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AlyoprOpot oreminedov TPoyPappaTIoRov Yo BEATIoTH VITOfoin
TTPOCPOPOV TUPAYMYADV EVEPYELNS GE AYOPES UEPGLOV TPOYPUUUATIGHOV

NAEKTPIKIG EVEPYELOG

EYTYXIA KQXTAPEAOY

[Movemoto Oeccariag, Tuqpe Mnyoavorldywv Mnyavikav, 2020

EmBrénov Kadnyntmg: Ap. I'edpyrog Kolavidong, Avoarinpmtig Kabnynmg

MéBooot Bektiotonoinong Xvomudtov Hapaywyng/ Yanpeciov

Hepiinyn

v mopovca dakToptkn dTpiPn, eetdlovpe 10 TPOPANUA oYESIOCUOV PEATIGTOV
Tip@V-tpocseopdv (bids) yioo évav mopaywyd EVEPYELWNS MOV GUUUETEYEL O L Oyopd
NUEPT|OLOV TPOYPOUUOTIGHOD NAEKTPIKNG EVEPYEWNG, 1 Oomoia TEPIAAUPAVEL Un KLUPTOTNTEG
AOY® ™G JKPITNG QUONG TOV OEGUEVCEMY TOV HOVAdwV mapaymyns. O opioudc tov
mpofAuatog vmofEtel TANPN YVOON TOV TEYVIKOV YOPOKTNPIOTIKOV KOl TGOV TILOV
TPOCPOPOV OA®V TV LIOAOW®V Topay®y®dv. To mpdfAnue popeomoteiton ¢ deminedo
HOVTELO PBEATIOTOMOINONG HE YPOUUKOVS TEPLOPIGHOVE Kot 6T dVO emimeda. O mapaywyog
evepyel g vrevhuvog MYNG AmoPacE®Y 6To Gve EMIMESO, GTOXEVOVTOG GTNV EVPECT] TOV
BéAtiotOV TWOV TPOoEOPES oL Oa PEYIGTOTOGOLV TO ATOUIKO TOVL KEPOOG WETA TNV
exkafdpion g ayopds, evad €vag ave&aptntog dwxeptots cvotnuatog (ISO) evepyel wg
VIEVBVVOG ANYNG ATOPACEWV GTO KAT® EMIMENO, GTOXEVOVTOG GTNV IKOvOToinom ¢ Cntnong
EVEPYELDG OTO EABYIOTO GULVOAMKO KOGTOG-TPOGPOPAS TOL GLOTHUATOS. To  poviéAo
nepapfPaver dokpitéc PETaPANTEG Yoo T HOVIEAOTOINGCT TNG KATAGTAONG TMOV HOVAO®V
TAPOYWYNGS, Ol OTOIES ATAYOPEVOLV TNV EPAPLOYT TUTKOV LEBOIOALOYIDV Y10 TNV EVPECT| TNG
BéATiotng Abong, Onwg ivor 1 AVTIKOTACTOON TOL TPOPANUATOS TOV KATM EMUTEIOL OO TIC
ocuvinkeg Bertiotdtrag Tpotng taEemc KKT.

[Tpdrta egetdlovpe v eKOOYN HOG TEPLOOOV TOV TPOPANUOTOS KO OVOTTOGGOVIE EVOV
akpiPn akydpiBuo yio v ETIAVGN TOV, O OTOI0G YPNCULOTOLEL CTUAVTIKA OTOTEAEGLLOTA OO
™ Bewpio TOL OKEPOOV TOPAUETPIKOV TPOYpappatiopov. [Tapovcsidlovpe TEPOUATIKA
OOTEAECUATO. TTOV KOATOOEIKVOOLV TNV OTOTEAEGUOTIKOTNTA TOL GE TLYOIEG TMEPUTTMOOELS
TPOPANUATOV KOl OAOKANPOVOLLE PE [ia cLLNTNON Yo O14POPa VITOAOYICTIKG {NTHHOTO TTOV
oyetiovtal pe ™ ouumEPLPOPd oL TOH TOL aAYopiOLOV Kol Lo TEPLYPAPT TOV TPOTOV LE TOV
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omoio M vmokeipevn Oewpio pmopel vo TpomomomBel ®ote vor Toupldlel o€ ayopéc e
EVOAMOKTIKO oYedLOUO.

2 ovvérewn, €EETALOVUIE TNV €KOOYN TOALUTAMV TEPLOOMYV TOL TPOPANUATOC.
Amodekvhovpe oNUAVTIKEG BE@PNTIKES 1O10TNTES KO TIG XPTCLOTOLOVE Y10, VO OVOTTOEOVIE
1060 ML €VPETIK)] OG0 Kot o okpiPn odyopOkn peBodoroyior emiAvong yo v
avtipetonion e Omwg eivor  ovopevouevo, 7O  ONMOTEAEGUOTIKY) HETOEL TV 000
amodEIKVOETOL OTL €lval 1 €UPETIKN TPOGEYYION, 1 OMOoio AETOVPYEL EMOVOANTTIKA,
BedtioTomoiwvtag pio povadkn TIUA-TPoceopd o€ KAOe emavaAnyr, vtd TV TpovTodeoT OTL
o1 VtoAoueg draTnpovvtol otadepés oTic TpEYovaes TIEG Tovs. [Tapovsialovpe TEWPAUATIKA
QTOTEAECLLATO TTOV OITOOEIKVVOVVY OTL TOPEYEL AVGELG VYNANG TOLOTNTOS, EVM Ol VITOAOYIGTIKES
™G amotoelg eivon moAd Aoyucéc. Katadewkvoovpe emiong mdg 1 vrokeipevn Oewpilo pmopet
va ypnotpomomOet yio T SNUIovPYio EYKLVPOV OVIGOTNTOV GE Lo KOTAAANAN YOAGP®ON TG
aPYIKNG LopPOTOiNoNG, 6TV omoia dev eivar eyyvnuévn n Aeyopevn deminedn eQKTOTNTA TNG
Aobeicag Abong. Avtéc ot avicotnteg pmopovv vo agtomombovyv, evtdg €vog mAaGiov
1GYLOVGMV OVICOTNT®V, amd &vav akpPn oiyoplBuo emilvong yw tov TPosdoOPIGUd TOV
OAKOV BEATIGTOV TOL TPOPANUATOG.

YvveyiCoope avamtooocovtag pio PBeAtiopévn €kooom Tov  axpifovg aAydpidpov
EMIALONG YIOL TNV OVIUETOMTION TNG €KO0YNG TOAAATAGDV Teplddwv Tov mpofinuatoc. H
ONUAVTIKY DTEPOYN AVTNG TNG OAYOPIOLUKTNG TOPOALOYNG EYKELTAL GTNV EVOMUATOGCT EOIKAOV
ocuvOnk®v PeltiotdTNTOG Ol Oomoieg StacPoAilovv OTL M KATOVOUN TNG TOGOTNTAS TNG
evépyelog og kdbe ypovikn mepiodo tov opilovia TPoypPAUUTIGHOL givol I BEATIOTN Yol TO
OVTIGTOLYO GUVOAD TOPUYOYDV TOV £YOLV OVOYVOPLOTEL MG EVEPYOL KATA TN GLYKEKPLUEVN
YPOVIKY Tepiodo. XvvemakOAovBa, M evpeon G OMkA PEATIoTG AVONG TOL OPYLUKOD
TPOPALATOG 1G0SVVAEL e TOV TPOGOIOPIGUO TOV PBEATIGTOV GLVOAOL EVEPYDV TOPOYDYDV
og kaBe ypovikn mepiodo Tov opilovta mpoypappaticpov. [Ipokeévov va arokieicoope and
nepoutépw eétaom exeiveg TIg AVGELS Yo TIG omoleg awTd To. cuVOAN givol Vo-BérTioTa,
y¥pNoonovue tov o tHmo ToudVv (cuts) mov YPNCUOTOMONKAY GTNV TPOTNYOVUEVN
aAyoplOpIKY] £KO00T|, TPOCOUPUOGUEVES KATOAANAQ Vo eTPBAAOVY TIG BEATIOTEG KOTAGTAGELS
TOV HovAdwV avti Yo T1g avtiotolyeg moocdtnteg evépyswog. Enenyodue v epappoyn g
potelvOpevng pnebBodoroyiog o€ por pUKPN  UEAETN MEPIMTOONG KOl TOPOLGLALOVUE
VTOAOYIOTIKG OOTEAEGULOTO OV OElYVOLV TN GLUTEPIPOPA Kot TNV omdd0GT TNG G€ TVuYOia
mpofAquata. Avtd To ATOTEAECUATO ATOKAAVTTOLV OTL M Tpotevopevn pnebodoroyia eivor
wKovn vo xeprotel pecaiov pey€Bouvg mpofAnpaTo ¥PNOUYLOTOIDOVTAS AOYIKOVS VITOAOYIGTIKOVS
TOPOLG,.

lNo v ovirtoén tov  TPOTEWOUEVOV HOVIEA®V PeEATIOTOTOINONG KOl  TMV
eEe1dkevEVOV nebodoroyidv eTiAvong, YPNOILOTOCOUE TN YADGGH Tpoypappaticpov C/
C++. Omov fjtav amapaitnto, n AVoT T®V TPOTEWVOUEVOV LOVIEA®V BEATIOTOTOINGNG EANQON
YPNOLOTOIDVTOG TO EUmOoptkd Aoyiopikd Bedtiotomoinong IBM ILOG CPLEX r/xon LINGO.
H onpovtikdmta g GLVEIGPOPAS TNG TAPOVCHG £PEVVAG KATUOEIKVIETAL £V KATO10¢ AdPet
oYM TV EALEWYT YEVIKOV peBodoAoyIdV emidvong yia demineda poviéda PeATioTomoinong,
omwg avtd mov e€etdalovtal. ZvvumoAoyilovtag avTHV TV TOPTHPNOT), Ol TPOTEWVOUEVES
alyoplOuikég pebodoroyiec, ot omoieg GLVOETOVY TO OMOTEAEGUO OVTNG TNG EpELVAG, €lval

Vi
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eEAIPETIKA YPNOYLES, TOPEXOVTAG TOAVTIHO OepnTikd OgpéAa Yoo TPAKTIKEG EQUPUOYES
KaBdS Kot Yo LEALOVTIKEG EpELVNTIKEG AvalN TN OELC.
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Abstract

In this dissertation, we consider the problem of devising optimal price-offers (bids) for
an energy producer participating in a day-ahead electricity market which exhibits non-
convexities due to the discrete nature of the generation units’ commitments. The problem
definition assumes perfect knowledge of the technical characteristics and bidding offers of all
remaining producers. The problem is formulated as a bilevel optimization model with linear
constraint sets at both levels. The producer acts as the upper-level decision maker, aiming to
find the optimal bidding offers that will maximize his individual profit upon clearing of the
market, while an independent system operator (ISO) acts as the lower-level decision maker,
aiming to ensure satisfaction of the demand for energy at the minimum total system bid-cost.
The model utilizes discrete variables to represent the commitment of the production units,
which prohibits the application of typical methodologies for finding its optimal solution, such
as the substitution of the lower-level problem by its first-order KKT optimality conditions.

We consider the single period variant of the problem first, and we develop an exact
algorithm for its solution, which utilizes important findings from the theory of integer
parametric programming. We report experimental results demonstrating its efficiency on
random problem instances, and we conclude with a discussion on several computational
issues pertaining to the behavior of this algorithm, and an outline of how the underlying
theory can be modified to fit alternative market designs.

Next, we consider the multi-period variant of the problem. We prove several important
theoretical properties, and we utilize them to develop both a heuristic as well as an exact
algorithmic solution methodology for tackling it. More effective between the two naturally
turns out to be the heuristic approach, which works iteratively, optimizing a single price-offer
at each iteration, given that the remaining ones are kept fixed at their current values. We
present experimental results demonstrating that it provides high quality solutions, while
exhibiting reasonable computational requirements. We also demonstrate how the underlying

xii
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theory can be utilized for the generation of valid inequalities to a suitable relaxation of the
original formulation, in which the so-called bilevel feasibility of the obtained solution is not
guaranteed. These inequalities are exploited within a cutting-plane framework by the exact
solution approach for identifying the global optimum of the problem.

We go on to develop an improved version of the exact solution algorithm for the
treatment of the multi-period variant of the problem. The significant advancement of this
algorithmic version lies in the inclusion of special optimality conditions ensuring that the
energy quantity distribution in each time period of the planning horizon is optimal for the
corresponding set of producers that has been identified as active in that time period.
Consequently, solving the original problem to global optimality becomes equivalent to
identifying the optimal set of active producers in each time period of the planning horizon. In
order to exclude from further consideration those solutions for which these sets are sub-
optimal, we employ the same type of cuts utilized in the previous algorithmic version,
adjusted suitably to impose optimal unit commitments instead of energy quantities. We
illustrate the application of the proposed methodology on a small case study and we present
computational results demonstrating its behavior and performance on randomly generated
problems. These results reveal that the proposed methodology is capable of handling medium
sized problems using reasonable computational resources.

For the development of the proposed optimization models and the specialized solution
methodologies, we utilized the C/C++ programming language. When necessary, the solution
of the proposed optimization models was obtained using the commercial optimization solvers
IBM ILOG CPLEX and/or LINGO. The significance of the present research contribution
becomes evident when one considers the lack of generic solution methodologies for bilevel
optimization models such as the one under consideration. In view of this observation, the
developed methodologies, which constitute the outcome of this research, are highly
beneficial, providing valuable theoretical foundation for practical applications as well as for
future research pursuits.
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Introduction

Chapter 1 Introduction

1.1 Motivation and background information

The deregulation of electricity markets is an important economic development that has
been taking place in numerous countries worldwide in recent years. Although the particular
market designs adopted by different countries occasionally vary, many of the underlying
principles remain more or less the same. Most designs establish a wholesale and a retail
electricity market that operate in long-term and short-term horizons. Day-ahead electricity
markets, in which electricity producers submit bids for their energy generation, are present in

many wholesale electricity markets.

At the day-ahead level of a wholesale electricity market, energy producers bid freely
their energy production. Typically, each generation unit has a fixed start-up operation cost, a
fixed variable production cost, a technical minimum and a technical maximum on the
allowable energy production that it can produce in each time period. The price-offers for
energy are submitted in advance for each hour of the following day. An independent system
operator (ISO) clears the market, allocating quantities to the participating producers so as to
minimize the total system bid-cost for satisfying the demand for energy. This is carried out by
solving an optimization problem whose objective minimizes the total cost of electricity

production. Several alternatives can be used as objective functions in this problem, the two
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most common of which are the actual cost for energy production or the bid-cost ensuing from

the producers’ price-offers.

In this dissertation, we adopt the view of an individual (strategic in what follows)
producer who participates in a dayahead electricity market, in which the commitment and
dispatching of the generation units are determined by an 1ISO. Assuming that this producer has
full knowledge of the technical characteristics as well as of the bidding offers of all remaining
producers, we consider the problem of selecting his optimal price-bids for energy generation.
Here, the word optimal pertains to the fact that after the market is cleared by the I1SO, the
profit that the strategic producer will realize should be the maximum possible. This problem
arises naturally in open displayed tentative-market auctions, in which participants submit bids
repetitively until the market is called. It is also an important subproblem in fixed-point
iterative numerical procedures that aim to uncover the joint optimal bidding strategies of
multiple producers in closed auctions, in which these producers submit sealed bids

(Andrianesis et al., 2013a [1]).

1.2 Dissertation contribution

The main contribution of the present dissertation lies in the developement of several
efficient specialized solution algorithms for the problem of devising optimal price-offers for
energy producers participating in day-ahead electricity markets. A significant amount of
research has also addressed this problem in the related literature. Most of the related works
utilize either a suitable reformulation combined with generic optimization software, or a
heuristic solution procedure in order to solve these models. In this dissertation, we follow a
slightly different approach. We formulate the problem as a mixed integer bilevel optimization

model, in which binary variables are utilized to model the commitment of the electricity
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generation units. This, in conjunction with the imposition of a strictly positive lower bound on
the energy quantity of each unit should it enter the market, adds a strong combinatorial
component to our model, which prohibits the application of the KKT optimality conditions in
order to get an equivalent single-level formulation. Instead, we develop heuristic as well as
exact algorithmic methodologies utilizing key results from the theory of integer parametric

programming in order to solve the problem under consideration.

First, we consider an elementary problem variant, in which the planning horizon
consists of a single time period, and, consequently, the strategic producer must submit a
single price-offer to the ISO. This price-offer, as well as the energy quantities of all
generation units, are treated as continuous variables in this problem variant. We develop an
exact algorithm for the solution of this problem, which utilizes important findings from the
theory of integer parametric programming, and we report experimental results demonstrating
its efficiency on random problem instances. We conclude with a discussion on several
computational issues pertaining to the behavior of this algorithm, and an outline of how the

proposed methodology can be modified to fit alternative market designs.

Then, we consider the multi-period variant of the problem, in which the strategic
producer must submit a price-offer for each time period of the planning horizon to the ISO. In
this problem variant, both these price-offers, as well as the energy quantities of all generation
units, are restricted to integer values. Utilizing the theoretical properties of this problem, we
develop both a heuristic as well as an exact algorithmic solution methodology for tackling it.
More effective between the two naturally turns out to be the heuristic approach, which works
iteratively, optimizing a single price-offer at each iteration, given that the remaining ones are
kept fixed at their current values. We present experimental results demonstrating that it

provides high quality solutions, while exhibiting reasonable computational requirements. We
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also demonstrate how the underlying theory can be utilized for the generation of valid
inequalities to a suitable relaxation of the original formulation, in which the so-called bilevel
feasibility of the obtained solution is not guaranteed. These inequalities are exploited within a
cutting-plane framework by the exact solution approach for identifying the global optimum of

the problem.

Next, we develop an improved version of the exact solution algorithm for the multi-
period variant of the problem. The significant advancement of this version lies in the
incorporation of special optimality conditions for the lower-level problem, ensuring that the
energy quantity distribution in each time period of the planning horizon is optimal for the
corresponding set of active producers in that time period. These optimality conditions are
incorporated directly in the existing formulation, guiding and expediting the search for the
optimal solution. Thus, solving the original problem to global optimality becomes equivalent
to identifying the optimal set of active producers in each time period of the planning horizon.
In order to exclude from consideration those solutions for which these sets are not optimal,
the algorithm utilizes a suitable modification of the valid inequalities employed in the
previous algorithmic version. We illustrate the application of the proposed methodology on a
small case study and we present computational results demonstrating its behavior and
performance on randomly generated problems. These results reveal that the proposed
methodology is capable of handling medium sized problems using reasonable computational

resources.

The development of the proposed solution methodologies comprises an original
approach to the problem under consideration, which exhibits significant research interest and
can be pursued and extended in many fruitful ways. It can be utilized to overcome

computational difficulties encountered in realistic problems, thus comprising a valuable tool
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for practitioners. Moreover, with respect to the actual design and operation of an energy
market, the present research signifies important contribution which is twofold. On the one
hand, it can assist electricity producers in developing bidding strategies that will maximize
their individual profit; on the other hand, it allows system operators to identify potential price

manipulations by individual producers, and devise rules that will prevent them.

1.3 Structure of the dissertation

The present dissertation comprises original research, part of which has been presented
in international scientific conferences (Kozanidis et al., 2011[36]; Kostarelou and Kozanidis,
2013[31]; Kostarelou and Kozanidis, 2014[32]; Kostarelou and Kozanidis, 2018[33];
Kozanidis and Kostarelou, 2020[35]) and has been published in international scientific
journals (Kozanidis et al., 2013[37]; Kostarelou and Kozanidis, 2020[34]). Its remainder is

organized in six chapters, and one appendix, as follows:

In Chapter 2, we present a literature review on bilevel optimization models in the
context of electricity market design and operation, and on specialized solution algorithms for
their treatment. In Chapter 3, we present the detailed definition and the model formulation of
the problem under consideration, and we provide a theoretical background on bilevel
optimization. In Chapter 4, we address the single-period variant of the problem. We develop
the solution methodology for its treatment, we illustrate the application of this methodology
on a small case study and we evaluate its computational performance. In Chapter 5, we
develop a heuristic and an exact solution algorithm for the multi-period variant of the
problem, and we present extensive experimental results evaluating their relative
computational performance. In Chapter 6, we present the improved algorithmic version of the

exact solution methodology introduced in Chapter 5 for the multi-period variant of the
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problem. We illustrate the application of the proposed methodology on a small case study and
we present computational results demonstrating its behavior and performance on randomly
generated problems. Finally, in Chapter 7, we review the research findings of this dissertation,

we summarize our conclusions, and we point to promising directions for future research.

The appendix lists the journal and conference publications that have resulted from the

present dissertation to date and links them to each corresponding chapter.
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Chapter 2 Literature Review

In this section, we present a literature review on previous research works relevant to
the contents of this dissertation, using a suitable classification. Specifically, we review bilevel
optimization models in the context of electricity markets, as well as specialized solution
algorithms for their treatment. Typically, such models are utilized for devising optimal price-
offers of energy producers, or for clearing an energy market fairly and compensating the
generation units for any losses. The most common approach for solving them is their
reformulation as a single-level optimization model through the substitution of the lower-level
problem by its first order KKT optimality conditions. This leads to a suitable single-level
reformulation which is commonly solved with generic optimization software. Of course, this
approach is only applicable when the lower-level optimization problem is convex. Other
common solution approaches include the development of heuristics/metaheuristics, as well as
the discretization of the optimization model’s feasible space in order to reduce the problem

complexity.

While the authors of several research works illustrate the application of the proposed
solution algorithms on specific case studies, often they do not present generic experimental
results, making it difficult to infer the average and worst-case computational performance of
these algorithms, as well as the quality of the solutions they return on random problem
instances. A related difficulty arises with techniques that employ generic optimization

software, since the complexity of the problem renders difficult the employment of such
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techniques in full scale realistic problem instances. In what follows, we review these

optimization models and solution approaches in more detail.

2.1 Bilevel optimization models in energy markets

A survey on optimization models for bidding in day-ahead electricity markets was
recently published by Kwon and Frances (2012)[39]. Both deterministic as well as stochastic
models are reviewed in this survey, as well as models that include unit commitment decisions.
The classification scheme adopted by the authors examines the degree to which competition

from other producers is directly incorporated into these models.

Among others, bilevel models for optimal strategic bidding of energy producers have
been proposed by Barroso et al. (2006)[8], Bakirtzis et al. (2007)[5], Hu and Ralph
(2007)[26], and Ruiz and Conejo (2009)[51]. A common characteristic these models exhibit is
that their lower-level problem is convex. This allows the authors to reformulate the original
problem as a single-level optimization model through the substitution of the lower-level
problem by its KKT optimality conditions. Barroso et al. (2006)[8] and Bakirtzis et al.
(2007)[5] utilize the binary expansion approach proposed by Pereira et al. (2005)[50] in order
to deal with the nonlinear non-convex formulation that arises after this substitution, resorting
to commercial optimization software for solving the mixed integer linear program that results.
A similar approach is adopted by Ruiz and Conejo (2009)[51], who treat the problem as a
mathematical program with equilibrium constraints (MPEC). They convert the resulting
nonlinear problem into a mixed integer linear program through suitable reformulations, and
solve it through generic optimization software. Hu and Ralph (2007)[26], on the other hand,

consider a bilevel game-theoretic model of restructured electricity markets, in which the
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optimization problem of each player is also reformulated as an MPEC, and establish sufficient

conditions for pure-strategy Nash equilibria.

Similar bilevel optimization models have also been proposed by Hobbs et al.
(2000)[25], Li and Shahidehpour (2005)[40], and Zhao et al. (2008)[67]. These authors, too,
develop KKT-based solution methodologies for the treatment of these models, which
nevertheless settle for local optima due to the inherent problem complexity. In Hobbs et al.
(2000)[25], this is achieved with a penalty interior point algorithm that addresses the multi-
firm problem as a Nash game with multiple players in a game theoretic context, in Li and
Shahidehpour (2005)[40] with a primal-dual interior point method that utilizes sensitivity
functions for the generator’s payoff with respect to his bidding strategies, while in Zhao et al.

(2008)[67] with a surrogate optimization solution methodology.

A bilevel optimization model that treats the problem with a solution approach that
finds local optima is proposed by Weber and Overbye (2002)[58]. At the upper-level, this
model maximizes the welfare of an individual who may control both consumer and supplier
units, whereas at the lower-level, it finds the power flow that maximizes social welfare. The
social welfare is expressed as the total benefit of all consumers minus the total cost of all
suppliers. The proposed solution algorithm, which is an iterative search procedure that utilizes

Newton-type directions of improvement, is utilized in order to determine Nash-equilibria.

Another common technique that has been proposed for the treatment of bilevel
optimization models in the context of electricity markets is the discretization of the upper-
level decision maker’s strategy space. Of course, this does not necessarily lead to the global
optimum of the problem, since it excludes a-priori certain production-level choices from
consideration. Such is the case with the works of Zhang et al. (2000)[64], Li et al. (2004)[41],

and Soleymani et al. (2008)[54]. The solution approach proposed by Zhang et al. (2000)[64]

27

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Literature Review

is a Lagrangian relaxation based methodology that considers uncertainty for the offers of the
participating producers in the form of discrete bids and corresponding probabilities. On the
other hand, the solution approach proposed by Li et al. (2004)[41] is an iterative procedure
that searches for Nash equilibria, while the one developed by Soleymani et al. (2008)[54] is a
game-based approach. In particular, the authors of the latter work make the explicit
assumption that each producer predicts the market clearing price using a technique such as
neural networks, fuzzy programming or neuro-fuzzy logic, and that each producer reaches the
same price forecast. For the discretization of the producers’ decision space, they assume that
each of them is either risk seeker or risk averse or risk indifferent, which allows them to treat

the problem as a game and search for Nash-equilibria.

Vahidinasab and Jadid (2009)[56] propose a multi-objective model that incorporates
the suppliers’ emission of pollutants, utilize the g-constraint reduced feasible region method in
order to deal with the multiple objectives, and solve the single level problem that results after
the substitution of the lower-level problem by its first order optimality conditions with generic
optimization software. Gabriel and Leuthold (2010)[20] transform the problem into an MPEC
first, reformulate it as a MILP using disjunctive constraints and linearization, and solve the

resulting single-level model with generic optimization software, too.

Many researchers have proposed the development of heuristic/metaheuristic solution
approaches for addressing the strategic bidding bilevel optimization model. Typical examples
are the papers by Ma et al. (2006)[45], Bajpai and Singh (2008)[4], Zhang et al. (2009[65];
2011[66]), and Foroud et al. (2011)[19]. The approach proposed by Bajpai and Singh
(2008)[4] is a fuzzy adaptive particle swarm optimization heuristic that addresses both the
single and the multi-period case of the problem. Particle swarm optimization based

approaches are also the ones proposed by Ma et al. (2006)[45] and Zhang et al. (2009[65];
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2011[66]), whereas Foroud et al. (2011)[19] develop a genetic algorithm and a fuzzy
satisfying methodology for addressing a multiobjective formulation which maximizes the

profits of the participating producers.

Other related bilevel optimization models are formulated in the works of Gross and
Finlay (2000)[23], Zhao et al. (2010)[68], and Fernandez-Blanco et al. (2017)[17]. The
authors of the first work study a framework for the analysis and formulation of bids in
competitive electricity markets and develop a solution methodology exploiting a Lagrangian
relaxation based approach. The authors of the second work formulate a bilevel optimization
model in order to compare different clearing schemes in a game theoretic framework. Finally,
the authors of the latter work develop a nonlinear bilevel optimization model for the clearing
of a day-ahead market under marginal pricing, which is reformulated as a single-level mixed

integer linear program using linear programming duality and KKT optimality conditions.

In an attempt to address the inherent stochasticity that the strategic bidding
optimization problem exhibits, many authors, such as Gountis and Bakirtzis (2004)[22], and
Badri et al. (2008)[3], have developed stochastic models for its formulation. In the former
work, the authors use a heuristic solution technique that employs Monte-Carlo simulation and
genetic algorithms to obtain the optimal solution, whereas in the latter work, the authors adopt
a risk management approach that takes into account bilateral contracts and transmission

constraints, and solve it through a primal-dual interior point methodology

The model that we study in this dissertation exhibits similarities to the ones that have
been developed by Pereira et al. (2005)[50] and Fampa et al. (2008)[16]. The lower-level of
these two models, however, is convex, which allows the authors to reformulate the problem as
a single-level optimization problem through the substitution of the lower-level problem by its

first order optimality conditions. In the former work, the authors utilize a binary expansion
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scheme in order to convert the resulting nonlinear, non-convex problem into a MILP, which
they then solve with generic optimization software. In the latter work, the authors treat the
problem as stochastic, maximizing the expected profit of the generation company which is
expressed as the sum of the profits it realizes under different scenarios multiplied by the
corresponding probability of occurrence of each associated scenario. In order to reach the
optimal solution, they develop a heuristic and an exact solution approach, which are both

based on a mixed integer reformulation.

2.2 Specialized solution methodologies for integer bilevel programming

The specific form of an integer bilevel program depends on the presence of
upper/lower level constraints or not, on the presence of upper/lower continuous/discrete
variables or not, and on the association of each decision variable to the decision maker (upper
or lower) who controls it. Each of these factors affects critically the properties of the problem;
therefore, a solution algorithm for mixed integer bilevel programming is typically applicable
only to a particular formulation with a specific configuration. Popular solution techniques that
have been developed for such problems include reformulation approaches, branch and

bound/cut approaches, and parametric programming approaches.

Moore and Bard (1990)[47] develop one of the earliest branch and bound algorithms
for mixed integer bilevel programming, highlighting the significant differences that the
underlying theory exhibits as compared to that of integer single-level programming. More
specifically, the authors illustrate that out of the three standard criteria used for fathoming
subproblems during a typical integer programming branch and bound algorithm, only one (the
relaxed subproblem has no feasible solution) is directly applicable to the case of mixed

integer bilevel programming. The second one (the optimal objective of the relaxed
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subproblem is no better than the value of the incumbent) needs strong modification in order to
become applicable, whereas the third one (the solution of the relaxed subproblem is feasible

to the original problem) must be discarded altogether.

Exact and heuristic solution procedures based on the branch and bound technique for
mixed integer bilevel programming with binary variables controlled by the leader and
continuous variables controlled by the follower are presented by Wen and Yang (1990)[60].
The authors derive bound information on the optimal solution by solving the problem that
results when the lower-level objective function is suppressed and all the decision variables are
controlled by the leader. They point out that when the number of binary variables grows
linearly, the computational time of the algorithm grows exponentially. For this reason, they
propose a heuristic solution procedure that provides near optimal solutions in reasonable
computational time. The proposed solution methodology can also handle the case in which the

decision variables controlled by the leader are integer.

Bard and Moore (1992)[7] propose a solution algorithm for a class of bilevel models
with binary decision variables at both levels and constraints at the lower-level only, under the
assumption that all the objective and constraint coefficients are integer. The algorithm
performs an enumerative branch and bound search procedure on the decision variables of the
leader. This is achieved by replacing the leader’s objective with a constraint that sets the value
of this objective greater or equal to «, where « is a parameter, originally set equal to -oo.
Optimizing the follower’s objective for incrementing values of «, a series of bilevel feasible
solutions are obtained, which provide a monotonic improvement on the leader’s objective
value. The algorithm can be modified to accommodate the case in which the lower-level

decision variables assume general integer values.
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Wen and Huang (1996)[59] develop a tabu-search algorithm for a mixed integer
bilevel programming formulation with binary upper-level and continuous lower-level decision
variables. Giimiis and Floudas (2005)[24] propose solution algorithms for handling several
classes of bilevel programs, including one with purely integer decision variables at both
levels. In a closely related work, Dominguez and Pistikopoulos (2010)[14] develop a multi-
parametric based solution algorithm for pure-integer and mixed integer bilevel programming.
Multi-parametric is also the algorithm proposed by Faisca et al. (2007)[15] for the solution of
bilevel programs, in which the authors express the lower-level optimization problem

parametrically using the decision variables of the upper-level problem.

Tsoukalas et al. (2009)[55] develop a global optimization methodology for generalized
semi-infinite, continuous minimax and bilevel optimization problems, which utilizes an
auxiliary optimization problem for determining whether it is possible to attain a specific
objective value. By performing a search on candidate objective values, the global optimum is
identified. Global optimization is also the approach developed by Mitsos (2010)[46] for the
solution of mixed integer nonlinear bilevel programming problems. It utilizes fixed value and
optimal value function reformulations in order to obtain lower and upper bounds on the

optimal objective.

For a class of bilevel programming problems with continuous upper-level and integer
lower-level decision variables, Koppe et al. (2010)[38] develop a solution methodology that
expresses the lower-level objective as a function of the upper-level decision variables. The
proposed methodology is based on the theory of integer parametric programming and runs in
polynomial time when the number of lower-level decision variables is fixed. If the infimum of
the problem is not attained, the algorithm is able to find an e-optimal solution whose objective

value approximates the sought infimum in polynomial time, too. Wiesemann et al. (2013)[61]
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examine the computational complexity of pessimistic bilevel programming problems and
study the conditions under which the existence of an optimal solution is guaranteed. For a
special class of bilevel models in which the feasible set of the lower-level problem does not
depend on the leader’s decisions, they also develop an iterative solution procedure which
generates a sequence of finite dimensional semi-infinite programming approximation

problems.

DeNegre and Ralphs (2009)[13] illustrate how the standard branch and cut solution
methodology for integer single-level programming can be suitably extended to the case of
integer bilevel programming. The proposed algorithm employs a branch and cut tree, solving
a suitable relaxation at each of its nodes. If the solution obtained is bilevel feasible, then the
search in the associated subtree terminates; otherwise, a suitable cut is added which excludes
this solution without excluding any bilevel feasible solution. In a closely related work,
Caramia and Mari (2015)[10] develop two solution algorithms for purely integer bilevel
programming. The first one reformulates the model in order to relax bilevel feasibility,
utilizing suitable valid cuts to eliminate the bilevel infeasible solutions encountered. The
second algorithm is a branch and cut methodology, which, upon each branching decision,
utilizes valid inequalities to eliminate large sets of bilevel infeasible solutions. Fischetti et al.
(2017)[18] develop yet another branch and cut exact solution methodology for mixed-integer
linear bilevel programs. The proposed approach applies a family of cuts to the problem
relaxation in which the follower’s objective is suppressed and bilevel feasibility is thus not

guaranteed.

Saharidis and lerapetritou (2010)[52] propose another algorithm for the solution of
mixed integer bilevel programs, which is based on the decomposition of the initial problem

into the restricted master problem (RMP) and a series of problems named slave problems
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(SPs). The proposed approach is based on the Benders decomposition method where, at each
iteration, the set of variables controlled by the leader is fixed, generating the SP. The RMP is
a relaxation of the mixed integer bilevel program composed by all the constraints including
only integer decision variables controlled by the leader. The RMP interacts at each iteration
with the current SP through the addition of three types of cuts produced using Lagrangean
information from the current SP. These cuts are the classical Benders cuts (optimality Benders
cut and feasibility Benders cut) and a third cut referred to as exclusion cut which is used if the
RMP is not restricted by the last generated Benders cut. The lower and upper bound provided
(in the case of minimization) from the RMP and the (best found so far) SP are updated in each
iteration, respectively. The algorithm converges when the difference between the upper and
lower bound is within a small difference €. In the case of mixed integer bilevel programming,
the lower-level KKT optimality conditions cannot be used directly to transform the bilevel
problem into a single-level problem. The proposed decomposition technique, however, allows
the use of these conditions and transforms the mixed integer bilevel program into two single-
level problems. The proposed methodology can solve mixed integer bilevel programs in
which the leader controls discrete (binary or general integer) decision variables, which can

appear in any constraint or in the objective function.

Xu and Wang (2014)[62] develop a branch-and-bound algorithm for mixed integer
linear bilevel programming, in which each branching decision is associated with several
subproblems. Kleniati and Adjiman (2015)[30] extend the global optimization solution
framework they had previously developed for continuous bilevel programming (Kleniati and
Adjiman, 2014a[28]; 2014b[29]) to the case of mixed integer bilevel programming. An exact

solution algorithm for integer bilevel linear programming is developed by Wang and Xu
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(2017)[57]. The proposed methodology is a branch and bound type search termed watermelon

algorithm, which utilizes disjunctive cuts to eliminate bilevel infeasible solutions.

Yue et al. (2019)[63] present a reformulation and decomposition algorithm for mixed
integer bilevel linear programming. The proposed algorithm implements a column and
constraint generation methodology utilizing a master problem and suitable subproblems on a
projection-based single-level problem reformulation. Finally, Lozano and Smith (2019)[44]
present an exact solution algorithm for mixed integer bilevel programming. The proposed
methodology implements a single-level value function reformulation which is used to obtain

lower and upper bounds on the optimal objective.

2.3 Qualitative comparison to existing approaches

In this subsection, we perform a qualitative assessment elucidating the differences and
similarities that the solution methodologies we develop in the following chapters exhibit in
comparison to existing specialized solution methodologies for integer bilevel programming.
In order to retain their general and wide applicability, these methodologies do not depend on
peculiar assumptions regarding the structure of the underlying problem. While this renders
them robust and powerful, in many occasions it comes at the price of necessitating excessive
computational resources. For example, some of these methodologies require the substitution
of all integer variables by pure binary ones. While this is always doable for variables with
finite bounds, it may result in formulations with excessive size that cannot be handled
efficiently when the problem under consideration exhibits realistic characteristics. A key
observation in support of this is the fact that some of these methodologies report
computational results for small sized problems only. On the other hand, our proposed

algorithmic methodologies exploit a special attribute of the problem under consideration
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which is not always present in generic formulations, i.e., the fact that the leader’s decisions

affect the cost of alternative lower-level solutions but not the lower-level feasible region.

With respect to the specifics of our proposed solution methodologies, it should be
noted that the exact algorithm resembles many of the generic solution methodologies in that it
deals with the problem relaxation in which bilevel feasibility is suppressed. This is also the
case with the works of DeNegre and Ralphs (2009)[13], Caramia and Mari (2015)[10],
Fischetti et al. (2017)[18], and Wang and Xu (2017)[57]. However, whereas in our case the
cuts for eliminating bilevel infeasible solutions utilize integer parametric programming theory
holding true due to the independency of the lower-level feasible set from the upper-level
decision variables, in the case of existing generic techniques these cuts are based on central
properties holding true in more general problem formulations. More specifically, in the case
of the algorithm by DeNegre and Ralphs (2009)[13], these cuts are based on the general
theory of eliminating non-integer solutions from convex hulls of polyhedrons which are not
integral. In the case of the algorithm by Caramia and Mari (2015)[10], these cuts are based on
valid bounds on the optimal objective expressed in a nonlinear fashion. On the other hand, in
the case of the algorithm by Fischetti et al. (2017)[18], these cuts are based on upper bound
assertions of the lower-level optimal objective, while in the case of the algorithm by Wang
and Xu (2017)[57], these cuts are based on the general optimality conditions that the optimal

solution to the integer bilevel program must satisfy.

The solution methodologies that we develop in the present work remain applicable
both when the price-offers of the strategic producer and the energy quantities of the
generation units are continuous, as well as when they are discrete, with minor differences.
This is a key advantage of our proposed approach as opposed to other existing ones, such as

the ones by Koppe et al. (2010)[38], Xu and Wang (2014)[62], and Lozano and Smith
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(2019)[44], whose applicability depends strongly on the integrality of the upper and/or the

lower-level decision variables.

As far as the remaining generic solution methodologies are concerned, we make the
following additional important observations. The algorithm of Giimiis and Floudas (2005)[24]
necessitates the substitution of all integer variables by expressions involving pure binary
variables, which may render the size of the problem unmanageable in large realistic cases
such as the one that we address. This is also the case with the algorithm of Dominguez and
Pistikopoulos (2010)[14]. The solution algorithms of Mitsos (2010)[46], Wiesemann et al.
(2013)[61] and Kleniati and Adjiman (2015)[30] are tested on nominal problems only, with
size considerably smaller than that of realistic problems. On the other hand, in the solution
algorithm of Saharidis and lerapetritou (2010)[52], the integer decision variables should be
controlled by the upper level decision maker, although they could appear in both levels of the

model formulation.

Considerable computational difficulties are also inherent in methodologies employing
KKT techniques such as the ones by Giimiis and Floudas (2005)[24], Mitsos (2010)[46], and
Yue et al. (2019)[63], since they necessitate the introduction of dual variables as well as big-
M formulations for the treatment of the associated complementary slackness constraints. This
is yet another factor that may introduce intolerable obstacles in large realistic problems.
Another limitation of the approaches utilizing KKT conditions is that their applicability
depends on the convexity of the lower level problem. Several of the restrictions that are
present in practice, however, necessitate a formulation that utilizes discrete variables and
associated integer programming modelling techniques; even in the case that the associated
constraints are linear, this eliminates the convexity of the lower level problem, rendering the

KKT approach inapplicable. Additionally, the utilization of the KKT optimality conditions
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requires the implicit assumption that suitable regularity assumptions (constraint
qualifications) are valid, so that the lower level optimal solution is a KKT point; clearly, this

is an assumption that cannot be always considered as valid.

The reformulation algorithm of Yue et al. (2019)[63] necessitates the introduction of a
number of constraints which grows exponentially with the number of lower-level integer
variables. This may render its application on large scale realistic problems intractable. For this
reason, the authors propose the adoption of a decomposition approach that employs column
and constraint generation in order to overcome the associated difficulties. Nevertheless, note
that this algorithm, as well as that of Lozano and Smith (2019)[44], are tested on a large

collection of problems of variable and considerable size with very satisfactory results.
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Chapter 3  Problem Definition and Model Development

In this chapter, we present a detailed definition of the problem under consideration and
we develop the optimization model framework for its formulation. Due to the fact that the
resulting formulation belongs to the class of bilevel optimization models, we also provide a
fundamental review on bilevel programming theory. We conclude with a short study of an
alternative objective for the model formulation, which is suitable when a uniform clearing

scheme is in effect.
3.1 Problem formulation

We consider a set of energy generation units participating in a multi-period day-ahead
electricity market. The start-up cost and the technical characteristics (minimum and maximum
output) of each production unit are fixed and known. Each corresponding producer must
submit his energy price-offers (bids) for the planning horizon to an ISO, who is responsible
for clearing the market and determining the unit commitments and energy dispatches that will
satisfy the energy demand at the minimum total system bid-cost. With these in mind, the
mathematical notation and formulation of the optimization problem the ISO is aimed to solve

are as follows:

Sets:
| production units, indexed by i.
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Parameters:

T number of time periods of the planning horizon,

Pit price-offer of producer i for one unit of energy in time periodt (i € I, t=1,...,T),

Si startup cost of uniti (i € 1),

mi technical minimum of uniti (i € 1),

Mi technical maximum of uniti (i € I),

d: demand for energy in time period t (t=1,...,T),

Zio binary parameter denoting the status of unit i at the beginning of the planning horizon

(icl).

Decision Variables:

it energy quantity of unitiintime periodt (i e I, t=1,...,T),
Zit binary variable that takes the value 1 if the energy quantity of unit i in time period t is
positive, and 0 otherwise (i e I, t=1,...,T),
Vit binary variable that takes the value 1 if unit i is switched on in time period t while
being off in time period t-1, and 0 otherwise (i € I, t=1,....T).
1SO’s Problem
. T
Minf =33 (PG +SYii) (3.1)
iel t=1
st. Y g,=d, t=1..T (3.2)
iel
MiZit < Qit= MiZi,t, ielbt=1,...T (3.3)
yi,tzzi,t'Zi,t_]_, i e |,t: 1,...,T (34)
Yit, Zit binary, i e I, t=1,....T (3.5)
Qit=>0,iel,t=1,..,T (3.6)

The objective function (3.1) minimizes the total system bid-cost for providing energy.

Constraint (3.2) is the market clearing constraint ensuring energy balance (production equal to

demand) for each time period of the planning horizon. Constraint set (3.3) imposes the
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technical minima and maxima of the participating units. Constraint set (3.4) ensures correct
values for the decision variables y;; which are used to impose the start-up costs in the
objective. More specifically, the difference (zi: - zj1) can take any of the values -1, 0 and 1.
Variable yi; should take the value 1 in the latter case, and this is correctly imposed by this
constraint. In the other two cases, both 0 and 1 are feasible for y;;, but the value 0 is implicitly
imposed by the fact that the coefficient of yi; in the objective is positive. Finally, constraints
(3.5) and (3.6) impose integrality on decision variables yi; and zj;, and nonnegativity on
decision variables g, respectively. Parameters m;, M; and d; are always positive integers for
all i and t, with 1 < m; < M;. Decision variables q;; may alternatively be restricted to integer
values, in which case the optimal energy dispatch will be non-fractional, keeping this way the
final solution more ‘elegant’. In any case, the solution methodologies that we develop next
remain applicable with minor modifications both when variables q;; are continuous variables,
as well as when they are integer. Finally, note that, besides constraints (3.6), the non-

negativity of these variables is also implied by constraints (3.3).

After the optimal generation plan is determined, each participating producer is
compensated in full for his startup cost, and is also paid a market clearing price for each MWh
he contributes to the system, according to the clearing payment scheme in effect. This price
may be the same for all producers under a uniform market clearing scheme, or the
corresponding submitted price-offer under a pay-as-bid market clearing scheme. In the former
case, the uniform clearing price is also known as system marginal price (smp), since it
represents the marginal cost for energy, i.e., the additional cost that should be paid for

increasing the demand by one MWh.

Each producer faces the problem of selecting the optimal price-offer that he should

submit to the 1SO for each time period of the planning horizon, so that, after the market is

41

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Problem Definition and Model Development

cleared and the energy quantities of all the participating units are determined, his profit is
maximized. Assuming perfect information of the market’s technical characteristics, the
corresponding profit maximization problem of an individual strategic producer is modeled as
a bilevel optimization problem. For the formulation of the strategic producer’s optimization
problem, we introduce the following additional mathematical notation:

Parameters:

C1 unit variable production cost of the strategic producer,

o price cap for the price-offers of the strategic producer.

Decision Variables:

pit  price-offer of the strategic producer for one unit of energy in time period t (t=1,...,T).
The strategic producer faces the bilevel optimization problem introduced next, which

includes as part of its constraint set the 1ISO optimization problem:

Strategic Producer’s Problem

T
|\/'!aX F= Z( P — Cl)ql,t (3.7)

Lt t=1
st c<ppi<Cyt=1,...T (3.8)

T

(Vie:2,0;, ) €arg_min f=ZZ(pi'tqiyt+siym) (3.9)

YitoZit it

st. > q,=d, t=1..T (3.10)
iel

Mizi:<Qit<Mjzi,iel,t=1,..T (3.11)

Vit = Zit- Zit1, i e |,t: 1,...,T (312)

Yit, Zit binary, i e I, t=1,....T (3.13)

Qit € Zielt=1,..T (3.14)

In the context of this bilevel programming formulation, the strategic producer’s

optimization problem is called the upper-level problem, while the ISO’s optimization problem
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is called the lower-level problem. The lower-level problem is always a part of the constraint
set of the upper-level problem; therefore, the upper-level problem cannot be treated in
isolation. The unit index 1 is used to specify the strategic producer whose profit is maximized
in the upper-level objective F; (3.7). This profit depends on his energy quantities, g, which
are lower-level decision variables, as well as on his price-offers, pit, which are upper-level
decision variables. The start-up cost is not included in the upper-level objective, since
producers are typically compensated in full for such costs. Constraint set (3.8) imposes a
lower and an upper bound on the price-offers of the strategic producer. More specifically,
typical market rules dictate that each price-offer must be at least equal to the associated unit’s
variable production cost, and at most equal to a price-cap set by the market regulator.
Decision variables p;: may additionally be restricted to integer values, depending on the
particular problem definition. The lower-level optimization problem defined by (3.9)-(3.14) is

actually the ISO’s optimization problem (3.1)-(3.6) introduced before.

At first glance, it might seem unrealistic for a particular producer to have full
knowledge of his competitors’ bids. Note, however, that in a realistic environment, each
participating producer might end-up solving a sequence of optimization models such as the
above, using educated estimates of the other producers’ bids, based on historic data. This
would enable the comparative evaluation of alternative self-bidding strategies based on the
thorough examination of different scenarios and assumptions. In addition, the above
formulation and the subsequent solution methodologies developed next could also be
fruitfully utilized for identifying equilibrium points within an iterative game setting, in which
each producer takes turn responding to the bids of the remaining producers that have been
previously announced by solving his own profit maximization problem and announcing his

own bids in return. As no generic solution methodologies are available for this class of
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problems, the development of specialized solution approaches could turn out to be highly

beneficial for such research pursuits.
3.2 Uniform clearing scheme

In the case of a uniform clearing scheme, the upper-level objective of the above

formulation is expressed as follows instead:

.
Max F, = > (A -c)dy,, (3.15)
1t t=1

where 4; is the smp of time period t (t = 1,...,T). In order to capture the true marginal cost of
the associated time period, 4; is defined as the dual variable of the corresponding energy
balance constraint (3.10). This introduces considerable difficulties because the lower-level
problem is an integer program and does not possess dual variables in the traditional sense.
Several approaches have been proposed for computing A;, many of which suffer from
inequities necessitating additional uplifts and side-payments in order to reach a market
equilibrium that fairly clears the market (see Andrianesis et al., 2013a[1] and 2013b[2], for
example); as a consequence, the relevant research is very active. In the current work, we focus
on the algorithmic aspect of the problem, and we intentionally do not deal with such market
design issues. Nevertheless, we note that one of the most common methodologies for
computing the smp is to find the optimal solution of the integer linear problem (3.9)-(3.14)
first, and then to solve the continuous problem that results after the integer variables are fixed
to their optimal values in this solution. Based on marginal pricing theory (Schweppe et al.,
1988[53]), the energy commodities are paid at the shadow price of the market clearing

constraint computed this way.
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The system marginal price reflects the marginal cost of generating one additional unit
of energy (typically 1 MWh for an hourly discretized problem). This is interpreted as the
additional cost, in terms of the objective function, which is needed to generate this additional
unit of energy. In the present formulation, the system marginal price is set by the marginal
unit, which is the unit that will produce the additional MWh for energy. Note that the
indivisibilities (also known as non-convexities) of the problem may result in a system
marginal price which differs from the maximum bid accepted, i.e. from the highest bid that is
scheduled. Extra-marginal units can be set to produce at their technical minimum, without
affecting the system marginal price. This particularity of the problem may result in losses for
the extra-marginal participating production units, creating the need for (make-whole) side
payments with some sort of bid-cost recovery mechanism (see for e.g. Andrianesis et al.,
2013a[1]; 2013b[2], for a discussion on this issue). Dealing with these difficulties is not

within the scope of the present dissertation, and thus will not be addressed.

Under a uniform pricing scheme, the smp is not always unambiguously defined, due to
the presence of the indivisibilities and the fact that alternative lower-level optimal solutions
may lead to different smp definitions. In order to be able to eliminate these ambiguities,
should they arise, the imposition of a conflict resolution set of rules is necessary and is
typically in effect as a common practice in actual realistic markets. For the remainder of this
dissertation, we utilize the following widely adopted set of such rules, which unambiguously

determine the smp in any possible case that can arise:

Rule 1: If at the optimal 1SO solution there is a production unit whose energy dispatch in time
period t is strictly between its technical minimum and its technical maximum, then the smp of

this time period is equal to the price-offer of this unit.
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Rule 2: If at the optimal ISO solution no production unit prescribed by Rule 1 exists in time
period t and there is at least one production unit whose energy dispatch is equal to its
technical minimum, then the smp of this time period is equal to the minimum price-bid of any

unit producing at its technical minimum.

Rule 3: If at the optimal ISO solution all participating units produce at their technical
maximum in time period t, then the smp of this time period is equal to the maximum price-bid

of any unit producing at its technical maximum.

To see why the above set of rules handles any possible case that might arise, note that
one can easily prove that if at the optimal solution to model (3.9)-(3.14) there are more than
one units producing strictly between their technical minimum and technical maximum in
some time period, then the price-bids of these units for this time period must be equal, and
there is an optimal solution in which this is true for at most one of them. Naturally, this unit is
the optimal choice for satisfying the extra energy unit demand in this case, since the price-
offer of this unit will never be greater than the price-offer of any unit producing at its
technical minimum. The rationale behind Rule 2 is straightforward since the minimum price-
bid unit producing at its technical minimum stems as the optimal choice for providing an
extra MWh of energy when all participating units produce either at their technical minimum
or at their technical maximum. Finally, the rationale behind Rule 3 becomes clear when one
considers that if the energy demand is reduced by one MWh when all participating units
produce at their technical maximum, then the optimal choice for accommodating the
corresponding perturbation, i.e., for reducing the total energy supply by one unit, will be the
maximum price-bid unit out of them. It becomes obvious from this discussion that Rules 2
and 3 exploit the right and left hand-side shadow price definitions, respectively, in order to

overcome the obstacles raised by the integralities that the model formulation involves.
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Note that the exact set of rules utilized for the smp definition is a market design issue;
thus, the above rules may slightly vary from case to case. This, however, does not have any
significant impact on the solution methodologies that we develop next for the treatment of the
problem. In fact, these methodologies are independent of the set of rules in effect, in that they
can be suitably modified to accommodate any such set. Another important market design
issue is the choice of the upper-level objective function. For reasons of completeness, all the
proposed methodologies that we develop next are suitably adjusted both for the case of a pay-
as-bid market clearing scheme in which expression (3.7) is adopted as the upper-level
objective, as well as for the case of a uniform price market clearing scheme in which

expression (3.15) is adopted instead.

3.3 Bilevel programming fundamentals

The model formulation (3.7)-(3.14) fits in the general multilevel optimization
modeling framework, which is a special branch of mathematical programming that deals with
programs whose feasible set is implicitly determined by a sequence of nested optimization
problems. The most studied case is the case of bilevel programs, a subset of the decision
variables of which is required to be an optimal solution to a second mathematical program.
The problem can be considered as a two-person game with the two decision makers making
their decisions hierarchically. The first decision maker, referred to as the leader, controls a
subset of the problem’s decision variables, attempting to solve an optimization problem which
includes in its constraint set a second optimization problem solved by the second decision
maker (referred to as the follower), who controls the remaining decision variables. In our
case, the leader corresponds to the strategic producer, while the decision variables that he

controls are his energy price-offers. On the other hand, the follower corresponds to the ISO,
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while the decision variables that he controls are the unit commitments and the energy
quantities of the participating producers. In general, a bilevel program is non-convex, and

finding its global optimum is an arduous task.

Bilevel programming formulations are encountered in the context of several
interdisciplinary areas, such as agricultural planning, government policy making, economic
planning, financial management, warfare optimization, transportation planning, optimal
pricing, ecological programming, chemical design, production planning, optimal resource
allocation, etc (e.g., see Dempe, 2010[12]). This wide applicability in conjunction with the
solution difficulty that bilevel programs exhibit has motivated researchers to develop
specialized algorithmic methodologies for solving them. Although this has rendered the
related research area highly active, none of the solution methodologies that have been
developed to date is able of accommodating generic bilevel programming formulations. In
fact, the large complexity of the problem makes it rather unlikely that this will be achieved, at

least over the next few years.

A key characteristic of our formulation is that the upper-level decision variables do not
appear at the lower-level constraint set; thus, the follower’s feasible region is not influenced
by the leader’s decisions. However, the comparative evaluation of alternative lower-level
solutions is influenced by the leader’s decisions, since the upper-level decision variables
appear in the follower’s objective. The term reaction set is used to denote the set of responses
of the follower for a particular leader action, i.e., the set of optimal solutions to the lower-
level problem for a particular set of upper-level decision variable values. Finally, the term
inducible region (IR) is the set of every upper-level feasible solution, and corresponding
lower-level optimal solution, i.e., the set over which the leader may optimize his objective. A

solution that belongs to the IR, i.e., a solution for which the lower-level decision variables
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constitute a lower-level optimal solution for the associated upper-level decision variable
values, is called bilevel feasible. In the problem formulation (3.7)-(3.14), the leader’s
objective is bilinear since the generation unit quantities are determined at the lower level,
while all the decision variables that he controls are integer. On the other hand, the lower-level
problem is a linearly constrained integer program with a bilinear objective, since this

objective becomes linear when the leader’s decisions are known.

Even under the assumption that the feasible region of problem (3.7)-(3.14) is non-
empty and compact, an optimal solution may not exist. This is a well-known pitfall in bilevel
programming (Bard, 1998[6]) that may occur when the optimal solution of the lower problem
is not unique. The basic theory of bilevel optimization (Candler and Norton, 1977[9])
prohibits the cooperation between the upper and the lower-level decision makers. Thus, it is
not possible for the upper-level decision maker to force the lower-level decision maker to
choose a particular lower-level optimal solution in the case of multiple optima, which, in turn,

implies that the strategic producer may not always be able to attain his maximum profit.

Most approaches that have been proposed for circumventing this difficulty modify
slightly the problem definition and the associated model formulation. A highly popular one
called optimistic (pessimistic) approach (Loridan and Morgan, 1996[43]), suggests the
selection of the most (least) favorable solution to the upper-level decision maker in case of
multiple lower-level optima. This implies that there is some way for the upper-level decision
maker to convince the lower-level decision maker to choose a particular lower-level optimal
solution. In the particular application under study, the unit with the lowest variable production
cost is typically favored in order to resolve such conflicts, mainly because such units push
towards lower total system costs. This motivates the units to reduce their costs and become

more competitive. In the present work, we adopt the optimistic approach for the resolution of
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such conflicts, because it guarantees the existence of an optimal solution under reasonable
regularity assumptions (Dempe, 2002[11]). It should be clarified that this choice regarding the
proposed approach for dealing with multiple lower-level optima does not affect crucially the
applicability of the proposed methodology; it only affects which actual solution will be

identified as optimal.

Even under this common rule, the upper-level decision maker may still be able to
effectively lead the lower-level decision maker to select the most favorable (to his upper-level
problem) optimal solution. More specifically, if the upper-level decision maker places an
offer that is “infinitesimally” lower than the offer for which the lower-level problem exhibits
multiple optima, then he may cause a “mathematical problem” to the lower-level decision
maker, since the latter will not be able to find an optimal solution. One way for him to resolve
this issue would be to allow the upper-level decision maker to place the offer for which the
lower-level problem exhibits multiple optima, and assure him that the most favorable solution
to the upper-level problem will be selected, instead of the solution that results when the least

costly units are favored. We illustrate this with a small example, next.

Consider a problem with a single-period planning horizon, two production units and
the data shown in Table 3-1, under a uniform clearing scheme. Assume that the unit variable
production cost of the strategic producer (production unit 1) is 15 €/ MWh, the price cap is 60

€/MWh, and the energy demand is equal to 450 MWh.

Table 3-1 Data of the small numerical example

Unit (i) m; Mi Pi1 Si
1 240 400 - 100
2 100 300 40 50
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For p11 €[15, 40), marginal is the first unit, which implies that the system marginal
price is equal to p11. For p11 = 40, the lower problem has an infinite number of optimal
solutions. More specifically, any solution with z;1 =1, 1 = 1, g1,1€[240, 350] and g2 1 = 450
- g1 is optimal with f = 18,150. Assuming that the second unit has lower variable production
cost and that the lower-level decision maker favors the least costly unit, then for p; 1 = 40, the
lower-level decision maker would select the solution z;1 = 1, 11 = 240, z21 = 1, g21 = 210,
which favors the least costly (second) unit, instead of the solution z;; =1, 11 = 350, 21 =1,
021 = 100, which is most favorable to the strategic producer. In this case, the optimal decision
for the strategic producer would be to select a value for py; that is infinitesimally close to but
strictly lower than 40, which would result in the original bilevel problem not having an
optimal solution. To resolve this issue, the lower-level decision maker would then have to
allow the strategic producer to place the offer p;; = 40 and select the most favorable solution
to his upper-level problem, namely, p11 =40, 11 =1, q11 =350, 2214 =1, 021 = 100 and
J1" =40, with f = 18,150 and F," = 8,750, instead of favoring the second unit which has the

lowest variable production cost.

One of the well established important results of integer bilevel programming (Moore
and Bard, 1990[47]) is the fact that the optimal objective function value of an integer bilevel
program’s continuous relaxation does not always provide a valid bound on its optimal
objective; therefore, solution procedures that are based on such relaxations may fail. To
illustrate this interesting result in the context of the present work, consider the continuous
relaxation of the above example, which results when the variables z;; and z,; are not
restricted to binary values, but are allowed to take any value in the interval [0, 1]. The global
optimal solution of this problem is py1 €[15, 39.916], z:1" = 1, g1 = 400, 2,1 = 0.167, Qo1

=50 and 4, = 40.167 with f = 2,108.333 + 400p,; and F," = 10,066.8. Note that multiple
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optima depending on the exact value of variable p;; exist. Thus, in this case, the optimal
objective value of the continuous relaxation is larger than the optimal objective value of the
mixed integer problem. Note that, in order to find the global optimal solution of the relaxed
problem, we can replace the lower problem (which is linear and continuous since p;1 is a
known parameter in it) with constraints ensuring primal and dual feasibility, as well as
equality between the primal and the dual objective function values. The formulation that
arises is quadratic (since it includes the product of variables A; and g1 in the objective) and

can be solved with a typical quadratic programming solution algorithm.

Assume now that, for the same problem, the demand is equal to 400 MWh. The new
global optimal solution of the problem is p;1” =40.312, 211" =1, q11 =400, 21 =0, g21 =0
and 2;" = 40.312, with f = 16,224.8 and F;,” = 10,124.8. The global optimal solution of this
problem’s continuous relaxation, however, is pl,l* = 39.916, 21,1* =1, CI1,1* = 400, 22,1* =0,
021 = 0and 4, = 40.166, with f = 16,066.4 and F," = 10,066.4. Thus, in this case, the
optimal objective value of the continuous relaxation is smaller than the optimal objective

value of the mixed integer problem.

This small example illustrates that a solution procedure based on bounds obtained
from continuous relaxations may fail. Note that in the case that d; = 400 MWh, this happens
even though the optimal solution to the continuous relaxation is bilevel feasible (i.e., the
lower-level solution is optimal for p;; = 39.916, resulting in a feasible solution for the
original bilevel problem). The solution procedures that we develop in the next chapters do not
utilize relaxations, but an important result from the theory of parametric integer programming,

which has been known since the 1970s.

In our case, the feasible region of the lower-level problem is nonconvex due to the

integrality of the decision variables y;; and z;;. If this were not the case, however, then this set
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would be convex, since all constraints are expressed with linear functions. The existence of an
optimal solution to the lower-level problem is ensured due to the fact that the feasible set is
closed and compact, while all decision variables have finite bounds. Under reasonable
assumptions such as that of the optimistic approach adoption, the global solution of the
bilevel problem is also ensured. In fact, if decision variables p;; and g;; are also constrained to
integer values, then the cardinality of the feasible set of both the lower as well as the upper-

level problem is finite.
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Chapter 4 The Single-Period Variant of the Problem

In this chapter, we consider the single-period variant of Problem (3.7)-(3.14), in which
the planning horizon consists of a single time period. In this case, each producer must submit
a single price-bid to the 1SO, while index t is naturally suppressed as redundant. We develop
an exact algorithm for the solution of this problem, which utilizes important findings from the
theory of integer parametric programming, and we report experimental results demonstrating
its efficiency on random problem instances. We conclude with a discussion on several
computational issues pertaining to the behavior of this algorithm, and an outline of how the

underlying theory can be modified to fit alternative market designs.
4.1 Solution methodology

When all the problem parameters have finite values, the feasible region of problem
(3.7)-(3.14) is bounded, although non-convex. For a particular value of p;, the feasible region
of the lower level problem is non-convex, too, due to the presence of the integralities. Let
f'(p1) be the optimal objective value of the lower-level problem as a function of the price-bid
of the strategic producer. The algorithm that we develop for the solution of the problem is

based on the following important result:

54

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Single-Period Variant of the Problem

Proposition 4.1 The function f (p) is non-decreasing, piecewise-linear and concave.

Proof The fact that f (p,) is non-decreasing is trivial, since increasing the value of p; does not
change the feasible region of the problem, but only increases the total system bid-cost of the
solutions in which unit 1 participates. The fact that f (py) is piecewise-linear and concave is

due to Noltemeier (1970)[48]. U

The validity of Proposition 4.1 is a consequence of the fact that the feasible region of
the lower-level problem can be replaced by its convex hull (the integer polyhedron) without
altering the optimal solution, reducing this way the problem to the case of continuous linear
programming, for which this result is well established. Proposition 4.1 can be utilized to solve
the single-period variant of the problem defined by (3.7)-(3.14) parametrically, by applying a
solution algorithm which employs a search procedure that has been introduced by Geoffrion
and Nauss (1977)[21]. Consider the case of a uniform clearing scheme first. The aim of this
algorithm is to identify all the distinct value-ranges of p; in the interval [c;, C,] for which the
lower-level optimal solution (in terms of the decision variables values) and the associated
marginal unit remain constant. The global optimal solution of the problem is then identified as
the point at which the profit of the strategic producer is maximized. For any of these distinct

value-ranges of p1, there exist only two possible cases, as described next.

The first case is when the strategic producer determines the system marginal price
(unit 1 is the marginal unit), i.e., when p; is equal to the shadow price of the demand
constraint (3.10). For that value-range of p;, the strategic producer achieves his maximum
profit when his price-bid becomes equal to the right endpoint of the corresponding value
interval. To see why this is true, note that since the system marginal price is determined by the
strategic producer in this range, this is the maximum possible price with which he can be

compensated for each MWh of energy that he will provide to the market. Offering a larger
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price-bid will result in a different optimal solution for the lower-level problem, leading to a
different value-range for p;. The second case is when the system marginal price is determined
by a different producer. For that value-range, the strategic producer is indifferent about the
specific value of py, since he will be paid at that fixed system marginal price, independently of
his own price-bid. In turn, his profit remains constant in that range, since his energy quantity

remains constant, too.

The main difference between the two aforementioned cases is that in the first one, the
profit of the strategic producer increases linearly with his price-bid within the particular
value-range of pi;, whereas in the second one, it remains constant. By comparing the
maximum profit that the strategic producer can achieve in any value-range of p; (each of
which is associated with a distinct lower-level optimal solution), we can easily identify the
optimal value of p; that results in his maximum profit. This methodology can be carried out

with the procedure described next.

Suppose that we solve the lower-level problem for p; = ¢; and p; = C; and that the
optimal values of the decision variables in the two solutions that we obtain are represented by
X (c1) and x"(Cy), respectively. Proposition 4.1 implies that f'(c;) < f'(Cy) and that the line
connecting the points (cy, f (c1)) and (Cy, f (C1)) provides a lower bound on f'(py) for any p:
that belongs to the interval [cy, C1], for if there were some value k of p; in this interval such
that the point (k, f'(k)) lied below this line, the concavity of the function f (p;) would be

contradicted (see Figure 4-1).
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fip) 4 Lower bound on f'(p,) for any p, €[c1.C1]
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Figure 4-1: Lower bound on f'(py) determined by two extreme optimal solutions

Therefore, if x'(c)) = X'(Cy), the search terminates, concluding that the optimal
solution of the lower-level problem is the same for any feasible value of p;. In this case, the
energy quantity, q;", that the strategic producer provides to the system is the same for the
entire interval of p;, and his maximum profit is realized at the point of this interval for which
the system marginal price is maximized. If the first unit is the marginal unit, then, according
to the intuition provided above, the system marginal price is maximized for p; = C; and the
global maximum profit of the strategic producer is equal to (Cy - ¢1)q: . If the first unit is not
marginal, then the system marginal price remains constant in the entire interval [c;, C4], which
implies that any value of p; in this interval is optimal, with an associated maximum profit for

the strategic producer equal to (A- ¢1)q: .

If x'(c1)#x (Cy), then either these two are the only possible lower-level optimal
solutions, or there exists at least one additional lower-level optimal solution, realized for some
value of p; in the interval (c;, C;). Proposition 4.1 is properly utilized again to see which of

the two is true, as explained next. Consider the line that represents the value of the lower-level
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objective function when the lower-level solution is fixed at X (cy) and p; increases above cj,
and the line that represents the value of the lower-level objective function when the lower-

level solution is fixed at x (C1) and p; decreases below C; (see Figure 4-2).

j'[l,r:,} _ , Upper bound on _,I"[p1}
I.:ppcr bound on f (p)) for any p, € [& C1]
for any p; € [c,u]

fc) l --------

W

fle)

c1 u o &

Figure 4-2: Upper bound on f (py)determined by two extreme optimal solutions

Let p1 = u be the point at which these two lines intersect, and suppose that the two
objective values are equal to W at that point. The line connecting the point (cy, f (c1)) with the
point (u, W) provides an upper bound on f (p,) for any p; that belongs to the interval [cy, ul],
for if there were some value k of p; in this interval such that f (k) were above this line, we
would be able to improve the optimal lower-level objective at p; = k using the solution x (c1)
instead, which is a contradiction. Similarly, the line connecting the point (u, W) with the point
(Cy, f'(Cy)) provides an upper bound on f'(p1) for any p; that belongs to the interval [u, C4],
for if there were some value k of p; in this interval such that f (k) were above this line, we
would be able to improve the lower-level objective at p; = k using the solution x (C,) instead,

which is a contradiction.
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In order to check if, in addition to x(ci) and X (Cy), another lower-level optimal
solution exists for some value of p; between c¢; and C;, we solve the lower-level problem for
p1 = u. If f (u) = W, then the procedure terminates concluding that x (c,) is the optimal lower-
level solution for ¢; < p; < u and x (C4) is the optimal lower-level solution for u < p; < C;.
Otherwise, we repeat the above procedure, considering the following two pairs of lines (see
Figure 4-3). The first pair is comprised of the line that represents the lower-level objective
function when the solution is fixed at x'(c1) and p; increases above c; (this is the first line
considered in Figure 4-2), and the line that represents the lower-level objective function when
the solution is fixed at X (u) and p; decreases below u. The second pair is comprised of the
line that represents the lower-level objective function when the solution is fixed at x (C,) and
p: decreases below C; (this is the second line considered in Figure 4-2), and the line that
represents the lower-level objective function when the solution is fixed at x (u) and p;
increases above u. Due to the same intuition as before, these two pairs of lines provide
improved upper bounds on f'(p;) at the two corresponding intervals. At the same time, the two
lines connecting the points (cy, f (c1)) with (u, f'(u)) and (u, f'(u)) with (Cy, f'(Cy)) provide

improved lower bounds on f'(py).

i » New upper bounds
New upper bounds on f (p,) for
£y T on f'(p,) for "

P € ey ] and py € [uy,u] Py € [u;102] a0d p) € f[uz. C1]

\ \ |
Pl Ngasmusiaaaal) cmscamassas -
’“/ . g . g . g — . .‘;_.‘.----"‘
f(u) p---mmmmmmm e 3 St au
New lower bound
f(cy) on f (p,) for any

New 'IQ\\'cr‘ bound P €[ C1]
on f (p;) for any
P € [ey,ul

Cy w, u > Ci by '
Figure 4-3: Improved lower and upper bounds on f (py)
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The parametric search procedure continues similarly, until all the distinct value-ranges
of p; and the associated lower-level optimal solutions are identified. At that point, the
problem’s global optimal solution is identified easily, by comparing the maximum profit that
the strategic producer can attain in each distinct interval. Let z; (p1) and q: (p1) be the optimal
values of decision variables z; and gy, respectively, as a function of p;. The above procedure

can be significantly expedited when the following important result is exploited:
Proposition 4.2 The function g; (ps) is non-increasing.

Proof The slope of each linear segment that comprises the function f (ps) is equal to the
optimal energy quantity of the first unit, q;’, at the solution obtained when p; is set equal to
the left endpoint of the associated interval. The validity of the proposition results from the fact

that f (py) is concave. [

The significance of Proposition 4.2 is that if we know the optimal value of g; for some
p1 = K, then this value can be imposed as an upper bound on the optimal value of g; on any
instance of the problem in which p; is set greater than k. Moreover, whenever we identify a
value k of p; for which z;°(k) = 0, then we do not need to apply the parametric search
procedure in the interval (k, C1], since Proposition 4.2 ensures that the first unit will not
participate in the market in that value-range and its corresponding profit will be equal to 0.

This can lead to significant computational savings, especially for large scale problems.

4.2 Application of the algorithm

In this section, we illustrate the application of the proposed algorithm on a case study
with five production units and a single-period hourly time horizon. The technical
characteristics, the price-bids and the startup costs of the production units are shown in Table

4-1. The technical minima and maxima are given in MW, the startup costs in €, and the price-
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bids for energy in € MWh. The unit variable production cost of the strategic producer
(production unit 1) is 50 €/ MWh, the price cap is 150 € MWh, and the energy demand is
equal to 1,000 MWh. The problem data are not fictitious, but correspond to factual units

participating in the Greek electricity market, as described by Andrianesis et al., 2013b[2].

Table 4-1 Data of the production units

Unit (i) m M, . s
1 240 377 - 13,000
2 144 476 52 10,000
3 240 384 57 15,000
4 105 188 65 27,000
5 60 144 72 24,000

Table 4-2 presents the results of the application of the proposed solution algorithm.
For each distinct value-range of ps, this table shows the lower-level optimal solution in the
form (g1, 92, 93 , G , G ), the system marginal price, the marginal unit, the optimal lower-
level objective function value (f), and the corresponding objective value of the upper-level

problem (F3).

Table 4-2 Results of the application of the solution algorithm

Value-range Lower-level System Marginal *

. . d . : . f F.
of p; optimal solution marginal price generation unit
[50, 52] (377, 383, 240, 0, 0) 52 2 71,596 + 377p; 754
(52, 57] (284, 476, 240, 0, 0) P1 1 76,432 + 284p; (p;:-50)284
(57, 111.58] (240, 476, 284, 0, 0) 57 3 78,940 + 240p, 1,680
(111.58,150] (0, 476, 384, 0, 140) 72 5 105,720 0

The results of Table 4-2 indicate that the maximum profit the strategic producer can
attain for any value of p; that belongs to the interval [50, 150] is equal to 1,988 and is
achieved when p; is equal to 57. The corresponding lower-level optimal solution is (284, 476,

240, 0, 0), resulting in a total system bid-cost of 92,620. Note that the solution (240, 476, 284,
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0, 0) is also optimal to the lower-level problem for p; = 57, but is not preferred because it is

less favorable to the strategic producer.

When p; belongs to the interval [50, 52], the best price-bid of the strategic producer is
not unique, since the system marginal price is determined by unit 2. As a result, the strategic
producer is indifferent for any value of p; in that range, since both his energy quantity (377)
as well as the market clearing price (52) remain constant. The situation is similar when p;
belongs to the interval (57, 111.58], with the system marginal price being equal to 57, and the
energy quantity of the strategic producer dropping to 240. Finally, in the value-range (111.58,
150] the strategic producer does not participate in the market; therefore, he realizes zero
profits. Figure 4-4, Figure 4-5 and Figure 4-6 depict the optimal lower-level objective
function value (f), the corresponding upper-level objective function value (F), and the
system marginal price, respectively, as a function of p;. In accordance with Proposition 4.1,
the function f (ps) is non-decreasing, piecewise-linear and concave, comprising of four linear

segments with slopes 377, 284, 240 and 0, respectively.

108000
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102000 /
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r* 98000 /
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Figure 4-4: Optimal objective value of the lower level problem (f') as a function of p,
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Figure 4-5: Objective value of the upper level problem (F,) as a function of p;
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Figure 4-6: System marginal price (1) as a function of p;
4.3 Computational Requirements

In this subsection, we elaborate on some computational issues related to the
application of the proposed solution algorithm. Problem (3.7)-(3.14) is NP-hard, since solving

the lower problem for a particular value of p; is NP-hard, due to the presence of the
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integralities. The total computational effort required for the application of the proposed
solution algorithm depends on the computational effort required for the solution of each
lower-level problem and on the total number of such problems that need to be solved. Each of
the lower-level problems contains |I| continuous and |I| binary decision variables, where [I| is
the total number of production units, and can be solved using a typical branch and
bound/branch and cut solution algorithm that utilizes linear or Lagrangean relaxations. The
total number of times the lower problem needs to be solved, on the other hand, is equal to 2n -
1, where n is the number of distinct linear segments comprising the function f (p,), each of
which corresponds to a different lower-level optimal solution (note that this relationship is
valid for n > 1, since two distinct lower-level problems need to be solved when n = 1). This
implies that n - 1 times the algorithm employed for the lower-level problem will find an

optimal solution that has already been identified.

A heuristic was proposed by Jenkins (1982)[27] in order to reduce the computational
effort of the parametric search procedure described above. Adapted to our setting, this
heuristic adopts the rule that if the optimal commitment of the production units at two distinct
values of p1, k; and k; (1 < k; < ky < Cy) are the same, then the same commitment will be
optimal for any value of p; in the interval [ky, kz]. Thus, at the lower-level problems that need
to be solved for any value of p; in this interval, the corresponding binary variables are fixed in
advance at these values. The small example with the data parameters displayed in Table 4-3

demonstrates that this assumption is not always valid for the problem under consideration.

Table 4-3 Data of the second numerical example

Unit (I) m; M; Pi Si

1 70 100 - 2

2 45 55 21 1

3 30 70 2 10
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Assume that the energy demand is equal to 130 for this problem. At the optimal
solution of the lower-level problem when p; = 1, we have z;” = 1,2z, =0 and z3" = 1; at the
optimal solution of the lower-level problem when p; =2, we have z; = 1,2, =1 and z3 = 0;
finally, at the optimal solution of the lower-level problem when p; =3, we have z; = 1,2, =
0 and zz = 1. This small example demonstrates that it is possible for the optimal unit
commitment to be the same for two distinct values of p; and different for a third value that

lies in-between. Thus, the above approach remains heuristic in our case.

4.4 Computational results

In this subsection, we present computational results demonstrating the performance of
the proposed solution algorithm on random problem instances. We implemented the proposed
solution algorithm in C/C++, utilizing the commercial optimization software LINGO 11.0
(2011) for the solution of each of the lower-level problem instances. The code that we
developed feeds LINGO with the data of each lower-level problem that needs to be solved,
and in turn, LINGO returns the associated optimal solution. Our computational experiments
were performed on an i7-920 @ 2.7 GHz Intel processor with 3 GB system memory. We used
5 different values (i.e., 100, 200, 300, 400 and 500) for the total number of production units

that participate in the market, and solved 30 random problem instances for each of them.

The random problem instances were generated as follows: For the problem parameters
of the remaining (besides the first one) production units, we utilized the data of factual
generation units participating in the Greek electricity market (see Andrianesis et al.,
2013b[2]). More specifically, the parameters (technical minimum and maximum, startup cost

and price-bid) of each generation unit i (i = 2,...,|l|), were set equal to the corresponding
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parameters of one of these factual units. The specific unit with which this association was

made was selected randomly.

Let r be a random number distributed uniformly in the interval (0, 1), which is
renewed after being used once. After the data of every production unit i (i = 2,...,|I|) had been
generated, the data of the first production unit were generated as follows: The technical

minimum of unit 1 was distributed uniformly in the interval (rr|1>|§1 m; , max M;) the technical
maximum of unit 1 was set equal to m, + (r(rTilr’:llX(Mi -m;) - rr|1>|51 (M; —m,))) the startup cost
of unit 1 was distributed uniformly in the interval [rr|1>|£1 i, max s;) the unit variable production
cost of unit 1 was set equal to O.95(ni1>i[1 p;) and the price cap was set equal to 1.05(rri1§1x p;)-

This way, the feasible values of p; were drawn from a wide interval whose left and right

endpoints were smaller and larger, respectively, than the price-bid of any other production

unit. Finally, the demand for energy was distributed uniformly in the interval [max m, ,Zmi].

The results of our computational experiments are presented in Table 4-4. More
specifically, columns 2 and 3 of this table show the proposed algorithm’s average and
maximum computational times over the 30 problem instances of each problem size. The next
column shows the average percentage of the total computational time that was taken up by
LINGO. As expected, these values are close to 100%, which confirms that most of the total
computational time is spent on finding the optimal solutions of the lower-level problems,
whereas the percentage of the total computational time that is devoted to the remaining steps
of the parametric search procedure is negligible. The next two columns show the average and

maximum number of times that the lower-level problem was solved. Finally, the last two
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columns show the number of distinct lower-level solutions, which is the same with the

number of distinct linear segments comprising the function f'(py).

Table 4-4 Computational results

% LINGO # of lower-level # of distinct lower-level
Times (seconds) times problems solved optimal solutions
1] Avg Max Avg Avg Max Avg Max
100 2.30 10.264 99.05 2.133 5 1.132 3
200 28.08 205.888 99.57 4.433 7 2.633 4
300 125.75 392.736 99.75 4.767 7 2.833 4
400 138.72 572.426 99.78 4.433 5 2.667 3
500 175.87 672.984 99.84 4.367 5 2.694 3

The efficiency of the proposed solution algorithm becomes immediately clear, since
its computational requirements are quite low, even for large scale problems. As the results of
Table 4-4 demonstrate, these requirements seem to increase reasonably with problem size.
The variability of the solution times appears significant, with the average time being
approximately 15% of the corresponding maximum time in the worst case. Additionally, the
number of times that the lower-level problem needs to be solved, which depends on the
number of distinct lower-level optimal solutions, does not seem to increase as the problem
size increases. This is an important observation because it demonstrates that increasing the
number of production units increases the computational effort needed to solve each of the
lower-level problems, as expected, but does not increase considerably the total number of
distinct such problems that need to be solved. Consequently, the resulting increase in the total
computational effort is mostly attributable to the larger computational requirements of the

lower-level problems.

4.5 Alternative remuneration schemes

According to the remuneration scheme that we consider in this dissertation, strategic

producers are fully compensated for their startup cost. This scheme is actually in effect in the
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Greek electricity market, along with additional payments according to a cost recovery
mechanism, an issue which, as already mentioned, is not within the scope of the present
dissertation. A slightly different remuneration plan involves additional compensation of each
unit’s startup cost, based on the dual variable of the associated constraint that fixes the
commitment of this unit at its optimal value. Letting z; denote the dual variable associated
with the corresponding constraint, an additional amount equal to (z; - Si)z; is paid to unit i
upon the clearing of the market, to compensate it for its startup cost. The proposed
algorithmic procedure remains applicable in this case too, with only a minor modification, as

explained next.

Consider any of the strategic producer’s energy bid intervals, for which the lower-
level optimal solution remains the same in terms of energy dispatch and unit commitment. As
pointed out by O’Neill et al. (2005)[49], for a mixed integer linear program (MILP) such as
this one, the dual variable of the strategic producer’s unit commitment constraint always takes
the value that makes his as-bid profit equal to 0. In other words, the total amount by which the
producer is compensated for his energy production and his unit commitment based on the
corresponding shadow prices is equal to the sum of his bid-based production cost plus his
startup cost. With this in mind, the new optimal solution can still be computed by comparing
the maximum profit that the strategic producer can realize in each of these distinct intervals.

Next, we illustrate this in the small example of Section 4.2.

In accordance with the above intuition, the dual variable associated with the unit
commitment of the strategic producer is equal to 12246, and 12623, for p; = 50, and 51,
respectively. For any value of p; in the interval [50, 52], the maximum value that this variable
takes is 13000 when p; = 52; consequently, the producer’s profit becomes maximum for p; =

52. Computing similarly the maximum profit that the strategic producer can attain in each of

68

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Single-Period Variant of the Problem

the other three intervals, we find that the maximum possible profit for the strategic producer is
equal to 14779.2 for p; = 111.58. An interesting observation that arises is that, since the
lower-level optimal solution remains the same within each distinct interval, there is an
incentive for the producer to offer the maximum possible bid in each interval in order to
maximize his as-bid cost. Of course, this value is equal to the right endpoint of the associated
interval. This small example demonstrates that a market which adopts a remuneration scheme
that also compensates each unit for its startup cost based on the shadow price of the
corresponding unit commitment constraint is rather poorly designed, because it allows for

severe price manipulations by the participating producers.

Finally, note that, in this dissertation, we adopt the assumption that the producers do
not bid strategically on their startup costs. In practice, market participants submit incremental
energy bids that reflect their variable production costs and their unit commitment costs (e.g.
startup costs). 1SOs currently put more restrictions on the submitted unit commitment costs
than on the energy bids; the former cannot be frequently changed, whereas the latter are
allowed to vary on an hourly basis. The rationale behind these rules is that an increase in the
frequency of adjustment of startup offers could enhance the ability of price manipulation. The
concern is that increasing the frequency of adjustment of unit commitment offers could
enhance the ability of generator owners to withhold capacity in order to raise wholesale power
prices, for example in response to a short-lived system contingency. For this reason, the
assumption of bidding in terms of the variable cost only is in direct alignment with current

practice.
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4.6 Block bids

The assumption of fixed marginal cost is not absolutely necessary for the application
of the proposed methodology. The proposed algorithm can also be utilized in the case where
the offers of the energy producers are allowed to be in the form of price-quantity pairs. This
practice is consistent with the market rules in current electricity markets which, taking
advantage of the recent advancements of commercial MILP solvers, formulate the Unit
Commitment and Economic Dispatch problem as a MILP problem, allowing the participants
to bid in block-bids, i.e. submit price-quantity pairs for their energy offers. They therefore
approximate the traditional quadratic cost function with a piecewise linear one, or,

equivalently, the linear marginal costs, with stepwise blocks.

To elaborate more on this idea, assume that in the small numerical example presented
in Subsection 4.2, the strategic producer is allowed to submit two distinct energy bids, one for
the first 300 MWhs and another for the remaining 77 MWhs. We use two binary variables, z; 1
and z; ,, to model the commitment of the first generation unit, where z;; = 1 if part of this
unit’s first 300 MWs are injected to the system and z;, = 1 if part of this unit’s last 77 MWs
are injected to the system additionally. Additionally, the quantity variable qg; is replaced by
two corresponding variables gi1 and i, the production cost c; is replaced by two
corresponding costs ¢ 1 and c; 2, and the energy bid p; is replaced by two corresponding
energy bids p;1 and pi2. The problem formulation remains the same, except that the new
upper-level objective function is expressed as (4 - €11)011 + (4 - C12)012, the energy quantity
gx in the energy balance constraint is replaced by expression (qi 1+ Qi1 2), and expressions pi10;
and s;z; in the lower objective function are replaced by expressions (p11Q:1 + P12012) and
s1Z1,1, respectively. The constraint 240z, ; < g;,1 < 300z is added to the formulation to reflect

the upper and lower bound on g3 1, together with the constraints q; » < 7723, and gy 1 > 300z 5,
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imposing the upper bound on q; ;> and ensuring that in order for q; » to be positive, g1 1 must be
equal to 300. Besides the constraints ensuring that p;; must lie between c;; and Cy, and p12
must lie between c;, and C,, additional constraints may also apply on the energy bids of the
strategic producer. For example, the constraint p; » < p; 1+g is typically added to the model, to
reflect the fact that, besides being non-decreasing, adjacent bids must also not differ by more

than a known value, g.

Suppose that ¢; 1 = 50, ¢;, = 60 and g = 50 in the above example. When p ; is fixed at
its lower value, c; 1, the structure of the problem remains unchanged; thus, the optimal lower-
level objective function value remains a non-decreasing piecewise-linear and concave
function of py,. This implies that the proposed methodology can be utilized to compute the
optimal value of p;, when the value of p;; remains fixed at c; 1. For the particular example,
any value of p;, in the interval [60,100] is optimal with a corresponding profit for the
strategic producer equal to 600. Next, we can compute the optimal value of pi; when the
value of py, is fixed at one of these optimal values. Continuing the same way, this procedure
terminates when the values of p1; and p; that are optimal for each other are identified. The
quality of this solution depends on the initial solution used. Even though this procedure is
heuristic, reapplying it many times with different initial solutions and choosing the best of

them is expected to provide a satisfactory approximation to the problem’s global optimum.

4.7 Summary

In this chapter, we addressed the problem of finding the optimal bidding strategy of an
energy producer that participates in a single-period day-ahead electricity market, assuming
full knowledge of the market’s parameters. The use of discrete variables to represent the

commitment of the production units prohibits the application of typical methodologies, such
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as the use of first-order KKT optimality conditions, for finding its global optimal solution.
Although the feasible region of problem is non-convex, we proved interesting theoretical
properties utilizing key results from the theory of parametric integer programming and the
problem’s special structure, and we developed an exact solution algorithm for obtaining the

global optimum of this problem.

We illustrated the application of the proposed algorithm on a small case study with
five production units and a single-period hourly time horizon, and we reported experimental
results demonstrating its efficiency on random problem instances under a uniform clearing
scheme. Although the problem is NP-hard, our computational results demonstrate the high
efficiency of the proposed algorithm and its low computational requirements, even for large-
scale problem instances. We also provided an outline of how the underlying theory can be
modified to fit alternative market designs, such as those which include alternative
remuneration schemes and/or those in which the offers of the energy producers are in the form

of price-quantity pairs (block bids).
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Chapter 5 The Multi-Period Variant of the Problem

5.1 Introduction

In this chapter, we consider the multi-period variant of the problem. In view of the
absence of generic solution methodologies for integer bilevel programming, we utilize the
theoretical properties of the optimization model under consideration to develop specialized
solution methodologies for tackling it. First, we develop a heuristic solution approach, which,
despite its relatively low computational requirements, appears to provide high quality
solutions. This significant advantage makes this methodology suitable for the treatment of
large realistic problems. It works iteratively, optimizing the bidding offer of a single time
period at each iteration, while keeping all the other ones fixed at their current values. This is
accomplished through the comparative evaluation of the distinct lower-level optimal solutions
identified by varying parametrically the single price-offer subject to optimization. We go on
to elucidate how the underlying theory can be utilized to enable the generation of valid
inequalities to a suitable relaxation of the original problem in which the so-called bilevel
feasibility of the obtained solution is not guaranteed. These inequalities are exploited within a
cutting-plane framework by the exact solution approach for identifying the global optimum of
the problem. While the considerably larger computational requirements of this methodology
limit its applicability on small sized problems only, the associated framework that we develop
opens up new interesting research directions towards the development of efficient exact

algorithmic methodologies for the solution of the problem. In addition, we also elaborate on
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the conditions under which the applicability of the proposed methodologies remains valid on

more complex model extensions that may involve additional problem characteristics.

Note that in this, as well as in the next chapter, we assume that the strategic producer
price-offers, p1¢ (t = 1,...,T), and the energy quantities of the generation units, gi; (i € I, t =
1,...,T) are additionally constrained to integer values, i.e., we append the following two

constraints in the upper and the lower-level of the model formulation, respectively:

pireZ t=1,..T (5.1)

Qit € Zielt=1,..T (5.2)

These additional integrality restrictions are mainly imposed for avoiding numerical
difficulties related to the modeling techniques that we employ for the solution of the
associated optimization models; their inclusion does not affect the applicability of the solution
methodologies that we develop next, but guards against unrealistic decision variable values
with no practical meaning. In fact, it will become apparent that our proposed solution
methodologies can be easily extended to the case that variables p;: and/or variables gj; are
continuous, too, with minor adjustments. In addition, note that the incorporation of these
constraints leads to more meaningful and practical final solutions, thus resembling the
realistic problem setting. In terms of the optimization model properties, note also that the
integrality of these decision variables ensures that the cardinality of the feasible set of both the

lower as well as the upper-level problem is finite.

5.2 Heuristic solution methodology

The heuristic solution methodology that we propose for the treatment of the multi-
period problem variant utilizes the solution methodology developed in the previous chapter

for the single period variant of the problem. Note that, given the price-offers of the
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participating producers, the lower-level problem remains an integer linear program.
Therefore, its optimal objective is still a non-decreasing piecewise linear concave function of
any single price-bid of the strategic producer. Thus, the optimal value of any single price-bid
for the current values of all the remaining ones can be computed with the same exact
procedure that was used in the single-period case. This involves again identifying the distinct
lower-level optimal solutions that result by varying parametrically the price-offer subject to

optimization, and selecting the corresponding value that results in the maximum profit.

Starting from an initial set of feasible price-bids, the proposed heuristic solution
methodology works iteratively, optimizing at each iteration the price-bid of a single time
period given that the remaining ones are kept fixed at their current values. Under a uniform
pricing scheme, the optimal value of a price-offer, p1, within a particular interval, say [a, by,
is not unique, unless the strategic producer is marginal. In order to break such ties, the
heuristic proceeds by choosing as optimal p1t-value one of the two corresponding endpoints.
If the previous value of pi; is equal to one of the two endpoints, then the algorithm just
alternates this choice by selecting as optimal p; -value the other endpoint, in order to explore
additional neighborhood directions for possible objective improvement. Otherwise, it selects
as optimal pyvalue the left endpoint, which corresponds to the lowest cost, in order to
increase the price-offer competitiveness of the strategic producer. The procedure terminates as
soon as a full cycle in which the profit of the strategic producer remains unchanged is
encountered. This design avoids the execution of meaningless cycles, which, for example, can
come about when the optimal values of some price-offers are changing constantly, even
though the associated ISO optimal solution and the corresponding strategic producer profit

remain unaltered.
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It is easy to verify that the profit of the strategic producer cannot worsen in any two
consecutive iterations of the heuristic. This holds true, simply because keeping the value of
any of his bids the same as before ensures that this profit will remain unchanged, too. The
rationale behind the above criterion for algorithmic termination is to keep going as long as
there is an improvement in this profit, and to stop as soon as a full cycle in which no such
improvement has been observed is encountered. The only case in which this would not lead to
termination after a finite number of iterations is if a strictly positive objective improvement
could be perpetually maintained. This, however, cannot happen due to the integrality of the

decision variables and the consequent finite cardinality of the problem’s feasible set.

Under a pay-as-bid clearing scheme, things are more straightforward. Assuming a
strictly positive energy dispatch for the strategic producer in the associated interval, the
optimal pii-value is unique and equal to this interval’s right endpoint. If the strategic
producer’s dispatch is equal to 0, on the other hand, then the algorithm selects as optimal pj -
value the left endpoint, unless this value coincides to the previous p; -value in which case the
right endpoint is selected instead. The same conditions used for algorithmic termination in the
case of uniform pricing are also applied in the case of a pay-as-bid clearing scheme.
Repeating this iterative procedure several times with various initial sets of price-bids (seeds)
provides many alternative solutions, the best of which is naturally the one the algorithm

returns upon termination.

As far as the issue of addressing more complex models is concerned, note that the
above procedure is straightforward and can be applied to similar strategic bidding
optimization problems fitting this modeling framework under the assumption that the lower-
level problem remains linear. This implies that the model formulation can be extended to

incorporate additional restrictions that may be present in different applications even if the
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formulation of these restrictions necessitates the introduction of integer decision variables, as

long as the modeling of the associated constraints remains linear.

Next, we present the proposed heuristic solution methodology for the treatment of the
multi-period variant of the problem in a step-by-step basis, using pseudocode for the reader’s

convenience.

Heuristic Solution Algorithm

Step O (Initialization)

Using some educated estimate, choose an initial feasible price-offer for each time period of
the planning horizon and initialize the strategic producer profit it results to.

Sett=1.

Step 1 (Iteration)

While there has not been a cycle of T consecutive iterations in which the strategic producer

profit remains unchanged

do {
Find the optimal value of pi; while keeping all the other price-offers fixed at their
current values.
Replace the old p;; value with the new one and update the profit of the strategic
producer.
Sett=t+ 1. Ift>T,sett=1.

} end while

Step 2 (Report of final solution)
Return the current set of strategic producer price-offers and the corresponding ISO optimal

solution as the final solution. [

5.3 Exact solution methodology

5.3.1 Motivation

The integer parametric programming theory utilized in the development of the

proposed heuristic solution methodology can also be utilized within the context of a cutting-
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plane solution methodology for finding the exact optimum of the problem. More specifically,
it can be suitably modified to enable the generation of valid inequalities for excluding
solutions identified by a suitable relaxation of the original problem which do not qualify for
global optimality. Note that, in bilevel programming, the theory for obtaining bound
information on the optimal objective through suitable relaxations exhibits significant

differences with that of typical single-level optimization problems (Bard, 1998[6]).

We consider the relaxation of the optimization model (3.7)-(3.14) after the inclusion
of constraints 5.1 and 5.2, in which the restriction that the follower’s response must belong to
the reaction set is suppressed, i.e., we relax the requirement that the set of unit commitments
and energy quantities constitutes an optimal 1SO solution in conjunction with the
corresponding set of strategic producer price-offers. This requirement, formally termed as
bilevel feasibility, is a key prerequisite for global optimality. The following is a well-known
result in the context of bilevel optimization, which is utilized in the development of the

proposed exact solution algorithm for the treatment of the problem:

Proposition 5.1 The optimal objective value to the problem that results after bilevel
feasibility is relaxed from the original formulation is a valid upper bound on the optimal

objective of the original problem.

Proof The proof is trivial, since relaxing bilevel feasibility enlarges the feasible set of the
upper-level problem through the inclusion of those bilevel infeasible solutions which are
feasible with respect to the remaining problem constraints, without excluding any other

feasible solution. U

Consider the optimal solution to the problem that results after bilevel feasibility is

relaxed in the original formulation. If this solution happens to be bilevel feasible, then,
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naturally, it is also the exact optimal solution of the original problem. If not, then in order to
pursue the search for the optimal solution, one needs to exclude this solution from further
consideration. We show next how the integer parametric programming theory exploited in the
development of the proposed heuristic solution approach can be suitably modified in order to

accomplish this, too.

The price-offers of the strategic producer appear as objective coefficients of his energy
quantity variables in the 1SO optimization problem. For a particular set of values of these
price-offers, it is trivial to solve the lower-level problem and identify its optimal solution.
Based on fundamental integer parametric programming theory, this solution remains optimal
for a sufficiently small simultaneous perturbation of some of the decision variables’ objective
coefficients. More specifically, Geoffrion and Nauss (1977)[21] have showed that when the
objective coefficients of a minimization integer program are linearly perturbed through a
single scalar parameter, then its optimal objective is piecewise-linear, continuous, and
concave on its finite domain as a function of this parameter. In our case, by solely perturbing
the strategic producer’s price-offers, this property allows us to identify interval ranges, such
that, when each of these bids lies in its corresponding interval, the lower-level optimal
solution remains unchanged. After identifying these interval ranges, we use typical integer
programming modeling techniques to generate a valid inequality imposing the truly optimal
lower-level solution. Besides excluding the previously identified bilevel infeasible solution
from further consideration, this procedure also enforces the truly optimal lower-level solution
for large value-combinations of the price-offers. The specifics of this procedure are explained

next.

For t=1,...,T, assume that p. is the strategic producer’s price-offer for time period t

in the identified bilevel infeasible solution. It is trivial to find the truly optimal ISO solution
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for (pr.1°, pr2°..., pur°). We seek maximum 6; and 6, values, such that this solution remains
optimal when each price-offer py; belongs to the interval [p1° - 61, pi® + 62]. The left
endpoint of this interval is identified by finding the maximum 6, value for which the slope of
the function f remains unchanged when, starting from their initial values, these price-offers
are simultaneously decreased by #,. Similarly, the right endpoint of this interval is identified
by finding the maximum @, value for which the slope of the function f remains unchanged
when, starting from their initial values, these price-offers are simultaneously increased by 6,.
Of course, only integer values are of interest in each of these intervals. Once the maximum 6,
and &, values have been identified, the following crucial result justifies the validity of the

proposed valid inequality:

Proposition 5.2 The optimal 1SO objective for (p11°, p12° ..., p11°) remains unchanged when

each price-offer p;;belongs to the interval [pl,tb - 04, plytb + 0,].

Proof Consider the ISO optimal objective for (py1®, p12°..., pu7"), say fi', and assume that
the 1SO optimal objective is also equal to f,” when each price-offer py is equal to [p; - 61], as
well as when each price-offer py . is equal to [py’ + 65]. If there exists some combination of
p1-values with each pybelonging to [p1( - 61, po’ + 62], such that the optimal 1SO solution,
say f,", is different than f, ", then this is a contradiction, since it directly negates the concavity
and monotonicity of objective f as a function of the scalar parameter that linear perturbs it.
Therefore, the fact that the optimal ISO objective is the same when each price-offer p; is
equal to [p.’ - 61], as well as when each price-offer pyis equal to [pi> + 6], implies that it
will also be the same for any value-combination of the price-offers within these intervals.

O

After incorporating the ensuing valid inequality into the model formulation, the

relaxed problem is solved again and its next optimal solution is identified. The procedure
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continues similarly, eventually terminating as soon as the first bilevel feasible solution is
encountered, which naturally constitutes the problem’s exact optimum. An elucidation of the
valid inequalities generation procedure is presented next in sufficient detail, in order to ensure

material completeness and comprehension.
5.3.2 Valid inequalities’ generation

The valid inequality that we want to introduce in order to exclude a bilevel infeasible
solution must impose the restriction that if each of the strategic producer’s bids, p1, belongs
to the interval it has been associated with, then a particular unit commitment and energy
quantity distribution must comprise the corresponding 1ISO optimal solution. Assume that the
particular interval in question for price offer p1is denoted by [a;, b]. If both a; # ¢, and b; #
C1 then the generation of the cut necessitates the introduction of two binary variables, say W;'

and W,', denoting whether py. is greater or equal to a; and less or equal to by, respectively.

Mathematically, this is expressed through the following four constraints:

Pe< (Ci-a+ W' + (& - 1) (5.3)
P1e> (ac- COWY' + ¢ (5.4)
P1:< (C1-b)(1 - W,Y) + by (5.5)
Pre>co+ (be+1- ca)(L - W) (5.6)

Constraints (5.3) and (5.4) impose the restriction pertaining to the left endpoint of the
interval, i.e., W' = 1 if and only if p;> a. More specifically, if W' = 0 then py;< a; - 1 from
constraint (5.3), while constraint (5.4) becomes redundant. On the other hand, if W,' = 1 then
p1:> a; from constraint (5.4), while constraint (5.3) becomes redundant. Similarly, constraints
(5.5) and (5.6) impose the restriction pertaining to the right endpoint of the interval, i.e., W,' =

1 if and only if p1; < b.. More specifically, if W,' = 1 then py ;< b, from constraint (5.5), while
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constraint (5.6) becomes redundant. On the other hand, if W,' = 0 then py;> b, + 1 from
constraint (5.6), while constraint (5.5) becomes redundant. Of course, no corresponding
binary variable needs to be introduced if the corresponding endpoint coincides with ¢, or Cy,

respectively.

After the required binary variables have been properly defined for all price-offers, the
imposition of a particular energy quantity, say Q, for production unit i in period t is

accomplished by introducing the following two constraints:
qi,t SQ"'(Mi _Q)Z(Z _W|t _Wrt) (5-7)
t

G, =Q-Q> (2-W,'-W,) (5.8)

If W'=W,'=1fort=1,...,T, then the two summations in constraints (5.7) and (5.8)
are eliminated and q;. is set equal to Q. If at least one of these auxiliary variables is equal to 0,
which implies that the corresponding price-offer does not belong to its associated interval,
then both these constraints become redundant. Using such a pair of constraints for the energy
guantity of each energy producer, we can impose a specific ISO optimal solution, thus
eliminating a bilevel infeasible solution. Note that for units which are constrained to 0-
quantity in the associated solution, the above two constraints can be replaced by the following

equivalent constraint that directly fixes the status of unit i in period t:

Z, < D (2-W'-W)) (5.9)

5.3.3 Relaxing bilevel feasibility

The most typical approach for relaxing bilevel feasibility in general bilevel
optimization problems is the suppression of the lower-level objective; this transforms the

problem into a single-level optimization model. In the case of a pay-as-bid clearing scheme,
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this can be accomplished straightforwardly by removing the ISO objective from the original
model formulation. Note that the objective of this relaxed single-level optimization model is
quadratic, since it involves the product of two decision variables both treated at the same
level. In the case of uniform pricing, on the other hand, an explicit representation of the
system marginal price is not present in the problem formulation and needs to be incorporated.
In order to accomplish this, we introduce extra constraints enforcing the correct smp
definition for each time period of the planning horizon, according to the actual set of rules in

effect. The exact procedure for doing this is illustrated next.

The procedure we adopt for relaxing bilevel feasibility in the case of uniform pricing
necessitates the introduction of the following two binary decision variables for each
generation unit i and time period t:
wi:  binary decision variable that takes the value 1 if and only if the output of unit i in time

period t is strictly greater than m;, and O otherwise, i € I, t=1,....T,

Vit binary decision variable that takes the value 1 if and only if the output of unit i in time

period t is strictly less than M;, and O otherwise, i e I, t=1,...,T.
Variable w; takes the value 1 if and only if g;; > m;, and 0 otherwise, while variable v;;
takes the value 1 if and only if gi; < M;, and O otherwise. We can modify accordingly

constraints (5.3)-(5.6) to ensure that wi; and v;; correctly depict these two conditions as

follows:
it < (Mi- mjwi¢ + m; (5.10)
it > (M +1)wiy (5.11)
0it< Mi - Viy (5.12)
0it= Mi(1 - viy) (5.13)

When q;; > m;, constraint (5.10) makes w;;equal to 1, while constraint (5.11) becomes

redundant. On the other hand, when gi; < m;, constraint (5.11) makes w;; equal to O, while
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constraint (5.10) becomes redundant. Similarly, when gi; = M;, constraint (5.12) makes v;;
equal to 0, while constraint (5.13) is redundant. When gi; < M;, on the other hand, constraint
(5.13) makes viequal to 1, while constraint (5.12) becomes redundant. After the introduction
of these constraints, Rule 1 is enforced by adding the following two constraints for each unit i,

in which K is a sufficiently large number:

ASp+(2-w, -V, )K (5.14)

Azp,—2-w, v, )K (5.15)

If mi < it < M;, then wi; = vj; = 1, so these two constraints set the smp equal to the
price-offer of unit i; in any other case, they are both redundant. In order to express Rule 2, we
additionally introduce a binary variable uj; for each unit j > 1 and time period t, which takes
the value 1 if and only if p;: < pjt, and O otherwise. Correct values for variables u;; are
ensured through the introduction of the following two constraints which are analogous to

constraints (5.5) and (5.6):

Prt + 1< (Cy-pje+ (L - uje) + pje (5.16)

P1t=C+ (Pje - C)(L - Uj) (5.17)

For each unit j > 1 and time period t, we also introduce a binary variable b;; which

takes the value 1 if and only if both gj; = m; (i.e., zj;= 1 and wj;= 0) and pj« < p1 (i.e., Ujt= 0)
hold, and O otherwise, as well as a binary variable gj, which takes the value 1 if and only if
both g1« = my (i.e., z1; = 1 and wy; = 0) and pj: > p1; (i-e., Ujr = 1) hold, and O otherwise.

Correct values for variables bj:and g; are ensured through the following eight constraints:

bj.t = Zjt - Wjit - Ui (5.18)

bjt <7 (5.19)

bje <1 - Wi (5.20)

bjr<1-uj (5.21)
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Ojt=Z1t + Ujr-Wie- 1 (5.22)
it = Zut (5.23)
9t = Ujt (5.24)
gjt=1-wiy (5.25)

Rule 2 is then expressed through the introduction of the set of constraints (5.26)-(5.29)
that follows. Constraints (5.26)-(5.27) are introduced only once as they pertain to unit 1, while

constraints (5.28)-(5.29) are introduced once for each uniti > 1.

A S P+ K@=z +wW, )+ > Kb + > K(w,, +v,, —1) (5.26)
>1 >1

A2 P, — K-z, +W,,) —Zij’t - Z K(w,, +v;,—1) (5.27)
j>1 >1

11 S pi,t+K(1_Zi,t+Wi,t)+ Z K(Zj,t_Wj,t)+Kgi,t+ZK(Wj,t+Viyt_1) (5.28)

>1 i py<py j#i

/11 2 pi,t_K(l_Zi,t+Wi,t)_ Z K(Zj,t_Wj,t)_Kgi,t_ZK(Wj,t+Vj,t_1) (5-29)

j>1, ji: p<py j#i

Constraint (5.28) sets A; less than or equal to pi; plus a summation of non-negative
terms, each of which involves a multiplication with the sufficiently large number K. Similarly,
constraint (5.29) sets /; greater than or equal to p;; minus the summation of the same exact
terms. Thus, if all these terms are equal to 0, then /; is set equal to p; by these two constraints;
otherwise, they are both redundant. The term (1 - z;; + wj;) is equal to O if unit i produces at its
technical minimum in time period t; otherwise, it is equal to 1. The term (z;: - wj) is equal to
1 if unit j produces at its technical minimum in time period t; otherwise, it is equal to 0. The
term g is equal to 1 if unit 1 has smaller price-offer than unit i and produces at its technical
minimum in time period t; otherwise, it is equal to 0. Finally, the term (wj: + vj - 1) is equal
to 1 if the output of unit j is strictly between its technical minimum and its technical

maximum in time period t; otherwise, it is equal to 0. Thus, these two constraints set . equal
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to the price-offer of unit i in time period t if unit i produces at its technical minimum, and in
addition there is no other unit with smaller price-offer producing at its technical minimum,
and no other unit producing strictly between its technical minimum and its technical
maximum in the same time period; in any other case, these constraints are both redundant.
Constraints (5.26)-(5.27) are similar to constraints (5.28)-(5.29), pertaining to the unit of the
strategic producer. One can easily verify that these constraints determine the smp value
correctly even when more than one units are simultaneously marginal according to Rule 2,

both in the case that one of them is the strategic unit as well as in the case that it is not.

In order to express Rule 3, we additionally introduce a binary variable a;; for each unit
j > 1 and time period t, which takes the value 1 if and only if both g;: = M; (i.e., v;:= 0) and pj
> py(i.e., uj:= 1) hold, and O otherwise, as well as a binary variable h;;, which takes the value
1 if and only if both g1 = My (i.e., vi,.= 0) and p;j: < pa; (i.e., uj; = 0) hold, and 0 otherwise.

Correct values for variables a;;and h;; are ensured through the following six constraints:

At = Uit - Vit (5.30)
jt < Ujt (5.31)
aj <1 -V (5.32)
hie>1 - Vis - Uit (5.33)
hit<1 -V (5.34)
hit<1 - Uj (5.35)

Rule 3 is then expressed through the introduction of the set of constraints (5.36)-(5.39)
that follows. Constraints (5.36)-(5.37) are introduced only once as they pertain to unit 1, while

constraints (5.38)-( 5.39) are introduced once for each uniti > 1.

A < pl‘t+Kv“+Zl<(zjyt+v“—1)+2K05Lt (5.36)
i1 j>1
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A= Py — Ky, =D K(z;, +v;, -1 - D Ka,, (5.37)
>1 >1

ASP+ Ky + Y Kz, +v, -D+ D K@-v,)+Kh, (5.38)

j# P>Lj#,p;>p;

Az p—Kv, =D Kz +v,, -D- > K(@-v;)-Kh, (5.39)

j 21, >y

Constraint (5.38) sets A less than or equal to pi¢ plus a summation of non-negative
terms, each of which involves a multiplication with the sufficiently large number K. Similarly,
constraint (5.39) sets A; greater than or equal to pi; minus the summation of the same exact
terms. Thus, if all these terms are equal to 0, then 4 is set equal to pj by these two constraints;
otherwise, they are both redundant. The term v; is equal to O if unit i produces at its technical
maximum in time period t; otherwise, it is equal to 1. The term (zj: + vj: - 1) is equal to 1 if
the energy quantity of unit j in time period t is positive but strictly smaller than its technical
maximum; otherwise, it is equal to 0. The term (1 - vjy) is equal to 1 if unit j produces at its
technical maximum in time period t; otherwise, it is equal to 0. Finally, the term h;; is equal to
1 if unit 1 has greater or equal price-offer than unit i and produces at its technical maximum in
time period t; otherwise, it is equal to 0. Thus, these two constraints set A equal to the price-
offer of unit i in time period t if unit i produces at its technical maximum, and in addition
there is no other unit whose energy dispatch is positive but strictly smaller than its technical
maximum, and no other unit with larger price-offer (for j > 1) or larger or equal price-offer
(for i = 1) producing at its technical maximum; in any other case, they are redundant.
Constraints (5.36)-(5.37) are similar to constraints (5.38)-(5.39), pertaining to the unit of the
strategic producer. One can easily verify in this case, too, that these constraints determine the
smp value correctly even when more than one units are simultaneously marginal according to
Rule 3, both in the case that one of them is the strategic unit as well as in the case that it is

not.
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With the introduction of the above constraints, the complete model for relaxing bilevel

feasibility in the case of a uniform pricing clearing scheme is formulated as follows:

Max F, = i(ﬂt _Cl)ql,t

Pyt t=1
st. c1<pp<C,t=1,....T

> g, =d, t=1..T

icl
Mit Zit < it < Mit Zig, i€l t=1,....T
Yit>Zit- Zig, i€l t=1,...,T

constraints (5.10)-(5.15), iel, t=1,...,T

constraints (5.16)-(5.25), (5.28)-(5.35), (5.38)-(5.39), iel,i>1,t=1,...,T

constraints (5.26)-(5.27), (5.36)-(5.37), t=1,....T

P1t € AR Qit € Z' el t=1,....T

Vit Zit, Wiy, Vig Dinary, iel, t=1,...,T

Uit, bi,t1 Oit, Qit, hi,t binary, iEl, i >1, tzl,...,T

5.3.4 The exact solution algorithm

Having elucidated the various actions the proposed exact solution algorithm involves,
we are now in a position to present it in a step-by-step basis using pseudocode for the reader’s

convenience.

Exact Solution Algorithm

Step 0 (Initialization)

Relax bilevel feasibility and solve the resulting single-level model formulation.

Step 1 (Iteration)

While the current optimal solution is bilevel infeasible for the original problem formulation
do{
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Find the truly optimal 1SO solution for the current set of strategic producer price-
offers.
Find the maximum simultaneous increase and the maximum simultaneous decrease on
the strategic producer price-offers for which this solution remains optimal.
Add a valid inequality excluding the bilevel infeasible solution from further
consideration.
Solve the model again.

} end while

Step 2 (Report of final solution)

Return the current set of strategic producer price-offers and the corresponding 1SO optimal

solution as the optimal solution. O

5.4 Computational results

We have implemented the proposed solution methodologies using C/C++ source code.
In this section, we illustrate their application on a small case study, and we present extensive
experimental results evaluating their relative computational performance. All tests were
performed on a 6-Core @ 3.5 GHz 64-bit AMD Processor with 8 GB system memory, while
the commercial optimization software LINGO 13.0 (2011)[42] was internally utilized for the

solution of the encountered optimization models.

5.4.1 A small case study

For illustration purposes, we consider first a small case study with 3 production units
and a 4-period planning horizon. The technical characteristics and startup costs of the
generation units, as well as the price-offers and the demand for energy in each time period are
shown in Table 5-1. The technical minima and maxima are given in MW, the startup costs in
€, the price-offers for energy in €/ MWh, and the energy demand in MWh. The unit variable

production cost of the strategic producer (generation unit 1) is 50 € MWh, while the price cap
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is 100 €MWh. We assume that all units are OFF at the beginning of the planning horizon,

i.e., thatzip=0fori=1,...,3.

Table 5-1 Case study data

Pit
Unlt(l) m; M; Si t=1 t=2 t=3 t=4
1 200 500 1300 - - - -
2 240 480 1500 57 58 65 67
3 100 470 1600 64 60 58 62
d; 900 950 800 850

First, we apply the proposed heuristic solution approach under a pay-as-bid clearing
scheme. Initially, we set the price-offer of the strategic producer in time period t (t = 1,...,4)
equal to the minimum price-offer of any other producer in the same time period, i.e., 57, 58,
58 and 62, respectively. In the first iteration, the algorithm optimizes the value of p; 1, while
keeping the values of p; 2, p1.3and py4fixed. Table 5-2 presents the 1SO optimal solution when
p1.1 is set equal to 50, in which the strategic producer is rewarded with the maximum possible
dispatch in each time period for his low price-offers. His total profit upon clearing of the
market is equal to 500(50-50) + 500(58-50) + 500(58-50) + 500(62-50) = 14,000, while the
optimal ISO objective is equal to 206,400. Note that the strategic producer’s profit in the first
period of the planning horizon is equal to O, despite the fact that his corresponding energy
dispatch is equal to his technical maximum.

Table 5-2 Optimal ISO solution when py 1 is set equal to 50
Unit (i) t=1 t=2 t=3 t=4

1 500 500 500 500
2 400 450 0 0
3 0 0 300 350

Table 5-3 presents the ISO optimal solution when p ; is set equal to 100. In this case,
the strategic producer does not participate in the market in the first time period, as a result of

his particularly high price-offer; his total profit upon clearing of the market is equal to 0(100-

90

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



The Multi-Period Variant of the Problem

50) + 500(58-50) + 500(58-50) + 500(62-50) = 14,000, same as before, while the optimal 1SO

objective is equal to 213,040.

Table 5-3 Optimal 1SO solution when py 1 is set equal to 100
Unit(i) t=1 t=2 t=3 t=4

1 0 500 500 500
2 480 350 0 0
3 420 100 300 350

The parametric analysis outlined in Section 4.1 identifies the 3 distinct lower-level
optimal solutions and corresponding p; ;1 interval values depicted in Table 5-4. In the first two
of these solutions, the optimal value of p;; is equal to the associated interval’s right end-
point. In the third solution, on the other hand, any p;i value in the associated interval is
optimal, since the strategic producer’s optimal dispatch in the first period is equal to 0. As
shown in this table, the maximum profit that the strategic producer can attain is equal to
19,880, realized for p1; = 64. The corresponding ISO optimal objective is equal to 212,840.
The subsequent solutions visited by the algorithm in the next iterations are presented in Table

5-5.

Table 5-4 ISO optimal solutions for p; » =58, p13=58, p14=62

P11 range (Q11, Q12, Q13, Q14) pl,l* f Fi

[50, 57] (500, 500, 500, 500) 57 181,400 + 500p; 1 17,500
[58, 64] (420, 500, 500, 500) 64 185,960 + 420py 1 19,880
[65, 100] (0, 500, 500, 500) 65-100 213,040 14,000

Table 5-5 Solutions visited by the heuristic under a pay-as-bid clearing scheme

*

Iteration (P11 P12, P13, P14) f F
0 (57, 58, 58, 62) 209,900 17,500
1 (64, 58, 58, 62) 212,840 19,880
2 (64, 60, 58, 62) 213,780 20,580
3 (64, 60, 65, 62) 216,090 21,530
4 (64, 60, 65, 62) 216,090 21,530
5 (64, 60, 65, 62) 216,090 21,530
6 (64, 60, 65, 62) 216,090 21,530
7 (64, 60, 65, 62) 216,090 21,530
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As shown in Table 5-5, the algorithm identifies the 4 price-offers (64, 60, 65, 62) upon
termination, each of which is optimal for the current values of the other three. This is realized
at the end of the 7" iteration, which flags the completion of a full cycle (4 iterations) in which
the values of the 4 price-offers and the corresponding strategic producer profit remain
unchanged. The strategic producer profit of the solution returned by the algorithm is equal to

21,530, while the optimal 1SO objective is equal to 216,090.

We also applied the heuristic algorithm using two different sets of initial price-offer
values, i.e., (64, 60, 65, 67), which corresponds to selecting the maximum price-offer of any
producer in each time period, and (64, 58, 65, 62), which corresponds to some random
selection from the other producers’ price offers in the same time period. The collective results
comparing the three corresponding final solutions are presented in Table 5-6. All three
solutions are pretty close in terms of the optimal ISO objective, with the two solutions
obtained with the first and the third set of price-offers coinciding and providing the same

strategic producer profit, which is larger than that of the second one.

Table 5-6 Heuristic algorithm results for three different sets of
initial price-offers (pay-as-bid pricing)

. initial final *

| f Fl
(P11, P12, P13, P1a) (P11, P12, P13, P1a)

1 (57, 58, 58, 62) (64, 60, 65, 62) 216,090 21,530

2 (64, 60, 65, 67) (60, 60, 65, 67) 216,310 20,310

3 (64, 58, 65, 62) (64, 60, 65, 62) 216,090 21,530

Table 5-7 presents results similar as those of Table 5-6 for the case that a uniform
pricing clearing scheme is adopted. The final solution that the algorithm returns for the second
set of initial price-offers is the same with the one returned under the pay-as-bid clearing
scheme. On the other hand, the first and the third solution coincide and qualify as the best,
with an associated ISO optimal objective equal to 210,090 and corresponding strategic

producer profit equal to 21,530. Note that, for this particular example, the profit of the
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strategic producer in the solution that the algorithm returned for each of the three sets of

initial price-offers is the same under both clearing schemes.

Table 5-7 Heuristic algorithm results for three different sets
of initial price-offers (uniform pricing)

initial final -

i f F;
(P11, P12, P13 P1a) (P11, P12, P13, P1a)

1 (57, 58, 58, 62) (64, 60, 65, 50) 210,090 21,530

2 (64, 60, 65, 67) (60, 60, 65, 67) 216,310 20,310

3 (64, 58, 65, 62) (64, 60, 65, 50) 210,090 21,530

Next, we apply the exact solution algorithm under a pay-as-bid clearing scheme first.
Solving the optimization problem that results after the lower-level objective is suppressed, we
get the following price-offers and energy quantities, respectively, for the strategic producer:
p1t = (100, 100, 100, 100), g1 = (500, 500, 500, 500). It is easy to confirm that this solution is
not bilevel feasible, since solving the ISO’s problem for p11 = p12 = P13 = P14 = 100, we get
an ISO optimal solution in which g1 = (0, 0, 0, 0). Using integer parametric programming
theory we find that the maximum simultaneous decrease on the 4 price bids of the strategic
producer for which this solution remains unchanged is equal to 35. This implies that when
p11€[65, 100] and p;,€[65, 100] and p;3€[65, 100] and p14<[65, 100] then 911 = Q12 = Q1.3
= 14 = 0 and the profit of the strategic producer is equal to 0. To express this restriction
mathematically, we add binary variables k; ; for t = 1,...,4, such that ky ¢ is equal to 1 if py; >
65, and 0 otherwise. This is expressed as follows mathematically: ky ; > (py- 64)/36 and ky; <
(p1t- 50)/15. Then, the cut in question is expressed by adding the following inequalities: z; ; <
(4 -Kki1-kio-kis-kypg) fort=1,...,4. This excludes the previous bilevel infeasible solution
from further consideration. Continuing adding similar cuts for each bilevel infeasible solution
identified, the algorithm eventually reaches the exact optimal solution, which is p1; = (64, 60,

58, 69), g1 = (420, 470, 500, 380), with f * = 216,440 and F," = 21,800.
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Under a uniform pricing clearing scheme, the algorithm identifies that the exact
optimal solution is p1; = (64, 60, 50, 70), qi; = (420, 470, 500, 380), with smp; = (64, 60,
58, 70), f =212,820 and F,” = 22,180. Thus, although being pretty close, the two optimal
solutions under the two clearing schemes are not identical. In the uniform pricing case, the
optimal ISO cost is lower, while the strategic producer’s optimal profit is slightly higher. For
this small case study, the best solution identified by the heuristic algorithm in the case of a
pay-as-bid clearing scheme approximates the truly optimal one with a percentage difference
of 1.2 %, while the corresponding approximate difference in the case of a uniform pricing
clearing scheme is equal to 2.9 %. Of course, the quality of the solutions returned by the
heuristic algorithm can potentially be improved through further execution attempts with
additional initial solutions. For each of the two clearing schemes, Table 5-8 presents the total
execution time, the total number of times (runs) the ISO optimization problem was solved,
and the total number of valid inequalities (cuts) added. Note that the latter two figures do not
coincide, due to the fact that the identification of a bilevel infeasible solution sometimes leads

to the update of an existing cut instead of the introduction of a new one.

Table 5-8 Case study execution time, number of runs and
number of cuts for the exact solution algorithm

Clearing scheme  Time (minutes)  # of runs # of cuts
pay-as-bid 62 78 71
uniform 129 75 49

5.4.2 Randomly generated problems

In this subsection, we test the performance of the proposed solution algorithms on
randomly generated problems. For the heuristic algorithm, we generated random problem

instances with the following sizes expressed as AxB where A = number of generation units
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and B = number of time periods: 3x4, 4x4, 5x24, 6x24, 7x24, 8x24, 9x24, and 10x24. The
emphasis on the number 24 for B is mainly due to the fact that realistic day-ahead electricity
markets are typically solved over a planning horizon consisted of 24 hourly time periods.
Each of the remaining units, besides the one pertaining to the strategic producer, was assigned
the technical characteristics (technical minimum/maximum, start-up cost and price bids) of a
factual unit participating in the Greek electricity market, according to the data provided by
Andrianesis et al., 2013b[2]. The particular unit with which the association was made was
selected randomly. The data pertaining to the strategic producer’s unit were then generated as

follows: The technical minimum (m;) was an integer selected randomly in the interval

[rr|1>|£1 m;, max m, ], the technical maximum (M;) was set equal to m; + range, where range was
an integer selected randomly in the interval [rr|1>|§1 (M; —m,), rri1§11x(Mi —m,)], the start-up cost
(s1) was an integer selected randomly in the interval [n|1>|[1 si,rrilglxsi], the unit variable
production cost (c;) was set equal to 0.9 I’Elll’! p,.rounded to the nearest integer, and the price-
cap (Cy) was set equal to 1.1rirlali< p.., rounded to the nearest integer. Finally, the demand for

energy in each time period t was an integer distributed uniformly in the

intervaI[Z(Mi —m;)+min m;, > M; +m].

i>1
The heuristic algorithm was applied three times on each problem instance, each time
with a different set of initial price-offers for the strategic producer. In the first case, the price-
offer of each time period t was set equal to the minimum price-offer of any other producer in
the same time period, in the second case it was set equal to the maximum price-offer of any
other producer in the same time period, and finally, in the third case, it was set equal to some

of the other bids in the same time period, with the selection being made randomly. As the
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total number of distinct problem instances solved for each problem size was equal to 20, the
total number of times the heuristic was applied on each problem size was equal to 3x20 = 60.
For each clearing scheme, the following table presents the average and maximum

computational times for each problem size.

Table 5-9 Computational times (in seconds) of the heuristic algorithm
on random problem instances

pay-as-bid uniform
size avg max avg max
3x4 4.37 6.53 4.39 6.73

4x4 13.36 42.73 14.24 48.61
5x24 113.68 440.04 124.66 508.27
6x24 215.91 998.90 218.13 1,028.66
7X24 282.26 1,583.76 | 226.14 1,146.01
8x24 394.13 1,811.94 | 251.91 1,274.35
9x24 462.76 2,181.66 | 275.24 1,325.85
10x24 | 494.10 2,775.76 | 283.93 1,547.34

As the above results demonstrate, the computational times of the heuristic algorithm
are quite reasonable, enabling the solution of problems whose size approaches that of realistic
problems encountered in practical environments of the greek electricity market. The variance
of the computational times appears to be significant but not excessive. This is acceptable,
considering that the optimization problem under consideration is highly non-convex and
combinatorial. An interesting observation that can be made based on the results of Table 5-9
regards the fact that the computational times increase much faster with problem size in the
case of a pay-as-bid clearing scheme than in the case of a uniform clearing scheme. This can
be possibly explained by the fact that under a pay-as-bid clearing scheme there is a much
larger set of alternative solutions that the algorithm must comparatively evaluate, due to the
fact that the strategic producer’s profit is dependent on his exact price-offer even in those time

periods in which he is not marginal.

For the needs of the present dissertation, we applied the exact solution algorithm on

problem instances with sizes 3x4 and 4x4, which were the same as those in the case of the
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heuristic algorithm. For each of the two clearing schemes, Table 5-10 presents the average
and maximum computational times, the average and maximum number of runs, and the
average and maximum number of cuts utilized. These results demonstrate the excessive
computational requirements of the algorithm. In particular, the computational times are
considerably large, partially due to the significant number of runs and cuts that these two
relatively small problem sizes necessitated. The computational resource requirements of the
algorithm are undoubtedly substantial. Consequently, it can be applied on particularly small
sized problems only, whereas its application on realistic problem instances seems implausible
at the moment. The computational requirements appear much higher under a uniform clearing
scheme, the most reasonable explanation for this being the significantly more complicated

model formulation due to the necessity for the explicit system marginal price representation.

Table 5-10 Computational results for the application of the
exact algorithm on random problems

pay-as-bid uniform
times (secs) | #iterations | # valid inequalities times (secs) # iterations # valid inequalities
size avg max avg | max| avg max avg max | avg max | avg max
3x4 | 962 3,714 | 39.80 | 121 | 20.45 71 4,339 | 8,585 | 51.15 95 24.35 60
4x4 | 2,253 9,122 | 63.95 | 167 26.5 142 5,897 | 12,011 | 57.85 | 117 | 38.60 78

Table 5-11 presents results regarding the quality of the solutions returned by the
heuristic solution algorithm. More specifically, for each clearing scheme and each of the two
problem sizes, 3x4 and 4x4, this table presents the average and maximum percentage
difference between the strategic producer’s profit in the solution provided by the heuristic,
and that in the optimal solution identified by the exact solution algorithm. These results
demonstrate that the heuristic algorithm provides high quality solutions at least for these two
particular problem sizes. The maximum percentage difference in the strategic producer’s
profit is less than 3.5 % in the worst case under both clearing schemes. Additionally, there

does not seem to be significant difference in the heuristic algorithm’s effectiveness between
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the two clearing schemes. These results seem quite promising, leaving open the possibility
that the heuristic algorithm may be capable of providing high quality solutions for problems

of realistic size, too.

Table 5-11 Results regarding the quality of the solutions provided by the heuristic algorithm

pay-as-bid uniform
percentage difference (heuristic vs. exact) | percentage difference (heuristic vs. exact)
size avg max avg max
3x4 0.58 2.71 0.48 2.70
4x4 0.55 3.23 0.68 3.44

55 Summary

In this chapter, we considered the problem of finding the optimal bidding strategy of
an energy producer that participates in a multi-period day-ahead electricity market. The
problem is formulated as an integer bilevel optimization model with perfect knowledge of the
market’s parameters, the technical characteristics and the bidding offers of the remaining
producers. Due to the absence of generic solution methodologies for integer bilevel
programming, we elaborated on several interesting theoretical properties and we utilized them
to develop both a heuristic as well as an exact algorithmic solution methodology, for both

clearing schemes.

The heuristic solution methodology is straightforward and can be applied to similar
strategic bidding optimization problems, even when they incorporate additional restrictions
modeled by expressions involving integer decision variables, as long as the lower-level
problem remains linear. Next, we demonstrated how the related theoretical groundwork can
be modified to enable the generation of valid inequalities. The significance of these
inequalities lies in that they can be embedded within a cutting plane algorithmic procedure for

identifying the exact optimal solution of the problem. We implemented this solution
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methodology, and we illustrated its applicability as well as that of the heuristic solution

algorithm on a small numerical example.

We concluded with experimental results demonstrating the computational capabilities
of the proposed solution algorithms and evaluating their relative performance. More effective
between the two turns out to be the heuristic approach, which is not surprising. The heuristic
solution algorithm provides high quality solutions and its computational requirements are
very moderate, enabling the solution of realistic problem instances in reasonable times. The
exact solution algorithm, on the other hand, exhibits significantly higher computational
requirements, which prohibit its application on realistic problem instances at the moment. As
a consequence, the practical application of the exact solution algorithm necessitates further
algorithmic enhancements to overcome the significant computational obstacles that the
current implementation exhibits. The problem formulation can be made more realistic through
the incorporation of additional problem aspects, such as minimum uptimes/downtimes and
ramp-up/ramp down constraints. While this increases the problem complexity, at the same

time it makes it more challenging.
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Chapter 6 Enhanced exact solution algorithm for the multi-

period variant of the problem

In this chapter, we develop an improved version of the exact solution algorithm
presented in the previous chapter for optimal price-bidding of energy producers in day-ahead
electricity markets with multi-period planning horizons. We embed special optimality
conditions into the model reformulation in which bilevel feasibility has been relaxed, which
ensure that the energy quantity distribution in each time period of the planning horizon will be
optimal for the corresponding set of producers that will be identified as active in that time
period. Consequently, solving the original problem to global optimality becomes equivalent to
identifying the optimal set of active producers (zi; = 1) in each time period. This also results
in a small modification of the cuts utilized for excluding bilevel infeasible solutions; the main
difference lies in that these cuts enforce particular unit commitments and not energy quantities
as before. A simple procedure for extending the intervals within which these inequalities are
valid is also devised. This constitutes another significant improvement, because it enables the

elimination of an increased number of bilevel infeasible solutions from further consideration.

We illustrate the application of the proposed methodology on a small case study, and
we present extensive computational results demonstrating its performance and behavior on
randomly generated problems. These results reveal that it is capable of handling small to
medium sized problems efficiently, which is utterly important considering the inevitable lack

of generic solution methodologies for the treatment of such problems, as well as the fact that
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the applicability of specialized solution methodologies which have been previously proposed

in the related literature appears rather limited on realistic size problems.

6.1 Single period optimality conditions

In this subsection, we focus our analysis on the treatment of a particular time period of
the planning horizon; consequently, we drop the subscript denoting the time period as
redundant for simplicity. As will become apparent next, the analysis that follows is applicable
to any time period, after all decision variables are suitably augmented through the inclusion of
the second subscript denoting the time period. Having made this clarification, assume that, in
the multi-period variant of the problem, the optimal unit commitments in some time period of
the planning horizon (z, iel) have been identified. In this case, the identification of the
optimal solution for this time period can be straightforwardly accomplished by solving the
following optimization problem, in which we additionally impose the optimistic approach

assumption, so that the strategic producer is always favored in case of multiple optima.

Min > pg, (6.1)
iel: z"=1

st. > g=d (6.2)
iel:z;"=1
m<qg<M,ielz =1 (6.3)
=0,ielizi =0 (6.4)
geZlielz =1 (6.5)

The energy quantity of each unit i such that z = 0 is fixed to O-value in this
formulation. Thus, the problem reduces to finding the energy distribution that minimizes the
total variable production cost while also respecting the technical minima/maxima of the
generation units in that time period. Consider now the problem of examining whether a

particular given energy distribution is optimal. The feasibility of this distribution can be
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trivially checked; therefore, the optimality check reduces to examining whether there is
another feasible distribution among the same generation units that results in lower production
cost. The following important theoretical result can be utilized to provide a confirmative

response to this question:

Proposition 6.1 An energy distribution in a particular time period that is feasible with
respect to constraints (6.2)-(6.5) is also optimal with respect to (6.1) if and only if there do
not exist two distinct production units i and j, such that z;" = z,-* =1, pi<pjq<Mand g >

m;.

Proof We prove the forward part first. Suppose that there exist two distinct units i and j, such
that z;' = z,-* =1, pi < pj, Gi < M; and g; > m;. Decreasing the output quantity of unit j by one
and increasing the output quantity of unit i by one results in an alternative feasible distribution
which has lower cost, due to the fact that p; < p;. This contradicts the optimality of the initial
distribution. Consider the reverse part now. Suppose that for a feasible distribution no such
unit pair exists. The objective function of the problem is the weighted sum of the unit
quantities, with the corresponding price-offers utilized as weights. Since the total sum of the
quantities is fixed, this objective can only be decreased if at least one unit of energy is
multiplied by a smaller weight in this sum. The fact that no unit pair for making such an

exchange exists proves that the current distribution is optimal. 0

Based on Proposition 6.1, a simple algorithmic procedure can be carried out for
finding the optimal solution to Problem (6.1)-(6.5). This procedure initializes the energy
dispatch of each active generation unit i to m;, and then allocates additional energy quantities
to the active generation units in non-decreasing order of their price-offers. Each time the next
generation unit is selected, it is allocated the minimum between the largest additional quantity

it can accommodate, which is equal to M; - m;, and the residual energy demand. If the former
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of these two quantities is smaller, a proper update takes place and the procedure proceeds to
the next active generation unit for allocation. If the latter quantity is smaller instead, the

procedure terminates with the current solution being optimal.

The important theoretical result of Proposition 6.1 enables us to impose suitable
constraints for each time period of the planning horizon to the multi-period variant of the
problem, imposing the optimality conditions this proposition prescribes. In conjunction with
the constraint set of the lower-level problem, these conditions ensure that the energy
distribution identified in each time period will be lower-level optimal for the associated set of

active and inactive energy producers.

Note that, naturally, these conditions should only pertain to units which are both active
in the same time period. This can be accommodated suitably, using the binary variables z;
denoting the status of unit i. When none of the two units involved pertains to the strategic
producer, the utilization of auxiliary binary decision variables w; and v; introduced in Section
5.3.3 is required to this end. With the help of these variables, the optimality conditions for any

two generation units i (i > 1) and j (j > 1), such that and p; > p;, are expressed as follows:

3-wi-vj>zi+z,ieli>1 (6.6)

If zi = z; = 1, then this constraint imposes the restriction that 1 > w; + vj, which implies

that either w; = 0 (equivalently gi = m;), or v; = 0 (equivalently g; = M;). In any other case,
constraint (6.6) is redundant. Thus, a solution in which g; > m; and g; < M; is eliminated.
When the strategic producer is involved, on the other hand, things become a little more
elaborate, due to the fact that his actual price-offer is subject to optimization and thus not
known in advance. In order to address this difficulty, we introduce the following decision

variable for each i > 1 in this particular time period:
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Xi binary decision variable that takes the value 1 if and only if p; < p1, and 0 otherwise.
Correct values for variables x; are ensured through the following two constraints:
P1<(Ci-p)xi+pi,ieli>1 (6.7)
pr>ci+(pitl-c)x,ieli>1 (6.8)
If x; = 0, then constraints (6.7)-(6.8) impose the restriction ¢; < p; < p;; otherwise, they
impose the restriction p; + 1 < p; < C;. Utilizing variable x;, we express the optimality
conditions as follows in case the strategic producer is involved:
4-wi-vi>zn+zi+x,ieli>1 (6.9)
3-Vi-Wj>z1+zi-Xi,leli>1 (6.10)
If z; = z; = X; = 1, then constraint (6.9) imposes the restriction 1 > wy + vj, which means
that either w; = 0 (equivalently g; = m;), or vi = 0 (equivalently g; = M;); otherwise, this
constraint is redundant. Thus, a solution in which g; > m; and gi < M; is eliminated in this
case. Similarly, if z; = z; = 1 and x; = 0, then constraint (6.10) imposes the restriction 1 > v; +
w;i, which means that either v; = 0 (equivalently g1 = My), or w; = 0 (equivalently gi = m);
otherwise, this constraint is redundant. Thus, a solution in which gi > m; and g1 < My is

eliminated in this case.

Note that we deliberately do not utilize decision variables u;, which were utilized in
Section 5.3.3 for imposing a correct smp definition under a uniform clearing scheme, in
constraints (6.9) and (6.10) for the following reason. In case the smp is determined both by
the strategic producer and by some other generation i due to a tie in their price-offers (p; = pi),
it is indifferent which of the two constraints smp = p; or smp = p; will be imposed in the
problem formulation. On the other hand, if there is a tie in these two price-offers, we want to
prioritize the energy allocation to the strategic producer so that in case of multiple lower

optima the optimistic approach is respected. Variables u; treat the case p; = p; the same way
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they treat the case p; > p;, whereas variables x; treat it the same way they treat the case p;1 < p;.
Although transferring a unit of energy between units 1 and i does not change the value of the
objective function when p; = p;, if variables u; were used instead of variables x;, generation
unit i would have priority over the strategic producer in such a case, thus violating the
optimistic approach assumption. Consequently, decision variables x; are utilized to ensure that

a solution in which p; = p;, g1 < My and g; > m;is also excluded.

6.2 Valid inequalities modification

Of course, imposing the optimality conditions in question does not ensure that the set
of units that will be identified as active in each time period will be optimal. If it happens to be,
the identified price-offers of the strategic producer will pertain to the exact optimal solution of
the problem. If not, this implies that the unit commitments (z;;) for some time period t in this
solution will not be optimal for the corresponding set of price-offers of the strategic producer.
In order to pursue our search for the optimal solution, we need to exclude this solution from
further consideration. To perform this, we employ a suitable modification of the original
procedure utilized in the previous chapter in order to generate valid-cuts for excluding bilevel

infeasible solutions as explained next.

First, we solve the lower-level problem for the given set of strategic producer price-
offers in order to identify the truly optimal generation unit commitment. Next, we identify the
largest interval range for these price-offers within which this unit commitment remains
unchanged. In doing so, we extend these intervals even if some quantities change, as long as
the corresponding unit commitments remain the same. This is a significant difference with
respect to the original approach, in which even a change in a single quantity signified the end

of the corresponding interval. After identifying these interval ranges, we employ typical
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integer programming modeling techniques to generate a valid inequality imposing the truly
optimal lower-level unit commitment and eliminate the identified bilevel infeasible solution

from further consideration.

Once the maximum simultaneous increase/decrease on the strategic price-offers that
does not alter the optimal unit commitment has been identified, it is often the case that the
current unit commitment remains optimal when the values of some (not all) price-offers of the
strategic producer are increased/decreased further. Therefore, at that point, we investigate
whether there is a proper subset of these price-offers that can be further increased/decreased
beyond this value without altering the optimal unit commitment. This procedure is pursued
repeatedly, until the point where it is not possible to increase/decrease the value of a single
price-offer by one unit without altering the optimal unit commitment. This implies that the
length of the final interval that will be identified may be different for any two distinct price-
offers, depending on the exact order in which these subsets are investigated. Of course, one
can investigate all possible combinations and choose the bounds that maximize the
cumulative length of all these intervals, but we do not pursue this since it exhibits a
combinatorial nature and may lead to performance degradation. Instead, we choose to
investigate these subsets randomly, and adopt any path that actually increases the cumulative

interval length without altering our intermediate decisions.

To give a particular example, note that, for the small case study of Section 5.4.1, we
identified that, starting from an initial value 100 for all 4 price-offers of the strategic producer,
their maximum simultaneous decrease for which the solution g;; = (0, 0, 0, 0) remains
optimal to the 1ISO problem is equal to 35. As it turns out, however, the same solution remains
optimal when py 1 is decreased to 63, p1 » is decreased to 62 and py 3 is decreased to 64. This is

not the only possible path that can be pursued for extending the initially identified intervals of

106

Institutional Repository - Library & Information Centre - University of Thessaly
01/06/2024 18:43:25 EEST - 18.191.110.116



Enhanced exact solution algorithm for
the multi-period variant of the problem

length 35, but was identified using a randomized neighborhood search. However, it is a path
that besides extending the initial intervals it also makes them tight, in the sense that
decreasing any of the 4 price-offers further beyond the values 63, 62, 64 and 65, respectively,
by even one unit alters the optimal solution. Of course, this constitutes a significant
enhancement, since it results in the identification of more value-combinations for the strategic
producer price-offers, thus succeeding in eliminating more bilevel infeasible solutions. After
these improved intervals have been identified, we utilize one of the two following constraints
in order to impose a particular unit commitment, 0 or 1, respectively, for a production unit i in

period t.
Z, <> (2-W'-W,)) (6.11)
t
Z, 21-) (2-W,'-W,) (6.12)
t

Constraints (6.11) and (6.12) are analogous to constraints (5.7) and (5.8), but impose a
particular unit commitment instead of energy quantity. Variables W' and W' are used in the
same exact way for signifying whether price-offer p; belongs to its associated interval. If all
these binary variables for t = 1,...,T are equal to 1, then the two summations in these
constraints are eliminated; thus, z;.is set equal to O if constraint (6.11) is used for generation
unit i, or it is set equal to 1 if constraint (6.12) is used instead. Of course, if at least one of
these variables is equal to 0, then both these constraints become redundant. Using suitably one
of these two constraints for each generation unit, one can impose a particular unit
commitment, thus eliminating a bilevel infeasible solution. After incorporating the proposed
valid inequality into the model formulation, the problem is re-solved again to identify the next

candidate solution for optimality, exactly as in the original solution approach. The procedure
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continues similarly, eventually terminating as soon as the first bilevel feasible solution is

encountered, which naturally comprises the problem’s exact optimal solution.

6.3 Computational results

We have implemented the improved version of the exact solution algorithm using
C/C++ source code. In this section, we present updated results for the small case study
presented in the previous chapter, and we present experimental results evaluating the
computational performance of the enhanced solution algorithm. All tests were performed on a
6-Core @ 3.5 GHz 64-bit AMD Processor with 8 GB system memory, while the commercial
optimization software LINGO 13.0 (2011)[42] was internally utilized for the solution of the

encountered optimization models.
6.3.1 A small case study

For comparison purposes, we consider the small case study with 3 production units
and a 4-period planning horizon presented in the previous chapter. The technical
characteristics and startup costs of the generation units, as well as the price-offers and the
demand for energy in each time period are shown in Table 5-1 of Subsection 5.4.1. For each
of the two clearing schemes, Table 6-1 presents the total execution time, the total number of
times (runs) the ISO optimization problem was solved, and the total number of valid

inequalities (cuts) added.

Table 6-1 Execution time, number of runs and number of
cuts for the case study (enhanced exact solution algorithm)

Clearing scheme  Time (minutes) #of runs  # of cuts

pay-as-bid 41 35 24
uniform 53 6 5
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Table 6-1 confirms that, for this small case study, there are clear computational
savings from the application of the enhanced exact solution algorithm as compared to the
previous one, under both clearing schemes. For the pay-as-bid clearing scheme, the
percentage difference in time is 33.87 %, while the corresponding percentage difference in the

case of the uniform pricing clearing scheme is equal to 58.91 %.

6.3.2 Randomly generated problems

In this subsection, we test the performance of the proposed solution algorithm on
randomly generated problems. For comparative purposes, we consider the same random
problem instances as those of the previous chapter. For each of the two clearing schemes,
Table 6-2 presents the average and maximum computational times, the average and maximum
number of runs, and the average and maximum number of cuts utilized. These results
demonstrate the reduced computational requirements of the algorithm, confirming that its
effectiveness is enhanced. In particular, the computational times are considerably lower than
those of the exact algorithm of the previous chapter, mainly due to the significantly smaller

number of runs and cuts.

Table 6-2 Computational results for the application of the exact algorithm on random problems

pay-as-bid uniform
times (secs) | #iterations | # valid inequalities times (secs) # iterations # valid inequalities
size avg max avg | max| avg max avg max | avg max | avg max
3x4 | 494 2431 | 54 35 3.05 24 1,407 | 3,426 3.80 10 2.5 5
4x4 | 1,245 4,559 | 10.85 | 65 2.25 4 2,935 | 4,961 7.85 20 2.30 5

Table 6-3 presents specific results comparing the computational time required by the
two algorithmic versions. More specifically, for each clearing scheme and each of the two
problem sizes, this table presents the average and maximum percentage difference in
computational time between the original and the enhanced algorithmic version. The maximum

percentage difference in average time is 91.7 % and 94.3 % for each of the two clearing
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schemes, respectively. The average percentage difference in computational time is slightly
less than 50% for the pay-as-bid clearing scheme and even more for the uniform clearing
scheme. The time savings are considerable for both clearing schemes, especially for the
uniform clearing scheme which involves a considerably more complex and resource

demanding model formulation.

Table 6-3 Comparison of the computational times of the two algorithmic versions

pay-as-bid uniform
percentage improvement (enhanced vs. orig.) | percentage improvement (enhanced vs. orig.)
size avg max avg max
3x4 48.7 91.7 67.6 93.4
Ax4 447 91.1 50.2 94.3

6.4 Summary

In this chapter, we addressed an improved version of the exact solution algorithm
presented in the previous chapter for the multi-period variant of the problem. This improved
methodology utilizes special optimality conditions embedded into the model reformulation,
which ensure that the energy quantity distribution in each time period of the planning horizon
is optimal for the corresponding set of producers that are identified as active in that time
period. Consequently, solving the original problem to global optimality becomes equivalent to

identifying the optimal set of active producers in each time period.

In order to exclude from consideration those solutions for which these sets are not
optimal, the algorithm employs a special type of cuts based on integer parametric
programming theory. The main difference regarding these cuts lies in that they no longer
enforce energy quantities but particular unit commitments instead. We also devised an

enhanced procedure for extending the intervals within which these inequalities are valid. This
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constitutes another significant improvement, because it enables the elimination of an

increased number of bilevel infeasible solutions from further consideration.

We illustrated the application of the enhanced exact solution algorithm on a small case
study, and we presented computational results demonstrating its behavior and performance on
randomly generated problems for both clearing schemes. These results show that the proposed
methodology is capable of handling medium sized problems without necessitating excessive
computational resources. This is very important considering the absence of generic solution
methodologies for the treatment of such problems, as well as the fact that the applicability of
specialized solution methodologies which have been previously proposed in the related

literature appears rather limited on realistic size problems.
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Chapter 7 Summary, Conclusions and Future Research

In this dissertation, we addressed the problem of optimal strategic bidding of energy
producers in day-ahead electricity markets with indivisibilities. We developed several
optimization models for key variants of this problem, all of which fall within the class of
bilevel programming. The utilization of binary variables for the modeling of the commitment
of the electricity generation units, in conjunction with the imposition of a lower bound on the
energy quantity that each unit will provide should it enter the market, prohibit the application
of typical methodologies for solving these models, such as the substitution of the lower-level
problem by its first-order KKT optimality conditions. Instead, we utilized the special structure
of these models combined with key results from the theory of integer parametric

programming in order to develop specialized solution methodologies for tackling them.

First, we considered the single-period variant of the problem and we developed an
exact solution algorithm for obtaining its global optimum. Our computational results
demonstrate the high efficiency of this algorithm, even for large scale problem instances.
Next, we considered the multi-period variant of the problem and we utilized its theoretical
properties to develop a heuristic solution algorithm, which works in successive iterations by
focusing on single time periods. We also demonstrated how the related theoretical
groundwork can be modified to enable the generation of valid inequalities to a suitable
relaxation of the problem in which the bilevel feasibility of the obtained solution is not

guaranteed. The significance of these inequalities lies in that they can be embedded within a
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cutting plane algorithmic procedure for identifying the exact optimal solution of the problem.
We implemented this solution methodology, and we illustrated its applicability as well as that
of the heuristic solution algorithm on a small numerical example. We concluded with
experimental results demonstrating the computational capabilities of the two proposed
solution algorithms, as well as evaluating their relative performance. These results
demonstrate that the computational requirements of the heuristic solution algorithm are very
moderate, enabling the solution of problems whose size approaches that of realistic ones in
reasonable times. The exact solution algorithm, on the other hand, exhibits significantly
higher computational requirements, which prohibit its application on realistic problem

instances at the moment.

We concluded the dissertation with the development of an enhanced version of the
exact solution algorithm for the multi-period variant of the problem. This became possible
through the incorporation of special optimality conditions ensuring an optimal energy
quantity distribution in each time period of the planning horizon, for any feasible set of active
generation units in that period. As a consequence of this enhancement, the identification of
the problem’s global optimal solution becomes equivalent to identifying the optimal set of
active producers in each time period of the planning horizon. We illustrated the application of
the enhanced solution algorithm on a case study, and we presented extensive computational
results demonstrating its performance and behavior on randomly generated problems. These
results reveal that the developed enhancements improve considerably the performance of the

proposed exact solution algorithm.

Several model extensions stem out as possible directions for future research. These
include the incorporation of additional restrictions that may be present in practice, and the

study of markets that operate under different operational rules and assumptions. As far as the
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model formulation is concerned, the future incorporation of additional problem characteristics
that are present in realistic applications, such as minimum uptimes and downtimes, ramp-
up/ramp-down constraints, and step-wise priceoffers appears quite promising. A related
meaningful extension in this direction is to consider different remuneration schemes than
those considered in this work, as well as to include additionally cost-recovery mechanisms
(e.g., see Andrianesis et al., 2013a[1]; 2013b[2]) and rules for the offered bids of the
participating producers. A related research direction that also seems interesting is the

development of a model that includes demand-side bidding to model the demand elasticity.

Tasks such as the above are expected to increase the model formulation complexity,
making the problem more challenging and, at the same time, more realistic. In particular,
although the minimum uptimes/downtimes and the ramp-up/ramp-down constraints increase
the complexity of the optimization model, modifying the proposed solution methodologies to
incorporate them can be carried out rather straightforwardly. Due to the fact that they are both
typically modeled with linear constraints involving the existing decision variables z;j; and g
respectively, the optimization model remains mixed-integer bilinear after their inclusion,
which implies that the validity of the integer parametric programming property utilized in
both methodologies is retained. Of course, the question of how much the computational
performance of the two methodologies or the quality of the proposed heuristic will be affected
by the inclusion of these problem characteristics remains open and stems as an interesting

direction for future research.

Another interesting direction for future research is the further refinement of the
proposed heuristic algorithm’s involved decisions, in order to expedite its computational
performance. The question of how initial solutions (seeds) can be wisely selected for

enhancing solution quality remains open, too. As far as the exact solution algorithm is
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concerned, its practical application seems to necessitate further algorithmic enhancements. In
that direction, the question of whether special valid-cuts, independent of the particular interval
each strategic price-offer belongs to, can be devised for excluding bilevel infeasible solutions
appears quite promising. The fulfilment of this task stems as a promising way to overcome the

significant computational obstacles the current implementation exhibits.
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Parts of the work presented in this dissertation have been published in scientific journals and
scientific conference proceedings and have been presented in international conferences as

follows:

Journal Papers

[J.1] Kozanidis, G., Kostarelou, E., Andrianesis, P., Liberopoulos, G. 2013. Mixed integer
parametric bilevel programming for optimal strategic bidding of energy producers in day-

ahead electricity markets with indivisibilities. Optimization, 62(8) 1045-1068.

[J.2] Kostarelou, E., Kozanidis, G. 2020. Bilevel programming solution algorithms for
optimal price-bidding of energy producers in multi-period day-ahead electricity markets

with non-convexities. Optimization and Engineering, in press.

[J.3] Kozanidis, G., Kostarelou, E. 2020. An exact cutting plane bilevel programming
solution algorithm for optimal price-bidding of energy producers in electricity markets, in

preparation.
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constraints. 2" International Symposium and 24™ National Conference on Operational

Research, Athens, Greece, September 26-28.

[P.2] Kostarelou, E., Kozanidis, G. 2014. Mixed integer bilevel programming with upper
level decision variables that appear at the lower objective, but not in any of the lower level

constraints. 20" Conference of the IFORS, Barcelona, Spain, July 13-18.

[P.3] Kostarelou, E., Kozanidis, G. 2018. Exact and heuristic bilevel programming
algorithms for optimal price bidding of energy producers in multi-period day-ahead
electricity markets. 5™ International Conference on "Energy, Sustainability and Climate

Change" (ESCC 2018), Mykonos, Greece, June 4-6.

[P.4] Kozanidis G., Kostarelou, E. 2020. An exact cutting plane bilevel programming
solution algorithm for optimal price-bidding of energy producers in electricity markets. 7\
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Skiathos, Greece, August 24-26.
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[I[T1.1] Kolaviong, I'., Kootapérov, E., Avoplavéong, I1., Avunepomovrog, I'. 2011. Mewtog
OKEPALOG OLEMIMEDOG TPOYPOUUOTIOUOS Yot PEATIOTH VTOPOAN TPOCPOPDV GE OYOPES
NUEPNOIOL TPOYPUUUATICHOD MAEKTPIKAC evépyelag ue oadwpetdotntes. Ilpaxtikd, 1°
EbOviko  2vvédpio  Einvikne  MoaOnuotikns  Etopeioc wor  EAAnvikng  Etoupeiog

Emiyeipnoaxav Epevvav, AByva, EALGSa, 24-25 Tovviov, 12 celideg.

[I[1.2] Kooctapérov, E., Kolaviong, I'. 2012. AxkpiPeig ko gvpetikol adyoplBpotl pektod
aKEPULOL JEMIMESOV TPOYPAUUATICHOD Yio PEATIOTH VROPBOAY| TPOGPOPADV GE OyOopPEG
NUEPTGIOV TPOYPOUUOTIGHOD NAEKTPIKNG evépyewog. [Ipaktikd, 237 E6viké Zvvédpio
Elinvikng Eroupeiog Emiyeipnoioxaov Epsvvov, ABva, EAAGSa, 12-14 Zentepfpiov, 49-

54, 5 oeAidec.

In Table A-1, we relate each of the above works to the chapters of this dissertation. For each

chapter, the publications are listed in chronological order, with the most recent one at the top.

Table A-1 List of publications and association to dissertation chapters.

Chapter 4 Chapter 5 Chapter 6

[J.1]: entire chapter [J.2]: entire chapter [J.3]: entire chapter
[C.1]: early work [P.1]: early work [P.4]: early work
[I1.1]: early work [P.2]: early work

[P.3]: early work

[I1.2]: early work
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