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Abstract 

 

Pressure and temperature driven rarefied gas flows through long rectangular 

microchannels, including the interaction between the gas and the channel wall, have been 

extensively investigated due to their theoretical and technological interest. However, several 

issues related to the estimation of the accommodation coefficients characterizing the gas-

surface interaction are still under investigation. In the present diploma thesis an attempt is 

made to further improve our understanding on this topic by comparing experimental and 

numerical results and deducing the accommodation coefficients based on reversed 

engineering practices. More specifically, based on specific experimental, geometrical and 

operational data, the deduced flow rates are computed and accordingly compared with the 

corresponding measured ones. The accommodation coefficients are identified in order to 

match the numerical with the experimental mass flow rates. This work is done for both the 

pressure and temperature driven flows and for five gases, namely Helium, Neon, Nitrogen, 

Argon, Krypton. The pressure driven flow is a Poiseuille type flow and the temperature one is 

the so-called thermal creep flow. The computed results are based on kinetic modeling using 

the linearized Shakhov kinetic model subject to Maxwell and Cercignani-Lampis boundary 

conditions. In the pressure driven flow a very good agreement between the computational and 

experimental results is achieved for both boundary conditions and all gases concluding to a 

suitable value for the accommodation coefficients. For each gas a specific value of the 

accommodation coefficient has been estimated providing excellent agreement between 
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computations and measurements in the whole range of gas rarefaction. On the contrary 

significant discrepancies have been observed in the temperature driven flow. The 

accommodation coefficients as well as the imposed temperature difference has been 

accordingly modified in order to improve the agreement. It has been found that the 

accommodation coefficients providing good agreement between computations and 

measurements are not constant and strongly depend on the temperature difference and the gas 

rarefaction parameter. Therefore, the obtained results cannot be generalized. Further work on 

this issue is required. 

 

Key words: Kinetic theory, Shakhov, Maxwell, Cercignani-Lampis, microflows, gas-surface 

interaction, accommodation coefficients 
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Περίληψη 

Τόσο στη ροή αραιωποιημένων αερίων σε αγωγούς ορθογωνικής διατομής λόγω διαφοράς 

πίεσης και θερμοκρασίας όσο και στην αλληλεπίδραση μεταξύ αερίου και τοιχώματος έχουν 

αφιερώθει πολλές μελέτες λόγω του επιστημονικού και τεχνολογικού ενδιαφέροντός τους. 

Ωστόσο, αρκετά θέματα σχετικά με τον υπολογισμό των συντελεστών που χαρακτηρίζουν 

την αλληλεπίδραση αερίου-τοιχώματος χρήζουν επιπλέον μελέτης. Στην παρούσα 

διπλωματική εργασία γίνεται μια προσπάθεια για την περαιτέρω κατανόηση στο ζήτημα 

αυτό, συγκρίνοντας πειραματικά και υπολογιστικά δεδομένα με απώτερο σκοπό την εξαγωγή 

των συντελεστών αλληλεπίδρασης. Πιο συγκεκριμένα, εφαρμόζοντας τις παραμέτρους του 

πειράματος, διαστάσεις και συνθήκες εφαρμογής, σε υπολογιστικό μοντέλο παράγονται οι 

μαζικές παροχές, οι οποίες συγκρίνονται με τις αντίστοιχες πειραματικές. Οι συντελεστές 

αλληλεπίδρασης με τη σειρά τους προσαρμόζονται ανάλογα, ώστε να υπάρξει ταύτιση 

μεταξύ των αποτελεσμάτων. Η συγκεκριμένη εργασία εστιάζει τόσο στην ροή λόγω διαφοράς 

πίεσης όσο και θερμοκρασίας, για πέντε αέρια (Ήλιο, Νέον, Άζωτο, Αργό, Κρύπτον). Η 

πρώτη περίπτωση είναι ροή τύπου Poiseuille, ενώ η δεύτερη είναι γνωστή ως θερμικός 

ερπισμός (thermal creep). Τα υπολογιστικά αποτελέσματα προέρχονται απο την επίλυση του 

γραμμικού κινητικού μοντέλου Shakhov εφαρμόζοντας συνοριακές συνθήκες τύπου Maxwell 

και Cercignani-Lampis. Για την ροή λόγω διαφοράς πίεσης η σύγκριση των υπολογιστικών 

και πειραματικών αποτελεσμάτων είναι ικανοποιητική και για τις δύο συνοριακές συνθήκες 

για όλα τα αέρια, με επακόλουθο την εξαγωγή κατάλληλης τιμής για τους συντελεστές 

αλληλεπίδρασης. Αντίθετα στη ροή λόγω διαφοράς θερμοκρασίας δεν επιτυγχάνεται ταύτιση 

μεταξύ των δύο μεθόδων και ως συνέπεια δεν μπορεί να προκύψει κάποια τιμή για τους 

συντελεστές αλληλεπίδρασης. 
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1 

 INTRODUCTION 

A brief presentation of the background theory is made to help the comprehension of 

the study and its purposes. Basic principles of kinetic theory are discussed along with the 

related equations such as the Boltzmann equation (BE) and the associated kinetic models with 

the implemented boundary conditions. Also, a review is made on similar studies and their 

contribution in solving modern flow problems. 

 

1.1 Knudsen number and flow regimes 

Based on the scale and conditions of the flow, different modeling approaches can be 

implemented. From a macroscopic scale the gas can be described thermodynamically or 

mechanically depending if it is in equilibrium or not, respectively. An example of these 

methods is the Navier-Stokes equations, which introduce the transport coefficients, i.e. 

thermal conductivity coefficient (k), dynamic viscosity (μ), diffusion coefficient (D) in order 

to provide valid results. On the other hand, if the approach is from a microscopic scale, where 

the motion of individual particles needs to be studied, molecular dynamics is applied. 

A third approach lying between the previous two is also possible. It is at a mesoscale 

approach and deals with the motion of a larger number of particles. This method is called 

kinetic theory and is a branch of statistical mechanics, which describes the evolution of 

transport phenomena in dilute gases even far from equilibrium. The degree of non-

equilibrium depends on the differences between density, temperature and velocity of particles 

inside the gas. The approach to equilibrium is achieved with the transport processes (mass, 

momentum and energy) that take place inside the gas. The target of kinetic theory is through 

admissions and assumptions to describe phenomena in a gas from a molecular point of view 

which are also valid in the macroscopic scale. Therefore, through kinetic theory it is possible 

to extract data for the transport coefficients, but also to study their interaction. 

Mathematically, kinetic theory is described by a distribution function which contains 

information on the distribution of molecules and of their velocities on a given system which 

depends on time. 
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An important dimensionless number in kinetic theory is the Knudsen number 𝐾𝑛 or it’s 

inversely proportional rarefaction parameter 𝛿. The Knudsen number expresses the average 

distance traveled by a molecule between two successive collisions, known as the mean free 

path (MFP) divided by a characteristic length scale of the configuration, e.g. the diameter in a 

tube. The Knudsen number may be written as 

 𝐾𝑛 =
𝜆

𝐿𝑐
≈

1

𝛿
. (1.1) 

By defining the Knudsen number, a classification of the state of the gas regarding the density 

can be made, i.e. how rarefied is the gas. For high values of Knudsen number, or low values 

of rarefaction parameter, respectively, the rarefaction of the gas is more pronounced. On the 

reverse case the gas tends to a continuum medium. Generally, four regimes of gas rarefaction 

are distinguished. 

➢ Hydrodynamic regime (𝐾𝑛 → 0 𝑜𝑟 𝛿 → ∞): The MFP is much smaller than the 

characteristic length (𝜆 ≪ 𝐿𝑐) and the interactions between the molecules are high and 

constant. In this regime the continuum mechanics equations can be applied (e.g. 

Navier-Stokes). 

➢ Slip flow regime (10−2 < 𝐾𝑛 < 10−1 𝑜𝑟 10 < 𝛿 < 102 ): Here the nonslip velocity 

and temperature continuity on the surface stops to apply and new boundary conditions 

must be used, that of the velocity slip and temperature jump. The continuous 

mechanics equations can still be applied.  

➢ Transition regime (10−1 < 𝐾𝑛 < 10 𝑜𝑟 10−1 < 𝛿 < 10): In this regime the 

continuous mechanics equations are no longer applicable and the BE is employed. 

➢ Free molecular regime ( 𝐾𝑛 → ∞ 𝑜𝑟 𝛿 → 0): The MFP is way bigger than the 

characteristic length (𝜆 ≫ 𝐿𝑐) and no collisions occur between the molecules, that’s 

why it is also called collisionless regime. The flow is affected only by the interaction 

between gas and surface. 

It is noted that the BE is valid in the whole range of gas rarefaction, and its application is 

limited to the late slip, transition and free molecular regimes due to the high computational 

cost and complexity associated with its solution. 
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1.2 Historic Review 

Kinetic theory originated when Maxwell formulated the statistical approach of gases, 

meaning that their particles are moving independently and randomly, while the previous 

notion, that all particles have the same velocity, was abandoned. Later he introduced the 

velocity distribution function for a uniform a gas in equilibrium, the Maxwell distribution eq. 

(1.2). 

 𝑓𝑀 =
𝑁

(2𝜋𝑅𝑇)3/2
 exp [−

(�̃� − �̃�)2

2𝑅𝑇
] (1.2) 

where �̃� is the molecular velocity, �̃� the hydrodynamic velocity, N the number of particles per 

cubic meter, R the gas constant and T the temperature. 

Boltzmann on his turn derived an integro-differential equation, (1.3), in order to 

describe the evolution of the VDF and the approach to equilibrium for dilute gases. This 

equation was named after him (Boltzmann’s Equation) and proved that Maxwell’s 

distribution can be extracted from the solution of the BE. The basic assumptions of the BE are 

that only pairs of molecules can react at the same time and the molecular chaos assumption 

(Stosszahlansatz) introduced by Maxwell, i.e. the velocities of colliding molecules are 

uncorrelated. The former assumption limits the application of the equation only in gases with 

low density, e.g. dilute gases, while the latter defines the expected number of collisions 

between molecules and renders the equation irreversible in time.  

 (
𝜕

𝜕𝑡
+ �̃�𝟏 ⋅ 𝛻𝑟 + �̃� ⋅ 𝛻𝜉1

) 𝑓1 = ∭(𝑓1
′𝑓2

′ − 𝑓1𝑓2)𝑔𝑏𝑑𝑏𝑑𝜑𝑑�̃�𝟐 (1.3) 

where �̃�𝟏, �̃�𝟐 are the molecular velocities before the collision, 𝛻𝑟 , 𝛻𝜉1
 are the gradient operators 

with respect to 𝑟 , 𝜉1, �̃� is the external force per unit mass applied on the molecules, 

𝑓1, 𝑓2 & 𝑓1
′𝑓2

′ are distribution functions before and after collision respectively, 𝑔 = |�̃�𝟐 − �̃�𝟏| is 

the relative velocity before the collision, 𝑏 is the impact parameter, i.e. the distance between 

the asymptotes of a molecule at rest and another at a trajectory and 𝜑 is the azimuthal angle 

specifying the position of a plane in space. 

Another important achievement of Boltzmann was the extraction of the H-theorem (or 

E-theorem from entropy, as he called it) using the BE. The H-theorem proves that kinetic 

theory describes a process which is irreversible in time and that the molecular collisions tend 

to increase the entropy. A consequence of the irreversibility as time tends to infinity is that the 

VDF describing the gas will either change indefinitely or it will reach a limiting function, i.e. 
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in equilibrium. Proving the increase of entropy, the H-theorem can be compared to the 2nd 

thermodynamic law, though its use is more general since it is also valid far from equilibrium, 

but only for dilute gases. The relation connecting the quantity H with entropy (S) is 

 𝑆 = −𝑘𝐵𝐻𝑀 + 𝑐 (1.4) 

where 𝑆 is the entropy, 𝐻𝑀 the H-function, 𝑘𝐵 the Boltzmann’s constant and 𝑐 a constant 

reflecting the arbitrariness of the zero point of entropy. 

 

1.3 Kinetic Models 

Boltzmann’s equation has a wide spectrum of applications in rarefied gas dynamics. 

Due to the complicated collision integral (1.5) at the right hand side of the BE, its solution is a 

daunting and computationally intensive task. In some cases the non-linearity is necessary for 

the proper description of the problem, e.g. computing of the flow field of the entry of a body 

from space, because of the formation of shock waves due to hypersonic speeds. Yet in other 

cases, like gas flow on long capillaries, the BE can be linearized. To facilitate the solution of 

rarefied gas dynamics problems several different methods have been deployed with the most 

prominent being the deterministic solution of the kinetic model equations and the stochastic 

Direct Simulation Monte Carlo Method (DSMC). In the first method, through the kinetic 

models, the collision integral in ΒΕ is replaced by collision model, 𝐽(𝑓), which contains the 

essential information of the former. In the latter method (DSMC), the BE is solved in a 

stochastic manner. The collision terms of the various models must satisfy some of the 

properties of the collision term of the BE given by 

 𝑄(𝑓, 𝑓) = ∭(𝑓1
′𝑓2

′ − 𝑓1𝑓2)𝑔𝑏𝑑𝑏𝑑𝜑𝑑�̃�𝟐 (1.5) 

The properties that must be satisfied are the following: 

i. Collision invariants: 

 ∫ 𝜓(𝜉) 𝐽(𝑓)𝑑�̃� = 0,  (1.6) 

where 𝜓(𝜉) = 1, 𝑚𝜉, 𝑚
𝜉2

2
 

ii. H-theorem: 

 ∫ 𝑙𝑜𝑔 𝑓 𝐽(𝑓) 𝑑�̃� ≤ 0 (1.7) 

iii. Correct expressions for the transport coefficients. 
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Many kinetic models have been derived over the years, considering the area of study, e.g. 

monatomic or polyatomic gas, shock waves and more. The first model that was formed and 

the most known is the BGK model which has a wide range of applications. The BGK model 

assumes that collisions change f  by an amount which is proportional to the departure of f  

from a the local Maxwellian distribution. The collision term of the BGK model is given by 

 𝐽𝐵𝐺𝐾(𝑓) = 𝑣(𝑓𝑀 − 𝑓) (1.8) 

where 𝑣 is the collision frequency and it is chosen so BGK’s solution provides the correct 

expression of the transport coefficients. 

Another model that has been formulated is the Shakhov (S) model, given by 

 𝐽𝑆(𝑓) =
𝑃

𝜇
(𝑓𝑆 − 𝑓) (1.9) 

where 𝑃 is the pressure and 𝑓𝑆 equals to 

 𝑓𝑆 = 𝑓𝑀 (1 + 2
(1 − 𝑃𝑟)

5

𝑚

𝑁(𝑘𝐵𝑇)2
�̃� ∙ (�̃� − �̃�) (

(�̃� − �̃�)2

2𝑅𝑇
−

5

2
)) (1.10) 

𝑃𝑟 is the Prandtl number, �̃� is the heat flux vector and 𝑓𝑀 is the local Maxwellian 

distribution, (1.2). Compared to the BGK model the S model is more advanced, since it 

provides the correct expressions for viscosity and thermal conductivity at the same (this is not 

true for the BGK model). It, also, satisfies the collision invariants, but comes short regarding 

the fulfillment or not of the H-theorem. It is emphasized however, that the linearized Shakhov 

model, which is used in the present work does satisfy the H-theorem. 

 

1.4 Gas-Surface Interaction 

Modeling the interaction between a gas and a wall is of great importance in rarefied gas 

flows and special attention should be given in selecting the appropriate model. For an 

impermeable wall a particle with a given velocity 𝝃′̃ that impacts it will be re-emitted with a 

velocity �̃�. The impinging molecules may scatter specularly, meaning that the molecules are 

reflected while maintaining their tangential velocity constant and changing sign on their 

normal velocity, or diffusely, i.e. the molecules may travel uniformly to any direction. A 

combination of diffuse and specular reflection is also possible while more complicated 

models also exist. A major factor that affects the scattering is the roughness of the surface, 
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while additional factors that concur in the reflection of the molecules are the wall temperature 

and velocity. In Fig. 1.1 a graphical view of diffuse and specular reflection is provided.  

 

 

Figure 1.1: Specular-Diffuse reflection  

 

Gas-surface interaction is typically characterized using the scattering kernel 𝑅(�̃�′, �̃�), 

which expresses the probability of an impinging particle with velocity  𝝃′̃ to be re-emitted 

with velocity �̃�. If the number of particles with velocity 𝝃′̃ in 𝑑�̃�′ that impact on the surface 

for a given area and time is multiplied by the scattering kernel and is integrated over the 

whole range of incident velocity 𝝃′̃, then the returning particles with velocity �̃� will be found 

 �̃� ⋅ �̃� f(�̃�) = − ∫ 𝝃′̃

𝝃′ ⋅̃�̃�≤0

⋅ �̃� f(𝝃′̃)𝑅(𝝃’̃, �̃�)𝑑�̃�′ (1.11) 

where f(𝝃′̃) and f(�̃�) are the VDFs before and after the impinging, respectively and �̃� is the 

unit normal vector towards the flow domain.  

The scattering kernel satisfies the following properties. For example, since the 

scattering kernel is a probability density function it must be positive: 

 𝑅(�̃�′, �̃�) ≥ 0. (1.12) 

Also, the sum of all probabilities must be equal to one: 
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 ∫ 𝑅(�̃�′, �̃�)

𝝃⋅̃�̃�≥0

𝑑�̃� = 1. (1.13) 

 

Another important property is the reciprocity condition, which occurs due to the reversibility 

of microprocesses of the gas-surface interaction and is valid if a surface is in a local 

equilibrium, [17], given by 

 �̃�′ ⋅ �̃� exp (−
𝑚𝜉′2

2𝑘𝐵𝑇𝑤
) 𝑅(𝝃’̃, �̃�) = −�̃� ⋅ �̃� exp (−

𝑚𝜉2

2𝑘𝐵𝑇𝑤
) 𝑅(−�̃�, −𝝃′̃) (1.14) 

where �̃�′ ⋅ �̃� ≥ 0, �̃� ⋅ �̃� ≤ 0. 

Maxwell was the first one who formulated the scattering kernel for a diffuse and 

specular interaction between particles and surfaces given by 

 𝑅𝑑(�̃�′, �̃�) =
2�̃� ⋅ �̃�

𝜋(2𝑅𝑇𝑤)2
ex p (−

(�̃� − �̃�𝒘)2

2𝑅𝑇𝑤
), (1.15) 

 𝑅𝑠(�̃�′, �̃�) = 𝛿(�̃�′ − �̃� + 2(�̃� ⋅ �̃�)�̃�)  (1.16) 

where 𝑅𝑑 is the diffuse kernel, 𝑅𝑠 the specular kernel, �̃�𝒘 is the wall velocity and δ(x) Dirac 

delta function. For a better and more thorough description of the interaction, since the 

particles are not emitted from the surface only specularly or diffusely, the linear combination 

of the two kernels is also used, creating the so-called Maxwell or diffuse-specular model and 

introduced the accommodation coefficient (AC) 𝑎𝑀, where 0 ≤ 𝑎𝑀 ≤  1 denotes the 

percentage of particles emitted diffusively. 

 𝑅𝑑𝑠(�̃�′, �̃�) = 𝑎𝑀𝑅𝑑(�̃�′, �̃�) + (1 − 𝑎𝑀)𝑅𝑠(�̃�′, �̃�) (1.17) 

The Maxwell model has a wide range of application until today, though sometimes it fails to 

describe successfully a problem, as different values of AC occur between the Poiseuille flow 

and the thermomolecular pressure difference (TPD) or between the free molecular and 

hydrodynamic regimes [26]. Also, the thermomolecular pressure ratio exponent γ always 

equals to 𝛾 = 0.5 in the free molecular regime, regardless the value of AC, while experiments 

have proven that a lower value is possible [25]. The reason behind this shortcoming is 

because the scattering kernel depends on a single free variable for the description of the gas-

surface interaction, while a more complicated expression is needed. 
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Another, more recent, scattering kernel was introduced by Cercignani & Lampis (CL) in 

1971, [11], which includes two accommodation coefficients. The CL kernel is given by 

 

𝑅(�̃�′, �̃�) =
𝑚2𝜉𝑛

2𝜋𝑎𝑛𝑎𝑡(2 − 𝑎𝑡)(𝑘𝐵𝑇𝑤)2
exp {−

𝑚[𝜉𝑛
2 + (1 − 𝑎𝑛)𝜉𝑛

′2]

2𝑘𝐵𝑇𝑤𝑎𝑛

−
𝑚[𝜉𝑡 − (1 − 𝑎𝑡)𝜉𝑡

′]2

2𝑘𝐵𝑇𝑤𝑎𝑡(2 − 𝑎𝑡)
} 𝐼0 (

√1 − 𝑎𝑛𝑚𝜉𝑛𝜉𝑛
′

𝑎𝑛𝑘𝐵𝑇𝑤
) 

(1.18) 

where 𝐼0 denotes the modified Bessel function of first kind and zeroth order 

 𝐼0(𝑥) =
1

𝜋
∫ exp (𝑥 cos 𝜑)

𝜋

0

𝑑𝜑 (1.19) 

𝜉𝑛
′, 𝜉𝑡

′ are the normal and tangential components of the velocity. The physical meaning of 

parameter at is associated with the tangential momentum, while the parameter an is associated 

with the kinetic energy corresponding to the normal velocity. Therefore, they are called 

tangential momentum AC (TMAC) and normal energy AC (NEAC) respectively. The range 

of the former is 0 ≤  𝑎𝑡  ≤  2, while of the latter is 0 ≤  𝑎𝑛  ≤  1. When both accommodation 

coefficients are equal to unity (𝑎𝑡 = 𝑎𝑛 = 1) the CL kernel converts to the diffuse one, while 

for the value of zero (𝑎𝑡 = 𝑎𝑛 = 0) it converts to the specular kernel. Also, for the limiting 

values of 𝑎𝑡 = 2 and 𝑎𝑛 = 0 the peculiar case of back-scattering is described, a state that the 

diffuse-specular model cannot approach. In a real case scenario a complete back-scattering is 

not possible, but a partial is, for rough surfaces. Moreover, the CL model manages to recover 

the plume-like structure around the line of specular reflection in the experiment of thermal 

beam scattering and can successfully match the TPD between numerical and experimental 

measurements for values lower than 0.5. A shortcoming of the model is the prediction of a 

fixed value for the thermal slip coefficient. 

Other models have been developed in an effort to surpass the weaknesses of the 

Maxwell kernel. For example, Epstein proposed a generalized scattering kernel, [19], which 

includes the dependence of the AC to the velocities of the impinging molecules. However, the 

Epstein model has also some shortcomings, such as its incapability of describing the back-

scattering. To exploit the advantages and overcome the drawbacks of both Epstein and CL 

kernels a combined new BC was proposed by Wu and Struchtrup [18]. Additional models 

have been proposed by Klinc & Kuěčer, which later was extended by combining it with the 

Epstein model [20,21], by Lord who introduced an improvement to the CL model, [22]. 

Modeling of the gas-surface interaction still remains a field of further investigation. 
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1.5 Rarefied gas flows in long channels 

The problem of a rarefied gas flow through capillaries of various lengths and cross 

sections is of great importance and many studies and experiments have been performed. More 

specifically, efforts are made in order to understand all the parameters and conditions that 

may affect the flow. The investigation includes linear or non-linear flows [4], various cross-

sections (circular, rectangular, triangular) [5,9,10,23], short or long channels. In all cases the 

force may be driven by pressure or/and temperature gradients. The field has drawn so much 

attention because of the range and development of practical applications encountered in 

aerospace and engineering, vacuum technology and the emerging field of Micro-Electro-

Mechanics-Systems (MEMS). This entire numerical and experimental works include the gas-

surface interaction. Because of that, the identification of the accommodation coefficients, 

characterizing the gas-surface interaction, is important for the accurate modeling of rarefied 

gas flows. The developed databases concerning the computed overall quantities should always 

refer to the implemented gas-surface interaction model. Some major drawbacks, regarding not 

only the gas-surface interaction but all the involved parameters, is the introduction of 

assumptions and simplifications, which are need in order to solve the problem and therefore 

the results may be not easily compared with experiments. 

 

1.6 Thesis objectives and structure 

The main objective of the diploma thesis is to extract the accommodation coefficients 

characterizing the gas-surface interaction in specific flow configurations. To achieve this, the 

rarefied gas flow in a long rectangular duct is solved by applying the linearized Shakhov 

kinetic model along with the Maxwell or Cercignani-Lampis boundary conditions. 

Comparisons are performed between the numerical and experimental results and the 

accommodation coefficients are extracted such that the difference between the computed and 

measured flows rates is minimized. 

The structure of the thesis is as follows: In Chapter 2. the flow configurations, 

governing equations along with the associated boundary conditions and the flow rate 

computation model are provided, along with a short description of the cited experimental 

setup. In Chapter 3, for both problems, extensive kinetic databases are built for the 

dimensionless flow rates in terms of the gas rarefaction parameter and the accommodation 

coefficients. In Chapters 4 and 5 the extraction of the accommodation coefficients for the 
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pressure and temperature driven flows respectively is provided. Finally, in Chapter 6 a brief 

summary with the main concluding remarks are stated. 
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 KINETIC MODELING 

A detailed description of the pressure and temperature driven flow configurations along 

with the governing kinetic equations and the associated boundary conditions is provided. The 

computed overall dimensionless quantities, as well as the corresponding dimensional ones are 

defined. Finally, for completeness purposes a short description of the cited experimental flow 

setup is given. 

 

2.1 Flow configuration 

The problem of the fully developed flow of a rarefied gas through a long duct of 

rectangular cross-section, under steady conditions driven by pressure and temperature 

gradients is considered. The flow takes place through a long rectangular duct connected to 

two vessels, meaning that the length of the duct is much greater than its width and height. 

Thus, the end effects can be neglected and the pressure varies only in the axial direction, 

while it remains constant in every cross section. The flow may be due to a pressure or a 

temperature gradient. The first case is that of a pressure difference imposed at the two vessels. 

The vessel with the high pressure is the upstream vessel, while the vessel with the low 

pressure is the downstream one. It is assumed that the pressure at the two vessels is the same 

with the corresponding channel end. This is a Poiseuille type flow. The second case regards a 

temperature difference between the vessels and a linear variation of the temperature along the 

channel wall. Then, in rarefied gas dynamics, a flow is observed from the low towards the 

high temperature vessel. This is the so-called thermal creep flow. In both flow configurations 

it is considered that the cross section of the duct lies on the x-y plane and z-axis is parallel to 

the length of the channel. 
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2.2 Governing kinetic equations 

Modeling is based on the Shakhov kinetic model because of its advantages over the 

BGK model that were cited in Chapter 1. The non-linear Shakhov model with no external 

force is described by the equation 

 
𝜕𝑓

𝜕𝑡
+ �̃� ∙

𝜕𝑓

𝜕�̃�
=

𝑃

𝜇
(𝑓𝑆 − 𝑓) (2.1) 

Since the flow is steady-state the time derivative is zero and eq. (2.1) will become 

 𝜉𝑥

𝜕𝑓

𝜕𝑥′
+ 𝜉𝑦

𝜕𝑓

𝜕𝑦′
+ 𝜉𝑧

𝜕𝑓

𝜕𝑧′
=

𝑃

𝜇
(𝑓𝑆 − 𝑓) (2.2) 

Next, the linearization of the Shakhov model for each problem is described. 

 

2.2.1 Pressure driven flow 

For extracting the linear model in a fully developed pressure driven flow a perturbed 

distribution is introduced as 

 𝑓 = 𝑓0(1 + ℎ(𝑥, 𝑦, �̃�)𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
) (2.3) 

where ℎ(𝑥, 𝑦, �̃�) is called perturbation function, ‖𝑥𝑃‖ = ‖
𝐻

𝑃0

𝑑𝑃

𝑑𝑧′
‖ < 1 and 𝑓0 is the absolute 

Maxwellian distribution, 

 𝑓0 =
𝑁0

(2𝜋𝑅𝑇)3/2
 𝑒𝑥𝑝 (−

𝜉2

2𝑅𝑇0
) (2.4) 

Next the local Maxwellian is expanded in Taylor series keeping terms up to first order 

 
𝑓𝑀 = 𝑓0 + (𝑁 − 𝑁0)

𝜕𝑓𝑀

𝜕𝑁
|

0

+ (�̃� − �̃�𝟎) ⋅
𝜕𝑓𝑀

𝜕�̃�
|

0

+ (𝑇 − 𝑇0)
𝜕𝑓𝑀

𝜕𝑇
|

0

 
(2.5) 

Following some manipulation it is deduced that 

 

𝑓𝑆 = 𝑓0 [1 +
𝑁 − 𝑁0

𝑁0
+

2�̃� ∙ �̃�

2𝑅𝑇0
+

𝑇 − 𝑇0

𝑇0
((

𝜉

√2𝑅𝑇0

)

2

−
3

2
)

+
2

15

𝑚

𝑁0(𝑘𝐵𝑇)2
�̃� ∙ �̃� ((

𝜉

√2𝑅𝑇0

)

2

−
5

2
)] 

(2.6) 

To proceed, in the non-linear model the VDF is replaced by the perturbed distribution 
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 �̃�
𝜕 [𝑓0 (1 + ℎ𝑥𝑝 + 𝑥𝑝

𝑧′

𝐻
)]

𝜕�̃�
=

𝑃

𝜇
(𝑓𝑆 − 𝑓0 (1 + ℎ𝑥𝑝 + 𝑥𝑝

𝑧′

𝐻
)) (2.7) 

After some mathematical manipulation the linearized Shakhov model equation is deduced: 

 𝜁𝑥

𝜕ℎ

𝜕𝑥
+ 𝜁𝑦

𝜕ℎ

𝜕𝑦
= 𝛿 [2𝜁𝑧𝑣𝑧 +

4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) − ℎ] − 𝜁𝑧 (2.8) 

where �̃� =
�̃�

𝑣0
, 𝑥 =

𝑥′

𝐻
, 𝑦 =

𝑦′

𝐻
, 𝑞𝑧 =

𝑄𝑧

𝑣0𝑃0𝑥𝑝
, 𝑣𝑧 =

𝑢𝑧

𝑣0𝑥𝑝
. 

 To continue, two projections are introduced which are going to help in the calculations for 

both the pressure and temperature driven flow. The first projected distribution function is 

defined as 

 𝜑 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧 (2.9) 

Operating accordingly in (2.8) it is deduced that 

 𝜁𝑥

𝜕𝜑𝑃

𝜕𝑥
+ 𝜁𝑦

𝜕𝜑𝑃

𝜕𝑦
= 𝛿 [𝑣𝑧 +

2

15
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2 − 1) − 𝜑𝑃] −

1

2
 (2.10) 

where 𝜑𝑃 is the projection (2.8) referring to the pressure driven flow. The second projected 

distribution function is defined as  

 𝜓 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧 (2.11) 

and operating accordingly in (2.8) it is deduced that 

 𝜁𝑥

𝜕𝜓𝑃

𝜕𝑥
+ 𝜁𝑦

𝜕𝜓𝑃

𝜕𝑦
= 𝛿 [

3

2
𝑣𝑧 +

1

5
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2) − 𝜓𝑃] −

3

4
 (2.12) 

where 𝜓𝑃 is the projection (2.11) referring to the pressure driven flow The macroscopic 

velocity is given by 

 𝑢𝑧 =
1

𝑁
∭ 𝜉𝑧𝑓𝑑�̃�

+∞

−∞

 (2.13) 

The moments of the VDF are also linearized. More specifically, the bulk velocity becomes 
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 𝑢𝑧 =
1

𝑁
∭ 𝜉𝑧

+∞

−∞

𝑓0 (1 + ℎ𝑥𝑝 + 𝑥𝑝

𝑧′

𝐻
) 𝑑�̃� =

𝑣0𝑥𝑝

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁2
𝑑𝜁 (2.14) 

In addition, the dimensionless macroscopic velocity 𝑣𝑧,𝑃 is introduced as 

 𝑣𝑧,𝑃 =
𝑢𝑧

𝑣0𝑥𝑝
=

1

𝜋3/2
∭ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁2
𝑑𝜁 =

1

𝜋
∬ 𝜑𝑃

+∞

−∞

𝑒−𝜁𝑥
2
𝑒−𝜁𝑦

2
𝑑𝜁𝑥𝑑𝜁𝑦 (2.15) 

Similarly, the heat flux given by  

 𝑄𝑧 =
𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(�̃� − �̃�)
2

𝑓𝑑�̃� (2.16) 

is linearized as 

 𝑄𝑧 =
𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(�̃� − �̃�)
2

𝑓0(1 + ℎ𝑥𝑃 + 𝑥𝑃)𝑑�̃� (2.17) 

and non-dimensionalized as 

 𝑄𝑧 =
𝑃0𝑣0𝑥𝑃

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (2.18) 

The z-component of the dimensionless heat flux 𝑞𝑧,𝑃 is given by 

 𝑞𝑧,𝑃 =
𝑄𝑧

𝑃0𝑣0𝑥𝑃
=

1

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (2.19) 

and in terms of the projected distributions as   

 𝑞𝑧,𝑃 =
1

𝜋
∬ [𝜓𝑃 + (𝜁𝑥

2 + 𝜁𝑦
2 −

5

2
) 𝜑𝑃]

+∞

−∞

𝑒𝑥𝑝(−𝜁𝑥
2 − 𝜁𝑦

2)𝑑𝜁𝑥𝑑𝜁𝑦 (2.20) 
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2.2.2 Temperature driven flow 

The linearized Shakhov model equation for the temperature driven flow is obtained in a 

similar manner as the for the pressure driven flow, using the same projections, using however 

a slightly different definition of the perturbed distribution given by 

 𝑓 = 𝑓0 [1 + ℎ𝑥𝑇 + 𝑥𝑇

𝑧′

𝐻
(

𝜉2

2𝑅𝑇0
−

5

2
)] (2.21) 

where  ‖𝑥𝑇‖ = ‖
𝐻

𝑇0

𝑑𝑇

𝑑𝑧′
‖ < 1  

The linearized distribution functions are introduced in the non-linear model to yield 

 
�̃�

𝜕 [𝑓   0 (1 + ℎ𝑥𝑇 + 𝑥𝑇
𝑧′

𝐻
(

𝜉2

2𝑅𝑇0
−

5
2

))]

𝜕�̃�
=

𝑃

𝜇
{𝑓𝑆 − 𝑓0 [1 + ℎ𝑥𝑇 + 𝑥𝑇

𝑧′

𝐻
(

𝜉2

2𝑅𝑇0
−

5

2
)]} 

(2.22) 

 

 
𝜁𝑥

𝜕ℎ

𝜕𝑥
+ 𝜁𝑦

𝜕ℎ

𝜕𝑦
= 𝛿 [2𝜁𝑧𝑣𝑧 +

4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) − ℎ] − 𝜁𝑧 (𝜁2 −

5

2
) 

(2.23) 

Next the projections (2.9) & (2.11) are used in equation (2.23) to get the projected kinetic 

equations. For the projections (2.9) and (2.11) the final expressions are 

   𝜁𝑥

𝜕𝜑𝑇

𝜕𝑥
+ 𝜁𝑦

𝜕𝜑𝑇

𝜕𝑦
= 𝛿 [𝑣𝑧 +

2

15
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2 − 1) − 𝜑𝑇] −

1

2
(𝜁𝑥

2 + 𝜁𝑦
2 − 1)  (2.24) 

and  

 𝜁𝑥

𝜕𝜓𝑇

𝜕𝑥
+ 𝜁𝑦

𝜕𝜓𝑇

𝜕𝑦
= 𝛿 [

3

2
𝑣𝑧 +

1

5
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2) − 𝜓𝑇] −

3

4
(𝜁𝑥

2 + 𝜁𝑦
2) (2.25) 

respectively. Next, the macroscopic velocity and heat flux for the temperature driven flow are 

calculated. The macroscopic velocity is linearized as 

 𝑢𝑧 =
1

𝑁
∭ 𝜉𝑧𝑓𝑑�̃�

+∞

−∞

=
1

𝑁
∭ 𝜉𝑧

+∞

−∞

𝑓0 (1 + ℎ𝑥𝑇 + 𝑥𝑇

𝑧′

𝐻
(

𝜉2

2𝑅𝑇0
−

5

2
)) 𝑑�̃� (2.26) 

and is non-dimensionalized as  

 𝑣𝑧,𝑇 =
𝑢𝑧

𝑣0𝑥𝑇
=

1

𝜋
∬ 𝜑𝑇

+∞

−∞

𝑒−𝜁𝑥
2
𝑒−𝜁𝑦

2
𝑑𝜁𝑥𝑑𝜁𝑦 (2.27) 

Similarly, the heat flux is linearized and non-dimensionalized as 
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𝑄𝑧 =

𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(�̃� − �̃�)
2

𝑓0 (1 + ℎ𝑥𝑇 + 𝑥𝑇

𝑧′

𝐻
(

𝜉2

2𝑅𝑇0
−

5

2
)) 𝑑�̃� 

(2.28) 

 𝑄𝑧 =
𝑃0𝑣0𝑥𝑇

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (2.29) 

 𝑞𝑧,𝑇 =
𝑄𝑧

𝑃0𝑣0𝑥𝑇
=

1

𝜋
∬ [𝜓𝑇 + (𝜁𝑥

2 + 𝜁𝑦
2 −

5

2
) 𝜑𝑇]

+∞

−∞

𝑒𝑥𝑝(−𝜁𝑥
2 − 𝜁𝑦

2)𝑑𝜁𝑥𝑑𝜁𝑦 (2.30) 

As it seen the expressions of the dimensionless macroscopic velocity and heat flux are the 

same as for the pressure driven flow but of course the corresponding projected distributions 

functions are different. Therefore, the results for the macroscopic velocity and heat flux for 

the temperature driven flow will differ from the pressure driven since the linear models are 

defined for different perturbed distributions.  

 

2.2.3 Overall Quantities 

For the pressure and temperature driven flows the dimensionless flow rate and heat flow 

rate are given by 

 𝐺𝑃 = −2
𝐻

𝑊
∫ ∫ 𝑣𝑧,𝑃

1/2

−1/2

𝑊/2𝐻

−𝑊/2𝐻

𝑑𝑥𝑑𝑦 (2.31) 

 𝐺𝑇 = 2
𝐻

𝑊
∫ ∫ 𝑣𝑧,𝑇

1/2

−1/2

𝑊/2𝐻

−𝑊/2𝐻

𝑑𝑥𝑑𝑦 (2.32) 

and the corresponding heat flow rates are given by 

 𝑄𝑃 = 2
𝐻

𝑊
∫ ∫ 𝑞𝑧,𝑃

1/2

−1/2

𝑊/2𝐻

−𝑊/2𝐻

𝑑𝑥𝑑𝑦 (2.33) 

 𝑄𝑇 = −2
𝐻

𝑊
∫ ∫ 𝑞𝑧,𝑇

1/2

−1/2

𝑊/2𝐻

−𝑊/2𝐻

𝑑𝑥𝑑𝑦 (2.34) 
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The kinetic coefficients GP and QT are due to direct effects and more specifically they are the 

flow rate and the heat flow deduced due to the pressure and temperature difference, 

respectively. The kinetic coefficients GT and QP are due to cross effects that approach zero as 

moving towards to the hydrodynamic regime. The first one is a flow rate due to a temperature 

difference, well known as the thermal creep flow rate and the second one is a heat flow due to 

a pressure difference well known as the mechanocaloric flux. It has been proved, [12-14], that 

𝐺𝑇 and 𝑄𝑃 obey the Onsager-Casimir relation for any scattering kernel that fulfills the 

reciprocity condition 

 𝐺𝑇 = 𝑄𝑃 (2.35) 

A more detailed presentation of the derivations is apposed on appendix A. 

 

2.3 Boundary conditions 

Two boundary condition models are considered, namely the Maxwell and the 

Cercignani-Lampis (CL). The Maxwell boundary conditions has only one accommodation 

coefficient, while the CL boundary conditions have two. Both have been implemented in 

order to have a thorough and complete study. It is necessary to linearize the boundary 

conditions and also perform the projection procedure in order to obtain expressions 

compatible to the deduced kinetic equations. 

 

2.3.1 Maxwell boundary conditions 

For the pressure driven flow, the perturbed distribution (2.3) is substituted in eq (1.11) 

to yield 

 

|𝜉𝑛|
𝑁0

(2𝜋𝑅𝑇)
3
2

 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) (1 + ℎ(�̃�)𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
) = ∫ |𝜉𝑛

′|

𝜉𝑛<0

𝑅(�̃�′

→ �̃�)
𝑁0

(2𝜋𝑅𝑇)3/2
 𝑒𝑥𝑝 (−

𝜉′2

2𝑅𝑇0
) (1 + ℎ(�̃�′)𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
)𝑑�̃�′ 

(2.36) 

The equation is split into two parts: 

 |𝜉𝑛| 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) (1 + 𝑥𝑃

𝑧′

𝐻
) = (1 + 𝑥𝑃

𝑧′

𝐻
) ∫ |𝜉𝑛

′|
𝜉𝑛<0

𝑅(�̃�′ → �̃�) 𝑒𝑥𝑝 (−
𝜉′2

2𝑅𝑇0
) 𝑑�̃�′  (2.37) 
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 |𝜉𝑛| 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) ℎ(�̃�) = ∫ |𝜉𝑛

′|
𝜉𝑛<0

𝑅(�̃�′ → �̃�) ℎ(�̃�′)𝑒𝑥𝑝 (−
𝜉′2

2𝑅𝑇0
) 𝑑�̃�′  (2.38) 

 

Using the reciprocity condition in (2.37) it is found that 

 |𝜉𝑛| 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) = ∫ |𝜉𝑛|

𝜉𝑛
′ <0

𝑅(−�̃� → −�̃�′) 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) 𝑑�̃�′ ⇒ (2.39) 

 ⇒ 1 = ∫ 𝑅(−�̃� → −�̃�′)

𝜉𝑛
′ <0

 𝑑�̃�′ ⇒ (2.40) 

 ⇒ 1 = ∫ 𝑅(�̃�′ → �̃�)

𝜉𝑛
′ <0

 𝑑(−𝜉) = ∫ 𝑅(�̃�′ → �̃�)

𝜉𝑛
′ >0

 𝑑(�̃�) (2.41) 

which is the normalization condition, (1.13). Next for the second part (2.38) it is seen that 

 |𝜉𝑛| 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) ℎ(�̃�) = ∫ |𝜉𝑛

′|

𝜉𝑛<0

𝑅(�̃�′ → �̃�) 𝑒𝑥𝑝 (−
𝜉′2

2𝑅𝑇0
) ℎ(�̃�′)𝑑�̃�′ (2.42) 

Substituting 𝑅(�̃�′ → �̃�) with the Maxwell kernel results to 

 ℎ(�̃�) =
1

|𝜉𝑛|
∫ |𝜉𝑛

′|

𝜉𝑛<0

[𝑎𝑀𝑅𝑑(�̃�′, �̃�) + (1 − 𝑎𝑀)𝑅𝑠(�̃�′, �̃�)] 𝑒𝑥𝑝 (
𝜉2 − 𝜉′2

2𝑅𝑇0
) ℎ(�̃�′)𝑑�̃�′ 

(

2.43) 

 

ℎ(�̃�) =
𝑎𝑀

|𝜉𝑛|
∫ |𝜉𝑛

′|

𝜉𝑛<0

2𝜉𝑛

𝜋(2𝑅𝑇𝑤)2
ex p (

𝜉2 − 𝜉2 − 𝜉′2

2𝑅𝑇𝑤
)  ℎ(�̃�′)𝑑�̃�′ + 

+
1 − 𝑎𝑀

|𝜉𝑛|
∫ |𝜉𝑛

′|

𝜉𝑛<0

𝛿(�̃�′ − �̃� + 𝟐(�̃� ⋅ �̃�)�̃�)𝑒𝑥𝑝 (
𝜉2 − 𝜉′2

2𝑅𝑇0
) ℎ(�̃�′)𝑑�̃�′ 

(2.44) 

 ℎ(�̃�) = 𝑎𝑀 ∫
2|𝜉𝑛

′|

𝜋(2𝑅𝑇𝑤)2

𝜉𝑛<0

 𝑒𝑥𝑝 (−
𝜉′2

2𝑅𝑇0
)  ℎ(�̃�′)𝑑�̃�′ + (1 − 𝑎𝑀)ℎ(�̃�′ − 𝟐(�̃�′ ⋅ �̃�)�̃�) (2.25) 
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 ℎ(�̃�) = ∫ 𝑅𝑑𝑠(−�̃� → −�̃�′)

𝜁𝑛<0

ℎ(�̃�′) 𝑑�̃�′ (2.46) 

Equation (2.46) can be rewritten as 

 ℎ+ = 𝐴ℎ− (2.47) 

which is the sort form of linearized eq. (1.11) 

Next step is to introduce the projections (2.9) & (2.11) respectively and to solve for the 

walls of the duct. The procedure is presented only for the x-axis as the same steps are 

followed in y-axis, too.  

Projection φ: 

 𝜙+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧 exp(−𝜁𝑧

2) 𝑑𝜁𝑧

+∞

−∞

= (2.48) 

 =
1

√𝜋
∫ [ ∭ 𝑅𝑑𝑠(−𝜁 → −𝜁′)

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′]

+∞

−∞

𝜁𝑧 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (2.49) 

 =
1

√𝜋
∭ [ ∫ 𝑅𝑑𝑠(−�̃� → −�̃�′)𝜁𝑧 exp(−𝜁𝑧

2)𝑑𝜁𝑧

+∞

−∞

]

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′ = (2.50) 

 =
1 − 𝑎𝑀

√𝜋
∭ 𝜁𝑧

′

𝜁𝑛
′ <0

exp(−𝜁𝑧
′ 2

) ℎ−(�̃�′)𝑑�̃�′ (2.51) 

 𝜙+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) = (1 − 𝑎𝑀)𝜙− (±

1

2
, 𝑦, 𝜁𝑥, 𝜁𝑦) (2.52) 

 

Projection ψ: 

 𝜓+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧

3 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (2.53) 

 =
1

√𝜋
∫ [ ∭ 𝑅𝑑𝑠(−�̃� → −�̃�′)

𝜁𝑛
′ <0

ℎ−(𝜁′)𝑑𝜁′] 𝜁𝑧
3 exp(−𝜁𝑧

2) 𝑑𝜁𝑧 = (2.54) 
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 =
1

√𝜋
∭ [∫ 𝑅𝑑𝑠(−�̃� → −�̃�′)𝜁𝑧

3 exp(−𝜁𝑧
2)𝑑𝜁𝑧]

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′ = (2.55) 

 =
1 − 𝑎𝑀

√𝜋
∭ 𝜁𝑧

3 exp(−𝜁𝑧
2)

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′ = (2.56) 

 
𝜓+ (±

1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) = (1 − 𝑎𝑀)𝜓− (±

1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) 

(2.57) 

 

2.3.2 Cercignani-Lampis boundary conditions 

Regarding the CL boundary conditions the same process is followed to linearize eq. (1.11), 

but now in eq. (2.38) the CL kernel is substituted and will result to 

 

ℎ(�̃�) =
1

|𝜉𝑛|
∫ |𝜉𝑛

′|

𝜁𝑛<0

2𝜁𝑛

𝜋𝑎𝑛𝑎𝑡(2 − 𝑎𝑡)
exp [

𝜁𝑛
2 + (1 − 𝑎𝑛)𝜁𝑛

′2

𝑎𝑛
−

(𝜁𝑡 − (1 − 𝑎𝑡)𝜁𝑡
′)2

𝑎𝑡(2 − 𝑎𝑡)
] × 

𝐼0 (
2√1 − 𝑎𝑛𝜁𝑛𝜁𝑛

′

𝑎𝑛
) 𝑒𝑥𝑝(𝜁2 − 𝜁′2

)ℎ(�̃�′) 𝑑�̃�′ 

(2.58) 

 

 

ℎ(�̃�) = ∫
2𝜁𝑛

′

𝜋𝑎𝑛𝑎𝑡(2 − 𝑎𝑡)
𝜁𝑛<0

exp [−
𝜁𝑛

′2 + (1 − 𝑎𝑛)𝜁𝑛
2

𝑎𝑛

−
(𝜁𝑡

′ − (1 − 𝑎𝑡)𝜁𝑡)2

𝑎𝑡(2 − 𝑎𝑡)
] 𝐼0 (

2√1 − 𝑎𝑛𝜁𝑛𝜁𝑛
′

𝑎𝑛
) ℎ(�̃�′) 𝑑�̃�′ 

(2.59) 

which may be rewritten as  

 ℎ(�̃�) = ∫ 𝑅𝐶𝐿(−�̃� → −�̃�′)

𝜁𝑛<0

ℎ(�̃�′) 𝑑�̃�′ (2.60) 

Again, the projections φ, ψ are used to produce the equations for the boundary conditions. 

Projection φ: 
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 𝜙+ (±
1

2
, 𝑦, 𝜁𝑥, 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧 exp(−𝜁𝑧

2) 𝑑𝜁𝑧

+∞

−∞

= (2.61) 

 =
1

√𝜋
∫ [ ∭ 𝑅𝐶𝐿(−𝜁 → −𝜁′)

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′]

+∞

−∞

𝜁𝑧 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (2.62) 

 =
1

√𝜋
∭ [ ∫ 𝑅𝐶𝐿(−�̃� → −�̃�′)𝜁𝑧 exp(−𝜁𝑧

2)𝑑𝜁𝑧

+∞

−∞

]

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′ (2.63) 

 =
𝑎

√𝜋
∭ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′ <0

𝜁𝑧
′ exp(−𝜁𝑧

′ 2
) ℎ−(�̃�′)𝑑�̃�′ (2.64) 

where 𝑎 = 1 − 𝑎𝑡 

 

𝜙+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

=
2(1 − 𝑎𝑡)

𝑎𝑛√𝜋𝑎𝑡(2 − 𝑎𝑡)
∬ 𝜙− (±

1

2
, 𝑦, 𝜁𝑥

′, 𝜁𝑦
′)

𝜁𝑛
′ <0

𝜁𝑧
′ exp [−

𝜁𝑧
′ 2

+ (1 − 𝑎𝑛)𝜁𝑛
2

𝑎𝑛

−
((1 − 𝑎𝑡)𝜁𝑦 − 𝜁𝑦

′)
2

𝑎𝑡(2 − 𝑎𝑡)
] 𝐼0 (

2√1 − 𝑎𝑛𝜁𝑛𝜁𝑛
′

𝑎𝑛
) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ 

(2.65) 

 

Projection ψ: 

 𝜓+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧

3 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (2.66) 

 =
1

√𝜋
∫ [ ∭ 𝑅𝐶𝐿(−�̃� → −�̃�′)

𝜁𝑛
′ <0

ℎ−(𝜁′)𝑑𝜁′] 𝜁𝑧
3 exp(−𝜁𝑧

2) 𝑑𝜁𝑧 = (2.67) 

 =
1

√𝜋
∭ [∫ 𝑅𝐶𝐿(−�̃� → −�̃�′)𝜁𝑧

3 exp(−𝜁𝑧
2)𝑑𝜁𝑧]

𝜁𝑛
′ <0

ℎ−(�̃�′)𝑑�̃�′ = (2.68) 
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=
1

√𝜋
∭ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′ <0

[𝜁𝑧
′ 3

exp(−𝜁𝑧
′ 2

) 𝑎3

+ 𝜁𝑧
′ exp(−𝜁𝑧

′ 2
)

3

2
𝛼(1 − 𝛼2)] ℎ−(�̃�′)𝑑�̃�′ 

(2.69) 

 

𝜓+ =
(1 − 𝑎𝑡)3

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜓− (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ + 

+
3𝑎𝑡(1 − 𝑎𝑡)

2

(2 − 𝑎𝑡)

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜑− (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ 

(2.70) 

 

Concerning the temperature driven flow, by substituting the perturbed distribution (2.21) in 

(1.11), the linearized form will have the same form as eqs. (2.46) and (2.60). So, it is easy 

seen that when the perturbed function will be replaced in the projections φ & ψ the results will 

be the ones that have already been computed for both boundary conditions, eqs. (2.52), (2.57), 

(2.65) and (2.70). A more thorough description resulting in the linearized equations is 

presented in Appendix B. 

 

2.4 Computation of mass flow rate 

The numerical model was built in order to provide the dimensionless mass flow rates 

and heat fluxes. Although only the kinetic coefficients GP and GT were necessary since the 

comparison of the numerical with the experimental results concerns the mass flow rates as it 

will be discussed later. The kinetic coefficients depend on the aspect ratio H/W, rarefaction 

parameter δ and accommodation coefficients, i.e. 𝐺𝑃(𝐻/𝑊, 𝛿,  𝑎𝑡, 𝑎𝑛), or in the case of 

Maxwell boundary conditions 𝐺𝑃(𝐻/𝑊, 𝛿, 𝑎𝑀). Since the purpose of the diploma thesis is to 

match the experimental and numerical mass flow rates, it is obvious that the aspect ratio for 

the numerical model should be equal to the experimental one, i.e. only one ratio is needed. 

Thus, the desired kinetic coefficients were extracted for a wide range of δ, at and an values for 

CL boundary conditions, as well as for δ and aM for Maxwell boundary conditions. The 

reason the non-dimensionalization is preferred, is because it gives the opportunity of forming 



23 

a database that later can be used for analyzing different gases, on different ducts regarding the 

dimensions and for different conditions, e.g. temperature.  

In order to evaluate the net mass flow rate from the kinetic coefficients, the assumption 

of the fully developed flow, i.e. the pressure is constant on each cross section and only varies 

through the length, may be made since 𝐻 ≪ 𝐿. The fully developed flow in a duct is 

calculated by the first order ordinary differential equation. 

 
𝑑𝑃

𝑑𝑧
= −

𝑣0(𝑧)

𝑊𝐻2𝐺𝑃(𝛿(𝑧), 𝑎𝑡, 𝑎𝑛)
�̇� +

𝐺𝑇(𝛿(𝑧), 𝑎𝑡, 𝑎𝑛)

𝐺𝑃(𝛿(𝑧), 𝑎𝑡, 𝑎𝑛)

𝑃(𝑧)

𝑇(𝑧)

𝑑𝑇

𝑑𝑧
 

(

2.71) 

The above expression is only valid for CL boundary conditions. In case of Maxwell BCs the 

coefficients GP and GT are functions of δ and aM. Regarding the aspect of the given problem 

eq. (2.71) can be used to calculate the mass flow rate, if the pressure on both ends is known. 

The solution of the equation requires an iterative process where an initial value for the mass 

flow is assumed. Equation (2.71) is integrated with initial condition the pressure on the one 

end, for simplicity is called 𝑃(0) where 𝑧 ∈ [0, 𝐿], and the computed pressure is compared 

with the pressure on the other, 𝑃(𝐿). Then the mass flow is recalculated and the process is 

repeated until convergence is achieved. For the pressure driven flow the pressure on the two 

ends of the channel is different and the temperature throughout the channel is constant so the 

temperature gradient on the right hand side of (2.71) becomes zero and it can be rewritten as, 

 
𝑑𝑃

𝑑𝑧
= −

𝑣0(𝑧)

𝑊𝐻2𝐺𝑃(𝛿(𝑧), 𝑎𝑡, 𝑎𝑛)
�̇� 

(

2.72) 

For a temperature driven flow the pressure on both ends is equal but there is a pressure 

variation along the channel. In addition, the temperature varies linearly along the channel. 

 

2.5 Experiment description 

The experimental results which have been used in the present work have been kindly 

provided by the research group at the University of D’Aix-Marseille and are included in the 

Ph.D. thesis of Dr. R. Brancher [1]. It is useful, mainly for completeness purposes, to provide 

a brief description of the experimental setup. The experiment took place for four different 

monatomic gases (He, Ne, Ar, Kr) and Nitrogen and separately for pressure and temperature 

flows. The apparatus where the experiments were held consisted of two tanks connected with 

the micro-channel and due to their small volume, when needed, an additional reservoir was 

connected to each tank. The reservoirs were of the same volume but different for the pressure 
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and temperature gradient flows. Also, a secondary line linked the two tanks with a vacuum 

pump and the high-pressure gas bottles. Finally, valves were placed in the apparatus in order 

to control the flow of the gas. The material of the micro-channel was PEEK 

(PolyEtherEtherKetone), its dimensions: height 𝐻 = 0.24 ± 0.01𝑚𝑚, width 𝑊 = 1.0𝑚𝑚, 

length 𝐿 = 72𝑚𝑚 and the measured roughness: 113 ± 19𝑛𝑚. For the estimation of the mass 

flow two pressure gauges were attached, one on each tank. During the pressure gradient 

experiment there was no influence on the temperature of the gas and so room temperature 

(T=293.15K) was assumed. For the temperature gradient experiment an electrical heater was 

connected to one tank and water cooling to the other. It is noted that only the tank on the hot 

side was heated and not the reservoir, which is of greater volume. Because of that some 

discrepancies on the imposed temperatures may be expected. The measurement of the 

temperature was monitored with thermocouples and an infra-red camera. The temperature 

differences that were tested were two, namely ΔΤ=58Κ (Thot=342.65K, Tcold=284.65K) and 

ΔΤ=67.5K (Thot=352.15K, Tcold=284.65K). 

 

 

 

Figure 2.1: Experimental apparatus of [1] 
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 KINETIC COEFFICIENTS 

Extensive tabulated results are provided for the dimensionless flow rates GP and GT in 

terms of the gas rarefaction parameters and the accommodation coefficients of the Maxwell 

and CL boundary conditions. The results are for the pressure and temperature gradient driven 

flows and for two aspect ratios of the rectangular cross section of the channel. More 

importantly, they are provided in the whole range of the involved parameters. These results 

are used in Chapters 4 and 5 to compute the corresponding mass flow rates and may be used 

as a reference point in future work. In addition, some validation of the implemented kinetic 

code is provided. The bulk of the computational work was performed on the Marconi 

supercomputer of the computing center CINECA.  

 

3.1 Discretization and numerical parameters 

Before gathering the data from the numerical model that would be later used for the 

evaluation of the mass flow rates it was requisite to check the mesh independence on the 

results, i.e. the percentage difference between the results for different discretization on 

molecular speed magnitudes and polar angles and physical space discretization intervals. The 

parameters during the tests were fixed at: H/W=1, 0.24, δ=10, at=an=0.75. In the molecular 

velocity space the concluded discretization was: 40 magnitudes distributed according to 

Legendre polynomial roots, 200 polar angles equal distributed in [0,2π] and in the physical 

space 50 intervals on both x and y axis. As can be seen from Tables 3.1 and 3.2 an increase on 

the polar angles or the intervals compared to the chosen ones, would result in a significant 

increase on solution time, but not on a notable difference between the kinetic coefficients. In 

the square channel H/W=1 the number of nodes in x and y directions is the same, while in the 

rectangular one H/W=0.24 varies according to the aspect ratio. This discretization was used 

for 𝛿 ≤ 10. Greater values of the gas rarefaction parameter imply the increase of the 

intermolecular collisions as the system tends to the hydrodynamic regime. In these cases a 

denser grid was applied in the physical space with a reduction to the polar angles (intervals x-

axis=400, y-axis=200, polar angles=100). Furthermore, to prove the validity of the numerical 
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model the results were compared with other published results [4,9,10,15,16]. The gathered 

data refer to many aspect ratios for values of 𝛿 ∈ [0,50] and a wide range of values for the 

accommodation coefficients. 

 

Table 3.1: Flow rates with various number of molecular velocities and physical nodes for H/W=1 and 

δ=10. 

Velocities Angles X nodes Y nodes GP GP Diff [%] Time [hr] 

40 100 101 101 1.6327 -0.110 6 

40 200 101 101 1.6347 0.012 29 

40 400 51 51 1.6354 0.058 58 

40 200 51 51 1.6345   8 

 

Table 3.2: Flow rates with various number of molecular velocities and physical nodes for H/W=0.24 

and d=10. 

Velocities Angles X nodes Y nodes GP GP Diff [%] Time [hr] 

40 200 201 51 2.8952 3.454E-05 67 

40 200 101 51 2.8952   41 

 

It is noted that the computational times given in Tables 3.1 and 3.2 refer to single core 

calculations. 

 

3.2 Flow rates with Maxwell boundary conditions 

 A large amount of work has been dedicated to the extraction of the kinetic coefficients 

and their dependence on the Maxwell accommodation coefficient through various capillaries 

by performing experiments and comparing the corresponding kinetic results in the whole 

range of gas rarefaction. In the present work the tabulated results refer to the specific aspect 

ratio H/W=0.24.  

In Tables 3.3 and 3.4 the kinetic coefficients GP and GT are tabulated in for indicative 

values of δ from the free molecular limit up to the slip regime and in the whole range of the 

Maxwell accommodation coefficient αM from zero to one for the pressure and temperature 

driven flows respectively. As it is seen in Table 3.3 for all values of the gas rarefaction 

parameter the dimensionless flow rate is decreased as the accommodation coefficient is 

increased and the gas surface interaction becomes more diffuse. It may be also observed that 

the well-known Knudsen minimum is always present in all values of the accommodation 

coefficient. 
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Table 3.3: Dimensionless flow rate GP with Maxwell boundary conditions  

H/W=0.24 

δ a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 24.7454 11.7551 7.4398 5.2932 4.0142 3.1689 2.5714 2.1287 1.7893 1.5221 

0.1 16.0874 8.2785 5.5309 4.1021 3.2190 2.6167 2.1790 1.8464 1.5853 1.3752 

1 14.2781 7.1083 4.7063 3.4983 2.7690 2.2797 1.9281 1.6628 1.4554 1.2886 

5 14.7978 7.5932 5.1712 3.9514 3.2147 2.7208 2.3663 2.0992 1.8906 1.7230 

10 15.6408 8.3652 5.9079 4.6668 3.9155 3.4106 3.0472 2.7727 2.5577 2.3844 

 

Continuing with Table 3.4 it is seen that in the temperature driven flow the 

dimensionless flow rate is monotonically decreased as the accommodation coefficient is 

increased. It is noted that for α=1 the reflection is purely diffuse. With regard to the gas 

rarefaction parameter it is seen that as δ is increased, i.e., the flow becomes less rarefied the 

dimensionless flow rate is monotonically decreased. This is a well-known trend and it is 

contributed to the fact that thermal creep is reduced as the flow approaches the continuum 

regime. 

 

Table 3.4: Dimensionless flow rate GT with Maxwell boundary conditions  

H/W=0.24 

δ a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 12.3727 5.8776 3.7199 2.6466 2.0071 1.5844 1.2857 1.0644 0.8946 0.7610 

0.1 3.4589 2.3458 1.7818 1.4311 1.1883 1.0088 0.8700 0.7592 0.6685 0.5929 

1 0.6687 0.6047 0.5526 0.5090 0.4719 0.4398 0.4116 0.3867 0.3644 0.3443 

5 0.1515 0.1528 0.1539 0.1548 0.1556 0.1563 0.1569 0.1575 0.1580 0.1585 

10 0.0775 0.0800 0.0823 0.0844 0.0865 0.0885 0.0904 0.0923 0.0941 0.0958 

 

3.3 Flow rates with Cercignani-Lampis boundary conditions  

Tables 3.5 and 3.6 provide indicative values of the dimensionless flow rates for the 

pressure driven flow and Tables 3.7 and 3.8 the dimensionless flow rates for the temperature 

driven flow. The flow rates depend on δ, as well as on the tangential momentum and normal 

energy accommodation coefficients αt and αn respectively. Results are provided for two aspect 

ratios. 

As it seen in Tables 3.5 and 3.6 the dimensionless flow rates depend strongly on the 

tangential momentum accommodation coefficient (TMAC) and very weakly on the normal 

energy accommodation coefficient (NEAC). More specifically for the same values of δ and αt 
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the dimensionless flow rate GP changes slightly with αn. Regarding the rarefaction parameter 

as its value increases from zero to around one the flow rate is reduced and after that as δ is 

further increased GP increases again. This is the so-called Knudsen minimum which is also 

present here. The tangential momentum accommodation coefficient reduces the flow as its 

value increases, i.e. as the scattering changes from specular to diffuse. For TMAC larger than 

unity the flow rate is further reduced due to back scattering. As pointed above, the normal 

energy accommodation coefficient is the parameter that slightly affects the flow rate. As δ 

increases the impact of an on the flow becomes even smaller. Also, for 𝑎𝑡 < 1, an increase of 

an results on decreasing the value of GP, while for 𝑎𝑡 > 1 it has the opposite effect. In the 

case of 𝑎𝑡 = 1, then the coefficient an doesn’t affect the flow at all. All these remarks are the 

qualitatively the same for both aspect ratios. Quantitatively, as the aspect ratio is decreased 

the effect of an on the flow seems to increase slightly. Also, the decrease in the aspect ratio 

leads to an increase of the Poiseuille flow rates. 

The dimensionless flow rate due to the temperature gradient is given in Tables 3.7 and 

3.8. Now, the all three parameters, including the normal energy accommodation coefficient, 

affect the flow. As expected in thermal creep flows, as the gas rarefaction parameter is 

increased the flow rate is monotonically decreased, implying that the role of the temperature 

gradient on a flow in the hydrodynamic regime is insignificant. The effect of the tangential 

momentum accommodation coefficient remains the same as for the Poiseuille flow, i.e., as the 

TMAC is increased the flow rate is reduced. As for the normal energy accommodation 

coefficient it affects the flow in the same way as before, but only for 𝛿 < 3. For greater values 

of δ, an has the opposite effect, meaning that for values of 𝑎𝑡 < 1 an increase of an results also 

in an increase on thermal creep and for 𝑎𝑡 > 1 the thermal creep flow is reduced as an 

increases. For 𝑎𝑡 = 1 the flow rate is independent of the normal energy accommodation 

coefficient. 

   

  



29 

Table 3.5: Dimensionless flow rate GP with Cercignani-Lampis boundary conditions (H/W=1) 

H/W=1 

  at an =0.1 0.2 0.4 0.6 0.8 1 

δ=0 

0.1 9.2114 8.9694 8.7352 8.6217 8.5569 8.5171 

0.2 4.6537 4.5630 4.4544 4.3917 4.3517 4.3251 

0.6 1.4776 1.4668 1.4512 1.4397 1.4308 1.4238 

1 0.8387 0.8387 0.8387 0.8387 0.8387 0.8387 

1.4 0.5321 0.5386 0.5483 0.5559 0.5626 0.5688 

1.8 0.2858 0.2993 0.3191 0.3352 0.3498 0.3643 

1.9 0.2109 0.2277 0.2526 0.2728 0.2912 0.3099 

δ=0.1 

0.1 8.6270 8.6205 8.6194 8.6187 8.6183 8.6182 

0.2 4.4736 4.4718 4.4703 4.4693 4.4687 4.4683 

0.6 1.5958 1.5952 1.5944 1.5938 1.5934 1.5931 

1 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 

1.4 0.7241 0.7246 0.7253 0.7257 0.7261 0.7263 

1.8 0.5561 0.5570 0.5583 0.5592 0.5599 0.5603 

1.9 0.5223 0.5233 0.5248 0.5258 0.5265 0.5270 

δ=1 

0.1 8.4673 8.4531 8.4357 8.4226 8.4121 8.4036 

0.2 4.2730 4.2667 4.2567 4.2486 4.2417 4.2360 

0.6 1.3693 1.3682 1.3662 1.3643 1.3626 1.3610 

1 0.7756 0.7756 0.7756 0.7756 0.7756 0.7756 

1.4 0.4990 0.4997 0.5012 0.5028 0.5043 0.5059 

1.8 0.3045 0.3062 0.3096 0.3131 0.3167 0.3206 

1.9 0.2575 0.2597 0.2641 0.2685 0.2731 0.2780 

δ=5 

0.1 8.6270 8.6205 8.6194 8.6187 8.6183 8.6182 

0.2 4.4736 4.4718 4.4703 4.4693 4.4687 4.4683 

0.6 1.5958 1.5952 1.5944 1.5938 1.5934 1.5931 

1 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 

1.4 0.7241 0.7246 0.7253 0.7257 0.7261 0.7263 

1.8 0.5561 0.5570 0.5583 0.5592 0.5599 0.5603 

1.9 0.5223 0.5233 0.5248 0.5258 0.5265 0.5270 

δ=10 

0.1 8.9761 8.9675 8.9630 8.9593 8.9552 8.9524 

0.2 4.8389 4.8354 4.8310 4.8273 4.8241 4.8213 

0.6 1.9391 1.9378 1.9357 1.9339 1.9323 1.9309 

1 1.3240 1.3240 1.3240 1.3240 1.3240 1.3240 

1.4 1.0438 1.0449 1.0468 1.0485 1.0501 1.0514 

1.8 0.8762 0.8783 0.8820 0.8854 0.8884 0.8911 

1.9 0.8435 0.8459 0.8501 0.8538 0.8572 0.8603 
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Table 3.6: Dimensionless flow rate GP with Cercignani-Lampis boundary condition (H/W=0.24) 

H/W=0.24 

  at an =0.1 0.2 0.4 0.6 0.8 1 

δ=0 

0.1 15.6884 15.0879 14.5872 14.3718 14.2569 14.1894 

0.2 8.0392 7.7650 7.4837 7.3419 7.2594 7.2081 

0.6 2.6514 2.6073 2.5520 2.5166 2.4917 2.4735 

1 1.5219 1.5219 1.5219 1.5219 1.5219 1.5219 

1.4 0.9759 1.0016 1.0340 1.0563 1.0741 1.0897 

1.8 0.5690 0.6106 0.6617 0.6974 0.7269 0.7544 

1.9 0.4456 0.4892 0.5436 0.5823 0.6148 0.6457 

δ=0.1 

0.1 14.8321 14.5671 14.2900 14.1496 14.0682 14.0177 

0.2 7.5578 7.4150 7.2432 7.1455 7.0846 7.0450 

0.6 2.4538 2.4258 2.3868 2.3599 2.3401 2.3252 

1 1.3751 1.3751 1.3751 1.3751 1.3751 1.3751 

1.4 0.8584 0.8759 0.9002 0.9181 0.9330 0.9463 

1.8 0.4902 0.5195 0.5589 0.5880 0.6127 0.6363 

1.9 0.3905 0.4216 0.4636 0.4946 0.5212 0.5469 

δ=1 

0.1 14.0333 14.0119 13.9897 13.9725 13.9588 13.9481 

0.2 7.0294 7.0183 7.0012 6.9872 6.9759 6.9667 

0.6 2.2738 2.2704 2.2644 2.2591 2.2544 2.2503 

1 1.2885 1.2885 1.2885 1.2885 1.2885 1.2885 

1.4 0.8406 0.8430 0.8475 0.8519 0.8562 0.8604 

1.8 0.5632 0.5675 0.5758 0.5838 0.5918 0.6001 

1.9 0.5051 0.5099 0.5190 0.5277 0.5366 0.5459 

δ=5 

0.1 14.6273 14.6137 14.6088 14.6053 14.6027 14.6006 

0.2 7.5296 7.5255 7.5216 7.5187 7.5166 7.5149 

0.6 2.7199 2.7187 2.7169 2.7157 2.7147 2.7140 

1 1.7220 1.7220 1.7220 1.7220 1.7220 1.7220 

1.4 1.2816 1.2826 1.2842 1.2853 1.2861 1.2867 

1.8 1.0280 1.0300 1.0331 1.0353 1.0369 1.0382 

1.9 0.9800 0.9823 0.9856 0.9881 0.9900 0.9913 

δ=10 

0.1 15.4955 15.4776 15.4665 15.4573 15.4493 15.4422 

0.2 8.2638 8.2569 8.2469 8.2393 8.2325 8.2266 

0.6 3.3996 3.3969 3.3922 3.3884 3.3851 3.3821 

1 2.3801 2.3801 2.3801 2.3801 2.3801 2.3801 

1.4 1.9268 1.9293 1.9333 1.9369 1.9402 1.9433 

1.8 1.6650 1.6695 1.6772 1.6844 1.6908 1.6969 

1.9 1.6154 1.6202 1.6290 1.6370 1.6442 1.6511 
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Table 3.7: Dimensionless flow rate GT with Cercignani-Lampis boundary conditions (H/W=1) 

H/W=1 

  at an =0.1 0.2 0.4 0.6 0.8 1 

δ=0 

0.1 1.7844 1.3757 0.9590 0.7503 0.6276 0.5496 

0.2 1.1201 0.9610 0.7605 0.6396 0.5598 0.5047 

0.6 0.5454 0.5252 0.4933 0.4683 0.4480 0.4312 

1 0.4193 0.4193 0.4193 0.4193 0.4193 0.4193 

1.4 0.3420 0.3530 0.3710 0.3869 0.4017 0.4164 

1.8 0.2375 0.2569 0.2883 0.3164 0.3442 0.3740 

1.9 0.1904 0.2130 0.2498 0.2828 0.3157 0.3519 

δ=0.1 

0.1 1.3839 1.1346 0.8375 0.6707 0.5662 0.4968 

0.2 0.9243 0.8150 0.6640 0.5659 0.4980 0.4495 

0.6 0.4713 0.4558 0.4301 0.4091 0.3916 0.3768 

1 0.3649 0.3649 0.3649 0.3649 0.3649 0.3649 

1.4 0.2984 0.3069 0.3219 0.3355 0.3486 0.3617 

1.8 0.2054 0.2203 0.2464 0.2706 0.2949 0.3213 

1.9 0.1642 0.1817 0.2121 0.2403 0.2691 0.3009 

δ=1 

0.1 0.5139 0.4865 0.4362 0.3964 0.3643 0.3383 

0.2 0.4296 0.4120 0.3804 0.3541 0.3321 0.3135 

0.6 0.2955 0.2916 0.2843 0.2774 0.2711 0.2652 

1 0.2557 0.2557 0.2557 0.2557 0.2557 0.2557 

1.4 0.2286 0.2311 0.2363 0.2415 0.2469 0.2524 

1.8 0.1807 0.1851 0.1942 0.2037 0.2139 0.2251 

1.9 0.1609 0.1659 0.1763 0.1873 0.1991 0.2122 

δ=5 

0.1 0.1446 0.1470 0.1496 0.1521 0.1545 0.1568 

0.2 0.1419 0.1434 0.1457 0.1480 0.1502 0.1523 

0.6 0.1360 0.1365 0.1376 0.1386 0.1397 0.1407 

1 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 

1.4 0.1405 0.1402 0.1394 0.1385 0.1377 0.1368 

1.8 0.1370 0.1364 0.1350 0.1336 0.1320 0.1304 

1.9 0.1345 0.1339 0.1324 0.1308 0.1291 0.1274 

δ=10 

0.1 0.0769 0.0794 0.0832 0.0868 0.0904 0.0938 

0.2 0.0784 0.0802 0.0834 0.0865 0.0896 0.0926 

0.6 0.0825 0.0833 0.0846 0.0860 0.0874 0.0888 

1 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 

1.4 0.0929 0.0924 0.0912 0.0900 0.0887 0.0874 

1.8 0.0959 0.0949 0.0928 0.0905 0.0881 0.0857 

1.9 0.0961 0.0950 0.0927 0.0902 0.0876 0.0849 
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Table 3.8: Dimensionless flow rate GT with Cercignani-Lampis boundary conditions (H/W=0.24) 

H/W=0.24 

  𝑎𝑡 an 0.1 0.2 0.4 0.6 0.8 1 

δ=0 

0.1 3.0341 2.2577 1.5674 1.2489 1.0668 0.9515 

0.2 2.0055 1.6569 1.2797 1.0779 0.9532 0.8703 

0.6 1.0168 0.9634 0.8910 0.8409 0.8032 0.7739 

1 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 

1.4 0.6081 0.6366 0.6757 0.7058 0.7322 0.7571 

1.8 0.4500 0.4960 0.5585 0.6077 0.6529 0.6993 

1.9 0.3834 0.4325 0.5007 0.5557 0.6074 0.6617 

δ=0.1 

0.1 2.0274 1.6550 1.2371 1.0129 0.8749 0.7832 

0.2 1.4531 1.2579 1.0115 0.8643 0.7678 0.7012 

0.6 0.7884 0.7529 0.6998 0.6605 0.6300 0.6057 

1 0.5928 0.5928 0.5928 0.5928 0.5928 0.5928 

1.4 0.4715 0.4914 0.5214 0.5458 0.5678 0.5891 

1.8 0.3450 0.3777 0.4257 0.4655 0.5030 0.5419 

1.9 0.2973 0.3322 0.3843 0.4280 0.4699 0.5144 

δ=1 

0.1 0.5895 0.5655 0.5197 0.4838 0.4554 0.4329 

0.2 0.5244 0.5052 0.4711 0.4435 0.4210 0.4025 

0.6 0.3973 0.3913 0.3801 0.3700 0.3610 0.3529 

1 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443 

1.4 0.3057 0.3097 0.3175 0.3252 0.3329 0.3408 

1.8 0.2578 0.2643 0.2773 0.2904 0.3041 0.3190 

1.9 0.2422 0.2492 0.2633 0.2775 0.2926 0.3091 

δ=5 

0.1 0.1510 0.1544 0.1587 0.1628 0.1668 0.1706 

0.2 0.1509 0.1530 0.1565 0.1599 0.1631 0.1663 

0.6 0.1534 0.1541 0.1555 0.1570 0.1584 0.1598 

1 0.1584 0.1584 0.1584 0.1584 0.1584 0.1584 

1.4 0.1632 0.1627 0.1615 0.1603 0.1591 0.1578 

1.8 0.1645 0.1635 0.1615 0.1593 0.1570 0.1546 

1.9 0.1639 0.1629 0.1607 0.1583 0.1557 0.1531 

δ=10 

0.1 0.0792 0.0820 0.0864 0.0907 0.0948 0.0989 

0.2 0.0808 0.0829 0.0866 0.0902 0.0937 0.0971 

0.6 0.0885 0.0894 0.0910 0.0926 0.0943 0.0959 

1 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 

1.4 0.1022 0.1015 0.1001 0.0986 0.0971 0.0955 

1.8 0.1076 0.1063 0.1037 0.1009 0.0980 0.0949 

1.9 0.1086 0.1072 0.1043 0.1013 0.0980 0.0946 
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 EXTRACTION OF ACCOMMODATION 

COEFFICIENTS FOR PRESSURE DRIVEN FLOW 

The mass flow rate for specific flow setups is obtained. The imposed geometrical and 

operational data are the same with the ones implemented in the experimental work reported in 

[1]. Based on these data, as well as on the dimensionless kinetic coefficients tabulated in the 

previous chapter the mass flow rate is computed using the Maxwell and the Cercignani-

Lampis boundary conditions. The values of the accommodation coefficients providing the 

best agreement between computed and measured mass flow rates are the ones which 

characterize the gas –surface interaction.  

 

4.1 Mass flow rate parameters for pressure driven flow 

According to the description in paragraph 2.4 the mass flow rate, based on (2.72) may 

be computed as 

 𝐺𝑝 = �̇�
𝐿√2𝑅𝑇

𝐻2𝑊𝛥𝑝
 (4.1) 

where the geometrical parameters of the channel (H, W, L) as well as the physical properties 

(R, ω, μ) for all gases are known (Table 4.1). In addition, the appropriate database with the 

kinetic coefficients for various values of δ, at, an and aM is available from the linearized 

kinetic model. The gas rarefaction parameter is computed as 

 𝛿𝑚 =
𝑝𝑚𝐻

𝜇(𝛵)√2𝑅𝑇
 (4.2) 

based on the data from Tables A.1 and A.2 for each gas of [1] The temperatures of both the 

pressure and the temperature gradient experiments are also known. The room temperature is 

T=293.15K for the pressure driven flow and the temperature differences are ΔΤ=58K and 

ΔΤ=67.5K for the two temperature driven flows. 
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Table 4.1: Physical properties of gases 

Gas  Helium Neon Nitrogen Argon Krypton 

μref [Pa s] 10-5 1.865 2.975 1.656 2.117 2.328 

ω [-] 0.66 0.66 0.74 0.81 0.8 

R [J/lg K] 2078 412 296.8 208.1 99.22 

 

The only unknown parameters are the pressures at the two channel ends for the various 

tests on each experimental setup. The inlet and outlet pressures for the pressure driven flow 

are evaluated by (4.1) and (4.2) following the procedure outlined in paragraph 2.4, based on 

the rarefaction parameter δm in [1]. Since in this case the unknowns of (4.1) and (4.2) were the 

pressure difference Δp and the mean pressure pm respectively, as inputs of 𝐺𝑃, �̇� and 𝛿𝑚 were 

used, given the tested gas, to extract the desired variables. 

 

4.2 Maxwell accommodation coefficient for pressure driven flow 

In the Maxwell boundary conditions there is only one free parameter, namely the 

Maxwell accommodation coefficient for characterizing the gas-surface interaction. This 

means that for the pressure and temperature gradient driven flows the value of the 

accommodation coefficient is not necessarily the same. Thus, the extraction of the 

accommodation coefficient for the pressure and temperature driven flow was performed 

separately. For the pressure driven flow to extract the value of the accommodation coefficient 

for each gas an attempt was made initially to match the numerical and experimental mass 

flow rates for the lower values of 𝛿 ∈ [6,20], because the coefficient has a more pronounced 

effect on the mass flow rates and thus leads to smaller uncertainties and errors. As a starting 

value for the AC the measured experimental one was used and was accordingly altered to 

obtain the best possible agreement between computations and measurements. An excellent 

agreement has been obtained for the tested values and the results are presented in Tables 4.2-

4.4. The important outcome was that for each case on all gases the numerical value of the AC 

had a relative error compared to the experimental measured, [1], less than 4%, 4%, 3%, 3% 

and 5% for He, Ne, N2, Ar and Kr, respectively. 

To further clarify the agreement between the results, the Euclidian norm of the 

coefficient 𝑎𝑃
𝑀  was calculated for each gas based on the results from Tables 4.2-4.4. The 

deduced values along with two additional values in the range of ±0.05 were tested for all the 

given experimental data and are presented for all five gases in Figures 4.1-4.5. In these figures 

the error between the numerical and experimental mass flow rate, as well as the mass flow 
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rates are provided. It can be seen that the initial chosen value of AC produces the smallest 

error with the divergence from zero be less than 1%, while the other two produce an error of 

+5% for a lower value of AC and -5% for greater. As the value of δ increases (𝛿 > 20) the 

error curve for all three ACs starts to decreases numerically, i.e. the middle AC begins to 

deviate from zero, meaning that the effect of the coefficient on the flow is becoming less 

important as it moves to the hydrodynamic regime. Finally, the selected values of the 

Maxwell accommodation coefficient providing the best agreement between the computed and 

the measured flow rates are given in Table 4.5. 

Table 4.2: Computed values of 𝑎𝑃
𝑀 for pressure driven flow for Helium and Neon 

He (𝑎𝑃
𝑀 [1]=0.773) Ne (𝑎𝑃

𝑀 [1]=0.763) 

δ 𝑎𝑃
𝑀 M [kg/s] M Diff [%] δ 𝑎𝑃

𝑀 M [kg/s] M Diff [%] 

6.03 0.8 1.47E-09 3.49 8.63 0.787 2.95E-10 3.15 

8.58 0.788 2.39E-10 1.94 9.18 0.786 3.42E-10 3.01 

9.31 0.788 1.37E-10 1.94 10 0.777 1.20E-09 1.83 

9.71 0.797 1.78E-10 3.10 10.5 0.777 1.49E-09 1.83 

10.3 0.802 1.35E-09 3.75 11.5 0.777 1.05E-09 1.83 

  

Table 4.3: Computed values of 𝑎𝑃
𝑀 for pressure driven flow for Nitrogen and Argon 

N2 (𝑎𝑃
𝑀 [1]=0.779) Ar (𝑎𝑃

𝑀 [1]=0.785) 

δ 𝑎𝑃
𝑀 M [kg/s] M Diff [%] δ 𝑎𝑃

𝑀 M [kg/s] M Diff [%] 

9.19 0.8 4.08E-10 2.70 9.11 0.805 2.65E-10 2.55 

10.5 0.801 6.91E-10 2.82 9.79 0.798 6.12E-10 1.66 

12.7 0.801 1.20E-09 2.82 11.3 0.801 8.43E-10 2.04 

16.1 0.801 1.67E-09 2.82 13.3 0.797 1.24E-09 1.53 

20.3 0.798 2.69E-09 2.44 15.9 0.79 1.89E-09 0.64 

  

Table 4.4: Computed values of 𝑎𝑃
𝑀 for pressure driven flow for Krypton 

Kr (𝑎𝑃
𝑀 [1]=0.796) 

δ 𝑎𝑃
𝑀 M [kg/s] M Diff [%] 

8.89 0.833 5.07E-10 4.65 

10.1 0.822 6.82E-10 3.27 

11.7 0.82 1.87E-09 3.02 

13.2 0.818 2.73E-09 2.76 

15.6 0.82 2.05E-09 3.02 

 

Table 4.5: Computed values of 𝑎𝑃
𝑀 over the whole range of gas rarefaction for all gases 

Gas Helium Neon Nitrogen Argon Krypton 

𝑎𝑃
𝑀 0.795 0.781 0.8 0.798 0.823 
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Figure 4.1: Comparison between computed and measured mass flow rates of He for the pressure 

driven flow based on the Maxwell boundary conditions (𝑎𝑃
𝑀) 

 

 

Figure 4.2: Comparison between computed and measured mass flow rates of Ne for the pressure 

driven flow based on the Maxwell boundary conditions (𝑎𝑃
𝑀) 
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Figure 4.3: Comparison between computed and measured mass flow rates of N2 for the pressure driven 

flow based on the Maxwell boundary conditions (𝑎𝑃
𝑀) 

 

 

Figure 4.4: Comparison between computed and measured mass flow rates of Ar for the pressure driven 

flow based on the Maxwell boundary conditions (𝑎𝑃
𝑀) 
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Figure 4.5: Comparison between computed and measured mass flow rates of Kr for the pressure driven 

flow based on the Maxwell boundary conditions (𝑎𝑃
𝑀) 

 

4.3 Cercignani-Lampis tangential momentum accommodation coefficient 

for pressure driven flow 

In the Cercignani-Lampis (CL) boundary conditions there are two free parameters, 

namely the CL tangential momentum (𝛼𝑡) and normal energy (𝛼𝑛) accommodation 

coefficients characterizing the gas-surface interaction. As discussed in Chapter 3, in the 

pressure driven flow the kinetic coefficient is almost independent of 𝛼𝑛 and therefore is 

always set equal to one (𝑎𝑛 = 1). For estimating the tangential momentum accommodation 

coefficient, the pressure driven flow was employed by comparing the experimental with the 

numerical mass flow rates. More specifically, at was altered trying to match the results. The 

comparison at first was, also, performed for the experiments with the lower values of 𝛿 ∈

[6,20], beginning with the experimental values of the TMAC. The values of the coefficient 𝛼𝑡 

that resulted in the same mass flow rates as the experiments, while maintaining 𝛼𝑛 = 1, are 

presented in Tables 4.5-4.7 for all gases, along with the values of the mass flow rate as well as 

the values of 𝛼𝑡 given in [1]. For all the gases the values of 𝛼𝑡 obtained using the present 

methodology are very close with the ones reported in [1], having relative differences less than 

5%, 5%, 4%, 4% and 6% for He, Ne, N2, Ar and Kr, respectively. 
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In order to better judge the accuracy of the results, the Euclidean norm of the coefficient 

at was computed for each gas based on the results from Tables 4.6-4.8. To ensure that the 

chosen values were the ones that fit best a comparison was made with two additional values 

of at in the range of ±0.05 for each gas. The results are presented in Figures 4.6-4.10, where 

again the upper graph presents the error between the numerical and experimental results, 

while the lower graph the mass flow rates. Judging by the diagrams it is clear that the initially 

chosen values of the coefficient for each gas gives the best results for 𝛿 < 20 with the error 

varying around zero in a range of ±2%. The error for the other two ACs is larger by 5% 

compared to the first value’s error. As δ increases, i.e. the flow is moving to the 

hydrodynamic regime, the effect of the coefficient on the mass flow rate diminishes. Finally, 

the selected values of the CL TMAC providing the best agreement between the computed and 

the measured flow rates are given in Table 4.9. The results are relatively close to the ones 

reported in Table 4.5 for the Maxwell boundary conditions. 

 

Table 4.6: Computed values of at for pressure driven flow for Helium and Neon 

He (𝛼𝑡 [1]=0.763) Ne (𝛼𝑡 [1]=0.752) 

𝑎𝑛=1 𝑎𝑛=1 

δ 𝛼𝑡 M [kg/s] M Diff % δ 𝛼𝑡 M [kg/s] M Diff % 

6.03 0.797 1.47E-09 4.46 8.63 0.784 2.95E-10 4.26 

8.58 0.787 2.39E-10 3.15 9.18 0.782 3.42E-10 3.99 

9.31 0.786 1.37E-10 3.01 10 0.774 1.20E-09 2.93 

9.71 0.794 1.78E-10 4.06 10.5 0.772 1.49E-09 2.66 

10.3 0.797 1.35E-09 4.46 11.5 0.773 1.05E-09 2.79 

 

Table 4.7: Computed values of at for pressure driven flow for Nitrogen and Argon 

N2 (𝛼𝑡 [1]=0.768) Ar (𝛼𝑡 [1]=0.775) 

𝑎𝑛=1 𝑎𝑛=1 

δ 𝛼𝑡 M [kg/s] M Diff % δ 𝛼𝑡 M [kg/s] M Diff % 

9.19 0.795 4.08E-10 3.52 9.11 0.799 2.65E-10 3.10 

10.5 0.794 6.91E-10 3.39 9.79 0.793 6.12E-10 2.32 

12.7 0.793 1.20E-09 3.26 11.3 0.795 8.43E-10 2.58 

16.1 0.787 1.67E-09 2.47 13.3 0.786 1.24E-09 1.42 

20.3 0.777 2.69E-09 1.17 15.9 0.779 1.89E-09 0.52 
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Table 4.8: Computed values of at for pressure driven flow for Krypton 

Kr (𝛼𝑡 [1]=0.786) 

𝑎𝑛=1 

δ 𝛼𝑡 M [kg/s] M Diff % 

8.89 0.831 5.07E-10 5.73 

10.1 0.817 6.82E-10 3.94 

11.7 0.808 1.87E-09 2.80 

13.2 0.805 2.73E-09 2.42 

15.6 0.807 2.05E-09 2.67 

 

Table 4.9: Computed values of at over the whole range of gas rarefaction for all gases 

Gas Helium Neon Nitrogen Argon Krypton 

at 0.792 0.777 0.789 0.79 0.814 

 

 

 

Figure 4.6: Comparison between computed and measured mass flow rates of He for the pressure 

driven flow based on the Cercignani-Lampis boundary conditions with various values of at  and αn=1 
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Figure 4.7: Comparison between computed and measured mass flow rates of Ne for the pressure 

driven flow based on the Cercignani-Lampis boundary conditions with various values of at  and αn=1 

 

 

Figure 4.8: Comparison between computed and measured mass flow rates of N2 for the pressure driven 

flow based on the Cercignani-Lampis boundary conditions with various values of at  and αn=1 
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Figure 4.9: Comparison between computed and measured mass flow rates of Ar for the pressure driven 

flow based on the Cercignani-Lampis boundary conditions with various values of at  and αn=1 

 

 

Figure 4.10: Comparison between computed and measured mass flow rates of Kr for the pressure 

driven flow based on the Cercignani-Lampis boundary conditions with various values of at  and αn=1 
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 EXTRACTION OF ACCOMMODATION 

COEFFICIENTS FOR TEMPERATURE DRIVEN FLOW 

The mass flow rate for specific temperature driven flow setups is obtained. The 

imposed geometrical and operational data are the same with the ones implemented in the 

experimental work reported in [1]. Based on these data, as well as on the dimensionless 

kinetic coefficients tabulated in the Chapter 3, the mass flow rate is computed using the 

Maxwell and the Cercignani-Lampis boundary conditions. However, an identification of the 

value of the accommodation coefficients could not be done since large deviations exist 

between the computed and measured mass flow rates. 

 

5.1 Mass flow rate for temperature driven flow 

According to the description in paragraph 2.4 the mass flow rate, based on (2.71) may 

be computed as 

 𝑀 ≈ 𝐺𝑇(𝛿𝑚)
2𝐻2𝑊

𝐿
𝑝0 (

1

√2𝑅𝑇1

−
1

√2𝑅𝑇2

) (5.1) 

where the geometrical parameters of the channel (H, W, L) as well as the physical properties 

(R, ω, μ) for all gases are known (Table 4.1). In addition, the appropriate database with the 

kinetic coefficients for various values of δ, at, an and aM is available from the linearized 

kinetic model. The gas rarefaction parameter is computed as 

    𝛿𝑚 =
𝑝0𝐻

𝜇(𝑇𝑚)√2𝑅𝑇𝑚

  (5.2) 

based on the data from Tables A.3-A.6 for each gas of [1]. As inputs for GT and δm in eqs. 

(5.1) and (5.2) respectively the results from Tables A.3-A.6 of [1] were used in order to 

extract the pressure. The outcome from the two equations was very close most of the times 

with an average difference of 2%. Yet to avoid any uncertainties the measured pressure values 

from the experiment were used, although the average difference between the latter and the 
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former was 4%. The temperature differences for the two experiments are known and equal to 

ΔΤ=58Κ and ΔΤ=67.5K, while the pressure at the two ends of the channel is the same. 

 

5.2 Maxwell accommodation coefficient for temperature driven flow 

In the case of the temperature driven flow no exact match has been found between the 

experimental and numerical results. On the contrary significant differences have been 

observed, mainly at the lower values of δ where the discrepancies are maximized. For the 

lower values of δ the accommodation coefficient extracted from the experimental work [1] 

has been applied. Since there were no good agreement the experimental and numerical mass 

flow rates with their differences have been plotted for all available experimental data based on 

the experimental values of the accommodation coefficient. Moreover, an investigation is 

made using different values of the temperature difference than the reported experimental ones, 

in an effort to find the source of the large discrepancies. Results are reported for four different 

temperature differences (ΔΤ=45, 50, 55K as well as the experimental one ΔΤ=67.5K) because 

the numerical mass flow rate was always higher than the experimental for the lower values of 

δ. Then, due to the observed significant differences three additional values of 𝑎𝑇
𝑀 were tested, 

namely 𝑎𝑇
𝑀 = 0.1, 0.5, 0.9, in order to better understand the impact of the accommodation 

coefficient on the mass flow rate and find the most suitable values. This work has been 

performed for both experimental temperature differences since similar behavior was 

presented. Extensive results for ΔΤ=67.5K and ΔΤ=58K are displayed in Appendices C and D 

respectively.  

Additional results are provided in Figures 5.1-5.10. Two figures are provided for each 

of the five gases. As seen in Figure 5.1, for He, the error is smaller than 10% in the range of 

𝛿 ∈ [6,12]. However, as δ decreases the error increases up to 150%. The error in this area is 

negligible at ΔΤ=50K and 𝑎𝑇
𝑀 = 0.9 (Figure 5.2). To continue with Ne, it is seen in Figures 

5.3 and 5.4 that the error is in the range of 0-20% for 𝛿 ∈ [4,18] and it becomes smaller for 

𝛿 ∈ [8,18] , where the error is less than 10%. Concerning the lower values of δ the curve has 

a similar behavior as previously with the error keeps increasing as δ decreases. A decrease in 

the AC results to a smaller error in the range 𝛿 ∈ [6,18], while for a lower temperature 

difference, ΔΤ=55Κ and a higher AC could have the same outcome but for a greater range, 

𝛿 ∈ [2,18]. The discrepancies in the case of N2, as shown in Figures 5.5 and 5.6 are filled 

with oscillations. Though in the range of  𝛿 ∈ [9,17] the error is almost constant and equal to 

20%, at ΔΤ=55K the error approaches zero. For the initial temperature difference the error is 
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reduced if a more specular behavior of the gas is assumed, i.e. for a lower value of AC. In 

Figures 5.7 and 5.8 for Ar, it is seen that the error values concentrate near 40% for 𝛿 ∈ [2,4]. 

In addition, a second area where the error is almost constant is observed in the range 𝛿 ∈

[7,16], where the error is equal to 20%. The former range is improved for a temperature 

difference between 45-50K while the latter one for ΔΤ=55Κ. At initial temperature difference 

the error in the second area can be reduced for a reduction in the AC. Finally, in Figures 5.9 

and 5.10 for Kr the error becomes constant for 𝛿 ∈ [4,6] with error near 50%, for 𝛿 ∈ [6,12] 

with error near 37% and for 𝛿 ∈ [17,25] with error near 20%. The error approaches zero in 

the first case at ΔΤ=45Κ, in the second at ΔΤ=50Κ and in the third at ΔΤ=55Κ. The error in 

the third range also improves if the AC is decreased at the initial temperature difference. 

Unfortunately, no overall concluding remarks can be made. It seems that the Maxwell 

accommodation coefficient in the case of temperature driven flows depends on the gas 

rarefaction as well as on the imposed temperature difference. 

 

 

Figure 5.1: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of He 

 



46 

 

Figure 5.2: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of He 

 

 

Figure 5.3: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Ne 
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Figure 5.4: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ne 

 

 

Figure 5.5: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of N2 
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Figure 5.6: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of N2 

 

 

Figure 5.7: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Ar 
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Figure 5.8: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ar 

 

 

Figure 5.9: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Kr 
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Figure 5.10: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Kr 

 

5.3 Cercignani-Lampis normal energy accommodation coefficient for 

temperature driven flow 

The tangential momentum accommodation coefficient at of the CL boundary conditions 

has already been specified in Section 4.3 for all five gases using the experimental data for the 

pressure driven flow. These values remain the same and here the objective is to find the 

values of the normal energy accommodation coefficient an in order to obtain the best match 

between the computed and measured mass flow rates using data regarding the temperature 

driven flow. The same process as before is followed but now at was kept constant and equal 

with the estimated value for each gas (see Table 4.8), while an was altered trying to match the 

mass flow rates. However, no good agreement is obtainεd even for various values of an, 

including the limiting values 𝑎𝑛 = 0.1 and 1. The computed mass flow rate was always 

greater than the corresponding experimental one. Then the coefficient at was altered, while 

keeping 𝑎𝑛 = 1 and even for the limiting values of at the outcome was the same as before 

(see Tables 5.1-5.5). It is noted that as the value of δ increases the difference between the 

experimental and numerical values decreases. For Helium the differences are 4.5% and 4% 

for 𝑎𝑡 = 1.9, 𝑎𝑛 = 1 , 𝛿 = 3.01 and 𝑎𝑡 = 0.792,  𝑎𝑛 = 0.1 , 𝛿 = 7.9, respectively. Also, the 
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effect of an on the mass flow rate changes as   is altered. More specifically, for 𝛿 < 3 an 

increase of an results in a decrease of mass flow rate, while for 𝛿 > 3 it has the opposite 

effect. 

To gain a better insight of the discrepancies between the experimental and numerical 

values and in order to find their source, the error along with the mass flow rates for all the 

experimental values was produced for three different values of an, while at is equal to the 

estimated for each gas (Table 4.8) and for three additional temperature differences. In all 

cases the pressure remains constant and equal to the measured one. The additional 

temperature differences were all chosen to be smaller than the experimental ones (ΔT=55, 50, 

45K) due to the fact that the numerical mass flow rate was always higher than the 

experimental and so a reduction of the former was necessary. In Figures 5.11-5.20 the 

respective plots are presented for the case of ΔΤ=67.5K, while for the other tested 

temperature difference the figures can be found in Appendix E. 

The mass flow rate curves are quite similar to those with the Maxwell boundary 

conditions and as consequence the same applies for the error curves. The best results are for 

He not only due to the small deviations in error in the range of 𝛿 ∈ [2,12], but also because 

the error is smaller than 10% for 𝛿 ∈ [4,11] at ΔΤ=67.5K. For 𝛿 ≈ 1 the error varies around 

35%, but at ΔΤ=50Κ this value becomes 3%. Concerning Ne two areas have small deviations 

in error. The first is for 𝛿 ∈ [3,7] with an error near 20% and the second one is for 𝛿 ∈

[10,18] with an error near 10%. The former error gives best results at ΔΤ=55Κ, while for the 

latter case a temperature difference slightly lower than 67.5K is the most suitable. Regarding 

N2, again oscillations with small or large amplitudes are noted throughout the error curve. A 

stabilization of the error is achieved for 𝛿 ∈ [5,8] and it gets close to zero at ΔΤ=50K. Also, 

for 𝛿 ∈ [12,17] the error is almost constant and is improved at ΔΤ=55K. In the case of Ar the 

error varies around 10-15% in the range of 𝛿 ∈ [12,17] and it is minimized at a temperature 

difference a bit lower than 67.5K. Apart from this range the curve is filled with oscillations. 

In the case of Kr, the error stabilizes for 𝛿 ∈ [13,23] at 30% and approaches zero at a 

temperature difference between 50-55K. Similar to the Maxwell boundary conditions for the 

temperature driven flow no general remarks valid in the whole range of gas rarefaction and 

for any temperature difference can be drawn. 
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Table 5.1: Mass flow rate comparison at ΔΤ=67.5K for various values of δ, at , an for He 

Helium 

ΔΤ=67.5Κ 

Experimental[1]:  M=2.16E-12 5.07E-12 8.62E-12 1.24E-11 

Numerical 

   δ=0.507 1.38 3.01 7.9 

𝑎𝑡 𝑎𝑛 M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] 

0.792 0.1 3.73E-12 72.80 6.78E-12 33.76 9.62E-12 11.58 1.29E-11 4.08 

0.792 1 3.42E-12 58.18 6.47E-12 27.55 9.6E-12 11.37 1.34E-11 7.81 

1.9 1 3.01E-12 39.53 5.83E-12 15.03 9.01E-12 4.50 1.31E-11 5.84 

1 1 3.4E-12 57.22 6.43E-12 26.80 9.56E-12 10.93 1.33E-11 7.65 

0.1 1 4.42E-12 104.41 7.85E-12 54.87 1.07E-11 24.51 1.39E-11 12.22 

 

  

Table 5.2: Mass flow rate comparison at ΔΤ=67.5K for various values of δ, at , an for Ne 

Neon 

ΔΤ=67.5Κ 

Experimental[1]:  M=5.15E-12 1.01E-11 1.27E-11 1.76E-11 

Numerical 

   δ=0.914 2.12 3.07 7.51 

𝑎𝑡 𝑎𝑛 M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] 

0.777 0.1 8.30E-12 61.18 1.32E-11 30.33 1.54E-11 21.60 2.03E-11 15.18 

0.777 1 7.75E-12 50.42 1.29E-11 27.52 1.54E-11 21.51 2.10E-11 19.42 

1.9 1 6.90E-12 33.92 1.18E-11 17.29 1.45E-11 14.07 2.06E-11 17.01 

1 1 7.69E-12 49.30 1.28E-11 26.77 1.54E-11 20.94 2.10E-11 19.20 

0.1 1 9.67E-12 87.74 1.49E-11 47.50 1.72E-11 35.47 2.19E-11 24.59 

 

  

Table 5.3: Mass flow rate comparison at ΔΤ=67.5K for various values of δ, at , an for N2 

Nitrogen 

ΔΤ=67.5Κ 

Experimental[1]:  M=4.74E-12 6.46E-12 7.93E-12 8.61E-12 

Numerical 

   δ=1.99 3.69 5.46 7.6 

𝑎𝑡 𝑎𝑛 M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] 

0.789 0.1 7.18E-12 51.44 9.33E-12 44.39 1.06E-11 33.26 1.15E-11 33.25 

0.789 1 7.01E-12 47.80 9.40E-12 45.54 1.08E-11 36.53 1.19E-11 37.91 

1.9 1 6.43E-12 35.61 8.92E-12 38.08 1.05E-11 32.12 1.16E-11 35.22 

1 1 6.97E-12 47.03 9.37E-12 45.04 1.08E-11 36.20 1.19E-11 37.70 

0.1 1 8.16E-12 72.25 1.03E-11 59.71 1.15E-11 45.22 1.24E-11 43.82 
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Table 5.4: Mass flow rate comparison at ΔΤ=67.5K for various values of δ, at , an for Ar 

Argon 

ΔΤ=67.5Κ 

Experimental[1]:  M=5.75E-12 7.32E-12 8.01E-12 1.21E-11 

Numerical 

   δ=1.85 2.16 2.81 7.03 

𝑎𝑡 𝑎𝑛 M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] 

0.79 0.1 8.9E-12 54.75 9.54E-12 30.34 1.07E-11 34.07 1.45E-11 19.72 

0.79 1 8.63E-12 50.10 9.34E-12 27.66 1.07E-11 33.13 1.49E-11 23.52 

1.9 1 7.88E-12 37.05 8.6E-12 17.48 9.95E-12 24.24 1.46E-11 20.66 

1 1 8.58E-12 49.29 9.3E-12 27.02 1.06E-11 32.56 1.49E-11 23.30 

0.1 1 1.02E-11 76.90 1.08E-11 47.88 1.2E-11 50.29 1.57E-11 29.54 

 

 

Table 5.5: Mass flow rate comparison at ΔΤ=67.5K for various values of δ, at , an for Kr 

Krypton 

ΔΤ=67.5Κ 

Experimental[1]:  Μ=6.9Ε-12 9.08E-12 9.99E-12 1.19E-11 

Numerical 

   δ=2.46 3.8 5.36 8.98 

𝑎𝑡 𝑎𝑛 M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] M (kg/s) M [%] 

0.814 0.1 1.12E-11 63.03 1.34E-11 47.35 1.50E-11 49.71 1.70E-11 42.46 

0.814 1 1.11E-11 61.12 1.35E-11 48.54 1.53E-11 52.84 1.75E-11 47.35 

1.9 1 1.03E-11 49.53 1.28E-11 41.25 1.48E-11 47.86 1.73E-11 45.30 

1 1 1.11E-11 60.52 1.35E-11 48.14 1.52E-11 52.54 1.75E-11 47.21 

0.1 1 1.27E-11 84.21 1.48E-11 62.70 1.63E-11 62.83 1.81E-11 52.50 
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Figure 5.11: Computational and experimental mass flow rates with CL boundary conditions for 

various values of an and temperature differences in the case of He 

 

 

Figure 5.12: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of He 
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Figure 5.13: Computational and experimental mass flow rates with CL boundary conditions for 

various values of an and temperature differences in the case of Ne 

 

 

Figure 5.14: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Ne 
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Figure 5.15: Computational and experimental mass flow rates with CL boundary conditions for 

various values of an and temperature differences in the case of N2 

 

 

Figure 5.16: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of N2 
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Figure 5.17: Computational and experimental mass flow rates with CL boundary conditions for 

various values of an and temperature differences in the case of Ar 

 

 

Figure 5.18: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Ar 
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Figure 5.19: Computational and experimental mass flow rates with CL boundary conditions for 

various values of an and temperature differences in the case of Kr 

 

 

Figure 5.20: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Kr 
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 CONCLUDING REMARKS AND FUTURE WORK 

Summing up, the objective of the thesis is to identify the ACs for pressure and 

temperature driven flows through long capillaries utilizing experimental and numerical 

results. The task was partially accomplished since a value for the ACs providing good 

agreement between numerical and experimental mass flow rates was extracted only for the 

pressure driven flow for both boundary conditions. As the results showed, for low values of δ 

a deviation of error smaller than 2% is achieved, while moving to the hydrodynamic regime 

the effect of the AC gradually diminishes. Yet the lower tested value of δ in pressure driven 

flow is greater than 10-1 (𝛿𝑚𝑖𝑛 = 6) meaning that the flow takes place in the transition regime, 

where the number of collisions between molecules is the same order to the collisions between 

molecules and wall. It would be interesting to see if moving to the free molecular regime, i.e. 

the flow starts to depend more on the collisions between molecules and wall, the AC could 

still match the numerical mass flow rate with the respective experimental. 

Concerning the temperature driven flow the results were not satisfying, as neither 

Maxwell or Cercignani-Lampis BCs manage to provide a value for the ACs that matches the 

numerical and experimental data. Some of the tested gases, Helium and Neon, offer better 

results than the others, i.e. the error is constant and close to zero for a tested range, but as δ 

decreases (𝛿 < 4) the error for all gases increases exponentially. This issue impedes the 

extraction of a value for Helium and Neon. A temperature driven flow experiment is much 

harder to be conducted since the mass flow rates are two order smaller than to the pressure 

driven flow, a counterflow due to the pressure difference is arisen and the temperatures on the 

apparatus must be monitored and controlled. As already mentioned in paragraph 2.5 

discrepancies may be expected in temperatures since only the smaller in volume tank was 

heated. A non-heated reservoir could result in an actual lower temperature difference which 

would rationalize the lower measured mass flow rate compared to the numerical. Also, 

another reason for the mismatch between the results may be ought to the measuring time. For 

a long enough measuring time a counterflow due to pressure difference could have been 

developed which would result in a lower net mass flow rate. A procedure that could help in 
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narrowing down the reasons of mismatch and provide another dataset for future comparisons 

is the thermomolecular pressure difference phenomenon, where the pressure and temperature 

driven flows cancel each other resulting in a zero net mass flow rate. If the difference between 

these two was small (order of 10%) then the hypothesis of a smaller temperature difference 

could be neglected. 
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APPENDICES 

 

Appendix A. Linearization of Shakhov model 

 
The non-linear model after the assumption of a steady flow is given by, 

 𝜉𝑥

𝜕𝑓

𝜕𝑥′
+ 𝜉𝑦

𝜕𝑓

𝜕𝑦′
+ 𝜉𝑧

𝜕𝑓

𝜕𝑧′
=

𝑃

𝜇
(𝑓𝑆 − 𝑓) (Α.1) 

 

To continue, in the non-linear model VDF is replaced by the perturbed distribution 
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where: 𝑥 =
𝑥′

𝐻
,   𝑦 =

𝑦′

𝐻
,   𝜁 =

𝜉

𝑣0
,   𝑣0 = √2𝑅𝑇0,   𝜌 =  

𝑁−𝑁0

𝑁0𝑥𝑃
=

𝑧′

𝐻
,   𝜏 =

𝑇−𝑇0

𝑇0𝑥𝑃
= 0, 

𝑣 = (0,0, 𝑣𝑧),   𝑞 = (0,0, 𝑞𝑧),   𝑣𝑧 =
𝑢𝑧

𝑣0𝑥𝑝
,   𝑞𝑧 =

𝑄𝑧

𝑣0𝑃0𝑥𝑝
 

 

Projections 

Inserting projections (A.6) & (A.16) to eq. (A.5) 

 𝜑 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧 (A.7) 

 𝜁𝑥

𝜕𝜑

𝜕𝑥
+ 𝜁𝑦

𝜕𝜑

𝜕𝑦
=

1

√𝜋
∫ 𝜁𝑧

+∞

−∞

[𝛿 (2𝜁𝑧𝑣𝑧 +
4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) − ℎ) − 𝜁𝑧] 𝑒−𝜁𝑧

2
𝑑𝜁𝑧 (A.8) 

For simplicity the integral is broken in four parts 

 𝐼1 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

2𝜁𝑧𝑣𝑧𝑒−𝜁𝑧
2
𝑑𝜁𝑧 =

2𝑣𝑧

√𝜋
∫ 𝜁𝑧

2

+∞

−∞

𝑒−𝜁𝑧
2
𝑑𝜁𝑧 = 𝑣𝑧 (A.9) 

 𝐼2 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) 𝑒−𝜁𝑧

2
𝑑𝜁𝑧 = (A.10) 

 =
4𝑞𝑧

15√𝜋
∫ (𝜁𝑧

2𝜁𝑥
2 + 𝜁𝑧

2𝜁𝑦
2 + 𝜁𝑧

4 − 𝜁𝑧
2 5

2
)

+∞

−∞

𝑒−𝜁𝑧
2
𝑑𝜁𝑧 ⇒ (A.11) 

 𝐼2 =
2

15
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2 − 1) (A.12) 

 𝐼3 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁 = 𝜑 (A.13) 

 𝐼4 =
1

√𝜋
∫ 𝜁𝑧

+∞

−∞

𝜁𝑧𝑒−𝜁𝑧
2
𝑑𝜁 =

1

2
 (A.14) 
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The deduced equation is 

 𝜁𝑥

𝜕𝜑

𝜕𝑥
+ 𝜁𝑦

𝜕𝜑

𝜕𝑦
= 𝛿[𝐼1 + 𝐼2 + 𝐼3] − 𝐼4 ⇒ (A.15) 

 𝜁𝑥

𝜕𝜑

𝜕𝑥
+ 𝜁𝑦

𝜕𝜑

𝜕𝑦
= 𝛿 [𝑣𝑧 +

2

15
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2 − 1) − 𝜑] −

1

2
 (A.16) 

 

 
Same steps are followed for the other projection  

 𝜓 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧 (A.17) 

 𝜁𝑥

𝜕𝜓

𝜕𝑥
+ 𝜁𝑦

𝜕𝜓

𝜕𝑦
=

1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

[𝛿 (2𝜁𝑧𝑣𝑧 +
4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) − ℎ) − 𝜁𝑧] 𝑒−𝜁𝑧

2
𝑑𝜁𝑧 (A.18) 

Calculating the integrals, 

 𝐼1 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

2𝜁𝑧𝑣𝑧𝑒−𝜁𝑧
2
𝑑𝜁𝑧 =

2𝑣𝑧

√𝜋
∫ 𝜁𝑧

5

+∞

−∞

𝑒−𝜁𝑧
2
𝑑𝜁𝑧 =

3

2
𝑣𝑧 (A.19) 

 𝐼2 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

4

15
𝜁𝑧𝑞𝑧 (𝜁2 −

5

2
) 𝑒−𝜁𝑧

2
𝑑𝜁𝑧 = (A.20) 

 =
4𝑞𝑧

15√𝜋
∫ (𝜁𝑧

4𝜁𝑥
2 + 𝜁𝑧

4𝜁𝑦
2 + 𝜁𝑧

6 − 𝜁𝑧
4 5

2
)

+∞

−∞

𝑒−𝜁𝑧
2
𝑑𝜁𝑧 ⇒ (A.21) 

 𝐼2 =
1

5
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2) (A.22) 

 𝐼3 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧 = 𝜓 (A.23) 

 𝐼4 =
1

√𝜋
∫ 𝜁𝑧

3

+∞

−∞

𝜁𝑧𝑒−𝜁𝑧
2
𝑑𝜁𝑧 =

3

4
 (A.24) 
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The deduced equation is 

 𝜁𝑥

𝜕𝜓

𝜕𝑥
+ 𝜁𝑦

𝜕𝜓

𝜕𝑦
= 𝛿[𝐼1 + 𝐼2 + 𝐼3] − 𝐼4 (A.25) 

 𝜁𝑥

𝜕𝜓

𝜕𝑥
+ 𝜁𝑦

𝜕𝜓

𝜕𝑦
= 𝛿 [

3

2
𝑣𝑧 +

1

5
𝑞𝑧(𝜁𝑥

2 + 𝜁𝑦
2) − 𝜓] −

3

4
 (A.26) 

 

 
Macroscopic Velocity 

The macroscopic velocity is given by  

 𝑢𝑧 =
1

𝑁
∭ 𝜉𝑧𝑓𝑑�̃�

+∞

−∞

 (A.27) 

The VDF is substituted by the perturbed distribution 

 𝑢𝑧 =
1

𝑁
∭ 𝜉𝑧

+∞

−∞

𝑓0 (1 + ℎ𝑥𝑝 + 𝑥𝑝

𝑧′

𝐻
) 𝑑�̃� (A.28) 

Again, the integral is broken  

 𝐼1 =
1

𝑁
∭ 𝜉𝑧

+∞

−∞

𝑁0

(2𝜋𝑅𝑇)3/2
 𝑒𝑥𝑝 [−

𝜉2

2𝑅𝑇0
] 𝑑�̃� = 0 (A.29) 

 𝐼2 =
1

𝑁
∭ 𝜉𝑧

+∞

−∞

ℎ𝑥𝑝

𝑁0

(2𝜋𝑅𝑇)
3
2

 𝑒𝑥𝑝 [−
𝜉2

2𝑅𝑇0
] 𝑑�̃� = (A.30) 

 =
1

𝑁

𝑁0

(2𝜋𝑅𝑇)
3
2

𝑥𝑝 ∭ 𝜉𝑧

+∞

−∞

ℎ 𝑒𝑥𝑝 [−
𝜉2

2𝑅𝑇0
] 𝑑�̃� ⇒ (A.31) 

 𝐼2 =
𝑣0𝑥𝑝

𝜋3/2
∫ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁2
𝑑�̃� (A.32) 

 𝐼3 =
1

𝑁
∭ 𝜉𝑧

+∞

−∞

𝑁0

(2𝜋𝑅𝑇)3/2
 𝑒𝑥𝑝 [−

𝜉2

2𝑅𝑇0
] 𝑥𝑝

𝑧′

𝐻
𝑑�̃� = 0 (A.33) 
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The bulk velocity becomes 

 𝑢𝑧 = 𝐼1 + 𝐼2 + 𝐼3 =
𝑣0𝑥𝑝

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁2
𝑑�̃� (A.34) 

The dimensionless macroscopic velocity 𝑣𝑧 is introduced 

 𝑣𝑧 =
𝑢𝑧

𝑣0𝑥𝑝
=

1

𝜋3/2
∭ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁2
𝑑�̃� (A.35) 

 𝑣𝑧 =
1

𝜋
∬ [

1

√𝜋
∫ 𝜁𝑧

+∞

−∞

ℎ𝑒−𝜁𝑧
2
𝑑𝜁𝑧]

+∞

−∞

𝑒−𝜁𝑥
2
𝑒−𝜁𝑦

2
𝑑𝜁𝑥𝑑𝜁𝑦 (A.35) 

 𝑣𝑧 =
1

𝜋
∬ 𝜑

+∞

−∞

𝑒−𝜁𝑥
2
𝑒−𝜁𝑦

2
𝑑𝜁𝑥𝑑𝜁𝑦 (A.36) 

 

 

Heat Flux 

The heat flux is given by  

 𝑄𝑧 =
𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(�̃� − �̃�)
2

𝑓𝑑�̃� (A.37) 

The VDF is substituted by the perturbed distribution 

 𝑄𝑧 =
𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(�̃� − �̃�)
2

𝑓0(1 + ℎ𝑥𝑃 + 𝑥𝑃)𝑑�̃� (A.38) 

 𝑄𝑧 =
𝑚

2
∭(𝜉𝑧 − 𝑢𝑧)

+∞

−∞

(𝜉 − �̃�)
2 𝑁0

(2𝜋𝑅𝑇)
3
2

 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) (1 + ℎ𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
) 𝑑�̃� (A.39) 

 

𝑄𝑧 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

∭(𝜉𝑧 − 𝑣𝑧𝑣0𝑥𝑃)

+∞

−∞

[𝜉𝑥
2 + 𝜉𝑦

2

+ (𝜉𝑧 − 𝑣𝑧𝑣0𝑥𝑃)2] 𝑒𝑥𝑝 (−
𝜉2

2𝑅𝑇0
) (1 + ℎ𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
) 𝑑�̃� 

(A.40) 
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𝑄𝑧 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

𝑣0
6 ∭(𝜁𝑧 − 𝑣𝑧𝑥𝑃)

+∞

−∞

[𝜁𝑥
2 + 𝜁𝑦

2

+ (𝜁𝑧 − 𝑣𝑧𝑥𝑃)2] 𝑒𝑥𝑝[−𝜁2] (1 + ℎ𝑥𝑃 + 𝑥𝑃

𝑧′

𝐻
) 𝑑�̃� 

(A.41) 

Manipulating the integrals, 

 𝐼1 = ∭(𝜁𝑧 − 𝑣𝑧𝑥𝑃)

+∞

−∞

[𝜁𝑥
2 + 𝜁𝑦

2 + (𝜁𝑧 − 𝑣𝑧𝑥𝑃)2] 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.42) 

 = ∭(𝜁𝑧 − 𝑣𝑧𝑥𝑃)

+∞

−∞

[𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2 − 2𝜁𝑧𝑣𝑧𝑥𝑃 + 𝑣𝑧

2𝑥𝑃
2] 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.43) 

 

= ∭ 𝜁𝑧(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2)

+∞

−∞

− 2𝜁𝑧𝑣𝑧𝑥𝑃 − 𝑣𝑧𝑥𝑃(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2)

+ 2𝜁𝑧𝑣𝑧
2𝑥𝑃

2 𝑒𝑥𝑝(−𝜁2)𝑑�̃� ⇒ 

(A.44) 

 𝐼1 = −
5

2
𝜋3/2𝑣𝑧𝑥𝑃 (A.45) 

 𝐼2 = ∭(𝜁𝑧 − 𝑣𝑧𝑥𝑃)

+∞

−∞

[𝜁𝑥
2 + 𝜁𝑦

2 + (𝜁𝑧 − 𝑣𝑧𝑥𝑃)2]ℎ𝑥𝑃 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.46) 

 = ∭(𝜁𝑧𝑥𝑃 − 𝑣𝑧𝑥𝑃
2)

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2 − 2𝜁𝑧𝑣𝑧𝑥𝑃 + 𝑣𝑧

2𝑥𝑃
2) ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.47) 

 = ∭ 𝜁𝑧𝑥𝑃

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2 − 2𝜁𝑧𝑣𝑧𝑥𝑃) ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.48) 

 = ∭ 𝜁𝑧

+∞

−∞

[(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2)𝑥𝑃 − 2𝜁𝑧𝑣𝑧𝑥𝑃

2] ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� ⇒ (A.49) 
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 𝐼2 = ∭ 𝜁𝑧𝑥𝑃

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2) ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (A.50) 

 𝐼3 = ∭(𝜁𝑧 − 𝑣𝑧𝑥𝑃)

+∞

−∞

[𝜁𝑥
2 + 𝜁𝑦

2 + (𝜁𝑧 − 𝑣𝑧𝑥𝑃)2]𝑥𝑇

𝑧′

𝐻
 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.51) 

 = ∭(𝜁𝑧𝑥𝑃 − 𝑣𝑧𝑥𝑃
2)

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2 − 2𝜁𝑧𝑣𝑧𝑥𝑃 + 𝑣𝑧

2𝑥𝑃
2)

𝑧′

𝐻
 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (A.52) 

 = ∭ 𝜁𝑧

+∞

−∞

[(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2)𝑥𝑃 − 2𝜁𝑧𝑣𝑧𝑥𝑃

2]
𝑧′

𝐻
 𝑒𝑥𝑝(−𝜁2)𝑑�̃� = (A.53) 

 = ∭ 𝜁𝑧𝑥𝑃

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2)

𝑧′

𝐻
 𝑒𝑥𝑝(−𝜁2)𝑑�̃� ⇒ (A.54) 

 𝐼3 = 0 (A.55) 

The heat flux becomes 

 𝑄𝑧 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇)
3
2

𝑣0
6(𝐼1 + 𝐼2 + 𝐼3) (A.56) 

 𝑄𝑧 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

𝑣0
6𝑥𝑃 [−

5

2
𝜋

3
2𝑣𝑧 + ∭ 𝜁𝑧

+∞

−∞

(𝜁𝑥
2 + 𝜁𝑦

2 + 𝜁𝑧
2) ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃�] = (A.57) 

 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

𝑣0
6𝑥𝑃 [−

5

2
∭ 𝜁𝑧

+∞

−∞

 ℎ 𝑒𝑥𝑝(−𝜁2)𝑑𝜁 + ∭ 𝜁𝑧

+∞

−∞

𝜁2 ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃�] ⇒ (A.58) 

 𝑄𝑧 =
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

𝑣0
6𝑥𝑃 ∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (A.59) 

 𝑄𝑧 =
𝑃0𝑣0𝑥𝑃

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� (A.60) 
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where, 

 
𝑚

2

𝑁0

(2𝜋𝑅𝑇0)
3
2

𝑣0
6𝑥𝑃 =

𝑚

2

𝑃0

𝑘𝐵𝑇0(2𝑅𝑇0)
3
2

𝑣0
6

𝜋3/2
𝑥𝑃 =

𝑃0

2𝑅𝑇0(2𝑅𝑇0)
3
2

𝑣0
6

𝜋3/2
𝑥𝑃 =

𝑃0𝑣0𝑥𝑃

𝜋3/2
 

(

2.60) 

Inserting the dimensionless heat flux, 

 𝑞𝑧 =
𝑄𝑧

𝑃0𝑣0𝑥𝑃
=

1

𝜋
3
2

∭ 𝜁𝑧

+∞

−∞

(𝜁2 −
5

2
)  ℎ 𝑒𝑥𝑝(−𝜁2)𝑑�̃� ⇒ (A.61) 

 𝑞𝑧 =
1

𝜋
∬ [𝜓 + (𝜁𝑥

2 + 𝜁𝑦
2 −

5

2
) 𝜑]

+∞

−∞

𝑒𝑥𝑝(−𝜁2)𝑑𝜁𝑥𝑑𝜁𝑦 (A.62) 

For the temperature driven flow the same steps are followed for the other perturbed 

distribution. 
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Appendix B. Linearization of Cercignani-Lampis boundary conditions 

 

Projection φ 

 𝜙+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧 exp(−𝜁𝑧

2) 𝑑𝜁𝑧 = (B.1) 

 =
1

√𝜋
∫ [ ∭ 𝑅(−�̃� → −�̃�′)

𝜁𝑛
′<0

ℎ−(�̃�′)𝑑𝜁′] 𝜁𝑧 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (B.2) 

 =
1

√𝜋
∭ [∫ 𝑅(−�̃� → −�̃�′)𝜁𝑧 exp(−𝜁𝑧

2)𝑑𝜁𝑧]

𝜁𝑛
′<0

ℎ−(𝜁′)𝑑�̃�′ = (B.3) 

 =
1

√𝜋
∭ 𝛦(�̃�′ → �̃�)

𝜁𝑛
′<0

ℎ−(�̃�′)𝑑�̃�′ (B.4) 

  

To simplify the equation the internal integral 𝛦(�̃�′ → �̃�) is manipulated 

 𝛦(�̃�′ → �̃�) = ∫ 𝑅(−�̃� → −�̃�′)𝜁𝑧 exp(−𝜁𝑧
2)𝑑𝜁𝑧 (B.5) 

 
𝛦(�̃�′ → �̃�) = 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′) ∫ 𝑅𝑧(−𝜁𝑧 →

−𝜁𝑧
′) 𝜁𝑧 exp(−𝜁𝑧

2)𝑑𝜁𝑧  
(B.6) 

 

 𝐼 =
𝛦(𝜁′ → 𝜁𝑝)

𝑅𝑛(−𝜁𝑛 → −𝜁𝑛
′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦

′)
= ∫ 𝑅𝑧(−𝜁𝑧 → −𝜁𝑧

′) 𝜁𝑧 exp(−𝜁𝑧
2)𝑑𝜁𝑧 (B.7) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

(𝑎𝜁𝑧 − 𝜁𝑧
′)2

1 − 𝑎2
] 𝜁𝑧 exp(−𝜁𝑧

2) 𝑑𝜁𝑧 (B.8) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

𝑎2𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝜁𝑧
′2 + 𝜁𝑧

2(1 − 𝑎2)

1 − 𝑎2
] 𝜁𝑧𝑑𝜁𝑧 (B.9) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝜁𝑧
′2

1 − 𝑎2
] 𝜁𝑧𝑑𝜁𝑧 (B.10) 
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 𝐼 =
1

√𝜋(1 − 𝑎2)
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝 [−

𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝑎𝜁𝑧
′2

1 − 𝑎2
] 𝜁𝑧𝑑𝜁𝑧  (B.11) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝 [−

(𝜁𝑧 − 𝑎𝜁𝑧
′)2

1 − 𝑎2
] 𝜁𝑧𝑑𝜁𝑧 (B.12) 

Consider, 

 𝜁𝑧
∗ =

𝜁𝑧

√1 − 𝑎2
, 𝜁𝑧

∗∗ = 𝜁𝑧
∗ − 𝑎𝜁𝑧

′∗, 𝑎 = (1 − 𝑎𝑡), (B.13) 

And substitute into eq. (B.12) 

 𝐼 =
√(1 − 𝑎2)

√𝜋
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝[−(𝜁𝑧

∗ − 𝑎𝜁𝑧
′∗)2] 𝜁𝑧

∗𝑑𝜁𝑧
∗ = (B.14) 

 =
√(1 − 𝑎2)

√𝜋
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝[−𝜁𝑧

∗∗2
] (𝜁𝑧

∗∗ + 𝑎𝜁𝑧
′∗)𝑑𝜁𝑧

∗∗ ⇒ (B.15) 

 𝐼 = 𝑎𝜁𝑧
′ exp(−𝜁𝑧

′ 2
) (B.16) 

 

The deduced equation is 

 𝜙+ =
𝑎

√𝜋
∭ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

𝜁𝑧
′ exp(−𝜁𝑧

′ 2
) ℎ−(𝜁′)𝑑𝜁′ = (B.17) 

 

=
2𝑎

𝑎𝑛√𝜋𝑎𝑡(2 − 𝑎𝑡)
∬ 𝜙− (±

1

2
, 𝑦, 𝜁𝑥

′, 𝜁𝑦
′)

𝜁𝑛
′<0

𝜁𝑧
′ exp [−

𝜁𝑧
′ 2

+ (1 − 𝑎𝑛)𝜁𝑛
2

𝑎𝑛

−
(𝑎𝜁𝑦 − 𝜁𝑦

′)
2

1 − 𝛼2
] 𝐼0 (

2√1 − 𝑎𝑛𝜁𝑛𝜁𝑛
′

𝑎𝑛
) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ ⇒ 

(B.18) 
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𝜙+ =
2(1 − 𝑎𝑡)

𝑎𝑛√𝜋𝑎𝑡(2 − 𝑎𝑡)
∬ 𝜙− (±

1

2
, 𝑦, 𝜁𝑥

′, 𝜁𝑦
′)

𝜁𝑛
′<0

𝜁𝑧
′ exp [−

𝜁𝑧
′ 2

+ (1 − 𝑎𝑛)𝜁𝑛
2

𝑎𝑛

−
((1 − 𝑎𝑡)𝜁𝑦 − 𝜁𝑦

′)
2

𝑎𝑡(2 − 𝑎𝑡)
] 𝐼0 (

2√1 − 𝑎𝑛𝜁𝑛𝜁𝑛
′

𝑎𝑛
) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ 

(B.19) 

 

Projection ψ 

 𝜓+ (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) =

1

√𝜋
∫ 𝐴ℎ−𝜁𝑧

3 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 = (B.20) 

 =
1

√𝜋
∫ [ ∭ 𝑅(−�̃� → −�̃�′)

𝜁𝑛
′<0

ℎ−(�̃�′)𝑑�̃�′] 𝜁𝑧
3 exp(−𝜁𝑧

2) 𝑑𝜁𝑧 = (B.21) 

 =
1

√𝜋
∭ [∫ 𝑅(−�̃� → −�̃�′)𝜁𝑧

3 exp(−𝜁𝑧
2)𝑑𝜁𝑧]

𝜁𝑛
′<0

ℎ−(�̃�′)𝑑�̃�′ = (B.22) 

 =
1

√𝜋
∭ 𝛦(�̃�′ → �̃�)

𝜁𝑛
′<0

ℎ−(�̃�′)𝑑�̃�′ (B.23) 

Again 𝛦(�̃�′ → �̃�), is manipulated first. 

 𝛦(�̃�′ → �̃�) = ∫ 𝑅(−�̃� → −�̃�′)𝜁𝑧
3 exp(−𝜁𝑧

2)𝑑𝜁𝑧= (B.24) 

 = 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛
′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦

′) ∫ 𝑅𝑧(−𝜁𝑧 → −𝜁𝑧
′) 𝜁𝑧

3 exp(−𝜁𝑧
2)𝑑𝜁𝑧 (B.25) 

 

 𝐼 =
𝛦(�̃�′ → �̃�)

𝑅𝑛(−𝜁𝑛 → −𝜁𝑛
′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦

′)
= ∫ 𝑅𝑧(−𝜁𝑧 → −𝜁𝑧

′) 𝜁𝑧
3 exp(−𝜁𝑧

2)𝑑𝜁𝑧 (B.26) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

(𝑎𝜁𝑧 − 𝜁𝑧
′)2

1 − 𝑎2
] 𝜁𝑧

3 exp(−𝜁𝑧
2) 𝑑𝜁𝑧 (B.27) 
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 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

𝑎2𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝜁𝑧
′2 + 𝜁𝑧

2(1 − 𝑎2)

1 − 𝑎2
] 𝜁𝑧

3𝑑𝜁𝑧 (B.28) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
∫ 𝑒𝑥𝑝 [−

𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝜁𝑧
′2

1 − 𝑎2
] 𝜁𝑧

3𝑑𝜁𝑧 (B.29) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝 [−

𝜁𝑧
2 − 2𝑎𝜁𝑧𝜁𝑧

′ + 𝑎𝜁𝑧
′2

1 − 𝑎2
] 𝜁𝑧

3𝑑𝜁𝑧  (B.30) 

 𝐼 =
1

√𝜋(1 − 𝑎2)
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝 [−

(𝜁𝑧 − 𝑎𝜁𝑧
′)2

1 − 𝑎2
] 𝜁𝑧

3𝑑𝜁𝑧 (B.31) 

Consider,  

 𝜁𝑧
∗ =

𝜁𝑧

√1 − 𝑎2
, 𝜁𝑧

∗∗ = 𝜁𝑧
∗ − 𝑎𝜁𝑧

′∗, 𝑎 = (1 − 𝑎𝑡) (B.34) 

And substitute in eq. (B.31) 

 

 𝐼 =
(√(1 − 𝑎2))

3

√𝜋
exp(−𝜁𝑧

′ 2
) ∫ 𝑒𝑥𝑝[−𝜁𝑧

∗∗2
] (𝜁𝑧

∗∗ + 𝑎𝜁𝑧
′∗)3𝑑𝜁𝑧

∗∗ (B.35) 

 𝐼 = 𝜁𝑧
′ 3

exp(−𝜁𝑧
′ 2

) 𝑎3 + 𝜁𝑧
′ exp(−𝜁𝑧

′ 2
)

3

2
𝛼(1 − 𝛼2) (B.36) 

The deduced equation is 

 

𝜓+ =
1

√𝜋
∭ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

[𝜁𝑧
′ 3

exp(−𝜁𝑧
′ 2

) 𝑎3

+ 𝜁𝑧
′ exp(−𝜁𝑧

′ 2
)

3

2
𝛼(1 − 𝛼2)] ℎ−(𝜁′)𝑑𝜁′ 

(B.37) 

 

𝜓+ =
𝑎3

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜓− (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ + 

+
3

2

𝛼(1 − 𝛼2)

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜑− (±
1

2
, 𝑦, 𝜁𝑥, 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ 

(B.38) 
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𝜓+ =
(1 − 𝑎𝑡)3

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜓− (±
1

2
, 𝑦, 𝜁𝑥 , 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ + 

+
3𝑎𝑡(1 − 𝑎𝑡)

2

(2 − 𝑎𝑡)

√𝜋
∬ 𝑅𝑛(−𝜁𝑛 → −𝜁𝑛

′)𝑅𝑦(−𝜁𝑦 → −𝜁𝑦
′)

𝜁𝑛
′<0

 𝜑− (±
1

2
, 𝑦, 𝜁𝑥, 𝜁𝑦) 𝑑𝜁𝑛

′𝑑𝜁𝑦
′ 

(B.39) 

 

For the temperature driven flow the same procedure is followed. 
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Appendix C. Results for the Maxwell mass flow rate graphs (ΔΤ=67.5K) 

 

Figure C.1: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of He 

 

 

Figure C.2: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of He 
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Figure C.3: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Ne 

 

 

Figure C.4: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ne 
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Figure C.5: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of N2 

 

 

Figure C.6: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of N2 
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Figure C.7: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Ar 

 

 

Figure C.8: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ar 
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Figure C.9: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Kr 

 

 

Figure C.10: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Kr 
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Appendix D. Results for the temperature driven flow with Maxwell 

boundary conditions (ΔΤ=58K) 

The results that occurred for the two temperature differences are quite similar for each 

gas, e.g. Helium presents good results, but in Argon oscillations exist. More specific: 

➢ Helium: For the lower values of δ the error starts from a maximum value of 90% and 

starts decreasing. In the range of 𝛿 ∈ [6,12] the error is almost constant and smaller 

than 10% 

➢ Neon: Similarly, Neon’s error for the lower values of δ starts from a maximum error 

of 90% and decrease to 20% at 𝛿 = 4. For 𝛿 ∈ [4,16] the error ranges between 15-

20%. In the case of ΔΤ=50Κ the error in this range is near zero. 

➢ Nitrogen:  Presents oscillations in error through the graph with an average value 

around 25%, if the lower values are neglected where the error starts from 60% and 

decreases. For ΔΤ=45K the error gives the best results. For lower value of the 

coefficient, near 𝑎𝑇
𝑀 = 0.1, the error is greatly improved at ΔΤ=58Κ. 

➢ Argon: In the range of 𝛿 ∈ [5,15] the error varies between 0-15%. In the rest values a 

greater error is presented or wider oscillations. The error in the range 𝛿 ∈ [5,15] 

seems to improve at ΔΤ ∈ [50,55]𝐾. For a lower value of the coefficient, 𝑎𝑇
𝑀 ≈ 0.5, 

the error range approaches zero at ΔΤ=58Κ. 

➢ Krypton: The error curve has a constant decreasing course as value of δ increases. A 

stabilization in the value seems to appear in the range of 𝛿 ∈ [5,12] with an average 

value of 30%. This value approaches zero at ΔΤ=45Κ. 
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Error graphs 

 

Figure D.1: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of He (ΔΤ=58Κ) 

  

 

Figure D.2: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of He 

(ΔΤ=58Κ) 
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Figure D.3: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Ne (ΔΤ=58Κ) 

 

 

Figure D.4: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ne 

(ΔΤ=58Κ) 
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Figure D.5: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of N2 (ΔΤ=58Κ) 

 

 

Figure D.6: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of N2 

(ΔΤ=58Κ) 
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Figure D.7: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Ar (ΔΤ=58Κ) 

 

 

Figure D.8: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ar 

(ΔΤ=58Κ) 
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Figure D.9: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various temperature differences in the case of Kr (ΔΤ=58Κ) 

 

 

Figure D.10: Relative difference between experimental and computational mass flow rates with 

Maxwell boundary conditions for various values of 𝑎𝑇
𝑀 and temperature differences in the case of Kr 

(ΔΤ=58Κ) 
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Mass flow rate graphs 

 

Figure D.11: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of He (ΔΤ=58K) 

 

 

Figure D.12: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of He (ΔΤ=58K) 
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Figure D.13: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Ne (ΔΤ=58K) 

 

 

Figure D.14: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ne (ΔΤ=58K) 
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Figure D.15: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of N2 (ΔΤ=58K) 

 

 

Figure D.16: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ν2 (ΔΤ=58K) 
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Figure D.17: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Ar (ΔΤ=58K) 

 

 

Figure D.18: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Ar (ΔΤ=58K) 
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Figure D.19: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various temperature differences in the case of Kr (ΔΤ=58K) 

 

 

Figure D.20: Computational and experimental mass flow rates with Maxwell boundary conditions for 

various values of 𝑎𝑇
𝑀 and temperature differences in the case of Kr (ΔΤ=58K) 
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Appendix E. Results for the temperature driven flow with Cercignani-

Lampis boundary conditions (ΔΤ=58K) 

Concerning the comparison for ΔΤ=58K, Helium’s curve has again the smallest 

deviations but for a shorter range than before, 𝛿 ∈ [3,8]. The minimum error occurs at 

ΔΤ=55K, which as before is close with the measured one. Neon presents a smooth curve in 

the range of 𝛿 ∈ [6,12], with most suitable temperature difference ΔΤ=45Κ, where the error 

ranges between -5% and 2% depending on an. Nitrogen’s results are improved compared to 

the previous and in the range of 𝛿 ∈ [10,25] the curve is quite smooth. The minimum error is 

achieved at ΔΤ=45K and regarding the value of coefficient an, the error is between -4% and 

4%. Argon once more presents bad results with error curve filled with oscillations, while 

Krypton’s curve is almost linear, but constantly diminishes from positive to negative values of 

error. Only in the range of 𝛿 ∈ [7,13] the error remains steady and for ΔΤ=45K is close to 

zero. 

 

 

Figure E.1: Computational and experimental mass flow rates with CL boundary conditions for various 

values of an and temperature differences in the case of He (ΔΤ=58Κ) 
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Figure E.2: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of He (ΔΤ=58K) 

 

 

Figure E.3: Computational and experimental mass flow rates with CL boundary conditions for various 

values of an and temperature differences in the case of Ne (ΔΤ=58Κ) 
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Figure E.4: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Ne (ΔΤ=58K) 

 

 

Figure E.5: Computational and experimental mass flow rates with CL boundary conditions for various 

values of an and temperature differences in the case of N2 (ΔΤ=58Κ) 
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Figure E.6: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of N2 (ΔΤ=58K) 

 

 

Figure E.7: Computational and experimental mass flow rates with CL boundary conditions for various 

values of an and temperature differences in the case of Ar (ΔΤ=58Κ) 
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Figure E.8: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Ar (ΔΤ=58K) 

 

 

Figure E.9: Computational and experimental mass flow rates with CL boundary conditions for various 

values of an and temperature differences in the case of Kr (ΔΤ=58Κ) 
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Figure E.10: Relative difference between computational and experimental mass flow rates with CL 

boundary conditions for various values of an and temperature differences in the case of Kr (ΔΤ=58K) 
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