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Περίληψη 

Στην παρούσα διδακτορική διατριβή, εξετάζουμε το πρόβλημα σχεδιασμού βέλτιστων 

τιμών-προσφορών (bids) για έναν παραγωγό ενέργειας που συμμετέχει σε μια αγορά 

ημερήσιου προγραμματισμού ηλεκτρικής ενέργειας, η οποία περιλαμβάνει μη κυρτότητες 

λόγω της διακριτής φύσης των δεσμεύσεων των μονάδων παραγωγής. Ο ορισμός του 

προβλήματος υποθέτει πλήρη γνώση των τεχνικών χαρακτηριστικών και των τιμών 

προσφορών όλων των υπόλοιπων παραγωγών. Το πρόβλημα μορφοποιείται ως διεπίπεδο 

μοντέλο βελτιστοποίησης με γραμμικούς περιορισμούς και στα δύο επίπεδα. Ο παραγωγός 

ενεργεί ως υπεύθυνος λήψης αποφάσεων στο άνω επίπεδο, στοχεύοντας στην εύρεση των 

βέλτιστων τιμών προσφοράς που θα μεγιστοποιήσουν το ατομικό του κέρδος μετά την 

εκκαθάριση της αγοράς, ενώ ένας ανεξάρτητος διαχειριστής συστήματος (ISO) ενεργεί ως 

υπεύθυνος λήψης αποφάσεων στο κάτω επίπεδο, στοχεύοντας στην ικανοποίηση της ζήτησης 

ενέργειας στο ελάχιστο συνολικό κόστος-προσφοράς του συστήματος. Το μοντέλο 

περιλαμβάνει διακριτές μεταβλητές για τη μοντελοποίηση της κατάστασης των μονάδων 

παραγωγής, οι οποίες απαγορεύουν την εφαρμογή τυπικών μεθοδολογιών για την εύρεση της 

βέλτιστης λύσης, όπως είναι η αντικατάσταση του προβλήματος του κάτω επιπέδου από τις 

συνθήκες βελτιστότητας πρώτης τάξεως KKT. 

Πρώτα εξετάζουμε την εκδοχή μιας περιόδου του προβλήματος και αναπτύσσουμε έναν 

ακριβή αλγόριθμο για την επίλυσή του, ο οποίος χρησιμοποιεί σημαντικά αποτελέσματα από 

τη θεωρία του ακέραιου παραμετρικού προγραμματισμού. Παρουσιάζουμε πειραματικά 

αποτελέσματα που καταδεικνύουν την αποτελεσματικότητά του σε τυχαίες περιπτώσεις 

προβλημάτων και ολοκληρώνουμε με μια συζήτηση για διάφορα υπολογιστικά ζητήματα που 

σχετίζονται με τη συμπεριφορά αυτού του αλγορίθμου και μια περιγραφή του τρόπου με τον 
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οποίο η υποκείμενη θεωρία μπορεί να τροποποιηθεί ώστε να ταιριάζει σε αγορές με 

εναλλακτικό σχεδιασμό. 

Στη συνέχεια, εξετάζουμε την εκδοχή πολλαπλών περιόδων του προβλήματος. 

Αποδεικνύουμε σημαντικές θεωρητικές ιδιότητες και τις χρησιμοποιούμε για να αναπτύξουμε 

τόσο μια ευρετική όσο και μια ακριβή αλγοριθμική μεθοδολογία επίλυσης για την 

αντιμετώπισή της. Όπως είναι αναμενόμενο, πιο αποτελεσματική μεταξύ των δύο 

αποδεικνύεται ότι είναι η ευρετική προσέγγιση, η οποία λειτουργεί επαναληπτικά, 

βελτιστοποιώντας μία μοναδκή τιμή-προσφορά σε κάθε επανάληψη, υπό την προϋπόθεση ότι 

οι υπόλοιπες διατηρούνται σταθερές στις τρέχουσες τιμές τους. Παρουσιάζουμε πειραματικά 

αποτελέσματα που αποδεικνύουν ότι παρέχει λύσεις υψηλής ποιότητας, ενώ οι υπολογιστικές 

της απαιτήσεις είναι πολύ λογικές. Καταδεικνύουμε επίσης πώς η υποκείμενη θεωρία μπορεί 

να χρησιμοποιηθεί για τη δημιουργία έγκυρων ανισοτήτων σε μια κατάλληλη χαλάρωση της 

αρχικής μορφοποίησης, στην οποία δεν είναι εγγυημένη η λεγόμενη διεπίπεδη εφικτότητα της 

ληφθείσας λύσης. Αυτές οι ανισότητες μπορούν να αξιοποιηθούν, εντός ενός πλαισίου 

ισχύουσων ανισοτήτων, από έναν ακριβή αλγόριθμο επίλυσης για τον προσδιορισμό του 

ολικού βέλτιστου του προβλήματος. 

Συνεχίζουμε αναπτύσσοντας μία βελτιωμένη έκδοση του ακριβούς αλγόριθμου 

επίλυσης για την αντιμετώπιση της εκδοχής πολλαπλών περιόδων του προβλήματος. Η 

σημαντική υπεροχή αυτής της αλγοριθμικής παραλλαγής έγκειται στην ενσωμάτωση ειδικών 

συνθηκών βελτιστότητας οι οποίες διασφαλίζουν ότι η κατανομή της ποσότητας της 

ενέργειας σε κάθε χρονική περίοδο του ορίζοντα προγραμματισμού είναι η βέλτιστη για το 

αντίστοιχο σύνολο παραγωγών που έχουν αναγνωριστεί ως ενεργοί κατά τη συγκεκριμένη 

χρονική περίοδο. Συνεπακόλουθα, η εύρεση της ολικά βέλτιστης λύσης του αρχικού 

προβλήματος ισοδυναμεί με τον προσδιορισμό του βέλτιστου συνόλου ενεργών παραγωγών 

σε κάθε χρονική περίοδο του ορίζοντα προγραμματισμού. Προκειμένου να αποκλείσουμε από 

περαιτέρω εξέταση εκείνες τις λύσεις για τις οποίες αυτά τα σύνολα είναι υπο-βέλτιστα, 

χρησιμοποιούμε τον ίδιο τύπο τομών (cuts) που χρησιμοποιήθηκαν στην προηγούμενη 

αλγοριθμική έκδοση, προσαρμοσμένες κατάλληλα να επιβάλουν τις βέλτιστες καταστάσεις 

των μονάδων αντί για τις αντίστοιχες ποσότητες ενέργειας. Επεξηγούμε την εφαρμογή της 

προτεινόμενης μεθοδολογίας σε μια μικρή μελέτη περίπτωσης και παρουσιάζουμε 

υπολογιστικά αποτελέσματα που δείχνουν τη συμπεριφορά και την απόδοσή της σε τυχαία 

προβλήματα. Αυτά τα αποτελέσματα αποκαλύπτουν ότι η προτεινόμενη μεθοδολογία είναι 

ικανή να χειριστεί μεσαίου μεγέθους προβλήματα χρησιμοποιώντας λογικούς υπολογιστικούς 

πόρους. 

Για την ανάπτυξη των προτεινόμενων μοντέλων βελτιστοποίησης και των 

εξειδικευμένων μεθοδολογιών επίλυσης, χρησιμοποιήσαμε τη γλώσσα προγραμματισμού C/ 

C++. Όπου ήταν απαραίτητο, η λύση των προτεινόμενων μοντέλων βελτιστοποίησης ελήφθη 

χρησιμοποιώντας τα εμπορικά λογισμικά βελτιστοποίησης IBM ILOG CPLEX ή/και LINGO. 

Η σημαντικότητα της συνεισφοράς της παρούσας έρευνας καταδεικνύεται εάν κάποιος λάβει 

υπόψη την έλλειψη γενικών μεθοδολογιών επίλυσης για διεπίπεδα μοντέλα βελτιστοποίησης, 

όπως αυτά που εξετάζονται. Συνυπολογίζοντας αυτήν την παρατήρηση, οι προτεινόμενες 

αλγοριθμικές μεθοδολογίες, οι οποίες συνθέτουν το αποτέλεσμα αυτής της έρευνας, είναι 
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εξαιρετικά χρήσιμες, παρέχοντας πολύτιμα θεωρητικά θεμέλια για πρακτικές εφαρμογές 

καθώς και για μελλοντικές ερευνητικές αναζητήσεις. 
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Abstract 

In this dissertation, we consider the problem of devising optimal price-offers (bids) for 

an energy producer participating in a day-ahead electricity market which exhibits non-

convexities due to the discrete nature of the generation units’ commitments. The problem 

definition assumes perfect knowledge of the technical characteristics and bidding offers of all 

remaining producers. The problem is formulated as a bilevel optimization model with linear 

constraint sets at both levels. The producer acts as the upper-level decision maker, aiming to 

find the optimal bidding offers that will maximize his individual profit upon clearing of the 

market, while an independent system operator (ISO) acts as the lower-level decision maker, 

aiming to ensure satisfaction of the demand for energy at the minimum total system bid-cost. 

The model utilizes discrete variables to represent the commitment of the production units, 

which prohibits the application of typical methodologies for finding its optimal solution, such 

as the substitution of the lower-level problem by its first-order KKT optimality conditions.  

We consider the single period variant of the problem first, and we develop an exact 

algorithm for its solution, which utilizes important findings from the theory of integer 

parametric programming. We report experimental results demonstrating its efficiency on 

random problem instances, and we conclude with a discussion on several computational 

issues pertaining to the behavior of this algorithm, and an outline of how the underlying 

theory can be modified to fit alternative market designs. 

Next, we consider the multi-period variant of the problem. We prove several important 

theoretical properties, and we utilize them to develop both a heuristic as well as an exact 

algorithmic solution methodology for tackling it. More effective between the two naturally 

turns out to be the heuristic approach, which works iteratively, optimizing a single price-offer 

at each iteration, given that the remaining ones are kept fixed at their current values. We 

present experimental results demonstrating that it provides high quality solutions, while 

exhibiting reasonable computational requirements. We also demonstrate how the underlying 
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theory can be utilized for the generation of valid inequalities to a suitable relaxation of the 

original formulation, in which the so-called bilevel feasibility of the obtained solution is not 

guaranteed. These inequalities are exploited within a cutting-plane framework by the exact 

solution approach for identifying the global optimum of the problem.  

We go on to develop an improved version of the exact solution algorithm for the 

treatment of the multi-period variant of the problem. The significant advancement of this 

algorithmic version lies in the inclusion of special optimality conditions ensuring that the 

energy quantity distribution in each time period of the planning horizon is optimal for the 

corresponding set of producers that has been identified as active in that time period. 

Consequently, solving the original problem to global optimality becomes equivalent to 

identifying the optimal set of active producers in each time period of the planning horizon. In 

order to exclude from further consideration those solutions for which these sets are sub-

optimal, we employ the same type of cuts utilized in the previous algorithmic version, 

adjusted suitably to impose optimal unit commitments instead of energy quantities. We 

illustrate the application of the proposed methodology on a small case study and we present 

computational results demonstrating its behavior and performance on randomly generated 

problems. These results reveal that the proposed methodology is capable of handling medium 

sized problems using reasonable computational resources.    

For the development of the proposed optimization models and the specialized solution 

methodologies, we utilized the C/C++ programming language. When necessary, the solution 

of the proposed optimization models was obtained using the commercial optimization solvers 

IBM ILOG CPLEX and/or LINGO. The significance of the present research contribution 

becomes evident when one considers the lack of generic solution methodologies for bilevel 

optimization models such as the one under consideration. In view of this observation, the 

developed methodologies, which constitute the outcome of this research, are highly 

beneficial, providing valuable theoretical foundation for practical applications as well as for 

future research pursuits. 
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Chapter 1 Introduction 

1.1 Motivation and background information 

The deregulation of electricity markets is an important economic development that has 

been taking place in numerous countries worldwide in recent years. Although the particular 

market designs adopted by different countries occasionally vary, many of the underlying 

principles remain more or less the same. Most designs establish a wholesale and a retail 

electricity market that operate in long-term and short-term horizons. Day-ahead electricity 

markets, in which electricity producers submit bids for their energy generation, are present in 

many wholesale electricity markets.  

At the day-ahead level of a wholesale electricity market, energy producers bid freely 

their energy production. Typically, each generation unit has a fixed start-up operation cost, a 

fixed variable production cost, a technical minimum and a technical maximum on the 

allowable energy production that it can produce in each time period. The price-offers for 

energy are submitted in advance for each hour of the following day. An independent system 

operator (ISO) clears the market, allocating quantities to the participating producers so as to 

minimize the total system bid-cost for satisfying the demand for energy. This is carried out by 

solving an optimization problem whose objective minimizes the total cost of electricity 

production. Several alternatives can be used as objective functions in this problem, the two 
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most common of which are the actual cost for energy production or the bid-cost ensuing from 

the producers’ price-offers. 

In this dissertation, we adopt the view of an individual (strategic in what follows) 

producer who participates in a dayahead electricity market, in which the commitment and 

dispatching of the generation units are determined by an ISO. Assuming that this producer has 

full knowledge of the technical characteristics as well as of the bidding offers of all remaining 

producers, we consider the problem of selecting his optimal price-bids for energy generation. 

Here, the word optimal pertains to the fact that after the market is cleared by the ISO, the 

profit that the strategic producer will realize should be the maximum possible. This problem 

arises naturally in open displayed tentative-market auctions, in which participants submit bids 

repetitively until the market is called. It is also an important subproblem in fixed-point 

iterative numerical procedures that aim to uncover the joint optimal bidding strategies of 

multiple producers in closed auctions, in which these producers submit sealed bids 

(Andrianesis et al., 2013a [1]). 

1.2 Dissertation contribution 

The main contribution of the present dissertation lies in the developement of several 

efficient specialized solution algorithms for the problem of devising optimal price-offers for 

energy producers participating in day-ahead electricity markets. A significant amount of 

research has also addressed this problem in the related literature. Most of the related works 

utilize either a suitable reformulation combined with generic optimization software, or a 

heuristic solution procedure in order to solve these models. In this dissertation, we follow a 

slightly different approach. We formulate the problem as a mixed integer bilevel optimization 

model, in which binary variables are utilized to model the commitment of the electricity 
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generation units. This, in conjunction with the imposition of a strictly positive lower bound on 

the energy quantity of each unit should it enter the market, adds a strong combinatorial 

component to our model, which prohibits the application of the KKT optimality conditions in 

order to get an equivalent single-level formulation. Instead, we develop heuristic as well as 

exact algorithmic methodologies utilizing key results from the theory of integer parametric 

programming in order to solve the problem under consideration. 

First, we consider an elementary problem variant, in which the planning horizon 

consists of a single time period, and, consequently, the strategic producer must submit a 

single price-offer to the ISO. This price-offer, as well as the energy quantities of all 

generation units, are treated as continuous variables in this problem variant. We develop an 

exact algorithm for the solution of this problem, which utilizes important findings from the 

theory of integer parametric programming, and we report experimental results demonstrating 

its efficiency on random problem instances. We conclude with a discussion on several 

computational issues pertaining to the behavior of this algorithm, and an outline of how the 

proposed methodology can be modified to fit alternative market designs.    

Then, we consider the multi-period variant of the problem, in which the strategic 

producer must submit a price-offer for each time period of the planning horizon to the ISO. In 

this problem variant, both these price-offers, as well as the energy quantities of all generation 

units, are restricted to integer values. Utilizing the theoretical properties of this problem, we 

develop both a heuristic as well as an exact algorithmic solution methodology for tackling it. 

More effective between the two naturally turns out to be the heuristic approach, which works 

iteratively, optimizing a single price-offer at each iteration, given that the remaining ones are 

kept fixed at their current values. We present experimental results demonstrating that it 

provides high quality solutions, while exhibiting reasonable computational requirements. We 
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also demonstrate how the underlying theory can be utilized for the generation of valid 

inequalities to a suitable relaxation of the original formulation, in which the so-called bilevel 

feasibility of the obtained solution is not guaranteed. These inequalities are exploited within a 

cutting-plane framework by the exact solution approach for identifying the global optimum of 

the problem. 

Next, we develop an improved version of the exact solution algorithm for the multi-

period variant of the problem. The significant advancement of this version lies in the 

incorporation of special optimality conditions for the lower-level problem, ensuring that the 

energy quantity distribution in each time period of the planning horizon is optimal for the 

corresponding set of active producers in that time period. These optimality conditions are 

incorporated directly in the existing formulation, guiding and expediting the search for the 

optimal solution. Thus, solving the original problem to global optimality becomes equivalent 

to identifying the optimal set of active producers in each time period of the planning horizon. 

In order to exclude from consideration those solutions for which these sets are not optimal, 

the algorithm utilizes a suitable modification of the valid inequalities employed in the 

previous algorithmic version. We illustrate the application of the proposed methodology on a 

small case study and we present computational results demonstrating its behavior and 

performance on randomly generated problems. These results reveal that the proposed 

methodology is capable of handling medium sized problems using reasonable computational 

resources.  

The development of the proposed solution methodologies comprises an original 

approach to the problem under consideration, which exhibits significant research interest and 

can be pursued and extended in many fruitful ways. It can be utilized to overcome 

computational difficulties encountered in realistic problems, thus comprising a valuable tool 
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for practitioners. Moreover, with respect to the actual design and operation of an energy 

market, the present research signifies important contribution which is twofold. On the one 

hand, it can assist electricity producers in developing bidding strategies that will maximize 

their individual profit; on the other hand, it allows system operators to identify potential price 

manipulations by individual producers, and devise rules that will prevent them. 

1.3 Structure of the dissertation 

The present dissertation comprises original research, part of which has been presented 

in international scientific conferences (Kozanidis et al., 2011[36]; Kostarelou and Kozanidis, 

2013[31]; Kostarelou and Kozanidis, 2014[32]; Kostarelou and Kozanidis, 2018[33]; 

Kozanidis and Kostarelou, 2020[35]) and has been published in international scientific 

journals (Kozanidis et al., 2013[37]; Kostarelou and Kozanidis, 2020[34]). Its remainder is 

organized in six chapters, and one appendix, as follows: 

In Chapter 2, we present a literature review on bilevel optimization models in the 

context of electricity market design and operation, and on specialized solution algorithms for 

their treatment. In Chapter 3, we present the detailed definition and the model formulation of 

the problem under consideration, and we provide a theoretical background on bilevel 

optimization. In Chapter 4, we address the single-period variant of the problem. We develop 

the solution methodology for its treatment, we illustrate the application of this methodology 

on a small case study and we evaluate its computational performance. In Chapter 5, we 

develop a heuristic and an exact solution algorithm for the multi-period variant of the 

problem, and we present extensive experimental results evaluating their relative 

computational performance. In Chapter 6, we present the improved algorithmic version of the 

exact solution methodology introduced in Chapter 5 for the multi-period variant of the 
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problem. We illustrate the application of the proposed methodology on a small case study and 

we present computational results demonstrating its behavior and performance on randomly 

generated problems. Finally, in Chapter 7, we review the research findings of this dissertation, 

we summarize our conclusions, and we point to promising directions for future research. 

The appendix lists the journal and conference publications that have resulted from the 

present dissertation to date and links them to each corresponding chapter. 
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Chapter 2 Literature Review 

In this section, we present a literature review on previous research works relevant to 

the contents of this dissertation, using a suitable classification. Specifically, we review bilevel 

optimization models in the context of electricity markets, as well as specialized solution 

algorithms for their treatment. Typically, such models are utilized for devising optimal price-

offers of energy producers, or for clearing an energy market fairly and compensating the 

generation units for any losses. The most common approach for solving them is their 

reformulation as a single-level optimization model through the substitution of the lower-level 

problem by its first order KKT optimality conditions. This leads to a suitable single-level 

reformulation which is commonly solved with generic optimization software. Of course, this 

approach is only applicable when the lower-level optimization problem is convex. Other 

common solution approaches include the development of heuristics/metaheuristics, as well as 

the discretization of the optimization model’s feasible space in order to reduce the problem 

complexity.  

While the authors of several research works illustrate the application of the proposed 

solution algorithms on specific case studies, often they do not present generic experimental 

results, making it difficult to infer the average and worst-case computational performance of 

these algorithms, as well as the quality of the solutions they return on random problem 

instances. A related difficulty arises with techniques that employ generic optimization 

software, since the complexity of the problem renders difficult the employment of such 
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techniques in full scale realistic problem instances. In what follows, we review these 

optimization models and solution approaches in more detail. 

2.1 Bilevel optimization models in energy markets 

A survey on optimization models for bidding in day-ahead electricity markets was 

recently published by Kwon and Frances (2012)[39]. Both deterministic as well as stochastic 

models are reviewed in this survey, as well as models that include unit commitment decisions. 

The classification scheme adopted by the authors examines the degree to which competition 

from other producers is directly incorporated into these models. 

Among others, bilevel models for optimal strategic bidding of energy producers have 

been proposed by Barroso et al. (2006)[8], Bakirtzis et al. (2007)[5], Hu and Ralph 

(2007)[26], and Ruiz and Conejo (2009)[51]. A common characteristic these models exhibit is 

that their lower-level problem is convex. This allows the authors to reformulate the original 

problem as a single-level optimization model through the substitution of the lower-level 

problem by its KKT optimality conditions. Barroso et al. (2006)[8] and Bakirtzis et al. 

(2007)[5] utilize the binary expansion approach proposed by Pereira et al. (2005)[50] in order 

to deal with the nonlinear non-convex formulation that arises after this substitution, resorting 

to commercial optimization software for solving the mixed integer linear program that results. 

A similar approach is adopted by Ruiz and Conejo (2009)[51], who treat the problem as a 

mathematical program with equilibrium constraints (MPEC). They convert the resulting 

nonlinear problem into a mixed integer linear program through suitable reformulations, and 

solve it through generic optimization software. Hu and Ralph (2007)[26], on the other hand, 

consider a bilevel game-theoretic model of restructured electricity markets, in which the 
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optimization problem of each player is also reformulated as an MPEC, and establish sufficient 

conditions for pure-strategy Nash equilibria. 

Similar bilevel optimization models have also been proposed by Hobbs et al. 

(2000)[25], Li and Shahidehpour (2005)[40], and Zhao et al. (2008)[67]. These authors, too, 

develop KKT-based solution methodologies for the treatment of these models, which 

nevertheless settle for local optima due to the inherent problem complexity. In Hobbs et al. 

(2000)[25], this is achieved with a penalty interior point algorithm that addresses the multi-

firm problem as a Nash game with multiple players in a game theoretic context, in Li and 

Shahidehpour (2005)[40] with a primal-dual interior point method that utilizes sensitivity 

functions for the generator’s payoff with respect to his bidding strategies, while in Zhao et al. 

(2008)[67] with a surrogate optimization solution methodology. 

A bilevel optimization model that treats the problem with a solution approach that 

finds local optima is proposed by Weber and Overbye (2002)[58]. At the upper-level, this 

model maximizes the welfare of an individual who may control both consumer and supplier 

units, whereas at the lower-level, it finds the power flow that maximizes social welfare. The 

social welfare is expressed as the total benefit of all consumers minus the total cost of all 

suppliers. The proposed solution algorithm, which is an iterative search procedure that utilizes 

Newton-type directions of improvement, is utilized in order to determine Nash-equilibria.  

Another common technique that has been proposed for the treatment of bilevel 

optimization models in the context of electricity markets is the discretization of the upper-

level decision maker’s strategy space. Of course, this does not necessarily lead to the global 

optimum of the problem, since it excludes a-priori certain production-level choices from 

consideration. Such is the case with the works of Zhang et al. (2000)[64], Li et al. (2004)[41], 

and Soleymani et al. (2008)[54]. The solution approach proposed by Zhang et al. (2000)[64] 
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is a Lagrangian relaxation based methodology that considers uncertainty for the offers of the 

participating producers in the form of discrete bids and corresponding probabilities. On the 

other hand, the solution approach proposed by Li et al. (2004)[41] is an iterative procedure 

that searches for Nash equilibria, while the one developed by Soleymani et al. (2008)[54] is a 

game-based approach. In particular, the authors of the latter work make the explicit 

assumption that each producer predicts the market clearing price using a technique such as 

neural networks, fuzzy programming or neuro-fuzzy logic, and that each producer reaches the 

same price forecast. For the discretization of the producers’ decision space, they assume that 

each of them is either risk seeker or risk averse or risk indifferent, which allows them to treat 

the problem as a game and search for Nash-equilibria. 

Vahidinasab and Jadid (2009)[56] propose a multi-objective model that incorporates 

the suppliers’ emission of pollutants, utilize the ε-constraint reduced feasible region method in 

order to deal with the multiple objectives, and solve the single level problem that results after 

the substitution of the lower-level problem by its first order optimality conditions with generic 

optimization software. Gabriel and Leuthold (2010)[20] transform the problem into an MPEC 

first, reformulate it as a MILP using disjunctive constraints and linearization, and solve the 

resulting single-level model with generic optimization software, too. 

Many researchers have proposed the development of heuristic/metaheuristic solution 

approaches for addressing the strategic bidding bilevel optimization model. Typical examples 

are the papers by Ma et al. (2006)[45], Bajpai and Singh (2008)[4], Zhang et al. (2009[65]; 

2011[66]), and Foroud et al. (2011)[19]. The approach proposed by Bajpai and Singh 

(2008)[4] is a fuzzy adaptive particle swarm optimization heuristic that addresses both the 

single and the multi-period case of the problem. Particle swarm optimization based 

approaches are also the ones proposed by Ma et al. (2006)[45] and Zhang et al. (2009[65]; 
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2011[66]), whereas Foroud et al. (2011)[19] develop a genetic algorithm and a fuzzy 

satisfying methodology for addressing a multiobjective formulation which maximizes the 

profits of the participating producers. 

Other related bilevel optimization models are formulated in the works of Gross and 

Finlay (2000)[23], Zhao et al. (2010)[68], and Fernández-Blanco et al. (2017)[17]. The 

authors of the first work study a framework for the analysis and formulation of bids in 

competitive electricity markets and develop a solution methodology exploiting a Lagrangian 

relaxation based approach. The authors of the second work formulate a bilevel optimization 

model in order to compare different clearing schemes in a game theoretic framework. Finally, 

the authors of the latter work develop a nonlinear bilevel optimization model for the clearing 

of a day-ahead market under marginal pricing, which is reformulated as a single-level mixed 

integer linear program using linear programming duality and KKT optimality conditions. 

In an attempt to address the inherent stochasticity that the strategic bidding 

optimization problem exhibits, many authors, such as Gountis and Bakirtzis (2004)[22], and 

Badri et al. (2008)[3], have developed stochastic models for its formulation. In the former 

work, the authors use a heuristic solution technique that employs Monte-Carlo simulation and 

genetic algorithms to obtain the optimal solution, whereas in the latter work, the authors adopt 

a risk management approach that takes into account bilateral contracts and transmission 

constraints, and solve it through a primal-dual interior point methodology  

The model that we study in this dissertation exhibits similarities to the ones that have 

been developed by Pereira et al. (2005)[50] and Fampa et al. (2008)[16]. The lower-level of 

these two models, however, is convex, which allows the authors to reformulate the problem as 

a single-level optimization problem through the substitution of the lower-level problem by its 

first order optimality conditions. In the former work, the authors utilize a binary expansion 
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scheme in order to convert the resulting nonlinear, non-convex problem into a MILP, which 

they then solve with generic optimization software. In the latter work, the authors treat the 

problem as stochastic, maximizing the expected profit of the generation company which is 

expressed as the sum of the profits it realizes under different scenarios multiplied by the 

corresponding probability of occurrence of each associated scenario. In order to reach the 

optimal solution, they develop a heuristic and an exact solution approach, which are both 

based on a mixed integer reformulation. 

2.2 Specialized solution methodologies for integer bilevel programming 

The specific form of an integer bilevel program depends on the presence of 

upper/lower level constraints or not, on the presence of upper/lower continuous/discrete 

variables or not, and on the association of each decision variable to the decision maker (upper 

or lower) who controls it. Each of these factors affects critically the properties of the problem; 

therefore, a solution algorithm for mixed integer bilevel programming is typically applicable 

only to a particular formulation with a specific configuration. Popular solution techniques that 

have been developed for such problems include reformulation approaches, branch and 

bound/cut approaches, and parametric programming approaches. 

Moore and Bard (1990)[47] develop one of the earliest branch and bound algorithms 

for mixed integer bilevel programming, highlighting the significant differences that the 

underlying theory exhibits as compared to that of integer single-level programming. More 

specifically, the authors illustrate that out of the three standard criteria used for fathoming 

subproblems during a typical integer programming branch and bound algorithm, only one (the 

relaxed subproblem has no feasible solution) is directly applicable to the case of mixed 

integer bilevel programming. The second one (the optimal objective of the relaxed 
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subproblem is no better than the value of the incumbent) needs strong modification in order to 

become applicable, whereas the third one (the solution of the relaxed subproblem is feasible 

to the original problem) must be discarded altogether.  

Exact and heuristic solution procedures based on the branch and bound technique for 

mixed integer bilevel programming with binary variables controlled by the leader and 

continuous variables controlled by the follower are presented by Wen and Yang (1990)[60]. 

The authors derive bound information on the optimal solution by solving the problem that 

results when the lower-level objective function is suppressed and all the decision variables are 

controlled by the leader. They point out that when the number of binary variables grows 

linearly, the computational time of the algorithm grows exponentially. For this reason, they 

propose a heuristic solution procedure that provides near optimal solutions in reasonable 

computational time. The proposed solution methodology can also handle the case in which the 

decision variables controlled by the leader are integer.  

Bard and Moore (1992)[7] propose a solution algorithm for a class of bilevel models 

with binary decision variables at both levels and constraints at the lower-level only, under the 

assumption that all the objective and constraint coefficients are integer. The algorithm 

performs an enumerative branch and bound search procedure on the decision variables of the 

leader. This is achieved by replacing the leader’s objective with a constraint that sets the value 

of this objective greater or equal to α, where α is a parameter, originally set equal to -∞. 

Optimizing the follower’s objective for incrementing values of α, a series of bilevel feasible 

solutions are obtained, which provide a monotonic improvement on the leader’s objective 

value. The algorithm can be modified to accommodate the case in which the lower-level 

decision variables assume general integer values. 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Literature Review 

32 

Wen and Huang (1996)[59] develop a tabu-search algorithm for a mixed integer 

bilevel programming formulation with binary upper-level and continuous lower-level decision 

variables. Gümüs and Floudas (2005)[24] propose solution algorithms for handling several 

classes of bilevel programs, including one with purely integer decision variables at both 

levels. In a closely related work, Domínguez and Pistikopoulos (2010)[14] develop a multi-

parametric based solution algorithm for pure-integer and mixed integer bilevel programming. 

Multi-parametric is also the algorithm proposed by Faisca et al. (2007)[15] for the solution of 

bilevel programs, in which the authors express the lower-level optimization problem 

parametrically using the decision variables of the upper-level problem. 

Tsoukalas et al. (2009)[55] develop a global optimization methodology for generalized 

semi-infinite, continuous minimax and bilevel optimization problems, which utilizes an 

auxiliary optimization problem for determining whether it is possible to attain a specific 

objective value. By performing a search on candidate objective values, the global optimum is 

identified. Global optimization is also the approach developed by Mitsos (2010)[46] for the 

solution of mixed integer nonlinear bilevel programming problems. It utilizes fixed value and 

optimal value function reformulations in order to obtain lower and upper bounds on the 

optimal objective. 

For a class of bilevel programming problems with continuous upper-level and integer 

lower-level decision variables, Köppe et al. (2010)[38] develop a solution methodology that 

expresses the lower-level objective as a function of the upper-level decision variables. The 

proposed methodology is based on the theory of integer parametric programming and runs in 

polynomial time when the number of lower-level decision variables is fixed. If the infimum of 

the problem is not attained, the algorithm is able to find an ε-optimal solution whose objective 

value approximates the sought infimum in polynomial time, too. Wiesemann et al. (2013)[61] 
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examine the computational complexity of pessimistic bilevel programming problems and 

study the conditions under which the existence of an optimal solution is guaranteed. For a 

special class of bilevel models in which the feasible set of the lower-level problem does not 

depend on the leader’s decisions, they also develop an iterative solution procedure which 

generates a sequence of finite dimensional semi-infinite programming approximation 

problems.  

DeNegre and Ralphs (2009)[13] illustrate how the standard branch and cut solution 

methodology for integer single-level programming can be suitably extended to the case of 

integer bilevel programming. The proposed algorithm employs a branch and cut tree, solving 

a suitable relaxation at each of its nodes. If the solution obtained is bilevel feasible, then the 

search in the associated subtree terminates; otherwise, a suitable cut is added which excludes 

this solution without excluding any bilevel feasible solution. In a closely related work, 

Caramia and Mari (2015)[10] develop two solution algorithms for purely integer bilevel 

programming. The first one reformulates the model in order to relax bilevel feasibility, 

utilizing suitable valid cuts to eliminate the bilevel infeasible solutions encountered. The 

second algorithm is a branch and cut methodology, which, upon each branching decision, 

utilizes valid inequalities to eliminate large sets of bilevel infeasible solutions. Fischetti et al. 

(2017)[18] develop yet another branch and cut exact solution methodology for mixed-integer 

linear bilevel programs. The proposed approach applies a family of cuts to the problem 

relaxation in which the follower’s objective is suppressed and bilevel feasibility is thus not 

guaranteed. 

Saharidis and Ierapetritou (2010)[52] propose another algorithm for the solution of 

mixed integer bilevel programs, which is based on the decomposition of the initial problem 

into the restricted master problem (RMP) and a series of problems named slave problems 
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(SPs). The proposed approach is based on the Benders decomposition method where, at each 

iteration, the set of variables controlled by the leader is fixed, generating the SP. The RMP is 

a relaxation of the mixed integer bilevel program composed by all the constraints including 

only integer decision variables controlled by the leader. The RMP interacts at each iteration 

with the current SP through the addition of three types of cuts produced using Lagrangean 

information from the current SP. These cuts are the classical Benders cuts (optimality Benders 

cut and feasibility Benders cut) and a third cut referred to as exclusion cut which is used if the 

RMP is not restricted by the last generated Benders cut. The lower and upper bound provided 

(in the case of minimization) from the RMP and the (best found so far) SP are updated in each 

iteration, respectively. The algorithm converges when the difference between the upper and 

lower bound is within a small difference ε. In the case of mixed integer bilevel programming, 

the lower-level KKT optimality conditions cannot be used directly to transform the bilevel 

problem into a single-level problem. The proposed decomposition technique, however, allows 

the use of these conditions and transforms the mixed integer bilevel program into two single-

level problems. The proposed methodology can solve mixed integer bilevel programs in 

which the leader controls discrete (binary or general integer) decision variables, which can 

appear in any constraint or in the objective function. 

Xu and Wang (2014)[62] develop a branch-and-bound algorithm for mixed integer 

linear bilevel programming, in which each branching decision is associated with several 

subproblems. Kleniati and Adjiman (2015)[30] extend the global optimization solution 

framework they had previously developed for continuous bilevel programming (Kleniati and 

Adjiman, 2014a[28]; 2014b[29]) to the case of mixed integer bilevel programming. An exact 

solution algorithm for integer bilevel linear programming is developed by Wang and Xu 
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(2017)[57]. The proposed methodology is a branch and bound type search termed watermelon 

algorithm, which utilizes disjunctive cuts to eliminate bilevel infeasible solutions. 

Yue et al. (2019)[63] present a reformulation and decomposition algorithm for mixed 

integer bilevel linear programming. The proposed algorithm implements a column and 

constraint generation methodology utilizing a master problem and suitable subproblems on a 

projection-based single-level problem reformulation. Finally, Lozano and Smith (2019)[44] 

present an exact solution algorithm for mixed integer bilevel programming. The proposed 

methodology implements a single-level value function reformulation which is used to obtain 

lower and upper bounds on the optimal objective. 

2.3 Qualitative comparison to existing approaches 

In this subsection, we perform a qualitative assessment elucidating the differences and 

similarities that the solution methodologies we develop in the following chapters exhibit in 

comparison to existing specialized solution methodologies for integer bilevel programming. 

In order to retain their general and wide applicability, these methodologies do not depend on 

peculiar assumptions regarding the structure of the underlying problem. While this renders 

them robust and powerful, in many occasions it comes at the price of necessitating excessive 

computational resources. For example, some of these methodologies require the substitution 

of all integer variables by pure binary ones. While this is always doable for variables with 

finite bounds, it may result in formulations with excessive size that cannot be handled 

efficiently when the problem under consideration exhibits realistic characteristics. A key 

observation in support of this is the fact that some of these methodologies report 

computational results for small sized problems only. On the other hand, our proposed 

algorithmic methodologies exploit a special attribute of the problem under consideration 
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which is not always present in generic formulations, i.e., the fact that the leader’s decisions 

affect the cost of alternative lower-level solutions but not the lower-level feasible region. 

With respect to the specifics of our proposed solution methodologies, it should be 

noted that the exact algorithm resembles many of the generic solution methodologies in that it 

deals with the problem relaxation in which bilevel feasibility is suppressed. This is also the 

case with the works of DeNegre and Ralphs (2009)[13], Caramia and Mari (2015)[10], 

Fischetti et al. (2017)[18], and Wang and Xu (2017)[57]. However, whereas in our case the 

cuts for eliminating bilevel infeasible solutions utilize integer parametric programming theory 

holding true due to the independency of the lower-level feasible set from the upper-level 

decision variables, in the case of existing generic techniques these cuts are based on central 

properties holding true in more general problem formulations. More specifically, in the case 

of the algorithm by DeNegre and Ralphs (2009)[13], these cuts are based on the general 

theory of eliminating non-integer solutions from convex hulls of polyhedrons which are not 

integral. In the case of the algorithm by Caramia and Mari (2015)[10], these cuts are based on 

valid bounds on the optimal objective expressed in a nonlinear fashion. On the other hand, in 

the case of the algorithm by Fischetti et al. (2017)[18], these cuts are based on upper bound 

assertions of the lower-level optimal objective, while in the case of the algorithm by Wang 

and Xu (2017)[57], these cuts are based on the general optimality conditions that the optimal 

solution to the integer bilevel program must satisfy. 

The solution methodologies that we develop in the present work remain applicable 

both when the price-offers of the strategic producer and the energy quantities of the 

generation units are continuous, as well as when they are discrete, with minor differences. 

This is a key advantage of our proposed approach as opposed to other existing ones, such as 

the ones by Köppe et al. (2010)[38], Xu and Wang (2014)[62], and Lozano and Smith 
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(2019)[44], whose applicability depends strongly on the integrality of the upper and/or the 

lower-level decision variables.  

As far as the remaining generic solution methodologies are concerned, we make the 

following additional important observations. The algorithm of Gümüs and Floudas (2005)[24] 

necessitates the substitution of all integer variables by expressions involving pure binary 

variables, which may render the size of the problem unmanageable in large realistic cases 

such as the one that we address. This is also the case with the algorithm of Domínguez and 

Pistikopoulos (2010)[14]. The solution algorithms of Mitsos (2010)[46], Wiesemann et al. 

(2013)[61] and Kleniati and Adjiman (2015)[30] are tested on nominal problems only, with 

size considerably smaller than that of realistic problems. On the other hand, in the solution 

algorithm of Saharidis and Ierapetritou (2010)[52], the integer decision variables should be 

controlled by the upper level decision maker, although they could appear in both levels of the 

model formulation.  

Considerable computational difficulties are also inherent in methodologies employing 

KKT techniques such as the ones by Gümüs and Floudas (2005)[24], Mitsos (2010)[46], and 

Yue et al. (2019)[63], since they necessitate the introduction of dual variables as well as big-

M formulations for the treatment of the associated complementary slackness constraints. This 

is yet another factor that may introduce intolerable obstacles in large realistic problems. 

Another limitation of the approaches utilizing KKT conditions is that their applicability 

depends on the convexity of the lower level problem. Several of the restrictions that are 

present in practice, however, necessitate a formulation that utilizes discrete variables and 

associated integer programming modelling techniques; even in the case that the associated 

constraints are linear, this eliminates the convexity of the lower level problem, rendering the 

KKT approach inapplicable. Additionally, the utilization of the KKT optimality conditions 
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requires the implicit assumption that suitable regularity assumptions (constraint 

qualifications) are valid, so that the lower level optimal solution is a KKT point; clearly, this 

is an assumption that cannot be always considered as valid. 

The reformulation algorithm of Yue et al. (2019)[63] necessitates the introduction of a 

number of constraints which grows exponentially with the number of lower-level integer 

variables. This may render its application on large scale realistic problems intractable. For this 

reason, the authors propose the adoption of a decomposition approach that employs column 

and constraint generation in order to overcome the associated difficulties. Nevertheless, note 

that this algorithm, as well as that of Lozano and Smith (2019)[44], are tested on a large 

collection of problems of variable and considerable size with very satisfactory results. 
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Chapter 3  Problem Definition and Model Development 

In this chapter, we present a detailed definition of the problem under consideration and 

we develop the optimization model framework for its formulation. Due to the fact that the 

resulting formulation belongs to the class of bilevel optimization models, we also provide a 

fundamental review on bilevel programming theory. We conclude with a short study of an 

alternative objective for the model formulation, which is suitable when a uniform clearing 

scheme is in effect.  

3.1 Problem formulation 

We consider a set of energy generation units participating in a multi-period day-ahead 

electricity market. The start-up cost and the technical characteristics (minimum and maximum 

output) of each production unit are fixed and known. Each corresponding producer must 

submit his energy price-offers (bids) for the planning horizon to an ISO, who is responsible 

for clearing the market and determining the unit commitments and energy dispatches that will 

satisfy the energy demand at the minimum total system bid-cost. With these in mind, the 

mathematical notation and formulation of the optimization problem the ISO is aimed to solve 

are as follows: 

 

Sets: 

I   production units, indexed by i. 
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Parameters: 

T number of time periods of the planning horizon, 

pi,t price-offer of producer i for one unit of energy in time period t (i  I, t = 1,…,T), 

si startup cost of unit i (i  I), 

mi technical minimum of unit i (i  I), 

Mi technical maximum of unit i (i  I), 

dt  demand for energy in time period t (t = 1,…,T), 

zi,0 binary parameter denoting the status of unit i at the beginning of the planning horizon 

(i  I). 

Decision Variables: 

qi,t energy quantity of unit i in time period t (i  I, t = 1,…,T), 

zi,t binary variable that takes the value 1 if the energy quantity of unit i in time period t is 

positive, and 0 otherwise (i  I, t = 1,…,T), 

yi,t binary variable that takes the value 1 if unit i is switched on in time period t while 

being off in time period t-1, and 0 otherwise (i  I, t = 1,…,T). 

ISO’s Problem 

                                             , , ,

1

Min 
 

 
T

i t i t i i t

i I t

f p q s y               (3.1) 

            s.t.    
, ,  1,...,



  i t t

i I

q d t T
                            

(3.2) 

                                            mi zi,t ≤ qi,t ≤ Mi zi,t, i  I, t = 1,…,T (3.3) 

                                            yi,t ≥ zi,t - zi,t-1 , i  I, t = 1,…,T (3.4) 

                                            yi,t,  zi,t binary, i  I, t = 1,…,T           (3.5) 

                                            qi,t ≥ 0, i  I, t = 1,…,T  (3.6) 

The objective function (3.1) minimizes the total system bid-cost for providing energy. 

Constraint (3.2) is the market clearing constraint ensuring energy balance (production equal to 

demand) for each time period of the planning horizon. Constraint set (3.3) imposes the 
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technical minima and maxima of the participating units. Constraint set (3.4) ensures correct 

values for the decision variables yi,t which are used to impose the start-up costs in the 

objective. More specifically, the difference (zi,t - zi,t-1) can take any of the values -1, 0 and 1. 

Variable yi,t should take the value 1 in the latter case, and this is correctly imposed by this 

constraint. In the other two cases, both 0 and 1 are feasible for yi,t, but the value 0 is implicitly 

imposed by the fact that the coefficient of yi,t in the objective is positive. Finally, constraints 

(3.5) and (3.6) impose integrality on decision variables yi,t and zi,t, and nonnegativity on 

decision variables qi,t, respectively. Parameters mi, Mi and dt are always positive integers for 

all i and t, with 1 < mi < Mi. Decision variables qi,t may alternatively be restricted to integer 

values, in which case the optimal energy dispatch will be non-fractional, keeping this way the 

final solution more ‘elegant’. In any case, the solution methodologies that we develop next 

remain applicable with minor modifications both when variables qi,t are continuous variables, 

as well as when they are integer. Finally, note that, besides constraints (3.6), the non-

negativity of these variables is also implied by constraints (3.3). 

After the optimal generation plan is determined, each participating producer is 

compensated in full for his startup cost, and is also paid a market clearing price for each MWh 

he contributes to the system, according to the clearing payment scheme in effect. This price 

may be the same for all producers under a uniform market clearing scheme, or the 

corresponding submitted price-offer under a pay-as-bid market clearing scheme. In the former 

case, the uniform clearing price is also known as system marginal price (smp), since it 

represents the marginal cost for energy, i.e., the additional cost that should be paid for 

increasing the demand by one MWh. 

Each producer faces the problem of selecting the optimal price-offer that he should 

submit to the ISO for each time period of the planning horizon, so that, after the market is 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Problem Definition and Model Development 

42 

cleared and the energy quantities of all the participating units are determined, his profit is 

maximized. Assuming perfect information of the market’s technical characteristics, the 

corresponding profit maximization problem of an individual strategic producer is modeled as 

a bilevel optimization problem. For the formulation of the strategic producer’s optimization 

problem, we introduce the following additional mathematical notation: 

Parameters: 

c1  unit variable production cost of the strategic producer,  

C1 price cap for the price-offers of the strategic producer. 

Decision Variables: 

p1,t price-offer of the strategic producer for one unit of energy in time period t (t = 1,…,T). 

The strategic producer faces the bilevel optimization problem introduced next, which 

includes as part of its constraint set the ISO optimization problem: 

Strategic Producer’s Problem 

    
1,

1 1, 1 1,

1

Max  


 
t

T

t t
p

t

F p c q                                                                 (3.7) 

            s.t.    c1 ≤ p1,t ≤ C1, t = 1,…,T
                            

(3.8) 
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y z q f p q s y  (3.9) 

                                          s.t. 
, ,  1,...,i t t

i I

q d t T


    (3.10) 

                                          mi zi,t ≤ qi,t ≤ Mi zi,t, i  I, t = 1,…,T (3.11) 

                                          yi,t ≥ zi,t - zi,t-1 , i  I, t = 1,…,T (3.12) 

                                          yi,t,  zi,t binary, i  I, t = 1,…,T           (3.13) 

                                         qi,t  Z
+
, i  I, t = 1,…,T  (3.14) 

In the context of this bilevel programming formulation, the strategic producer’s 

optimization problem is called the upper-level problem, while the ISO’s optimization problem 
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is called the lower-level problem. The lower-level problem is always a part of the constraint 

set of the upper-level problem; therefore, the upper-level problem cannot be treated in 

isolation. The unit index 1 is used to specify the strategic producer whose profit is maximized 

in the upper-level objective F1 (3.7). This profit depends on his energy quantities, q1,t, which 

are lower-level decision variables, as well as on his price-offers, p1,t, which are upper-level 

decision variables. The start-up cost is not included in the upper-level objective, since 

producers are typically compensated in full for such costs. Constraint set (3.8) imposes a 

lower and an upper bound on the price-offers of the strategic producer. More specifically, 

typical market rules dictate that each price-offer must be at least equal to the associated unit’s 

variable production cost, and at most equal to a price-cap set by the market regulator. 

Decision variables p1,t may additionally be restricted to integer values, depending on the 

particular problem definition. The lower-level optimization problem defined by (3.9)-(3.14) is 

actually the ISO’s optimization problem (3.1)-(3.6) introduced before.  

At first glance, it might seem unrealistic for a particular producer to have full 

knowledge of his competitors’ bids. Note, however, that in a realistic environment, each 

participating producer might end-up solving a sequence of optimization models such as the 

above, using educated estimates of the other producers’ bids, based on historic data. This 

would enable the comparative evaluation of alternative self-bidding strategies based on the 

thorough examination of different scenarios and assumptions. In addition, the above 

formulation and the subsequent solution methodologies developed next could also be 

fruitfully utilized for identifying equilibrium points within an iterative game setting, in which 

each producer takes turn responding to the bids of the remaining producers that have been 

previously announced by solving his own profit maximization problem and announcing his 

own bids in return. As no generic solution methodologies are available for this class of 
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problems, the development of specialized solution approaches could turn out to be highly 

beneficial for such research pursuits. 

3.2 Uniform clearing scheme 

In the case of a uniform clearing scheme, the upper-level objective of the above 

formulation is expressed as follows instead: 

                                  
 

1,

1 1 1,

1

Max  


 
t

T

t t
p

t

F c q ,                                                               (3.15) 

where λt is the smp of time period t (t = 1,…,T). In order to capture the true marginal cost of 

the associated time period, λt is defined as the dual variable of the corresponding energy 

balance constraint (3.10). This introduces considerable difficulties because the lower-level 

problem is an integer program and does not possess dual variables in the traditional sense. 

Several approaches have been proposed for computing λt, many of which suffer from 

inequities necessitating additional uplifts and side-payments in order to reach a market 

equilibrium that fairly clears the market (see Andrianesis et al., 2013a[1] and 2013b[2], for 

example); as a consequence, the relevant research is very active. In the current work, we focus 

on the algorithmic aspect of the problem, and we intentionally do not deal with such market 

design issues. Nevertheless, we note that one of the most common methodologies for 

computing the smp is to find the optimal solution of the integer linear problem (3.9)-(3.14) 

first, and then to solve the continuous problem that results after the integer variables are fixed 

to their optimal values in this solution. Based on marginal pricing theory (Schweppe et al., 

1988[53]), the energy commodities are paid at the shadow price of the market clearing 

constraint computed this way. 
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The system marginal price reflects the marginal cost of generating one additional unit 

of energy (typically 1 MWh for an hourly discretized problem). This is interpreted as the 

additional cost, in terms of the objective function, which is needed to generate this additional 

unit of energy. In the present formulation, the system marginal price is set by the marginal 

unit, which is the unit that will produce the additional MWh for energy. Note that the 

indivisibilities (also known as non-convexities) of the problem may result in a system 

marginal price which differs from the maximum bid accepted, i.e. from the highest bid that is 

scheduled. Extra-marginal units can be set to produce at their technical minimum, without 

affecting the system marginal price. This particularity of the problem may result in losses for 

the extra-marginal participating production units, creating the need for (make-whole) side 

payments with some sort of bid-cost recovery mechanism (see for e.g. Andrianesis et al., 

2013a[1]; 2013b[2], for a discussion on this issue). Dealing with these difficulties is not 

within the scope of the present dissertation, and thus will not be addressed. 

Under a uniform pricing scheme, the smp is not always unambiguously defined, due to 

the presence of the indivisibilities and the fact that alternative lower-level optimal solutions 

may lead to different smp definitions. In order to be able to eliminate these ambiguities, 

should they arise, the imposition of a conflict resolution set of rules is necessary and is 

typically in effect as a common practice in actual realistic markets. For the remainder of this 

dissertation, we utilize the following widely adopted set of such rules, which unambiguously 

determine the smp in any possible case that can arise: 

Rule 1: If at the optimal ISO solution there is a production unit whose energy dispatch in time 

period t is strictly between its technical minimum and its technical maximum, then the smp of 

this time period is equal to the price-offer of this unit. 
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Rule 2: If at the optimal ISO solution no production unit prescribed by Rule 1 exists in time 

period t and there is at least one production unit whose energy dispatch is equal to its 

technical minimum, then the smp of this time period is equal to the minimum price-bid of any 

unit producing at its technical minimum. 

Rule 3: If at the optimal ISO solution all participating units produce at their technical 

maximum in time period t, then the smp of this time period is equal to the maximum price-bid 

of any unit producing at its technical maximum. 

To see why the above set of rules handles any possible case that might arise, note that 

one can easily prove that if at the optimal solution to model (3.9)-(3.14) there are more than 

one units producing strictly between their technical minimum and technical maximum in 

some time period, then the price-bids of these units for this time period must be equal, and 

there is an optimal solution in which this is true for at most one of them. Naturally, this unit is 

the optimal choice for satisfying the extra energy unit demand in this case, since the price-

offer of this unit will never be greater than the price-offer of any unit producing at its 

technical minimum. The rationale behind Rule 2 is straightforward since the minimum price-

bid unit producing at its technical minimum stems as the optimal choice for providing an 

extra MWh of energy when all participating units produce either at their technical minimum 

or at their technical maximum. Finally, the rationale behind Rule 3 becomes clear when one 

considers that if the energy demand is reduced by one MWh when all participating units 

produce at their technical maximum, then the optimal choice for accommodating the 

corresponding perturbation, i.e., for reducing the total energy supply by one unit, will be the 

maximum price-bid unit out of them. It becomes obvious from this discussion that Rules 2 

and 3 exploit the right and left hand-side shadow price definitions, respectively, in order to 

overcome the obstacles raised by the integralities that the model formulation involves.   
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Note that the exact set of rules utilized for the smp definition is a market design issue; 

thus, the above rules may slightly vary from case to case. This, however, does not have any 

significant impact on the solution methodologies that we develop next for the treatment of the 

problem. In fact, these methodologies are independent of the set of rules in effect, in that they 

can be suitably modified to accommodate any such set. Another important market design 

issue is the choice of the upper-level objective function. For reasons of completeness, all the 

proposed methodologies that we develop next are suitably adjusted both for the case of a pay-

as-bid market clearing scheme in which expression (3.7) is adopted as the upper-level 

objective, as well as for the case of a uniform price market clearing scheme in which 

expression (3.15) is adopted instead. 

3.3 Bilevel programming fundamentals 

The model formulation (3.7)-(3.14) fits in the general multilevel optimization 

modeling framework, which is a special branch of mathematical programming that deals with 

programs whose feasible set is implicitly determined by a sequence of nested optimization 

problems. The most studied case is the case of bilevel programs, a subset of the decision 

variables of which is required to be an optimal solution to a second mathematical program. 

The problem can be considered as a two-person game with the two decision makers making 

their decisions hierarchically. The first decision maker, referred to as the leader, controls a 

subset of the problem’s decision variables, attempting to solve an optimization problem which 

includes in its constraint set a second optimization problem solved by the second decision 

maker (referred to as the follower), who controls the remaining decision variables. In our 

case, the leader corresponds to the strategic producer, while the decision variables that he 

controls are his energy price-offers. On the other hand, the follower corresponds to the ISO, 
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while the decision variables that he controls are the unit commitments and the energy 

quantities of the participating producers. In general, a bilevel program is non-convex, and 

finding its global optimum is an arduous task. 

Bilevel programming formulations are encountered in the context of several 

interdisciplinary areas, such as agricultural planning, government policy making, economic 

planning, financial management, warfare optimization, transportation planning, optimal 

pricing, ecological programming, chemical design, production planning, optimal resource 

allocation, etc (e.g., see Dempe, 2010[12]). This wide applicability in conjunction with the 

solution difficulty that bilevel programs exhibit has motivated researchers to develop 

specialized algorithmic methodologies for solving them. Although this has rendered the 

related research area highly active, none of the solution methodologies that have been 

developed to date is able of accommodating generic bilevel programming formulations. In 

fact, the large complexity of the problem makes it rather unlikely that this will be achieved, at 

least over the next few years. 

A key characteristic of our formulation is that the upper-level decision variables do not 

appear at the lower-level constraint set; thus, the follower’s feasible region is not influenced 

by the leader’s decisions. However, the comparative evaluation of alternative lower-level 

solutions is influenced by the leader’s decisions, since the upper-level decision variables 

appear in the follower’s objective. The term reaction set is used to denote the set of responses 

of the follower for a particular leader action, i.e., the set of optimal solutions to the lower-

level problem for a particular set of upper-level decision variable values. Finally, the term 

inducible region (IR) is the set of every upper-level feasible solution, and corresponding 

lower-level optimal solution, i.e., the set over which the leader may optimize his objective. A 

solution that belongs to the IR, i.e., a solution for which the lower-level decision variables 
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constitute a lower-level optimal solution for the associated upper-level decision variable 

values, is called bilevel feasible. In the problem formulation (3.7)-(3.14), the leader’s 

objective is bilinear since the generation unit quantities are determined at the lower level, 

while all the decision variables that he controls are integer. On the other hand, the lower-level 

problem is a linearly constrained integer program with a bilinear objective, since this 

objective becomes linear when the leader’s decisions are known. 

Even under the assumption that the feasible region of problem (3.7)-(3.14) is non-

empty and compact, an optimal solution may not exist. This is a well-known pitfall in bilevel 

programming (Bard, 1998[6]) that may occur when the optimal solution of the lower problem 

is not unique. The basic theory of bilevel optimization (Candler and Norton, 1977[9]) 

prohibits the cooperation between the upper and the lower-level decision makers. Thus, it is 

not possible for the upper-level decision maker to force the lower-level decision maker to 

choose a particular lower-level optimal solution in the case of multiple optima, which, in turn, 

implies that the strategic producer may not always be able to attain his maximum profit. 

Most approaches that have been proposed for circumventing this difficulty modify 

slightly the problem definition and the associated model formulation. A highly popular one 

called optimistic (pessimistic) approach (Loridan and Morgan, 1996[43]), suggests the 

selection of the most (least) favorable solution to the upper-level decision maker in case of 

multiple lower-level optima. This implies that there is some way for the upper-level decision 

maker to convince the lower-level decision maker to choose a particular lower-level optimal 

solution. In the particular application under study, the unit with the lowest variable production 

cost is typically favored in order to resolve such conflicts, mainly because such units push 

towards lower total system costs. This motivates the units to reduce their costs and become 

more competitive. In the present work, we adopt the optimistic approach for the resolution of 
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such conflicts, because it guarantees the existence of an optimal solution under reasonable 

regularity assumptions (Dempe, 2002[11]). It should be clarified that this choice regarding the 

proposed approach for dealing with multiple lower-level optima does not affect crucially the 

applicability of the proposed methodology; it only affects which actual solution will be 

identified as optimal.    

Even under this common rule, the upper-level decision maker may still be able to 

effectively lead the lower-level decision maker to select the most favorable (to his upper-level 

problem) optimal solution. More specifically, if the upper-level decision maker places an 

offer that is “infinitesimally” lower than the offer for which the lower-level problem exhibits 

multiple optima, then he may cause a “mathematical problem” to the lower-level decision 

maker, since the latter will not be able to find an optimal solution. One way for him to resolve 

this issue would be to allow the upper-level decision maker to place the offer for which the 

lower-level problem exhibits multiple optima, and assure him that the most favorable solution 

to the upper-level problem will be selected, instead of the solution that results when the least 

costly units are favored. We illustrate this with a small example, next.  

Consider a problem with a single-period planning horizon, two production units and 

the data shown in Table 3-1, under a uniform clearing scheme. Assume that the unit variable 

production cost of the strategic producer (production unit 1) is 15 €/MWh, the price cap is 60 

€/MWh, and the energy demand is equal to 450 MWh. 

Table 3-1 Data of the small numerical example 

Unit (i) mi
 Mi

 pi,1
    si

 

1 240 400 - 100 

2 100 300 40 50 
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For p1,1 [15, 40), marginal is the first unit, which implies that the system marginal 

price is equal to p1,1. For p1,1 = 40, the lower problem has an infinite number of optimal 

solutions. More specifically, any solution with z1,1 = 1, z2,1 = 1, q1,1[240, 350] and q2,1 = 450 

- q1,1 is optimal with f
*
 = 18,150. Assuming that the second unit has lower variable production 

cost and that the lower-level decision maker favors the least costly unit, then for p1,1 = 40, the 

lower-level decision maker would select the solution z1,1 = 1, q1,1 = 240, z2,1 = 1, q2,1 = 210, 

which favors the least costly (second) unit, instead of the solution z1,1 = 1, q1,1 = 350, z2,1 = 1, 

q2,1 = 100, which is most favorable to the strategic producer. In this case, the optimal decision 

for the strategic producer would be to select a value for p1,1 that is infinitesimally close to but 

strictly lower than 40, which would result in the original bilevel problem not having an 

optimal solution. To resolve this issue, the lower-level decision maker would then have to 

allow the strategic producer to place the offer p1,1 = 40 and select the most favorable solution 

to his upper-level problem, namely, p1,1
*
 = 40, z1,1

*
 = 1, q1,1

*
 = 350, z2,1

*
 = 1, q2,1

*
 = 100 and 

λ1
*
 = 40, with f

*
 = 18,150 and F1

*
 = 8,750, instead of favoring the second unit which has the 

lowest variable production cost. 

One of the well established important results of integer bilevel programming (Moore 

and Bard, 1990[47]) is the fact that the optimal objective function value of an integer bilevel 

program’s continuous relaxation does not always provide a valid bound on its optimal 

objective; therefore, solution procedures that are based on such relaxations may fail. To 

illustrate this interesting result in the context of the present work, consider the continuous 

relaxation of the above example, which results when the variables z1,1 and z2,1 are not 

restricted to binary values, but are allowed to take any value in the interval [0, 1]. The global 

optimal solution of this problem is p1,1
*[15, 39.916], z1,1

*
 = 1, q1,1

*
 = 400, z2,1

*
 = 0.167, q2,1

*
 

= 50 and λ1
*
 = 40.167 with f

*
 = 2,108.333 + 400p1,1 and F1

*
 = 10,066.8. Note that multiple 
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optima depending on the exact value of variable p1,1 exist. Thus, in this case, the optimal 

objective value of the continuous relaxation is larger than the optimal objective value of the 

mixed integer problem. Note that, in order to find the global optimal solution of the relaxed 

problem, we can replace the lower problem (which is linear and continuous since p1,1 is a 

known parameter in it) with constraints ensuring primal and dual feasibility, as well as 

equality between the primal and the dual objective function values. The formulation that 

arises is quadratic (since it includes the product of variables λ1 and q1,1 in the objective) and 

can be solved with a typical quadratic programming solution algorithm. 

Assume now that, for the same problem, the demand is equal to 400 MWh. The new 

global optimal solution of the problem is p1,1
*
 = 40.312, z1,1

*
 = 1, q1,1

*
 = 400, z2,1

*
 = 0, q2,1

*
 = 0 

and λ1
*
 = 40.312, with f

*
 = 16,224.8 and F1

*
 = 10,124.8. The global optimal solution of this 

problem’s continuous relaxation, however, is p1,1
*
 = 39.916, z1,1

*
 = 1, q1,1

*
 = 400, z2,1

*
 = 0, 

q2,1
*
 = 0 and λ1

*
 = 40.166, with f

*
 = 16,066.4 and F1

*
 = 10,066.4. Thus, in this case, the 

optimal objective value of the continuous relaxation is smaller than the optimal objective 

value of the mixed integer problem.  

This small example illustrates that a solution procedure based on bounds obtained 

from continuous relaxations may fail. Note that in the case that d1 = 400 MWh, this happens 

even though the optimal solution to the continuous relaxation is bilevel feasible (i.e., the 

lower-level solution is optimal for p1,1 = 39.916, resulting in a feasible solution for the 

original bilevel problem). The solution procedures that we develop in the next chapters do not 

utilize relaxations, but an important result from the theory of parametric integer programming, 

which has been known since the 1970s. 

In our case, the feasible region of the lower-level problem is nonconvex due to the 

integrality of the decision variables yi,t and zi,t. If this were not the case, however, then this set 
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would be convex, since all constraints are expressed with linear functions. The existence of an 

optimal solution to the lower-level problem is ensured due to the fact that the feasible set is 

closed and compact, while all decision variables have finite bounds. Under reasonable 

assumptions such as that of the optimistic approach adoption, the global solution of the 

bilevel problem is also ensured. In fact, if decision variables p1,t and qi,t are also constrained to 

integer values, then the cardinality of the feasible set of both the lower as well as the upper-

level problem is finite. 
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Chapter 4 The Single-Period Variant of the Problem 

In this chapter, we consider the single-period variant of Problem (3.7)-(3.14), in which 

the planning horizon consists of a single time period. In this case, each producer must submit 

a single price-bid to the ISO, while index t is naturally suppressed as redundant. We develop 

an exact algorithm for the solution of this problem, which utilizes important findings from the 

theory of integer parametric programming, and we report experimental results demonstrating 

its efficiency on random problem instances. We conclude with a discussion on several 

computational issues pertaining to the behavior of this algorithm, and an outline of how the 

underlying theory can be modified to fit alternative market designs. 

4.1 Solution methodology 

When all the problem parameters have finite values, the feasible region of problem 

(3.7)-(3.14) is bounded, although non-convex. For a particular value of p1, the feasible region 

of the lower level problem is non-convex, too, due to the presence of the integralities. Let 

f
*
(p1) be the optimal objective value of the lower-level problem as a function of the price-bid 

of the strategic producer. The algorithm that we develop for the solution of the problem is 

based on the following important result: 
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Proposition 4.1 The function f
*
(p1) is non-decreasing, piecewise-linear and concave. 

Proof  The fact that f
*
(p1) is non-decreasing is trivial, since increasing the value of p1 does not 

change the feasible region of the problem, but only increases the total system bid-cost of the 

solutions in which unit 1 participates. The fact that f
*
(p1) is piecewise-linear and concave is 

due to Noltemeier (1970)[48].     

The validity of Proposition 4.1 is a consequence of the fact that the feasible region of 

the lower-level problem can be replaced by its convex hull (the integer polyhedron) without 

altering the optimal solution, reducing this way the problem to the case of continuous linear 

programming, for which this result is well established. Proposition 4.1 can be utilized to solve 

the single-period variant of the problem defined by (3.7)-(3.14) parametrically, by applying a 

solution algorithm which employs a search procedure that has been introduced by Geoffrion 

and Nauss (1977)[21]. Consider the case of a uniform clearing scheme first. The aim of this 

algorithm is to identify all the distinct value-ranges of p1 in the interval [c1, C1] for which the 

lower-level optimal solution (in terms of the decision variables values) and the associated 

marginal unit remain constant. The global optimal solution of the problem is then identified as 

the point at which the profit of the strategic producer is maximized. For any of these distinct 

value-ranges of p1, there exist only two possible cases, as described next. 

The first case is when the strategic producer determines the system marginal price 

(unit 1 is the marginal unit), i.e., when p1 is equal to the shadow price of the demand 

constraint (3.10). For that value-range of p1, the strategic producer achieves his maximum 

profit when his price-bid becomes equal to the right endpoint of the corresponding value 

interval. To see why this is true, note that since the system marginal price is determined by the 

strategic producer in this range, this is the maximum possible price with which he can be 

compensated for each MWh of energy that he will provide to the market. Offering a larger 
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price-bid will result in a different optimal solution for the lower-level problem, leading to a 

different value-range for p1. The second case is when the system marginal price is determined 

by a different producer. For that value-range, the strategic producer is indifferent about the 

specific value of p1, since he will be paid at that fixed system marginal price, independently of 

his own price-bid. In turn, his profit remains constant in that range, since his energy quantity 

remains constant, too. 

The main difference between the two aforementioned cases is that in the first one, the 

profit of the strategic producer increases linearly with his price-bid within the particular 

value-range of p1, whereas in the second one, it remains constant. By comparing the 

maximum profit that the strategic producer can achieve in any value-range of p1 (each of 

which is associated with a distinct lower-level optimal solution), we can easily identify the 

optimal value of p1 that results in his maximum profit. This methodology can be carried out 

with the procedure described next. 

Suppose that we solve the lower-level problem for p1 = c1 and p1 = C1 and that the 

optimal values of the decision variables in the two solutions that we obtain are represented by 

x
*
(c1) and x

*
(C1), respectively. Proposition 4.1 implies that f

*
(c1) ≤ f

*
(C1) and that the line 

connecting the points (c1, f
*
(c1)) and (C1, f

*
(C1)) provides a lower bound on f

*
(p1) for any p1 

that belongs to the interval [c1, C1], for if there were some value k of p1 in this interval such 

that the point (k, f
*
(k)) lied below this line, the concavity of the function f

*
(p1) would be 

contradicted (see Figure 4-1). 
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Figure 4-1: Lower bound on f
*
(p1) determined by two extreme optimal solutions 

Therefore, if x
*
(c1) = x

*
(C1), the search terminates, concluding that the optimal 

solution of the lower-level problem is the same for any feasible value of p1. In this case, the 

energy quantity, q1
*
, that the strategic producer provides to the system is the same for the 

entire interval of p1, and his maximum profit is realized at the point of this interval for which 

the system marginal price is maximized. If the first unit is the marginal unit, then, according 

to the intuition provided above, the system marginal price is maximized for p1 = C1 and the 

global maximum profit of the strategic producer is equal to (C1 - c1)q1
*
. If the first unit is not 

marginal, then the system marginal price remains constant in the entire interval [c1, C1], which 

implies that any value of p1 in this interval is optimal, with an associated maximum profit for 

the strategic producer equal to (λ - c1)q1
*
. 

If x
*
(c1)  x

*
(C1), then either these two are the only possible lower-level optimal 

solutions, or there exists at least one additional lower-level optimal solution, realized for some 

value of p1 in the interval (c1, C1). Proposition 4.1 is properly utilized again to see which of 

the two is true, as explained next. Consider the line that represents the value of the lower-level 
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objective function when the lower-level solution is fixed at x
*
(c1) and p1 increases above c1, 

and the line that represents the value of the lower-level objective function when the lower-

level solution is fixed at x
*
(C1) and p1 decreases below C1 (see Figure 4-2). 

 

Figure 4-2: Upper bound on f
*
(p1)determined by two extreme optimal solutions 

Let p1 = u be the point at which these two lines intersect, and suppose that the two 

objective values are equal to W at that point. The line connecting the point (c1, f
*
(c1)) with the 

point (u, W) provides an upper bound on f
*
(p1) for any p1 that belongs to the interval [c1, u], 

for if there were some value k of p1 in this interval such that f
*
(k) were above this line, we 

would be able to improve the optimal lower-level objective at p1 = k using the solution x
*
(c1) 

instead, which is a contradiction. Similarly, the line connecting the point (u, W) with the point 

(C1, f
*
(C1)) provides an upper bound on f

*
(p1) for any p1 that belongs to the interval [u, C1], 

for if there were some value k of p1 in this interval such that f
*
(k) were above this line, we 

would be able to improve the lower-level objective at p1 = k using the solution x
*
(C1) instead, 

which is a contradiction. 
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In order to check if, in addition to x
*
(c1) and x

*
(C1), another lower-level optimal 

solution exists for some value of p1 between c1 and C1, we solve the lower-level problem for 

p1 = u. If f
*
(u) = W, then the procedure terminates concluding that x

*
(c1) is the optimal lower-

level solution for c1 ≤ p1 ≤ u and x
*
(C1) is the optimal lower-level solution for u ≤ p1 ≤ C1. 

Otherwise, we repeat the above procedure, considering the following two pairs of lines (see 

Figure 4-3). The first pair is comprised of the line that represents the lower-level objective 

function when the solution is fixed at x
*
(c1) and p1 increases above c1 (this is the first line 

considered in Figure 4-2), and the line that represents the lower-level objective function when 

the solution is fixed at x
*
(u) and p1 decreases below u. The second pair is comprised of the 

line that represents the lower-level objective function when the solution is fixed at x
*
(C1) and 

p1 decreases below C1 (this is the second line considered in Figure 4-2), and the line that 

represents the lower-level objective function when the solution is fixed at x
*
(u) and p1 

increases above u. Due to the same intuition as before, these two pairs of lines provide 

improved upper bounds on f
*
(p1) at the two corresponding intervals. At the same time, the two 

lines connecting the points (c1, f
*
(c1)) with

 
(u, f

*
(u)) and (u, f

*
(u)) with (C1, f

*
(C1)) provide 

improved lower bounds on f
*
(p1). 

 

Figure 4-3: Improved lower and upper bounds on f
*
(p1) 
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The parametric search procedure continues similarly, until all the distinct value-ranges 

of p1 and the associated lower-level optimal solutions are identified. At that point, the 

problem’s global optimal solution is identified easily, by comparing the maximum profit that 

the strategic producer can attain in each distinct interval. Let z1
*
(p1) and q1

*
(p1) be the optimal 

values of decision variables z1 and q1, respectively, as a function of p1. The above procedure 

can be significantly expedited when the following important result is exploited: 

Proposition 4.2   The function q1
*
(p1) is non-increasing. 

Proof  The slope of each linear segment that comprises the function f
*
(p1) is equal to the 

optimal energy quantity of the first unit, q1
*
, at the solution obtained when p1 is set equal to 

the left endpoint of the associated interval. The validity of the proposition results from the fact 

that f
*
(p1) is concave.   

The significance of Proposition 4.2 is that if we know the optimal value of q1 for some 

p1 = k, then this value can be imposed as an upper bound on the optimal value of q1 on any 

instance of the problem in which p1 is set greater than k. Moreover, whenever we identify a 

value k of p1 for which z1
*
(k)

 
= 0, then we do not need to apply the parametric search 

procedure in the interval (k, C1], since Proposition 4.2 ensures that the first unit will not 

participate in the market in that value-range and its corresponding profit will be equal to 0. 

This can lead to significant computational savings, especially for large scale problems. 

4.2 Application of the algorithm 

In this section, we illustrate the application of the proposed algorithm on a case study 

with five production units and a single-period hourly time horizon. The technical 

characteristics, the price-bids and the startup costs of the production units are shown in Table 

4-1. The technical minima and maxima are given in MW, the startup costs in €, and the price-
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bids for energy in €/MWh. The unit variable production cost of the strategic producer 

(production unit 1) is 50 €/MWh, the price cap is 150 €/MWh, and the energy demand is 

equal to 1,000 MWh. The problem data are not fictitious, but correspond to factual units 

participating in the Greek electricity market, as described by Andrianesis et al., 2013b[2]. 

Table 4-1 Data of the production units 

Unit (i) 
   mi

    Mi
 

pi
 

si 

1 240  377   -   13,000 

2 144  476   52   10,000 

3 240  384    57   15,000 

4 105  188   65   27,000 

5 60  144   72   24,000 

Table 4-2 presents the results of the application of the proposed solution algorithm. 

For each distinct value-range of p1, this table shows the lower-level optimal solution in the 

form (q1
*
, q2

*
, q3

*
, q4

*
, q5

*
), the system marginal price, the marginal unit, the optimal lower-

level objective function value (f
*
), and the corresponding objective value of the upper-level 

problem (F1). 

Table 4-2 Results of the application of the solution algorithm 

Value-range 

of p1 

Lower-level 

optimal solution 

System 

marginal price 

Marginal 

generation unit  
f

*
 F1 

[50, 52] (377, 383, 240, 0, 0) 52 2 71,596 + 377p1 754 

(52, 57] (284, 476, 240, 0, 0) p1 1 76,432 + 284p1 (p1-50)284 

(57, 111.58] (240, 476, 284, 0, 0) 57 3 78,940 + 240p1 1,680 

(111.58, 150] (0, 476, 384, 0, 140) 72 5 105,720 0 

 

The results of Table 4-2 indicate that the maximum profit the strategic producer can 

attain for any value of p1 that belongs to the interval [50, 150] is equal to 1,988 and is 

achieved when p1 is equal to 57. The corresponding lower-level optimal solution is (284, 476, 

240, 0, 0), resulting in a total system bid-cost of 92,620. Note that the solution (240, 476, 284, 
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0, 0) is also optimal to the lower-level problem for p1 = 57, but is not preferred because it is 

less favorable to the strategic producer. 

When p1 belongs to the interval [50, 52], the best price-bid of the strategic producer is 

not unique, since the system marginal price is determined by unit 2. As a result, the strategic 

producer is indifferent for any value of p1 in that range, since both his energy quantity (377) 

as well as the market clearing price (52) remain constant. The situation is similar when p1 

belongs to the interval (57, 111.58], with the system marginal price being equal to 57, and the 

energy quantity of the strategic producer dropping to 240. Finally, in the value-range (111.58, 

150] the strategic producer does not participate in the market; therefore, he realizes zero 

profits. Figure 4-4, Figure 4-5 and Figure 4-6 depict the optimal lower-level objective 

function value (f
*
), the corresponding upper-level objective function value (F1), and the 

system marginal price, respectively, as a function of p1. In accordance with Proposition 4.1, 

the function f
*
(p1) is non-decreasing, piecewise-linear and concave, comprising of four linear 

segments with slopes 377, 284, 240 and 0, respectively. 

 

 

Figure 4-4: Optimal objective value of the lower level problem (f
*
) as a function of p1 
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Figure 4-5: Objective value of the upper level problem (F1) as a function of p1 

 

Figure 4-6: System marginal price (λ) as a function of p1 

4.3 Computational Requirements 

In this subsection, we elaborate on some computational issues related to the 

application of the proposed solution algorithm. Problem (3.7)-(3.14) is NP-hard, since solving 

the lower problem for a particular value of p1 is NP-hard, due to the presence of the 
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integralities. The total computational effort required for the application of the proposed 

solution algorithm depends on the computational effort required for the solution of each 

lower-level problem and on the total number of such problems that need to be solved. Each of 

the lower-level problems contains |I| continuous and |I| binary decision variables, where |I| is 

the total number of production units, and can be solved using a typical branch and 

bound/branch and cut solution algorithm that utilizes linear or Lagrangean relaxations. The 

total number of times the lower problem needs to be solved, on the other hand, is equal to 2n - 

1, where n is the number of distinct linear segments comprising the function f
*
(p1), each of 

which corresponds to a different lower-level optimal solution (note that this relationship is 

valid for n > 1, since two distinct lower-level problems need to be solved when n = 1). This 

implies that n - 1 times the algorithm employed for the lower-level problem will find an 

optimal solution that has already been identified. 

A heuristic was proposed by Jenkins (1982)[27] in order to reduce the computational 

effort of the parametric search procedure described above. Adapted to our setting, this 

heuristic adopts the rule that if the optimal commitment of the production units at two distinct 

values of p1, k1 and k2 (c1 ≤ k1 < k2 ≤ C1) are the same, then the same commitment will be 

optimal for any value of p1 in the interval [k1, k2]. Thus, at the lower-level problems that need 

to be solved for any value of p1 in this interval, the corresponding binary variables are fixed in 

advance at these values. The small example with the data parameters displayed in Table 4-3 

demonstrates that this assumption is not always valid for the problem under consideration. 

 Table 4-3 Data of the second numerical example 

Unit (i) mi
 

Mi
 

pi
 

si 

1 70 100 - 2 

2 45 55 2.1 1 

3 30 70 2 10 
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Assume that the energy demand is equal to 130 for this problem. At the optimal 

solution of the lower-level problem when p1 = 1, we have z1
*
 = 1, z2

*
 = 0 and z3

*
 = 1; at the 

optimal solution of the lower-level problem when p1 = 2, we have z1
*
 = 1, z2

*
 = 1 and z3

*
 = 0; 

finally, at the optimal solution of the lower-level problem when p1 = 3, we have z1
*
 = 1, z2

*
 = 

0 and z3
*
 = 1. This small example demonstrates that it is possible for the optimal unit 

commitment to be the same for two distinct values of p1 and different for a third value that 

lies in-between. Thus, the above approach remains heuristic in our case. 

4.4 Computational results 

In this subsection, we present computational results demonstrating the performance of 

the proposed solution algorithm on random problem instances. We implemented the proposed 

solution algorithm in C/C++, utilizing the commercial optimization software LINGO 11.0 

(2011) for the solution of each of the lower-level problem instances. The code that we 

developed feeds LINGO with the data of each lower-level problem that needs to be solved, 

and in turn, LINGO returns the associated optimal solution. Our computational experiments 

were performed on an i7-920 @ 2.7 GHz Intel processor with 3 GB system memory. We used 

5 different values (i.e., 100, 200, 300, 400 and 500) for the total number of production units 

that participate in the market, and solved 30 random problem instances for each of them. 

The random problem instances were generated as follows: For the problem parameters 

of the remaining (besides the first one) production units, we utilized the data of factual 

generation units participating in the Greek electricity market (see Andrianesis et al., 

2013b[2]). More specifically, the parameters (technical minimum and maximum, startup cost 

and price-bid) of each generation unit i (i = 2,…,|I|), were set equal to the corresponding 
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parameters of one of these factual units. The specific unit with which this association was 

made was selected randomly. 

Let r be a random number distributed uniformly in the interval (0, 1), which is 

renewed after being used once. After the data of every production unit i (i = 2,…,|I|) had been 

generated, the data of the first production unit were generated as follows: The technical 

minimum of unit 1 was distributed uniformly in the interval )max,min(
11

i
i

i
i

Mm


 the technical 

maximum of unit 1 was set equal to )))(min)(max((
11

1 ii
i

ii
i

mMmMrm 


 the startup cost 

of unit 1 was distributed uniformly in the interval )max,min[
11

i
i

i
i

ss


 the unit variable production 

cost of unit 1 was set equal to )min(95.0
1

i
i

p


 and the price cap was set equal to )max(05.1
1

i
i

p


. 

This way, the feasible values of p1 were drawn from a wide interval whose left and right 

endpoints were smaller and larger, respectively, than the price-bid of any other production 

unit. Finally, the demand for energy was distributed uniformly in the interval ],max[ 
i

ii
i

mm . 

The results of our computational experiments are presented in Table 4-4. More 

specifically, columns 2 and 3 of this table show the proposed algorithm’s average and 

maximum computational times over the 30 problem instances of each problem size. The next 

column shows the average percentage of the total computational time that was taken up by 

LINGO. As expected, these values are close to 100%, which confirms that most of the total 

computational time is spent on finding the optimal solutions of the lower-level problems, 

whereas the percentage of the total computational time that is devoted to the remaining steps 

of the parametric search procedure is negligible. The next two columns show the average and 

maximum number of times that the lower-level problem was solved. Finally, the last two 
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columns show the number of distinct lower-level solutions, which is the same with the 

number of distinct linear segments comprising the function f
*
(p1). 

Table 4-4 Computational results 

  

Times (seconds) 

% LINGO 

times 

# of lower-level 

problems solved 

# of distinct lower-level  

optimal solutions 

|I| Avg Max Avg Avg Max Avg Max 

100 2.30 10.264 99.05 2.133 5 1.132 3 

200 28.08 205.888 99.57 4.433 7 2.633 4 

300 125.75 392.736 99.75 4.767 7 2.833 4 

400 138.72 572.426 99.78 4.433 5 2.667 3 

500 175.87 672.984 99.84 4.367 5 2.694 3 

 

The efficiency of the proposed solution algorithm becomes immediately clear, since 

its computational requirements are quite low, even for large scale problems. As the results of 

Table 4-4 demonstrate, these requirements seem to increase reasonably with problem size. 

The variability of the solution times appears significant, with the average time being 

approximately 15% of the corresponding maximum time in the worst case. Additionally, the 

number of times that the lower-level problem needs to be solved, which depends on the 

number of distinct lower-level optimal solutions, does not seem to increase as the problem 

size increases. This is an important observation because it demonstrates that increasing the 

number of production units increases the computational effort needed to solve each of the 

lower-level problems, as expected, but does not increase considerably the total number of 

distinct such problems that need to be solved. Consequently, the resulting increase in the total 

computational effort is mostly attributable to the larger computational requirements of the 

lower-level problems. 

4.5 Alternative remuneration schemes 

According to the remuneration scheme that we consider in this dissertation, strategic 

producers are fully compensated for their startup cost. This scheme is actually in effect in the 
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Greek electricity market, along with additional payments according to a cost recovery 

mechanism, an issue which, as already mentioned, is not within the scope of the present 

dissertation. A slightly different remuneration plan involves additional compensation of each 

unit’s startup cost, based on the dual variable of the associated constraint that fixes the 

commitment of this unit at its optimal value. Letting πi denote the dual variable associated 

with the corresponding constraint, an additional amount equal to (πi - si)zi is paid to unit i 

upon the clearing of the market, to compensate it for its startup cost. The proposed 

algorithmic procedure remains applicable in this case too, with only a minor modification, as 

explained next.  

Consider any of the strategic producer’s energy bid intervals, for which the lower-

level optimal solution remains the same in terms of energy dispatch and unit commitment. As 

pointed out by O’Neill et al. (2005)[49], for a mixed integer linear program (MILP) such as 

this one, the dual variable of the strategic producer’s unit commitment constraint always takes 

the value that makes his as-bid profit equal to 0. In other words, the total amount by which the 

producer is compensated for his energy production and his unit commitment based on the 

corresponding shadow prices is equal to the sum of his bid-based production cost plus his 

startup cost. With this in mind, the new optimal solution can still be computed by comparing 

the maximum profit that the strategic producer can realize in each of these distinct intervals. 

Next, we illustrate this in the small example of Section 4.2.  

In accordance with the above intuition, the dual variable associated with the unit 

commitment of the strategic producer is equal to 12246, and 12623, for p1 = 50, and 51, 

respectively. For any value of p1 in the interval [50, 52], the maximum value that this variable 

takes is 13000 when p1 = 52; consequently, the producer’s profit becomes maximum for p1 = 

52. Computing similarly the maximum profit that the strategic producer can attain in each of 
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the other three intervals, we find that the maximum possible profit for the strategic producer is 

equal to 14779.2 for p1 = 111.58. An interesting observation that arises is that, since the 

lower-level optimal solution remains the same within each distinct interval, there is an 

incentive for the producer to offer the maximum possible bid in each interval in order to 

maximize his as-bid cost. Of course, this value is equal to the right endpoint of the associated 

interval. This small example demonstrates that a market which adopts a remuneration scheme 

that also compensates each unit for its startup cost based on the shadow price of the 

corresponding unit commitment constraint is rather poorly designed, because it allows for 

severe price manipulations by the participating producers.  

Finally, note that, in this dissertation, we adopt the assumption that the producers do 

not bid strategically on their startup costs. In practice, market participants submit incremental 

energy bids that reflect their variable production costs and their unit commitment costs (e.g. 

startup costs). ISOs currently put more restrictions on the submitted unit commitment costs 

than on the energy bids; the former cannot be frequently changed, whereas the latter are 

allowed to vary on an hourly basis. The rationale behind these rules is that an increase in the 

frequency of adjustment of startup offers could enhance the ability of price manipulation. The 

concern is that increasing the frequency of adjustment of unit commitment offers could 

enhance the ability of generator owners to withhold capacity in order to raise wholesale power 

prices, for example in response to a short-lived system contingency. For this reason, the 

assumption of bidding in terms of the variable cost only is in direct alignment with current 

practice. 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Single-Period Variant of the Problem 

70 

4.6 Block bids 

The assumption of fixed marginal cost is not absolutely necessary for the application 

of the proposed methodology. The proposed algorithm can also be utilized in the case where 

the offers of the energy producers are allowed to be in the form of price-quantity pairs. This 

practice is consistent with the market rules in current electricity markets which, taking 

advantage of the recent advancements of commercial MILP solvers, formulate the Unit 

Commitment and Economic Dispatch problem as a MILP problem, allowing the participants 

to bid in block-bids, i.e. submit price-quantity pairs for their energy offers. They therefore 

approximate the traditional quadratic cost function with a piecewise linear one, or, 

equivalently, the linear marginal costs, with stepwise blocks. 

To elaborate more on this idea, assume that in the small numerical example presented 

in Subsection 4.2, the strategic producer is allowed to submit two distinct energy bids, one for 

the first 300 MWhs and another for the remaining 77 MWhs. We use two binary variables, z1,1 

and z1,2, to model the commitment of the first generation unit, where z1,1 = 1 if part of this 

unit’s first 300 MWs are injected to the system and z1,2 = 1 if part of this unit’s last 77 MWs 

are injected to the system additionally. Additionally, the quantity variable q1 is replaced by 

two corresponding variables q1,1 and q1,2, the production cost c1 is replaced by two 

corresponding costs c1,1 and c1,2, and the energy bid p1 is replaced by two corresponding 

energy bids p1,1 and p1,2. The problem formulation remains the same, except that the new 

upper-level objective function is expressed as (λ - c1,1)q1,1 + (λ - c1,2)q1,2, the energy quantity 

q1 in the energy balance constraint is replaced by expression (q1,1 + q1,2), and expressions p1q1 

and s1z1 in the lower objective function are replaced by expressions (p1,1q1,1 + p1,2q1,2) and 

s1z1,1, respectively. The constraint 240z1,1 ≤ q1,1 ≤ 300z1,1 is added to the formulation to reflect 

the upper and lower bound on q1,1, together with the constraints q1,2 ≤ 77z1,2 and q1,1 ≥ 300z1,2, 
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imposing the upper bound on q1,2 and ensuring that in order for q1,2 to be positive, q1,1 must be 

equal to 300. Besides the constraints ensuring that p1,1 must lie between c1,1 and C1, and p1,2 

must lie between c1,2 and C1, additional constraints may also apply on the energy bids of the 

strategic producer. For example, the constraint p1,2 ≤ p1,1+g is typically added to the model, to 

reflect the fact that, besides being non-decreasing, adjacent bids must also not differ by more 

than a known value, g. 

Suppose that c1,1 = 50, c1,2 = 60 and g = 50 in the above example. When p1,1 is fixed at 

its lower value, c1,1, the structure of the problem remains unchanged; thus, the optimal lower-

level objective function value remains a non-decreasing piecewise-linear and concave 

function of p1,2. This implies that the proposed methodology can be utilized to compute the 

optimal value of p1,2 when the value of p1,1 remains fixed at c1,1. For the particular example, 

any value of p1,2 in the interval [60,100] is optimal with a corresponding profit for the 

strategic producer equal to 600. Next, we can compute the optimal value of p1,1 when the 

value of p1,2 is fixed at one of these optimal values. Continuing the same way, this procedure 

terminates when the values of p1,1 and p1,2 that are optimal for each other are identified. The 

quality of this solution depends on the initial solution used. Even though this procedure is 

heuristic, reapplying it many times with different initial solutions and choosing the best of 

them is expected to provide a satisfactory approximation to the problem’s global optimum. 

4.7 Summary 

In this chapter, we addressed the problem of finding the optimal bidding strategy of an 

energy producer that participates in a single-period day-ahead electricity market, assuming 

full knowledge of the market’s parameters. The use of discrete variables to represent the 

commitment of the production units prohibits the application of typical methodologies, such 
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as the use of first-order KKT optimality conditions, for finding its global optimal solution. 

Although the feasible region of problem is non-convex, we proved interesting theoretical 

properties utilizing key results from the theory of parametric integer programming and the 

problem’s special structure, and we developed an exact solution algorithm for obtaining the 

global optimum of this problem.  

We illustrated the application of the proposed algorithm on a small case study with 

five production units and a single-period hourly time horizon, and we reported experimental 

results demonstrating its efficiency on random problem instances under a uniform clearing 

scheme. Although the problem is NP-hard, our computational results demonstrate the high 

efficiency of the proposed algorithm and its low computational requirements, even for large-

scale problem instances. We also provided an outline of how the underlying theory can be 

modified to fit alternative market designs, such as those which include alternative 

remuneration schemes and/or those in which the offers of the energy producers are in the form 

of price-quantity pairs (block bids). 
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Chapter 5 The Multi-Period Variant of the Problem 

5.1 Introduction 

In this chapter, we consider the multi-period variant of the problem. In view of the 

absence of generic solution methodologies for integer bilevel programming, we utilize the 

theoretical properties of the optimization model under consideration to develop specialized 

solution methodologies for tackling it. First, we develop a heuristic solution approach, which, 

despite its relatively low computational requirements, appears to provide high quality 

solutions. This significant advantage makes this methodology suitable for the treatment of 

large realistic problems. It works iteratively, optimizing the bidding offer of a single time 

period at each iteration, while keeping all the other ones fixed at their current values. This is 

accomplished through the comparative evaluation of the distinct lower-level optimal solutions 

identified by varying parametrically the single price-offer subject to optimization. We go on 

to elucidate how the underlying theory can be utilized to enable the generation of valid 

inequalities to a suitable relaxation of the original problem in which the so-called bilevel 

feasibility of the obtained solution is not guaranteed. These inequalities are exploited within a 

cutting-plane framework by the exact solution approach for identifying the global optimum of 

the problem. While the considerably larger computational requirements of this methodology 

limit its applicability on small sized problems only, the associated framework that we develop 

opens up new interesting research directions towards the development of efficient exact 

algorithmic methodologies for the solution of the problem. In addition, we also elaborate on 
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the conditions under which the applicability of the proposed methodologies remains valid on 

more complex model extensions that may involve additional problem characteristics. 

Note that in this, as well as in the next chapter, we assume that the strategic producer 

price-offers, p1,t (t = 1,…,T), and the energy quantities of the generation units, qi,t (i  I, t = 

1,…,T) are additionally constrained to integer values, i.e., we append the following two 

constraints in the upper and the lower-level of the model formulation, respectively: 

                                         p1,t  Z
+
, t = 1,…,T  (5.1) 

                                         qi,t  Z
+
, i  I, t = 1,…,T  (5.2) 

These additional integrality restrictions are mainly imposed for avoiding numerical 

difficulties related to the modeling techniques that we employ for the solution of the 

associated optimization models; their inclusion does not affect the applicability of the solution 

methodologies that we develop next, but guards against unrealistic decision variable values 

with no practical meaning. In fact, it will become apparent that our proposed solution 

methodologies can be easily extended to the case that variables p1,t and/or variables qit are 

continuous, too, with minor adjustments. In addition, note that the incorporation of these 

constraints leads to more meaningful and practical final solutions, thus resembling the 

realistic problem setting. In terms of the optimization model properties, note also that the 

integrality of these decision variables ensures that the cardinality of the feasible set of both the 

lower as well as the upper-level problem is finite. 

5.2 Heuristic solution methodology    

The heuristic solution methodology that we propose for the treatment of the multi-

period problem variant utilizes the solution methodology developed in the previous chapter 

for the single period variant of the problem. Note that, given the price-offers of the 
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participating producers, the lower-level problem remains an integer linear program. 

Therefore, its optimal objective is still a non-decreasing piecewise linear concave function of 

any single price-bid of the strategic producer. Thus, the optimal value of any single price-bid 

for the current values of all the remaining ones can be computed with the same exact 

procedure that was used in the single-period case. This involves again identifying the distinct 

lower-level optimal solutions that result by varying parametrically the price-offer subject to 

optimization, and selecting the corresponding value that results in the maximum profit.    

Starting from an initial set of feasible price-bids, the proposed heuristic solution 

methodology works iteratively, optimizing at each iteration the price-bid of a single time 

period given that the remaining ones are kept fixed at their current values. Under a uniform 

pricing scheme, the optimal value of a price-offer, p1,t, within a particular interval, say [at, bt], 

is not unique, unless the strategic producer is marginal. In order to break such ties, the 

heuristic proceeds by choosing as optimal p1,t-value one of the two corresponding endpoints. 

If the previous value of p1,t is equal to one of the two endpoints, then the algorithm just 

alternates this choice by selecting as optimal p1,t-value the other endpoint, in order to explore 

additional neighborhood directions for possible objective improvement. Otherwise, it selects 

as optimal p1,t-value the left endpoint, which corresponds to the lowest cost, in order to 

increase the price-offer competitiveness of the strategic producer. The procedure terminates as 

soon as a full cycle in which the profit of the strategic producer remains unchanged is 

encountered. This design avoids the execution of meaningless cycles, which, for example, can 

come about when the optimal values of some price-offers are changing constantly, even 

though the associated ISO optimal solution and the corresponding strategic producer profit 

remain unaltered. 
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It is easy to verify that the profit of the strategic producer cannot worsen in any two 

consecutive iterations of the heuristic. This holds true, simply because keeping the value of 

any of his bids the same as before ensures that this profit will remain unchanged, too. The 

rationale behind the above criterion for algorithmic termination is to keep going as long as 

there is an improvement in this profit, and to stop as soon as a full cycle in which no such 

improvement has been observed is encountered. The only case in which this would not lead to 

termination after a finite number of iterations is if a strictly positive objective improvement 

could be perpetually maintained. This, however, cannot happen due to the integrality of the 

decision variables and the consequent finite cardinality of the problem’s feasible set.    

Under a pay-as-bid clearing scheme, things are more straightforward. Assuming a 

strictly positive energy dispatch for the strategic producer in the associated interval, the 

optimal p1,t-value is unique and equal to this interval’s right endpoint. If the strategic 

producer’s dispatch is equal to 0, on the other hand, then the algorithm selects as optimal p1,t-

value the left endpoint, unless this value coincides to the previous p1,t-value in which case the 

right endpoint is selected instead. The same conditions used for algorithmic termination in the 

case of uniform pricing are also applied in the case of a pay-as-bid clearing scheme. 

Repeating this iterative procedure several times with various initial sets of price-bids (seeds) 

provides many alternative solutions, the best of which is naturally the one the algorithm 

returns upon termination.  

As far as the issue of addressing more complex models is concerned, note that the 

above procedure is straightforward and can be applied to similar strategic bidding 

optimization problems fitting this modeling framework under the assumption that the lower-

level problem remains linear. This implies that the model formulation can be extended to 

incorporate additional restrictions that may be present in different applications even if the 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Multi-Period Variant of the Problem 

77 

formulation of these restrictions necessitates the introduction of integer decision variables, as 

long as the modeling of the associated constraints remains linear.    

Next, we present the proposed heuristic solution methodology for the treatment of the 

multi-period variant of the problem in a step-by-step basis, using pseudocode for the reader’s 

convenience. 

Heuristic Solution Algorithm 

Step 0 (Initialization) 

Using some educated estimate, choose an initial feasible price-offer for each time period of 

the planning horizon and initialize the strategic producer profit it results to. 

Set t = 1.  

Step 1 (Iteration) 

While there has not been a cycle of T consecutive iterations in which the strategic producer 

profit remains unchanged 

do { 

Find the optimal value of p1,t  while keeping all the other price-offers fixed at their 

current values. 

Replace the old p1,t value with the new one and update the profit of the strategic 

producer.   

Set t = t + 1. If t > T, set t = 1.  

} end while 

Step 2 (Report of final solution) 

Return the current set of strategic producer price-offers and the corresponding ISO optimal 

solution as the final solution.       

5.3 Exact solution methodology 

5.3.1 Motivation 

The integer parametric programming theory utilized in the development of the 

proposed heuristic solution methodology can also be utilized within the context of a cutting-
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plane solution methodology for finding the exact optimum of the problem. More specifically, 

it can be suitably modified to enable the generation of valid inequalities for excluding 

solutions identified by a suitable relaxation of the original problem which do not qualify for 

global optimality. Note that, in bilevel programming, the theory for obtaining bound 

information on the optimal objective through suitable relaxations exhibits significant 

differences with that of typical single-level optimization problems (Bard, 1998[6]). 

We consider the relaxation of the optimization model (3.7)-(3.14) after the inclusion 

of constraints 5.1 and 5.2, in which the restriction that the follower’s response must belong to 

the reaction set is suppressed, i.e., we relax the requirement that the set of unit commitments 

and energy quantities constitutes an optimal ISO solution in conjunction with the 

corresponding set of strategic producer price-offers. This requirement, formally termed as 

bilevel feasibility, is a key prerequisite for global optimality. The following is a well-known 

result in the context of bilevel optimization, which is utilized in the development of the 

proposed exact solution algorithm for the treatment of the problem: 

Proposition 5.1 The optimal objective value to the problem that results after bilevel 

feasibility is relaxed from the original formulation is a valid upper bound on the optimal 

objective of the original problem. 

Proof  The proof is trivial, since relaxing bilevel feasibility enlarges the feasible set of the 

upper-level problem through the inclusion of those bilevel infeasible solutions which are 

feasible with respect to the remaining problem constraints, without excluding any other 

feasible solution.     

Consider the optimal solution to the problem that results after bilevel feasibility is 

relaxed in the original formulation. If this solution happens to be bilevel feasible, then, 
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naturally, it is also the exact optimal solution of the original problem. If not, then in order to 

pursue the search for the optimal solution, one needs to exclude this solution from further 

consideration. We show next how the integer parametric programming theory exploited in the 

development of the proposed heuristic solution approach can be suitably modified in order to 

accomplish this, too.  

The price-offers of the strategic producer appear as objective coefficients of his energy 

quantity variables in the ISO optimization problem. For a particular set of values of these 

price-offers, it is trivial to solve the lower-level problem and identify its optimal solution. 

Based on fundamental integer parametric programming theory, this solution remains optimal 

for a sufficiently small simultaneous perturbation of some of the decision variables’ objective 

coefficients. More specifically, Geoffrion and Nauss (1977)[21] have showed that when the 

objective coefficients of a minimization integer program are linearly perturbed through a 

single scalar parameter, then its optimal objective is piecewise-linear, continuous, and 

concave on its finite domain as a function of this parameter. In our case, by solely perturbing 

the strategic producer’s price-offers, this property allows us to identify interval ranges, such 

that, when each of these bids lies in its corresponding interval, the lower-level optimal 

solution remains unchanged. After identifying these interval ranges, we use typical integer 

programming modeling techniques to generate a valid inequality imposing the truly optimal 

lower-level solution. Besides excluding the previously identified bilevel infeasible solution 

from further consideration, this procedure also enforces the truly optimal lower-level solution 

for large value-combinations of the price-offers. The specifics of this procedure are explained 

next. 

For t = 1,…,T, assume that p1,t
b
 is the strategic producer’s price-offer for time period t 

in the identified bilevel infeasible solution. It is trivial to find the truly optimal ISO solution 
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for (p1,1
b
, p1,2

b
,…, p1,T

b
). We seek maximum θ1 and θ2 values, such that this solution remains 

optimal when each price-offer p1,t
 
belongs to the interval [p1,t

b 
- θ1, p1,t

b
 + θ2]. The left 

endpoint of this interval is identified by finding the maximum θ1 value for which the slope of 

the function f
*
 remains unchanged when, starting from their initial values, these price-offers 

are simultaneously decreased by θ1. Similarly, the right endpoint of this interval is identified 

by finding the maximum θ2 value for which the slope of the function f
*
 remains unchanged 

when, starting from their initial values, these price-offers are simultaneously increased by θ2. 

Of course, only integer values are of interest in each of these intervals. Once the maximum θ1 

and θ2 values have been identified, the following crucial result justifies the validity of the 

proposed valid inequality:   

Proposition 5.2 The optimal ISO objective for (p1,1
b
, p1,2

b
,…, p1,T

b
) remains unchanged when 

each price-offer p1,t
 
belongs to the interval [p1,t

b 
- θ1, p1,t

b
 + θ2]. 

Proof  Consider the ISO optimal objective for (p1,1
b
, p1,2

b
,…, p1,T

b
), say f1

*
, and assume that 

the ISO optimal objective is also equal to f1
*
 when each price-offer p1,t

 
is equal to [p1,t

b 
- θ1], as 

well as when each price-offer p1,t
 
is equal to [p1,t

b
 + θ2]. If there exists some combination of 

p1,t-values with each p1,t
 
belonging to [p1,t

b 
- θ1, p1,t

b
 + θ2], such that the optimal ISO solution, 

say f2
*
, is different than f1

*
, then this is a contradiction, since it directly negates the concavity 

and monotonicity of objective f
*
 as a function of the scalar parameter that linear perturbs it. 

Therefore, the fact that the optimal ISO objective is the same when each price-offer p1,t
 
is 

equal to [p1,t
b 

- θ1], as well as when each price-offer p1,t
 
is equal to [p1,t

b
 + θ2], implies that it 

will also be the same for any value-combination of the price-offers within these intervals.     

       

After incorporating the ensuing valid inequality into the model formulation, the 

relaxed problem is solved again and its next optimal solution is identified. The procedure 
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continues similarly, eventually terminating as soon as the first bilevel feasible solution is 

encountered, which naturally constitutes the problem’s exact optimum. An elucidation of the 

valid inequalities generation procedure is presented next in sufficient detail, in order to ensure 

material completeness and comprehension. 

5.3.2 Valid inequalities’ generation 

The valid inequality that we want to introduce in order to exclude a bilevel infeasible 

solution must impose the restriction that if each of the strategic producer’s bids, p1,t, belongs 

to the interval it has been associated with, then a particular unit commitment and energy 

quantity distribution must comprise the corresponding ISO optimal solution. Assume that the 

particular interval in question for price offer p1,t is denoted by [at, bt]. If both at ≠ c1 and bt ≠ 

C1, then the generation of the cut necessitates the introduction of two binary variables, say Wl
t
 

and Wr
t
, denoting whether p1,t is greater or equal to at and less or equal to bt, respectively. 

Mathematically, this is expressed through the following four constraints:    

                      
p1,t ≤ (C1 - at + 1)Wl

t
 + (at - 1) (5.3) 

                      
p1,t ≥ (at - c1)Wl

t
 + c1 (5.4) 

                      
p1,t ≤ (C1 - bt)(1 - Wr

t
) + bt  (5.5) 

                      
p1,t  ≥ c1 + (bt +1- c1)(1 - Wr

t
) (5.6) 

Constraints (5.3) and (5.4) impose the restriction pertaining to the left endpoint of the 

interval, i.e., Wl
t
 = 1 if and only if p1,t ≥ at. More specifically, if Wl

t
 = 0 then p1,t ≤ at - 1 from 

constraint (5.3), while constraint (5.4) becomes redundant. On the other hand, if Wl
t
 = 1 then 

p1,t ≥ at from constraint (5.4), while constraint (5.3) becomes redundant. Similarly, constraints 

(5.5) and (5.6) impose the restriction pertaining to the right endpoint of the interval, i.e., Wr
t
 = 

1 if and only if p1,t ≤ bt. More specifically, if Wr
t
 = 1 then p1,t ≤ bt from constraint (5.5), while 
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constraint (5.6) becomes redundant. On the other hand, if Wr
t
 = 0 then p1,t ≥ bt + 1 from 

constraint (5.6), while constraint (5.5) becomes redundant. Of course, no corresponding 

binary variable needs to be introduced if the corresponding endpoint coincides with c1 or C1, 

respectively. 

After the required binary variables have been properly defined for all price-offers, the 

imposition of a particular energy quantity, say Q, for production unit i in period t is 

accomplished by introducing the following two constraints: 

 
     

, ( ) (2 )     t

i

t

t i l r

t

Q M Q W Wq  (5.7) 

 
     

, (2 )    t t

l

t

t ri Q Q W Wq  (5.8) 

If Wl
t
 = Wr

t
 = 1 for t = 1,…,T, then the two summations in constraints (5.7) and (5.8) 

are eliminated and qi,t is set equal to Q. If at least one of these auxiliary variables is equal to 0, 

which implies that the corresponding price-offer does not belong to its associated interval, 

then both these constraints become redundant. Using such a pair of constraints for the energy 

quantity of each energy producer, we can impose a specific ISO optimal solution, thus 

eliminating a bilevel infeasible solution. Note that for units which are constrained to 0-

quantity in the associated solution, the above two constraints can be replaced by the following 

equivalent constraint that directly fixes the status of unit i in period t: 

    
  

, (2 )   t t

li t r

t

z W W  (5.9) 

5.3.3 Relaxing bilevel feasibility 

The most typical approach for relaxing bilevel feasibility in general bilevel 

optimization problems is the suppression of the lower-level objective; this transforms the 

problem into a single-level optimization model. In the case of a pay-as-bid clearing scheme, 
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this can be accomplished straightforwardly by removing the ISO objective from the original 

model formulation. Note that the objective of this relaxed single-level optimization model is 

quadratic, since it involves the product of two decision variables both treated at the same 

level. In the case of uniform pricing, on the other hand, an explicit representation of the 

system marginal price is not present in the problem formulation and needs to be incorporated. 

In order to accomplish this, we introduce extra constraints enforcing the correct smp 

definition for each time period of the planning horizon, according to the actual set of rules in 

effect. The exact procedure for doing this is illustrated next.  

The procedure we adopt for relaxing bilevel feasibility in the case of uniform pricing 

necessitates the introduction of the following two binary decision variables for each 

generation unit i and time period t: 

wi,t binary decision variable that takes the value 1 if and only if the output of unit i in time   

period t is strictly greater than mi, and 0 otherwise, i  I, t = 1,…,T, 

vi,t binary decision variable that takes the value 1 if and only if the output of unit i in time   

period t is strictly less than Mi, and 0 otherwise, i  I, t = 1,…,T. 

Variable wi,t takes the value 1 if and only if qi,t > mi, and 0 otherwise, while variable vi,t 

takes the value 1 if and only if qi,t < Mi, and 0 otherwise. We can modify accordingly 

constraints (5.3)-(5.6) to ensure that wi,t and vi,t correctly depict these two conditions as 

follows: 

                     
qi,t ≤ (Mi - mi)wi,t + mi (5.10) 

                     
qi,t  ≥ (mi +1)wi,t   (5.11) 

                     
qi,t ≤ Mi - vi,t   (5.12) 

                     
qi,t ≥ Mi(1 - vi,t)  (5.13) 

When qi,t > mi, constraint (5.10) makes wi,t equal to 1, while constraint (5.11) becomes 

redundant. On the other hand, when qi,t ≤ mi, constraint (5.11) makes wi,t equal to 0, while 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Multi-Period Variant of the Problem 

84 

constraint (5.10) becomes redundant. Similarly, when qi,t = Mi, constraint (5.12) makes vi,t 

equal to 0, while constraint (5.13) is redundant. When qi,t < Mi, on the other hand, constraint 

(5.13) makes vi,t equal to 1, while constraint (5.12) becomes redundant. After the introduction 

of these constraints, Rule 1 is enforced by adding the following two constraints for each unit i, 

in which K is a sufficiently large number:  

           
, , ,(2 )    t i t i t i tp w v K  (5.14) 

                
, , ,(2 )    t i t i t i tp w v K  

       
                                              (5.15) 

If mi < qi,t < Mi, then wi,t = vi,t = 1, so these two constraints set the smp equal to the 

price-offer of unit i; in any other case, they are both redundant. In order to express Rule 2, we 

additionally introduce a binary variable uj,t for each unit j > 1 and time period t, which takes 

the value 1 if and only if p1,t < pj,t, and 0 otherwise. Correct values for variables uj,t are 

ensured through the introduction of the following two constraints which are analogous to 

constraints (5.5) and (5.6): 

          
 p1,t  + 1 ≤ (C1 - pj,t + 1)(1 - uj,t) + pj,t (5.16) 

          
 p1,t  ≥ c1 + (pj,t  - c1)(1 - uj,t) (5.17) 

For each unit j > 1 and time period t, we also introduce a binary variable bj,t which 

takes the value 1 if and only if both qj,t = mj (i.e., zj,t = 1 and wj,t = 0) and pj,t ≤ p1,t (i.e., uj,t = 0) 

hold, and 0 otherwise, as well as a binary variable gj,t, which takes the value 1 if and only if 

both q1,t = m1 (i.e., z1,t = 1 and w1,t = 0) and pj,t > p1,t (i.e., uj,t = 1) hold, and 0 otherwise. 

Correct values for variables bj,t and gj,t are ensured through the following eight constraints: 

          
bj,t ≥ zj,t - wj,t - uj,t  (5.18) 

          
bj,t ≤ zj,t  (5.19) 

               
bj,t ≤ 1 - wj,t       (5.20) 

          
bj,t ≤ 1 - uj,t  (5.21) 
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gj,t ≥ z1,t + uj,t - w1,t - 1 (5.22) 

           
gj,t ≤ z1,t  (5.23) 

           
gj,t ≤ uj,t  (5.24) 

           
gj,t ≤ 1 - w1,t (5.25) 

Rule 2 is then expressed through the introduction of the set of constraints (5.26)-(5.29) 

that follows. Constraints (5.26)-(5.27) are introduced only once as they pertain to unit 1, while 

constraints (5.28)-(5.29) are introduced once for each unit i > 1.  

                         
1, 1, 1, , , ,

1 1 

(1 ) ( 1)
 

        t t t t j t j t j t

j j

p K z w Kb K w v             (5.26) 

                        
1, 1, 1, , , ,

1 1 

(1 ) ( 1)
 

        t t t t j t j t j t

j j

p K z w Kb K w v               (5.27) 
                                                                                                                 

  
, , , , , , , ,

1, :  

(1 ) ( ) ( 1)
   

          
j i

t i t i t i t j t j t i t j t j t

j j i p p j i

p K z w K z w Kg K w v
  
(5.28)

                                                                                                       

              
, , , , , , , ,

1, :  

(1 ) ( ) ( 1)
   

          
j i

t i t i t i t j t j t i t j t j t

j j i p p j i

p K z w K z w Kg K w v   (5.29)
            

 

Constraint (5.28) sets λt less than or equal to pi,t plus a summation of non-negative 

terms, each of which involves a multiplication with the sufficiently large number K. Similarly, 

constraint (5.29) sets λt greater than or equal to pi,t minus the summation of the same exact 

terms. Thus, if all these terms are equal to 0, then λt is set equal to pi,t by these two constraints; 

otherwise, they are both redundant. The term (1 - zi,t + wi,t) is equal to 0 if unit i produces at its 

technical minimum in time period t; otherwise, it is equal to 1. The term (zj,t - wj,t) is equal to 

1 if unit j produces at its technical minimum in time period t; otherwise, it is equal to 0. The 

term gi,t is equal to 1 if unit 1 has smaller price-offer than unit i and produces at its technical 

minimum in time period t; otherwise, it is equal to 0. Finally, the term (wj,t + vj,t - 1) is equal 

to 1 if the output of unit j is strictly between its technical minimum and its technical 

maximum in time period t; otherwise, it is equal to 0. Thus, these two constraints set λt equal 
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to the price-offer of unit i in time period t if unit i produces at its technical minimum, and in 

addition there is no other unit with smaller price-offer producing at its technical minimum, 

and no other unit producing strictly between its technical minimum and its technical 

maximum in the same time period; in any other case, these constraints are both redundant. 

Constraints (5.26)-(5.27) are similar to constraints (5.28)-(5.29), pertaining to the unit of the 

strategic producer. One can easily verify that these constraints determine the smp value 

correctly even when more than one units are simultaneously marginal according to Rule 2, 

both in the case that one of them is the strategic unit as well as in the case that it is not.       

In order to express Rule 3, we additionally introduce a binary variable aj,t for each unit 

j > 1 and time period t, which takes the value 1 if and only if both qj,t = Mj (i.e., vj,t = 0) and pj,t 

> p1,t (i.e., uj,t = 1) hold, and 0 otherwise, as well as a binary variable hj,t, which takes the value 

1 if and only if both q1,t = M1 (i.e., v1,t = 0) and pj,t ≤ p1,t (i.e., uj,t = 0) hold, and 0 otherwise. 

Correct values for variables aj,t and hj,t are ensured through the following six constraints: 

                      
aj,t ≥ uj,t - vj,t (5.30) 

                      
aj,t ≤ uj,t  (5.31) 

                      
aj,t ≤ 1 - vj,t  (5.32) 

                      
hj,t ≥ 1 - v1,t - uj,t   (5.33) 

                      
hj,t ≤ 1 - v1,t   (5.34) 

                      
hj,t ≤ 1 - uj,t (5.35) 

Rule 3 is then expressed through the introduction of the set of constraints (5.36)-(5.39) 

that follows. Constraints (5.36)-(5.37) are introduced only once as they pertain to unit 1, while 

constraints (5.38)-( 5.39) are introduced once for each unit i > 1. 

    
1, 1, , , ,

1 1 

( 1) 
 

      t t t j t j t j t

j j

p Kv K z v K  (5.36)
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1, 1, , , ,

1 1 

( 1)
 

      t t t j t j t j t

j j

p Kv K z v Ka  (5.37)
                                          

 

                     , , , , , ,

 1, ,  

( 1) (1 )
   

        
j i

t i t i t j t j t j t i t

j i j j i p p

p Kv K z v K v Kh     (5.38) 

                      , , , , , ,

 1, ,  

( 1) (1 )
   

        
j i

t i t i t j t j t j t i t

j i j j i p p

p Kv K z v K v Kh      (5.39) 

Constraint (5.38) sets λt less than or equal to pi,t plus a summation of non-negative 

terms, each of which involves a multiplication with the sufficiently large number K. Similarly, 

constraint (5.39) sets λt greater than or equal to pi,t minus the summation of the same exact 

terms. Thus, if all these terms are equal to 0, then λt is set equal to pi,t by these two constraints; 

otherwise, they are both redundant. The term vi,t is equal to 0 if unit i produces at its technical 

maximum in time period t; otherwise, it is equal to 1. The term (zj,t + vj,t - 1) is equal to 1 if 

the energy quantity of unit j in time period t is positive but strictly smaller than its technical 

maximum; otherwise, it is equal to 0. The term (1 - vj,t) is equal to 1 if unit j produces at its 

technical maximum in time period t; otherwise, it is equal to 0. Finally, the term hi,t is equal to 

1 if unit 1 has greater or equal price-offer than unit i and produces at its technical maximum in 

time period t; otherwise, it is equal to 0. Thus, these two constraints set λt equal to the price-

offer of unit i in time period t if unit i produces at its technical maximum, and in addition 

there is no other unit whose energy dispatch is positive but strictly smaller than its technical 

maximum, and no other unit with larger price-offer (for j > 1) or larger or equal price-offer 

(for i = 1) producing at its technical maximum; in any other case, they are redundant. 

Constraints (5.36)-(5.37) are similar to constraints (5.38)-(5.39), pertaining to the unit of the 

strategic producer. One can easily verify in this case, too, that these constraints determine the 

smp value correctly even when more than one units are simultaneously marginal according to 

Rule 3, both in the case that one of them is the strategic unit as well as in the case that it is 

not.  
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With the introduction of the above constraints, the complete model for relaxing bilevel 

feasibility in the case of a uniform pricing clearing scheme is formulated as follows: 

                   
 

1,

1 1 1,

1

Max  


 
t

T

t t
p

t

F c q   

                    s.t.  c1 ≤ p1,t ≤ C, t =1,…,T
 

 

     
, ,  1,...,



  i t t

i I

q d t T   

 mi,t zi,t ≤ qi,t ≤ Mi,t zi,t, iI, t =1,…,T  

 yi,t ≥ zi,t - zi,t-1, iI, t =1,…,T 
                 

constraints (5.10)-(5.15), iI, t =1,…,T  

constraints (5.16)-(5.25), (5.28)-(5.35), (5.38)-(5.39), iI, i >1, t =1,…,T  

constraints (5.26)-(5.27), (5.36)-(5.37), t =1,…,T   

                     p1,t  Z
+
, qi,t  Z

+
, iI, t =1,…,T 

yi,t, zi,t, wi,t, vi,t binary, iI, t =1,…,T
   

ui,t, bi,t, gi,t, ai,t, hi,t binary, iI, i >1, t =1,…,T
                                     

5.3.4 The exact solution algorithm 

Having elucidated the various actions the proposed exact solution algorithm involves, 

we are now in a position to present it in a step-by-step basis using pseudocode for the reader’s 

convenience.   

Exact Solution Algorithm 

Step 0 (Initialization) 

Relax bilevel feasibility and solve the resulting single-level model formulation. 

Step 1 (Iteration) 

While the current optimal solution is bilevel infeasible for the original problem formulation  

do { 
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Find the truly optimal ISO solution for the current set of strategic producer price-

offers. 

Find the maximum simultaneous increase and the maximum simultaneous decrease on 

the strategic producer price-offers for which this solution remains optimal.  

Add a valid inequality excluding the bilevel infeasible solution from further 

consideration. 

Solve the model again.  

} end while 

Step 2 (Report of final solution) 

Return the current set of strategic producer price-offers and the corresponding ISO optimal 

solution as the optimal solution.            
                   

5.4 Computational results 

We have implemented the proposed solution methodologies using C/C++ source code. 

In this section, we illustrate their application on a small case study, and we present extensive 

experimental results evaluating their relative computational performance. All tests were 

performed on a 6-Core @ 3.5 GHz 64-bit AMD Processor with 8 GB system memory, while 

the commercial optimization software LINGO 13.0 (2011)[42] was internally utilized for the 

solution of the encountered optimization models. 

5.4.1 A small case study 

For illustration purposes, we consider first a small case study with 3 production units 

and a 4-period planning horizon. The technical characteristics and startup costs of the 

generation units, as well as the price-offers and the demand for energy in each time period are 

shown in Table 5-1. The technical minima and maxima are given in MW, the startup costs in 

€, the price-offers for energy in €/MWh, and the energy demand in MWh. The unit variable 

production cost of the strategic producer (generation unit 1) is 50 €/MWh, while the price cap 
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is 100 €/MWh. We assume that all units are OFF at the beginning of the planning horizon, 

i.e., that zi,0 = 0 for i = 1,…,3. 

Table 5-1 Case study data  

    pi,t 

Unit (i)    mi
 

   Mi
 

si
 

t = 1
 

t = 2
 

t = 3
 

t = 4
 

1 200 500   1300 - - - - 

2 240 480   1500 57 58   65 67 

3 100 470   1600 64 60   58 62 

          dt  900 950   800 850 

First, we apply the proposed heuristic solution approach under a pay-as-bid clearing 

scheme. Initially, we set the price-offer of the strategic producer in time period t (t = 1,…,4) 

equal to the minimum price-offer of any other producer in the same time period, i.e., 57, 58, 

58 and 62, respectively. In the first iteration, the algorithm optimizes the value of p1,1, while 

keeping the values of p1,2, p1,3 and p1,4 fixed. Table 5-2 presents the ISO optimal solution when 

p1,1 is set equal to 50, in which the strategic producer is rewarded with the maximum possible 

dispatch in each time period for his low price-offers. His total profit upon clearing of the 

market is equal to 500(50-50) + 500(58-50) + 500(58-50) + 500(62-50) = 14,000, while the 

optimal ISO objective is equal to 206,400. Note that the strategic producer’s profit in the first 

period of the planning horizon is equal to 0, despite the fact that his corresponding energy 

dispatch is equal to his technical maximum. 

Table 5-2  Optimal ISO solution when p1,1 is set equal to 50   

Unit (i) t = 1
 

t = 2
 

t = 3
 

t = 4 

1  500  500  500  500 

2   400  450  0  0 

3  0  0  300  350 

Table 5-3 presents the ISO optimal solution when p1,1 is set equal to 100. In this case, 

the strategic producer does not participate in the market in the first time period, as a result of 

his particularly high price-offer; his total profit upon clearing of the market is equal to 0(100-
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50) + 500(58-50) + 500(58-50) + 500(62-50) = 14,000, same as before, while the optimal ISO 

objective is equal to 213,040. 

Table 5-3 Optimal ISO solution when p1,1 is set equal to 100   

Unit (i) t = 1
 

t = 2
 

t = 3
 

t = 4 

1  0  500   500  500 

2   480  350  0  0 

3  420  100  300  350 

The parametric analysis outlined in Section 4.1 identifies the 3 distinct lower-level 

optimal solutions and corresponding p1,1 interval values depicted in Table 5-4. In the first two 

of these solutions, the optimal value of p1,1 is equal to the associated interval’s right end-

point. In the third solution, on the other hand, any p1,1 value in the associated interval is 

optimal, since the strategic producer’s optimal dispatch in the first period is equal to 0. As 

shown in this table, the maximum profit that the strategic producer can attain is equal to 

19,880, realized for p1,1 = 64. The corresponding ISO optimal objective is equal to 212,840. 

The subsequent solutions visited by the algorithm in the next iterations are presented in Table 

5-5. 

Table 5-4 ISO optimal solutions for p1,2 = 58, p1,3 = 58, p1,4 = 62   

p1,1 range (Q1,1, Q1,2, Q1,3, Q1,4) p1,1
*
 f

*
 F1

*
 

[50, 57]  (500, 500, 500, 500) 57 181,400 + 500p1,1 17,500 

[58, 64] (420, 500, 500, 500) 64 185,960 + 420p1,1 19,880 

[65, 100] (0, 500, 500, 500) 65-100 213,040 14,000 

Table 5-5 Solutions visited by the heuristic under a pay-as-bid clearing scheme  

Iteration (p1,1, p1,2, p1,3, p1,4) f
*
       F1 

0 (57, 58, 58, 62) 209,900 17,500 

1 (64, 58, 58, 62) 212,840 19,880 

2 (64, 60, 58, 62) 213,780 20,580 

3 (64, 60, 65, 62) 216,090 21,530 

4 (64, 60, 65, 62) 216,090 21,530 

5 (64, 60, 65, 62) 216,090 21,530 

6 (64, 60, 65, 62) 216,090 21,530 

7 (64, 60, 65, 62) 216,090 21,530 
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As shown in Table 5-5, the algorithm identifies the 4 price-offers (64, 60, 65, 62) upon 

termination, each of which is optimal for the current values of the other three. This is realized 

at the end of the 7
th

 iteration, which flags the completion of a full cycle (4 iterations) in which 

the values of the 4 price-offers and the corresponding strategic producer profit remain 

unchanged. The strategic producer profit of the solution returned by the algorithm is equal to 

21,530, while the optimal ISO objective is equal to 216,090. 

We also applied the heuristic algorithm using two different sets of initial price-offer 

values, i.e., (64, 60, 65, 67), which corresponds to selecting the maximum price-offer of any 

producer in each time period, and (64, 58, 65, 62), which corresponds to some random 

selection from the other producers’ price offers in the same time period. The collective results 

comparing the three corresponding final solutions are presented in Table 5-6. All three 

solutions are pretty close in terms of the optimal ISO objective, with the two solutions 

obtained with the first and the third set of price-offers coinciding and providing the same 

strategic producer profit, which is larger than that of the second one. 

Table 5-6 Heuristic algorithm results for three different sets of                                                 

initial price-offers (pay-as-bid pricing)  

i 
initial  

(p1,1, p1,2, p1,3, p1,4) 

final  

(p1,1, p1,2, p1,3, p1,4) 
        f

* 
    F1 

1 (57, 58, 58, 62) (64, 60, 65, 62) 216,090 21,530 

2 (64, 60, 65, 67) (60, 60, 65, 67) 216,310 20,310 

3 (64, 58, 65, 62) (64, 60, 65, 62) 216,090 21,530 

Table 5-7 presents results similar as those of Table 5-6 for the case that a uniform 

pricing clearing scheme is adopted. The final solution that the algorithm returns for the second 

set of initial price-offers is the same with the one returned under the pay-as-bid clearing 

scheme. On the other hand, the first and the third solution coincide and qualify as the best, 

with an associated ISO optimal objective equal to 210,090 and corresponding strategic 

producer profit equal to 21,530. Note that, for this particular example, the profit of the 
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strategic producer in the solution that the algorithm returned for each of the three sets of 

initial price-offers is the same under both clearing schemes. 

Table 5-7 Heuristic algorithm results for three different sets                                                    

of initial price-offers (uniform pricing)  

i 
initial  

(p1,1, p1,2, p1,3, p1,4) 

final  

(p1,1, p1,2, p1,3, p1,4) 
       f

* 
     F1 

1 (57, 58, 58, 62) (64, 60, 65, 50) 210,090 21,530 

2 (64, 60, 65, 67) (60, 60, 65, 67) 216,310 20,310 

3 (64, 58, 65, 62) (64, 60, 65, 50) 210,090 21,530 

Next, we apply the exact solution algorithm under a pay-as-bid clearing scheme first. 

Solving the optimization problem that results after the lower-level objective is suppressed, we 

get the following price-offers and energy quantities, respectively, for the strategic producer: 

p1,t = (100, 100, 100, 100), q1,t = (500, 500, 500, 500). It is easy to confirm that this solution is 

not bilevel feasible, since solving the ISO’s problem for p1,1 = p1,2 = p1,3 = p1,4 = 100, we get 

an ISO optimal solution in which q1,t = (0, 0, 0, 0). Using integer parametric programming 

theory we find that the maximum simultaneous decrease on the 4 price bids of the strategic 

producer for which this solution remains unchanged is equal to 35. This implies that when 

p1,1[65, 100] and p1,2[65, 100] and p1,3[65, 100] and p1,4[65, 100] then q1,1 = q1,2 = q1,3 

= q1,4 = 0 and the profit of the strategic producer is equal to 0. To express this restriction 

mathematically, we add binary variables k1,t for t = 1,…,4, such that k1,t is equal to 1 if p1,t  ≥ 

65, and 0 otherwise. This is expressed as follows mathematically: k1,t  ≥ (p1,t - 64)/36 and k1,t  ≤ 

(p1,t - 50)/15. Then, the cut in question is expressed by adding the following inequalities: z1,t  ≤ 

(4 - k1,1 - k1,2 - k1,3 - k1,4) for t = 1,…,4. This excludes the previous bilevel infeasible solution 

from further consideration. Continuing adding similar cuts for each bilevel infeasible solution 

identified, the algorithm eventually reaches the exact optimal solution, which is p1,t
*
 = (64, 60, 

58, 69), q1,t
*
 = (420, 470, 500, 380), with f 

*
 = 216,440 and F1

*
 = 21,800.  
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Under a uniform pricing clearing scheme, the algorithm identifies that the exact 

optimal solution is p1,t
*
 = (64, 60, 50, 70), q1,t

*
 = (420, 470, 500, 380), with smpt

*
 = (64, 60, 

58, 70),  f 
*
 = 212,820 and F1

*
 = 22,180. Thus, although being pretty close, the two optimal 

solutions under the two clearing schemes are not identical. In the uniform pricing case, the 

optimal ISO cost is lower, while the strategic producer’s optimal profit is slightly higher. For 

this small case study, the best solution identified by the heuristic algorithm in the case of a 

pay-as-bid clearing scheme approximates the truly optimal one with a percentage difference 

of 1.2 %, while the corresponding approximate difference in the case of a uniform pricing 

clearing scheme is equal to 2.9 %. Of course, the quality of the solutions returned by the 

heuristic algorithm can potentially be improved through further execution attempts with 

additional initial solutions. For each of the two clearing schemes, Table 5-8 presents the total 

execution time, the total number of times (runs) the ISO optimization problem was solved, 

and the total number of valid inequalities (cuts) added. Note that the latter two figures do not 

coincide, due to the fact that the identification of a bilevel infeasible solution sometimes leads 

to the update of an existing cut instead of the introduction of a new one. 

Table 5-8 Case study execution time, number of runs and                                               

number of cuts for the exact solution algorithm  

Clearing scheme Time (minutes) # of runs # of cuts 

pay-as-bid 62 78 71 

uniform 129 75 49 

 

5.4.2 Randomly generated problems 

In this subsection, we test the performance of the proposed solution algorithms on 

randomly generated problems. For the heuristic algorithm, we generated random problem 

instances with the following sizes expressed as AxB where A = number of generation units 
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and B = number of time periods: 3x4, 4x4, 5x24, 6x24, 7x24, 8x24, 9x24, and 10x24. The 

emphasis on the number 24 for B is mainly due to the fact that realistic day-ahead electricity 

markets are typically solved over a planning horizon consisted of 24 hourly time periods. 

Each of the remaining units, besides the one pertaining to the strategic producer, was assigned 

the technical characteristics (technical minimum/maximum, start-up cost and price bids) of a 

factual unit participating in the Greek electricity market, according to the data provided by 

Andrianesis et al., 2013b[2]. The particular unit with which the association was made was 

selected randomly. The data pertaining to the strategic producer’s unit were then generated as 

follows: The technical minimum (m1) was an integer selected randomly in the interval 

]max,min[
11

i
i

i
i

mm


, the technical maximum (M1) was set equal to m1 + range, where range was 

an integer selected randomly in the interval )](max),(min[
11

ii
i

ii
i

mMmM 


, the start-up cost 

(s1) was an integer selected randomly in the interval ]max,min[
11

i
i

i
i

ss


, the unit variable 

production cost (c1) was set equal to it
ti

p
,1

min9.0


rounded to the nearest integer, and the price-

cap (C1) was set equal to it
ti

p
,1

max1.1


, rounded to the nearest integer. Finally, the demand for 

energy in each time period t was an integer distributed uniformly in the 

interval ],min)([
1





i

iii
i

i

ii mMmmM . 

The heuristic algorithm was applied three times on each problem instance, each time 

with a different set of initial price-offers for the strategic producer. In the first case, the price-

offer of each time period t was set equal to the minimum price-offer of any other producer in 

the same time period, in the second case it was set equal to the maximum price-offer of any 

other producer in the same time period, and finally, in the third case, it was set equal to some 

of the other bids in the same time period, with the selection being made randomly. As the 
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total number of distinct problem instances solved for each problem size was equal to 20, the 

total number of times the heuristic was applied on each problem size was equal to 3x20 = 60. 

For each clearing scheme, the following table presents the average and maximum 

computational times for each problem size. 

Table 5-9  Computational times (in seconds) of the heuristic algorithm                                  

on random problem instances  

 pay-as-bid uniform 

size avg max avg max 

3x4 4.37 6.53 4.39 6.73 

4x4 13.36 42.73 14.24 48.61 

5x24 113.68 440.04 124.66 508.27 

6x24 215.91 998.90 218.13 1,028.66 

7x24 282.26 1,583.76 226.14 1,146.01 

8x24 394.13 1,811.94 251.91 1,274.35 

9x24 462.76 2,181.66 275.24 1,325.85 

10x24 494.10 2,775.76 283.93 1,547.34 

As the above results demonstrate, the computational times of the heuristic algorithm 

are quite reasonable, enabling the solution of problems whose size approaches that of realistic 

problems encountered in practical environments of the greek electricity market. The variance 

of the computational times appears to be significant but not excessive. This is acceptable, 

considering that the optimization problem under consideration is highly non-convex and 

combinatorial. An interesting observation that can be made based on the results of Table 5-9 

regards the fact that the computational times increase much faster with problem size in the 

case of a pay-as-bid clearing scheme than in the case of a uniform clearing scheme. This can 

be possibly explained by the fact that under a pay-as-bid clearing scheme there is a much 

larger set of alternative solutions that the algorithm must comparatively evaluate, due to the 

fact that the strategic producer’s profit is dependent on his exact price-offer even in those time 

periods in which he is not marginal. 

For the needs of the present dissertation, we applied the exact solution algorithm on 

problem instances with sizes 3x4 and 4x4, which were the same as those in the case of the 
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heuristic algorithm. For each of the two clearing schemes, Table 5-10 presents the average 

and maximum computational times, the average and maximum number of runs, and the 

average and maximum number of cuts utilized. These results demonstrate the excessive 

computational requirements of the algorithm. In particular, the computational times are 

considerably large, partially due to the significant number of runs and cuts that these two 

relatively small problem sizes necessitated. The computational resource requirements of the 

algorithm are undoubtedly substantial. Consequently, it can be applied on particularly small 

sized problems only, whereas its application on realistic problem instances seems implausible 

at the moment. The computational requirements appear much higher under a uniform clearing 

scheme, the most reasonable explanation for this being the significantly more complicated 

model formulation due to the necessity for the explicit system marginal price representation. 

Table 5-10 Computational results for the application of the                                                

exact algorithm on random problems  

 pay-as-bid uniform 

 times (secs)  # iterations # valid inequalities times (secs)  # iterations # valid inequalities 

size avg max avg max    avg     max   avg max   avg max   avg max 

3x4 962 3,714 39.80 121 20.45 71 4,339 8,585 51.15 95 24.35 60 

4x4 2,253 9,122 63.95 167 26.5 142 5,897 12,011 57.85 117 38.60 78 

Table 5-11 presents results regarding the quality of the solutions returned by the 

heuristic solution algorithm. More specifically, for each clearing scheme and each of the two 

problem sizes, 3x4 and 4x4, this table presents the average and maximum percentage 

difference between the strategic producer’s profit in the solution provided by the heuristic, 

and that in the optimal solution identified by the exact solution algorithm. These results 

demonstrate that the heuristic algorithm provides high quality solutions at least for these two 

particular problem sizes. The maximum percentage difference in the strategic producer’s 

profit is less than 3.5 % in the worst case under both clearing schemes. Additionally, there 

does not seem to be significant difference in the heuristic algorithm’s effectiveness between 
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the two clearing schemes. These results seem quite promising, leaving open the possibility 

that the heuristic algorithm may be capable of providing high quality solutions for problems 

of realistic size, too.      

Table 5-11 Results regarding the quality of the solutions provided by the heuristic algorithm   

 pay-as-bid uniform 

 percentage difference (heuristic vs. exact) percentage difference (heuristic vs. exact) 

size avg max avg max 

3x4 0.58 2.71 0.48 2.70 

4x4 0.55 3.23 0.68 3.44 

 

5.5    Summary 

In this chapter, we considered the problem of finding the optimal bidding strategy of 

an energy producer that participates in a multi-period day-ahead electricity market. The 

problem is formulated as an integer bilevel optimization model with perfect knowledge of the 

market’s parameters, the technical characteristics and the bidding offers of the remaining 

producers. Due to the absence of generic solution methodologies for integer bilevel 

programming, we elaborated on several interesting theoretical properties and we utilized them 

to develop both a heuristic as well as an exact algorithmic solution methodology, for both 

clearing schemes.  

The heuristic solution methodology is straightforward and can be applied to similar 

strategic bidding optimization problems, even when they incorporate additional restrictions 

modeled by expressions involving integer decision variables, as long as the lower-level 

problem remains linear. Next, we demonstrated how the related theoretical groundwork can 

be modified to enable the generation of valid inequalities. The significance of these 

inequalities lies in that they can be embedded within a cutting plane algorithmic procedure for 

identifying the exact optimal solution of the problem. We implemented this solution 
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methodology, and we illustrated its applicability as well as that of the heuristic solution 

algorithm on a small numerical example. 

We concluded with experimental results demonstrating the computational capabilities 

of the proposed solution algorithms and evaluating their relative performance. More effective 

between the two turns out to be the heuristic approach, which is not surprising. The heuristic 

solution algorithm provides high quality solutions and its computational requirements are 

very moderate, enabling the solution of realistic problem instances in reasonable times. The 

exact solution algorithm, on the other hand, exhibits significantly higher computational 

requirements, which prohibit its application on realistic problem instances at the moment. As 

a consequence, the practical application of the exact solution algorithm necessitates further 

algorithmic enhancements to overcome the significant computational obstacles that the 

current implementation exhibits. The problem formulation can be made more realistic through 

the incorporation of additional problem aspects, such as minimum uptimes/downtimes and 

ramp-up/ramp down constraints. While this increases the problem complexity, at the same 

time it makes it more challenging. 
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Chapter 6 Enhanced exact solution algorithm for the multi-

period variant of the problem 

In this chapter, we develop an improved version of the exact solution algorithm 

presented in the previous chapter for optimal price-bidding of energy producers in day-ahead 

electricity markets with multi-period planning horizons. We embed special optimality 

conditions into the model reformulation in which bilevel feasibility has been relaxed, which 

ensure that the energy quantity distribution in each time period of the planning horizon will be 

optimal for the corresponding set of producers that will be identified as active in that time 

period. Consequently, solving the original problem to global optimality becomes equivalent to 

identifying the optimal set of active producers (zi,t = 1) in each time period. This also results 

in a small modification of the cuts utilized for excluding bilevel infeasible solutions; the main 

difference lies in that these cuts enforce particular unit commitments and not energy quantities 

as before. A simple procedure for extending the intervals within which these inequalities are 

valid is also devised. This constitutes another significant improvement, because it enables the 

elimination of an increased number of bilevel infeasible solutions from further consideration. 

We illustrate the application of the proposed methodology on a small case study, and 

we present extensive computational results demonstrating its performance and behavior on 

randomly generated problems. These results reveal that it is capable of handling small to 

medium sized problems efficiently, which is utterly important considering the inevitable lack 

of generic solution methodologies for the treatment of such problems, as well as the fact that 
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the applicability of specialized solution methodologies which have been previously proposed 

in the related literature appears rather limited on realistic size problems.  

6.1 Single period optimality conditions 

In this subsection, we focus our analysis on the treatment of a particular time period of 

the planning horizon; consequently, we drop the subscript denoting the time period as 

redundant for simplicity. As will become apparent next, the analysis that follows is applicable 

to any time period, after all decision variables are suitably augmented through the inclusion of 

the second subscript denoting the time period. Having made this clarification, assume that, in 

the multi-period variant of the problem, the optimal unit commitments in some time period of 

the planning horizon (zi
*
, iI) have been identified. In this case, the identification of the 

optimal solution for this time period can be straightforwardly accomplished by solving the 

following optimization problem, in which we additionally impose the optimistic approach 

assumption, so that the strategic producer is always favored in case of multiple optima. 

         *: z 1

Min 
 


i

i i

i I

p q  (6.1) 

                                     s.t. 
*:z 1 


i

i

i I

q d  (6.2) 

                                            mi  ≤ qi ≤ Mi , i  I: zi
*
 = 1 (6.3) 

                                            qi = 0, i  I: zi
*
 = 0 (6.4) 

                                           qi  Z
+
, i  I: zi

*
 = 1  (6.5) 

The energy quantity of each unit i such that zi
*
 = 0 is fixed to 0-value in this 

formulation. Thus, the problem reduces to finding the energy distribution that minimizes the 

total variable production cost while also respecting the technical minima/maxima of the 

generation units in that time period. Consider now the problem of examining whether a 

particular given energy distribution is optimal. The feasibility of this distribution can be 
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trivially checked; therefore, the optimality check reduces to examining whether there is 

another feasible distribution among the same generation units that results in lower production 

cost. The following important theoretical result can be utilized to provide a confirmative 

response to this question: 

Proposition 6.1 An energy distribution in a particular time period that is feasible with 

respect to constraints (6.2)-(6.5) is also optimal with respect to (6.1) if and only if there do 

not exist two distinct production units i and j, such that zi
*
 = zj

*
 = 1, pi < pj, qi < Mi and qj > 

mi. 

Proof  We prove the forward part first. Suppose that there exist two distinct units i and j, such 

that zi
*
 = zj

*
 = 1, pi < pj, qi < Mi and qj > mi. Decreasing the output quantity of unit j by one 

and increasing the output quantity of unit i by one results in an alternative feasible distribution 

which has lower cost, due to the fact that pi < pj. This contradicts the optimality of the initial 

distribution. Consider the reverse part now. Suppose that for a feasible distribution no such 

unit pair exists. The objective function of the problem is the weighted sum of the unit 

quantities, with the corresponding price-offers utilized as weights. Since the total sum of the 

quantities is fixed, this objective can only be decreased if at least one unit of energy is 

multiplied by a smaller weight in this sum. The fact that no unit pair for making such an 

exchange exists proves that the current distribution is optimal.        

Based on Proposition 6.1, a simple algorithmic procedure can be carried out for 

finding the optimal solution to Problem (6.1)-(6.5). This procedure initializes the energy 

dispatch of each active generation unit i to mi, and then allocates additional energy quantities 

to the active generation units in non-decreasing order of their price-offers. Each time the next 

generation unit is selected, it is allocated the minimum between the largest additional quantity 

it can accommodate, which is equal to Mi - mi, and the residual energy demand. If the former 
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of these two quantities is smaller, a proper update takes place and the procedure proceeds to 

the next active generation unit for allocation. If the latter quantity is smaller instead, the 

procedure terminates with the current solution being optimal.      

The important theoretical result of Proposition 6.1 enables us to impose suitable 

constraints for each time period of the planning horizon to the multi-period variant of the 

problem, imposing the optimality conditions this proposition prescribes. In conjunction with 

the constraint set of the lower-level problem, these conditions ensure that the energy 

distribution identified in each time period will be lower-level optimal for the associated set of 

active and inactive energy producers.  

Note that, naturally, these conditions should only pertain to units which are both active 

in the same time period. This can be accommodated suitably, using the binary variables zi 

denoting the status of unit i. When none of the two units involved pertains to the strategic 

producer, the utilization of auxiliary binary decision variables wi and vi introduced in Section 

5.3.3 is required to this end. With the help of these variables, the optimality conditions for any 

two generation units i (i > 1) and j (j > 1), such that and pi > pj, are expressed as follows: 

                                               3 - wi - vj ≥  zi + zj, i  I: i > 1                                        (6.6) 

If zi = zj = 1, then this constraint imposes the restriction that 1 ≥ wi + vj, which implies 

that either wi = 0 (equivalently qi = mi), or vj = 0 (equivalently qj = Mj). In any other case, 

constraint (6.6) is redundant. Thus, a solution in which qi > mi and qj < Mj is eliminated. 

When the strategic producer is involved, on the other hand, things become a little more 

elaborate, due to the fact that his actual price-offer is subject to optimization and thus not 

known in advance. In order to address this difficulty, we introduce the following decision 

variable for each i > 1 in this particular time period: 
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xi binary decision variable that takes the value 1 if and only if pi < p1, and 0 otherwise. 

Correct values for variables xi are ensured through the following two constraints: 

                                     p1 ≤ (C1 - pi) xi + pi, i  I: i > 1                      (6.7) 

                                     p1 ≥ c1 + (pi + 1 - c1) xi, i  I: i > 1                   (6.8) 

If xi = 0, then constraints (6.7)-(6.8) impose the restriction c1 ≤ p1 ≤ pi; otherwise, they 

impose the restriction pi + 1 ≤ p1 ≤ C1. Utilizing variable xi, we express the optimality 

conditions as follows in case the strategic producer is involved: 

                                    4 - w1 - vi ≥  z1 + zi + xi, i  I: i > 1                            (6.9) 

                                    3 - v1 - wi ≥  z1 + zi - xi , i  I: i > 1              (6.10)     

If z1 = zi = xi = 1, then constraint (6.9) imposes the restriction 1 ≥ w1 + vi, which means 

that either w1 = 0 (equivalently q1 = m1), or vi = 0 (equivalently qi = Mi); otherwise, this 

constraint is redundant. Thus, a solution in which q1 > m1 and qi < Mi is eliminated in this 

case. Similarly, if z1 = zi = 1 and xi = 0, then constraint (6.10) imposes the restriction 1 ≥ v1 + 

wi, which means that either v1 = 0 (equivalently q1 = M1), or wi = 0 (equivalently qi = mi); 

otherwise, this constraint is redundant. Thus, a solution in which qi > mi and q1 < M1 is 

eliminated in this case.   

Note that we deliberately do not utilize decision variables ui, which were utilized in 

Section 5.3.3 for imposing a correct smp definition under a uniform clearing scheme, in 

constraints (6.9) and (6.10) for the following reason. In case the smp is determined both by 

the strategic producer and by some other generation i due to a tie in their price-offers (p1 = pi), 

it is indifferent which of the two constraints smp = p1 or smp = pi will be imposed in the 

problem formulation. On the other hand, if there is a tie in these two price-offers, we want to 

prioritize the energy allocation to the strategic producer so that in case of multiple lower 

optima the optimistic approach is respected. Variables ui treat the case p1 = pi the same way 
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they treat the case p1 > pi, whereas variables xi treat it the same way they treat the case p1 < pi. 

Although transferring a unit of energy between units 1 and i does not change the value of the 

objective function when p1 = pi, if variables ui were used instead of variables xi, generation 

unit i would have priority over the strategic producer in such a case, thus violating the 

optimistic approach assumption. Consequently, decision variables xi are utilized to ensure that 

a solution in which p1 = pi, q1 < M1 and qi > mi is also excluded. 

6.2 Valid inequalities modification 

Of course, imposing the optimality conditions in question does not ensure that the set 

of units that will be identified as active in each time period will be optimal. If it happens to be, 

the identified price-offers of the strategic producer will pertain to the exact optimal solution of 

the problem. If not, this implies that the unit commitments (zi,t) for some time period t in this 

solution will not be optimal for the corresponding set of price-offers of the strategic producer. 

In order to pursue our search for the optimal solution, we need to exclude this solution from 

further consideration. To perform this, we employ a suitable modification of the original 

procedure utilized in the previous chapter in order to generate valid-cuts for excluding bilevel 

infeasible solutions as explained next.    

First, we solve the lower-level problem for the given set of strategic producer price-

offers in order to identify the truly optimal generation unit commitment. Next, we identify the 

largest interval range for these price-offers within which this unit commitment remains 

unchanged. In doing so, we extend these intervals even if some quantities change, as long as 

the corresponding unit commitments remain the same. This is a significant difference with 

respect to the original approach, in which even a change in a single quantity signified the end 

of the corresponding interval. After identifying these interval ranges, we employ typical 
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integer programming modeling techniques to generate a valid inequality imposing the truly 

optimal lower-level unit commitment and eliminate the identified bilevel infeasible solution 

from further consideration. 

Once the maximum simultaneous increase/decrease on the strategic price-offers that 

does not alter the optimal unit commitment has been identified, it is often the case that the 

current unit commitment remains optimal when the values of some (not all) price-offers of the 

strategic producer are increased/decreased further. Therefore, at that point, we investigate 

whether there is a proper subset of these price-offers that can be further increased/decreased 

beyond this value without altering the optimal unit commitment. This procedure is pursued 

repeatedly, until the point where it is not possible to increase/decrease the value of a single 

price-offer by one unit without altering the optimal unit commitment. This implies that the 

length of the final interval that will be identified may be different for any two distinct price-

offers, depending on the exact order in which these subsets are investigated. Of course, one 

can investigate all possible combinations and choose the bounds that maximize the 

cumulative length of all these intervals, but we do not pursue this since it exhibits a 

combinatorial nature and may lead to performance degradation. Instead, we choose to 

investigate these subsets randomly, and adopt any path that actually increases the cumulative 

interval length without altering our intermediate decisions.  

To give a particular example, note that, for the small case study of Section 5.4.1, we 

identified that, starting from an initial value 100 for all 4 price-offers of the strategic producer, 

their maximum simultaneous decrease for which the solution q1,t = (0, 0, 0, 0) remains 

optimal to the ISO problem is equal to 35. As it turns out, however, the same solution remains 

optimal when p1,1 is decreased to 63, p1,2 is decreased to 62 and p1,3 is decreased to 64. This is 

not the only possible path that can be pursued for extending the initially identified intervals of 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Enhanced exact solution algorithm for  

the multi-period variant of the problem 

107 

length 35, but was identified using a randomized neighborhood search. However, it is a path 

that besides extending the initial intervals it also makes them tight, in the sense that 

decreasing any of the 4 price-offers further beyond the values 63, 62, 64 and 65, respectively, 

by even one unit alters the optimal solution. Of course, this constitutes a significant 

enhancement, since it results in the identification of more value-combinations for the strategic 

producer price-offers, thus succeeding in eliminating more bilevel infeasible solutions. After 

these improved intervals have been identified, we utilize one of the two following constraints 

in order to impose a particular unit commitment, 0 or 1, respectively, for a production unit i in 

period t.  

 
             

, (2 )   t t

li t r

t

z W W  (6.11) 

         
     

, 1 (2 )   i t

t t

l r

t

z W W  (6.12) 

Constraints (6.11) and (6.12) are analogous to constraints (5.7) and (5.8), but impose a 

particular unit commitment instead of energy quantity. Variables Wl
t 
and Wl

t
 are used in the 

same exact way for signifying whether price-offer p1,t belongs to its associated interval. If all 

these binary variables for t = 1,…,T are equal to 1, then the two summations in these 

constraints are eliminated; thus, zi,t is set equal to 0 if constraint (6.11) is used for generation 

unit i, or it is set equal to 1 if constraint (6.12) is used instead. Of course, if at least one of 

these variables is equal to 0, then both these constraints become redundant. Using suitably one 

of these two constraints for each generation unit, one can impose a particular unit 

commitment, thus eliminating a bilevel infeasible solution. After incorporating the proposed 

valid inequality into the model formulation, the problem is re-solved again to identify the next 

candidate solution for optimality, exactly as in the original solution approach. The procedure 
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continues similarly, eventually terminating as soon as the first bilevel feasible solution is 

encountered, which naturally comprises the problem’s exact optimal solution. 

6.3 Computational results 

We have implemented the improved version of the exact solution algorithm using 

C/C++ source code. In this section, we present updated results for the small case study 

presented in the previous chapter, and we present experimental results evaluating the 

computational performance of the enhanced solution algorithm. All tests were performed on a 

6-Core @ 3.5 GHz 64-bit AMD Processor with 8 GB system memory, while the commercial 

optimization software LINGO 13.0 (2011)[42] was internally utilized for the solution of the 

encountered optimization models. 

6.3.1 A small case study 

For comparison purposes, we consider the small case study with 3 production units 

and a 4-period planning horizon presented in the previous chapter. The technical 

characteristics and startup costs of the generation units, as well as the price-offers and the 

demand for energy in each time period are shown in Table 5-1 of Subsection 5.4.1. For each 

of the two clearing schemes, Table 6-1 presents the total execution time, the total number of 

times (runs) the ISO optimization problem was solved, and the total number of valid 

inequalities (cuts) added. 

Table 6-1 Execution time, number of runs and number of                                                                   

cuts for the case study (enhanced exact solution algorithm) 

Clearing scheme Time (minutes) # of runs
 

# of cuts
 

pay-as-bid 41 35 24 

uniform 53 6 5 
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Table 6-1 confirms that, for this small case study, there are clear computational 

savings from the application of the enhanced exact solution algorithm as compared to the 

previous one, under both clearing schemes. For the pay-as-bid clearing scheme, the 

percentage difference in time is 33.87 %, while the corresponding percentage difference in the 

case of the uniform pricing clearing scheme is equal to 58.91 %.   

6.3.2 Randomly generated problems 

In this subsection, we test the performance of the proposed solution algorithm on 

randomly generated problems. For comparative purposes, we consider the same random 

problem instances as those of the previous chapter. For each of the two clearing schemes, 

Table 6-2 presents the average and maximum computational times, the average and maximum 

number of runs, and the average and maximum number of cuts utilized. These results 

demonstrate the reduced computational requirements of the algorithm, confirming that its 

effectiveness is enhanced. In particular, the computational times are considerably lower than 

those of the exact algorithm of the previous chapter, mainly due to the significantly smaller 

number of runs and cuts.     

Table 6-2 Computational results for the application of the exact algorithm on random problems   

 pay-as-bid uniform 

 times (secs)  # iterations # valid inequalities times (secs)  # iterations # valid inequalities 

size avg max avg max    avg     max   avg max   avg max   avg max 

3x4 494 2,431 5.4 35 3.05 24 1,407 3,426 3.80 10 2.5 5 

4x4 1,245 4,559 10.85 65 2.25 4 2,935 4,961 7.85 20 2.30 5 

Table 6-3 presents specific results comparing the computational time required by the 

two algorithmic versions. More specifically, for each clearing scheme and each of the two 

problem sizes, this table presents the average and maximum percentage difference in 

computational time between the original and the enhanced algorithmic version. The maximum 

percentage difference in average time is 91.7 % and 94.3 % for each of the two clearing 
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schemes, respectively. The average percentage difference in computational time is slightly 

less than 50% for the pay-as-bid clearing scheme and even more for the uniform clearing 

scheme. The time savings are considerable for both clearing schemes, especially for the 

uniform clearing scheme which involves a considerably more complex and resource 

demanding model formulation. 

Table 6-3 Comparison of the computational times of the two algorithmic versions   

 pay-as-bid uniform 

 percentage improvement (enhanced vs. orig.) percentage improvement (enhanced vs. orig.) 

size avg max avg max 

3x4 48.7 91.7 67.6 93.4 

4x4 44.7 91.1 50.2 94.3 

 

6.4 Summary 

In this chapter, we addressed an improved version of the exact solution algorithm 

presented in the previous chapter for the multi-period variant of the problem. This improved 

methodology utilizes special optimality conditions embedded into the model reformulation, 

which ensure that the energy quantity distribution in each time period of the planning horizon 

is optimal for the corresponding set of producers that are identified as active in that time 

period. Consequently, solving the original problem to global optimality becomes equivalent to 

identifying the optimal set of active producers in each time period.  

In order to exclude from consideration those solutions for which these sets are not 

optimal, the algorithm employs a special type of cuts based on integer parametric 

programming theory. The main difference regarding these cuts lies in that they no longer 

enforce energy quantities but particular unit commitments instead. We also devised an 

enhanced procedure for extending the intervals within which these inequalities are valid. This 
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constitutes another significant improvement, because it enables the elimination of an 

increased number of bilevel infeasible solutions from further consideration.  

We illustrated the application of the enhanced exact solution algorithm on a small case 

study, and we presented computational results demonstrating its behavior and performance on 

randomly generated problems for both clearing schemes. These results show that the proposed 

methodology is capable of handling medium sized problems without necessitating excessive 

computational resources. This is very important considering the absence of generic solution 

methodologies for the treatment of such problems, as well as the fact that the applicability of 

specialized solution methodologies which have been previously proposed in the related 

literature appears rather limited on realistic size problems.  
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Chapter 7 Summary, Conclusions and Future Research 

In this dissertation, we addressed the problem of optimal strategic bidding of energy 

producers in day-ahead electricity markets with indivisibilities. We developed several 

optimization models for key variants of this problem, all of which fall within the class of 

bilevel programming. The utilization of binary variables for the modeling of the commitment 

of the electricity generation units, in conjunction with the imposition of a lower bound on the 

energy quantity that each unit will provide should it enter the market, prohibit the application 

of typical methodologies for solving these models, such as the substitution of the lower-level 

problem by its first-order KKT optimality conditions. Instead, we utilized the special structure 

of these models combined with key results from the theory of integer parametric 

programming in order to develop specialized solution methodologies for tackling them.  

First, we considered the single-period variant of the problem and we developed an 

exact solution algorithm for obtaining its global optimum. Our computational results 

demonstrate the high efficiency of this algorithm, even for large scale problem instances. 

Next, we considered the multi-period variant of the problem and we utilized its theoretical 

properties to develop a heuristic solution algorithm, which works in successive iterations by 

focusing on single time periods. We also demonstrated how the related theoretical 

groundwork can be modified to enable the generation of valid inequalities to a suitable 

relaxation of the problem in which the bilevel feasibility of the obtained solution is not 

guaranteed. The significance of these inequalities lies in that they can be embedded within a 
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cutting plane algorithmic procedure for identifying the exact optimal solution of the problem. 

We implemented this solution methodology, and we illustrated its applicability as well as that 

of the heuristic solution algorithm on a small numerical example. We concluded with 

experimental results demonstrating the computational capabilities of the two proposed 

solution algorithms, as well as evaluating their relative performance. These results 

demonstrate that the computational requirements of the heuristic solution algorithm are very 

moderate, enabling the solution of problems whose size approaches that of realistic ones in 

reasonable times. The exact solution algorithm, on the other hand, exhibits significantly 

higher computational requirements, which prohibit its application on realistic problem 

instances at the moment. 

We concluded the dissertation with the development of an enhanced version of the 

exact solution algorithm for the multi-period variant of the problem. This became possible 

through the incorporation of special optimality conditions ensuring an optimal energy 

quantity distribution in each time period of the planning horizon, for any feasible set of active 

generation units in that period. As a consequence of this enhancement, the identification of 

the problem’s global optimal solution becomes equivalent to identifying the optimal set of 

active producers in each time period of the planning horizon. We illustrated the application of 

the enhanced solution algorithm on a case study, and we presented extensive computational 

results demonstrating its performance and behavior on randomly generated problems. These 

results reveal that the developed enhancements improve considerably the performance of the 

proposed exact solution algorithm.    

Several model extensions stem out as possible directions for future research. These 

include the incorporation of additional restrictions that may be present in practice, and the 

study of markets that operate under different operational rules and assumptions. As far as the 
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model formulation is concerned, the future incorporation of additional problem characteristics 

that are present in realistic applications, such as minimum uptimes and downtimes, ramp-

up/ramp-down constraints, and step-wise priceoffers appears quite promising. A related 

meaningful extension in this direction is to consider different remuneration schemes than 

those considered in this work, as well as to include additionally cost-recovery mechanisms 

(e.g., see Andrianesis et al., 2013a[1]; 2013b[2]) and rules for the offered bids of the 

participating producers. A related research direction that also seems interesting is the 

development of a model that includes demand-side bidding to model the demand elasticity. 

Tasks such as the above are expected to increase the model formulation complexity, 

making the problem more challenging and, at the same time, more realistic. In particular, 

although the minimum uptimes/downtimes and the ramp-up/ramp-down constraints increase 

the complexity of the optimization model, modifying the proposed solution methodologies to 

incorporate them can be carried out rather straightforwardly. Due to the fact that they are both 

typically modeled with linear constraints involving the existing decision variables zi,t and qi,t 

respectively, the optimization model remains mixed-integer bilinear after their inclusion, 

which implies that the validity of the integer parametric programming property utilized in 

both methodologies is retained. Of course, the question of how much the computational 

performance of the two methodologies or the quality of the proposed heuristic will be affected 

by the inclusion of these problem characteristics remains open and stems as an interesting 

direction for future research. 

Another interesting direction for future research is the further refinement of the 

proposed heuristic algorithm’s involved decisions, in order to expedite its computational 

performance. The question of how initial solutions (seeds) can be wisely selected for 

enhancing solution quality remains open, too. As far as the exact solution algorithm is 
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concerned, its practical application seems to necessitate further algorithmic enhancements. In 

that direction, the question of whether special valid-cuts, independent of the particular interval 

each strategic price-offer belongs to, can be devised for excluding bilevel infeasible solutions 

appears quite promising. The fulfilment of this task stems as a promising way to overcome the 

significant computational obstacles the current implementation exhibits. 
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Appendix: List of Dissertation Publications 

Parts of the work presented in this dissertation have been published in scientific journals and 

scientific conference proceedings and have been presented in international conferences as 

follows: 

 

Journal Papers 

[J.1] Kozanidis, G., Kostarelou, E., Andrianesis, P., Liberopoulos, G. 2013. Mixed integer 

parametric bilevel programming for optimal strategic bidding of energy producers in day-

ahead electricity markets with indivisibilities. Optimization, 62(8) 1045-1068.   

[J.2] Kostarelou, E., Kozanidis, G. 2020. Bilevel programming solution algorithms for 

optimal price-bidding of energy producers in multi-period day-ahead electricity markets 

with non-convexities. Optimization and Engineering, in press. 

[J.3] Kozanidis, G., Kostarelou, E. 2020. An exact cutting plane bilevel programming 

solution algorithm for optimal price-bidding of energy producers in electricity markets, in 

preparation. 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Appendix 

117 

Papers in International Conferences 

[C.1] Kozanidis, G., Kostarelou, E., Andrianesis, P., Liberopoulos, G. 2011. Mixed integer 

bilevel programming for optimal bidding strategies in day-ahead electricity markets with 

indivisibilities. 1
st
 International Symposium & 10

th
 Balkan Conference on Operational 

Research (BALCOR), Thessaloniki, Greece, September 22-25, 8 pages.  

 

Abstracts and Presentations in International Conferences 

[P.1] Kostarelou, E., Kozanidis, G. 2013. Mixed integer bilevel programming with upper 

level decision variables that appear at the lower objective, but not in any of the lower level 

constraints. 2
nd

 International Symposium and 24
th

 National Conference on Operational 

Research, Athens, Greece, September 26-28. 

[P.2] Kostarelou, E., Kozanidis, G. 2014. Mixed integer bilevel programming with upper 

level decision variables that appear at the lower objective, but not in any of the lower level 

constraints. 20
th

 Conference of the IFORS, Barcelona, Spain, July 13-18. 

[P.3] Kostarelou, E., Kozanidis, G. 2018. Exact and heuristic bilevel programming 

algorithms for optimal price bidding of energy producers in multi-period day-ahead 

electricity markets. 5
th

 International Conference on "Energy, Sustainability and Climate 

Change" (ESCC 2018), Mykonos, Greece, June 4-6. 

[P.4] Kozanidis G., Kostarelou, E. 2020. An exact cutting plane bilevel programming 

solution algorithm for optimal price-bidding of energy producers in electricity markets. 7
th

 

International Conference on "Energy, Sustainability and Climate Change" (ESCC 2020), 

Skiathos, Greece, August 24-26. 
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Papers, Abstracts and Presentations in National Conferences 

[Π.1] Κοζανίδης, Γ., Κωσταρέλου, Ε., Ανδριανέσης, Π., Λυμπερόπουλος, Γ. 2011. Μεικτός 

ακέραιος διεπίπεδος προγραμματισμός για βέλτιστη υποβολή προσφορών σε αγορές 

ημερήσιου προγραμματισμού ηλεκτρικής ενέργειας με αδιαιρετότητες. Πρακτικά, 1
ο
 

Εθνικό Συνέδριο Ελληνικής Μαθηματικής Εταιρείας και Ελληνικής Εταιρείας 

Επιχειρησιακών Ερευνών, Αθήνα, Ελλάδα, 24-25 Ιουνίου, 12 σελίδες. 

[Π.2] Κωσταρέλου, Ε., Κοζανίδης, Γ. 2012. Ακριβείς και ευρετικοί αλγόριθμοι μεικτού 

ακέραιου διεπίπεδου προγραμματισμού για βέλτιστη υποβολή προσφορών σε αγορές 

ημερήσιου προγραμματισμού ηλεκτρικής ενέργειας. Πρακτικά, 23
ο
 Εθνικό Συνέδριο 

Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών, Αθήνα, Ελλάδα, 12-14 Σεπτεμβρίου, 49-

54, 5 σελίδες. 

 

In Table A-1, we relate each of the above works to the chapters of this dissertation. For each 

chapter, the publications are listed in chronological order, with the most recent one at the top. 

Table A-1 List of publications and association to dissertation chapters. 

Chapter 4 Chapter 5 Chapter 6 

[J.1]: entire chapter [J.2]: entire chapter [J.3]: entire chapter 

[C.1]: early work [P.1]: early work [P.4]: early work 

[Π.1]: early work [P.2]: early work  

 [P.3]: early work  

 [Π.2]: early work  
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