be prevent and accurately handle network errors.

However, as SDN controller assumes total responsibility for the network, any failure may result in network

collapse, and thus software reliability relies on the exploitation of the main controller functions[10].

Scalability: One definition
5

for Scalability states that "Scalability is an attribute that describes the ability

of a process, network, software or organization to grow and manage increased demand." Other, definition

for Scalability
6

states that "Scalability is the capability of a system, network, or process to handle a growing

amount of work, or its potential to be enlarged to accommodate that growth". It is known that traditional

LANs is, used in a multilayered architecture, in which multiple Layer 2 networks are connected using Layer

3 routing functionality. However, traditional LANs perform bad, in scaling when it comes to supporting east-

west traffic, due to the fact that there are multiple Layer 3 devices lying in the end-to-end path [45]. It is stated

that a minimum of 100 switches should be able to be supported by an SDN controller and also and impact of

network broadcast overhead and the proliferation of flow table entries controller must addressed [45].

Low level interface: In case of SDN control applications for network management, SDN framework must

translate the developed network policies into low-level configurations of the switch used [10]. Furthermore,

in order to perform not so sophisticated, tasks, the multiple asynchronous events at the switches must be

coordinated from the programming interface of SDN.

Performance and Security: Performance and security are two significant aspects when it comes to real

world applications of SDN networks. It is said that new types of network attacks may emergence in open

interfaces of such networks, resulting in performance reduction [10]. Malicious attempts, such as distributed

denial-of-service (DDoS), may disrupt the normal traffic of networks. As such, several tools, including network

threat detection and mitigation and authentication and authorization of the users among others, must be

developed in order to avert any of the above disasters [10].

5
https://www.techopedia.com/definition/9269/scalability

6
https://www.networxsecurity.org/members-area/glossary/s/scalability.html

5

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

3 Network Functions Virtualization

3.1 Overview of NFV

Network Functions Virtualization (NFV) is referred to as the separating of network functions from hardware

to create software in virtual machines (VMs) [16]. Virtual network functions (VNFs) may are different functions

such as firewalls, traffic control, and virtual routing [16]. Infrastructure agnostic hardware is supported by

NFV, which uses virtualized networking components, where virtualized resources of compute, storage, and as

well as network functions can be placed on commercial off-the-shelf (COTS) hardware (as for example is x86,

server) [16]. In that way, VMs can acquire available resources and multiple VMs can run on a single server

and scale to consume the remaining free resources. What is interested, with this approach is that data centers

with such virtualized infrastructure can be more effectively used, as the resources are not so much idle [16].

NFV can also virtualize data plane and control plane, within the data center and the outside networks. Figure

3 shows the high-level NFV framework and Figure 4 the original NFV architectural framework.

3.2 VNFs

The need to accelerate the deployment of new network services while reducing operating costs and capital

expenses led to the development of Network virtualization and VNFs [50]. VNFs (virtual network functions),

which handle specific network functions, such as firewalls, are at the core of NFV. Total, virtualized environ-

ment can be created using individual VNFs or a combination of them [50]. VNFs run on individual or multiple

virtual machines (VMs) on top of the hardware networking infrastructure. In the latter case, where multiple

VMs are on the hardware box, all of the box’s resources is used [50].

To achieve the aforementioned goals of reducing cost, IT virtualization technologies are widely used. What

is done by virtualizing a network is that both scale and diversity as well as the hardware cost are reduced.

Only software is used, and should this software be updated, there is no need to change the whole hardware.

In this way, many costly consequences have been addressed (for example, upgrading each piece of hardware,

costs, required time and so on). Furthermore, virtualization helped the development of 5G technology, which

will bring incalculable amounts of revenue to existing and new markets [50].

3.3 Network Services in NFV

A Network Function (NF) Forwarding Graph of interconnected NFs and end points can describe an end-to-

end network service, such as mobile data, Internet access, among others [40].

From the architecture aspect, a network service can be viewed as a forwarding graph of NFs interconnected

by supporting network infrastructure [40]. A single operator network can be used to implement NFs. On top of

Figure 3: High-level NFV framework [16]

6

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 4: NFV original reference architectural framework [40]

that, an interwork between different operator networks is supported. These systems have particular, behavior,

which is a combination of several functional blocks, such as NF forwarding graphs, sets to name but a few.

NFs and the end points are depicted as nodes and may refer to devices, applications and others. An NF

Forwarding Graph can have network function nodes connected by logical links which can either be unidi-

rectional or bidirectional or even multicast and/or broadcast [40]. A chain of network functions represent a

plain example of forwarding graph and an end-to-end network service can include a smartphone, a wireless

network. It is important to note that the NFV area of activity is within the operator-owned resources, and thus

authority can be excersised in specific, domain (for example, a mobile phone out of the scope).

Figure 5 depicts an end-to-end network service. End Point A, the inner NF Forwarding Graph, and End

Point B represent the outer end-to-end network service. Network functions NF1, NF2 and NF3 represent the

inner NF Forwarding Graph. The latter are interconnected via logical links provided by the Infrastructure

Network 2. As it can be seen, the end points (A and B) are connected to network functions via network

infrastructure, which can either be wired or wireless. There is, logical interface (dot lines) between the end

point and NFs.

Figure 6 depicts an example of an end-to-end network service. The different layers that are involved in its

virtualisation process are presented as well. It is seen that this end-to-end network service consists of only

VNFs and two end points. The virtualisation layer is responsible for the seperation of hardware and software

in NFV. NFVI-PoPs include several resources dedicated for computation, storage and networking.

Figure 5: Graph representation of an end-to-end network service [40]

7

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 6: End-to-end network service [40]

3.4 The Benefits of NFV

There is a plethora of benefits when it comes to NFV. Some of the benefits are listed and briefly described

below [40]:

• Improved capital efficiencies: achieved by using commercial-off-the-shelf (COTS) hardware and results

in improved capital efficiencies when compared to dedicated hardware implementations.

• Improved flexibility: which fosters assigning VNFs to hardware, which in turn aids both scalability and

largely decouples functionality from location.

• Rapid service innovation: achieved via software-based service deployment.

• Improved operational efficiencies: this stems from automating and operating practices.

• Reduced power usage: this is achieved by transferring workloads and switching off not used hardware.

• Standardized and open interfaces: this results in providing decoupled elements by different vendors.

3.5 Challenges Associated with NFV

NFV confronts various challenges center around the three components of NFV, namely the NFV manager

(NFVM), the NFV infrastructure (NFVI) and VNFs [16]. It is because of how these pieces are built and how they

are interwoven that adds complexity to the system when deploying NFV at scale. Due to the fact that there

are many approaches in the whole industry and no standars, have been set, is complexity in the components

of NFV technology.

3.6 NFV vs SDN

When it comes to comparing NFV and SDN technologies, one should notice that NFV refers to the virtu-

alization of network components, whereas SDN refers to a network architecture that provides the network

with programmability. The former, virtualizes network infrastructure, while the latter centralizes network

control. SDN and NFV can be combined into an integrated framework in order to create a fully operated and

manageable network by software [16].

8

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

4 Programming Protocol-Independent Packet Processors

4.1 Overview

Configuring and managing large scale networks are fostered using SDN; on the other hand, it is common

that SDN control protocols limit the possibilities for the aforementioned targets, they provide only a limited

set of protocols, which are not understood by a fraction of the available hardware [8]. Thus, a new technology

comes to address this issue. This technology, known as Domain-Specific Language (DSL) P4, is designed in

such a way that a brief description of a switch’s behavior is allowed. The aim behind this approach is to give

owners the opportunity to develop their own software-oriented application for a programmable switch. P4 is

translated into an executable program, using either a compiler or an interpreter [8]. Figure 7 depicts, an P4

architecture.

Figure 7: P4 Architecture

It is interesting to mention the design goals of P4, which are given briefly below [8]:

• Reconfigurability in the field. Since switch behavior changes, modification of its behavior must remain

possible.

• Protocol independence. P4 is not restricted in the assumption regarding the used protocols, rather it can

define and integrate new protocols formats whenever necessary.

• Target independence. P4 programs can be used on any hardware, given a runnable translation of P4.

The motivation behind the development of P4 lies in the fact that OpenFlow is unable to use custom

protocols. However, P4 borrows from OpenFlow some advantages regarding packet processing [8]. Packets

are processed by performing actions based on values of the header fields and as in OpenFlow the mapping is

done during runtime by a control plane instead of at compile time.

Processing packets in P4 consists of four major phases [8]:

1. Parsing of the packet. Once a packet is received, the first thing to do is to translate it into a representation

to be processed in the subsequent phases. The underlying P4 program generates a finite state machine

to base the parse on.

2. Apply match-action table to ingress. In this phase, the received object now enters the ingress pipeline.

There is no restriction concerning the execution of rules on the received packet, as it is possible to match

on the different header fields. Furthermore, the switch can decide from which egress pipeline the packet

will be processed later. P4 program can access additional information, such as on which hardware port

the packet arrived (packets can be resubmitted to enter the ingress pipeline, if need be).

3. Apply match-action table to egress. Egress pipeline allows execution of rules based on the parsed header

fields (submission to another egress pipeline or resubmits cannot be used).

4. Deparsing of the packet. The last phase is about packet deparsing based on its current state, so it can

be sent to the wire. The parsed object automatically generates the deparser.

Figure 8 depicts which phases are affected by which program parts. As mentioned, P4 program statements

affects different parts of the processing pipeline.

9

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 8: Packet processing as done in P4 [8]

4.2 Behavioral Model

As mentioned in the previous subsection, in order to receive an executable file from a P4 program either a

compiler or an interpreter is required. To that effect, the P4 Language Consortium published the P4 compiler

p4c-behavioral [34]. There are many reasons [8] that p4c-behavioral is replaced by the "behavioral model"

bmv2 [32]. Written in C implements all features of the P4 specification. P4, program is the input and the

output is a valid C program. In order to achieve the previous, p4-hlir, a program to create a High-Level

Intermediate Representation of P4 is used. p4c-hlir [35], written in Python, provides a target independent P4

parser. Python object hierarchy is available after a successful parse. p4c-behavioral, using p4-hlir, generates

correct C code, which in turn can be complied for the intended target, whereas C compiler can further optimize

the process. The Apache 2 licensed source code can be found at [34].

The fact that double compilation is needed (from P4 to C and from C to binary) in order to produce an

executable is rather a difficult task. On top of that, the generated C code from p4c-behavioral is extremely

difficult to comprehend. Furthermore, the presence of two pipelines (an ingress and an egress) is assumed,

which contradicts the paradigm that P4 does not require any hardware properties; changes are needed in

order to fully support P4.

A new behavioral model [32], also called bmv2, was developed. The behavioral model is now an interpreter.

In order to run a P4 program, first a compilation of the P4 source code to a JSON file is needed and combined

with the P4 files, it represent the input for for the interpreter. It is noted that the JSON output is generated by

p4c-bm [37], which also can generate program dependent C++ code [8]. On the switch, to enable communi-

cation between the control plane and the forwarding plane, the program dependent code is either an Apache

Thrift [42] or an nanomsg [31] based mechanism. The new interpreter is released under the Apache 2 license.

It fully supports the P4 specification and can be integrated into mininet [44].

In order for one to to run their own P4 programs in bmv2, first, they need to compile the P4 code into a

JSON representation. This representation will inform bmv2 to initialize specific tables, to configure the parser,

the checksums, the ingress and the egress and as well as the deparser.

There are currently two P4 compilers available for bmv2 on p4lang:

• p4c includes a bmv2 backend and is the recommended compiler to use. At the moment, the bmv2 p4c

10

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

backend supports the v1model architecture, with some tentative support for the PSA architecture. P4

programs written for v1model can be executed with the simple_switch binary, while programs written

for PSA can be executed with the psa_switch binary.

• p4c-bm is the legacy compiler for bmv2, which is no longer actively maintained.

4.3 V1model

4.3.1 Architecture

The V1Model architecture is implemented on top of the bmv2’s simple_switch target. P4.org developed a

software switch named bmv2 simple_switch for testing the functionality of P4 programs. There exist other

architectures that can be supported by bmv2, however V1Model is the one that is used in this thesis. As

shown in Figure 9, V1Model consists of a P4 programmable parser and deparser, blocks to verify and update

checksums on incoming and outgoing packets, respectively, separate ingress and egress pipelines of match-

action processing, as well as a traffic manager. The traffic manager is not currently programmable in P4 but

performs the task of scheduling and sometimes replicating packets between the input and output ports. The

architecture description also includes a set of standard metadata fields that are used by the P4 program to

direct the packet through the bmv2 simple_switch.

Figure 9: V1model Architecture

4.3.2 Standard Metadata

On the code snippet below is a list of the various standard metadata fields defined for the V1Model. The

most commonly used fields are:

• The ingress_port is set by the simple_switch target and indicates the port on which the packet arrived

• The egress_spec field should be set in the ingress pipeline to tell the traffic manager which port to

send the packet to

• The egress_port can be read within the egress pipeline, and indicates which port the packet is

departing from

There are also many other fields here that can be used by P4 programs that target the V1Model.

1 struct standard_metadata_t {
2 bit<9> ingress_port;
3 bit<9> egress_spec;
4 bit<9> egress_port;
5 bit<32> clone_spec;
6 bit<32> instance_type;
7 bit<1> drop;
8 bit<16> recirculate_port;
9 bit<32> packet_length;

10 bit<32> enq_timestamp;
11 bit<19> enq_qdepth;
12 bit<32> deq_timedelta;
13 bit<19> deq_qdepth;
14 bit<48> ingress_global_timestamp;
15 bit<32> lf_field_list;
16 bit<16> mcast_grp;
17 bit<1> resubmit_flag;
18 bit<16> egress_rid;
19 bit<1> checksum_error;
20 }

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

4.3.3 Program Template

A template for a typical P4 program written for the V1Model is given below. As shown, core.p4 must be

included at the top of the file, because it defines some of the common types that are used in all P4 programs.

v1model.p4, should also be included, which provides the definition of the V1Model architecture and also

declares the various externs, such as counters, meters, and registers, that can be used for this target. A

P4 program typically begins by declaring the format of various packet headers and building the headers and

metadata structs. These structs are passed from block to block, along with the standard_metadata, as the

packet traverses the architecture. Subsequently, the P4 source file (or files) must define the functionality for

the following:

• parser

• checksum verification block

• ingress match-action processing

• egress match-action processing

• checksum update block

• deparser

And finally, the P4 program must instantiate an instance of the architecture called main.

1 #include <core.p4>
2 #include <v1model.p4>
3 /* HEADERS */
4 struct metadata { ... }
5 struct headers {
6 ethernet_t ethernet;
7 ipv4_t ipv4;
8 }
9 /* PARSER */

10 parser MyParser(packet_in packet,
11 out headers hdr,
12 inout metadata meta,
13 inout standard_metadata_t smeta) {
14 ...
15 }
16 /* CHECKSUM VERIFICATION */
17 control MyVerifyChecksum(in headers hdr,
18 inout metadata meta) {
19 ...
20 }
21 /* INGRESS PROCESSING */
22 control MyIngress(inout headers hdr,
23 inout metadata meta,
24 inout standard_metadata_t std_meta) {
25 ...
26 }
27 /* EGRESS PROCESSING */
28 control MyEgress(inout headers hdr,
29 inout metadata meta,
30 inout standard_metadata_t std_meta) {
31 ...
32 }
33 /* CHECKSUM UPDATE */
34 control MyComputeChecksum(inout headers hdr,
35 inout metadata meta) {
36 ...
37 }
38 /* DEPARSER */
39 control MyDeparser(inout headers hdr,
40 inout metadata meta) {
41 ...
42 }
43 /* SWITCH */
44 V1Switch(
45 MyParser(),
46 MyVerifyChecksum()
47 MyIngress(),

12

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

48 MyEgress(),
49 MyComputeChecksum(),
50 MyDeparser()
51) main;

4.3.4 Basic Example

The code snippet below illustrates a more basic example of a P4 program. It is essentially just a wire that

connects port 1 to port 2. For this example, the parser does not need to extract any headers from the packet;

it simple accepts and the packet is passed along to MyVerifyChecksum() block, which also does not need

to do anything. When the packet reaches the MyIngress() block, the P4 program checks the port on which

the packet arrived by reading the ingress_port field of the standard_metadata bus and decides which port to

send the packet to using a simple if, else-if statement. The rest of the blocks do not need to do anything

and at the end of the program the switch is instantiated. As it can be seen, all the packets that arrive on port

1 will be sent to port 2 and all the packets that arrive on port 2 will be sent to port 1. In this example, the

connection between port 1 and port 2 is hardcoded and cannot be changed after the P4 program is compiled.

1 #include <core.p4>
2 #include <v1model.p4>
3 struct metadata {}
4 struct headers {}
5

6 parser MyParser(packet_in packet,
7 out headers hdr,
8 inout metadata meta,
9 inout standard_metadata_t standard_metadata) {

10

11 state start { transition accept; }
12 }
13

14 control MyVerifyChecksum(inout headers hdr, inout metadata meta) { apply { } }
15

16 control MyIngress(inout headers hdr,
17 inout metadata meta,
18 inout standard_metadata_t standard_metadata) {
19

20 apply {
21 if (standard_metadata.ingress_port == 1) {
22 standard_metadata.egress_spec = 2;
23 } else if (standard_metadata.ingress_port == 2) {
24 standard_metadata.egress_spec = 1;
25 }
26 }
27 }
28

29 control MyEgress(inout headers hdr,
30 inout metadata meta,
31 inout standard_metadata_t standard_metadata) {
32 apply { }
33 }
34

35 control MyComputeChecksum(inout headers hdr, inout metadata meta) {
36 apply { }
37 }
38

39 control MyDeparser(packet_out packet, in headers hdr) {
40 apply { }
41 }
42

43 V1Switch(
44 MyParser(),
45 MyVerifyChecksum(),
46 MyIngress(),
47 MyEgress(),
48 MyComputeChecksum(),
49 MyDeparser()
50) main;

The switch can be made a bit more flexible. This design achieves the exact same functionality as the

above, but rather than using the if, else-if statement in the MyIngress control block, it uses a single

table, called forward. The forward table matches on the ingress_port field, and can invoke either the

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

set_egress_spec action, or NoAction. The table entries specify which action to take, along with any

input parameters, for different ingress_port values. Writing the P4 program in this way, a much more

flexible switch can be created, because now table entries can be added and removed from the control plane

to determine how to route packets between the various ports. And this can be done without changing the P4

program at all.

1 #include <core.p4>
2 #include <v1model.p4>
3 struct metadata {}
4 struct headers {}
5

6 parser MyParser(packet_in packet, out headers hdr,
7 inout metadata meta,
8 inout standard_metadata_t standard_metadata) {
9 state start { transition accept; }

10 }
11

12 control MyIngress(inout headers hdr, inout metadata meta,
13 inout standard_metadata_t standard_metadata) {
14 action set_egress_spec(bit<9> port) {
15 standard_metadata.egress_spec = port;
16 }
17 table forward {
18 key = { standard_metadata.ingress_port: exact; }
19 actions = {
20 set_egress_spec;
21 NoAction;
22 }
23 size = 1024;
24 default_action = NoAction();
25 }
26 apply { forward.apply(); }
27 }
28

29 control MyEgress(inout headers hdr,
30 inout metadata meta,
31 inout standard_metadata_t standard_metadata) {
32 apply { }
33 }
34

35 control MyVerifyChecksum(inout headers hdr, inout metadata meta) { apply { } }
36

37 control MyComputeChecksum(inout headers hdr, inout metadata meta) { apply { } }
38

39 control MyDeparser(packet_out packet, in headers hdr) { apply { } }
40

41 V1Switch(
42 MyParser(),
43 MyVerifyChecksum(),
44 MyIngress(),
45 MyEgress(),
46 MyComputeChecksum(),
47 MyDeparser()
48) main;

4.3.5 Basic and Header Types

The basic types that can be used in P4 programs are unsigned and signed integers. An unsigned integer

is called a "bitstring" in P4 and can have an arbitrary width; many different operations on bitstrings, such as

addition, subtraction, and concatenation can be performed. Also, one can slice bitstrings similar to how they

might slice a python string or a verilog bus. Signed integers are simply called ints in P4 and they support

some, but not all, of the same basic operations as bitstrings. P4 also supports the notion of a variable sized

bitstring for protocols that contain fields whose width is only known at runtime. For example, IPv4 options.

In this case, n is the maximum possible width of the bitstring. The P4 specification [33] have a list of with all

the possible operations that are supported for these types.

A header is an ordered collection of members each of which may be one of the types just presented. Headers

are byte-aligned and they can be either valid or invalid. P4 programs can read and write a header’s validity bit

using the isValid(), setValid(), and setInvalid() methods. The following snippet showing how you

might declare an Ethernet and IPv4 header in P4. The usage of the typedef statement can make the code

14

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

more readable.

1 typedef bit<48> macAddr_t;
2 typedef bit<32> ip4Addr_t;
3 header ethernet_t {
4 macAddr_t r; dstAdd
5 macAddr_t srcAddr;
6 bit<16> etherType;
7 }
8 header ipv4_t {
9 bit<4> version;

10 bit<4> ihl;
11 bit<8> diffserv;
12 bit<16> totalLen;
13 bit<16> identification;
14 bit<3> flags;
15 bit<13> fragOffset;
16 bit<8> ttl;
17 bit<8> protocol;
18 bit<16> hdrChecksum;
19 ip4Addr_t srcAddr;
20 ip4Addr_t dstAddr;
21 }

4.3.6 Other Types

The struct is another useful type. It consists of an unordered collection of members and has no alignment

restrictions. An example use case of a struct has already been presented, where the standard_metadata for

the V1Model was presented. P4 programs often combine a collection of headers into a struct and then use

that struct within each programmable block. In addition, multiple headers of the same type can also be

combined into a header stack, which is essentially treated as an array of headers. A header union represents

an alternative containing at most one of several different headers. For example, one might want to declare a

header union consisting of an IPv4 header and a IPv6 header if they expect all the packets to contain only one

of these and never both.

1 /* Architecture */
2 struct standard_metadata_t {
3 bit<9> ingress_port;
4 bit<9> egress_spec;
5 bit<9> egress_port;
6 bit<32> clone_spec;
7 bit<32> instance_type;
8 bit<1> drop;
9 bit<16> recirculate_port;

10 bit<32> packet_length;
11 ...
12 }
13

14 /* User program */
15 struct metadata {
16 ...
17 }
18 struct headers {
19 ethernet_t ethernet;
20 ipv4_t ipv4;
21 }

4.3.7 Parser

Next, the steps needed to write parsers in P4 are presented. Parsers are functions that map packets into

headers and metadata. They are written as a state machine that contain 3 predefined states: start, accept,

and reject. It may also contain other states defined by the P4 programmer and it is common to define one

state for each header type that the parser will extract, but this is not required. Parsing always starts in the

start state, executes zero or more statements, and then transitions to another state until it encounters either

the accept or reject state. It is up to the architecture to decide what should happen upon reaching the reject

state. For the V1Model, the packet is not dropped. Furthermore, loops are acceptable within the parsing state

machine.

15

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

1 /* From core.p4 */
2 extern packet_in {
3 void extract<T>(out T hdr);
4 void extract<T>(out T variableSizeHeader,
5 in bit<32> variableFieldSizeInBits);
6 T lookahead<T>();
7 void advance(in bit<32> sizeInBits);
8 bit<32> length();
9 }

10 /* User Program */
11 parser MyParser(packet_in packet,
12 out headers hdr,
13 inout metadata meta,
14 inout standard_metadata_t std_meta) {
15

16 state start {
17 packet.extract(hdr.ethernet);
18 transition accept;
19 }
20 }

The parser in the V1Model accepts the input packet and must produce the parsed header representation.

The user metadata and standard metadata buses also pass through the parser and can be used if desired. In

lines 2-9 of the snippet depicted above, the definition of the packet_in type from core.p4 is shown. This type

has various methods that are very useful when writing the parser. In this example, only the most basic extract

method is used, which allows extraction of a fixed size header from the packet. The language specification [33]

contains more details on the other more advanced parsing methods. Additionally, in lines 11-20 an example

of a very simple parser is given that only defines the functionality of the start state; it simply extracts the

ethernet header from the packet and then transitions to the accept state.

To design parsers with more states, the select statement is often used. The structure is very similar

to a case statement in C or Java, but without the "fall-through behavior", meaning that the use of break

statements is not needed. Parsers commonly want to branch based on some of the bits that were just parsed.

For example, on the snippet bellow a parser that extracts the ethernet header and then branches to either the

parse_ipv4 state or the accept state based on the ethernet’s etherType field is shown. The match patterns can

either be literals or simple computations, such as masks.

1 state start {
2 transition parse_ethernet;
3 }
4

5 state parse_ethernet {
6 packet.extract(hdr.ethernet);
7 transition select(hdr.ethernet.etherType) {
8 0x800: parse_ipv4;
9 default: accept;

10 }
11 }

4.3.8 Simple Actions

Aside from parsers, control blocks are the only P4 programmable elements in an architecture. These

blocks are similar to C functions, but do not contain any loops. Variables, tables, instantiate externs, and

more can be declared. The actual functionality of a control block is specified within the apply block. All kinds

of processing that are expressible can be represented as a directed acyclic graph, including: match-action

pipelines, deparsers, and additional forms of packet processing. The interfaces between a control block and

the other blocks in an architecture are defined by user and architecture defined types, typically headers and

metadata.

In the following snippet a very simple example of a control block is shown that swaps the source and desti-

nation MAC addresses and then sends the packet back out the same port on which it arrived. A 48-bit variable

called tmp is defined to hold the current destination MAC address while the swapping is taking place. This

temporary variable is local to this particular control and cannot be accessed by other blocks. The temporary

variable could also have been declared inside the apply statement to achieve the same functionality.

1 control MyIngress(inout headers hdr,
2 inout metadata meta,
3 inout standard_metadata_t std_meta) {
4 /* Declarations region */

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

5 bit<48> tmp;
6

7 apply {
8 /* Control Flow */
9 tmp = hdr.ethernet.dstAddr;

10 hdr.ethernet.dstAddr = hdr.ethernet.srcAddr;
11 hdr.ethernet.srcAddr = tmp;
12 std_meta.egress_spec = std_meta.ingress_port;
13 }
14 }

The previous example can also be implemented by defining a simple action called swap_mac and then

invoking the action directly within the apply statement, similar to how one might invoke a C function. These

actions can be declared either inside a control block or globally. Since this action is invoked directly within

the apply statement, each action parameter must specify both type and direction. Actions may contain local

variables and may make use of many different standard arithmetic and logical operations, as shown here.

1 control MyIngress(inout headers hdr,
2 inout metadata meta,
3 inout standard_metadata_t std_meta) {
4

5 action swap_mac(inout bit<48> src,
6 inout bit<48> dst) {
7 bit<48> tmp = src;
8 src = dst;
9 dst = tmp;

10 }
11

12 apply {
13 swap_mac(hdr.ethernet.srcAddr,
14 hdr.ethernet.dstAddr);
15 std_meta.egress_spec = std_meta.ingress_port;
16 }
17 }

4.3.9 Tables

Tables are the fundamental unit of a match-action pipeline. A table declaration will specify a number of

different things including what data to match on as well as the type of match to be performed, a list of all

possible actions and it may optionally specify a number of different table properties such as the number of

entries, a default action to invoke if no match is found, or static table entries. Each table contains one or more

entries, commonly referred to as rules. A single entry contains a specific key to match on, a single action that

is executed when a packet matches the entry and any data to provide to the action when it is invoked, which

may be nothing.

Steps involve performing match-action processing. As just mentioned, our table consists of a number of

entries that specify a key, an action ID, and action data. These entries can be added and removed by the

control plane. A table will also specify a default action to perform if no match is found amongst the table

entries. The table will extract the specified bits from the input headers and metadata to form the key and

attempt to find a match within its entries.

• if there is a hit then the action ID and data are read out of the corresponding entry

• if there is not a hit then the default action ID and data are used

These two outputs are passed into a multiplexer which selects one of the two based on whether or not a hit

was found in the table. The chosen action ID and data are passed to the action execution unit along with the

input headers and metadata which then updates the headers and metadata as necessary. Figure 10 shows

the tables match-action processing.

17

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 10: Match-Action Unit Dataflow

For instance, if we want to build a simple IP router, a definition of a routing table is required. The routing

table must perform a longest prefix match on the destination IP address. Each table entry may invoke either

the ipv4_forward action which updates the packet’s destination MAC address, configures the packet’s egress

port, and decrements the TTL, or it may invoke the drop action. The default will be to perform no action at all.

In order to make IP routing working properly, the data plane and control plane must work together. The P4

data plane defines the format of the routing table, it specifies fields to match on and possible actions to invoke.

It performs the table lookup and executes the chosen action. The control plane is responsible for populating

the table with entries. There may potentially be many different control mechanisms for manipulating table

entries. For example, network operators’ manual configuration, automatic discovery, or routing protocol

calculations.

This is what the routing table -that just described- would look like in P4. Here, the table ipv4_lpm is

called. The key is the IPv4 destination address and a match type of lpm is specified, which stands for longest

prefix match. The second table property is the list of all possible actions that can be invoked by this table. In

this case, the possible actions are called ipv4_forward, drop, and NoAction. The table is also specified

and should be allocated with enough room for 1024 entries and the default_action should be NoAction.

1 table ipv4_lpm {
2 key = {
3 hdr.ipv4.dstAddr: lpm;
4 }
5 actions = {
6 ipv4_forward;
7 drop;
8 NoAction;
9 }

10 size = 1024;
11 default_action = NoAction();
12 }

Tables can specify various different match types, core.p4 defines 3 types that all architectures should

support: exact match, ternary match, and longest prefix match. Other architectures may define additional

match types that can be used in P4 programs. For example, the V1Model defines a range type and a selector

type match in addition to the three standard types.

1 /* core.p4 */
2 match_kind {
3 exact,
4 ternary,
5 lpm
6 }
7

8 /* v1model.p4 */
9 match_kind {

10 range,
11 selector
12 }
13

18

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

14 /* Some other architecture */
15 match_kind {
16 regexp,
17 fuzzy
18 }

It has already been described how one can define actions and invoke them directly from a control block’s

apply statement. However, actions can be invoked from tables as well. Actions can have two different types of

parameters, corresponding to these two ways of invoking actions directional and directionless parameters.

Directional parameters are those that are passed from/to the data plane and directionless parameters are those

are provided by table entries, in other words, from the control plane. Moreover, actions that are called directly

only use directional parameters and actions that are used in tables typically use directionless parameters,

but may also use directional parameters. In the snippet below, the declarations for the actions of a simple IP

router is shown. Note that the parameters for the ipv4_forward action are directionless because it will be

invoked from the routing table.

1 /* core.p4 */
2 action NoAction() {
3 }
4

5 /* basic.p4 */
6 action drop() {
7 mark_to_drop();
8 }
9

10 /* basic.p4 */
11 action ipv4_forward(macAddr_t dstAddr,
12 bit<9> port) {
13 ...
14 }

The table, after its definition, must be applied within the control flow. This is done by invoking the table’s

apply() method as shown here.

1 control MyIngress(inout headers hdr,
2 inout metadata meta,
3 inout standard_metadata_t standard_metadata) {
4 table ipv4_lpm {
5 ...
6 }
7 apply {
8 ...
9 ipv4_lpm.apply();

10 ...
11 }
12 }

4.3.10 Deparser

A control block can also be used to implement the deparser. Deparsing involves assembling the headers

back into a well-formed packet. Use the emit method for the packet_out extern to insert a specific header

into the final packet if it is valid.

1 /* From core.p4 */
2 extern packet_out {
3 void emit<T>(in T hdr);
4 }
5

6 /* User Program */
7 control DeparserImpl(packet_out packet,
8 in headers hdr) {
9 apply {

10 ...
11 packet.emit(hdr.ethernet);
12 ...
13 }
14 }

19

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

4.4 P4 Runtime

A novel way to control the forwarding plane of a switch, router, firewall and others is the P4 Runtime [17].

Among other advantages, P4 Runtime permits the control of any forwarding plane, regardless of whether or

not it is built from a fixed-function or programmable switch (for example, ASIC) or a software switch running

on an x86 server. Protocols and features the forwarding plane supports do not effect the framework of P4

Runtime, and therefore a huge variety of different switches can be controlled using the same API. If it is the

case where new protocols and features are added to the forwarding plane, the P4 Runtime API is automatically

updated. This is done by describing how a new feature must be controlled (note that this is achieved without

restarting or rebooting the control plane). P4 Runtime is unaware where the control plane lies. The latter

could either be a protocol stack running on a local switch operating system or a remote control plane running

on x86 servers.

There are a lot of issues concerning closed and fixed APIs [17]. Such APIs are written to cover the needs

of specific switch chip and seldom extensions are needed over time. Apart from that, due to the fact that

these APIs are proprietary, further problems concern non-disclosure and license agreements, which prohibit

sharing the API.

However, significant attempts have been made towards replacing closed APIs with open interfaces [17].

The first try concerns the OpenFlow, released a decade before, allowing a remote control plane to control

switches from different vendors using the same API and other advantages. On the other hand, there are many

issues concerning OpenFlow. First things first, it was design to fit on a certain use cases and fixed function

switches. On top of that, it was not designed to be extended and its overall behavior was unclear. These

peculiar characteristics of OpenFlow lead the way to other solutions.

SAI [49] represents such a solution, but it is restricted to be used for networks in which the control plane

is inside the switch. SAI can be used to control switches based on a variety of different switch ASICs, just as

OpenFlow could do. SAI becomes more complex over time, its extension is rather a cumbersome task, while

the remote control of switches is ambiguous [17]

P4 Runtime comes to address the aforementioned issues [17]. P4 Runtime is (i) open and can be used to

control any switch ASIC, (ii) extensible as new features can be easily added over time, (iii) customizable as

different protocols and features can be used by different networks using the same API. Like SDN, P4 Runtime

can either control switches from a remote control plane or from a local control plane running on the same

switch. It is important to note that defining the forwarding behavior of both protocols in P4 [38] P4 Runtime

can emulate both the behavior of OpenFlow and SAI; in that way, can be easily extensible over time [17].

Figure 11 depicts P4 Runtime API can be used to control a switch with remote control plane. The P4

program "tor.p4" specifies the switch pipeline and a P4 compiler generates the schema needed by the P4

Runtime API to add and delete entries into the forwarding table at runtime.

Figure 11: Using P4 Runtime API with a remote control plane [17]

Figure 12 illustrates the case where a local control plane can use P4 Runtime as an API.

Any switch, whose behavior is specified in the P4 language, can be controlled by the P4 Runtime API [17].

A developer can use P4 Runtime to control existing fixed-function switches by first writing a P4 program to

document the switch behavior using the P4 language. A P4 compiler, p4c, automatically identifies elements

that need to be controlled, such as lookup tables specified in the P4 program for which entries need to be

added and deleted.

20

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 12: Using P4 Runtime API with a local control plane [17]

An example from [17] is adopted to illustrate the previous point. Given Figure 13, the P4 program includes

an IPv4 longest-prefix-match (LPM) table. From this table, entries will need to be added and deleted, such as

the 8-bit prefix (middle) when the switch is running. Then, the compiler generates the general schema (right).

The protobuf [43] schema is used by the control plane to encode the specific 8-bit prefix that it wants to add

to the table.

Note that new tables may be added that can be controlled through the P4 Runtime API (such as an IPv6

prefix table, or even a new table private to the network) given a programmable switch; the compiler will extend

the schema (protobuf message), and then new tables can be controlled [17].

Figure 13: P4 runtime dataflow [17]

21

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

5 Open Network Operating System

5.1 Overview of ONOS

In case where next-generation SDN/NFV solutions are needed, Open Network Operating System (ONOS) is

deemed as the leading open source SDN controller [18]. ONOS is an SDN controller open source project that

uses OSGI technology, to manage sub-projects [19]. Using ONOS, both configuration and real-time control

of the network are supported. As a result, the need to run routing and switching control protocols inside

the network fabric is eliminated. ONOS, cloud controller, fed with intelligence, new network applications can

be easily created avoiding, any need to alter the data plane systems. Due to its flexibility, with ONOS new

dynamic network services with simplified programmatic interfaces are possibly.

The ONOS platform includes [18]: a platform and a set of applications acting as an extensible, modular and

distributed SDN controller, simplified management, configuration and deployment of new software, hardware

and services and a scale-out architecture, which provides both the robustness and scalability, which are

required to when it comes to strict production carrier environments

5.2 ONOS Design

Design goals regarding the initial design of ONOS include [19]:

• Code modularity: where new functions as a new independent unit are supported

• Features are configurable: where dynamic loading and unloading features are supported, regardless

startup or runtime phase

• Protocol-independent: where specific protocol libraries and implementations do not restrict the appli-

cations

As stated above, ONOS can manage sub-projects, each of which has its own source code tree, built

independently. For that purpose, ONOS’s source code is organized in a hierarchical way to make easier the

use of Maven’s cascaded POM file organization [19]. On top of that, each sub-project has its own pom.xml

file and directory. The shared dependencies and configuration of the parent Pom file are inherited from the

sub-pom.xml file and they can be built independently of other independent sub-projects. The top-level POM

files used to build a complete project as well as its modules are contained in the root directory.

ONOS uses Karaf as its OSGI technology and some of the features that Karaf support are listed below [19]:

• use of standard JAX-RS API to develop a secure API interface

• features for centralized custom settings (as a set of Bundles)

• local and remote SSH console login through an easy-to-expandable command-line framework

• records of different log levels

Figure 14: ONOS stack [19]

22

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 15: ONOS components [19]

ONOS, independently from the protocol, consists of the below parts, coming in layered architecture [19]:

protocol awareness module that interacts with the network, Protocol-independent system Core, tracking and

serving network status information, applications that consume and operate based on system information

provided by Core.

As Figure 14 depicts, the Core interacts with the network-oriented modules through a southbound (provider)

API and with the application through the northbound (consumer) API. Note that southbound API defines a

protocol-neutral means to pass network status information to the Core, where the latter interacts with network

devices through network-oriented modules. Note again that the Northbound API provides applications with

abstractions describing network components and attributes; this is done so they can define their required

actions based on policies [19].

5.3 ONOS System Components

The collection of components that make up a service is called a subsystem, while a service is referred to

as a functional unit consisting of multiple components at different layers as a software stack to create vertical

slices [19]. Figure 15 depicts the subsystems included in ONOS. Below ONOS’s primary services are given

[19]:

• Device Subsystem, which manages the inventory of infrastructure devices

• Link Subsystem, which manages the inventory of infrastructure links

• Host Subsystem, which manages the inventory of end-station hosts and their locations on the network

• Topology Subsystem, which manages time-ordered snapshots of network graph views.

• PathService, using the most recent topology graph snapshot, computes the paths between infrastruc-

ture devices or between end-station hosts

• FlowRule Subsystem, which manages the inventory of the match/action flow rules installed on infras-

tructure devices and provides flow metrics

• Packet Subsystem, which allows applications to consider data packets received from network devices

and to emit data packets into the network through one or more network devices

5.4 Subsystem structure

Figure 16 depicts the relationship between the subsystem components (note that the dotted lines indicate

the boundaries between layers created by the north and south APIs, respectively). A detailed description about

the architecture illustrated in Figure 16 is given in [19]. The main levels can be identified by one or more

interfaces implemented by Java [19].

The Provider component lies in the bottom layer of the stack. The communication of Provider interface

with the underlying device is achieved through a protocol-specific library. The interaction with core is done via

the ProviderService interface. Note that a specific ProviderId is related to a Provider and its purpose is

to provide an external identity of the Provider family, needed so that the Provider remains associated with

devices and others models.

23

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Multiple Providers can be associated with the subsystem., where the Provider is either primary or ancillary.

Entities associated with the service are owned by the former provider, where the latter makes use of this

information (priority is given to the main Provider). The device subsystem is one of example of services that

supports multiple providers.

In the core the Manager component lies and its job is to receive information from Provider and to pro-

vide this information further to applications and other services. Its interfaces include [19]: a northbound

Service interface, an AdminService interface, a southbound ProviderRegistry interface, a south-

bound ProviderService interface.

Store’s specific implementation is highly related to the Manager in the Core, as the information received by

the latter needs to be indexed, persisted and synchronized with the former, where robustness and consistency

of information must be ensured across multiple ONOS instances.

The application consumes and treats the information gained by the Manager through the AdminService
and Service interfaces and it has a wide range of functions, including displaying the network topology in

the web browser and setting the path for network traffic [19].

Like Provider, each application is associated with a unique ApplicationId, which is used by ONOS to

track context associated with this specific application.

Events and descriptions are the two basic information units distributed in ONOS, which are unaltered once

created and they are connected with specific network elements and concepts. More specifically, descriptions

are used to pass information about elements on the southbound API, whereas events are used by Managers

to notify about changes, and by Stores to notify about events in a distributed setting.

Based on input from the Manager, Events are generated by the Store, and once created they are dispatched

to interested listeners via the StoreDelegate interface, which, in turn, invokes the EventDeliveryService.

More specifically, the StoreDelegate guides the event out of the store, and the EventDeliveryService
makes sure that the event only reaches interested listeners. These two components are in the Manager, which

provides the implementation class of the StoreDelegate to the Store.

Any components that implement the EventListener interface are referred to as Event listeners. Note

that EventListener child interfaces are classified based on the type of Event subclass.

Figure 17 explains the relationship of these components. It is noted that model objects are an ONOS

protocol-independent way to represent various network elements and attributes.

Figure 16: Subsystem structure [19]

24

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 17: Events

5.5 Network State Construction

Control plane holds many key piece of information, such as the network state [20]. Information is gathered

by the control plane, and then is provided to the applications. Actions need to be done in order to maintain

extensibility and component reuse.

Network discovery and configuration are used as mechanisms in order to build ONOS’s protocol-agnostic

topology, combining both the advantages of these mechanisms. Furthermore, ONOS maintains protocol-

agnostic and protocol-specific network element and state representations that can be translated from one to

the other [20]. On top of that, rich data types are used instead of Java primitives for clarity reasons, when

this is possible.

It is intresting to pay attention to the network topology (Device, Host, Link, Path, and others), which is

described in [20]

Speaking of application level, directives for the network are expressed as high-level flow rules given as

Criteria (Match) and Treatment (Action) pairs [20].

Packets, such as from network traffic, and those to be injected into the network, have analogues to the

OpenFlow PacketIn and PacketOut [20].

• OutboundPacket - Protocol agnostic representation of a synthetic packet to be emitted on the network.

This includes information about where to emit this packet.

• InboundPacket - Protocol agnostic representation of a packet sent to the controller by a device. This

enables reactive packet processing by making PacketIns available to providers and applications to use

as needed, e.g. host tracking, link detection.

There is a dependency amongst objects [20]; for example, Ports cannot exist without a Device or Links

cannot exist without Ports, which serve as endpoints to the former. Therefore it is considered Devices to be a

first-class entity in ONOS’s network representations.

ONOS uses the following terminology [20], and based on this terminology an overview of network configu-

ration is given in Figure 18:

• a subject is referred to an object to be configured via this subsystem. For instance: a DeviceId for a

network device

• a config is a set of exposed tunables for a given object. For instance: a BasicDeviceConfig allows a

device’s type and southbound driver to be set or changed

• a key, or subject key, is a string name for a subject and it is used as the key for the JSON field containing

the configuration values. For instance: Device configurations can be found in the field with key "devices".

25

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

• a config key is a string name for a configuration class and it is also used as a JSON field key. For

instance: the key "basic" refers to the general configurations allowed for a device

• A config operator reconciles different sources of network configuration information for a given object

Figure 18: Overview of network configuration

The interested reader who wants to deep further into the Components is referred to [20].

5.6 Device Subsystem

The Device subsystem’s job is to discover and track devices that comprise the network, enabling operators

and applications to control them, and most of ONOS’s core subsystems depend on the Device and Port model

objects, which are created and managed by this subsystem [20].

The Device subsystem consists of [20]:

• a DeviceManager, which can interface with multiple Providers through a DeviceProviderService
interface and multiple listeners through a DeviceService interface

• DeviceProviders, supported from their own network protocol libraries or means to interface with the

network

• a DeviceStore, tracking Device model objects and generating DeviceEvents

OpenFlowDeviceProvider, is used by ONOS to interact with OpenFlow. The table below gives the

major representations translated across the two tiers (note that various network components and properties

are presented by ONOS as protocol-agnostic model objects at the core tier, while as protocol-specific objects

at the provider tier) [20].

Device OpenFlowSwitch

DeviceId/ElementId Dpid

Port OFPortDesc

MastershipRole RoleState

The OpenFlow southbound consists of the OpenFlowDeviceProvider and as well as the OpenFlow

driver components, which are referred as the OpenFlow subsystem. Using the Java protocol bindings gener-

ated with Loxi[41], the OpenFlow subsystem implements the controller-side behavior of the OpenFlow protocol

[20].

Figure 19 illustrates the southbound.

26

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 19: OF provider [20]

OpenFlowController is responsible for the coordination of the OpenFlow functions. It generates Open-

Flow events that providers may subscribe to. Note that providers can be one or more of the following listeners

[20]: OpenFlowSwitchListener, OpenFlowEventListener, PacketListener which are listeners for

switch events, OpenFlow messages and incoming trafic packets, respectively.

OpenFlowController’s job is also to establish and manage the communication channels for each of the

Switch objects [20]. Controller establishes the connections, while the state of each connected switch is

kept track of by the OpenFlowSwitchAgent.

The OpenFlow Switch object is the OpenFlow subsystem’s representation of a network device and it is

complete with a set of ports, device information, unique identifier, and a channel reference to the actual device

connected on the other side [20].

A Switch object has two types of interfaces [20]: OpenFlowSwitch and OpenFlowSwitchDriver facing

in specifing direction (north, towards Providers and south towards the channel and Controller, respectively)

5.7 Device Driver Subsystem

The primary purpose of this subsystem is to isolate device-specific code so it does not spread-out through-

out the rest of the system [20].

A Driver is a representation of a specific family of devices or a specific device and it holds the following

properties [20]: it has a unique name, it supports set of Behaviour classes, it may "inherit" behaviours from

another Driver and it may be "abstract"

To implement aDriver interface, ONOS provides a class named DefaultDriver.

An entity DriverProvider can provide device drivers and their behaviors:

• Set<Driver> getDrivers()

The service DriverAdminService tracks and manages device drivers indirectly by managing driver

providers as follows [20]:

• Set<DriverProvider> getProviders()

• registerProvider(DriverProvider)

• unregisterProvider(DriverProvider)

DriverService is the primary service that applications and other ONOS subsystems can use in order

to locate appropriate drivers for the device through the following [20]:

• by driver name

• by device manufacturer, H/W version & S/W version

• by supported Behaviour

• by device ID

DriverData is a container for data learned about a device in prior interactions. It provides Behaviours
for talking about a device and has parent Driver [20].

27

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

6 Next Generation Software Defined Networking

6.1 Stratum

Stratum
7

is defined as "an open source silicon-independent switch operating system for software defined

networks". It builds an open and minimal production-ready distribution for white box switches. A set of

next-generation SDN interfaces are exposed by Stratum, including P4Runtime and OpenConfig. As a results,

interchangeability of forwarding devices and programmability of forwarding behaviors are enabled.

Furthermore, broadens the scope of SDN to include full lifecycle control, configuration, and operations

interfaces. Stratum represents a promising software component of SDN solutions, while it implements the

latest SDN/centric northbound interfaces, such as P4, P4Runtime, gNMI/OpenConfig, and gNOI. It does not

include control protocols; rather it is designed in that way in order to support either an external Network OS

or to work with NOS functions running on the same embedded switch. Stratum project is depicted in Figure

20.

Figure 20: Stratum Project

Amongst the others, Stratum avoids the vendor lock-in of today’s data planes or proprietary silicon in-

terfaces and importantly avoids closed software APIs. In this way, easy integration of devices into operator

networks is available. Stratum delivers a complete white box switch solution to realize the software defined

promise of SDN [21].

Stratum offers unique advantages when it comes to work with modern SDN controllers. The unique level

of programmability fits well with modern switches/siliconsfor controllerslike ONOS. On top of that, Stratum is

a versatile platform leveraging the capabilities of other open source projects, such as P4 and ONIE [46]. Last

but not least, Stratum provides an open source solution for fully-programmable data planes.

Figure 21 depicts a Stratum Controller.

Figure 21: Stratum Controller

Stratum comes with a docker [39] image that can execute a mininet emulated network using stratum_bmv2

as the default switch. The network topology shown in Figure 22, was created using the aforementioned image

to test and showcase P4 runtime, gNMI [47], ONOS as control plane, an implementation of IPv6 routing with

ECMP [29] and an implementation of SRv6 [27] .

7
https://opennetworking.org/stratum/

28

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 22: Mininet Topology

The topology includes four switches, arranged in a 2x2 fabric manner. Six hosts attached to leaf switches

are included, as well. Three hosts h1a, h1b, and h1c, are part of the same IPv6 subnet. Each host is configured

with IPv6 gateway address on the same subnet as the host, but ending with::ff, e.g, for h1a the gateway

address is 2001:1:1::ff.

What follows next is an introduction to the P4Runtime API. The main.p4 file is used in all of the showcases

presented in this thesis. For some showcases where extra code is required, it will be presented as well.

main.p4

1 #include <core.p4>
2 #include <v1model.p4>
3

4 // CPU_PORT specifies the P4 port number associated to controller packet-in and
5 // packet-out. All packets forwarded via this port will be delivered to the
6 // controller as P4Runtime PacketIn messages. Similarly, PacketOut messages from
7 // the controller will be seen by the P4 pipeline as coming from the CPU_PORT.
8 #define CPU_PORT 255
9

10 // CPU_CLONE_SESSION_ID specifies the mirroring session for packets to be cloned
11 // to the CPU port. Packets associated with this session ID will be cloned to
12 // the CPU_PORT as well as being transmitted via their egress port (set by the
13 // bridging/routing/acl table). For cloning to work, the P4Runtime controller
14 // needs first to insert a CloneSessionEntry that maps this session ID to the
15 // CPU_PORT.
16 #define CPU_CLONE_SESSION_ID 99
17

18 typedef bit<9> port_num_t;
19 typedef bit<48> mac_addr_t;
20 typedef bit<16> mcast_group_id_t;
21 typedef bit<32> ipv4_addr_t;
22 typedef bit<128> ipv6_addr_t;
23 typedef bit<16> l4_port_t;
24

25 const bit<16> ETHERTYPE_IPV4 = 0x0800;
26 const bit<16> ETHERTYPE_IPV6 = 0x86dd;
27

28 const bit<8> IP_PROTO_ICMP = 1;
29 const bit<8> IP_PROTO_TCP = 6;
30 const bit<8> IP_PROTO_UDP = 17;
31 const bit<8> IP_PROTO_ICMPV6 = 58;
32

33 const mac_addr_t IPV6_MCAST_01 = 0x33_33_00_00_00_01;
34

35 const bit<8> ICMP6_TYPE_NS = 135;
36 const bit<8> ICMP6_TYPE_NA = 136;
37

38 const bit<8> NDP_OPT_TARGET_LL_ADDR = 2;
39

40 const bit<32> NDP_FLAG_ROUTER = 0x80000000;
41 const bit<32> NDP_FLAG_SOLICITED = 0x40000000;
42 const bit<32> NDP_FLAG_OVERRIDE = 0x20000000;
43

44

29

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

45 //--
46 // HEADER DEFINITIONS
47 //--
48

49 header ethernet_t {
50 mac_addr_t dst_addr;
51 mac_addr_t src_addr;
52 bit<16> ether_type;
53 }
54

55 header ipv4_t {
56 bit<4> version;
57 bit<4> ihl;
58 bit<6> dscp;
59 bit<2> ecn;
60 bit<16> total_len;
61 bit<16> identification;
62 bit<3> flags;
63 bit<13> frag_offset;
64 bit<8> ttl;
65 bit<8> protocol;
66 bit<16> hdr_checksum;
67 bit<32> src_addr;
68 bit<32> dst_addr;
69 }
70

71 header ipv6_t {
72 bit<4> version;
73 bit<8> traffic_class;
74 bit<20> flow_label;
75 bit<16> payload_len;
76 bit<8> next_hdr;
77 bit<8> hop_limit;
78 bit<128> src_addr;
79 bit<128> dst_addr;
80 }
81

82 header tcp_t {
83 bit<16> src_port;
84 bit<16> dst_port;
85 bit<32> seq_no;
86 bit<32> ack_no;
87 bit<4> data_offset;
88 bit<3> res;
89 bit<3> ecn;
90 bit<6> ctrl;
91 bit<16> window;
92 bit<16> checksum;
93 bit<16> urgent_ptr;
94 }
95

96 header udp_t {
97 bit<16> src_port;
98 bit<16> dst_port;
99 bit<16> len;

100 bit<16> checksum;
101 }
102

103 header icmp_t {
104 bit<8> type;
105 bit<8> icmp_code;
106 bit<16> checksum;
107 bit<16> identifier;
108 bit<16> sequence_number;
109 bit<64> timestamp;
110 }
111

112 header icmpv6_t {
113 bit<8> type;
114 bit<8> code;
115 bit<16> checksum;
116 }
117

118 header ndp_t {

30

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

119 bit<32> flags;
120 ipv6_addr_t target_ipv6_addr;
121 // NDP option.
122 bit<8> type;
123 bit<8> length;
124 bit<48> target_mac_addr;
125 }
126

127 // Packet-in header. Prepended to packets sent to the CPU_PORT and used by the
128 // P4Runtime server (Stratum) to populate the PacketIn message metadata fields.
129 // Here we use it to carry the original ingress port where the packet was
130 // received.
131 @controller_header("packet_in")
132 header cpu_in_header_t {
133 port_num_t ingress_port;
134 bit<7> _pad;
135 }
136

137 // Packet-out header. Prepended to packets received from the CPU_PORT. Fields of
138 // this header are populated by the P4Runtime server based on the P4Runtime
139 // PacketOut metadata fields. Here we use it to inform the P4 pipeline on which
140 // port this packet-out should be transmitted.
141 @controller_header("packet_out")
142 header cpu_out_header_t {
143 port_num_t egress_port;
144 bit<7> _pad;
145 }
146

147 struct parsed_headers_t {
148 cpu_out_header_t cpu_out;
149 cpu_in_header_t cpu_in;
150 ethernet_t ethernet;
151 ipv4_t ipv4;
152 ipv6_t ipv6;
153 srv6h_t srv6h;
154 srv6_list_t[SRV6_MAX_HOPS] srv6_list;
155 tcp_t tcp;
156 udp_t udp;
157 icmp_t icmp;
158 icmpv6_t icmpv6;
159 ndp_t ndp;
160 }
161

162 struct local_metadata_t {
163 l4_port_t l4_src_port;
164 l4_port_t l4_dst_port;
165 bool is_multicast;
166 ipv6_addr_t next_srv6_sid;
167 bit<8> ip_proto;
168 bit<8> icmp_type;
169 }
170

171

172 //--
173 // INGRESS PIPELINE
174 //--
175

176 parser ParserImpl (packet_in packet,
177 out parsed_headers_t hdr,
178 inout local_metadata_t local_metadata,
179 inout standard_metadata_t standard_metadata)
180 {
181 state start {
182 transition select(standard_metadata.ingress_port) {
183 CPU_PORT: parse_packet_out;
184 default: parse_ethernet;
185 }
186 }
187

188 state parse_packet_out {
189 packet.extract(hdr.cpu_out);
190 transition parse_ethernet;
191 }
192

31

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

193 state parse_ethernet {
194 packet.extract(hdr.ethernet);
195 transition select(hdr.ethernet.ether_type){
196 ETHERTYPE_IPV4: parse_ipv4;
197 ETHERTYPE_IPV6: parse_ipv6;
198 default: accept;
199 }
200 }
201

202 state parse_ipv4 {
203 packet.extract(hdr.ipv4);
204 local_metadata.ip_proto = hdr.ipv4.protocol;
205 transition select(hdr.ipv4.protocol) {
206 IP_PROTO_TCP: parse_tcp;
207 IP_PROTO_UDP: parse_udp;
208 IP_PROTO_ICMP: parse_icmp;
209 default: accept;
210 }
211 }
212

213 state parse_ipv6 {
214 packet.extract(hdr.ipv6);
215 local_metadata.ip_proto = hdr.ipv6.next_hdr;
216 transition select(hdr.ipv6.next_hdr) {
217 IP_PROTO_TCP: parse_tcp;
218 IP_PROTO_UDP: parse_udp;
219 IP_PROTO_ICMPV6: parse_icmpv6;
220 IP_PROTO_SRV6: parse_srv6;
221 default: accept;
222 }
223 }
224

225 state parse_tcp {
226 packet.extract(hdr.tcp);
227 local_metadata.l4_src_port = hdr.tcp.src_port;
228 local_metadata.l4_dst_port = hdr.tcp.dst_port;
229 transition accept;
230 }
231

232 state parse_udp {
233 packet.extract(hdr.udp);
234 local_metadata.l4_src_port = hdr.udp.src_port;
235 local_metadata.l4_dst_port = hdr.udp.dst_port;
236 transition accept;
237 }
238

239 state parse_icmp {
240 packet.extract(hdr.icmp);
241 local_metadata.icmp_type = hdr.icmp.type;
242 transition accept;
243 }
244

245 state parse_icmpv6 {
246 packet.extract(hdr.icmpv6);
247 local_metadata.icmp_type = hdr.icmpv6.type;
248 transition select(hdr.icmpv6.type) {
249 ICMP6_TYPE_NS: parse_ndp;
250 ICMP6_TYPE_NA: parse_ndp;
251 default: accept;
252 }
253 }
254

255 state parse_ndp {
256 packet.extract(hdr.ndp);
257 transition accept;
258 }
259 }
260

261

262 control VerifyChecksumImpl(inout parsed_headers_t hdr,
263 inout local_metadata_t meta)
264 {
265 // Not used here. We assume all packets have valid checksum, if not, we let
266 // the end hosts detect errors.

32

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

267 apply { /* EMPTY */ }
268 }
269

270

271 control IngressPipeImpl (inout parsed_headers_t hdr,
272 inout local_metadata_t local_metadata,
273 inout standard_metadata_t standard_metadata) {
274

275 // Drop action shared by many tables.
276 action drop() {
277 mark_to_drop(standard_metadata);
278 }
279

280 action set_egress_port(port_num_t port_num) {
281 standard_metadata.egress_spec = port_num;
282 }
283

284 table l2_exact_table {
285 key = {
286 hdr.ethernet.dst_addr: exact;
287 }
288 actions = {
289 set_egress_port;
290 @defaultonly drop;
291 }
292 const default_action = drop;
293 // The @name annotation is used here to provide a name to this table
294 // counter, as it will be needed by the compiler to generate the
295 // corresponding P4Info entity.
296 @name("l2_exact_table_counter")
297 counters = direct_counter(CounterType.packets_and_bytes);
298 }
299

300 // --- l2_ternary_table (for broadcast/multicast entries) ------------------
301

302 action set_multicast_group(mcast_group_id_t gid) {
303 // gid will be used by the Packet Replication Engine (PRE) in the
304 // Traffic Manager--located right after the ingress pipeline, to
305 // replicate a packet to multiple egress ports, specified by the control
306 // plane by means of P4Runtime MulticastGroupEntry messages.
307 standard_metadata.mcast_grp = gid;
308 local_metadata.is_multicast = true;
309 }
310

311 table l2_ternary_table {
312 key = {
313 hdr.ethernet.dst_addr: ternary;
314 }
315 actions = {
316 set_multicast_group;
317 @defaultonly drop;
318 }
319 const default_action = drop;
320 @name("l2_ternary_table_counter")
321 counters = direct_counter(CounterType.packets_and_bytes);
322 }
323

324 // *** ACL
325 //
326 // Provides ways to override a previous forwarding decision, for example
327 // requiring that a packet is cloned/sent to the CPU, or dropped.
328 //
329 // We use this table to clone all NDP packets to the control plane, so to
330 // enable host discovery. When the location of a new host is discovered, the
331 // controller is expected to update the L2 and L3 tables with the
332 // corresponding bridging and routing entries.
333

334 action send_to_cpu() {
335 standard_metadata.egress_spec = CPU_PORT;
336 }
337

338 action clone_to_cpu() {
339 // Cloning is achieved by using a v1model-specific primitive. Here we
340 // set the type of clone operation (ingress-to-egress pipeline), the

33

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

341 // clone session ID (the CPU one), and the metadata fields we want to
342 // preserve for the cloned packet replica.
343 clone3(CloneType.I2E, CPU_CLONE_SESSION_ID, { standard_metadata.ingress_port });
344 }
345

346 table acl_table {
347 key = {
348 standard_metadata.ingress_port: ternary;
349 hdr.ethernet.dst_addr: ternary;
350 hdr.ethernet.src_addr: ternary;
351 hdr.ethernet.ether_type: ternary;
352 local_metadata.ip_proto: ternary;
353 local_metadata.icmp_type: ternary;
354 local_metadata.l4_src_port: ternary;
355 local_metadata.l4_dst_port: ternary;
356 }
357 actions = {
358 send_to_cpu;
359 clone_to_cpu;
360 drop;
361 }
362 @name("acl_table_counter")
363 counters = direct_counter(CounterType.packets_and_bytes);
364 }
365

366 apply {
367 bool do_l3_l2 = true;
368

369 if (do_l3_l2) {
370 // L2 bridging logic. Apply the exact table first...
371 if (!l2_exact_table.apply().hit) {
372 // ...if an entry is NOT found, apply the ternary one in case
373 // this is a multicast/broadcast NDP NS packet.
374 l2_ternary_table.apply();
375 }
376 }
377

378 // Lastly, apply the ACL table.
379 acl_table.apply();
380 }
381 }
382

383

384 control EgressPipeImpl (inout parsed_headers_t hdr,
385 inout local_metadata_t local_metadata,
386 inout standard_metadata_t standard_metadata) {
387 apply {
388 // If this is a multicast packet (flag set by l2_ternary_table), make
389 // sure we are not replicating the packet on the same port where it was
390 // received. This is useful to avoid broadcasting NDP requests on the
391 // ingress port.
392 if (local_metadata.is_multicast == true &&
393 standard_metadata.ingress_port == standard_metadata.egress_port) {
394 mark_to_drop(standard_metadata);
395 }
396 }
397 }
398

399

400 control ComputeChecksumImpl(inout parsed_headers_t hdr,
401 inout local_metadata_t local_metadata)
402 {
403 apply {
404 // The following is used to update the ICMPv6 checksum of NDP
405 // NA packets generated by the ndp reply table in the ingress pipeline.
406 // This function is executed only if the NDP header is present.
407 update_checksum(hdr.ndp.isValid(),
408 {
409 hdr.ipv6.src_addr,
410 hdr.ipv6.dst_addr,
411 hdr.ipv6.payload_len,
412 8w0,
413 hdr.ipv6.next_hdr,
414 hdr.icmpv6.type,

34

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

415 hdr.icmpv6.code,
416 hdr.ndp.flags,
417 hdr.ndp.target_ipv6_addr,
418 hdr.ndp.type,
419 hdr.ndp.length,
420 hdr.ndp.target_mac_addr
421 },
422 hdr.icmpv6.checksum,
423 HashAlgorithm.csum16
424);
425 }
426 }
427

428

429 control DeparserImpl(packet_out packet, in parsed_headers_t hdr) {
430 apply {
431 packet.emit(hdr.cpu_in);
432 packet.emit(hdr.ethernet);
433 packet.emit(hdr.ipv4);
434 packet.emit(hdr.ipv6);
435 packet.emit(hdr.tcp);
436 packet.emit(hdr.udp);
437 packet.emit(hdr.icmp);
438 packet.emit(hdr.icmpv6);
439 packet.emit(hdr.ndp);
440 }
441 }
442

443 V1Switch(
444 ParserImpl(),
445 VerifyChecksumImpl(),
446 IngressPipeImpl(),
447 EgressPipeImpl(),
448 ComputeChecksumImpl(),
449 DeparserImpl()
450) main;

To compile the P4 program for the bmv2 simple_switch target, the open source P4 compiler p4c is used,

which includes a backend for this specific target named p4c-bm2-ss. The OpenNetworking provides a docker

image for p4c and is used to compile the main.p4 file. The command used to compile the main.p4 file is shown

in the following snippet:

1 $ docker run --rm -v /workdir -w /workdir opennetworking/p4c:stable \
2 p4c-bm2-ss --arch v1model -o p4src/build/bmv2.json \
3 --p4runtime-files p4src/build/p4info.txt --Wdisable=unsupported \
4 p4src/main.p4

Using these arguments when calling p4c-bm2-ss, the compiler is instructed to:

• Compile for the v1model architecture (–arch argument)

• Put the main output in p4src/build/bmv2.json (-o)

• Generate a P4Info file in p4src/build/p4info.txt (–p4runtime-files)

• Ignore some warnings about unsupported features (–Wdisable=unsupported), it is ok to ignore such

warnings here, as they are generated because of a bug in p4c

The compiler outputs two files namely bmv2.json and p4info.txt. The bmv2.json file defines a configuration

for the bmv2 simple_switch target in JSON format. When simple_switch receives a new packet, it uses this

configuration to process the packet in a way that is consistent with the P4 program. The p4info.txt file contains

an instance of a P4Info schema for our P4 program, expressed using the protobuf Text format.

When the mininet container starts, a set of files related to the execution of each stratum_bmv2 instance is

generated. Examples include:

• leaf1/stratum_bmv2.log: contains the stratum_bmv2 log for switch leaf1

• leaf1/chassis-config.txt: the stratum "chassis config" file used to specify the initial port configuration to

use at switch startup

• leaf1/write-reqs.txt: a log of all P4Runtime write requests processed by the switch, the file might not

exist if the switch has not received any write request

35

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

To program leaf1 using P4Runtime, the P4Runtime shell [36] is used, which is an interactive Python CLI

that can be used to connect to a P4Runtime server and can run P4Runtime commands. It can be used to

create, read, update, and delete flow table entries.

The shell can be started in two modes, with or without a P4 pipeline config. In the first case, the shell will

take care of pushing the given pipeline config to the switch using the P4Runtime SetPipelineConfig RPC. In

the second case, the shell will try to retrieve the P4Info that is currently configured in the switch.

In both cases, the shell makes use of the P4Info file to:

• allow specifying runtime entities such as table entries using P4Info names rather then numeric IDs,

much easier to remember and read

• provide autocompletion

• validate the CLI commands

Finally, when connecting to a P4Runtime server, the specification mandates that a mastership election ID

is provided to be able to write state, such as the pipeline config and table entries.

To connect the P4Runtime shell to leaf1 and push the pipeline configuration obtained from the compilation

of main.p4 file, the following command is used:

1 $ docker run -ti p4lang/p4runtime-sh --grpc-addr localhost:50001 \
2 --config p4src/build/p4info.txt,p4src/build/bmv2.json \
3 --election-id 0,1

(as a note: –grpc-addr localhost:50001 is used because the mininet container is executed locally, and 50001

is the TCP port associated to the gRPC server exposed by leaf1)

If the shell is started successfully, the following output should be presented:

1 *** Connecting to P4Runtime server at host.docker.internal:50001 ...
2 *** Welcome to the IPython shell for P4Runtime ***
3 P4Runtime sh >>>

Some of the available commands are tables, actions, action_profiles, counters, direct_counters, and other

named after the P4Info message fields, to query information about P4Info objects. Commands such as

table_entry, action_profile_member, action_profile_group, counter_entry, direct_counter_entry, meter_entry,

direct_meter_entry, multicast_group_entry, and clone_session_entry, can be used to read/write the corre-

sponding P4Runtime entities. Additionaly, P4Runtime shell provides a help menu, typing the command name

followed by ?, e.g. table_entry?. Also, the shell supports autocompletion when pressing tab.

In order to showcase how the P4 Runtime can control the forwarding plane of the switches, a bridging

connectivity test is performed. To be able to ping two IPv6 hosts in the same subnet, first, the hosts need to

resolve their respective MAC address using the Neighbor Discovery Protocol (NDP) [24]. This is equivalent to

ARP in IPv4 networks. For example, when trying to ping h1b from h1a, h1a first an NDP Neighbor Solicitation

(NS) message is generated to resolve the MAC address of h1b. Once h1b receives the NDP NS message, it

should reply with an NDP Neighbor Advertisement (NA) with its own MAC address. Now both host are aware

of each other MAC address and the ping packets can be exchanged.

In the main.p4 file is defined a way on how to handle NDP packets using P4Runtime (l2_ternary_table lines

311-322). However, for the sake of simplicity two static NDP entries is inserted to the hosts, to add an NDP

entry to h1a, mapping h1b’s IPv6 address (2001:1:1::B) to its MAC address (00:00:00:00:00:1B):

1 mininet> h1a ip -6 neigh replace 2001:1:1::B lladdr 00:00:00:00:00:1B dev h1a-eth0

and vice versa, to add an NDP entry to h1b to resolve h1a’s address:

1 mininet> h1b ip -6 neigh replace 2001:1:1::A lladdr 00:00:00:00:00:1A dev h1b-eth0

A ping between h1a and h1b should not work, yet, because P4Runtime table entry for forward these packets

is not inserted. To be able to forward ping packets, two table entries are needed to be added on l2_exact_table

in leaf1, one that matches on destination MAC address of h1b and forwards traffic to port 4, where h1b is

attached, and one that matches on destination MAC address of h1b and forwards traffic to port 3, where h1a

is attached.

For this purpose, the P4Runtime shell is used to create and insert such entries. To create a table entry

object:

1 P4Runtime sh >>> te = table_entry["P4INFO-TABLE-NAME"](action = "<P4INFO-ACTION-NAME>")

and to specify a match field:

1 P4Runtime sh >>> te.match["P4INFO-MATCH-FIELD-NAME"] = ("VALUE")

36

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

VALUE can be a MAC address expressed in Colon-Hexadecimal notation (e.g., 00:11:22:AA:BB:CC), or IP

address in dot notation, or an arbitrary string. Based on the information contained in the P4Info, P4Runtime

shell will internally convert that value to a protobuf byte string. To specify the values for the table entry action

parameters:

1 P4Runtime sh >>> te.action["P4INFO-ACTION-PARAM-NAME"] = ("VALUE")

To show the table entry object in protobuf Text format:

1 P4Runtime sh >>> print(te)

The shell internally takes care of populating the fields of the corresponding protobuf message by using the

content of the P4Info file. To insert the entry, this will issue a P4Runtime Write RPC to the switch:

1 P4Runtime sh >>> te.insert()

To read table entries from the switch, this will issue a P4Runtime Read RPC:

1 P4Runtime sh >>> for te in table_entry["P4INFO-TABLE-NAME"].read():
2 ...: print(te)
3 ...:

After inserting the two entries, ping should work.

6.2 YANG

YANG
8

(Yet Another Next Generation) is "a data modelling language, providing a standardized way to

model the operational and configuration data of a network device. YANG, being a language is being protocol

independent, can then be converted into any encoding format, e.g. XML or JSON". From a YANG model, two

things are important:

• the data tree organization from which we get the paths and leaf data types

• the semantics of the leaf nodes from the description field

A YANG model consists of various components, as shown in Figure 23, that will be discussed and presented

with code snippets.

Figure 23: YANG Structure

A module is a self-contained tree of nodes. Modules are the smallest unit that can be "compiled" by YANG

tools. A module contains:

8
https://www.fir3net.com/Networking/Protocols/an-introduction-to-netconf-yang.html

37

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

• boilerplate, like a namespace, prefix for reference in other modules, description, version / revision

history, etc.

• identities and derived types

• modular groupings

• a top-level container that defines tree of data nodes

An example snippet is shown below.

1 // A module is a self-contained tree of nodes
2 module demo-port {
3

4 // YANG Boilerplate
5 yang-version "1";
6 namespace "https://opennetworking.org/yang/demo";
7 prefix "demo-port";
8 description "Demo model for managing ports";
9 revision "2019-09-10" {

10 description "Initial version";
11 reference "1.0.0";
12 }
13

14 // ... insert rest of model here ...
15 }

YANG defines several built-in types including binary, bits, boolean, decimal64, empty, enumeration, iden-

tityref, int8, int16, int32, int64, string, uint8, uint16, uint32, uint64, decimal64. For the complete list, check

out RFC 6020 [30] for YANG 1.0 or RFC 7950 [28] for YANG 1.1.

An identity is a globally unique, abstract, and untyped. Identities are used to identify something with

explicit semantics and can be hierarchical. Derived types enable constraint of build-in types or other derived

types, and they are defined using typedef. An example is presented below.

1 // Identities and Typedefs
2 identity SPEED {
3 description "base type for port speeds";
4 }
5

6 identity SPEED_10GB {
7 base SPEED;
8 description "10 Gbps port speed";
9 }

10

11 typedef port-number {
12 type uint16 {
13 range 1..32;
14 }
15 description "New type for port number that ensure
16 the number is between 1 and 32, inclusive";
17 }

A grouping is a reusable set of nodes (containers and leaves) that can be included in a container. However,

on its own a grouping does not add any nodes to the module in which it is defined or imported. A leaf is a

node that contains a value (built-in type or derived type) and has no children.

1 // Reusable groupings for port config and state
2 grouping port-config {
3 description "Set of configurable attributes / leaves";
4 leaf speed {
5 type identityref {
6 base demo-port:SPEED;
7 }
8 description "Configurable speed of a switch port";
9 }

10 }
11

12 grouping port-state {
13 description "Set of read-only state";
14 leaf status {
15 type boolean;
16 description "Number";
17 }
18 }

38

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

A container is a node with a set of children. Each module has one top-level or root container. A list

is a node that contains a set of multiple children of the same type. Lists elements are identified by a key.

Containers marked config false are state data that is read-only from a clients perspective. Typically, it is used

for status or statistics.

1 container ports {
2 description "The root container for port configuration and state";
3 list port {
4 key "port-number";
5 description "List of ports on a switch";
6

7 leaf port-number {
8 type port-number;
9 description "Port number (maps to the front panel port of a switch);

10 also the key for the port list";
11 }
12

13 // each individual will have the elements defined in the grouping
14 container config {
15 description "Configuration data for a port";
16 uses port-config; // reference to grouping above
17 }
18 container state {
19 config false; // makes child nodes read-only
20 description "Read-only state for a port";
21 uses port-state; // reference to grouping above
22 }
23 }
24 }

Other interesting terminology:

• import is used to include types, groupings, or other models

• augment is used to add to a previously defined schema

• deviation is used to indicate a device does not implement part of a schema

6.3 OpenConfig

OpenConfig [22] is "an informal working group of network operators sharing the goal of moving computer

networks toward a more dynamic, programmable infrastructure by adopting software-defined networking

principles such as declarative configuration and model-driven management and operations".

The initial focus in OpenConfig is on compiling a consistent set of vendor-neutral data models, written in

YANG, based on actual operational needs from use cases and requirements from multiple network operators.

Streaming telemetry is a new paradigm for network monitoring, where data are streamed continuously

from devices with efficient and incremental updates; operators can subscribe to the specific data items they

need, using OpenConfig data models as the common interface [22].

OpenConfig focuses on compiling a consistent set of vendor neutral YANG data models continuously. These

data models cover a large group of network elements, including routers and optical switches. Note that only a

subset is relevant to the data plane. Figure 24 depicts OpenConfig Models. These are the models that Stratum

is interested in: interfaces, lacp, platform, qos, vlan, system

Figure 24: OpenConfig Models

There are several YANG-model agnostic protocols, figure 25, that can be used to get or set data that adheres

to a model, like NETCONF [25], RESTCONF [26], and gNMI.

39

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 25: YANG Data Representation

6.3.1 gNMI

gNMI (gRPC Network Management Interface) is part of OpenConfig. It is a standardized protocol defined

in protocol buffers to address YANG-based data models and to interact using a specific Network Management

Interface. The main operations are: SetRequest, SetResponse, GetRequest, GetResponse and Subscription [11].

The purpose of the following showcase is to demonstrate YANG-enabled transport protocols, specifically

gNMI. To do so, the gNMI client CLI [23] is used. To read all of the configuration from the Stratum switche

leaf1 in our Mininet network:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 get /

the first part of the output shows the request that was made by the CLI:

1 REQUEST
2 path {
3 }
4 type: CONFIG
5 encoding: PROTO

the path being requested is the empty path, which means the root of the config tree, the type of data is just

the config tree, and the requested encoding for the response is protobuf.

The second part of the output shows the response from Stratum:

1 RESPONSE
2 notification {
3 update {
4 path {
5 }
6 val {
7 any_val {
8 type_url: "type.googleapis.com/openconfig.Device"
9 value: \252\221\231\304\001\... TRUNCATED

10 }
11 }
12 }
13 }

the Stratum provides a response of type openconfig.Device, which is the top-level message defined in

openconfig.proto. The response is the binary encoding of the data based on the protobuf message. The

value is not human readable, but the reply can be translated using a utility that converts between the binary

and textual representations of the protobuf message. The following command pipe the output through the

converter utility then pipe that output to less to make scrolling easier:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 get / | \
2 $ docker run --rm -i bocon/yang-tools:latest oc-pb-decoder | \
3 less

40

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

The contents of the response should now be easier to read.

One of the benefits of gNMI is that it is "schema-less" encoding, which allows clients or devices to update

only the paths that need to be updated. This is particularly useful for subscriptions. First, to try out the

schema-less representation by requesting the configuration port between leaf1 and h1a:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 get \
2 /interfaces/interface[name=leaf1-eth3]/config

this response containing 2 leafs under config, enabled and health-indicator:

1 RESPONSE
2 notification {
3 update {
4 path {
5 elem {
6 name: "interfaces"
7 }
8 elem {
9 name: "interface"

10 key {
11 key: "name"
12 value: "leaf1-eth3"
13 }
14 }
15 elem {
16 name: "config"
17 }
18 elem {
19 name: "enabled"
20 }
21 }
22 val {
23 bool_val: true
24 }
25 }
26 }
27 notification {
28 update {
29 path {
30 elem {
31 name: "interfaces"
32 }
33 elem {
34 name: "interface"
35 key {
36 key: "name"
37 value: "leaf1-eth3"
38 }
39 }
40 elem {
41 name: "config"
42 }
43 elem {
44 name: "health-indicator"
45 }
46 }
47 val {
48 string_val: "GOOD"
49 }
50 }
51 }

The schema-less representation provides and update for each leaf containing both the path the value of the

leaf. The confirmation that the interface is enabled is that is set to true.

The next snippet shows how to subscribe to the ingress unicast packet counters for the interface on leaf1

attached to h1a, port 3:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 \
2 --interval 1000 sub-sample \
3 /interfaces/interface[name=leaf1-eth3]/state/counters/in-unicast-pkts

The first part of the output shows the request being made by the CLI. The subscription path, the type of

subscription (sampling) and the sampling rate (every 1000ms, or 1s) are shown below.

41

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

1 REQUEST
2 subscribe {
3 subscription {
4 path {
5 elem {
6 name: "interfaces"
7 }
8 elem {
9 name: "interface"

10 key {
11 key: "name"
12 value: "leaf1-eth3"
13 }
14 }
15 elem {
16 name: "state"
17 }
18 elem {
19 name: "counters"
20 }
21 elem {
22 name: "in-unicast-pkts"
23 }
24 }
25 mode: SAMPLE
26 sample_interval: 1000
27 }
28 updates_only: true
29 }

The second part of the output is a stream of responses:

1 RESPONSE
2 update {
3 timestamp: 1567895852136043891
4 update {
5 path {
6 elem {
7 name: "interfaces"
8 }
9 elem {

10 name: "interface"
11 key {
12 key: "name"
13 value: "leaf1-eth3"
14 }
15 }
16 elem {
17 name: "state"
18 }
19 elem {
20 name: "counters"
21 }
22 elem {
23 name: "in-unicast-pkts"
24 }
25 }
26 val {
27 uint_val: 1592
28 }
29 }
30 }

Each response has a timestamp, path, and new value. Because we are sampling, a new update should printed

every second.

From mininet some traffic can be generated by a ping between hosts h1a and h1b. The uint_val should

increase by 1 every second while ping is still running. If it is not exactly 1, then there could be other traffic

like NDP messages contributing to the increase. To stop the gNMI subscription Ctrl-C is used.

Finally, to monitor link events using gNMI’s on-change subscriptions, a subscription for the operational

status of the first switch’s first port can be started like this:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 sub-onchange
\

2 /interfaces/interface[name=leaf1-eth3]/state/oper-status

42

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

The following response indicates that port 1 is UP:

1 RESPONSE
2 update {
3 timestamp: 1567896668419430407
4 update {
5 path {
6 elem {
7 name: "interfaces"
8 }
9 elem {

10 name: "interface"
11 key {
12 key: "name"
13 value: "leaf1-eth3"
14 }
15 }
16 elem {
17 name: "state"
18 }
19 elem {
20 name: "oper-status"
21 }
22 }
23 val {
24 string_val: "UP"
25 }
26 }
27 }

If the interface on leaf1 connected to h1a taken down with this command:

1 mininet> sh ifconfig leaf1-eth3 down

The response will show that the interface on leaf1 connected to h1a is DOWN :

1 RESPONSE
2 update {
3 timestamp: 1567896891549363399
4 update {
5 path {
6 elem {
7 name: "interfaces"
8 }
9 elem {

10 name: "interface"
11 key {
12 key: "name"
13 value: "leaf1-eth3"
14 }
15 }
16 elem {
17 name: "state"
18 }
19 elem {
20 name: "oper-status"
21 }
22 }
23 val {
24 string_val: "DOWN"
25 }
26 }
27 }

The gNMI can also be used to disable or enable an interface, like this:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 set \
2 /interfaces/interface[name=leaf1-eth3]/config/enabled \
3 --bool-val false

The following request indicating the new value for the enabled leaf:

1 REQUEST
2 update {
3 path {
4 elem {

43

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

5 name: "interfaces"
6 }
7 elem {
8 name: "interface"
9 key {

10 key: "name"
11 value: "leaf1-eth3"
12 }
13 }
14 elem {
15 name: "config"
16 }
17 elem {
18 name: "enabled"
19 }
20 }
21 val {
22 bool_val: false
23 }
24 }

While this response indicating that the operational status of leaf1-eth3 is DOWN :

1 RESPONSE
2 update {
3 timestamp: 1567896891549363399
4 update {
5 path {
6 elem {
7 name: "interfaces"
8 }
9 elem {

10 name: "interface"
11 key {
12 key: "name"
13 value: "leaf1-eth3"
14 }
15 }
16 elem {
17 name: "state"
18 }
19 elem {
20 name: "oper-status"
21 }
22 }
23 val {
24 string_val: "DOWN"
25 }
26 }
27 }

and as a consequence the ping has stopped working.

To re-nable the port:

1 $ docker run --rm -it --network host bocon/gnmi-cli:latest --grpc-addr localhost:50001 set \
2 /interfaces/interface[name=leaf1-eth3]/config/enabled \
3 --bool-val true

after the above command execution the interface is UP, and the ping should resume.

6.4 ONOS as the control plane

This subsection showcase how to integrate ONOS built-in services for link and host discovery with P4

program. Such built-in services are based on the ability of switches to send data plane packets to the

controller (packet-in) and vice versa (packet-out).

To make this work with main.p4, simple changes are needed to the code. Additionaly, changes to the

pipeconf Java implementation is also required to enable ONOS’s built-in apps to use packet-in/out via

P4Runtime.

It will be presented in two parts:

• Enable packet I/O and verify link discovery

• Host discovery & L2 bridging

44

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

6.4.1 Enable Packet I/O

Here is presented how the controller packet I/O works with P4Runtime. The main.p4 provides support for

carrying arbitrary metadata in P4Runtime PacketIn and PacketOut messages. Two special headers are defined

and annotated with the standard P4 annotation @controller_header, lines 127-145 in the main.p4 file.

These headers are used to carry the original switch ingress port of a packet-in, and to specify the intended

output port for a packet-out.

When the P4Runtime agent in stratum receives a packet from the switch CPU port, it expects to find the

cpu_in_header_t header as the first one in the frame. It looks at the controller_packet_metadata
part of the P4Info file to determine the number of bits to strip at the beginning of the frame and to populate

the corresponding metadata field of the PacketIn message, including the ingress port as in this case.

Similarly, when stratum receives a P4Runtime PacketOut message, it uses the values found in the Pack-

etOut’s metadata fields to serialize and prepend a cpu_out_header_t to the frame before feeding it to the

pipeline parser.

The main.p4 code already provides support for the following capabilities:

• Parse the cpu_out header, if the ingress port is the CPU one

• Emit the cpu_in header as the first one in the deparser

• Provide an ACL table with ternary match fields and an action to send or clone packets to the CPU port,

which is used to generate a packet-ins

In order to provide complete packet-in/out support, the following modifications are required:

1. In the IngressPipeImpl block the packet egress port is set to that found in the cpu_out header then

the cpu_out header is removed and the pipeline is exited.

1 control IngressPipeImpl (inout parsed_headers_t hdr,
2 inout local_metadata_t local_metadata,
3 inout standard_metadata_t standard_metadata) {
4

5 ...
6

7 apply {
8

9 if (hdr.cpu_out.isValid()) {
10 standard_metadata.egress_spec = hdr.cpu_out.egress_port;
11 hdr.cpu_out.setInvalid();
12 exit;
13 }
14

15 bool do_l3_l2 = true;
16

17 ...
18

19 }
20

2. In the EgressPipeImpl logic is implemented to check if the packet is to be forwarded to the CPU port,

e.g, if in ingress on the ACL table with action send/clone_to_cpu is matched.

1 control EgressPipeImpl (inout parsed_headers_t hdr,
2 inout local_metadata_t local_metadata,
3 inout standard_metadata_t standard_metadata) {
4 apply {
5

6 if (standard_metadata.egress_port == CPU_PORT) {
7

8 hdr.cpu_in.setValid();
9 hdr.cpu_in.ingress_port = standard_metadata.ingress_port;

10 exit;
11 }
12

13 ...
14

15 }
16

17 ...
18

19 }

45

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

The built-in apps of ONOS for basic sevices that is used in this showcase are

• gui2: ONOS web user interface (available at http://<ONOS_IP>:8181/onos/ui)

• drivers.bmv2: BMv2/Stratum drivers based on P4Runtime, gNMI, and gNOI

• lldpprovider: LLDP-based link discovery application

• hostprovider: Host discovery application

For ONOS to be integrated with the P4 program presented, a development of a new app is required that

implements the pipeconf. This new app includes three pipeconf-related files presented below:

• PipeconfLoader.java: A component that registers the pipeconf at app activation

• InterpreterImpl.java: An implementation of the PipelineInterpreter driver behavior

• PipelinerImpl.java: An implementation of the Pipeliner driver behavior

PipeconfLoader.java

1 package org.onosproject.ngsdn.tutorial.pipeconf;
2

3 import org.onosproject.net.behaviour.Pipeliner;
4 import org.onosproject.net.driver.DriverAdminService;
5 import org.onosproject.net.driver.DriverProvider;
6 import org.onosproject.net.pi.model.DefaultPiPipeconf;
7 import org.onosproject.net.pi.model.PiPipeconf;
8 import org.onosproject.net.pi.model.PiPipelineInterpreter;
9 import org.onosproject.net.pi.model.PiPipelineModel;

10 import org.onosproject.net.pi.service.PiPipeconfService;
11 import org.onosproject.p4runtime.model.P4InfoParser;
12 import org.onosproject.p4runtime.model.P4InfoParserException;
13 import org.osgi.service.component.annotations.Activate;
14 import org.osgi.service.component.annotations.Component;
15 import org.osgi.service.component.annotations.Deactivate;
16 import org.osgi.service.component.annotations.Reference;
17 import org.osgi.service.component.annotations.ReferenceCardinality;
18 import org.slf4j.Logger;
19 import org.slf4j.LoggerFactory;
20

21 import java.net.URL;
22 import java.util.List;
23 import java.util.stream.Collectors;
24

25 import static org.onosproject.net.pi.model.PiPipeconf.ExtensionType.BMV2_JSON;
26 import static org.onosproject.net.pi.model.PiPipeconf.ExtensionType.P4_INFO_TEXT;
27 import static org.onosproject.ngsdn.tutorial.AppConstants.PIPECONF_ID;
28

29 /**
30 * Component that builds and register the pipeconf at app activation.
31 */
32 @Component(immediate = true, service = PipeconfLoader.class)
33 public final class PipeconfLoader {
34

35 private final Logger log = LoggerFactory.getLogger(getClass());
36

37 private static final String P4INFO_PATH = "/p4info.txt";
38 private static final String BMV2_JSON_PATH = "/bmv2.json";
39

40

41 @Reference(cardinality = ReferenceCardinality.MANDATORY)
42 private PiPipeconfService pipeconfService;
43

44 @Reference(cardinality = ReferenceCardinality.MANDATORY)
45 private DriverAdminService driverAdminService;
46

47 @Activate
48 public void activate() {
49 // Registers the pipeconf at component activation.
50 if (pipeconfService.getPipeconf(PIPECONF_ID).isPresent()) {
51 // Remove first if already registered, to support reloading of the
52 // pipeconf during the tutorial.

46

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

53 pipeconfService.unregister(PIPECONF_ID);
54 }
55 removePipeconfDrivers();
56 try {
57 pipeconfService.register(buildPipeconf());
58 } catch (P4InfoParserException e) {
59 log.error("Unable to register " + PIPECONF_ID, e);
60 }
61 }
62

63 @Deactivate
64 public void deactivate() {
65 // Do nothing.
66 }
67

68 private PiPipeconf buildPipeconf() throws P4InfoParserException {
69

70 final URL p4InfoUrl = PipeconfLoader.class.getResource(P4INFO_PATH);
71 final URL bmv2JsonUrlUrl = PipeconfLoader.class.getResource(BMV2_JSON_PATH);
72 final PiPipelineModel pipelineModel = P4InfoParser.parse(p4InfoUrl);
73

74 return DefaultPiPipeconf.builder()
75 .withId(PIPECONF_ID)
76 .withPipelineModel(pipelineModel)
77 .addBehaviour(PiPipelineInterpreter.class, InterpreterImpl.class)
78 .addBehaviour(Pipeliner.class, PipelinerImpl.class)
79 .addExtension(P4_INFO_TEXT, p4InfoUrl)
80 .addExtension(BMV2_JSON, bmv2JsonUrlUrl)
81 .build();
82 }
83

84 private void removePipeconfDrivers() {
85 List<DriverProvider> driverProvidersToRemove = driverAdminService
86 .getProviders().stream()
87 .filter(p -> p.getDrivers().stream()
88 .anyMatch(d -> d.name().endsWith(PIPECONF_ID.id())))
89 .collect(Collectors.toList());
90

91 if (driverProvidersToRemove.isEmpty()) {
92 return;
93 }
94

95 log.info("Found {} outdated drivers for pipeconf ’{}’, removing...",
96 driverProvidersToRemove.size(), PIPECONF_ID);
97

98 driverProvidersToRemove.forEach(driverAdminService::unregisterProvider);
99 }

100 }

InterpreterImpl.java

1 package org.onosproject.ngsdn.tutorial.pipeconf;
2

3 import com.google.common.collect.ImmutableList;
4 import com.google.common.collect.ImmutableMap;
5 import org.onlab.packet.DeserializationException;
6 import org.onlab.packet.Ethernet;
7 import org.onlab.util.ImmutableByteSequence;
8 import org.onosproject.net.ConnectPoint;
9 import org.onosproject.net.DeviceId;

10 import org.onosproject.net.Port;
11 import org.onosproject.net.PortNumber;
12 import org.onosproject.net.device.DeviceService;
13 import org.onosproject.net.driver.AbstractHandlerBehaviour;
14 import org.onosproject.net.flow.TrafficTreatment;
15 import org.onosproject.net.flow.criteria.Criterion;
16 import org.onosproject.net.packet.DefaultInboundPacket;
17 import org.onosproject.net.packet.InboundPacket;
18 import org.onosproject.net.packet.OutboundPacket;
19 import org.onosproject.net.pi.model.PiMatchFieldId;
20 import org.onosproject.net.pi.model.PiPacketMetadataId;
21 import org.onosproject.net.pi.model.PiPipelineInterpreter;
22 import org.onosproject.net.pi.model.PiTableId;
23 import org.onosproject.net.pi.runtime.PiAction;
24 import org.onosproject.net.pi.runtime.PiPacketMetadata;

47

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

25 import org.onosproject.net.pi.runtime.PiPacketOperation;
26

27 import java.nio.ByteBuffer;
28 import java.util.Collection;
29 import java.util.List;
30 import java.util.Map;
31 import java.util.Optional;
32

33 import static java.lang.String.format;
34 import static java.util.stream.Collectors.toList;
35 import static org.onlab.util.ImmutableByteSequence.copyFrom;
36 import static org.onosproject.net.PortNumber.CONTROLLER;
37 import static org.onosproject.net.PortNumber.FLOOD;
38 import static org.onosproject.net.flow.instructions.Instruction.Type.OUTPUT;
39 import static org.onosproject.net.flow.instructions.Instructions.OutputInstruction;
40 import static org.onosproject.net.pi.model.PiPacketOperationType.PACKET_OUT;
41 import static org.onosproject.ngsdn.tutorial.AppConstants.CPU_PORT_ID;
42

43

44 /**
45 * Interpreter implementation.
46 */
47 public class InterpreterImpl extends AbstractHandlerBehaviour
48 implements PiPipelineInterpreter {
49

50

51 // From v1model.p4
52 private static final int V1MODEL_PORT_BITWIDTH = 9;
53

54 // From P4Info.
55 private static final Map<Criterion.Type, String> CRITERION_MAP =
56 new ImmutableMap.Builder<Criterion.Type, String>()
57 .put(Criterion.Type.IN_PORT, "standard_metadata.ingress_port")
58 .put(Criterion.Type.ETH_DST, "hdr.ethernet.dst_addr")
59 .put(Criterion.Type.ETH_SRC, "hdr.ethernet.src_addr")
60 .put(Criterion.Type.ETH_TYPE, "hdr.ethernet.ether_type")
61 .put(Criterion.Type.IPV6_DST, "hdr.ipv6.dst_addr")
62 .put(Criterion.Type.IP_PROTO, "local_metadata.ip_proto")
63 .put(Criterion.Type.ICMPV4_TYPE, "local_metadata.icmp_type")
64 .put(Criterion.Type.ICMPV6_TYPE, "local_metadata.icmp_type")
65 .build();
66

67 /**
68 * Returns a collection of PI packet operations populated with metadata
69 * specific for this pipeconf and equivalent to the given ONOS
70 * OutboundPacket instance.
71 *
72 * @param packet ONOS OutboundPacket
73 * @return collection of PI packet operations
74 * @throws PiInterpreterException if the packet treatments cannot be
75 * executed by this pipeline
76 */
77 @Override
78 public Collection<PiPacketOperation> mapOutboundPacket(OutboundPacket packet)
79 throws PiInterpreterException {
80 TrafficTreatment treatment = packet.treatment();
81

82 // Packet-out in main.p4 supports only setting the output port,
83 // i.e. we only understand OUTPUT instructions.
84 List<OutputInstruction> outInstructions = treatment
85 .allInstructions()
86 .stream()
87 .filter(i -> i.type().equals(OUTPUT))
88 .map(i -> (OutputInstruction) i)
89 .collect(toList());
90

91 if (treatment.allInstructions().size() != outInstructions.size()) {
92 // There are other instructions that are not of type OUTPUT.
93 throw new PiInterpreterException("Treatment not supported: " + treatment);
94 }
95

96 ImmutableList.Builder<PiPacketOperation> builder = ImmutableList.builder();
97 for (OutputInstruction outInst : outInstructions) {
98 if (outInst.port().isLogical() && !outInst.port().equals(FLOOD)) {

48

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

99 throw new PiInterpreterException(format(
100 "Packet-out on logical port ’%s’ not supported",
101 outInst.port()));
102 } else if (outInst.port().equals(FLOOD)) {
103 // To emulate flooding, we create a packet-out operation for
104 // each switch port.
105 final DeviceService deviceService = handler().get(DeviceService.class);
106 for (Port port : deviceService.getPorts(packet.sendThrough())) {
107 builder.add(buildPacketOut(packet.data(), port.number().toLong()));
108 }
109 } else {
110 // Create only one packet-out for the given OUTPUT instruction.
111 builder.add(buildPacketOut(packet.data(), outInst.port().toLong()));
112 }
113 }
114 return builder.build();
115 }
116

117 /**
118 * Builds a pipeconf-specific packet-out instance with the given payload and
119 * egress port.
120 *
121 * @param pktData packet payload
122 * @param portNumber egress port
123 * @return packet-out
124 * @throws PiInterpreterException if packet-out cannot be built
125 */
126 private PiPacketOperation buildPacketOut(ByteBuffer pktData, long portNumber)
127 throws PiInterpreterException {
128

129 // Make sure port number can fit in v1model port metadata bitwidth.
130 final ImmutableByteSequence portBytes;
131 try {
132 portBytes = copyFrom(portNumber).fit(V1MODEL_PORT_BITWIDTH);
133 } catch (ImmutableByteSequence.ByteSequenceTrimException e) {
134 throw new PiInterpreterException(format(
135 "Port number %d too big, %s", portNumber, e.getMessage()));
136 }
137

138 // Create metadata instance for egress port.
139

140 final String outPortMetadataName = "egress_port";
141

142 final PiPacketMetadata outPortMetadata = PiPacketMetadata.builder()
143 .withId(PiPacketMetadataId.of(outPortMetadataName))
144 .withValue(portBytes)
145 .build();
146

147 // Build packet out.
148 return PiPacketOperation.builder()
149 .withType(PACKET_OUT)
150 .withData(copyFrom(pktData))
151 .withMetadata(outPortMetadata)
152 .build();
153 }
154

155 /**
156 * Returns an ONS InboundPacket equivalent to the given pipeconf-specific
157 * packet-in operation.
158 *
159 * @param packetIn packet operation
160 * @param deviceId ID of the device that originated the packet-in
161 * @return inbound packet
162 * @throws PiInterpreterException if the packet operation cannot be mapped
163 * to an inbound packet
164 */
165 @Override
166 public InboundPacket mapInboundPacket(PiPacketOperation packetIn, DeviceId deviceId)
167 throws PiInterpreterException {
168

169 // Find the ingress_port metadata.
170

171 final String inportMetadataName = "ingress_port";
172

49

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

173 Optional<PiPacketMetadata> inportMetadata = packetIn.metadatas()
174 .stream()
175 .filter(meta -> meta.id().id().equals(inportMetadataName))
176 .findFirst();
177

178 if (!inportMetadata.isPresent()) {
179 throw new PiInterpreterException(format(
180 "Missing metadata ’%s’ in packet-in received from ’%s’: %s",
181 inportMetadataName, deviceId, packetIn));
182 }
183

184 // Build ONOS InboundPacket instance with the given ingress port.
185

186 // 1. Parse packet-in object into Ethernet packet instance.
187 final byte[] payloadBytes = packetIn.data().asArray();
188 final ByteBuffer rawData = ByteBuffer.wrap(payloadBytes);
189 final Ethernet ethPkt;
190 try {
191 ethPkt = Ethernet.deserializer().deserialize(
192 payloadBytes, 0, packetIn.data().size());
193 } catch (DeserializationException dex) {
194 throw new PiInterpreterException(dex.getMessage());
195 }
196

197 // 2. Get ingress port
198 final ImmutableByteSequence portBytes = inportMetadata.get().value();
199 final short portNum = portBytes.asReadOnlyBuffer().getShort();
200 final ConnectPoint receivedFrom = new ConnectPoint(
201 deviceId, PortNumber.portNumber(portNum));
202

203 return new DefaultInboundPacket(receivedFrom, ethPkt, rawData);
204 }
205

206 @Override
207 public Optional<Integer> mapLogicalPortNumber(PortNumber port) {
208 if (CONTROLLER.equals(port)) {
209 return Optional.of(CPU_PORT_ID);
210 } else {
211 return Optional.empty();
212 }
213 }
214

215 @Override
216 public Optional<PiMatchFieldId> mapCriterionType(Criterion.Type type) {
217 if (CRITERION_MAP.containsKey(type)) {
218 return Optional.of(PiMatchFieldId.of(CRITERION_MAP.get(type)));
219 } else {
220 return Optional.empty();
221 }
222 }
223

224 @Override
225 public PiAction mapTreatment(TrafficTreatment treatment, PiTableId piTableId)
226 throws PiInterpreterException {
227 throw new PiInterpreterException("Treatment mapping not supported");
228 }
229

230 @Override
231 public Optional<PiTableId> mapFlowRuleTableId(int flowRuleTableId) {
232 return Optional.empty();
233 }
234 }

PipelinerImpl.java

1 package org.onosproject.ngsdn.tutorial.pipeconf;
2

3 import org.onosproject.net.DeviceId;
4 import org.onosproject.net.PortNumber;
5 import org.onosproject.net.behaviour.NextGroup;
6 import org.onosproject.net.behaviour.Pipeliner;
7 import org.onosproject.net.behaviour.PipelinerContext;
8 import org.onosproject.net.driver.AbstractHandlerBehaviour;
9 import org.onosproject.net.flow.DefaultFlowRule;

10 import org.onosproject.net.flow.DefaultTrafficTreatment;

50

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

11 import org.onosproject.net.flow.FlowRule;
12 import org.onosproject.net.flow.FlowRuleService;
13 import org.onosproject.net.flow.instructions.Instructions;
14 import org.onosproject.net.flowobjective.FilteringObjective;
15 import org.onosproject.net.flowobjective.ForwardingObjective;
16 import org.onosproject.net.flowobjective.NextObjective;
17 import org.onosproject.net.flowobjective.ObjectiveError;
18 import org.onosproject.net.group.GroupDescription;
19 import org.onosproject.net.group.GroupService;
20 import org.onosproject.net.pi.model.PiActionId;
21 import org.onosproject.net.pi.model.PiTableId;
22 import org.onosproject.net.pi.runtime.PiAction;
23 import org.onosproject.ngsdn.tutorial.common.Utils;
24 import org.slf4j.Logger;
25

26 import java.util.Collections;
27 import java.util.List;
28

29 import static org.onosproject.net.flow.instructions.Instruction.Type.OUTPUT;
30 import static org.onosproject.ngsdn.tutorial.AppConstants.CPU_CLONE_SESSION_ID;
31 import static org.slf4j.LoggerFactory.getLogger;
32

33 /**
34 * Pipeliner implementation that maps all forwarding objectives to the ACL
35 * table. All other types of objectives are not supported.
36 */
37 public class PipelinerImpl extends AbstractHandlerBehaviour implements Pipeliner {
38

39 // From the P4Info file
40 private static final String ACL_TABLE = "IngressPipeImpl.acl_table";
41 private static final String CLONE_TO_CPU = "IngressPipeImpl.clone_to_cpu";
42

43 private final Logger log = getLogger(getClass());
44

45 private FlowRuleService flowRuleService;
46 private GroupService groupService;
47 private DeviceId deviceId;
48

49

50 @Override
51 public void init(DeviceId deviceId, PipelinerContext context) {
52 this.deviceId = deviceId;
53 this.flowRuleService = context.directory().get(FlowRuleService.class);
54 this.groupService = context.directory().get(GroupService.class);
55 }
56

57 @Override
58 public void filter(FilteringObjective obj) {
59 obj.context().ifPresent(c -> c.onError(obj, ObjectiveError.UNSUPPORTED));
60 }
61

62 @Override
63 public void forward(ForwardingObjective obj) {
64 if (obj.treatment() == null) {
65 obj.context().ifPresent(c -> c.onError(obj, ObjectiveError.UNSUPPORTED));
66 }
67

68 // Whether this objective specifies an OUTPUT:CONTROLLER instruction.
69 final boolean hasCloneToCpuAction = obj.treatment()
70 .allInstructions().stream()
71 .filter(i -> i.type().equals(OUTPUT))
72 .map(i -> (Instructions.OutputInstruction) i)
73 .anyMatch(i -> i.port().equals(PortNumber.CONTROLLER));
74

75 if (!hasCloneToCpuAction) {
76 // We support only objectives for clone to CPU behaviours (e.g. for
77 // host and link discovery)
78 obj.context().ifPresent(c -> c.onError(obj, ObjectiveError.UNSUPPORTED));
79 }
80

81 // Create an equivalent FlowRule with same selector and clone_to_cpu action.
82 final PiAction cloneToCpuAction = PiAction.builder()
83 .withId(PiActionId.of(CLONE_TO_CPU))
84 .build();

51

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

85

86 final FlowRule.Builder ruleBuilder = DefaultFlowRule.builder()
87 .forTable(PiTableId.of(ACL_TABLE))
88 .forDevice(deviceId)
89 .withSelector(obj.selector())
90 .fromApp(obj.appId())
91 .withPriority(obj.priority())
92 .withTreatment(DefaultTrafficTreatment.builder()
93 .piTableAction(cloneToCpuAction).build());
94

95 if (obj.permanent()) {
96 ruleBuilder.makePermanent();
97 } else {
98 ruleBuilder.makeTemporary(obj.timeout());
99 }

100

101 final GroupDescription cloneGroup = Utils.buildCloneGroup(
102 obj.appId(),
103 deviceId,
104 CPU_CLONE_SESSION_ID,
105 // Ports where to clone the packet.
106 // Just controller in this case.
107 Collections.singleton(PortNumber.CONTROLLER));
108

109 switch (obj.op()) {
110 case ADD:
111 flowRuleService.applyFlowRules(ruleBuilder.build());
112 groupService.addGroup(cloneGroup);
113 break;
114 case REMOVE:
115 flowRuleService.removeFlowRules(ruleBuilder.build());
116 // Do not remove the clone group as other flow rules might be
117 // pointing to it.
118 break;
119 default:
120 log.warn("Unknown operation {}", obj.op());
121 }
122

123 obj.context().ifPresent(c -> c.onSuccess(obj));
124 }
125

126 @Override
127 public void next(NextObjective obj) {
128 obj.context().ifPresent(c -> c.onError(obj, ObjectiveError.UNSUPPORTED));
129 }
130

131 @Override
132 public List<String> getNextMappings(NextGroup nextGroup) {
133 // We do not use nextObjectives or groups.
134 return Collections.emptyList();
135 }
136 }

The PipelineInterpreter is the ONOS driver behavior used to map the ONOS representation of packet-

in/out to one that is consistent with the P4 pipeline.

Specifically, to use services like link and host discovery, ONOS built-in apps need to be able to set the

output port of a packet-out and access the original ingress port of a packet-in.

To trigger device and link discovery the network configuration need to be pushed to ONOS. The network

configuration is in JSON format like so:

netcfg.json

1 {
2 "devices": {
3 "device:leaf1": {
4 "basic": {
5 "managementAddress": "grpc://mininet:50001?device_id=1",
6 "driver": "stratum-bmv2",
7 "pipeconf": "org.onosproject.ngsdn-tutorial",
8 "locType": "grid",
9 "gridX": 200,

10 "gridY": 600
11 },
12 "fabricDeviceConfig": {

52

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

13 "myStationMac": "00:aa:00:00:00:01",
14 "mySid": "3:101:2::",
15 "isSpine": false
16 }
17 },
18 "device:leaf2": {
19 "basic": {
20 "managementAddress": "grpc://mininet:50002?device_id=1",
21 "driver": "stratum-bmv2",
22 "pipeconf": "org.onosproject.ngsdn-tutorial",
23 "locType": "grid",
24 "gridX": 800,
25 "gridY": 600
26 },
27 "fabricDeviceConfig": {
28 "myStationMac": "00:aa:00:00:00:02",
29 "mySid": "3:102:2::",
30 "isSpine": false
31 }
32 },
33 "device:spine1": {
34 "basic": {
35 "managementAddress": "grpc://mininet:50003?device_id=1",
36 "driver": "stratum-bmv2",
37 "pipeconf": "org.onosproject.ngsdn-tutorial",
38 "locType": "grid",
39 "gridX": 400,
40 "gridY": 400
41 },
42 "fabricDeviceConfig": {
43 "myStationMac": "00:bb:00:00:00:01",
44 "mySid": "3:201:2::",
45 "isSpine": true
46 }
47 },
48 "device:spine2": {
49 "basic": {
50 "managementAddress": "grpc://mininet:50004?device_id=1",
51 "driver": "stratum-bmv2",
52 "pipeconf": "org.onosproject.ngsdn-tutorial",
53 "locType": "grid",
54 "gridX": 600,
55 "gridY": 400
56 },
57 "fabricDeviceConfig": {
58 "myStationMac": "00:bb:00:00:00:02",
59 "mySid": "3:202:2::",
60 "isSpine": true
61 }
62 }
63 },
64 "ports": {
65 "device:leaf1/3": {
66 "interfaces": [
67 {
68 "name": "leaf1-3",
69 "ips": ["2001:1:1::ff/64"]
70 }
71]
72 },
73 "device:leaf1/4": {
74 "interfaces": [
75 {
76 "name": "leaf1-4",
77 "ips": ["2001:1:1::ff/64"]
78 }
79]
80 },
81 "device:leaf1/5": {
82 "interfaces": [
83 {
84 "name": "leaf1-5",
85 "ips": ["2001:1:1::ff/64"]
86 }

53

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

87]
88 },
89 "device:leaf1/6": {
90 "interfaces": [
91 {
92 "name": "leaf1-6",
93 "ips": ["2001:1:2::ff/64"]
94 }
95]
96 },
97 "device:leaf2/3": {
98 "interfaces": [
99 {

100 "name": "leaf2-3",
101 "ips": ["2001:2:3::ff/64"]
102 }
103]
104 },
105 "device:leaf2/4": {
106 "interfaces": [
107 {
108 "name": "leaf2-4",
109 "ips": ["2001:2:4::ff/64"]
110 }
111]
112 }
113 },
114 "hosts": {
115 "00:00:00:00:00:1A/None": {
116 "basic": {
117 "name": "h1a",
118 "locType": "grid",
119 "gridX": 100,
120 "gridY": 700
121 }
122 },
123 "00:00:00:00:00:1B/None": {
124 "basic": {
125 "name": "h1b",
126 "locType": "grid",
127 "gridX": 100,
128 "gridY": 800
129 }
130 },
131 "00:00:00:00:00:1C/None": {
132 "basic": {
133 "name": "h1c",
134 "locType": "grid",
135 "gridX": 250,
136 "gridY": 800
137 }
138 },
139 "00:00:00:00:00:20/None": {
140 "basic": {
141 "name": "h2",
142 "locType": "grid",
143 "gridX": 400,
144 "gridY": 700
145 }
146 },
147 "00:00:00:00:00:30/None": {
148 "basic": {
149 "name": "h3",
150 "locType": "grid",
151 "gridX": 750,
152 "gridY": 700
153 }
154 },
155 "00:00:00:00:00:40/None": {
156 "basic": {
157 "name": "h4",
158 "locType": "grid",
159 "gridX": 850,
160 "gridY": 700

54

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

161 }
162 }
163 }
164 }

For verification that all devices and links have been discovered, the ONOS CLI is used:

1 onos> devices -s
2 id=device:leaf1, available=true, role=MASTER, type=SWITCH, driver=stratum-bmv2:org.onosproject.

ngsdn-tutorial
3 id=device:leaf2, available=true, role=MASTER, type=SWITCH, driver=stratum-bmv2:org.onosproject.

ngsdn-tutorial
4 id=device:spine1, available=true, role=MASTER, type=SWITCH, driver=stratum-bmv2:org.onosproject.

ngsdn-tutorial
5 id=device:spine2, available=true, role=MASTER, type=SWITCH, driver=stratum-bmv2:org.onosproject.

ngsdn-tutorial

1 onos> links
2 src=device:leaf1/1, dst=device:spine1/1, type=DIRECT, state=ACTIVE, expected=false
3 src=device:leaf1/2, dst=device:spine2/1, type=DIRECT, state=ACTIVE, expected=false
4 src=device:leaf2/1, dst=device:spine1/2, type=DIRECT, state=ACTIVE, expected=false
5 src=device:leaf2/2, dst=device:spine2/2, type=DIRECT, state=ACTIVE, expected=false
6 src=device:spine1/1, dst=device:leaf1/1, type=DIRECT, state=ACTIVE, expected=false
7 src=device:spine1/2, dst=device:leaf2/1, type=DIRECT, state=ACTIVE, expected=false
8 src=device:spine2/1, dst=device:leaf1/2, type=DIRECT, state=ACTIVE, expected=false
9 src=device:spine2/2, dst=device:leaf2/2, type=DIRECT, state=ACTIVE, expected=false

There should be five flow rules for each device. To show all flow rules installed on device leaf1:

1 onos> flows -s any device:leaf1
2 deviceId=device:leaf1, flowRuleCount=5
3 ADDED, ..., table=IngressPipeImpl.acl_table, priority=40000, selector=[ETH_TYPE:lldp],

treatment=[immediate=[IngressPipeImpl.clone_to_cpu()]]
4 ADDED, ..., table=IngressPipeImpl.acl_table, priority=40000, selector=[ETH_TYPE:bddp],

treatment=[immediate=[IngressPipeImpl.clone_to_cpu()]]
5 ADDED, ..., table=IngressPipeImpl.acl_table, priority=40000, selector=[ETH_TYPE:arp], treatment

=[immediate=[IngressPipeImpl.clone_to_cpu()]]
6 ADDED, ..., table=IngressPipeImpl.acl_table, priority=40000, selector=[ETH_TYPE:ipv6, IP_PROTO

:58, ICMPV6_TYPE:136], treatment=[immediate=[IngressPipeImpl.clone_to_cpu()]]
7 ADDED, ..., table=IngressPipeImpl.acl_table, priority=40000, selector=[ETH_TYPE:ipv6, IP_PROTO

:58, ICMPV6_TYPE:135], treatment=[immediate=[IngressPipeImpl.clone_to_cpu()]]
8

9 ...

These flow rules are the result of the translation of flow objectives generated by the hostprovider and lldp-

provider built-in apps.

Flow objectives are translated by the pipeconf, which provides a Pipeliner behavior implementation (PipelinerImpl.java).

These flow rules specify a match key by using ONOS standard/known header fields, such as ETH_TYPE,

ICMPV6_TYPE, etc. These types are mapped to P4Info-specific match fields by the pipeline interpreter

(InterpreterImpl.java lines 215-222)

The hostprovider app provides host discovery capabilities by intercepting ARP (selector=[ETH_TYPE:arp])

and NDP packets (selector=[ETH_TYPE:ipv6, IP_PROTO:58, ICMPV6_TYPE:...]), which are cloned to the con-

troller (treatment=[immediate=[IngressPipeImpl.clone_to_cpu()]]). Similarly, lldpprovider generates flow objec-

tives to intercept LLDP (Link Layer Discovery Protocol) and BDDP (Broadcast Domain Discovery Protocol)

packets (selector=[ETH_TYPE:lldp] and selector=[ETH_TYPE:bddp]) periodically emitted on all devices’ ports

as P4Runtime packet-outs, allowing automatic link discovery.

All flow rules refer to P4 action clone_to_cpu(), which invokes a v1model-specific primitive to set the

clone session ID (main.p4 lines 338-344)

To actually generate P4Runtime packet-in messages for matched packets, the pipeconf’s pipeliner generates

a CLONE group, internally translated into a P4RuntimeCloneSessionEntry, that maps CPU_CLONE_SESSION_ID
to a set of ports, just the CPU one in this case.

To show all groups installed in ONOS on leaf1:

1 onos> groups any device:leaf1
2 deviceId=device:leaf1, groupCount=1
3 id=0x63, state=ADDED, type=CLONE, ..., appId=org.onosproject.core, referenceCount=0
4 id=0x63, bucket=1, ..., weight=-1, actions=[OUTPUT:CONTROLLER]

Figure 26 show how links are visualized on the ONOS UI.

55

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 26: ONOS UI

Link stats are derived by ONOS by periodically obtaining the port counters for each device. ONOS internally

uses gNMI to read port information, including counters.

By implementing packet I/O support in the pipeline interpreter we did not only get link discovery, but also

enabled the built-in hostprovider app to perform host discovery. This service is required by the new app to

populate the bridging tables of the P4 pipeline, to forward packets based on the Ethernet destination address.

Indeed, the hostprovider app works by snooping incoming ARP/NDP packets on the switch and deducing

where a host is connected to from the packet-in message metadata. Other apps in ONOS, like the new app

developed, can then listen for host-related events and access information about their addresses (IP, MAC) and

location.

6.4.2 L2 Bridging

To implement the L2 bridging a new component app need to be developed. The L2BridgingComponent.java

app implements and enables L2 bridging.

L2BridgingComponent.java

1 package org.onosproject.ngsdn.tutorial;
2

3 import org.onlab.packet.MacAddress;
4 import org.onosproject.core.ApplicationId;
5 import org.onosproject.mastership.MastershipService;
6 import org.onosproject.net.ConnectPoint;
7 import org.onosproject.net.DeviceId;
8 import org.onosproject.net.Host;
9 import org.onosproject.net.PortNumber;

10 import org.onosproject.net.config.NetworkConfigService;
11 import org.onosproject.net.device.DeviceEvent;
12 import org.onosproject.net.device.DeviceListener;
13 import org.onosproject.net.device.DeviceService;
14 import org.onosproject.net.flow.FlowRule;
15 import org.onosproject.net.flow.FlowRuleService;
16 import org.onosproject.net.flow.criteria.PiCriterion;
17 import org.onosproject.net.group.GroupDescription;
18 import org.onosproject.net.group.GroupService;
19 import org.onosproject.net.host.HostEvent;
20 import org.onosproject.net.host.HostListener;
21 import org.onosproject.net.host.HostService;
22 import org.onosproject.net.intf.Interface;
23 import org.onosproject.net.intf.InterfaceService;
24 import org.onosproject.net.pi.model.PiActionId;
25 import org.onosproject.net.pi.model.PiActionParamId;
26 import org.onosproject.net.pi.model.PiMatchFieldId;
27 import org.onosproject.net.pi.runtime.PiAction;
28 import org.onosproject.net.pi.runtime.PiActionParam;
29 import org.osgi.service.component.annotations.Activate;
30 import org.osgi.service.component.annotations.Component;
31 import org.osgi.service.component.annotations.Deactivate;
32 import org.osgi.service.component.annotations.Reference;
33 import org.osgi.service.component.annotations.ReferenceCardinality;

56

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

34 import org.onosproject.ngsdn.tutorial.common.FabricDeviceConfig;
35 import org.onosproject.ngsdn.tutorial.common.Utils;
36 import org.slf4j.Logger;
37 import org.slf4j.LoggerFactory;
38

39 import java.util.Set;
40 import java.util.stream.Collectors;
41

42 import static org.onosproject.ngsdn.tutorial.AppConstants.INITIAL_SETUP_DELAY;
43

44 /**
45 * App component that configures devices to provide L2 bridging capabilities.
46 */
47 @Component(
48 immediate = true,
49 enabled = true
50)
51 public class L2BridgingComponent {
52

53 private final Logger log = LoggerFactory.getLogger(getClass());
54

55 private static final int DEFAULT_BROADCAST_GROUP_ID = 255;
56

57 private final DeviceListener deviceListener = new InternalDeviceListener();
58 private final HostListener hostListener = new InternalHostListener();
59

60 private ApplicationId appId;
61

62 //--
63 // ONOS CORE SERVICE BINDING
64 //
65 // These variables are set by the Karaf runtime environment before calling
66 // the activate() method.
67 //--
68

69 @Reference(cardinality = ReferenceCardinality.MANDATORY)
70 private HostService hostService;
71

72 @Reference(cardinality = ReferenceCardinality.MANDATORY)
73 private DeviceService deviceService;
74

75 @Reference(cardinality = ReferenceCardinality.MANDATORY)
76 private InterfaceService interfaceService;
77

78 @Reference(cardinality = ReferenceCardinality.MANDATORY)
79 private NetworkConfigService configService;
80

81 @Reference(cardinality = ReferenceCardinality.MANDATORY)
82 private FlowRuleService flowRuleService;
83

84 @Reference(cardinality = ReferenceCardinality.MANDATORY)
85 private GroupService groupService;
86

87 @Reference(cardinality = ReferenceCardinality.MANDATORY)
88 private MastershipService mastershipService;
89

90 @Reference(cardinality = ReferenceCardinality.MANDATORY)
91 private MainComponent mainComponent;
92

93 //--
94 // COMPONENT ACTIVATION.
95 //
96 // When loading/unloading the app the Karaf runtime environment will call
97 // activate()/deactivate().
98 //--
99

100 @Activate
101 protected void activate() {
102 appId = mainComponent.getAppId();
103

104 // Register listeners to be informed about device and host events.
105 deviceService.addListener(deviceListener);
106 hostService.addListener(hostListener);
107 // Schedule set up of existing devices. Needed when reloading the app.

57

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

108 mainComponent.scheduleTask(this::setUpAllDevices, INITIAL_SETUP_DELAY);
109

110 log.info("Started");
111 }
112

113 @Deactivate
114 protected void deactivate() {
115 deviceService.removeListener(deviceListener);
116 hostService.removeListener(hostListener);
117

118 log.info("Stopped");
119 }
120

121 /**
122 * Sets up everything necessary to support L2 bridging on the given device.
123 *
124 * @param deviceId the device to set up
125 */
126 private void setUpDevice(DeviceId deviceId) {
127 if (isSpine(deviceId)) {
128 // Stop here. We support bridging only on leaf/tor switches.
129 return;
130 }
131 insertMulticastGroup(deviceId);
132 insertMulticastFlowRules(deviceId);
133 // Uncomment the following line after you have implemented the method:
134 insertUnmatchedBridgingFlowRule(deviceId);
135 }
136

137 /**
138 * Inserts an ALL group in the ONOS core to replicate packets on all host
139 * facing ports. This group will be used to broadcast all ARP/NDP requests.
140 * <p>
141 * ALL groups in ONOS are equivalent to P4Runtime packet replication engine
142 * (PRE) Multicast groups.
143 *
144 * @param deviceId the device where to install the group
145 */
146 private void insertMulticastGroup(DeviceId deviceId) {
147

148 // Replicate packets where we know hosts are attached.
149 Set<PortNumber> ports = getHostFacingPorts(deviceId);
150

151 if (ports.isEmpty()) {
152 // Stop here.
153 log.warn("Device {} has 0 host facing ports", deviceId);
154 return;
155 }
156

157 log.info("Adding L2 multicast group with {} ports on {}...",
158 ports.size(), deviceId);
159

160 // Forge group object.
161 final GroupDescription multicastGroup = Utils.buildMulticastGroup(
162 appId, deviceId, DEFAULT_BROADCAST_GROUP_ID, ports);
163

164 // Insert.
165 groupService.addGroup(multicastGroup);
166 }
167

168 /**
169 * Insert flow rules matching ethernet destination
170 * broadcast/multicast addresses (e.g. ARP requests, NDP Neighbor
171 * Solicitation, etc.). Such packets should be processed by the multicast
172 * group created before.
173 * <p>
174 * This method will be called at component activation for each device
175 * (switch) known by ONOS, and every time a new device-added event is
176 * captured by the InternalDeviceListener defined below.
177 *
178 * @param deviceId device ID where to install the rules
179 */
180 private void insertMulticastFlowRules(DeviceId deviceId) {
181

58

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

182 log.info("Adding L2 multicast rules on {}...", deviceId);
183

184 // Modify P4Runtime entity names to match content of P4Info file (look
185 // for the fully qualified name of tables, match fields, and actions.
186

187 // Match ARP request - Match exactly FF:FF:FF:FF:FF:FF
188 final PiCriterion macBroadcastCriterion = PiCriterion.builder()
189 .matchTernary(
190 PiMatchFieldId.of("hdr.ethernet.dst_addr"),
191 MacAddress.valueOf("FF:FF:FF:FF:FF:FF").toBytes(),
192 MacAddress.valueOf("FF:FF:FF:FF:FF:FF").toBytes())
193 .build();
194

195 // Match NDP NS - Match ternary 33:33:**:**:**:**
196 final PiCriterion ipv6MulticastCriterion = PiCriterion.builder()
197 .matchTernary(
198 PiMatchFieldId.of("hdr.ethernet.dst_addr"),
199 MacAddress.valueOf("33:33:00:00:00:00").toBytes(),
200 MacAddress.valueOf("FF:FF:00:00:00:00").toBytes())
201 .build();
202

203 // Action: set multicast group id
204 final PiAction setMcastGroupAction = PiAction.builder()
205 .withId(PiActionId.of("IngressPipeImpl.set_multicast_group"))
206 .withParameter(new PiActionParam(
207 PiActionParamId.of("gid"),
208 DEFAULT_BROADCAST_GROUP_ID))
209 .build();
210

211 // Build 2 flow rules.
212 final String tableId = "IngressPipeImpl.l2_ternary_table";
213

214 final FlowRule rule1 = Utils.buildFlowRule(
215 deviceId, appId, tableId,
216 macBroadcastCriterion, setMcastGroupAction);
217

218 final FlowRule rule2 = Utils.buildFlowRule(
219 deviceId, appId, tableId,
220 ipv6MulticastCriterion, setMcastGroupAction);
221

222 // Insert rules.
223 flowRuleService.applyFlowRules(rule1, rule2);
224 }
225

226 /**
227 * Insert flow rule that matches all unmatched ethernet traffic. This
228 * will implement the traditional briding behavior that floods all
229 * unmatched traffic.
230 * <p>
231 * This method will be called at component activation for each device
232 * (switch) known by ONOS, and every time a new device-added event is
233 * captured by the InternalDeviceListener defined below.
234 *
235 * @param deviceId device ID where to install the rules
236 */
237 @SuppressWarnings("unused")
238 private void insertUnmatchedBridgingFlowRule(DeviceId deviceId) {
239

240 log.info("Adding L2 multicast rules on {}...", deviceId);
241

242 // Modify P4Runtime entity names to match content of P4Info file (look
243 // for the fully qualified name of tables, match fields, and actions.
244

245 // Match unmatched traffic - Match ternary **:**:**:**:**:**
246 final PiCriterion unmatchedTrafficCriterion = PiCriterion.builder()
247 .matchTernary(
248 PiMatchFieldId.of("hdr.ethernet.dst_addr"),
249 MacAddress.valueOf("00:00:00:00:00:00").toBytes(),
250 MacAddress.valueOf("00:00:00:00:00:00").toBytes())
251 .build();
252

253 // Action: set multicast group id
254 final PiAction setMcastGroupAction = PiAction.builder()
255 .withId(PiActionId.of("IngressPipeImpl.set_multicast_group"))

59

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

256 .withParameter(new PiActionParam(
257 PiActionParamId.of("gid"),
258 DEFAULT_BROADCAST_GROUP_ID))
259 .build();
260

261 // Build flow rule.
262 final String tableId = "IngressPipeImpl.l2_ternary_table";
263

264 final FlowRule rule = Utils.buildFlowRule(
265 deviceId, appId, tableId,
266 unmatchedTrafficCriterion, setMcastGroupAction);
267

268 // Insert rules.
269 flowRuleService.applyFlowRules(rule);
270 }
271

272 /**
273 * Insert flow rules to forward packets to a given host located at the given
274 * device and port.
275 * <p>
276 * This method will be called at component activation for each host known by
277 * ONOS, and every time a new host-added event is captured by the
278 * InternalHostListener defined below.
279 *
280 * @param host host instance
281 * @param deviceId device where the host is located
282 * @param port port where the host is attached to
283 */
284 private void learnHost(Host host, DeviceId deviceId, PortNumber port) {
285

286 log.info("Adding L2 unicast rule on {} for host {} (port {})...",
287 deviceId, host.id(), port);
288

289 // Modify P4Runtime entity names to match content of P4Info file (look
290 // for the fully qualified name of tables, match fields, and actions.
291

292 final String tableId = "IngressPipeImpl.l2_exact_table";
293 // Match exactly on the host MAC address.
294 final MacAddress hostMac = host.mac();
295 final PiCriterion hostMacCriterion = PiCriterion.builder()
296 .matchExact(PiMatchFieldId.of("hdr.ethernet.dst_addr"),
297 hostMac.toBytes())
298 .build();
299

300 // Action: set output port
301 final PiAction l2UnicastAction = PiAction.builder()
302 .withId(PiActionId.of("IngressPipeImpl.set_egress_port"))
303 .withParameter(new PiActionParam(
304 PiActionParamId.of("port_num"),
305 port.toLong()))
306 .build();
307

308 // Forge flow rule.
309 final FlowRule rule = Utils.buildFlowRule(
310 deviceId, appId, tableId, hostMacCriterion, l2UnicastAction);
311

312 // Insert.
313 flowRuleService.applyFlowRules(rule);
314 }
315

316 //--
317 // EVENT LISTENERS
318 //
319 // Events are processed only if isRelevant() returns true.
320 //--
321

322 /**
323 * Listener of device events.
324 */
325 public class InternalDeviceListener implements DeviceListener {
326

327 @Override
328 public boolean isRelevant(DeviceEvent event) {
329 switch (event.type()) {

60

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

330 case DEVICE_ADDED:
331 case DEVICE_AVAILABILITY_CHANGED:
332 break;
333 default:
334 // Ignore other events.
335 return false;
336 }
337 // Process only if this controller instance is the master.
338 final DeviceId deviceId = event.subject().id();
339 return mastershipService.isLocalMaster(deviceId);
340 }
341

342 @Override
343 public void event(DeviceEvent event) {
344 final DeviceId deviceId = event.subject().id();
345 if (deviceService.isAvailable(deviceId)) {
346 // A P4Runtime device is considered available in ONOS when there
347 // is a StreamChannel session open and the pipeline
348 // configuration has been set.
349

350 // Events are processed using a thread pool defined in the
351 // MainComponent.
352 mainComponent.getExecutorService().execute(() -> {
353 log.info("{} event! deviceId={}", event.type(), deviceId);
354

355 setUpDevice(deviceId);
356 });
357 }
358 }
359 }
360

361 /**
362 * Listener of host events.
363 */
364 public class InternalHostListener implements HostListener {
365

366 @Override
367 public boolean isRelevant(HostEvent event) {
368 switch (event.type()) {
369 case HOST_ADDED:
370 // Host added events will be generated by the
371 // HostLocationProvider by intercepting ARP/NDP packets.
372 break;
373 case HOST_REMOVED:
374 case HOST_UPDATED:
375 case HOST_MOVED:
376 default:
377 // Ignore other events.
378 // Food for thoughts: how to support host moved/removed?
379 return false;
380 }
381 // Process host event only if this controller instance is the master
382 // for the device where this host is attached to.
383 final Host host = event.subject();
384 final DeviceId deviceId = host.location().deviceId();
385 return mastershipService.isLocalMaster(deviceId);
386 }
387

388 @Override
389 public void event(HostEvent event) {
390 final Host host = event.subject();
391 // Device and port where the host is located.
392 final DeviceId deviceId = host.location().deviceId();
393 final PortNumber port = host.location().port();
394

395 mainComponent.getExecutorService().execute(() -> {
396 log.info("{} event! host={}, deviceId={}, port={}",
397 event.type(), host.id(), deviceId, port);
398

399 learnHost(host, deviceId, port);
400 });
401 }
402 }
403

61

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

404 //--
405 // UTILITY METHODS
406 //--
407

408 /**
409 * Returns a set of ports for the given device that are used to connect
410 * hosts to the fabric.
411 *
412 * @param deviceId device ID
413 * @return set of host facing ports
414 */
415 private Set<PortNumber> getHostFacingPorts(DeviceId deviceId) {
416 // Get all interfaces configured via netcfg for the given device ID and
417 // return the corresponding device port number. Interface configuration
418 // in the netcfg.json looks like this:
419 // "device:leaf1/3": {
420 // "interfaces": [
421 // {
422 // "name": "leaf1-3",
423 // "ips": ["2001:1:1::ff/64"]
424 // }
425 //]
426 // }
427 return interfaceService.getInterfaces().stream()
428 .map(Interface::connectPoint)
429 .filter(cp -> cp.deviceId().equals(deviceId))
430 .map(ConnectPoint::port)
431 .collect(Collectors.toSet());
432 }
433

434 /**
435 * Returns true if the given device is defined as a spine in the
436 * netcfg.json.
437 *
438 * @param deviceId device ID
439 * @return true if spine, false otherwise
440 */
441 private boolean isSpine(DeviceId deviceId) {
442 // Example netcfg defining a device as spine:
443 // "devices": {
444 // "device:spine1": {
445 // ...
446 // "fabricDeviceConfig": {
447 // "myStationMac": "...",
448 // "mySid": "...",
449 // "isSpine": true
450 // }
451 // },
452 // ...
453 final FabricDeviceConfig cfg = configService.getConfig(
454 deviceId, FabricDeviceConfig.class);
455 return cfg != null && cfg.isSpine();
456 }
457

458 /**
459 * Sets up L2 bridging on all devices known by ONOS and for which this ONOS
460 * node instance is currently master.
461 * <p>
462 * This method is called at component activation.
463 */
464 private void setUpAllDevices() {
465 deviceService.getAvailableDevices().forEach(device -> {
466 if (mastershipService.isLocalMaster(device.id())) {
467 log.info("*** L2 BRIDGING - Starting initial set up for {}...", device.id());
468 setUpDevice(device.id());
469 // For all hosts connected to this device...
470 hostService.getConnectedHosts(device.id()).forEach(
471 host -> learnHost(host, host.location().deviceId(),
472 host.location().port()));
473 }
474 });
475 }
476 }

62

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

This app component defines two event listeners located at the bottom of the L2BridgingComponent class,

InternalDeviceListener (lines 333-367) for device events, e.g. connection of a new switch, and InternalHostListener
(lines 372-410) for host events, e.g. new host discovered. These listeners in turn call methods like:

• setUpDevice() (lines 134-143): responsible for creating multicast groups for all host-facing ports and

inserting flow rules for the l2_ternary_table pointing to such groups.

• learnHost() (lines 292-322): responsible for inserting unicast L2 entries based on the discovered host

location.

To support reloading the app implementation, these methods are also called at component activation for all

devices and hosts known by ONOS at the time of activation (methods activate() and setUpAllDevices()
in lines 102-113, 134-143 respectively).

To keep things simple, the broadcast domain will be restricted to a single device, i.e. allowing packet

replication only for ports of the same leaf switch. As such, ports going to the spines from the multicast group

can be excluded.

The L2BridgingComponent.java code assumes that hosts of a given subnet are all connected to the same

leaf, and two interfaces of two different leaves cannot be configured with the same IPv6 subnet. In other words,

L2 bridging is allowed only for hosts connected to the same leaf.

There should be two new flow rules for the l2_ternary_table installed by L2BridgingComponent. To

show all flow rules installed so far on device leaf1:

1 onos> flows -s any device:leaf1
2 deviceId=device:leaf1, flowRuleCount=...
3 ...
4 ADDED, ..., table=IngressPipeImpl.l2_ternary_table, priority=10, selector=[hdr.ethernet.

dst_addr=0x333300000000&&&0xffff00000000], treatment=[immediate=[IngressPipeImpl.
set_multicast_group(gid=0xff)]]

5 ADDED, ..., table=IngressPipeImpl.l2_ternary_table, priority=10, selector=[hdr.ethernet.
dst_addr=0xffffffffffff&&&0xffffffffffff], treatment=[immediate=[IngressPipeImpl.
set_multicast_group(gid=0xff)]]

6 ...

To show also the multicast groups, the groups command are used. To show groups on leaf1:

1 onos> groups any device:leaf1
2 deviceId=device:leaf1, groupCount=2
3 id=0x63, state=ADDED, type=CLONE, ..., appId=org.onosproject.core, referenceCount=0
4 id=0x63, bucket=1, ..., weight=-1, actions=[OUTPUT:CONTROLLER]
5 id=0xff, state=ADDED, type=ALL, ..., appId=org.onosproject.ngsdn-tutorial, referenceCount=0
6 id=0xff, bucket=1, ..., weight=-1, actions=[OUTPUT:3]
7 id=0xff, bucket=2, ..., weight=-1, actions=[OUTPUT:4]
8 id=0xff, bucket=3, ..., weight=-1, actions=[OUTPUT:5]
9 id=0xff, bucket=4, ..., weight=-1, actions=[OUTPUT:6]

The ALL group is a new one, created by the app developed (codeappId=org.onosproject.ngsdn-tutorial). Groups

of type ALL in ONOS map to P4Runtime MulticastGroupEntry, in this case used to broadcast NDP NS

packets to all host-facing ports.

To verify that L2 bridging works as intended, a ping is sent between hosts in the same subnet, in this

case h1a, h1b. After the ping success the hosts should be appeared in ONOS UI as shown in Figure 27. In

contrast to what presented at the beginning of this section, here are not set any NDP static entries. Instead,

NDP NS and NA packets are handled by the data plane thanks to the ALL group and l2_ternary_table’s flow

rule described above. Moreover, given the ACL flow rules to clone NDP packets to the controller, hosts can be

discovered by ONOS. Host discovery events are used by L2BridgingComponent.java to insert entries in the P4

l2_exact_table. Messages related to the discovery of hosts h1a and h1b are shown checking the ONOS

log:

1 INFO [L2BridgingComponent] HOST_ADDED event! host=00:00:00:00:00:1A/None, deviceId=device:leaf1,
port=3

2 INFO [L2BridgingComponent] Adding L2 unicast rule on device:leaf1 for host 00:00:00:00:00:1A/None
(port 3)...

3 INFO [L2BridgingComponent] HOST_ADDED event! host=00:00:00:00:00:1B/None, deviceId=device:leaf1,
port=4

4 INFO [L2BridgingComponent] Adding L2 unicast rule on device:leaf1 for host 00:00:00:00:00:1B/None
(port 4).

63

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 27: ONOS UI L2 Bridging

6.5 IPv6 Routing

In this subsection, an implementaion for IPv6-based (L3) routing between all hosts connected to the fabric,

with support for ECMP to balance traffic flows across multiple spines, is presented.

The first step will be to add new tables to main.p4. The following code is added in the IngressPipeImpl
block.

1 control IngressPipeImpl (inout parsed_headers_t hdr,
2 inout local_metadata_t local_metadata,
3 inout standard_metadata_t standard_metadata) {
4

5 ...
6

7 // --- ndp_reply_table ---
8

9 action ndp_ns_to_na(mac_addr_t target_mac) {
10 hdr.ethernet.src_addr = target_mac;
11 hdr.ethernet.dst_addr = IPV6_MCAST_01;
12 ipv6_addr_t host_ipv6_tmp = hdr.ipv6.src_addr;
13 hdr.ipv6.src_addr = hdr.ndp.target_ipv6_addr;
14 hdr.ipv6.dst_addr = host_ipv6_tmp;
15 hdr.ipv6.next_hdr = IP_PROTO_ICMPV6;
16 hdr.icmpv6.type = ICMP6_TYPE_NA;
17 hdr.ndp.flags = NDP_FLAG_ROUTER | NDP_FLAG_OVERRIDE;
18 hdr.ndp.type = NDP_OPT_TARGET_LL_ADDR;
19 hdr.ndp.length = 1;
20 hdr.ndp.target_mac_addr = target_mac;
21 standard_metadata.egress_spec = standard_metadata.ingress_port;
22 }
23

24 table ndp_reply_table {
25 key = {
26 hdr.ndp.target_ipv6_addr: exact;
27 }
28 actions = {
29 ndp_ns_to_na;
30 }
31 @name("ndp_reply_table_counter")
32 counters = direct_counter(CounterType.packets_and_bytes);
33 }
34

35 // --- my_station_table ---
36

37 table my_station_table {
38 key = {
39 hdr.ethernet.dst_addr: exact;
40 }
41 actions = { NoAction; }

64

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

42 @name("my_station_table_counter")
43 counters = direct_counter(CounterType.packets_and_bytes);
44 }
45

46 // --- routing_v6_table --
47

48 action_selector(HashAlgorithm.crc16, 32w1024, 32w16) ecmp_selector;
49

50 action set_next_hop(mac_addr_t dmac) {
51 hdr.ethernet.src_addr = hdr.ethernet.dst_addr;
52 hdr.ethernet.dst_addr = dmac;
53 // Decrement TTL
54 hdr.ipv6.hop_limit = hdr.ipv6.hop_limit - 1;
55 }
56 table routing_v6_table {
57 key = {
58 hdr.ipv6.dst_addr: lpm;
59 // The following fields are not used for matching, but as input to the
60 // ecmp_selector hash function.
61 hdr.ipv6.dst_addr: selector;
62 hdr.ipv6.src_addr: selector;
63 hdr.ipv6.flow_label: selector;
64 // The rest of the 5-tuple is optional per RFC6438
65 hdr.ipv6.next_hdr: selector;
66 local_metadata.l4_src_port: selector;
67 local_metadata.l4_dst_port: selector;
68 }
69 actions = {
70 set_next_hop;
71 }
72 implementation = ecmp_selector;
73 @name("routing_v6_table_counter")
74 counters = direct_counter(CounterType.packets_and_bytes);
75 }
76

77 ...
78

79 apply {
80

81 if (hdr.cpu_out.isValid()) {
82 standard_metadata.egress_spec = hdr.cpu_out.egress_port;
83 hdr.cpu_out.setInvalid();
84 exit;
85 }
86

87 bool do_l3_l2 = true;
88

89 if (hdr.icmpv6.isValid() && hdr.icmpv6.type == ICMP6_TYPE_NS) {
90

91 if (ndp_reply_table.apply().hit) {
92 do_l3_l2 = false;
93 }
94 }
95

96 if (do_l3_l2) {
97

98 if (hdr.ipv6.isValid() && my_station_table.apply().hit) {
99

100 routing_v6_table.apply();
101 // Check TTL, drop packet if necessary to avoid loops.
102 if(hdr.ipv6.hop_limit == 0) { drop(); }
103 }
104

105 // L2 bridging logic. Apply the exact table first...
106 if (!l2_exact_table.apply().hit) {
107 // ...if an entry is NOT found, apply the ternary one in case
108 // this is a multicast/broadcast NDP NS packet.
109 l2_ternary_table.apply();
110 }
111 }
112

113 // Lastly, apply the ACL table.
114 acl_table.apply();
115 }

65

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

116 }

We already provide ways to handle NDP NS and NA exchanged by hosts connected to the same subnet.

However, for hosts, the Linux networking stack takes care of generating a NDP NA reply. For the switches in

this fabric, there is no traditional networking stack associated to it.

There are multiple solutions to this problem:

• configure hosts with static NDP entries, removing the need for the switch to reply to NDP NS packets

• intercept NDP NS via packet-in, generate a corresponding NDP NA reply in ONOS, and send it back via

packet-out

• instruct the switch to generate NDP NA replies using P4, i.e., writing P4 code that takes care of replying

to NDP requests without any intervention from the control plane

The third approach is selected and implemented.

The idea is simple: NDP NA packets have the same header structure as NDP NS ones. They are both

ICMPv6 packets with different header field values, such as different ICMPv6 type, different Ethernet addresses

etc. A switch that knows the MAC address of a given IPv6 target address found in an NDP NS request, can

transform the same packet to an NDP NA reply by modifying some of its fields.

To implement P4-based generation of NDP NA messages, an action name ndp_ns_to_na is implemented

to transform an NDP NS packet into an NDP NA one.

This table defines a mapping between the interface IPv6 addresses and the myStationMac associated to

each switch, both of which defined in the network configuration JSON file (netcfg.json). When an NDP NS

packet is received, asking to resolve one of such IPv6 addresses, the ndp_ns_to_na action should be invoked

with the given myStationMac as parameter. The ONOS app will be responsible of inserting entries in this table

according to the content of the netcfg.json file.

The netcfg.json file includes a special configuration for each device named fabricDeviceConfig, this block

defines three values:

• myStationMac: MAC address associated with each device, i.e., the router MAC address

• mySid: the SRv6 segment ID of the device, used later in this section

• isSpine: a boolean flag, indicating whether the device should be considered as a spine switch

Moreover, includes a list of interfaces with an IPv6 prefix assigned to them (lines 69, 77, 85, 93, 101, 109 in

netcfg.json).

Two new ONOS components are implemeneted, Ipv6RoutingComponent.java and NdpReplyComponent.java.

The first one provides an implementation for event listeners and the routing policy, methods triggered as a

consequence of topology events, for example to compute ECMP groups based on the available links between

leaves and the spine. While the latter listens to device events. Each time a new device is added in ONOS, it

uses the content of netcfg.json to populate the NDP reply table.

Ipv6RoutingComponent.java

1 package org.onosproject.ngsdn.tutorial;
2

3 import com.google.common.collect.Lists;
4 import org.onlab.packet.Ip6Address;
5 import org.onlab.packet.Ip6Prefix;
6 import org.onlab.packet.IpAddress;
7 import org.onlab.packet.IpPrefix;
8 import org.onlab.packet.MacAddress;
9 import org.onlab.util.ItemNotFoundException;

10 import org.onosproject.core.ApplicationId;
11 import org.onosproject.mastership.MastershipService;
12 import org.onosproject.net.Device;
13 import org.onosproject.net.DeviceId;
14 import org.onosproject.net.Host;
15 import org.onosproject.net.Link;
16 import org.onosproject.net.PortNumber;
17 import org.onosproject.net.config.NetworkConfigService;
18 import org.onosproject.net.device.DeviceEvent;
19 import org.onosproject.net.device.DeviceListener;
20 import org.onosproject.net.device.DeviceService;
21 import org.onosproject.net.flow.FlowRule;
22 import org.onosproject.net.flow.FlowRuleService;

66

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

23 import org.onosproject.net.flow.criteria.PiCriterion;
24 import org.onosproject.net.group.GroupDescription;
25 import org.onosproject.net.group.GroupService;
26 import org.onosproject.net.host.HostEvent;
27 import org.onosproject.net.host.HostListener;
28 import org.onosproject.net.host.HostService;
29 import org.onosproject.net.host.InterfaceIpAddress;
30 import org.onosproject.net.intf.Interface;
31 import org.onosproject.net.intf.InterfaceService;
32 import org.onosproject.net.link.LinkEvent;
33 import org.onosproject.net.link.LinkListener;
34 import org.onosproject.net.link.LinkService;
35 import org.onosproject.net.pi.model.PiActionId;
36 import org.onosproject.net.pi.model.PiActionParamId;
37 import org.onosproject.net.pi.model.PiMatchFieldId;
38 import org.onosproject.net.pi.runtime.PiAction;
39 import org.onosproject.net.pi.runtime.PiActionParam;
40 import org.onosproject.net.pi.runtime.PiActionProfileGroupId;
41 import org.onosproject.net.pi.runtime.PiTableAction;
42 import org.osgi.service.component.annotations.Activate;
43 import org.osgi.service.component.annotations.Component;
44 import org.osgi.service.component.annotations.Deactivate;
45 import org.osgi.service.component.annotations.Reference;
46 import org.osgi.service.component.annotations.ReferenceCardinality;
47 import org.onosproject.ngsdn.tutorial.common.FabricDeviceConfig;
48 import org.onosproject.ngsdn.tutorial.common.Utils;
49 import org.slf4j.Logger;
50 import org.slf4j.LoggerFactory;
51

52 import java.util.Collection;
53 import java.util.Collections;
54 import java.util.List;
55 import java.util.Optional;
56 import java.util.Set;
57 import java.util.stream.Collectors;
58

59 import static com.google.common.collect.Streams.stream;
60 import static org.onosproject.ngsdn.tutorial.AppConstants.INITIAL_SETUP_DELAY;
61

62 /**
63 * App component that configures devices to provide IPv6 routing capabilities
64 * across the whole fabric.
65 */
66 @Component(
67 immediate = true,
68 enabled = true
69)
70 public class Ipv6RoutingComponent {
71

72 private static final Logger log = LoggerFactory.getLogger(Ipv6RoutingComponent.class);
73

74 private static final int DEFAULT_ECMP_GROUP_ID = 0xec3b0000;
75 private static final long GROUP_INSERT_DELAY_MILLIS = 200;
76

77 private final HostListener hostListener = new InternalHostListener();
78 private final LinkListener linkListener = new InternalLinkListener();
79 private final DeviceListener deviceListener = new InternalDeviceListener();
80

81 private ApplicationId appId;
82

83 //--
84 // ONOS CORE SERVICE BINDING
85 //
86 // These variables are set by the Karaf runtime environment before calling
87 // the activate() method.
88 //--
89

90 @Reference(cardinality = ReferenceCardinality.MANDATORY)
91 private FlowRuleService flowRuleService;
92

93 @Reference(cardinality = ReferenceCardinality.MANDATORY)
94 private HostService hostService;
95

96 @Reference(cardinality = ReferenceCardinality.MANDATORY)

67

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

97 private MastershipService mastershipService;
98

99 @Reference(cardinality = ReferenceCardinality.MANDATORY)
100 private GroupService groupService;
101

102 @Reference(cardinality = ReferenceCardinality.MANDATORY)
103 private DeviceService deviceService;
104

105 @Reference(cardinality = ReferenceCardinality.MANDATORY)
106 private NetworkConfigService networkConfigService;
107

108 @Reference(cardinality = ReferenceCardinality.MANDATORY)
109 private InterfaceService interfaceService;
110

111 @Reference(cardinality = ReferenceCardinality.MANDATORY)
112 private LinkService linkService;
113

114 @Reference(cardinality = ReferenceCardinality.MANDATORY)
115 private MainComponent mainComponent;
116

117 //--
118 // COMPONENT ACTIVATION.
119 //
120 // When loading/unloading the app the Karaf runtime environment will call
121 // activate()/deactivate().
122 //--
123

124 @Activate
125 protected void activate() {
126 appId = mainComponent.getAppId();
127

128 hostService.addListener(hostListener);
129 linkService.addListener(linkListener);
130 deviceService.addListener(deviceListener);
131

132 // Schedule set up for all devices.
133 mainComponent.scheduleTask(this::setUpAllDevices, INITIAL_SETUP_DELAY);
134

135 log.info("Started");
136 }
137

138 @Deactivate
139 protected void deactivate() {
140 hostService.removeListener(hostListener);
141 linkService.removeListener(linkListener);
142 deviceService.removeListener(deviceListener);
143

144 log.info("Stopped");
145 }
146

147 /**
148 * Sets up the "My Station" table for the given device using the
149 * myStationMac address found in the config.
150 * <p>
151 * This method will be called at component activation for each device
152 * (switch) known by ONOS, and every time a new device-added event is
153 * captured by the InternalDeviceListener defined below.
154 *
155 * @param deviceId the device ID
156 */
157 private void setUpMyStationTable(DeviceId deviceId) {
158

159 log.info("Adding My Station rules to {}...", deviceId);
160

161 final MacAddress myStationMac = getMyStationMac(deviceId);
162

163 // the My Station table matches on the *ethernet
164 // destination* and there is only one action called *NoAction*, which is
165 // used as an indication of "table hit" in the control block.
166

167 final String tableId = "IngressPipeImpl.my_station_table";
168

169 final PiCriterion match = PiCriterion.builder()
170 .matchExact(

68

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

171 PiMatchFieldId.of("hdr.ethernet.dst_addr"),
172 myStationMac.toBytes())
173 .build();
174

175 // Creates an action which do *NoAction* when hit.
176 final PiTableAction action = PiAction.builder()
177 .withId(PiActionId.of("NoAction"))
178 .build();
179

180 final FlowRule myStationRule = Utils.buildFlowRule(
181 deviceId, appId, tableId, match, action);
182

183 flowRuleService.applyFlowRules(myStationRule);
184 }
185

186 /**
187 * Creates an ONOS SELECT group for the routing table to provide ECMP
188 * forwarding for the given collection of next hop MAC addresses. ONOS
189 * SELECT groups are equivalent to P4Runtime action selector groups.
190 * <p>
191 * This method will be called by the routing policy methods below to insert
192 * groups in the L3 table
193 *
194 * @param nextHopMacs the collection of mac addresses of next hops
195 * @param deviceId the device where the group will be installed
196 * @return a SELECT group
197 */
198 private GroupDescription createNextHopGroup(int groupId,
199 Collection<MacAddress> nextHopMacs,
200 DeviceId deviceId) {
201

202 String actionProfileId = "IngressPipeImpl.ecmp_selector";
203

204 final List<PiAction> actions = Lists.newArrayList();
205

206 // Build one "set next hop" action for each next hop
207

208 final String tableId = "IngressPipeImpl.routing_v6_table";
209 for (MacAddress nextHopMac : nextHopMacs) {
210 final PiAction action = PiAction.builder()
211 .withId(PiActionId.of("IngressPipeImpl.set_next_hop"))
212 .withParameter(new PiActionParam(
213 // Action param name.
214 PiActionParamId.of("dmac"),
215 // Action param value.
216 nextHopMac.toBytes()))
217 .build();
218

219 actions.add(action);
220 }
221

222 return Utils.buildSelectGroup(
223 deviceId, tableId, actionProfileId, groupId, actions, appId);
224 }
225

226 /**
227 * Creates a routing flow rule that matches on the given IPv6 prefix and
228 * executes the given group ID (created before).
229 *
230 * @param deviceId the device where flow rule will be installed
231 * @param ip6Prefix the IPv6 prefix
232 * @param groupId the group ID
233 * @return a flow rule
234 */
235 private FlowRule createRoutingRule(DeviceId deviceId, Ip6Prefix ip6Prefix,
236 int groupId) {
237

238

239 final String tableId = "IngressPipeImpl.routing_v6_table";
240 final PiCriterion match = PiCriterion.builder()
241 .matchLpm(
242 PiMatchFieldId.of("hdr.ipv6.dst_addr"),
243 ip6Prefix.address().toOctets(),
244 ip6Prefix.prefixLength())

69

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

245 .build();
246

247 final PiTableAction action = PiActionProfileGroupId.of(groupId);
248

249 return Utils.buildFlowRule(
250 deviceId, appId, tableId, match, action);
251 }
252

253 /**
254 * Creates a flow rule for the L2 table mapping the given next hop MAC to
255 * the given output port.
256 * <p>
257 * This is called by the routing policy methods below to establish L2-based
258 * forwarding inside the fabric, e.g., when deviceId is a leaf switch and
259 * nextHopMac is the one of a spine switch.
260 *
261 * @param deviceId the device
262 * @param nexthopMac the next hop (destination) mac
263 * @param outPort the output port
264 */
265 private FlowRule createL2NextHopRule(DeviceId deviceId, MacAddress nexthopMac,
266 PortNumber outPort) {
267

268 final String tableId = "IngressPipeImpl.l2_exact_table";
269 final PiCriterion match = PiCriterion.builder()
270 .matchExact(PiMatchFieldId.of("hdr.ethernet.dst_addr"),
271 nexthopMac.toBytes())
272 .build();
273

274

275 final PiAction action = PiAction.builder()
276 .withId(PiActionId.of("IngressPipeImpl.set_egress_port"))
277 .withParameter(new PiActionParam(
278 PiActionParamId.of("port_num"),
279 outPort.toLong()))
280 .build();
281

282 return Utils.buildFlowRule(
283 deviceId, appId, tableId, match, action);
284 }
285

286 //--
287 // EVENT LISTENERS
288 //
289 // Events are processed only if isRelevant() returns true.
290 //--
291

292 /**
293 * Listener of host events which triggers configuration of routing rules on
294 * the device where the host is attached.
295 */
296 class InternalHostListener implements HostListener {
297

298 @Override
299 public boolean isRelevant(HostEvent event) {
300 switch (event.type()) {
301 case HOST_ADDED:
302 break;
303 case HOST_REMOVED:
304 case HOST_UPDATED:
305 case HOST_MOVED:
306 default:
307 // Ignore other events.
308 // Food for thoughts:
309 // how to support host moved/removed events?
310 return false;
311 }
312 // Process host event only if this controller instance is the master
313 // for the device where this host is attached.
314 final Host host = event.subject();
315 final DeviceId deviceId = host.location().deviceId();
316 return mastershipService.isLocalMaster(deviceId);
317 }
318

70

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

319 @Override
320 public void event(HostEvent event) {
321 Host host = event.subject();
322 DeviceId deviceId = host.location().deviceId();
323 mainComponent.getExecutorService().execute(() -> {
324 log.info("{} event! host={}, deviceId={}, port={}",
325 event.type(), host.id(), deviceId, host.location().port());
326 setUpHostRules(deviceId, host);
327 });
328 }
329 }
330

331 /**
332 * Listener of link events, which triggers configuration of routing rules to
333 * forward packets across the fabric, i.e. from leaves to spines and vice
334 * versa.
335 * <p>
336 * Reacting to link events instead of device ones, allows us to make sure
337 * all device are always configured with a topology view that includes all
338 * links, e.g. modifying an ECMP group as soon as a new link is added. The
339 * downside is that we might be configuring the same device twice for the
340 * same set of links/paths. However, the ONOS core treats these cases as a
341 * no-op when the device is already configured with the desired forwarding
342 * state (i.e. flows and groups)
343 */
344 class InternalLinkListener implements LinkListener {
345

346 @Override
347 public boolean isRelevant(LinkEvent event) {
348 switch (event.type()) {
349 case LINK_ADDED:
350 break;
351 case LINK_UPDATED:
352 case LINK_REMOVED:
353 default:
354 return false;
355 }
356 DeviceId srcDev = event.subject().src().deviceId();
357 DeviceId dstDev = event.subject().dst().deviceId();
358 return mastershipService.isLocalMaster(srcDev) ||
359 mastershipService.isLocalMaster(dstDev);
360 }
361

362 @Override
363 public void event(LinkEvent event) {
364 DeviceId srcDev = event.subject().src().deviceId();
365 DeviceId dstDev = event.subject().dst().deviceId();
366

367 if (mastershipService.isLocalMaster(srcDev)) {
368 mainComponent.getExecutorService().execute(() -> {
369 log.info("{} event! Configuring {}... linkSrc={}, linkDst={}",
370 event.type(), srcDev, srcDev, dstDev);
371 setUpFabricRoutes(srcDev);
372 setUpL2NextHopRules(srcDev);
373 });
374 }
375 if (mastershipService.isLocalMaster(dstDev)) {
376 mainComponent.getExecutorService().execute(() -> {
377 log.info("{} event! Configuring {}... linkSrc={}, linkDst={}",
378 event.type(), dstDev, srcDev, dstDev);
379 setUpFabricRoutes(dstDev);
380 setUpL2NextHopRules(dstDev);
381 });
382 }
383 }
384 }
385

386 /**
387 * Listener of device events which triggers configuration of the My Station
388 * table.
389 */
390 class InternalDeviceListener implements DeviceListener {
391

392 @Override

71

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

393 public boolean isRelevant(DeviceEvent event) {
394 switch (event.type()) {
395 case DEVICE_AVAILABILITY_CHANGED:
396 case DEVICE_ADDED:
397 break;
398 default:
399 return false;
400 }
401 // Process device event if this controller instance is the master
402 // for the device and the device is available.
403 DeviceId deviceId = event.subject().id();
404 return mastershipService.isLocalMaster(deviceId) &&
405 deviceService.isAvailable(event.subject().id());
406 }
407

408 @Override
409 public void event(DeviceEvent event) {
410 mainComponent.getExecutorService().execute(() -> {
411 DeviceId deviceId = event.subject().id();
412 log.info("{} event! device id={}", event.type(), deviceId);
413 setUpMyStationTable(deviceId);
414 });
415 }
416 }
417

418 //--
419 // ROUTING POLICY METHODS
420 //
421 // Called by event listeners, these methods implement the actual routing
422 // policy, responsible of computing paths and creating ECMP groups.
423 //--
424

425 /**
426 * Set up L2 nexthop rules of a device to providing forwarding inside the
427 * fabric, i.e. between leaf and spine switches.
428 *
429 * @param deviceId the device ID
430 */
431 private void setUpL2NextHopRules(DeviceId deviceId) {
432

433 Set<Link> egressLinks = linkService.getDeviceEgressLinks(deviceId);
434

435 for (Link link : egressLinks) {
436 // For each other switch directly connected to this.
437 final DeviceId nextHopDevice = link.dst().deviceId();
438 // Get port of this device connecting to next hop.
439 final PortNumber outPort = link.src().port();
440 // Get next hop MAC address.
441 final MacAddress nextHopMac = getMyStationMac(nextHopDevice);
442

443 final FlowRule nextHopRule = createL2NextHopRule(
444 deviceId, nextHopMac, outPort);
445

446 flowRuleService.applyFlowRules(nextHopRule);
447 }
448 }
449

450 /**
451 * Sets up the given device with the necessary rules to route packets to the
452 * given host.
453 *
454 * @param deviceId deviceId the device ID
455 * @param host the host
456 */
457 private void setUpHostRules(DeviceId deviceId, Host host) {
458

459 // Get all IPv6 addresses associated to this host. In this tutorial we
460 // use hosts with only 1 IPv6 address.
461 final Collection<Ip6Address> hostIpv6Addrs = host.ipAddresses().stream()
462 .filter(IpAddress::isIp6)
463 .map(IpAddress::getIp6Address)
464 .collect(Collectors.toSet());
465

466 if (hostIpv6Addrs.isEmpty()) {

72

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

467 // Ignore.
468 log.debug("No IPv6 addresses for host {}, ignore", host.id());
469 return;
470 } else {
471 log.info("Adding routes on {} for host {} [{}]",
472 deviceId, host.id(), hostIpv6Addrs);
473 }
474

475 // Create an ECMP group with only one member, where the group ID is
476 // derived from the host MAC.
477 final MacAddress hostMac = host.mac();
478 int groupId = macToGroupId(hostMac);
479

480 final GroupDescription group = createNextHopGroup(
481 groupId, Collections.singleton(hostMac), deviceId);
482

483 // Map each host IPV6 address to corresponding /128 prefix and obtain a
484 // flow rule that points to the group ID. In this tutorial we expect
485 // only one flow rule per host.
486 final List<FlowRule> flowRules = hostIpv6Addrs.stream()
487 .map(IpAddress::toIpPrefix)
488 .filter(IpPrefix::isIp6)
489 .map(IpPrefix::getIp6Prefix)
490 .map(prefix -> createRoutingRule(deviceId, prefix, groupId))
491 .collect(Collectors.toList());
492

493 // Helper function to install flows after groups, since here flows
494 // points to the group and P4Runtime enforces this dependency during
495 // write operations.
496 insertInOrder(group, flowRules);
497 }
498

499 /**
500 * Set up routes on a given device to forward packets across the fabric,
501 * making a distinction between spines and leaves.
502 *
503 * @param deviceId the device ID.
504 */
505 private void setUpFabricRoutes(DeviceId deviceId) {
506 if (isSpine(deviceId)) {
507 setUpSpineRoutes(deviceId);
508 } else {
509 setUpLeafRoutes(deviceId);
510 }
511 }
512

513 /**
514 * Insert routing rules on the given spine switch, matching on leaf
515 * interface subnets and forwarding packets to the corresponding leaf.
516 *
517 * @param spineId the spine device ID
518 */
519 private void setUpSpineRoutes(DeviceId spineId) {
520

521 log.info("Adding up spine routes on {}...", spineId);
522

523 for (Device device : deviceService.getDevices()) {
524

525 if (isSpine(device.id())) {
526 // We only need routes to leaf switches. Ignore spines.
527 continue;
528 }
529

530 final DeviceId leafId = device.id();
531 final MacAddress leafMac = getMyStationMac(leafId);
532 final Set<Ip6Prefix> subnetsToRoute = getInterfaceIpv6Prefixes(leafId);
533

534 final Ip6Address leafSid = getDeviceSid(leafId);
535 subnetsToRoute.add(Ip6Prefix.valueOf(leafSid, 128));
536

537 // Create a group with only one member.
538 int groupId = macToGroupId(leafMac);
539

540 GroupDescription group = createNextHopGroup(

73

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

541 groupId, Collections.singleton(leafMac), spineId);
542

543 List<FlowRule> flowRules = subnetsToRoute.stream()
544 .map(subnet -> createRoutingRule(spineId, subnet, groupId))
545 .collect(Collectors.toList());
546

547 insertInOrder(group, flowRules);
548 }
549 }
550

551 /**
552 * Insert routing rules on the given leaf switch, matching on interface
553 * subnets associated to other leaves and forwarding packets the spines
554 * using ECMP.
555 *
556 * @param leafId the leaf device ID
557 */
558 private void setUpLeafRoutes(DeviceId leafId) {
559 log.info("Setting up leaf routes: {}", leafId);
560

561 // Get the set of subnets (interface IPv6 prefixes) associated to other
562 // leafs but not this one.
563 Set<Ip6Prefix> subnetsToRouteViaSpines = stream(deviceService.getDevices())
564 .map(Device::id)
565 .filter(this::isLeaf)
566 .filter(deviceId -> !deviceId.equals(leafId))
567 .map(this::getInterfaceIpv6Prefixes)
568 .flatMap(Collection::stream)
569 .collect(Collectors.toSet());
570

571 // Get myStationMac address of all spines.
572 Set<MacAddress> spineMacs = stream(deviceService.getDevices())
573 .map(Device::id)
574 .filter(this::isSpine)
575 .map(this::getMyStationMac)
576 .collect(Collectors.toSet());
577

578 // Create an ECMP group to distribute traffic across all spines.
579 final int groupId = DEFAULT_ECMP_GROUP_ID;
580 final GroupDescription ecmpGroup = createNextHopGroup(
581 groupId, spineMacs, leafId);
582

583 // Generate a flow rule for each subnet pointing to the ECMP group.
584 List<FlowRule> flowRules = subnetsToRouteViaSpines.stream()
585 .map(subnet -> createRoutingRule(leafId, subnet, groupId))
586 .collect(Collectors.toList());
587

588 insertInOrder(ecmpGroup, flowRules);
589

590 stream(deviceService.getDevices())
591 .map(Device::id)
592 .filter(this::isSpine)
593 .forEach(spineId -> {
594 MacAddress spineMac = getMyStationMac(spineId);
595 Ip6Address spineSid = getDeviceSid(spineId);
596 int spineGroupId = macToGroupId(spineMac);
597 GroupDescription group = createNextHopGroup(
598 spineGroupId, Collections.singleton(spineMac), leafId);
599 FlowRule routingRule = createRoutingRule(
600 leafId, Ip6Prefix.valueOf(spineSid, 128),
601 spineGroupId);
602 insertInOrder(group, Collections.singleton(routingRule));
603 });
604 }
605

606 //--
607 // UTILITY METHODS
608 //--
609

610 /**
611 * Returns true if the given device has isSpine flag set to true in the
612 * config, false otherwise.
613 *
614 * @param deviceId the device ID

74

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

615 * @return true if the device is a spine, false otherwise
616 */
617 private boolean isSpine(DeviceId deviceId) {
618 return getDeviceConfig(deviceId).map(FabricDeviceConfig::isSpine)
619 .orElseThrow(() -> new ItemNotFoundException(
620 "Missing isSpine config for " + deviceId));
621 }
622

623 /**
624 * Returns true if the given device is not configured as spine.
625 *
626 * @param deviceId the device ID
627 * @return true if the device is a leaf, false otherwise
628 */
629 private boolean isLeaf(DeviceId deviceId) {
630 return !isSpine(deviceId);
631 }
632

633 /**
634 * Returns the MAC address configured in the "myStationMac" property of the
635 * given device config.
636 *
637 * @param deviceId the device ID
638 * @return MyStation MAC address
639 */
640 private MacAddress getMyStationMac(DeviceId deviceId) {
641 return getDeviceConfig(deviceId)
642 .map(FabricDeviceConfig::myStationMac)
643 .orElseThrow(() -> new ItemNotFoundException(
644 "Missing myStationMac config for " + deviceId));
645 }
646

647 /**
648 * Returns the FabricDeviceConfig config object for the given device.
649 *
650 * @param deviceId the device ID
651 * @return FabricDeviceConfig device config
652 */
653 private Optional<FabricDeviceConfig> getDeviceConfig(DeviceId deviceId) {
654 FabricDeviceConfig config = networkConfigService.getConfig(
655 deviceId, FabricDeviceConfig.class);
656 return Optional.ofNullable(config);
657 }
658

659 /**
660 * Returns the set of interface IPv6 subnets (prefixes) configured for the
661 * given device.
662 *
663 * @param deviceId the device ID
664 * @return set of IPv6 prefixes
665 */
666 private Set<Ip6Prefix> getInterfaceIpv6Prefixes(DeviceId deviceId) {
667 return interfaceService.getInterfaces().stream()
668 .filter(iface -> iface.connectPoint().deviceId().equals(deviceId))
669 .map(Interface::ipAddressesList)
670 .flatMap(Collection::stream)
671 .map(InterfaceIpAddress::subnetAddress)
672 .filter(IpPrefix::isIp6)
673 .map(IpPrefix::getIp6Prefix)
674 .collect(Collectors.toSet());
675 }
676

677 /**
678 * Returns a 32 bit bit group ID from the given MAC address.
679 *
680 * @param mac the MAC address
681 * @return an integer
682 */
683 private int macToGroupId(MacAddress mac) {
684 return mac.hashCode() & 0x7fffffff;
685 }
686

687 /**
688 * Inserts the given groups and flow rules in order, groups first, then flow

75

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

689 * rules. In P4Runtime, when operating on an indirect table (i.e. with
690 * action selectors), groups must be inserted before table entries.
691 *
692 * @param group the group
693 * @param flowRules the flow rules depending on the group
694 */
695 private void insertInOrder(GroupDescription group, Collection<FlowRule> flowRules) {
696 try {
697 groupService.addGroup(group);
698 // Wait for groups to be inserted.
699 Thread.sleep(GROUP_INSERT_DELAY_MILLIS);
700 flowRules.forEach(flowRuleService::applyFlowRules);
701 } catch (InterruptedException e) {
702 log.error("Interrupted!", e);
703 Thread.currentThread().interrupt();
704 }
705 }
706

707 /**
708 * Gets Srv6 SID for the given device.
709 *
710 * @param deviceId the device ID
711 * @return SID for the device
712 */
713 private Ip6Address getDeviceSid(DeviceId deviceId) {
714 return getDeviceConfig(deviceId)
715 .map(FabricDeviceConfig::mySid)
716 .orElseThrow(() -> new ItemNotFoundException(
717 "Missing mySid config for " + deviceId));
718 }
719

720 /**
721 * Sets up IPv6 routing on all devices known by ONOS and for which this ONOS
722 * node instance is currently master.
723 */
724 private synchronized void setUpAllDevices() {
725 // Set up host routes
726 stream(deviceService.getAvailableDevices())
727 .map(Device::id)
728 .filter(mastershipService::isLocalMaster)
729 .forEach(deviceId -> {
730 log.info("*** IPV6 ROUTING - Starting initial set up for {}...", deviceId);
731 setUpMyStationTable(deviceId);
732 setUpFabricRoutes(deviceId);
733 setUpL2NextHopRules(deviceId);
734 hostService.getConnectedHosts(deviceId)
735 .forEach(host -> setUpHostRules(deviceId, host));
736 });
737 }
738 }

NdpReplyComponent.java

1 package org.onosproject.ngsdn.tutorial;
2

3 import org.onlab.packet.Ip6Address;
4 import org.onlab.packet.IpAddress;
5 import org.onlab.packet.MacAddress;
6 import org.onlab.util.ItemNotFoundException;
7 import org.onosproject.core.ApplicationId;
8 import org.onosproject.mastership.MastershipService;
9 import org.onosproject.net.DeviceId;

10 import org.onosproject.net.config.NetworkConfigService;
11 import org.onosproject.net.device.DeviceEvent;
12 import org.onosproject.net.device.DeviceListener;
13 import org.onosproject.net.device.DeviceService;
14 import org.onosproject.net.flow.FlowRule;
15 import org.onosproject.net.flow.FlowRuleOperations;
16 import org.onosproject.net.flow.FlowRuleService;
17 import org.onosproject.net.flow.criteria.PiCriterion;
18 import org.onosproject.net.host.InterfaceIpAddress;
19 import org.onosproject.net.intf.Interface;
20 import org.onosproject.net.intf.InterfaceService;
21 import org.onosproject.net.pi.model.PiActionId;
22 import org.onosproject.net.pi.model.PiActionParamId;

76

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

23 import org.onosproject.net.pi.model.PiMatchFieldId;
24 import org.onosproject.net.pi.runtime.PiAction;
25 import org.onosproject.net.pi.runtime.PiActionParam;
26 import org.onosproject.ngsdn.tutorial.common.FabricDeviceConfig;
27 import org.onosproject.ngsdn.tutorial.common.Utils;
28 import org.osgi.service.component.annotations.Activate;
29 import org.osgi.service.component.annotations.Component;
30 import org.osgi.service.component.annotations.Deactivate;
31 import org.osgi.service.component.annotations.Reference;
32 import org.osgi.service.component.annotations.ReferenceCardinality;
33 import org.slf4j.Logger;
34 import org.slf4j.LoggerFactory;
35

36 import java.util.Collection;
37 import java.util.stream.Collectors;
38

39 import static org.onosproject.ngsdn.tutorial.AppConstants.INITIAL_SETUP_DELAY;
40

41 /**
42 * App component that configures devices to generate NDP Neighbor Advertisement
43 * packets for all interface IPv6 addresses configured in the netcfg.
44 */
45 @Component(
46 immediate = true,
47 enabled = true
48)
49 public class NdpReplyComponent {
50

51 private static final Logger log =
52 LoggerFactory.getLogger(NdpReplyComponent.class.getName());
53

54 //--
55 // ONOS CORE SERVICE BINDING
56 //
57 // These variables are set by the Karaf runtime environment before calling
58 // the activate() method.
59 //--
60

61 @Reference(cardinality = ReferenceCardinality.MANDATORY)
62 protected NetworkConfigService configService;
63

64 @Reference(cardinality = ReferenceCardinality.MANDATORY)
65 protected FlowRuleService flowRuleService;
66

67 @Reference(cardinality = ReferenceCardinality.MANDATORY)
68 protected InterfaceService interfaceService;
69

70 @Reference(cardinality = ReferenceCardinality.MANDATORY)
71 protected MastershipService mastershipService;
72

73 @Reference(cardinality = ReferenceCardinality.MANDATORY)
74 protected DeviceService deviceService;
75

76 @Reference(cardinality = ReferenceCardinality.MANDATORY)
77 private MainComponent mainComponent;
78

79 private DeviceListener deviceListener = new InternalDeviceListener();
80 private ApplicationId appId;
81

82 //--
83 // COMPONENT ACTIVATION.
84 //
85 // When loading/unloading the app the Karaf runtime environment will call
86 // activate()/deactivate().
87 //--
88

89 @Activate
90 public void activate() {
91 appId = mainComponent.getAppId();
92 // Register listeners to be informed about device events.
93 deviceService.addListener(deviceListener);
94 // Schedule set up of existing devices. Needed when reloading the app.
95 mainComponent.scheduleTask(this::setUpAllDevices, INITIAL_SETUP_DELAY);
96 log.info("Started");

77

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

97 }
98

99 @Deactivate
100 public void deactivate() {
101 deviceService.removeListener(deviceListener);
102 log.info("Stopped");
103 }
104

105 /**
106 * Set up all devices for which this ONOS instance is currently master.
107 */
108 private void setUpAllDevices() {
109 deviceService.getAvailableDevices().forEach(device -> {
110 if (mastershipService.isLocalMaster(device.id())) {
111 log.info("*** NDP REPLY - Starting Initial set up for {}...", device.id());
112 setUpDevice(device.id());
113 }
114 });
115 }
116

117 /**
118 * Performs setup of the given device by creating a flow rule to generate
119 * NDP NA packets for IPv6 addresses associated to the device interfaces.
120 *
121 * @param deviceId device ID
122 */
123 private void setUpDevice(DeviceId deviceId) {
124

125 // Get this device config from netcfg.json.
126 final FabricDeviceConfig config = configService.getConfig(
127 deviceId, FabricDeviceConfig.class);
128 if (config == null) {
129 // Config not available yet
130 throw new ItemNotFoundException("Missing fabricDeviceConfig for " + deviceId);
131 }
132

133 // Get this device myStation mac.
134 final MacAddress deviceMac = config.myStationMac();
135

136 // Get all interfaces currently configured for the device
137 final Collection<Interface> interfaces = interfaceService.getInterfaces()
138 .stream()
139 .filter(iface -> iface.connectPoint().deviceId().equals(deviceId))
140 .collect(Collectors.toSet());
141

142 if (interfaces.isEmpty()) {
143 log.info("{} does not have any IPv6 interface configured",
144 deviceId);
145 return;
146 }
147

148 // Generate and install flow rules.
149 log.info("Adding rules to {} to generate NDP NA for {} IPv6 interfaces...",
150 deviceId, interfaces.size());
151 final Collection<FlowRule> flowRules = interfaces.stream()
152 .map(this::getIp6Addresses)
153 .flatMap(Collection::stream)
154 .map(ipv6addr -> buildNdpReplyFlowRule(deviceId, ipv6addr, deviceMac))
155 .collect(Collectors.toSet());
156

157 installRules(flowRules);
158 }
159

160 /**
161 * Build a flow rule for the NDP reply table on the given device, for the
162 * given target IPv6 address and MAC address.
163 *
164 * @param deviceId device ID where to install the flow rules
165 * @param targetIpv6Address target IPv6 address
166 * @param targetMac target MAC address
167 * @return flow rule object
168 */
169 private FlowRule buildNdpReplyFlowRule(DeviceId deviceId,
170 Ip6Address targetIpv6Address,

78

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

171 MacAddress targetMac) {
172

173 // Build match.
174 final PiCriterion match = PiCriterion.builder()
175 .matchExact(PiMatchFieldId.of("hdr.ndp.target_ipv6_addr"), targetIpv6Address.

toOctets())
176 .build();
177 // Build action.
178 final PiActionParam targetMacParam = new PiActionParam(
179 PiActionParamId.of("target_mac"), targetMac.toBytes());
180 final PiAction action = PiAction.builder()
181 .withId(PiActionId.of("IngressPipeImpl.ndp_ns_to_na"))
182 .withParameter(targetMacParam)
183 .build();
184 // Table ID.
185 final String tableId = "IngressPipeImpl.ndp_reply_table";
186

187 // Build flow rule.
188 final FlowRule rule = Utils.buildFlowRule(
189 deviceId, appId, tableId, match, action);
190

191 return rule;
192 }
193

194 //--
195 // EVENT LISTENERS
196 //
197 // Events are processed only if isRelevant() returns true.
198 //--
199

200 /**
201 * Listener of device events.
202 */
203 public class InternalDeviceListener implements DeviceListener {
204

205 @Override
206 public boolean isRelevant(DeviceEvent event) {
207 switch (event.type()) {
208 case DEVICE_ADDED:
209 case DEVICE_AVAILABILITY_CHANGED:
210 break;
211 default:
212 // Ignore other events.
213 return false;
214 }
215 // Process only if this controller instance is the master.
216 final DeviceId deviceId = event.subject().id();
217 return mastershipService.isLocalMaster(deviceId);
218 }
219

220 @Override
221 public void event(DeviceEvent event) {
222 final DeviceId deviceId = event.subject().id();
223 if (deviceService.isAvailable(deviceId)) {
224 // A P4Runtime device is considered available in ONOS when there
225 // is a StreamChannel session open and the pipeline
226 // configuration has been set.
227

228 // Events are processed using a thread pool defined in the
229 // MainComponent.
230 mainComponent.getExecutorService().execute(() -> {
231 log.info("{} event! deviceId={}", event.type(), deviceId);
232 setUpDevice(deviceId);
233 });
234 }
235 }
236 }
237

238 //--
239 // UTILITY METHODS
240 //--
241

242 /**
243 * Returns all IPv6 addresses associated with the given interface.

79

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

244 *
245 * @param iface interface instance
246 * @return collection of IPv6 addresses
247 */
248 private Collection<Ip6Address> getIp6Addresses(Interface iface) {
249 return iface.ipAddressesList()
250 .stream()
251 .map(InterfaceIpAddress::ipAddress)
252 .filter(IpAddress::isIp6)
253 .map(IpAddress::getIp6Address)
254 .collect(Collectors.toSet());
255 }
256

257 /**
258 * Install the given flow rules in batch using the flow rule service.
259 *
260 * @param flowRules flow rules to install
261 */
262 private void installRules(Collection<FlowRule> flowRules) {
263 FlowRuleOperations.Builder ops = FlowRuleOperations.builder();
264 flowRules.forEach(ops::add);
265 flowRuleService.apply(ops.build());
266 }
267 }

Pinging between h3 and h2 should work now. The ONOS log should show messages such as:

1 ...
2 INFO [Ipv6RoutingComponent] HOST_ADDED event! host=00:00:00:00:00:20/None, deviceId=device:leaf1,

port=6
3 INFO [Ipv6RoutingComponent] Adding routes on device:leaf1 for host 00:00:00:00:00:20/None

[[2001:1:2::1]]
4 ...
5 INFO [Ipv6RoutingComponent] HOST_ADDED event! host=00:00:00:00:00:30/None, deviceId=device:leaf2,

port=3
6 INFO [Ipv6RoutingComponent] Adding routes on device:leaf2 for host 00:00:00:00:00:30/None

[[2001:2:3::1]]
7 ...

To verify that the P4-based generation of NDP NA replies by the switch is working, can be checked by

inspecting the neighbor table of h2 or h3. It should show something similar to this:

1 mininet> h3 ip -6 n
2 2001:2:3::ff dev h3-eth0 lladdr 00:aa:00:00:00:02 router REACHABLE

where 2001:2:3::ff is the IPv6 gateway address defined in netcfg.json and 00:aa:00:00:00:02 is the myStation-

Mac defined for leaf2 in netcfg.json.

To verify that ECMP is working, is started by multiple parallel traffic flows from h2 to h3 using iperf.

1 mininet> h2 iperf -c h3 -u -V -P5 -b1M -t600 -i1

This commands starts an iperf client on h2, sending UDP packets (-u) over IPv6 (-V) to h3 (-c). By doing this,

5 distinct flows (-P5) are generated, each one capped at 1Mbit/s (-b1M), running for 10 minutes (-t600) and

reporting stats every 1 second (-i1). Since the generated traffic is UDP, there is no need to start an iperf server

on h3.

Figure 28 shows the traffic being forwarded to both spines, meaning that ECMP is working.

80

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 28: ONOS UI IPv6 Routing with ECMP

6.6 Segment Routing v6

In this subsection, an implementation of a simplified version of segment routing, a source routing method

that steers traffic through a specified set of nodes will be presented.

This implementation is based on an IETF draft specification called SRv6, which uses IPv6 packets to frame

traffic that follows an SRv6 policy. SRv6 packets use the IPv6 routing header, and they can either encapsulate

IPv6 or IPv4 packets entirely or they can just inject an IPv6 routing header into an existing IPv6 packet.

The IPv6 routing header looks as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| Last Entry | Flags | Tag |
+-+
| |
| Segment List[0] (128 bits IPv6 address) |
| |
| |
+-+
| |
| |

...
| |
| |
+-+
| |
| Segment List[n] (128 bits IPv6 address) |
| |
| |
+-+

The Next Header field is the type of either the next IPv6 header or the payload and for SRv6, the Routing

Type is 4. Segments Left points to the index of the current segment in the segment list. In properly formed

SRv6 packets, the IPv6 destination address equals Segment List[Segments Left]. The original IPv6 address

should be Segment List[0] in this implementation so that traffic is routed to the correct destination eventually.

Last Entry is the index of the last entry in the segment list. This means it should be one less than the length

of the list. Finally, the Segment List is a reverse-sorted list of IPv6 addresses to be traversed in a specific

SRv6 policy. The last entry in the list is the first segment in the SRv6 policy. The list is not typically mutated;

the entire header is inserted or removed as a whole.

SRv6 uses IPv6 addresses to identify segments in a policy. While the format of the addresses is the same

as IPv6, the address space is typically different from the space used for switch’s internal IPv6 addresses. The

format of the address also differs. A typical IPv6 unicast address is broken into a network prefix and host

identifier pieces, and a subnet mask is used to delineate the boundary between the two. A typical SRv6

81

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

segment identifier (SID) is broken into a locator, a function identifier, and optionally, function arguments. The

locator must be routable, which enables both SRv6-enable and unaware nodes to participate in forwarding.

Due to optional arguments, longest prefix match on the 128-bit SID is preferred to exact match.

There are three types of nodes of interest in a segment routed network:

• Source Node - the node, either host or switch, that injects the SRv6 policy.

• Transit Node - a node that forwards an SRv6 packet, but is not the destination for the traffic

• Endpoint Node - a participating waypoint in an SRv6 policy that will modify the SRv6 header and perform

a specified function

In this implementation, these types are simplified into two roles:

• Endpoint Node - for traffic to the switch’s SID, update the SRv6 header (decrement segments left), set the

IPv6 destination address to the next segment, and forward the packets ("End" behavior). For simplicity,

the SRv6 header is always removed on the penultimate segment in the policy (called Penultimate Segment

Pop or PSP in the spec).

• Transit Node - by default, forward traffic normally if it is not destined for the switch’s IP address or its

SID ("T" behavior). Allow the control plane to add rules to inject SRv6 policy for traffic destined to specific

IPv6 addresses ("T.Insert" behavior).

The following code is added to the main.p4 file.

1 ...
2 // Maximum number of hops supported when using SRv6.
3 #define SRV6_MAX_HOPS 4
4

5 ...
6

7 const bit<8> IP_PROTO_ICMP = 1;
8 const bit<8> IP_PROTO_TCP = 6;
9 const bit<8> IP_PROTO_UDP = 17;

10 const bit<8> IP_PROTO_SRV6 = 43;
11 const bit<8> IP_PROTO_ICMPV6 = 58;
12

13 ...
14

15 header srv6h_t {
16 bit<8> next_hdr;
17 bit<8> hdr_ext_len;
18 bit<8> routing_type;
19 bit<8> segment_left;
20 bit<8> last_entry;
21 bit<8> flags;
22 bit<16> tag;
23 }
24

25

26 header srv6_list_t {
27 bit<128> segment_id;
28 }
29

30 ...
31

32 struct parsed_headers_t {
33 cpu_out_header_t cpu_out;
34 cpu_in_header_t cpu_in;
35 ethernet_t ethernet;
36 ipv4_t ipv4;
37 ipv6_t ipv6;
38 srv6h_t srv6h;
39 srv6_list_t[SRV6_MAX_HOPS] srv6_list;
40 tcp_t tcp;
41 udp_t udp;
42 icmp_t icmp;
43 icmpv6_t icmpv6;
44 ndp_t ndp;
45 }
46

82

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

47 struct local_metadata_t {
48 l4_port_t l4_src_port;
49 l4_port_t l4_dst_port;
50 bool is_multicast;
51 ipv6_addr_t next_srv6_sid;
52 bit<8> ip_proto;
53 bit<8> icmp_type;
54 }
55

56 ...
57

58 parser ParserImpl (packet_in packet,
59 out parsed_headers_t hdr,
60 inout local_metadata_t local_metadata,
61 inout standard_metadata_t standard_metadata)
62 {
63

64 ...
65

66 state parse_ipv6 {
67 packet.extract(hdr.ipv6);
68 local_metadata.ip_proto = hdr.ipv6.next_hdr;
69 transition select(hdr.ipv6.next_hdr) {
70 IP_PROTO_TCP: parse_tcp;
71 IP_PROTO_UDP: parse_udp;
72 IP_PROTO_ICMPV6: parse_icmpv6;
73 IP_PROTO_SRV6: parse_srv6;
74 default: accept;
75 }
76 }
77

78 ...
79

80 state parse_srv6 {
81 packet.extract(hdr.srv6h);
82 transition parse_srv6_list;
83 }
84

85 state parse_srv6_list {
86 packet.extract(hdr.srv6_list.next);
87 bool next_segment = (bit<32>)hdr.srv6h.segment_left - 1 == (bit<32>)hdr.srv6_list.lastIndex

;
88 transition select(next_segment) {
89 true: mark_current_srv6;
90 default: check_last_srv6;
91 }
92 }
93

94 state mark_current_srv6 {
95 local_metadata.next_srv6_sid = hdr.srv6_list.last.segment_id;
96 transition check_last_srv6;
97 }
98

99 state check_last_srv6 {
100 // working with bit<8> and int<32> which cannot be cast directly; using
101 // bit<32> as common intermediate type for comparision
102 bool last_segment = (bit<32>)hdr.srv6h.last_entry == (bit<32>)hdr.srv6_list.lastIndex;
103 transition select(last_segment) {
104 true: parse_srv6_next_hdr;
105 false: parse_srv6_list;
106 }
107 }
108

109 state parse_srv6_next_hdr {
110 transition select(hdr.srv6h.next_hdr) {
111 IP_PROTO_TCP: parse_tcp;
112 IP_PROTO_UDP: parse_udp;
113 IP_PROTO_ICMPV6: parse_icmpv6;
114 default: accept;
115 }
116 }
117 }
118

119 ...

83

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

120

121 control IngressPipeImpl (inout parsed_headers_t hdr,
122 inout local_metadata_t local_metadata,
123 inout standard_metadata_t standard_metadata) {
124

125 ...
126

127 // --- srv6_my_sid--
128 // Process the packet if the destination IP is the segemnt Id(sid) of this
129 // device. This table will decrement the "segment left" field from the Srv6
130 // header and set destination IP address to next segment.
131

132 action srv6_end() {
133 hdr.srv6h.segment_left = hdr.srv6h.segment_left - 1;
134 hdr.ipv6.dst_addr = local_metadata.next_srv6_sid;
135 }
136

137 direct_counter(CounterType.packets_and_bytes) srv6_my_sid_table_counter;
138 table srv6_my_sid {
139 key = {
140 hdr.ipv6.dst_addr: lpm;
141 }
142 actions = {
143 srv6_end;
144 }
145

146 counters = srv6_my_sid_table_counter;
147 }
148

149 // --- srv6_transit --
150 // Inserts the SRv6 header to the IPv6 header of the packet based on the
151 // destination IP address.
152

153 action insert_srv6h_header(bit<8> num_segments) {
154 hdr.srv6h.setValid();
155 hdr.srv6h.next_hdr = hdr.ipv6.next_hdr;
156 hdr.srv6h.hdr_ext_len = num_segments * 2;
157 hdr.srv6h.routing_type = 4;
158 hdr.srv6h.segment_left = num_segments - 1;
159 hdr.srv6h.last_entry = num_segments - 1;
160 hdr.srv6h.flags = 0;
161 hdr.srv6h.tag = 0;
162 hdr.ipv6.next_hdr = IP_PROTO_SRV6;
163 }
164

165 /*
166 Single segment header doesn’t make sense given PSP
167 i.e. we will pop the SRv6 header when segments_left reaches 0
168 */
169 action srv6_t_insert_2(ipv6_addr_t s1, ipv6_addr_t s2) {
170 hdr.ipv6.dst_addr = s1;
171 hdr.ipv6.payload_len = hdr.ipv6.payload_len + 40;
172 insert_srv6h_header(2);
173 hdr.srv6_list[0].setValid();
174 hdr.srv6_list[0].segment_id = s2;
175 hdr.srv6_list[1].setValid();
176 hdr.srv6_list[1].segment_id = s1;
177 }
178

179 action srv6_t_insert_3(ipv6_addr_t s1, ipv6_addr_t s2, ipv6_addr_t s3) {
180 hdr.ipv6.dst_addr = s1;
181 hdr.ipv6.payload_len = hdr.ipv6.payload_len + 56;
182 insert_srv6h_header(3);
183 hdr.srv6_list[0].setValid();
184 hdr.srv6_list[0].segment_id = s3;
185 hdr.srv6_list[1].setValid();
186 hdr.srv6_list[1].segment_id = s2;
187 hdr.srv6_list[2].setValid();
188 hdr.srv6_list[2].segment_id = s1;
189 }
190

191 direct_counter(CounterType.packets_and_bytes) srv6_transit_table_counter;
192 table srv6_transit {
193 key = {

84

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

194 hdr.ipv6.dst_addr: lpm;
195 }
196 actions = {
197 srv6_t_insert_2;
198 srv6_t_insert_3;
199 }
200 counters = srv6_transit_table_counter;
201 }
202

203 // Called directly in the apply block.
204 action srv6_pop() {
205 hdr.ipv6.next_hdr = hdr.srv6h.next_hdr;
206 // SRv6 header is 8 bytes
207 // SRv6 list entry is 16 bytes each
208 // (((bit<16>)hdr.srv6h.last_entry + 1) * 16) + 8;
209 bit<16> srv6h_size = (((bit<16>)hdr.srv6h.last_entry + 1) << 4) + 8;
210 hdr.ipv6.payload_len = hdr.ipv6.payload_len - srv6h_size;
211

212 hdr.srv6h.setInvalid();
213 // Need to set MAX_HOPS headers invalid
214 hdr.srv6_list[0].setInvalid();
215 hdr.srv6_list[1].setInvalid();
216 hdr.srv6_list[2].setInvalid();
217 }
218

219 ...
220

221 apply {
222

223 ...
224

225 if (do_l3_l2) {
226 // applying the routing table.
227 if (hdr.ipv6.isValid() && my_station_table.apply().hit) {
228

229 if (srv6_my_sid.apply().hit) {
230 // PSP logic -- enabled for all packets
231 if (hdr.srv6h.isValid() && hdr.srv6h.segment_left == 0) {
232 srv6_pop();
233 }
234 } else {
235 srv6_transit.apply();
236 }
237

238 routing_v6_table.apply();
239 // Check TTL, drop packet if necessary to avoid loops.
240 if(hdr.ipv6.hop_limit == 0) { drop(); }
241 }
242

243 // L2 bridging logic. Apply the exact table first...
244 if (!l2_exact_table.apply().hit) {
245 // ...if an entry is NOT found, apply the ternary one in case
246 // this is a multicast/broadcast NDP NS packet.
247 l2_ternary_table.apply();
248 }
249 }
250

251 // Lastly, apply the ACL table.
252 acl_table.apply();
253 }
254 }
255

256 control DeparserImpl(packet_out packet, in parsed_headers_t hdr) {
257 apply {
258 ...
259 packet.emit(hdr.srv6h);
260 packet.emit(hdr.srv6_list);
261 ...
262 }
263 }
264 ...

The SRv6 header is defined (lines 15-23) as well as included the logic for parsing the header in main.p4

(lines 80-117). Next two tables are added for each of the two roles specified above (lines 138-147, 192-201).

85

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

In addition to the tables, the t_insert actions for policies of length 2 and 3 are implemented (lines 169-189).

After this, the tables is need to be applied in the apply block at the bottom of EgressPipeImpl section (lines

221-254). The tables are applied after checking that the L2 destination address matches the switch’s, and

before the L3 table is applied because the same routing entries are used to forward traffic after the SRv6 policy

is applied.

The new ONOS component that implemented here is the Srv6Component.java.

Srv6Component.java

1 package org.onosproject.ngsdn.tutorial;
2

3 import com.google.common.collect.Lists;
4 import org.onlab.packet.Ip6Address;
5 import org.onosproject.core.ApplicationId;
6 import org.onosproject.mastership.MastershipService;
7 import org.onosproject.net.Device;
8 import org.onosproject.net.DeviceId;
9 import org.onosproject.net.config.NetworkConfigService;

10 import org.onosproject.net.device.DeviceEvent;
11 import org.onosproject.net.device.DeviceListener;
12 import org.onosproject.net.device.DeviceService;
13 import org.onosproject.net.flow.FlowRule;
14 import org.onosproject.net.flow.FlowRuleOperations;
15 import org.onosproject.net.flow.FlowRuleService;
16 import org.onosproject.net.flow.criteria.PiCriterion;
17 import org.onosproject.net.pi.model.PiActionId;
18 import org.onosproject.net.pi.model.PiActionParamId;
19 import org.onosproject.net.pi.model.PiMatchFieldId;
20 import org.onosproject.net.pi.model.PiTableId;
21 import org.onosproject.net.pi.runtime.PiAction;
22 import org.onosproject.net.pi.runtime.PiActionParam;
23 import org.onosproject.net.pi.runtime.PiTableAction;
24 import org.osgi.service.component.annotations.Activate;
25 import org.osgi.service.component.annotations.Component;
26 import org.osgi.service.component.annotations.Deactivate;
27 import org.osgi.service.component.annotations.Reference;
28 import org.osgi.service.component.annotations.ReferenceCardinality;
29 import org.onosproject.ngsdn.tutorial.common.FabricDeviceConfig;
30 import org.onosproject.ngsdn.tutorial.common.Utils;
31 import org.slf4j.Logger;
32 import org.slf4j.LoggerFactory;
33

34 import java.util.List;
35 import java.util.Optional;
36

37 import static com.google.common.collect.Streams.stream;
38 import static org.onosproject.ngsdn.tutorial.AppConstants.INITIAL_SETUP_DELAY;
39

40 /**
41 * Application which handles SRv6 segment routing.
42 */
43 @Component(
44 immediate = true,
45 enabled = true,
46 service = Srv6Component.class
47)
48 public class Srv6Component {
49

50 private static final Logger log = LoggerFactory.getLogger(Srv6Component.class);
51

52 //--
53 // ONOS CORE SERVICE BINDING
54 //
55 // These variables are set by the Karaf runtime environment before calling
56 // the activate() method.
57 //--
58

59 @Reference(cardinality = ReferenceCardinality.MANDATORY)
60 private FlowRuleService flowRuleService;
61

62 @Reference(cardinality = ReferenceCardinality.MANDATORY)
63 private MastershipService mastershipService;
64

65 @Reference(cardinality = ReferenceCardinality.MANDATORY)

86

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

66 private DeviceService deviceService;
67

68 @Reference(cardinality = ReferenceCardinality.MANDATORY)
69 private NetworkConfigService networkConfigService;
70

71 @Reference(cardinality = ReferenceCardinality.MANDATORY)
72 private MainComponent mainComponent;
73

74 private final DeviceListener deviceListener = new Srv6Component.InternalDeviceListener();
75

76 private ApplicationId appId;
77

78 //--
79 // COMPONENT ACTIVATION.
80 //
81 // When loading/unloading the app the Karaf runtime environment will call
82 // activate()/deactivate().
83 //--
84

85 @Activate
86 protected void activate() {
87 appId = mainComponent.getAppId();
88

89 // Register listeners to be informed about device and host events.
90 deviceService.addListener(deviceListener);
91

92 // Schedule set up for all devices.
93 mainComponent.scheduleTask(this::setUpAllDevices, INITIAL_SETUP_DELAY);
94

95 log.info("Started");
96 }
97

98 @Deactivate
99 protected void deactivate() {

100 deviceService.removeListener(deviceListener);
101

102 log.info("Stopped");
103 }
104

105 /**
106 * Populate the My SID table from the network configuration for the
107 * specified device.
108 *
109 * @param deviceId the device Id
110 */
111 private void setUpMySidTable(DeviceId deviceId) {
112

113 Ip6Address mySid = getMySid(deviceId);
114

115 log.info("Adding mySid rule on {} (sid {})...", deviceId, mySid);
116

117

118 // Fill in the table ID for the SRv6 my segment identifier table
119 String tableId = "IngressPipeImpl.srv6_my_sid";
120

121 // Modify the field and action id to match your P4Info
122 PiCriterion match = PiCriterion.builder()
123 .matchLpm(
124 PiMatchFieldId.of("hdr.ipv6.dst_addr"),
125 mySid.toOctets(), 128)
126 .build();
127

128 PiTableAction action = PiAction.builder()
129 .withId(PiActionId.of("IngressPipeImpl.srv6_end"))
130 .build();
131

132 FlowRule myStationRule = Utils.buildFlowRule(
133 deviceId, appId, tableId, match, action);
134

135 flowRuleService.applyFlowRules(myStationRule);
136 }
137

138 /**
139 * Insert a SRv6 transit insert policy that will inject an SRv6 header for

87

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

140 * packets destined to destIp.
141 *
142 * @param deviceId device ID
143 * @param destIp target IP address for the SRv6 policy
144 * @param prefixLength prefix length for the target IP
145 * @param segmentList list of SRv6 SIDs that make up the path
146 */
147 public void insertSrv6InsertRule(DeviceId deviceId, Ip6Address destIp, int prefixLength,
148 List<Ip6Address> segmentList) {
149 if (segmentList.size() < 2 || segmentList.size() > 3) {
150 throw new RuntimeException("List of " + segmentList.size() + " segments is not

supported");
151 }
152

153

154 // Fill in the table ID for the SRv6 transit table.
155 String tableId = "IngressPipeImpl.srv6_transit";
156

157 // Modify match field, action id, and action parameters to match your P4Info.
158 PiCriterion match = PiCriterion.builder()
159 .matchLpm(PiMatchFieldId.of("hdr.ipv6.dst_addr"), destIp.toOctets(), prefixLength)
160 .build();
161

162 List<PiActionParam> actionParams = Lists.newArrayList();
163

164 for (int i = 0; i < segmentList.size(); i++) {
165 PiActionParamId paramId = PiActionParamId.of("s" + (i + 1));
166 PiActionParam param = new PiActionParam(paramId, segmentList.get(i).toOctets());
167 actionParams.add(param);
168 }
169

170 PiAction action = PiAction.builder()
171 .withId(PiActionId.of("IngressPipeImpl.srv6_t_insert_" + segmentList.size()))
172 .withParameters(actionParams)
173 .build();
174

175 final FlowRule rule = Utils.buildFlowRule(
176 deviceId, appId, tableId, match, action);
177

178 flowRuleService.applyFlowRules(rule);
179 }
180

181 /**
182 * Remove all SRv6 transit insert polices for the specified device.
183 *
184 * @param deviceId device ID
185 */
186 public void clearSrv6InsertRules(DeviceId deviceId) {
187 // Fill in the table ID for the SRv6 transit table
188 String tableId = "IngressPipeImpl.srv6_transit";
189

190 FlowRuleOperations.Builder ops = FlowRuleOperations.builder();
191 stream(flowRuleService.getFlowEntries(deviceId))
192 .filter(fe -> fe.appId() == appId.id())
193 .filter(fe -> fe.table().equals(PiTableId.of(tableId)))
194 .forEach(ops::remove);
195 flowRuleService.apply(ops.build());
196 }
197

198 // ---------- END METHODS TO COMPLETE ----------------
199

200 //--
201 // EVENT LISTENERS
202 //
203 // Events are processed only if isRelevant() returns true.
204 //--
205

206 /**
207 * Listener of device events.
208 */
209 public class InternalDeviceListener implements DeviceListener {
210

211 @Override
212 public boolean isRelevant(DeviceEvent event) {

88

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

213 switch (event.type()) {
214 case DEVICE_ADDED:
215 case DEVICE_AVAILABILITY_CHANGED:
216 break;
217 default:
218 // Ignore other events.
219 return false;
220 }
221 // Process only if this controller instance is the master.
222 final DeviceId deviceId = event.subject().id();
223 return mastershipService.isLocalMaster(deviceId);
224 }
225

226 @Override
227 public void event(DeviceEvent event) {
228 final DeviceId deviceId = event.subject().id();
229 if (deviceService.isAvailable(deviceId)) {
230 // A P4Runtime device is considered available in ONOS when there
231 // is a StreamChannel session open and the pipeline
232 // configuration has been set.
233 mainComponent.getExecutorService().execute(() -> {
234 log.info("{} event! deviceId={}", event.type(), deviceId);
235

236 setUpMySidTable(event.subject().id());
237 });
238 }
239 }
240 }
241

242

243 //--
244 // UTILITY METHODS
245 //--
246

247 /**
248 * Sets up SRv6 My SID table on all devices known by ONOS and for which this
249 * ONOS node instance is currently master.
250 */
251 private synchronized void setUpAllDevices() {
252 // Set up host routes
253 stream(deviceService.getAvailableDevices())
254 .map(Device::id)
255 .filter(mastershipService::isLocalMaster)
256 .forEach(deviceId -> {
257 log.info("*** SRV6 - Starting initial set up for {}...", deviceId);
258 this.setUpMySidTable(deviceId);
259 });
260 }
261

262 /**
263 * Returns the Srv6 config for the given device.
264 *
265 * @param deviceId the device ID
266 * @return Srv6 device config
267 */
268 private Optional<FabricDeviceConfig> getDeviceConfig(DeviceId deviceId) {
269 FabricDeviceConfig config = networkConfigService.getConfig(deviceId, FabricDeviceConfig.

class);
270 return Optional.ofNullable(config);
271 }
272

273 /**
274 * Returns Srv6 SID for the given device.
275 *
276 * @param deviceId the device ID
277 * @return SID for the device
278 */
279 private Ip6Address getMySid(DeviceId deviceId) {
280 return getDeviceConfig(deviceId)
281 .map(FabricDeviceConfig::mySid)
282 .orElseThrow(() -> new RuntimeException(
283 "Missing mySid config for " + deviceId));
284 }
285 }

89

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

To show that traffic can be steered using an SRv6 policy a ping is started between hosts h2 and h4.

1 mininet> h2 ping h4

Using the ONOS UI, can be observed which paths are being used for the ping packets, Figure 29.

Figure 29: ONOS UI SRv6 policy not used

To insert a set of SRv6 policies that sends the ping packets via the other spine:

1 onos> srv6-insert <device ID> <segment list>

To add a policy that forwards traffic between h2 and h4 though spine1 and leaf2, you can use the following

command:

• Insert the SRv6 policy from h2 to h4 on leaf1 (through spine1 and leaf2)

1 onos> srv6-insert device:leaf1 3:201:2:: 3:102:2:: 2001:1:4::1
2 Installing path on device device:leaf1: 3:201:2::, 3:102:2::, 2001:1:4::1

• Insert the SRv6 policy from h4 to h2 on leaf2 (through spine1 and leaf1)

1 onos> srv6-insert device:leaf2 3:201:2:: 3:101:2:: 2001:1:2::1
2 Installing path on device device:leaf2: 3:201:2::, 3:101:2::, 2001:1:2::1

In this topology, the SID for spine1 is 3:201:2:: and the SID for spine is 3:202:2::.

To confirm that the rule has been added using a variant of the following:

1 onos> flows any device:leaf1 | grep tableId=IngressPipeImpl.srv6_transit
2 id=c000006d73f05e, state=ADDED, bytes=0, packets=0, duration=871, liveType=UNKNOWN, priority

=10,
3 tableId=IngressPipeImpl.srv6_transit,
4 appId=org.p4.srv6-tutorial,
5 selector=[hdr.ipv6.dst_addr=0x20010001000400000000000000000001/128],
6 treatment=DefaultTrafficTreatment{immediate=[
7 IngressPipeImpl.srv6_t_insert_3(
8 s3=0x20010001000400000000000000000001,
9 s1=0x30201000200000000000000000000,

10 s2=0x30102000200000000000000000000)],
11 deferred=[], transition=None, meter=[], cleared=false, StatTrigger=null, metadata=null}

Using the ONOS UI is confirmed that traffic is flowing through the specified spine. Figure 30 shows the

case.

90

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

Figure 30: ONOS UI SRv6 policy used

91

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

7 Conclusion and Future Work

In this thesis, some of the existing solutions used in today’s business networks, such as SDN and NFV,

as well as the benefits and the unsolved problems of these technologies are presented. Furthermore, a

new concept concerning the data plane programming using P4 programming language was introduced and

its advantages was pointed out. In addition, several showcases regarding the integration of ONOS an SDN

controller and P4 were presented, which can provide business with a better approach when designing their

network. To that end, some simple protocols, such as IPv6 Routing with ECMP and Segement Routing v6 were

implemented. The results of this thesis are of great value.

Future research plans include applying a layer-2 handover management functionality, to create a pro-

grammable data plane and ONOS SDN controller for a programmable control plane; taking advantage of the

remarkable advantages of P4 programming, it is expected that binding update latency and traffic towards the

network controller can be minimized.

92

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

References

[1] Nick McKeown et al. �OpenFlow: Enabling Innovation in Campus Networks�. In: SIGCOMM Comput.

Commun. Rev. 38.2 (Mar. 2008), pp. 69{74. issn: 0146-4833. doi: 10.1145/1355734.1355746. url:
https://doi.org/10.1145/1355734.1355746.

[2] Raphael Horvath, Dietmar Nedbal, and Mark Stieninger. �A Literature Review on Challenges and Effects

of Software Defined Networking�. In: Procedia Computer Science 64 (2015). Conference on ENTERprise

Information Systems/International Conference on Project MANagement/Conference on Health and So-

cial Care Information Systems and Technologies, CENTERIS/ProjMAN / HCist 2015 October 7-9, 2015,

pp. 552{561. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.08.563. url:
http://www.sciencedirect.com/science/article/pii/S1877050915026988.

[3] W. Xia et al. �A Survey on Software-Defined Networking�. In: IEEE Communications Surveys Tutorials

17.1 (2015), pp. 27{51. doi: 10.1109/COMST.2014.2330903.

[4] Rahim Masoudi and Ali Ghaffari. �Software defined networks: A survey�. In: Journal of Network and

Computer Applications 67 (2016), pp. 1{25. issn: 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2016.03.016. url: http://www.sciencedirect.com/science/article/pii/
S1084804516300297.

[5] Sahrish Khan Tayyaba et al. �Software-Defined Networks (SDNs) and Internet of Things (IoTs): A Qual-

itative Prediction for 2020�. In: International Journal of Advanced Computer Science and Applications

7.11 (2016). doi: 10.14569/IJACSA.2016.071151. url: http://dx.doi.org/10.14569/
IJACSA.2016.071151.

[6] Péter Voros and Attila Kiss. �Security Middleware Programming Using P4�. In: Human Aspects of In-

formation Security, Privacy, and Trust. Ed. by Theo Tryfonas. Cham: Springer International Publishing,

2016, pp. 277{287. isbn: 978-3-319-39381-0.

[7] Sumit Badotra. �A Review Paper on Software Defined Networking�. In: International Journal of Advanced

Computer Research 8 (Mar. 2017).

[8] Henning Stubbe. �P4 Compiler and Interpreter: A Survey�. In: Proceedings of the Seminars Future

Internet (FI) and Innovative Internet Technologies and Mobile Communication (IITM). Ed. by Georg Carle,

Daniel Raumer, and Lukas Schwaighofer. Chair of Network Architectures and Services, 2017, pp. 47{52.

[9] P. Prabakaran, D. P. Isravel, and S. Silas. �A Review of SDN-Based Next Generation Smart Networks�.

In: 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). 2019,

pp. 80{85.

[10] Deepak Rana, Shiv Dhondiyal, and Sushil Chamoli. �Software Defined Networking (SDN) Challenges,

issues and Solution�. In: INTERNATIONAL JOURNAL OF COMPUTER SCIENCES AND ENGINEERING 7

(Jan. 2019), pp. 884{889. doi: 10.26438/ijcse/v7i1.884889.

[11] Ricard Vilalta et al. �Network Programmability and Automation in Optical Networks�. In: Optical Net-

work Design and Modeling. Ed. by Anna Tzanakaki et al. Cham: Springer International Publishing, 2020,

pp. 223{234. isbn: 978-3-030-38085-4.

[12] url: https://plvision.eu/rd-lab/blog/sdn/p4-programming-future-sdn.

[13] url: https : / / www . sdxcentral . com / networking / sdn / definitions / inside - sdn -
architecture/.

[14] url: https://www.routerfreak.com/software-defined-network-use-cases-from-
the-real-world/.

[15] url: https://www.sdxcentral.com/networking/sdn/definitions/what- is- sdn-
controller/.

[16] url: https://www.sdxcentral.com/networking/nfv/definitions/whats-network-
functions-virtualization-nfv/.

[17] url: https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-
the-forwarding-plane.html.

[18] url: https://opennetworking.org/onos/.

[19] url: https://programmersought.com/article/76604747557/.

[20] url: https://wiki.onosproject.org/.

93

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/https://doi.org/10.1016/j.procs.2015.08.563
http://www.sciencedirect.com/science/article/pii/S1877050915026988
https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/https://doi.org/10.1016/j.jnca.2016.03.016
https://doi.org/https://doi.org/10.1016/j.jnca.2016.03.016
http://www.sciencedirect.com/science/article/pii/S1084804516300297
http://www.sciencedirect.com/science/article/pii/S1084804516300297
https://doi.org/10.14569/IJACSA.2016.071151
http://dx.doi.org/10.14569/IJACSA.2016.071151
http://dx.doi.org/10.14569/IJACSA.2016.071151
https://doi.org/10.26438/ijcse/v7i1.884889
https://plvision.eu/rd-lab/blog/sdn/p4-programming-future-sdn
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world/
https://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/
https://www.sdxcentral.com/networking/nfv/definitions/whats-network-functions-virtualization-nfv/
https://www.sdxcentral.com/networking/nfv/definitions/whats-network-functions-virtualization-nfv/
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://opennetworking.org/onos/
https://programmersought.com/article/76604747557/
https://wiki.onosproject.org/

[21] url: https://wiki.opennetworking.org/plugins/viewsource/viewpagesrc.action?
pageId=309231646.

[22] url: https://www.openconfig.net/.

[23] url: https://github.com/Yi-Tseng/Yi-s-gNMI-tool.

[24] Internet Engineering Task Force (IETF). Neighbor Discovery for IP version 6 (IPv6). url: https://tools.
ietf.org/html/rfc4861.

[25] Internet Engineering Task Force (IETF). Network Configuration Protocol (NETCONF). url: https://
tools.ietf.org/html/rfc6241.

[26] Internet Engineering Task Force (IETF). RESTCONF Protocol. url: https://tools.ietf.org/html/
rfc8040.

[27] Internet Engineering Task Force (IETF). SRv6 Network Programming. url: https://tools.ietf.
org/id/draft-filsfils-spring-srv6-network-programming-06.html.

[28] Internet Engineering Task Force (IETF). The YANG 1.1 Data Modeling Language. url: https://tools.
ietf.org/html/rfc7950.

[29] Internet Engineering Task Force (IETF). Using the IPv6 Flow Label for Equal Cost Multipath Routing and

Link Aggregation in Tunnels. url: https://tools.ietf.org/html/rfc6438.

[30] Internet Engineering Task Force (IETF). YANG - A Data Modeling Language for the Network Configuration

Protocol (NETCONF). url: https://tools.ietf.org/html/rfc6020.

[31] A.Roussel et al. nanomsg. url: http://nanomsg.org/.

[32] P4 Language Consortium. Behavioral Model (bmv2). url: https://github.com/p4lang/behavioral-
model.

[33] P4 Language Consortium. P4 Language Specification. url: https://p4.org/p4-spec/docs/P4-
16-v1.0.0-spec.pdf.

[34] P4 Language Consortium. p4c-behavioral. url: https://github.com/p4lang/p4c-behavioral.

[35] P4 Language Consortium. p4c-hlir. url: https://github.com/p4lang/p4-hlir.

[36] P4 Language Consortium. P4Runtime Shell. url: https://github.com/p4lang/p4runtime-
shell.

[37] P4 Language Consortium. Preprocessor for the P4behavioral model. url: https://github.com/
p4lang/p4c-bm.

[38] P4 Language Consortium. switch. url: https://github.com/p4lang/switch.

[39] Docker. url: https://www.docker.com/.

[40] ETSI. url: https://www.etsi.org/deliver/etsi_gs/NFV/001_099/.

[41] Floodlight Loxigen. url: https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi.

[42] Apache Software Foundation. Apache Thrift. url: https://thrift.apache.org/.

[43] Google. Protocol Buffers - Google’s data interchange format. url: https://github.com/protocolbuffers/
protobuf.

[44] Open Networking Laborator. Mininet. url: http://mininet.org/.

[45] A. Metzler and Associates. Ten Things to Look for in an SDN Controller. url: http://www.webtorials.
com/main/resource/papers/webtorials/Metzler/paper1/10_Factors_SDN_Controller.
pdf.

[46] Cumulus Networks. Open Network Install Environment. url: http://onie.org/.

[47] OpenConfig. gNMI - gRPC Network Management Interface. url: https://github.com/openconfig/
gnmi.

[48] J. Pan. Software Reliability, Carnegie Mellon University.

[49] Open Compute Project. Switch Abstraction Interface. url: https://github.com/opencomputeproject/
SAI.

[50] Virtual Network Function. url: https://www.sdxcentral.com/networking/nfv/definitions/
virtual-network-function/.

94

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 02:05:20 EEST - 18.191.234.105

https://wiki.opennetworking.org/plugins/viewsource/viewpagesrc.action?pageId=309231646
https://wiki.opennetworking.org/plugins/viewsource/viewpagesrc.action?pageId=309231646
https://www.openconfig.net/
https://github.com/Yi-Tseng/Yi-s-gNMI-tool
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/id/draft-filsfils-spring-srv6-network-programming-06.html
https://tools.ietf.org/id/draft-filsfils-spring-srv6-network-programming-06.html
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc6438
https://tools.ietf.org/html/rfc6020
http://nanomsg.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://github.com/p4lang/p4c-behavioral
https://github.com/p4lang/p4-hlir
https://github.com/p4lang/p4runtime-shell
https://github.com/p4lang/p4runtime-shell
https://github.com/p4lang/p4c-bm
https://github.com/p4lang/p4c-bm
https://github.com/p4lang/switch
https://www.docker.com/
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://thrift.apache.org/
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
http://mininet.org/
http://www.webtorials.com/main/resource/papers/webtorials/Metzler/paper1/10_Factors_SDN_Controller.pdf
http://www.webtorials.com/main/resource/papers/webtorials/Metzler/paper1/10_Factors_SDN_Controller.pdf
http://www.webtorials.com/main/resource/papers/webtorials/Metzler/paper1/10_Factors_SDN_Controller.pdf
http://onie.org/
https://github.com/openconfig/gnmi
https://github.com/openconfig/gnmi
https://github.com/opencomputeproject/SAI
https://github.com/opencomputeproject/SAI
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/

	Introduction
	Motivation
	Thesis Outline

	Software Defined Networking
	Overview of SDN
	SDN Architecture
	SDN Applications
	SDN Controllers
	Challenges Associated with SDN

	Network Functions Virtualization
	Overview of NFV
	VNFs
	Network Services in NFV
	The Benefits of NFV
	Challenges Associated with NFV
	NFV vs SDN

	Programming Protocol-Independent Packet Processors
	Overview
	Behavioral Model
	V1model
	Architecture
	Standard Metadata
	Program Template
	Basic Example
	Basic and Header Types
	Other Types
	Parser
	Simple Actions
	Tables
	Deparser

	P4 Runtime

	Open Network Operating System
	Overview of ONOS
	ONOS Design
	ONOS System Components
	Subsystem structure
	Network State Construction
	Device Subsystem
	Device Driver Subsystem

	Next Generation Software Defined Networking
	Stratum
	YANG
	OpenConfig
	gNMI

	ONOS as the control plane
	Enable Packet I/O
	L2 Bridging

	IPv6 Routing
	Segment Routing v6

	Conclusion and Future Work

