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Abstract

The construction and optimization of Integrated Circuits (ICs) is, for decades

now, one of the most important parts of the electronics industry. Physical design

and, specifically, placement is an essential part in the manufacturing process that

ensures the proper alignment of all circuit components on a chip and, in that way,

it affects its size, performance and consumption.

Within this thesis, the construction of a placement algorithm is completed which

belongs to the Force-directed category. Based on the Kraftwerk2 algorithm, it sim-

ulates spring forces on target points and, using an electrostatic potential generated

by a supply and demand system, it places the circuit components, aiming the least

overlap with the smallest connection distances (wirelength). The analysis, discreti-

sation and construction of the system, the calculation of the electrostatic potential,

the calculation and normalization of the target points, the implementation of a new

quality control factor of the final result and a new termination condition are the

main experimentation parts that will lead to the completion of an algorithm with

several degrees of freedom capable of producing quality results in a very short time.



Περίληψη

Η κατασκευή και βελτιστοποίηση των ολοκληρωμένων κυκλωμάτων (Integrated

Circuits - ICs) αποτελεί εδώ και δεκαετίες ένα από τα σημαντικότερο κομμάτια στη

βιομηχανία των ηλεκτρονικών συσκευών. Η φυσική σχεδίαση και, συγκεκριμένα, η

τοποθέτηση είναι ένα απαραίτητο τμήμα στην κατασκευαστική διαδικασία που φροντίζει

για τη σωστή διάταξη όλων των κυκλωματικών στοιχείων σε ένα τσιπ και με τον τρόπο

αυτό επηρεάζει το μέγεθος, την απόδοση και την κατανάλωσή του.

Στα πλαίσια αυτής της διπλωματικής εργασίας ολοκληρώνεται η κατασκευή ενός αλ-

γορίθμου τοποθέτησης που ανήκει στην κατηγορία Force-directed. Βασισμένος στον

αλγόριθμο Kraftwerk2, προσομοιώνει δυνάμεις ελατηρίου πάνω σε σημεία-στόχους και,

με τη χρήση ενός ηλεκτροστατικού δυναμικού παραγόμενο από ένα σύστημα προσφο-

ράς και ζήτησης, τοποθετεί τα κυκλωματικά στοιχεία στοχεύοντας στη μικρότερη επι-

κάλυψη (overlap) με τη μικρότερη απόσταση μεταξύ τους (wirelength). Η ανάλυση,

διακριτοποίηση και κατασκευή του συστήματος, ο υπολογισμός του ηλεκτροστατικού

δυναμικού, ο υπολογισμός και η κανονικοποίηση των σημείων-στόχων, η υλοποίηση

ενός νέου παράγοντα ελέγχου ποιότητας του τελικού αποτελέσματος και μια νέα συν-

θήκη τερματισμού είναι τα βασικά σημεία πειραματισμού που θα οδηγήσουν στην ολο-

κλήρωση ενός αλγορίθμου με αρκετούς βαθμούς ελευθερίας ικανό να παράξει ποιοτικό

αποτέλεσμα σε πολύ λίγο χρόνο.
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Chapter 1

Introduction

In the last decades the integrated circuits industry has rapidly evolved. This is due

to the continuous and constantly growing demand for electronic systems. While

their complexity gets higher, integrated circuits are getting smaller and at the same

time more powerful, creating a wide range of products from personal computers and

portable devices to supercomputers used for scientific and engineering applications.

Nowadays, the electronic devices are not only important but necessary for our com-

munication, information research and entertainment. They also play a critical role

in the field of scientific research providing tools used for experimental purposes.

The integrated circuits (ICs) are the most vital ingredient of the electronic de-

vices. After the invention of the transistor (Bell Telephone Laboratories - 1947), the

first working IC was demonstrated in 1958 from Jack Kilby at Texas Instruments,

Inc.. Since the first generation, their density in transistors keeps rising till today.

In 1965, Gordon Moore, the co-founder of Intel and Fairchild Semiconductor,

after observation, predicted that the number of transistors that can be integrated

in a single silicon chip will increase exponentially over time (Figure 1.1). This

prediction has successfully been proven for decades and know as Moore’s law.

The implementation strategies and methods of the ICs have changed from time

to time due to this advancement. After the circuit design stage, a number of steps

have to be completed before a chip is ready. The first microprocessor, Intel 4004, was

designed completely by hand, by placing each transistor on it individually, which is

impossible for today’s multimillion-transistor chips. Modern IC design includes an

1
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Figure 1.1: Moore’s Law: Increation of the number of transistors per chip through

the years till 2010.

essential step called physical design, in order to compute the near-optimum physical

layout of millions to billions of circuit components on a tiny silicon surface, before the

manufacturing process in the Wafer Fabrication Houses. In this process, specialized

EDA tools have been developed to support and optimise the IC designs.

1.1 Physical Design and EDA Tools

With the rapid technological evolution, the launching time of a product on the

market became critical. For that reason, design techniques became more and more

methodical so that they could later be automated. This resulted a more subtractive

way of designing, making the construction of a circuit hierarchical. In each stage,

the produced design can be enclosed in a black box, keeping only the important

information about it and allowing the discretization of the production processes.

This divide and conquer logic accelerated the integration time of a chip, since every

construction stage can be isolated and optimized, interfering as minimum as possible

with the remaining stages.
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Figure 1.2: Integrated circuit design flow.

The Integrated Circuit design can be separated into tree discrete areas: the

Front-end design using Hardware Description Languages (HDLs), the Verification

and the Back-end design or Physical design. Physical design is one of the most

essential areas of the IC design. Its’ target is to convert the abstract circuit descrip-

tion that is created from the Front-end design via Hardware Description Languages

(HDLs) into a 2D (or 3D) physical geometric layout, meaning an analytical map

that describes the size and position of millions of circuit components and their con-

nectivity on a small silicon surface. The final product of this phase is the input of

the fabrication phase and affects the performance, the area, the power consumption

and the reliability of the circuit. Physical design targets to compute the optimum

arrangement of the components in order to achieve efficient interconnection schemes

and, therefore, area, cost and power consumption minimization and obtain the de-

sired functionality and performance.

The Physical design flow can be separated into 6 main steps: Floorplanning,

Partitioning, Placement, Clock Tree Synthesis, Signal Routing and Timing Closure.
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The first tree steps aim to manually place specific components, split the layout

into discrete areas and finally place all the circuit components on the layout, opti-

mally. The rest of the steps handle the connectivity issues that arise and ensure the

functionality of the final product.

Placement is one of the most critical steps of the Physical design, since it

usually handles the majority of the circuit components that will be placed on a

layout. This means that a placer must be capable of placing millions of components

on the layout, which inevitably has to be handled algorithmically.

Since Physical design usually handles simply shaped components, like rectangles

and lines, it may be considered as a simple graphs problem. However this approach

is not enough because a lot of other factors influence the result, such as the electric

signals and the construction limitations. In general, Physical Design is an algo-

rithmic problem which can be handled with Electronic Design Automation (EDA)

tools.

The EDA tools are specialized software tools which implement algorithms in-

cluding all the necessary limitations. In the Physical design field, EDA tools target

to create better solutions in less time and they must be frequently updated to an-

ticipate the technological developments.

1.2 Introduction to Placement

Placement is the phase of the Physical design where the basic structure of a circuit is

created. It determines the exact final location of each component by eliminating the

overlap between them and optimizing a cost function which usually represents the

total wirelength. Interconnect delays influence chips’ performance more than ever,

since their density, size and performance are increasing, especially with aggressive

technology scaling into the deep submicron (DSM) era. The fact that Placement

sets the location of the circuit components and, hence, the overall interconnection

distances, it has significant impact on the final performance of the design.

Although Placement seems to be an easy problem to solve, it has been proven

that it is NP-complete. [1] This means that it cannot be solved in polynomial run
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Figure 1.3: Different placement techniques and names of various placers.

time in any known way, hence, approximation solutions have to be found using

heuristics.

Placement can be separated into three discrete sub problems: Global placement,

Legalization, and Detailed placement. Global placement calculates and assigns the

first and approximated location coordinates of each component on the chip. This

initial placement may be near-optimum, usually in terms of minimizing the intercon-

nection distances of all the components and simultaneously spreading them among

the layout, but it allows them to overlap to some degree.

Legalization is the part of the placement process where all the overlapping ar-

eas are eliminated, affecting the quality of the Global placement’s result as less as

possible. Finally, Detailed placement improves the overall quality of the circuit by

making corrections on the components’ positions.

As shown in Figure 1.3, many global placement techniques have been developed

thought the years. Greedy and Cluster-Growth are two bottom-up approaches which

offer fast results and are mostly used for small circuits or local optimizations but

can get stuck in local minimums. Min-Cut placers adapt top-down techniques using

graph partitioning algorithms which are usually easy to implement but not providing

the best solution in terms of placement quality. Stochastic methods choose the best

result after a series of placement tests and iterations. They are adapting and can

escape from local minimums but a lot of CPU demanding.
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Finally, Analytical placers minimize a continuous and analytical cost function,

which usually represents the wirelength, using numerical optimization methods. The

cost function can either be Linear, Nonlinear (and non-quadratic) using a log-sum-

exp function to express the wirelength, Warping using approaches of computational

geometry or Quadratic. Specifically, Quadratic placers need an additional factor to

reduce components’ overlap because they use the quadratic cost function to only

minimize the wirelength. Depending on that factor, they can be subdivided into

three categories: based on eigenvalues, partitioning, and force-directed.

1.3 Purpose of this Thesis

This thesis focuses on a Force-directed Global placer named Kraftwerk2. As an

Analytical and Quadratic placer, Kraftwerk2 offers a very qualitative result, quite

fast and efficiently using a new net model and, as a Force-directed approach, it

innovates by implementing two different additional forces, instead of one, using

a Poisson potential. In addition, extra features like the quality control and an

advanced module demand method, leave enough space for further investigation of

new enhancements. Hence, the construction of Kraftwerk2 will be set as a reference

point. At first, the algorithm must be studied and analyzed in order to find ways of

implementing its original form, facing every development issue that may occur by

researching construction solutions and replacements.

As a second step, the created algorithm will be tested using real industrial and

academic benchmarks in order to observe the pros and cons of it.

Finally, new heuristics will be put to test. The main goal of this thesis is under-

stand in depth the placer, decode the exact effect of each part, simplify it and then

enhance it or exclude changes that didn’t lead to better solutions.



Chapter 2

Background

2.1 Force-directed Placement

Force-directed placement techniques are known for offering high quality results in

a very short time. Since they belong to the quadratic family placers (QP), they

use a quadratic cost function, which is easily minimized. To create this function,

a connectivity model of all components has to be set, hence the net model. Each

component represents a standard cell or a macro and will be called ”cell” in this

thesis. A set of cells connected between them is called a net.

Due to the huge number of these connections, the analytical calculation of their

routed length would be an extremely time-consuming process. Half-Perimeter Wire

Length (HPWL) is a good estimation of the routed wirelength which is defined as

the width and height of the smallest rectangle that encloses all the cells of a net.

However, HPWL is not a quadratic function and cannot be minimized efficiently.

The sum of all nets must be represented by a net model in a useful way in

order to calculate the total wirelength cost in a quadratic function, since only pair

connections can be used. Mostly used quadratic net models are clique and star

model which simulate each net as the sum of all possible connections between every

pair of cells in the said net, or as the sum of all connections between every cell and a

pin, accordingly. For example, the clique net model uses the following cost function

for x and y coordinates and for each net n:

7
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Γn,x =
1

2

P∑
p=1

P∑
q=p+1

wx,pq(xp − xq)2, (2.1.1)

Γn,y =
1

2

P∑
p=1

P∑
q=p+1

wy,pq(yp − yq)2, (2.1.2)

where P is the number of the cells in the net, p and q are two different cells with

xp, yp and xq, yq coordinates and wx,pq the weight of the connection of p and q. The

sum of all nets’ wirelength represents the total quadratic cost:

Γ =
∑
n∈N

Γn,x + Γn,y, (2.1.3)

where N is the number of nets.

Quadratic placers usually complete a separate Quadratic placement step to reach

the wirelength cost minimum and then proceed to a spreading procedure. Force-

directed placers complete this procedure by simulating one or more additional forces

in order to spread the cells and reduce their overlap. This force is usually set as

an elasting spring and the overall algorithm is terminated when force equilibrium is

achieved.

Many Force-directed placers have developed different approaches and techniques

in order to achieve a better result. Eisenmann’s Kraftwerk [2] uses Poisson’s equation

to create a constant force via an electrostatic potential. FAR and mFAR utilize a

pair of forced to spread the components while FastPlace and RQL use fixed points

to pull each component simulating a spring force.

Kraftwerk2 is a force-directed placer which combines these and other similar

approaches and creates new enhancements, making it a very fast algorithm. The

next section analyzes each part of the placer Kraftwerk2.

2.2 Kraftwerk2

Kraftwerk2 is an iterative, Analytical algorithm, Quadratic and Force-directed, as

explained previously. This means that it is based on an additional force that is
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applied to a (usually big) number of movable circuit components (cells) to eventually

achieve force equilibrium and finally create a satisfying placement solution.

Kraftwerk2 innovates, separating that force in two discrete forces: the Move and

the Hold force. By creating a target point for each cell, the Move force pulls them

to the said points, simulating the force of an elastic spring connected between every

cell and it’s point. The position of each point is calculated from the gradient of an

electrostatic field created by Poisson’s equation, given the current cell’s position.

The Hold force acts as an additional force to prevent moved cells from collapsing

back to their previous position. It’s value depends on the Net force that is be

explained subsequently.

As a second concept of Kraftwerk2, the Bound2Bound approach is used as the

net model of the algorithm. This net model calculates the weight of each two-pin

connection that will later be used to determine the total wirelength cost and the

Net force. The Net force acts as an elastic spring between pairs of cells and the I/O

pins, pulling them back to the positions with the minimum wirelength.

This diploma thesis excludes the Bound2Bound net model approach, replacing

it with the simplest Clique net model and focusing on the rest of the algorithm’s

parts instead. Nonetheless, each part of the initial Kraftwerk2 approach that has

been mentioned is explained below, including the Bound2Bound model, as well as a

number of additional features that complete the placer: the Cells’ Weight, the Scale

Factor k, the Halos Prevention, the Framed Supply and the Convergence.

2.2.1 Net Model and Net force

As explained, Kraftwerk2 introduces the Bound2Bound net model. This model uses

the same quadratic cost function as the Clique model but with a different weight

function:

wB2B
n,y =

0, if cell p and q are inner cells

2
P−1

1
xp−xq , else

(2.2.4)

for x coordinate and respectively for y. This model ignores the inner connections

of a net and takes into account only the boundary ones. This way it represents
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the HPWL approach quite accurately and hence, it estimates the routed wirelength

efficiently.

Since the cost function is created, it can be transformed into a matrix-vector

notation:

Γx =
1

2
xTCxx+ xTdx + const, (2.2.5)

Γy =
1

2
yTCyy + yTdy + const, (2.2.6)

where x and y are vectors which contain the position coordinates of each cell, deriva-

tized and Cy are matrices which represent the connectivity between cells and dx, dy

reflect the connections between cells and pins.

By derivatizing Γ for x and y and setting the derivative to zero, the minimum

can be obtained.

∇xΓ = Cxx+ dx = 0, (2.2.7)

∇yΓ = Cyy + dy = 0, (2.2.8)

This means that when the derivative is zero, the position vectors x and y contain

the coordinates of the cells with the minimum wirelength cost.

In Quadratic placement, the cost function can also represent the total energy of

a springs system. Hence, it’s derivative can be viewed as the sum of elastic forces

between cells, meaning the Net force F net:

F net
x = Cxx+ dx, (2.2.9)

F net
y = Cyy + dy. (2.2.10)

However, Net force is not enough. To spread cells in order to eliminate the

overlap, Kraftwerk2 introduces a set of two additional forced: the Hold force and

the Move force.



2.2. Kraftwerk2 11

2.2.2 Hold force

Kraftwerk2 is an iterative algorithm. To prevent cells from collapsing back to the

positions of the previous iteration, an additional force is added except the Net force

and the one that will spread the cells (Move force): the Hold force. Hold force equals

to the Net force of the previous iteration but has an opposite direction.

F hold
x = −(Cxx

′ + dx), (2.2.11)

F hold
y = −(Cyy

′ + dy), (2.2.12)

where x’ and y’ the position vertexes at the start of the iteration. This way, at the

start of each iteration and before the new Move force is applied, there is a force

equilibrium between cells.

2.2.3 Move force

One of the most important concepts of Kraftwerk2 is the construction of the Move

force. At first, depending on the current cells position, a Demand and Supply System

is created:

D(x, y) = Ddem(x, y)−Dsup(x, y), (2.2.13)

where Ddem(x, y) is the demand of cells and Dsup(x, y) is the supply of the place-

ment area for x and y. More specifically,

Ddem(x, y) =
n∑
i=1

di ∗R(x, y;x′i −
wi
2
, y′i −

hi
2
, wi, hi), (2.2.14)

where di is the density of each cell i (can also be set to one) and R() is a rectangle

function which returns one at the points inside the cell, or zero otherwise:

R(x, y;xll, yll, w, h) =

1, if 0 ≤ x− xll ≤ w ∧ 0 ≤ y − yll ≤ h

0, else

(2.2.15)
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where x, y the input point coordinates, xll, yll the cell’s lower left corner coordinates

and w, h the cell’s width and height. Also,

Dsup(x, y) = dsup ∗R(x, y;xchip, ychip, wchip, hchip), (2.2.16)

where xchip, ychip, wchip and hchip are the placement area’s constrains and dsup the

module supply density, set as:

dsup =
n∑
i=1

di ∗ Ai
Achip

, (2.2.17)

where Ai the cell’s i area and Achip the total placement’s area.

Since the construction of the system is complete, it can be used to create the

electrostatic potential Φ:

(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = −D(x, y). (2.2.18)

Using the partial derivative of the potential function for each point where the

cells are placed, the gradient is calculated which will lead to the creation of target

points:

x̊i = x′i −
∂

∂x
Φ(x, y)

∣∣∣
(x′i,y

′
i)

(2.2.19)

ẙi = y′i −
∂

∂y
Φ(x, y)

∣∣∣
(x′i,y

′
i)

(2.2.20)

This way, instead of moving cells directly to these points, Kraftwerk2 creates

target points and simulates forces that pull cells to them like a spring. According

to Hook’s law, the Move force can be set as

Fmove = Fmove
x + Fmove

y = C̊x ∗ (x− x̊) + C̊y ∗ (y − ẙ). (2.2.21)

C̊x, C̊y are diagonal matrices filled with the weight constrain ẘi which represents the

spring constant of the force. The values of ẘi will be explained below.
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2.2.4 Quality Control

Another important feature of Kraftwerk2 is the ability to control the overall quality

and execution time. This can be achieved by adjusting the weight factor ẘi of the

Move force. At first, it is initialized as

ẘi =
Ai
Aavg

∗ 1

n
, (2.2.22)

where Aavg is the average cell area and n the number of cells. Since Move force is

a simulation of an elastic spring force, by adjusting the spring constant, hence the

ẘi, Move force can increase or decrease. To do that, a new factor is applied to ẘi:

ẘ′i = ẘi ∗ k(µ). (2.2.23)

k(µ) is calculated from the function µ = 1 + tanh (ln (µT
µ

)), where µ is the average

cell movement in one iteration and µT is the user-set target average movement. As

a result, the user can set a high µT for a fast placement result or low for better

placement quality.

2.2.5 Halos Prevention

Figure 2.1: a) Halo around the large cell. b) Halo elimination with cells’ density

scale down.
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Figure 2.1 shows the a phenomena that can occur when large cells are placed.

These halos are empty regions created around them and can be corrected by scaling

down the cells’ density, hence the di factor:

di =

1, if Ai < Alarge√
Alarge
Ai

(1–dsup) + dsup, else

(2.2.24)

Alarge is usually 50 times the average cell area.

2.2.6 Convergence

Since the algorithm aims to normalize the electrostatic potential in each iteration,

Kraftwerk2 converges in terms of cells overlap and spreading procedure. A good

metric to be used as the termination condition is to compare the current placement

area with the sum of all cells’ area. If they are equal, it means that there is no

overlap. Setting A∪ as the cells’ placement area and A the sum of their area, the

total overlap percentage can be set as:

Ω = 1− A∪
A
. (2.2.25)

Usually when Ω is under 0.2 (or 20%) the placement procedure can be terminated

and continued by a legalizer.

2.2.7 Summarising the Algorithm

After calculating each one of the three forces, Net force, Hold force and Move force,

Kraftwerk2 achieves force equilibrium in each iteration by solving the linear equa-

tions:

(Cx + C̊x)∆x = −C̊x ∗ Φx (2.2.26)

and

(Cy + C̊y)∆y = −C̊y ∗ Φy. (2.2.27)

The new placement positions are calculated by solving the equations with respect

to ∆x and ∆y and then adding the results to the old position values. The following

figure describes the overall algorithm flow.
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function Kraftwerk2 Placer

Quadratic P lacement();

while Ω > 20% do

Create Demand Supply System();

Calculate Potential();

Apply Bound2Bound model();

Create Cx C̊x Φx();

Create Cy C̊y Φy();

Solve linear equations();

Update P lacement Positions();

Quality Control();

end while

end function

Figure 2.2: The Kraftwerk2 Algorithm.

As shown in the pseudo-algorithm, the initial part is the Quadratic placement.

The construction of the needed matrices is completed in a different thesis, as it will

be explained in the next chapter. The iterative part of Kraftwerk2 follows, where

as a first step, the Demand and Supply system is created, which is used as an input

for the Poisson’s equation in order to simulate the electrostatic potential. Then,

the target points are calculated based on the gradient of the cells’ current positions.

By filling the matrices and vectors with the calculated values and solving the linear

equation, the new positions can be set to each cell.

2.3 Further Analysis and Implementation Notes

2.3.1 Poisson’s Equation

The creation of the Electrostatic Potential via the Poisson’s Equation is one of

the main concepts of Kraftwerk2, as it leads to the calculation of the Move force.

However, to algorithmically solve this equation, a numerical solver has to be used
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in order to approximate the solution in a reasonable amount of time. As a result,

the input system as well as the output solution have to be discrete. The continuous

function of the Demand-Supply System has to be replaced with a grid structure

producing an also discrete approximation structure for the potential.

An additional consequence of the approximation approach is the calculation of

the gradient values. Since there is no continuous function of the core area, the

partial derivative of the potential on each point cannot be calculated accurately.

2.3.2 Bound2Bound Net Model

The Bound2Bound net model is basically removing all inner two-pin connections

of a net, taking into account only the ones on the boundary pins. It affects the

placement quality by changing only the weight values of C matrix. Hence, it can

safely be replaced with a simpler approach. In this thesis, the original clique model

will be used, reducing the development time. Kraftwerk2 with the new net model

will be set as a reference point, giving as more time to focus on the remaining parts

of the algorithm (Demand-Supply system, Poisson’s equation etc.) and investigate

in depth new heuristics and approaches. The implementation of Bound2Bound and

the analysis of the influence of net models will be scheduled as future work.

2.3.3 Quality Control

The default approach of the quality control, namely the scale factor of the cells’

weights, κ(µ), as presented in chapter 2, is:

κ(µ) = 1 + tanh (ln (
µT
µ

)) (2.3.28)

The hyperbolic tangent function, tanh , has a target set limited to the range (−1,

1), meaning that κ(µ) is limited to the range (0, 2). Since this is the only factor

to scale up or down the cells’ movement based on the target movement, this range

may not be enough, considering the 1/M factor of the weights wi, which creates a

very small number in case of a very big circuit. A different approach of the factor

κ(µ) will be presented in chapter 4.



2.3. Further Analysis and Implementation Notes 17

2.3.4 Convergence

As explained in chapter 2, the Kraftwerk2 algorithm converges, reducing the overall

overlap in each iteration. Again, due to the grid structure, the overlap will be

approximate. From the overlap’s equation,

Ω = 1− A∪
Amod

, (2.3.29)

Amod was defined as the sum of all cells’ area, which is a straight forward calculation.

However, A∪ was defined as the current cells’ spread area. This would be an easy

and fast calculation if the Demand was a continuous function, giving the exact

perimeter of the current placement. Without this function, the calculation of the

exact placement area will be a very complex and expensive in time procedure.



Chapter 3

Contribution and Development

3.1 Introduction

This chapter focuses on the implementation and the development of the Kraftwerk2

algorithm, including this thesis’ contribution. Due to the complexity and size of

it, the algorithm was split into two diploma theses: Xanthos Vlachos’ work and

mine. Both parts were developed in C (programming language) and imported into

an already existing EDA tool which provided a visual representation of each circuit’s

placement and many other features such as the wirelength cost calculation.

This diploma thesis focuses of the calculation of the move force part. Based

on the initial form of the Kraftwerk2 algorithm, my contribution consists of the

following parts:

• A different construction method of the Demand - Supply System.

• The calculation of the Electrostatic Potential using a fast Poisson Solver.

• An approaching method of the calculation of the cells’ gradient.

• The creation of a Gradient Normalization method.

• A new Quality Control factor function.

• A differentiated calculation of the global overlap and the introduction to a

new termination condition.

18
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• The construction of the framed supply approach

The diploma thesis of Xanthos Vlachos consists of the construction of the rest

parts of the algorithm, including it’s main body, the creation of the matrices and

vectors of the final equation, the solving procedure and many other optimization

parts.

The unification of the two theses created a differentiated edition of Kraftwerk2

capable of successfully placing real benchmarks quite efficiently.

3.2 The New Distribution Model Approach

The construction of the Distribution Model, namely the Demand and Supply Sys-

tem, was one of the most critical issues that had to be fixed via an approximate

solution. The reason was that this system would be the input to a solver which

uses numerical methods. As a result, the continuous function D(x, y) couldn’t be

used; instead, a set of discrete set of values had to be implemented. This lead

to the dicretezation of the system using a grid structure. Thus, since the initial

Figure 3.1: Demand-Supply Grid example.

function D(x, y) of the system returns a value given the x and y coordinates of the

core area, this area can be partitioned into equally sized pieces, named bins . The
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function Demand Supply System

for each Cell k do

bin starti ← cell startx[k]/bin width;

bin startj ← cell starty[k]/bin height;

bin endi ← cell endx[k]/bin width;

bin endj ← cell starty[k]/bin height;

for Each Bin i from bin starti to bin endi do

for Each Bin j from bin startj to bin endj do

Demand[i][j]← Calculated Cell Area to Bin Area Ratio;

end for

end for

end for

for Each Bin i do

for Each Bin j do

Supply[i][j]← dsup;

end for

end for

D ← Demand− Supply;

return D;

end function

Figure 3.2: Demand Supply System Function.

new approach of the Distribution model can now be stored as a two-dimensional

matrix, which returns values given the exact bin. This solution will clearly cause

an approximation error, but not a noticeable one in the final result, especially when

the number of bins is the right one, something that will be discussed later.

Both the Supply and Demand have to be defined as matrices. In the case of the

Demand, each cell will overlap a number of bins. Since we do not refer to points

of the core area anymore, these bins cannot be set to one. Hereafter, each bin will

be set to the ratio of the overlapping area of the cell to the area of the bin. The

location of the start of the cell (top left corner) and the location of the end of the
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cell (bottom right corner) are translated to bin start and bin end and the demand

for each bin of that range is calculated. For example, in Figure 3.1 the CELL 1

overlaps 12 bins, where in particular, the top left bin is set to 0.25, the one on it’s

right to 0.5, etc.. The bins that are overlapped by 100% from a cell are set to 1 and

and the ones that are overlapped from more than one cell are set to the sum of their

values.

In the case of the Supply, an easier approach is implemented, setting every bin

to a constant value dsup as shown in the Chapter 2. The overall construction of the

system is enclosed to the Demand Supply System function as presented in Figure

3.2. A visual representation of D is shown in Figure 3.3,which corresponds to the

initial quadratic placement of a circuit. Each colored box represents every bin’s

value.

Figure 3.3: Left: Initial Quadratic Placement. Right: Demand-Supply System.

3.3 Electrostatic Potential Φ

Since D is created, the computation of the electrostatic potential is a more auto-

mated procedure. For this procedure, the Fast Poisson Solver Routine from Intel’s
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Math Kernel Library (MKL) was used, offering the most suitable and fast solver for

this occasion.

Figure 3.4: Left: Demand-Supply System. Right: Potential Φ.

The most difficult part of this section was to choose the boundary conditions,

which define the value of each position of the boundary surfaces; in our case, the

perimeter of the chip. The Dirichlet boundary condition sets the exact value D

at all of the boundary surfaces. The Neumann boundary condition sets the ∇D

at the the boundary surfaces.

Each case was tested and the experiment showed that Neumann condition

results a better solution, as presented in the next chapter. Figure 3.4 shows the visual

representation of the Demand - Supply System with the corresponding Potential Φ

of a placement example.

3.4 Gradient

Given the electrostatic potential matrix Φ, the final step for the calculation of the

target points is the creation of the gradients vectors. As shown in chapter 2, each

element of the vectors equals to the partial derivative of the potential at the exact

position of each cell, for the x and y dimensions. Due to the grid structure ap-
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proach that is being used for the potential, these gradients have to be calculated

approximately.

From it’s definition, the partial derivative can be calculated as shown bellow:

Φx =
∂Φ

∂x
= lim

h→0

Φ(x+ h, y)− Φ(x, y)

h

Φy =
∂Φ

∂y
= lim

h→0

Φ(x, y + h)− Φ(x, y)

h

(3.4.1)

or

Φx =
∂Φ

∂x
= lim

h→0

Φ(x, y)− Φ(x− h, y)

h

Φy =
∂Φ

∂y
= lim

h→0

Φ(x, y)− Φ(x, y − h)

h

(3.4.2)

Since the smallest value of h can only be the width and the height of the bin, the

equations of the gradients can be transformed as follows:

Φx =
Φ[i+ 1, j]− Φ[i, j]

hx

Φy =
Φ[i, j + 1]− Φ[i, j]

hy

(3.4.3)

or

Φx =
Φ[i, j]− Φ[i− 1, j]

hx

Φy =
Φ[i, j]− Φ[i, j − 1]

hy

(3.4.4)

where i, j are each bin’s matrix location values and hx, hy are the bins’ width

and height, respectively. Calculating the average value of the two approaches, the

gradient vectors can be created with a small approximation error.

3.4.1 Gradient Normalization

The values of the gradients play a key role to the final solution. As explained in

Chapter 2, the x and y position of the target point for each cell is calculated via the

expression

x̊i = x′i −
∂

∂x
Φ(x, y)|(x′i,y′i),

ẙi = y′i −
∂

∂y
Φ(x, y)|(x′i,y′i).

(3.4.5)
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Scaling up or down the calculated gradients will affect the target points which

will result a slower of faster spreading procedure. By calculating the average value

of the gradients of the current iteration and given the desirable value from the user,

a scale factor can be extracted and multiplied to every gradient:

∂

∂x
Φ(x, y)|(x′i,y′i) = sx ∗

∂

∂x
Φ(x, y)|(x′i,y′i),

∂

∂y
Φ(x, y)|(x′i,y′i) = sy ∗

∂

∂y
Φ(x, y)|(x′i,y′i).

(3.4.6)

In addition, this factor can also be multiplied by the current overlap, since the

spreading procedure must be more detailed as the algorithm converges. Specifically,

the scale factor is calculated as show bellow:

sx =
p ∗Core Size X ∗Overlap

Average Gradient X
,

sy =
p ∗Core Size Y ∗Overlap

Average Gradient Y
,

(3.4.7)

where p is the desired percentage of the core dimension which the user wants the

average gradient to be equal to. For the purpose of the experiments, p will be set

to 0,1.

3.5 Quality Control

As explained in chapter 3, the initial edition of the κ(µ) factor for the quality control

is limited to the range (0, 2). For that reason, an other approach is also implemented

to set the upper limit to infinity using the Reciprocal Function :

κ(µ) =
1
µ
µT

(3.5.8)

Besides the upper limit, the two approaches have a quite similar set of values, as

shown in Figure 3.5.

The second approach will prove important, as it scales up the small step size of

the first one. Their comparison is shown in the Experiments section.

The value of the target movement µT is set by the user, however a default value

has to be chosen. In the experimental procedure this variable will be tested.
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Figure 3.5: Graphical representation of the two quality control approaches.

3.6 Termination Condition

The already created grid structure can be used to calculate the overlap with a small

approximation error. Namely, every bin’s value is checked and if it is greater that

1, the whole bin’s area is added to A∪. Instead, when the bin’s value is lower than

1, it’s area is multiplied with that value.

Figure 3.6: Cause of the overlap approximation error. Left: The bin in the red

rectangle has a demand value of 1. Middle: The actual spread area of the cells.

Right: The calculated spread area of the cells.

That way, when a cell overlaps, for example, only half of the area of a bin then
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the half of the bin’s area is added to A∪. The problem with this approach occurs

when multiple cells overlap with each other in one bin’s area. When all of them are

placed in one small region of it, the bin’s demand value will be greater than the

ration of the area that has been overlapped. Figure 3.6 shows a simple example of

this case, where the two cells overlap only half of the area of the leftmost and third

from top bin, and yet, the bin’s demand value is 1. This approximation error is

unavoidable but decreases when the size of the bins is small enough. In any case,

the error will be greater that zero, causing a faster termination time and spreading

the cells slightly less than the set value.

Taking advantage of the bins structure, another termination condition can be

the average bin density:

Density =
1

NX ∗NY
∗
i=NX,j=NY∑

i,j=1

|Demand[i][j]− 1|, (3.6.9)

where NX, NY are the size of the structure for the x and y coordinates. The value of

this metric reduces as the cells spread over the core area and the number of empty

or much overlapped bins is less.

3.7 Overall Algorithm Flow

The main structure of the algorithm does not change much. The differences are

located in each function, where the Bound2Bound net model is now replaced, the

Demand-supply system, the electrostatic potential and the gradients are now dis-

crete, the gradient normalization feature is added and the Quality control function

is changed. Finally, the termination condition now includes the Total density, where

its termination value is heuristically set to 0.7.
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function New Kraftwerk2 Placer

Quadratic P lacement();

while (Ω > 20) Or (Density > 0.7)% do

Demand Supply System();

Calculate Potential();

Calculate Gradients();

Gradients Normalization();

Create Cx C̊x Φx();

Create Cy C̊y Φy();

Solve linear equations();

Update P lacement Positions();

Quality Control();

end while

end function

Figure 3.7: The New Kraftwerk2 Algorithm.



Chapter 4

Experiments

4.1 Experimental Methodology

For the experimental procedure, eight industrial and academic benchmarks were

used covering a range of movable components (cells) number from 716 to 219263.

The main comparison metrics were the global overlap and density, the total wire-

length cost, the number of iterations and the total execution time. Equally impor-

tant was the observation of the visual representation of each benchmark, since it is

impossible to keep track of the movement of each cell in such big examples. Table

4.1 shows the basic characteristics of these Benchmarks.

Benchmark # Cells Core Width Core Height

BM1 716 29.88 29.952

BM2 2343 48.06 47.808

BM3 18793 108.72 108.864

BM4 - bridge32 1 30675 319 320

BM5 - fft 32281 342 342

BM6 - cordic I4 41601 360.6 360

BM7 - matrix mult 155325 696.8 696

BM8 - b19 fast 219263 1233.8 1234

Table 4.1: Characteristics of the Benchmarks used for the experiments

28
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For the comparison purposes of each feature that will be tested, a default setup

will be set. Hence, these features will be considered as selected, unless otherwise

specified. Namely, this setup consists of the following:

• Neumann Boundary Condition for the Electrostatic Potential

• 20% Overlap as Termination Condition

• κ(µ) = 1
µ
µT

as Quality Control scale factor

• No Gradient Normalization

• corewidth
sitewidth

and coreheight
sitewidth

as number of bins horizontally and vertically in the grid

structure

• 5% of the core width as target movement (µT )

• 50% utilization

• Aspect ratio 1

Boundary Condi-

tion

QC Grad. Nor-

malization

Termination

Condition

Setup 0 Neumann (Case 1) Reciprocal No 20% Overl.

Setup 1.1 Dirichlet (Case 1) Reciprocal No 20% Overl.

Setup 1.2 Dirichlet (Case 2) Reciprocal No 20% Overl.

Setup 1.3 Neumann (Case 2) Reciprocal No 20% Overl.

Setup 2 Neumann (Case 1) Hyperbolic

Tangent

No 20% Overl.

Setup 3 Neumann (Case 1) Reciprocal Yes 20% Overl.

Setup 4 Neumann (Case 1) Reciprocal No 70% Dens.

Table 4.2: Characteristics of the Setups used for the experiments

By changing one feature at a time, a number of setups is created and defined

above. Setup 0 is the reference point, as explained previously, in which the features



4.1. Experimental Methodology 30

have been chosen in such a way that they lead to a more effective, stable and,

at the same time, close to the original Kraftwerk2 approach. Hence, no Gradient

Normalization is applied, the termination condition is the default one with the same

overlap percentage, but the new scale factor of the Quality Control is used because

it reduces the execution time drastically. Furthermore, the global utilization is set to

50%, since the quality of the spreading procedure is important. Hence, overlap must

be reduced but by kipping cells together. A big utilization percentage will show if

cells spread all over the core area. In addition, the bins’ width and height is set to

the site width, which the smallest fraction on a chip, and the target movement is

heuristically set to 5% of the core width. Finally, the Neumann boundary conditions

are selected, as they give a more qualitative result and the Aspect Ration is set to

1 since it is excluded from the experimental procedure.

In Table 4.2 the constrains of each setup are defined.
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4.2 Results

4.2.1 Initial Approach - Setup 0

The execution time mostly depends on the number of iterations. The initial QP is the

factor that affects that number the most. Besides that, the number of connections

between cells and pins may cause an increase in the value of net forces, slowing

down the spreading procedure. For example, BM4 is 1.6 times bigger than BM3,

with about the same QP overlap but with 8.6 times less QP wirelength cost. As a

result, BM4 needs less placement iterations.

Benchmark QP WL Cost QP Over-

lap

QP Den-

sity

Bins

(width*height)

BM1 24706.936 0.7352 1.2344 332*333

BM2 104045.845 0.7515 1.2528 534*531

BM3 453795.431 0.8928 1.3925 1208*1210

BM4 52827.599 0.9289 1.4277 1595*1600

BM5 5510957.27 0.5935 1.0935 1710*1710

BM6 201502.42 0.9722 1.4728 1803*1800

BM7 21309754.06 0.7531 1.2533 3484*3480

BM8 1514712.412 0.9797 1.4794 12338*12340

Table 4.3: Results before the spreading procedure (QP).

Table 4.3 and 4.4 show the results of Setup 0 as defined previously before and

after the spreading procedure. These results will be useful as a reference point for

the rest test cases.



4.2. Results 32

Benchmark Overlap Density WL Cost Iterations Time

BM1 0.1967 0.6916 36359.411 53 17 sec

BM2 0.1997 0.6981 155517.039 112 56 sec

BM3 0.1994 0.6997 1255921.204 289 7 min 14 sec

BM4 0.1999 0.7007 1591264.039 206 4 min 32 sec

BM5 0.1999 0.7000 8222871.877 227 3 min 57 sec

BM6 0.1996 0.6992 1283282.740 205 5 min 10 sec

BM7 0.1999 0.6996 32498874.957 439 1 h 5 min 38 sec

BM8 0.1998 0.6999 27364908.245 602 5 h 16 min 55 sec

Table 4.4: Final results of Setup 0

In the following Figures 4.1, 4.2 and 4.3, the overall visual illustration of the

placement, as well as the Average movement, Target movement, Overlap and Density

are shown in detail for 4 representable Benchmarks (BM1, BM3, BM6 and BM7).
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Figure 4.1: Visual representation of the initial and the final placement result.

In Figure 4.2 the Average movement is reduced during the iterative procedure. It

can be observed that in BM1 the movement is reduced smoothly in contrast with the

rest of the benchmarks, where the first 20 iterations result much more movement.

This is due to the initial quadratic placement. In BM1 the QP overlap is relatively

small and the maximum density is quite less than the density on the QP of the rest

of the benchmarks. This results a smoother potential and, hence, smaller gradient
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Figure 4.2: Average cells movement and average target movement in each iteration

graph.

values.

Figure 4.3 shows clearly that the overlap and density values change in the same

way during the iterations.
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Figure 4.3: Reduction of the overlap and density over the iterations.

4.2.2 Boundary Condition - Setup 1

To choose the Boundary Condition, both Dirichlet and Neumann were tested, setting

the following values in four different cases:

• Dirichlet Boundary Condition

– u(x, y) = 0

– u(x, y) = Φ(x, y)

• Neumann Boundary Condition

– ∂u
∂x

(x, y) = 0,

∂u
∂y

(x, y) = 0

– ∂u
∂x

(x, y) = Φ(x, y),

∂u
∂y

(x, y) = Φ(x, y)
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In the initial approach, the first case of the Neumann Boundary Condition has

been selected.

Dirichlet Case 1 Dirichlet Case 2 Neumann Case 1 Neumann Case 2

Conv WL Iter Conv WL Iter Conv WL Iter Conv WL Iter

BM1 No - - No - - Yes 36359.411 53 Yes 36084.328 49

BM2 No - - No - - Yes 155400.919 111 Yes 156556.298 110

BM3 No - - No - - Yes 1255921.204 289 Yes 1261405.079 306

BM4 No - - No - - Yes 1591264.039 206 Yes 1592354.556 208

BM5 No - - No - - Yes 8222871.877 227 Yes 8191609.302 219

BM6 No - - No - - Yes 1283282.740 205 Yes 1283619.262 205

BM7 No - - No - - Yes 32498874.957 439 Yes 32472792.421 445

BM8 No - - No - - Yes 27364908.245 602 Yes 27364908.245 602

Table 4.5: Final results for each case of the Boundary Conditions

As shown in Table 4.5, the cases of the Dirichlet Boundary Condition didn’t

converge while the cases of Neumann converged almost similarly.
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Figure 4.4: Progress of the overlap and density over the iterations.

The graphs in Figure 4.4 confirm this lack of convergence, since the overlap and

density start to increase again at some point. Figure 4.5 shows the small difference

between the two Neumann cases, where the first case results a wider spreading result.



4.2. Results 38

Figure 4.5: Placements for each boundary condition case.
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4.2.3 Quality Control - Setup 2

To test the new Quality Control factor approach, κ(µ), Table 4.6 presents the com-

parison with the default Kraftwerk2’s approach. It is important to note that tests

have an upper limit of 10000 iterations. With the default approach, almost all the

tests reached that limit, so their reached overlap will be the common terminate

point.

Setup 2 Setup 0

Overlap WL Iteration Overlap WL Iteration

BM1 0.1999 34960.535 1320 0.1967 36359.411 53

BM2 0.1999 149372.275 4301 0.1997 155517.039 112

BM3 0.2674 1145178.781 10000 0.2668 118756.447 205

BM4 0.2111 1574902.382 10000 0.2103 1577093.060 197

BM5 0.2627 746665.050 10000 0.2625 754584.545 55

BM6 0.2331 1251864.485 10000 0.2330 1250975.298 179

Table 4.6: Final results for each case of the Boundary Conditions

From the results it can be concluded that the new Quality Control factor causes

a significant reduction of the number of the iterations, sacrificing a very small per-

centage of the total wirelength.

Tables 4.7 and 4.8 present the influence of the µT ’s value in the benchmarks

BM1, BM3, BM6 and BM7. The value of µT if set to the percentage of the core

dimension for x and y coordinates. In these experiments, different values of this

percentage were tested.
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µT (% of Core

Dimensions)

BM1 BM3 BM6 BM7

0.05 36359.411 1255921.204 1283282.740 32498874.957

0.1 36395.873 1287118.937 1282041.774 32804508.225

0.2 37251.704 1343340.874 1285275.455 33499937.929

0.5 39113.120 1465108.506 1333792.799 35444375.967

1 40440.871 1712020.870 1467538.682 37931398.839

5 43114.379 2329551.785 1583137.325 47240035.201

10 43658.307 2670956.842 1682853.637 51923138.276

Table 4.7: Influence of the µT (given as percentage of the Core Dimensions X and

Y) to the total wirelength cost.

µT (% of Core

Dimensions)

BM1 BM3 BM6 BM7

0.05 56 289 205 439

0.1 29 196 145 290

0.2 19 126 104 191

0.5 13 71 68 108

1 10 46 50 73

5 8 21 24 47

10 7 17 18 38

Table 4.8: Influence of the µT (given as percentage of the Core Dimensions X and

Y) to the number of placement iterations.

Table 4.9 shows the major reduction of the number of placement iterations with

the increase of the total wirelegth cost by a much smaller percentage.
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BM1 BM3

WL Iter WL Iter

0.05 to 0.1 0.1% -48.2% 2.48% -32.17%

0.1 to 0.2 2.35% -34.48% 4.36% -35.71%

0.2 to 0.5 4.99% -31.57% 9.06% -43.65%

0.5 to 1 3.39% -23.07% 16.85% -35.21%

1 to 5 6.61% -20% 36.07% -54.34%

5 to 10 1.26% -12.5% 14.65% -19.04%

BM6 BM7

WL Iter WL Iter

0.05 to 0.1 -0.09% -29.26% 0.94% -33.94%

0.1 to 0.2 0.25% -28.27% 2.12% -34.13%

0.2 to 0.5 3.77% -34.61% 5.8% -43.45%

0.5 to 1 10.02% -26.47% 7.01% -32.40%

1 to 5 7.87% -52% 24.54% -35.61%

5 to 10 6.29% -25% 9.91% -19.14%

Table 4.9: Percentage of increase/decrease of the wirelength and number of iterations

from the increase of the µT (% of the Core Dimensions X and Y).
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4.2.4 Gradient Normalization - Setup 3

The effect of the new Gradient Normalization is more obvious in large scale bench-

marks. Figure 4.6 bellow shows the difference between the initial setup and the

setup 3 with the new feature. Note that both placements of each benchmark are

terminated at the same iteration.

4.2.5 Termination Condition - Setup 4

As the table 4.4 shows, the density values of benchmark placements are very close

to 0.7 when the overlap value is 0.2. This means that the termination condition can

be safely replaced . The critical difference of the density condition is that it has no

estimation error, as explained in chapter 4. Therefore, it would be a safer option to

use in bigger or more complicated benchmarks in order to avoid excessive numbers

of iterations.
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Figure 4.6: Gradient normalization results.



Chapter 5

Conclusions and Future Work

Within this thesis, a successful analysis, implementation and improvement of Kraftwerk2

has been completed. It became clear that it has a lot of potentials to be improved.

In combination with the new enhancements, the algorithm is capable of facing most

circuits and offer a very fast but qualitative result by adjusting each user-given

constrain.

The algorithm can be extended in many levels in order to become a more com-

plete placer. Specifically, cluster support can be included, as well as 3D and timing-

driven placement. Another concept is to replace Poisson’s equation with a blurring

algorithm in order to achieve faster results. To complete the placer, a net model

must be implemented and compared with the Bound2Bound. Execution time can

be reduced by placing parts on a chip simultaneously in floorplanned designs.

Finally, Krafterk2 must be combined with detailed-placer/legalizer, since it al-

lows a percentage of overlap in the result.
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