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Abstract

Pressure and temperature driven rarefied gas flows through long rectangular
microchannels, including the interaction between the gas and the channel wall, have been
extensively investigated due to their theoretical and technological interest. However, several
issues related to the estimation of the accommodation coefficients characterizing the gas-
surface interaction are still under investigation. In the present diploma thesis an attempt is
made to further improve our understanding on this topic by comparing experimental and
numerical results and deducing the accommodation coefficients based on reversed
engineering practices. More specifically, based on specific experimental, geometrical and
operational data, the deduced flow rates are computed and accordingly compared with the
corresponding measured ones. The accommodation coefficients are identified in order to
match the numerical with the experimental mass flow rates. This work is done for both the
pressure and temperature driven flows and for five gases, namely Helium, Neon, Nitrogen,
Argon, Krypton. The pressure driven flow is a Poiseuille type flow and the temperature one is
the so-called thermal creep flow. The computed results are based on kinetic modeling using
the linearized Shakhov kinetic model subject to Maxwell and Cercignani-Lampis boundary
conditions. In the pressure driven flow a very good agreement between the computational and
experimental results is achieved for both boundary conditions and all gases concluding to a
suitable value for the accommodation coefficients. For each gas a specific value of the

accommodation coefficient has been estimated providing excellent agreement between



computations and measurements in the whole range of gas rarefaction. On the contrary
significant discrepancies have been observed in the temperature driven flow. The
accommodation coefficients as well as the imposed temperature difference has been
accordingly modified in order to improve the agreement. It has been found that the
accommodation coefficients providing good agreement between computations and
measurements are not constant and strongly depend on the temperature difference and the gas
rarefaction parameter. Therefore, the obtained results cannot be generalized. Further work on

this issue is required.

Key words: Kinetic theory, Shakhov, Maxwell, Cercignani-Lampis, microflows, gas-surface

interaction, accommodation coefficients
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Chapter | INTRODUCTION

A brief presentation of the background theory is made to help the comprehension of
the study and its purposes. Basic principles of kinetic theory are discussed along with the
related equations such as the Boltzmann equation (BE) and the associated kinetic models with
the implemented boundary conditions. Also, a review is made on similar studies and their

contribution in solving modern flow problems.

1.1 Knudsen number and flow regimes

Based on the scale and conditions of the flow, different modeling approaches can be
implemented. From a macroscopic scale the gas can be described thermodynamically or
mechanically depending if it is in equilibrium or not, respectively. An example of these
methods is the Navier-Stokes equations, which introduce the transport coefficients, i.e.
thermal conductivity coefficient (k), dynamic viscosity (u), diffusion coefficient (D) in order
to provide valid results. On the other hand, if the approach is from a microscopic scale, where
the motion of individual particles needs to be studied, molecular dynamics is applied.

A third approach lying between the previous two is also possible. It is at a mesoscale
approach and deals with the motion of a larger number of particles. This method is called
kinetic theory and is a branch of statistical mechanics, which describes the evolution of
transport phenomena in dilute gases even far from equilibrium. The degree of non-
equilibrium depends on the differences between density, temperature and velocity of particles
inside the gas. The approach to equilibrium is achieved with the transport processes (mass,
momentum and energy) that take place inside the gas. The target of kinetic theory is through
admissions and assumptions to describe phenomena in a gas from a molecular point of view
which are also valid in the macroscopic scale. Therefore, through kinetic theory it is possible
to extract data for the transport coefficients, but also to study their interaction.
Mathematically, kinetic theory is described by a distribution function which contains
information on the distribution of molecules and of their velocities on a given system which

depends on time.



An important dimensionless number in kinetic theory is the Knudsen number Kn or it’s
inversely proportional rarefaction parameter §. The Knudsen number expresses the average
distance traveled by a molecule between two successive collisions, known as the mean free
path (MFP) divided by a characteristic length scale of the configuration, e.g. the diameter in a
tube. The Knudsen number may be written as

A1

Kn=—=- 1.1
n >3 (1.1)

By defining the Knudsen number, a classification of the state of the gas regarding the density
can be made, i.e. how rarefied is the gas. For high values of Knudsen number, or low values
of rarefaction parameter, respectively, the rarefaction of the gas is more pronounced. On the
reverse case the gas tends to a continuum medium. Generally, four regimes of gas rarefaction
are distinguished.

» Hydrodynamic regime (Kn — 0or § — o): The MFP is much smaller than the
characteristic length (A1 « L) and the interactions between the molecules are high and
constant. In this regime the continuum mechanics equations can be applied (e.g.
Navier-Stokes).

> Slip flow regime (1072 < Kn < 107! or 10 < § < 10?): Here the nonslip velocity
and temperature continuity on the surface stops to apply and new boundary conditions
must be used, that of the velocity slip and temperature jump. The continuous
mechanics equations can still be applied.

> Transition regime (107'<Kn<100r 1071 <§<10): In this regime the
continuous mechanics equations are no longer applicable and the BE is employed.

» Free molecular regime (Kn - coord — 0): The MFP is way bigger than the
characteristic length (1 > L.) and no collisions occur between the molecules, that’s
why it is also called collisionless regime. The flow is affected only by the interaction
between gas and surface.

It is noted that the BE is valid in the whole range of gas rarefaction, and its application is
limited to the late slip, transition and free molecular regimes due to the high computational

cost and complexity associated with its solution.



1.2 Historic Review

Kinetic theory originated when Maxwell formulated the statistical approach of gases,
meaning that their particles are moving independently and randomly, while the previous
notion, that all particles have the same velocity, was abandoned. Later he introduced the
velocity distribution function for a uniform a gas in equilibrium, the Maxwell distribution eq.
(1.2).

N

(& —w)?
~ (2nRT)3/2

2RT (12)

fM exp l_

where & is the molecular velocity, % the hydrodynamic velocity, N the number of particles per
cubic meter, R the gas constant and T the temperature.

Boltzmann on his turn derived an integro-differential equation, (1.3), in order to
describe the evolution of the VDF and the approach to equilibrium for dilute gases. This
equation was named after him (Boltzmann’s Equation) and proved that Maxwell’s
distribution can be extracted from the solution of the BE. The basic assumptions of the BE are
that only pairs of molecules can react at the same time and the molecular chaos assumption
(Stosszahlansatz) introduced by Maxwell, i.e. the velocities of colliding molecules are
uncorrelated. The former assumption limits the application of the equation only in gases with
low density, e.g. dilute gases, while the latter defines the expected number of collisions

between molecules and renders the equation irreversible in time.

(+ &8 m+F 7)o = [[[ 675 - fpgbabaeds, (13
where &, &, are the molecular velocities before the collision, 7., Ve, are the gradient operators
with respect to r,&;, F is the external force per unit mass applied on the molecules,
fi, > & f{ f, are distribution functions before and after collision respectively, g = |$2 — §1| IS
the relative velocity before the collision, b is the impact parameter, i.e. the distance between
the asymptotes of a molecule at rest and another at a trajectory and ¢ is the azimuthal angle
specifying the position of a plane in space.

Another important achievement of Boltzmann was the extraction of the H-theorem (or
E-theorem from entropy, as he called it) using the BE. The H-theorem proves that kinetic
theory describes a process which is irreversible in time and that the molecular collisions tend
to increase the entropy. A consequence of the irreversibility as time tends to infinity is that the

VDF describing the gas will either change indefinitely or it will reach a limiting function, i.e.



in equilibrium. Proving the increase of entropy, the H-theorem can be compared to the 2"
thermodynamic law, though its use is more general since it is also valid far from equilibrium,

but only for dilute gases. The relation connecting the quantity H with entropy (S) is

where S is the entropy, H, the H-function, kg the Boltzmann’s constant and ¢ a constant

reflecting the arbitrariness of the zero point of entropy.

1.3 Kinetic Models

Boltzmann’s equation has a wide spectrum of applications in rarefied gas dynamics.
Due to the complicated collision integral (1.5) at the right hand side of the BE, its solution is a
daunting and computationally intensive task. In some cases the non-linearity is necessary for
the proper description of the problem, e.g. computing of the flow field of the entry of a body
from space, because of the formation of shock waves due to hypersonic speeds. Yet in other
cases, like gas flow on long capillaries, the BE can be linearized. To facilitate the solution of
rarefied gas dynamics problems several different methods have been deployed with the most
prominent being the deterministic solution of the kinetic model equations and the stochastic
Direct Simulation Monte Carlo Method (DSMC). In the first method, through the kinetic
models, the collision integral in BE is replaced by collision model, J(f), which contains the
essential information of the former. In the latter method (DSMC), the BE is solved in a
stochastic manner. The collision terms of the various models must satisfy some of the
properties of the collision term of the BE given by

ot = ||| it = fifgbabaedz, (L5)

The properties that must be satisfied are the following:

i.  Collision invariants:

Jw(©J(HdE =0, (1.6)
where Y(§) = 1,m€,m§

il. H-theorem:

[toa i g <0 (L.7)

iii.  Correct expressions for the transport coefficients.



Many kinetic models have been derived over the years, considering the area of study, e.g.
monatomic or polyatomic gas, shock waves and more. The first model that was formed and
the most known is the BGK model which has a wide range of applications. The BGK model
assumes that collisions change f by an amount which is proportional to the departure of f
from a the local Maxwellian distribution. The collision term of the BGK model is given by

Jeek () = U(fM - 1) (1.8)

where v is the collision frequency and it is chosen so BGK’s solution provides the correct
expression of the transport coefficients.
Another model that has been formulated is the Shakhov (S) model, given by

P
]s(f)=;(f5—f) 1.9

where P is the pressure and £ equals to

fFS=fMl142 (1.10)

(1-Pr) m E-w? 5
< 2RT 2)

5 Nar2? GO\ Tkr 73
Pr is the Prandtl number, Q is the heat flux vector and f™ is the local Maxwellian
distribution, (1.2). Compared to the BGK model the S model is more advanced, since it
provides the correct expressions for viscosity and thermal conductivity at the same (this is not
true for the BGK maodel). It, also, satisfies the collision invariants, but comes short regarding
the fulfillment or not of the H-theorem. It is emphasized however, that the linearized Shakhov

model, which is used in the present work does satisfy the H-theorem.

1.4 Gas-Surface Interaction

Modeling the interaction between a gas and a wall is of great importance in rarefied gas
flows and special attention should be given in selecting the appropriate model. For an
impermeable wall a particle with a given velocity & that impacts it will be re-emitted with a
velocity & The impinging molecules may scatter specularly, meaning that the molecules are
reflected while maintaining their tangential velocity constant and changing sign on their
normal velocity, or diffusely, i.e. the molecules may travel uniformly to any direction. A
combination of diffuse and specular reflection is also possible while more complicated

models also exist. A major factor that affects the scattering is the roughness of the surface,



while additional factors that concur in the reflection of the molecules are the wall temperature
and velocity. In Fig. 1.1 a graphical view of diffuse and specular reflection is provided.

\ T f specular
diffuse reflection
reflection

Figure 1.1: Specular-Diffuse reflection

Gas-surface interaction is typically characterized using the scattering kernel R(E’, E)
which expresses the probability of an impinging particle with velocity & to be re-emitted
with velocity . If the number of particles with velocity & in d&' that impact on the surface
for a given area and time is multiplied by the scattering kernel and is integrated over the

whole range of incident velocity &, then the returning particles with velocity & will be found

£RfE)=- | & -WHEREDE (L.11)
&'a<o
where f(§") and f(€) are the VDFs before and after the impinging, respectively and f is the
unit normal vector towards the flow domain.
The scattering kernel satisfies the following properties. For example, since the

scattering kernel is a probability density function it must be positive:

R(%,%) = 0. (1.12)

Also, the sum of all probabilities must be equal to one:



R(¥,8)dE=1. (1.13)

Another important property is the reciprocity condition, which occurs due to the reversibility
of microprocesses of the gas-surface interaction and is valid if a surface is in a local

equilibrium, [17], given by

5 mfrz o 5 mEZ _ -
g _ " E) = —F-f@ — Sy 1.14
e |RED = —F e~ g R-E-E) 0
where & -fi>0,&-fi < 0.

Maxwell was the first one who formulated the scattering kernel for a diffuse and

specular interaction between particles and surfaces given by

I 28 -0 §—1,)?
Rd(f', f) = %exp (— %), (1.15)
Ri(§,§) = 6(8 —§+2(§-mi) (1.16)

where R, is the diffuse kernel, R the specular kernel, %@, is the wall velocity and 8(x) Dirac
delta function. For a better and more thorough description of the interaction, since the
particles are not emitted from the surface only specularly or diffusely, the linear combination
of the two kernels is also used, creating the so-called Maxwell or diffuse-specular model and
introduced the accommodation coefficient (AC) a, where 0 <a < 1 denotes the

percentage of particles emitted diffusively.

Ras(§',§) = a¥Rq4(§',§) + (1 — a™)Rs(§,§) (1.17)
The Maxwell model has a wide range of application until today, though sometimes it fails to
describe successfully a problem, as different values of AC occur between the Poiseuille flow
and the thermomolecular pressure difference (TPD) or between the free molecular and
hydrodynamic regimes [26]. Also, the thermomolecular pressure ratio exponent y always
equals to y = 0.5 in the free molecular regime, regardless the value of AC, while experiments
have proven that a lower value is possible [25]. The reason behind this shortcoming is
because the scattering kernel depends on a single free variable for the description of the gas-

surface interaction, while a more complicated expression is needed.



Another, more recent, scattering kernel was introduced by Cercignani & Lampis (CL) in
1971, [11], which includes two accommodation coefficients. The CL kernel is given by

2 2 _ 2
R(E.F) = m2é, exp {_m[én + (1 a)én ]

27Tanat(2 - at)(kBTw)z ZkBTwan

_ml§ - (- at)Eé]z}I <\/1——anm§n§n’> (1.18)
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where I, denotes the modified Bessel function of first kind and zeroth order

Ih(x) = %fonexp (xcosp)de (1.19)

&, & are the normal and tangential components of the velocity. The physical meaning of
parameter a; is associated with the tangential momentum, while the parameter an is associated
with the kinetic energy corresponding to the normal velocity. Therefore, they are called
tangential momentum AC (TMAC) and normal energy AC (NEAC) respectively. The range
of the formeris 0 < a, < 2, while of the latter is 0 < a,, < 1. When both accommodation
coefficients are equal to unity (a; = a,, = 1) the CL kernel converts to the diffuse one, while
for the value of zero (a; = a,, = 0) it converts to the specular kernel. Also, for the limiting
values of a, = 2 and a,, = 0 the peculiar case of back-scattering is described, a state that the
diffuse-specular model cannot approach. In a real case scenario a complete back-scattering is
not possible, but a partial is, for rough surfaces. Moreover, the CL model manages to recover
the plume-like structure around the line of specular reflection in the experiment of thermal
beam scattering and can successfully match the TPD between numerical and experimental
measurements for values lower than 0.5. A shortcoming of the model is the prediction of a
fixed value for the thermal slip coefficient.

Other models have been developed in an effort to surpass the weaknesses of the
Maxwell kernel. For example, Epstein proposed a generalized scattering kernel, [19], which
includes the dependence of the AC to the velocities of the impinging molecules. However, the
Epstein model has also some shortcomings, such as its incapability of describing the back-
scattering. To exploit the advantages and overcome the drawbacks of both Epstein and CL
kernels a combined new BC was proposed by Wu and Struchtrup [18]. Additional models
have been proposed by Klinc & Kuécer, which later was extended by combining it with the
Epstein model [20,21], by Lord who introduced an improvement to the CL model, [22].

Modeling of the gas-surface interaction still remains a field of further investigation.



1.5 Rarefied gas flows in long channels

The problem of a rarefied gas flow through capillaries of various lengths and cross
sections is of great importance and many studies and experiments have been performed. More
specifically, efforts are made in order to understand all the parameters and conditions that
may affect the flow. The investigation includes linear or non-linear flows [4], various cross-
sections (circular, rectangular, triangular) [5,9,10,23], short or long channels. In all cases the
force may be driven by pressure or/and temperature gradients. The field has drawn so much
attention because of the range and development of practical applications encountered in
aerospace and engineering, vacuum technology and the emerging field of Micro-Electro-
Mechanics-Systems (MEMS). This entire numerical and experimental works include the gas-
surface interaction. Because of that, the identification of the accommodation coefficients,
characterizing the gas-surface interaction, is important for the accurate modeling of rarefied
gas flows. The developed databases concerning the computed overall quantities should always
refer to the implemented gas-surface interaction model. Some major drawbacks, regarding not
only the gas-surface interaction but all the involved parameters, is the introduction of
assumptions and simplifications, which are need in order to solve the problem and therefore
the results may be not easily compared with experiments.

1.6 Thesis objectives and structure

The main objective of the diploma thesis is to extract the accommodation coefficients
characterizing the gas-surface interaction in specific flow configurations. To achieve this, the
rarefied gas flow in a long rectangular duct is solved by applying the linearized Shakhov
kinetic model along with the Maxwell or Cercignani-Lampis boundary conditions.
Comparisons are performed between the numerical and experimental results and the
accommodation coefficients are extracted such that the difference between the computed and
measured flows rates is minimized.

The structure of the thesis is as follows: In Chapter 2. the flow configurations,
governing equations along with the associated boundary conditions and the flow rate
computation model are provided, along with a short description of the cited experimental
setup. In Chapter 3, for both problems, extensive Kinetic databases are built for the
dimensionless flow rates in terms of the gas rarefaction parameter and the accommodation

coefficients. In Chapters 4 and 5 the extraction of the accommodation coefficients for the



pressure and temperature driven flows respectively is provided. Finally, in Chapter 6 a brief

summary with the main concluding remarks are stated.
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Chapter 2 KINETIC MODELING

A detailed description of the pressure and temperature driven flow configurations along
with the governing Kinetic equations and the associated boundary conditions is provided. The
computed overall dimensionless quantities, as well as the corresponding dimensional ones are
defined. Finally, for completeness purposes a short description of the cited experimental flow

setup is given.

2.1 Flow configuration

The problem of the fully developed flow of a rarefied gas through a long duct of
rectangular cross-section, under steady conditions driven by pressure and temperature
gradients is considered. The flow takes place through a long rectangular duct connected to
two vessels, meaning that the length of the duct is much greater than its width and height.
Thus, the end effects can be neglected and the pressure varies only in the axial direction,
while it remains constant in every cross section. The flow may be due to a pressure or a
temperature gradient. The first case is that of a pressure difference imposed at the two vessels.
The vessel with the high pressure is the upstream vessel, while the vessel with the low
pressure is the downstream one. It is assumed that the pressure at the two vessels is the same
with the corresponding channel end. This is a Poiseuille type flow. The second case regards a
temperature difference between the vessels and a linear variation of the temperature along the
channel wall. Then, in rarefied gas dynamics, a flow is observed from the low towards the
high temperature vessel. This is the so-called thermal creep flow. In both flow configurations
it is considered that the cross section of the duct lies on the x-y plane and z-axis is parallel to

the length of the channel.
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2.2 Governing kinetic equations

Modeling is based on the Shakhov kinetic model because of its advantages over the
BGK model that were cited in Chapter 1. The non-linear Shakhov model with no external
force is described by the equation

of of
at or
Since the flow is steady-state the time derivative is zero and eq. (2.1) will become

R S(fs - 2.1)

of of of P
‘fxﬁ‘l'fya_y,‘l'fz?_;(fs_f) (2-2)

Next, the linearization of the Shakhov model for each problem is described.

2.2.1 Pressure driven flow

For extracting the linear model in a fully developed pressure driven flow a perturbed

distribution is introduced as

!

~ VA
f=Fo0+ Ry, Dxp +xp ) @3
where h(x,y,{) is called perturbation function, ||xp| = ”PEZ—:” < 1 and f° is the absolute
(1) !
Maxwellian distribution,
N &?
0—___0 S 2.4
I = rrryr exP( 2RT0> 24)
Next the local Maxwellian is expanded in Taylor series keeping terms up to first order
ofM ofM ofM
M= fO4 (N —Np)—=—— U — ) - —— T —Tp) ——

Following some manipulation it is deduced that
T o~ 2
N—-—N, 28-u T-T 3
L NN 28w T-T, < ¢ ) 3
Ny 2RT, T, [2RT, 2

2 m o £ 2 ¢ (2.6)
ol
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To proceed, in the non-linear model the VDF is replaced by the perturbed distribution

f5=f0
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After some mathematical manipulation the linearized Shakhov model equation is deduced:

oh 5
7= ox + (y ay =4 [ZZZUZ 15 —024; (ZZ - E) - h] —{z (2-8)
_i _x_, _37_, __Qz _ Uz
where ¢ = vo'x YT voPOxp'vZ T voxp

To continue, two projections are introduced which are going to help in the calculations for
both the pressure and temperature driven flow. The first projected distribution function is

defined as

+00
1 2
=— ,he 2" d{, 2.9
ﬁ_f ¢, he~dg (2.9
Operating accordingly in (2.8) it is deduced that

dpp 2 1
{x ax (y a =0 [UZ + TSQZ(ZxZ + (yz - 1) - (pP] - E (2-10)

where @p is the projection (2.8) referring to the pressure driven flow. The second projected

distribution function is defined as

+o00
1
R f (i he%"dg, (2.1)
and operating accordingly in (2.8) it is deduced that

0yp  0p

(5 ox gy 3y =6 [2 v, +< CIZ(zx + Cyz) Yp|— (2.12)

4
where ¥, is the projection (2.11) referring to the pressure driven flow The macroscopic

velocity is given by

wy = jjj £.fdf (2.13)

The moments of the VDF are also linearized. More specifically, the bulk velocity becomes
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In addition, the dimensionless macroscopic velocity v, p is introduced as

+0o0 +00
u 1 . 1
vop == || e = [ wpete S agas,

VoXx, 13/2

Similarly, the heat flux given by

0= fﬁ(fz ~u,) (- ) fag

is linearized as

0 =5 [[] 6 = wd =) foCt + oy + )

and non-dimensionalized as

0. = fg (2 =3) hewp(~c2at

I

The z-component of the dimensionless heat flux g, p is given by

o= =L [ e (¢=3) hemccrat

T2~y

and in terms of the projected distributions as

2
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2.2.2 Temperature driven flow

The linearized Shakhov model equation for the temperature driven flow is obtained in a
similar manner as the for the pressure driven flow, using the same projections, using however

a slightly different definition of the perturbed distribution given by

2 5
f="h [1 + hxr +xr 7 <2;To - E)l (2.21)

H dT
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where x|l = [|=

The linearized distribution functions are introduced in the non-linear model to yield

§& _5
lf 0 (1 +hxr +xr 7 <2RT0 7))] P & 5 (2.22)
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Next the projections (2.9) & (2.11) are used in equation (2.23) to get the projected kinetic

§

equations. For the projections (2.9) and (2.11) the final expressions are

opr
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+ qu(cxz + {yz - 1) - QDT] - E((xz + (yz - 1) (2-24)

and

d d
(x all:: (y alrbT =4 [2 v, + < QZ({x + (yz) l/)T] - _({x + (yz) (225)

respectively. Next, the macroscopic velocity and heat flux for the temperature driven flow are

calculated. The macroscopic velocity is linearized as

ff £,fdE =~ ff fzfo<1+th+xT (22%—;)) dE - (226)

and is non-dimensionalized as

+00
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Similarly, the heat flux is linearized and non-dimensionalized as
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As it seen the expressions of the dimensionless macroscopic velocity and heat flux are the
same as for the pressure driven flow but of course the corresponding projected distributions
functions are different. Therefore, the results for the macroscopic velocity and heat flux for
the temperature driven flow will differ from the pressure driven since the linear models are

defined for different perturbed distributions.

2.2.3 Overall Quantities

For the pressure and temperature driven flows the dimensionless flow rate and heat flow
rate are given by

W/2H 1/2
= —2 — j J v, p dxdy (2.31)
—W/ZH -1/2

W/2H 1/2

f f v, dxdy (2.32)

-W/2H -1/2

and the corresponding heat flow rates are given by

W/2H 1/2

J f qzp dxdy (2.33)

-W/2H —1/2

W/2H 1/2

=—2— f qudedy (2.34)

—W/ZH -1/2
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The kinetic coefficients Gp and Qr are due to direct effects and more specifically they are the
flow rate and the heat flow deduced due to the pressure and temperature difference,
respectively. The kinetic coefficients Gr and Qp are due to cross effects that approach zero as
moving towards to the hydrodynamic regime. The first one is a flow rate due to a temperature
difference, well known as the thermal creep flow rate and the second one is a heat flow due to
a pressure difference well known as the mechanocaloric flux. It has been proved, [12-14], that
Gr and Qp obey the Onsager-Casimir relation for any scattering kernel that fulfills the

reciprocity condition

Gr =0Qp (2.35)

A more detailed presentation of the derivations is apposed on appendix A.

2.3 Boundary conditions

Two boundary condition models are considered, namely the Maxwell and the
Cercignani-Lampis (CL). The Maxwell boundary conditions has only one accommodation
coefficient, while the CL boundary conditions have two. Both have been implemented in
order to have a thorough and complete study. It is necessary to linearize the boundary
conditions and also perform the projection procedure in order to obtain expressions

compatible to the deduced kinetic equations.

2.3.1 Maxwell boundary conditions

For the pressure driven flow, the perturbed distribution (2.3) is substituted in eq (1.11)
to yield

€ |Lexp<— & )<1+h(Z)x +x Z—')— [ &R
" (ZﬂRT)% 2RTo ’ "H En<0 "

(2.36)
Z

. N 2 s o
- f)(ZHR—;)g/Z exp (‘ %) (1 +h(§)xp + xp)dd’

The equation is split into two parts:

Eal exp (—55) A+ % ) = A+ 2 D) f, o[/ |RE > D exp (-2 )af (237)

2RT, 2RT,
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Using the reciprocity condition in (2.37) it is found that

2
alexp - 2RT> [1irc-E~-grem (- o )a > @3
ghi<o
1= f R(~E - —F) d¥' = (2.40)
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which is the normalization condition, (1.13). Next for the second part (2.38) it is seen that

12

)h(()— flfn'lR(f’*f)exz’(— >h(z’)d3’ (2.42)
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Substituting R(&' — &) with the Maxwell kernel results to
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h@) = f Ras(~% = 3 h(@) d¥’ (2.46)
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Equation (2.46) can be rewritten as

h* = Ah~ (2.47)
which is the sort form of linearized eq. (1.11)
Next step is to introduce the projections (2.9) & (2.11) respectively and to solve for the
walls of the duct. The procedure is presented only for the x-axis as the same steps are
followed in y-axis, too.

Projection ¢:

1 1
¢+ (iz;y:cx; {y) = ﬁ f Ah_{z eXp(-(ZZ) d{z = (248)
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- \/E A (Z €xp (Z ( ( ( . )
1 1
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Projection y-
+ 1 1 - >3 2
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2.3.2 Cercignani-Lampis boundary conditions

Regarding the CL boundary conditions the same process is followed to linearize eq. (1.11),

but now in eq. (2.38) the CL kernel is substituted and will result to

G2+ (L—a)s” (G — (1 —a)g)?

h(() B |§_| j |€n 7-’:a'nat(z —a )exp an B at(z - at)
(2.58)
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which may be rewritten as
h@ = | Ra(-3~-2Ih@) @@ (2.60)

{n<0
Again, the projections ¢, y are used to produce the equations for the boundary conditions.

Projection ¢:
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Projection y:
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Concerning the temperature driven flow, by substituting the perturbed distribution (2.21) in
(1.11), the linearized form will have the same form as egs. (2.46) and (2.60). So, it is easy
seen that when the perturbed function will be replaced in the projections ¢ & v the results will
be the ones that have already been computed for both boundary conditions, egs. (2.52), (2.57),
(2.65) and (2.70). A more thorough description resulting in the linearized equations is

presented in Appendix B.

2.4 Computation of mass flow rate

The numerical model was built in order to provide the dimensionless mass flow rates
and heat fluxes. Although only the kinetic coefficients Gp and Gt were necessary since the
comparison of the numerical with the experimental results concerns the mass flow rates as it
will be discussed later. The kinetic coefficients depend on the aspect ratio H/W, rarefaction
parameter ¢ and accommodation coefficients, i.e. Gp(H/W,$, a;, a,), or in the case of
Maxwell boundary conditions Gp(H/W, &, a™). Since the purpose of the diploma thesis is to
match the experimental and numerical mass flow rates, it is obvious that the aspect ratio for
the numerical model should be equal to the experimental one, i.e. only one ratio is needed.
Thus, the desired kinetic coefficients were extracted for a wide range of ¢, a: and a, values for
CL boundary conditions, as well as for 6 and a¥ for Maxwell boundary conditions. The

reason the non-dimensionalization is preferred, is because it gives the opportunity of forming
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a database that later can be used for analyzing different gases, on different ducts regarding the
dimensions and for different conditions, e.g. temperature.

In order to evaluate the net mass flow rate from the kinetic coefficients, the assumption
of the fully developed flow, i.e. the pressure is constant on each cross section and only varies
through the length, may be made since H «< L. The fully developed flow in a duct is

calculated by the first order ordinary differential equation.

dp Vo(2) . Gr(8(2),a¢ ay) P(z) dT

4z~ T WHG, (@) an ) Gr(0(), 4y an) T(2) dz 2.71)
The above expression is only valid for CL boundary conditions. In case of Maxwell BCs the
coefficients Gp and Gr are functions of ¢ and a™. Regarding the aspect of the given problem
eq. (2.71) can be used to calculate the mass flow rate, if the pressure on both ends is known.
The solution of the equation requires an iterative process where an initial value for the mass
flow is assumed. Equation (2.71) is integrated with initial condition the pressure on the one
end, for simplicity is called P(0) where z € [0, L], and the computed pressure is compared
with the pressure on the other, P(L). Then the mass flow is recalculated and the process is
repeated until convergence is achieved. For the pressure driven flow the pressure on the two
ends of the channel is different and the temperature throughout the channel is constant so the
temperature gradient on the right hand side of (2.71) becomes zero and it can be rewritten as,

dP vo(2) )
- _ m
dz WH?Gp(6(2),a;, ay) 2.72)

For a temperature driven flow the pressure on both ends is equal but there is a pressure
variation along the channel. In addition, the temperature varies linearly along the channel.

2.5 Experiment description

The experimental results which have been used in the present work have been kindly
provided by the research group at the University of D’Aix-Marseille and are included in the
Ph.D. thesis of Dr. R. Brancher [1]. It is useful, mainly for completeness purposes, to provide
a brief description of the experimental setup. The experiment took place for four different
monatomic gases (He, Ne, Ar, Kr) and Nitrogen and separately for pressure and temperature
flows. The apparatus where the experiments were held consisted of two tanks connected with
the micro-channel and due to their small volume, when needed, an additional reservoir was

connected to each tank. The reservoirs were of the same volume but different for the pressure
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and temperature gradient flows. Also, a secondary line linked the two tanks with a vacuum
pump and the high-pressure gas bottles. Finally, valves were placed in the apparatus in order
to control the flow of the gas. The material of the micro-channel was PEEK
(PolyEtherEtherKetone), its dimensions: height H = 0.24 + 0.01mm, width W = 1.0mm,
length L = 72mm and the measured roughness: 113 + 19nm. For the estimation of the mass
flow two pressure gauges were attached, one on each tank. During the pressure gradient
experiment there was no influence on the temperature of the gas and so room temperature
(T=293.15K) was assumed. For the temperature gradient experiment an electrical heater was
connected to one tank and water cooling to the other. It is noted that only the tank on the hot
side was heated and not the reservoir, which is of greater volume. Because of that some
discrepancies on the imposed temperatures may be expected. The measurement of the
temperature was monitored with thermocouples and an infra-red camera. The temperature
differences that were tested were two, namely AT=58K (Thot=342.65K, Tcot=284.65K) and
AT=67.5K (Thot=352.15K, Tc01g=284.65K).

Figure 2.1: Experimental apparatus of [1]
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Chapter 3 KINETIC COEFFICIENTS

Extensive tabulated results are provided for the dimensionless flow rates Gp and Gt in
terms of the gas rarefaction parameters and the accommodation coefficients of the Maxwell
and CL boundary conditions. The results are for the pressure and temperature gradient driven
flows and for two aspect ratios of the rectangular cross section of the channel. More
importantly, they are provided in the whole range of the involved parameters. These results
are used in Chapters 4 and 5 to compute the corresponding mass flow rates and may be used
as a reference point in future work. In addition, some validation of the implemented kinetic
code is provided. The bulk of the computational work was performed on the Marconi

supercomputer of the computing center CINECA.

3.1 Discretization and numerical parameters

Before gathering the data from the numerical model that would be later used for the
evaluation of the mass flow rates it was requisite to check the mesh independence on the
results, i.e. the percentage difference between the results for different discretization on
molecular speed magnitudes and polar angles and physical space discretization intervals. The
parameters during the tests were fixed at: H/W=1, 0.24, 6=10, a=ax=0.75. In the molecular
velocity space the concluded discretization was: 40 magnitudes distributed according to
Legendre polynomial roots, 200 polar angles equal distributed in [0,2x] and in the physical
space 50 intervals on both x and y axis. As can be seen from Tables 3.1 and 3.2 an increase on
the polar angles or the intervals compared to the chosen ones, would result in a significant
increase on solution time, but not on a notable difference between the kinetic coefficients. In
the square channel H/W=1 the number of nodes in x and y directions is the same, while in the
rectangular one H/W=0.24 varies according to the aspect ratio. This discretization was used
for 6 < 10. Greater values of the gas rarefaction parameter imply the increase of the
intermolecular collisions as the system tends to the hydrodynamic regime. In these cases a
denser grid was applied in the physical space with a reduction to the polar angles (intervals x-
axis=400, y-axis=200, polar angles=100). Furthermore, to prove the validity of the numerical
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model the results were compared with other published results [4,9,10,15,16]. The gathered
data refer to many aspect ratios for values of § € [0,50] and a wide range of values for the

accommodation coefficients.

Table 3.1: Flow rates with various number of molecular velocities and physical nodes for H/W=1 and

6=10.

Velocities Angles Xnodes | Y nodes Gp Gp Diff [%] | Time [hr]
40 100 101 101 1.6327 -0.110 6
40 200 101 101 1.6347 0.012 29
40 400 51 51 1.6354 0.058 58
40 200 51 51 1.6345 8

Table 3.2: Flow rates with various number of molecular velocities and physical nodes for H/'W=0.24

and d=10.
Velocities Angles X nodes | Y nodes Gp Ge Diff [%] | Time [hr]
40 200 201 51 2.8952 | 3.454E-05 67
40 200 101 51 2.8952 41

It is noted that the computational times given in Tables 3.1 and 3.2 refer to single core

calculations.

3.2 Flow rates with Maxwell boundary conditions

A large amount of work has been dedicated to the extraction of the kinetic coefficients
and their dependence on the Maxwell accommodation coefficient through various capillaries
by performing experiments and comparing the corresponding kinetic results in the whole
range of gas rarefaction. In the present work the tabulated results refer to the specific aspect
ratio H/W=0.24.

In Tables 3.3 and 3.4 the kinetic coefficients Gp and Gr are tabulated in for indicative
values of ¢ from the free molecular limit up to the slip regime and in the whole range of the
Maxwell accommodation coefficient o™ from zero to one for the pressure and temperature
driven flows respectively. As it is seen in Table 3.3 for all values of the gas rarefaction
parameter the dimensionless flow rate is decreased as the accommodation coefficient is
increased and the gas surface interaction becomes more diffuse. It may be also observed that
the well-known Knudsen minimum is always present in all values of the accommodation

coefficient.
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Table 3.3: Dimensionless flow rate Gp with Maxwell boundary conditions

H/W=0.24
o a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 24.7454 11.7551 74398 | 52932 | 4.0142 | 3.1689 | 25714 | 2.1287 | 1.7893 | 1.5221
0.1 | 16.0874 8.2785 55309 | 4.1021 | 3.2190 | 2.6167 | 2.1790 | 1.8464 | 1.5853 | 1.3752
1 14.2781 7.1083 47063 | 3.4983 | 2.7690 | 2.2797 | 1.9281 | 1.6628 | 1.4554 | 1.2886
5 14.7978 7.5932 5.1712 | 3.9514 | 3.2147 | 2.7208 | 2.3663 | 2.0992 | 1.8906 | 1.7230
10 | 15.6408 8.3652 5.9079 | 4.6668 | 3.9155 | 3.4106 | 3.0472 | 2.7727 | 25577 | 2.3844
Continuing with Table 3.4 it is seen that in the temperature driven flow the
dimensionless flow rate is monotonically decreased as the accommodation coefficient is
increased. It is noted that for a=1 the reflection is purely diffuse. With regard to the gas
rarefaction parameter it is seen that as ¢ is increased, i.e., the flow becomes less rarefied the
dimensionless flow rate is monotonically decreased. This is a well-known trend and it is
contributed to the fact that thermal creep is reduced as the flow approaches the continuum
regime.
Table 3.4: Dimensionless flow rate Gr with Maxwell boundary conditions
H/W=0.24
5 | a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 12.3727 5.8776 3.7199 2.6466 2.0071 1.5844 1.2857 1.0644 | 0.8946 0.7610
0.1 3.4589 2.3458 1.7818 14311 1.1883 1.0088 0.8700 0.7592 0.6685 0.5929
1 0.6687 0.6047 | 0.5526 | 0.5090 | 0.4719 | 0.4398 | 0.4116 | 0.3867 | 0.3644 | 0.3443
5 0.1515 0.1528 0.1539 0.1548 0.1556 0.1563 0.1569 0.1575 0.1580 0.1585
10 0.0775 0.0800 | 0.0823 | 0.0844 | 0.0865 | 0.0885 | 0.0904 | 0.0923 | 0.0941 | 0.0958

3.3 Flow rates with Cercignani-Lampis boundary conditions

Tables 3.5 and 3.6 provide indicative values of the dimensionless flow rates for the
pressure driven flow and Tables 3.7 and 3.8 the dimensionless flow rates for the temperature
driven flow. The flow rates depend on ¢, as well as on the tangential momentum and normal
energy accommodation coefficients ot and an respectively. Results are provided for two aspect
ratios.

As it seen in Tables 3.5 and 3.6 the dimensionless flow rates depend strongly on the
tangential momentum accommodation coefficient (TMAC) and very weakly on the normal

energy accommodation coefficient (NEAC). More specifically for the same values of ¢ and ot
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the dimensionless flow rate Gp changes slightly with an. Regarding the rarefaction parameter
as its value increases from zero to around one the flow rate is reduced and after that as ¢ is
further increased Gp increases again. This is the so-called Knudsen minimum which is also
present here. The tangential momentum accommodation coefficient reduces the flow as its
value increases, i.e. as the scattering changes from specular to diffuse. For TMAC larger than
unity the flow rate is further reduced due to back scattering. As pointed above, the normal
energy accommodation coefficient is the parameter that slightly affects the flow rate. As ¢
increases the impact of an on the flow becomes even smaller. Also, for a; < 1, an increase of
an results on decreasing the value of Gp, while for a; > 1 it has the opposite effect. In the
case of a; = 1, then the coefficient an doesn’t affect the flow at all. All these remarks are the
qualitatively the same for both aspect ratios. Quantitatively, as the aspect ratio is decreased
the effect of a, on the flow seems to increase slightly. Also, the decrease in the aspect ratio
leads to an increase of the Poiseuille flow rates.

The dimensionless flow rate due to the temperature gradient is given in Tables 3.7 and
3.8. Now, the all three parameters, including the normal energy accommodation coefficient,
affect the flow. As expected in thermal creep flows, as the gas rarefaction parameter is
increased the flow rate is monotonically decreased, implying that the role of the temperature
gradient on a flow in the hydrodynamic regime is insignificant. The effect of the tangential
momentum accommodation coefficient remains the same as for the Poiseuille flow, i.e., as the
TMAC is increased the flow rate is reduced. As for the normal energy accommodation
coefficient it affects the flow in the same way as before, but only for § < 3. For greater values
of 9, an has the opposite effect, meaning that for values of a, < 1 an increase of an results also
in an increase on thermal creep and for a, > 1 the thermal creep flow is reduced as an
increases. For a, = 1 the flow rate is independent of the normal energy accommodation

coefficient.
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Table 3.5: Dimensionless flow rate Gp with Cercignani-Lampis boundary conditions (H/W=1)

H/W=1
At an =0.1 0.2 0.4 0.6 0.8 1
0.1 9.2114 8.9694 8.7352 8.6217 8.5569 8.5171
0.2 4.6537 4.5630 4.4544 4.3917 4.3517 4.3251
0.6 1.4776 1.4668 1.4512 1.4397 1.4308 1.4238
=0 1 0.8387 0.8387 0.8387 0.8387 0.8387 0.8387
14 0.5321 0.5386 0.5483 0.5559 0.5626 0.5688
1.8 0.2858 0.2993 0.3191 0.3352 0.3498 0.3643
1.9 0.2109 0.2277 0.2526 0.2728 0.2912 0.3099
0.1 8.6270 8.6205 8.6194 8.6187 8.6183 8.6182
0.2 4.4736 44718 4.4703 4.4693 4.4687 4.4683
0.6 1.5958 1.5952 1.5944 1.5938 1.5934 1.5931
6=0.1 1 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971
14 0.7241 0.7246 0.7253 0.7257 0.7261 0.7263
1.8 0.5561 0.5570 0.5583 0.5592 0.5599 0.5603
1.9 0.5223 0.5233 0.5248 0.5258 0.5265 0.5270
0.1 8.4673 8.4531 8.4357 8.4226 8.4121 8.4036
0.2 4.2730 4.2667 4.2567 4.2486 4.2417 4.2360
0.6 1.3693 1.3682 1.3662 1.3643 1.3626 1.3610
0=1 1 0.7756 0.7756 0.7756 0.7756 0.7756 0.7756
14 0.4990 0.4997 0.5012 0.5028 0.5043 0.5059
18 0.3045 0.3062 0.3096 0.3131 0.3167 0.3206
1.9 0.2575 0.2597 0.2641 0.2685 0.2731 0.2780
0.1 8.6270 8.6205 8.6194 8.6187 8.6183 8.6182
0.2 4.4736 44718 4.4703 4.4693 4.4687 4.4683
0.6 1.5958 1.5952 1.5944 1.5938 1.5934 1.5931
=5 1 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971
1.4 0.7241 0.7246 0.7253 0.7257 0.7261 0.7263
18 0.5561 0.5570 0.5583 0.5592 0.5599 0.5603
1.9 0.5223 0.5233 0.5248 0.5258 0.5265 0.5270
0.1 8.9761 8.9675 8.9630 8.9593 8.9552 8.9524
0.2 4.8389 4.8354 4.8310 4.8273 4.8241 4.8213
0.6 1.9391 1.9378 1.9357 1.9339 1.9323 1.9309
6=10 1 1.3240 1.3240 1.3240 1.3240 1.3240 1.3240
1.4 1.0438 1.0449 1.0468 1.0485 1.0501 1.0514
18 0.8762 0.8783 0.8820 0.8854 0.8884 0.8911
1.9 0.8435 0.8459 0.8501 0.8538 0.8572 0.8603




Table 3.6: Dimensionless flow rate Gp with Cercignani-Lampis boundary condition (H/W=0.24)

H/W=0.24

ar | an=01 0.2 0.4 0.6 0.8 1

0.1 | 15.6884 | 15.0879 | 14.5872 | 14.3718 | 14.2569 | 14.1894
0.2 | 8.0392 7.7650 7.4837 7.3419 7.2594 7.2081
0.6 | 2.6514 2.6073 2.5520 2.5166 2.4917 2.4735
0=0 1 1.5219 1.5219 1.5219 1.5219 1.5219 1.5219
1.4 | 0.9759 1.0016 1.0340 1.0563 1.0741 1.0897
1.8 | 0.5690 0.6106 0.6617 0.6974 0.7269 0.7544
1.9 | 0.4456 0.4892 0.5436 0.5823 0.6148 0.6457
0.1 | 14.8321 | 145671 | 14.2900 | 14.1496 | 14.0682 | 14.0177
0.2 | 7.5578 7.4150 7.2432 7.1455 7.0846 7.0450
0.6 | 2.4538 2.4258 2.3868 2.3599 2.3401 2.3252
0=0.1 | 1 1.3751 1.3751 1.3751 1.3751 1.3751 1.3751
1.4 | 0.8584 0.8759 0.9002 0.9181 0.9330 0.9463
1.8 | 0.4902 0.5195 0.5589 0.5880 0.6127 0.6363
1.9 | 0.3905 0.4216 0.4636 0.4946 0.5212 0.5469
0.1 | 14.0333 | 14.0119 | 13.9897 | 13.9725 | 13.9588 | 13.9481
0.2 | 7.0294 7.0183 7.0012 6.9872 6.9759 6.9667
0.6 | 22738 2.2704 2.2644 2.2591 2.2544 2.2503
o=1 1 1.2885 1.2885 1.2885 1.2885 1.2885 1.2885
1.4 | 0.8406 0.8430 0.8475 0.8519 0.8562 0.8604
1.8 | 0.5632 0.5675 0.5758 0.5838 0.5918 0.6001
1.9 ] 0.5051 0.5099 0.5190 0.5277 0.5366 0.5459
0.1 | 14.6273 | 14.6137 | 14.6088 | 14.6053 | 14.6027 | 14.6006
0.2 | 7.5296 7.5255 7.5216 7.5187 7.5166 7.5149
0.6 | 27199 2.7187 2.7169 2.7157 2.7147 2.7140
0=5 1 1.7220 1.7220 1.7220 1.7220 1.7220 1.7220
1.4 | 1.2816 1.2826 1.2842 1.2853 1.2861 1.2867
1.8 | 1.0280 1.0300 1.0331 1.0353 1.0369 1.0382
1.9 | 0.9800 0.9823 0.9856 0.9881 0.9900 0.9913
0.1 | 154955 | 154776 | 15.4665 | 15.4573 | 15.4493 | 15.4422
0.2 | 8.2638 8.2569 8.2469 8.2393 8.2325 8.2266
0.6 | 3.3996 3.3969 3.3922 3.3884 3.3851 3.3821
=10 | 1 2.3801 2.3801 2.3801 2.3801 2.3801 2.3801
1.4 | 1.9268 1.9293 1.9333 1.9369 1.9402 1.9433
1.8 | 1.6650 1.6695 1.6772 1.6844 1.6908 1.6969
1.9 | 1.6154 1.6202 1.6290 1.6370 1.6442 1.6511
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Table 3.7: Dimensionless flow rate Gt with Cercignani-Lampis boundary conditions (H/W=1)

H/W=1

¢ an =0.1 0.2 0.4 0.6 0.8 1

0.1 1.7844 1.3757 0.9590 0.7503 0.6276 0.5496
0.2 1.1201 0.9610 0.7605 0.6396 0.5598 0.5047
0.6 0.5454 0.5252 0.4933 0.4683 0.4480 0.4312
0=0 1 0.4193 0.4193 0.4193 0.4193 0.4193 0.4193
1.4 0.3420 0.3530 0.3710 0.3869 0.4017 0.4164
1.8 0.2375 0.2569 0.2883 0.3164 0.3442 0.3740
1.9 0.1904 0.2130 0.2498 0.2828 0.3157 0.3519

0.1 1.3839 1.1346 0.8375 0.6707 0.5662 0.4968
0.2 0.9243 0.8150 0.6640 0.5659 0.4980 0.4495
0.6 0.4713 0.4558 0.4301 0.4091 0.3916 0.3768
0=0.1 | 1 0.3649 0.3649 0.3649 0.3649 0.3649 0.3649
1.4 0.2984 0.3069 0.3219 0.3355 0.3486 0.3617
1.8 0.2054 0.2203 0.2464 0.2706 0.2949 0.3213
1.9 0.1642 0.1817 0.2121 0.2403 0.2691 0.3009

0.1 0.5139 0.4865 0.4362 0.3964 0.3643 0.3383
0.2 0.4296 0.4120 0.3804 0.3541 0.3321 0.3135
0.6 0.2955 0.2916 0.2843 0.2774 0.2711 0.2652
o=1 1 0.2557 0.2557 0.2557 0.2557 0.2557 0.2557
1.4 0.2286 0.2311 0.2363 0.2415 0.2469 0.2524
1.8 0.1807 0.1851 0.1942 0.2037 0.2139 0.2251
1.9 0.1609 0.1659 0.1763 0.1873 0.1991 0.2122

0.1 0.1446 0.1470 0.1496 0.1521 0.1545 0.1568
0.2 0.1419 0.1434 0.1457 0.1480 0.1502 0.1523
0.6 0.1360 0.1365 0.1376 0.1386 0.1397 0.1407
=5 1 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378
1.4 0.1405 0.1402 0.1394 0.1385 0.1377 0.1368
1.8 0.1370 0.1364 0.1350 0.1336 0.1320 0.1304
1.9 0.1345 0.1339 0.1324 0.1308 0.1291 0.1274

0.1 0.0769 0.0794 0.0832 0.0868 0.0904 0.0938
0.2 0.0784 0.0802 0.0834 0.0865 0.0896 0.0926
0.6 0.0825 0.0833 0.0846 0.0860 0.0874 0.0888
=10 1 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878
14 0.0929 0.0924 0.0912 0.0900 0.0887 0.0874
1.8 0.0959 0.0949 0.0928 0.0905 0.0881 0.0857
1.9 0.0961 0.0950 0.0927 0.0902 0.0876 0.0849
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Table 3.8: Dimensionless flow rate Gr with Cercignani-Lampis boundary conditions (H/W=0.24)

H/W=0.24

a; an0.1 0.2 0.4 0.6 0.8 1

0.1 3.0341 2.2577 1.5674 1.2489 1.0668 0.9515
0.2 2.0055 1.6569 1.2797 1.0779 0.9532 0.8703
0.6 1.0168 0.9634 0.8910 0.8409 0.8032 0.7739
=0 1 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610
1.4 0.6081 0.6366 0.6757 0.7058 0.7322 0.7571
1.8 0.4500 0.4960 0.5585 0.6077 0.6529 0.6993
1.9 0.3834 0.4325 0.5007 0.5557 0.6074 0.6617
0.1 2.0274 1.6550 1.2371 1.0129 0.8749 0.7832
0.2 1.4531 1.2579 1.0115 0.8643 0.7678 0.7012
0.6 0.7884 0.7529 0.6998 0.6605 0.6300 0.6057
0=0.1 | 1 0.5928 0.5928 0.5928 0.5928 0.5928 0.5928
14 0.4715 0.4914 0.5214 0.5458 0.5678 0.5891
1.8 0.3450 0.3777 0.4257 0.4655 0.5030 0.5419
1.9 0.2973 0.3322 0.3843 0.4280 0.4699 0.5144
0.1 0.5895 0.5655 0.5197 0.4838 0.4554 0.4329
0.2 0.5244 0.5052 0.4711 0.4435 0.4210 0.4025
0.6 0.3973 0.3913 0.3801 0.3700 0.3610 0.3529
o=1 1 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443
14 0.3057 0.3097 0.3175 0.3252 0.3329 0.3408
1.8 0.2578 0.2643 0.2773 0.2904 0.3041 0.3190
1.9 0.2422 0.2492 0.2633 0.2775 0.2926 0.3091
0.1 0.1510 0.1544 0.1587 0.1628 0.1668 0.1706
0.2 0.1509 0.1530 0.1565 0.1599 0.1631 0.1663
0.6 0.1534 0.1541 0.1555 0.1570 0.1584 0.1598
=5 1 0.1584 0.1584 0.1584 0.1584 0.1584 0.1584
14 0.1632 0.1627 0.1615 0.1603 0.1591 0.1578
1.8 0.1645 0.1635 0.1615 0.1593 0.1570 0.1546
1.9 0.1639 0.1629 0.1607 0.1583 0.1557 0.1531
0.1 0.0792 0.0820 0.0864 0.0907 0.0948 0.0989
0.2 0.0808 0.0829 0.0866 0.0902 0.0937 0.0971
0.6 0.0885 0.0894 0.0910 0.0926 0.0943 0.0959
=10 1 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956
14 0.1022 0.1015 0.1001 0.0986 0.0971 0.0955
1.8 0.1076 0.1063 0.1037 0.1009 0.0980 0.0949
1.9 0.1086 0.1072 0.1043 0.1013 0.0980 0.0946
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Chapter 4 EXTRACTION OF ACCOMMODATION
COEFFICIENTS FOR PRESSURE DRIVEN FLOW

The mass flow rate for specific flow setups is obtained. The imposed geometrical and
operational data are the same with the ones implemented in the experimental work reported in
[1]. Based on these data, as well as on the dimensionless kinetic coefficients tabulated in the
previous chapter the mass flow rate is computed using the Maxwell and the Cercignani-
Lampis boundary conditions. The values of the accommodation coefficients providing the
best agreement between computed and measured mass flow rates are the ones which

characterize the gas —surface interaction.

4.1 Mass flow rate parameters for pressure driven flow
According to the description in paragraph 2.4 the mass flow rate, based on (2.72) may
be computed as
_ L\2RT

Sk il 4.1
O =MW ap (1)

where the geometrical parameters of the channel (H, W, L) as well as the physical properties
(R, w, u) for all gases are known (Table 4.1). In addition, the appropriate database with the
kinetic coefficients for various values of J, a;, a, and aV is available from the linearized

kinetic model. The gas rarefaction parameter is computed as

5. —_ Pmil
™ wW(T)V2RT

based on the data from Tables A.1 and A.2 for each gas of [1] The temperatures of both the

(4.2)

pressure and the temperature gradient experiments are also known. The room temperature is
T=293.15K for the pressure driven flow and the temperature differences are AT=58K and
AT=67.5K for the two temperature driven flows.
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Table 4.1: Physical properties of gases

Gas Helium Neon | Nitrogen | Argon | Krypton
Wer [Pa s] 107 1.865 2.975 1.656 2.117 2.328
o [-] 0.66 0.66 0.74 0.81 0.8
R [Jlg K] 2078 412 296.8 208.1 99.22

The only unknown parameters are the pressures at the two channel ends for the various
tests on each experimental setup. The inlet and outlet pressures for the pressure driven flow
are evaluated by (4.1) and (4.2) following the procedure outlined in paragraph 2.4, based on
the rarefaction parameter om in [1]. Since in this case the unknowns of (4.1) and (4.2) were the
pressure difference Ap and the mean pressure pm respectively, as inputs of Gp, m and 6, were

used, given the tested gas, to extract the desired variables.

4.2 Maxwell accommodation coefficient for pressure driven flow

In the Maxwell boundary conditions there is only one free parameter, namely the
Maxwell accommodation coefficient for characterizing the gas-surface interaction. This
means that for the pressure and temperature gradient driven flows the value of the
accommodation coefficient is not necessarily the same. Thus, the extraction of the
accommodation coefficient for the pressure and temperature driven flow was performed
separately. For the pressure driven flow to extract the value of the accommodation coefficient
for each gas an attempt was made initially to match the numerical and experimental mass
flow rates for the lower values of 6 € [6,20], because the coefficient has a more pronounced
effect on the mass flow rates and thus leads to smaller uncertainties and errors. As a starting
value for the AC the measured experimental one was used and was accordingly altered to
obtain the best possible agreement between computations and measurements. An excellent
agreement has been obtained for the tested values and the results are presented in Tables 4.2-
4.4. The important outcome was that for each case on all gases the numerical value of the AC
had a relative error compared to the experimental measured, [1], less than 4%, 4%, 3%, 3%
and 5% for He, Ne, N2, Ar and K, respectively.

To further clarify the agreement between the results, the Euclidian norm of the
coefficient a¥f was calculated for each gas based on the results from Tables 4.2-4.4. The
deduced values along with two additional values in the range of £0.05 were tested for all the
given experimental data and are presented for all five gases in Figures 4.1-4.5. In these figures

the error between the numerical and experimental mass flow rate, as well as the mass flow

34



rates are provided. It can be seen that the initial chosen value of AC produces the smallest
error with the divergence from zero be less than 1%, while the other two produce an error of
+5% for a lower value of AC and -5% for greater. As the value of ¢ increases (6 > 20) the
error curve for all three ACs starts to decreases numerically, i.e. the middle AC begins to
deviate from zero, meaning that the effect of the coefficient on the flow is becoming less
important as it moves to the hydrodynamic regime. Finally, the selected values of the
Maxwell accommodation coefficient providing the best agreement between the computed and

the measured flow rates are given in Table 4.5.

Table 4.2: Computed values of a¥ for pressure driven flow for Helium and Neon

He (a2 [1]=0.773) Ne (a¥ [1]=0.763)
5 | a¥ | M[kgls] | M Diff [%] § | a¥ | M[kg/s] | M Diff [%]
6.03 | 0.8 | 1.47E-09 3.49 8.63 | 0.787 | 2.95E-10 3.15
8.58 | 0.788 | 2.39E-10 1.94 9.18 | 0.786 | 3.42E-10 3.01
9.31 | 0.788 | 1.37E-10 1.94 10 | 0.777 | 1.20E-09 1.83
9.71 | 0.797 | 1.78E-10 3.10 10.5 | 0.777 | 1.49E-09 1.83
10.3 | 0.802 | 1.35E-09 3.75 11.5 | 0.777 | 1.05E-09 1.83

Table 4.3: Computed values of a¥ for pressure driven flow for Nitrogen and Argon

N, (a¥ [1]=0.779) Ar (a¥ [1]=0.785)
8§ | a¥ | M[kg/s] | M Diff [%] 8§ | a¥ | M[kg/s] | M Diff [%]
9.19 | 0.8 | 4.08E-10 2.70 9.11 | 0.805 | 2.65E-10 2.55
10.5 | 0.801 | 6.91E-10 2.82 9.79 | 0.798 | 6.12E-10 1.66
12.7 | 0.801 | 1.20E-09 2.82 11.3 | 0.801 | 8.43E-10 2.04
16.1 | 0.801 | 1.67E-09 2.82 13.3 | 0.797 | 1.24E-09 1.53
20.3 | 0.798 | 2.69E-09 2.44 15.9 | 0.79 | 1.89E-09 0.64

Table 4.4: Computed values of a¥ for pressure driven flow for Krypton

Kr (a¥ [1]=0.796)
5 | a¥ | M[kg/s] | M Diff [%]
8.89 | 0.833 | 5.07E-10 4.65
10.1 | 0.822 | 6.82E-10 3.27
11.7 | 0.82 | 1.87E-09 3.02
13.2 | 0.818 | 2.73E-09 2.76
15.6 | 0.82 | 2.05E-09 3.02

Table 4.5: Computed values of a over the whole range of gas rarefaction for all gases

Gas Helium Neon | Nitrogen | Argon | Krypton
ay 0.795 0.781 0.8 0.798 0.823

35



Figure 4.1: Comparison between computed and measured mass flow rates of He for the pressure
driven flow based on the Maxwell boundary conditions (a¥)

Figure 4.2: Comparison between computed and measured mass flow rates of Ne for the pressure
driven flow based on the Maxwell boundary conditions (a%)
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Figure 4.3: Comparison between computed and measured mass flow rates of N for the pressure driven
flow based on the Maxwell boundary conditions (a¥)

Figure 4.4: Comparison between computed and measured mass flow rates of Ar for the pressure driven
flow based on the Maxwell boundary conditions (ak)
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Figure 4.5: Comparison between computed and measured mass flow rates of Kr for the pressure driven
flow based on the Maxwell boundary conditions (a¥)

4.3 Cercignani-Lampis tangential momentum accommodation coefficient

for pressure driven flow

In the Cercignani-Lampis (CL) boundary conditions there are two free parameters,
namely the CL tangential momentum (a;)and normal energy (a,)accommodation
coefficients characterizing the gas-surface interaction. As discussed in Chapter 3, in the
pressure driven flow the kinetic coefficient is almost independent of «, and therefore is
always set equal to one (a,, = 1). For estimating the tangential momentum accommodation
coefficient, the pressure driven flow was employed by comparing the experimental with the
numerical mass flow rates. More specifically, a; was altered trying to match the results. The
comparison at first was, also, performed for the experiments with the lower values of § €
[6,20], beginning with the experimental values of the TMAC. The values of the coefficient a;
that resulted in the same mass flow rates as the experiments, while maintaining a,, = 1, are
presented in Tables 4.5-4.7 for all gases, along with the values of the mass flow rate as well as
the values of a; given in [1]. For all the gases the values of «, obtained using the present
methodology are very close with the ones reported in [1], having relative differences less than
5%, 5%, 4%, 4% and 6% for He, Ne, N2, Ar and K, respectively.
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In order to better judge the accuracy of the results, the Euclidean norm of the coefficient
atr was computed for each gas based on the results from Tables 4.6-4.8. To ensure that the
chosen values were the ones that fit best a comparison was made with two additional values
of at in the range of £0.05 for each gas. The results are presented in Figures 4.6-4.10, where
again the upper graph presents the error between the numerical and experimental results,
while the lower graph the mass flow rates. Judging by the diagrams it is clear that the initially
chosen values of the coefficient for each gas gives the best results for § < 20 with the error
varying around zero in a range of £2%. The error for the other two ACs is larger by 5%
compared to the first value’s error. As o increases, i.e. the flow is moving to the
hydrodynamic regime, the effect of the coefficient on the mass flow rate diminishes. Finally,
the selected values of the CL TMAC providing the best agreement between the computed and
the measured flow rates are given in Table 4.9. The results are relatively close to the ones

reported in Table 4.5 for the Maxwell boundary conditions.

Table 4.6: Computed values of a; for pressure driven flow for Helium and Neon

He (a, [1]=0.763) Ne (a; [1]=0.752)
a,=1 a,=1
d a; M [ka/s] M Diff % d a; M [ka/s] M Diff %
6.03 | 0.797 | 1.47E-09 4.46 8.63 | 0.784 | 2.95E-10 4.26
8.58 | 0.787 | 2.39E-10 3.15 9.18 | 0.782 | 3.42E-10 3.99
9.31 ] 0.786 | 1.37E-10 3.01 10 | 0.774 | 1.20E-09 2.93
9.71 | 0.794 | 1.78E-10 4.06 10.5 | 0.772 | 1.49E-09 2.66
10.3 | 0.797 | 1.35E-09 4.46 11.5 ] 0.773 | 1.05E-09 2.79

Table 4.7: Computed values of a; for pressure driven flow for Nitrogen and Argon

N2 (a; [1]=0.768) Ar (a; [1]=0.775)
a,=1 a,=1
0 a; | M [kgls] M Diff % d a: | M [kg/s] M Diff %
9.19 | 0.795 | 4.08E-10 3.52 9.11 | 0.799 | 2.65E-10 3.10
10.5 | 0.794 | 6.91E-10 3.39 9.79 | 0.793 | 6.12E-10 2.32
12.7 | 0.793 | 1.20E-09 3.26 11.3 | 0.795 | 8.43E-10 2.58
16.1 | 0.787 | 1.67E-09 2.47 13.3 | 0.786 | 1.24E-09 1.42
20.3 | 0.777 | 2.69E-09 1.17 15.9 | 0.779 | 1.89E-09 0.52
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Table 4.8: Computed values of a; for pressure driven flow for Krypton

Kr (a; [1]=0.786)
a,=1
d a; M [ka/s] M Diff %
8.89 | 0.831 | 5.07E-10 5.73
10.1 | 0.817 | 6.82E-10 3.94
11.7 | 0.808 | 1.87E-09 2.80
13.2 | 0.805 | 2.73E-09 2.42
15.6 | 0.807 | 2.05E-09 2.67

Table 4.9: Computed values of a; over the whole range of gas rarefaction for all gases

Gas Helium | Neon | Nitrogen | Argon | Krypton
at 0.792 0.777 0.789 0.79 0.814

Figure 4.6: Comparison between computed and measured mass flow rates of He for the pressure
driven flow based on the Cercignani-Lampis boundary conditions with various values of a; and a,=1
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Figure 4.7: Comparison between computed and measured mass flow rates of Ne for the pressure
driven flow based on the Cercignani-Lampis boundary conditions with various values of a; and a,=1

Figure 4.8: Comparison between computed and measured mass flow rates of N for the pressure driven
flow based on the Cercignani-Lampis boundary conditions with various values of a; and a,=1
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Figure 4.9: Comparison between computed and measured mass flow rates of Ar for the pressure driven
flow based on the Cercignani-Lampis boundary conditions with various values of a; and a,=1

Figure 4.10: Comparison between computed and measured mass flow rates of Kr for the pressure
driven flow based on the Cercignani-Lampis boundary conditions with various values of a; and a,=1
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Chapter 5 EXTRACTION OF ACCOMMODATION
COEFFICIENTS FOR TEMPERATURE DRIVEN FLOW

The mass flow rate for specific temperature driven flow setups is obtained. The
imposed geometrical and operational data are the same with the ones implemented in the
experimental work reported in [1]. Based on these data, as well as on the dimensionless
kinetic coefficients tabulated in the Chapter 3, the mass flow rate is computed using the
Maxwell and the Cercignani-Lampis boundary conditions. However, an identification of the
value of the accommodation coefficients could not be done since large deviations exist

between the computed and measured mass flow rates.

5.1 Mass flow rate for temperature driven flow
According to the description in paragraph 2.4 the mass flow rate, based on (2.71) may

be computed as

M ~ G (6 )ZHZW 1 1
~ Uur\m L Po \/ZRTl \/ZRTZ (51)

where the geometrical parameters of the channel (H, W, L) as well as the physical properties
(R, o, p) for all gases are known (Table 4.1). In addition, the appropriate database with the
kinetic coefficients for various values of &, a, a, and aV is available from the linearized
kinetic model. The gas rarefaction parameter is computed as
poH
On=——r"T— (5.2)

(Tm)\/2RT,
based on the data from Tables A.3-A.6 for each gas of [1]. As inputs for Gt and Jm in egs.
(5.1) and (5.2) respectively the results from Tables A.3-A.6 of [1] were used in order to
extract the pressure. The outcome from the two equations was very close most of the times
with an average difference of 2%. Yet to avoid any uncertainties the measured pressure values

from the experiment were used, although the average difference between the latter and the
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former was 4%. The temperature differences for the two experiments are known and equal to
AT=58K and AT=67.5K, while the pressure at the two ends of the channel is the same.

5.2 Maxwell accommodation coefficient for temperature driven flow

In the case of the temperature driven flow no exact match has been found between the
experimental and numerical results. On the contrary significant differences have been
observed, mainly at the lower values of 6 where the discrepancies are maximized. For the
lower values of ¢ the accommodation coefficient extracted from the experimental work [1]
has been applied. Since there were no good agreement the experimental and numerical mass
flow rates with their differences have been plotted for all available experimental data based on
the experimental values of the accommodation coefficient. Moreover, an investigation is
made using different values of the temperature difference than the reported experimental ones,
in an effort to find the source of the large discrepancies. Results are reported for four different
temperature differences (AT=45, 50, 55K as well as the experimental one AT=67.5K) because
the numerical mass flow rate was always higher than the experimental for the lower values of
J. Then, due to the observed significant differences three additional values of a¥ were tested,
namely a¥ = 0.1,0.5,0.9, in order to better understand the impact of the accommodation
coefficient on the mass flow rate and find the most suitable values. This work has been
performed for both experimental temperature differences since similar behavior was
presented. Extensive results for AT=67.5K and AT=58K are displayed in Appendices C and D
respectively.

Additional results are provided in Figures 5.1-5.10. Two figures are provided for each
of the five gases. As seen in Figure 5.1, for He, the error is smaller than 10% in the range of
6 € [6,12]. However, as o decreases the error increases up to 150%. The error in this area is
negligible at AT=50K and a¥f = 0.9 (Figure 5.2). To continue with Ne, it is seen in Figures
5.3 and 5.4 that the error is in the range of 0-20% for § € [4,18] and it becomes smaller for
6 € [8,18] , where the error is less than 10%. Concerning the lower values of ¢ the curve has
a similar behavior as previously with the error keeps increasing as ¢ decreases. A decrease in
the AC results to a smaller error in the range § € [6,18], while for a lower temperature
difference, AT=55K and a higher AC could have the same outcome but for a greater range,
d € [2,18]. The discrepancies in the case of N2, as shown in Figures 5.5 and 5.6 are filled
with oscillations. Though in the range of § € [9,17] the error is almost constant and equal to

20%, at AT=55K the error approaches zero. For the initial temperature difference the error is
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reduced if a more specular behavior of the gas is assumed, i.e. for a lower value of AC. In
Figures 5.7 and 5.8 for Avr, it is seen that the error values concentrate near 40% for § € [2,4].
In addition, a second area where the error is almost constant is observed in the range § €
[7,16], where the error is equal to 20%. The former range is improved for a temperature
difference between 45-50K while the latter one for AT=55K. At initial temperature difference
the error in the second area can be reduced for a reduction in the AC. Finally, in Figures 5.9
and 5.10 for Kr the error becomes constant for § € [4,6] with error near 50%, for § € [6,12]
with error near 37% and for § € [17,25] with error near 20%. The error approaches zero in
the first case at AT=45K, in the second at AT=50K and in the third at AT=55K. The error in
the third range also improves if the AC is decreased at the initial temperature difference.
Unfortunately, no overall concluding remarks can be made. It seems that the Maxwell
accommodation coefficient in the case of temperature driven flows depends on the gas

rarefaction as well as on the imposed temperature difference.
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Figure 5.1: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of He
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Figure 5.2: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}f and temperature differences in the case of He
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Figure 5.4: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}f and temperature differences in the case of Ne
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Figure 5.6: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}! and temperature differences in the case of N
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Figure 5.7: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of Ar
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Figure 5.8: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}! and temperature differences in the case of Ar
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Maxwell boundary conditions for various temperature differences in the case of Kr



Figure 5.10: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}! and temperature differences in the case of Kr

5.3 Cercignani-Lampis normal energy accommodation coefficient for

temperature driven flow

The tangential momentum accommodation coefficient a; of the CL boundary conditions
has already been specified in Section 4.3 for all five gases using the experimental data for the
pressure driven flow. These values remain the same and here the objective is to find the
values of the normal energy accommodation coefficient a, in order to obtain the best match
between the computed and measured mass flow rates using data regarding the temperature
driven flow. The same process as before is followed but now a: was kept constant and equal
with the estimated value for each gas (see Table 4.8), while an was altered trying to match the
mass flow rates. However, no good agreement is obtained even for various values of an,
including the limiting values a,, = 0.1 and 1. The computed mass flow rate was always
greater than the corresponding experimental one. Then the coefficient a; was altered, while
keeping a,, = 1 and even for the limiting values of a: the outcome was the same as before
(see Tables 5.1-5.5). It is noted that as the value of ¢ increases the difference between the
experimental and numerical values decreases. For Helium the differences are 4.5% and 4%
for a; =1.9,a,=1,6 =3.01 and a; = 0.792, a, = 0.1,5 = 7.9, respectively. Also, the
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effect of an on the mass flow rate changes as ¢ is altered. More specifically, for § < 3 an
increase of an results in a decrease of mass flow rate, while for § > 3 it has the opposite
effect.

To gain a better insight of the discrepancies between the experimental and numerical
values and in order to find their source, the error along with the mass flow rates for all the
experimental values was produced for three different values of an, while a; is equal to the
estimated for each gas (Table 4.8) and for three additional temperature differences. In all
cases the pressure remains constant and equal to the measured one. The additional
temperature differences were all chosen to be smaller than the experimental ones (AT=55, 50,
45K) due to the fact that the numerical mass flow rate was always higher than the
experimental and so a reduction of the former was necessary. In Figures 5.11-5.20 the
respective plots are presented for the case of AT=67.5K, while for the other tested
temperature difference the figures can be found in Appendix E.

The mass flow rate curves are quite similar to those with the Maxwell boundary
conditions and as consequence the same applies for the error curves. The best results are for
He not only due to the small deviations in error in the range of § € [2,12], but also because
the error is smaller than 10% for § € [4,11] at AT=67.5K. For § = 1 the error varies around
35%, but at AT=50K this value becomes 3%. Concerning Ne two areas have small deviations
in error. The first is for § € [3,7] with an error near 20% and the second one is for § €
[10,18] with an error near 10%. The former error gives best results at AT=55K, while for the
latter case a temperature difference slightly lower than 67.5K is the most suitable. Regarding
N2, again oscillations with small or large amplitudes are noted throughout the error curve. A
stabilization of the error is achieved for § € [5,8] and it gets close to zero at AT=50K. Also,
for § € [12,17] the error is almost constant and is improved at AT=55K. In the case of Ar the
error varies around 10-15% in the range of § € [12,17] and it is minimized at a temperature
difference a bit lower than 67.5K. Apart from this range the curve is filled with oscillations.
In the case of Kr, the error stabilizes for § € [13,23] at 30% and approaches zero at a
temperature difference between 50-55K. Similar to the Maxwell boundary conditions for the
temperature driven flow no general remarks valid in the whole range of gas rarefaction and

for any temperature difference can be drawn.
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Table 5.1: Mass flow rate comparison at AT=67.5K for various values of ¢, a: , a, for He

Helium
AT=67.5K
Experimental[1]: |  M=2.16E-12 | 5.07E-12 | 8.62E-12 | 1.24E-11
Numerical
6=0.507 1.38 3.01 7.9
a; a, M (kg/s) M [%] M(kgls) | M[%] | M(kagls) | M[%] | M (kg/s) | M [%]
0.792 0.1 3.73E-12 72.80 6.78E-12 33.76 9.62E-12 11.58 1.29E-11 4.08
0.792 1 3.42E-12 58.18 6.47E-12 27.55 9.6E-12 11.37 1.34E-11 7.81
1.9 1 3.01E-12 39.53 5.83E-12 15.03 9.01E-12 4.50 1.31E-11 5.84
1 1 3.4E-12 57.22 6.43E-12 26.80 9.56E-12 10.93 1.33E-11 7.65
0.1 1 4.42E-12 104.41 7.85E-12 54.87 1.07E-11 2451 1.39E-11 12.22
Table 5.2: Mass flow rate comparison at AT=67.5K for various values of ¢, a: , a, for Ne
Neon
AT=67.5K
Experimental[1]: |  M=5.15E-12 | 1.01E-11 | 1.27E-11 | 1.76E-11
Numerical
6=0.914 2.12 3.07 7.51
a; an M(kgls) | M[%] | M(kgls) | M[%] | M(kgls) | M[%] | M (kg/s) | M[%]
0.777 0.1 8.30E-12 61.18 1.32E-11 30.33 1.54E-11 21.60 2.03E-11 15.18
0.777 1 7.75E-12 50.42 1.29E-11 27.52 1.54E-11 21.51 2.10E-11 19.42
1.9 1 6.90E-12 33.92 1.18E-11 17.29 1.45E-11 14.07 2.06E-11 17.01
1 1 7.69E-12 49.30 1.28E-11 26.77 1.54E-11 20.94 2.10E-11 19.20
0.1 1 9.67E-12 87.74 1.49E-11 47.50 1.72E-11 35.47 2.19E-11 24.59
Table 5.3: Mass flow rate comparison at AT=67.5K for various values of 4, a; , a, for N
Nitrogen
AT=67.5K
Experimental[1]: | M=4.74E-12 | 6.46E-12 | 7.93E-12 | 8.61E-12
Numerical
6=1.99 3.69 5.46 7.6
a; an M(kg/s) | M[%] | M(kg/s) | M[%] | M(kg/s) | M[%] | M (kg/s) | M[%]
0.789 0.1 7.18E-12 51.44 9.33E-12 44.39 1.06E-11 33.26 1.15E-11 33.25
0.789 1 7.01E-12 47.80 9.40E-12 45.54 1.08E-11 36.53 1.19E-11 37.91
1.9 1 6.43E-12 35.61 8.92E-12 38.08 1.05E-11 32.12 1.16E-11 35.22
1 1 6.97E-12 47.03 9.37E-12 45.04 1.08E-11 36.20 1.19E-11 37.70
0.1 1 8.16E-12 72.25 1.03E-11 59.71 1.15E-11 45.22 1.24E-11 43.82
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Table 5.4: Mass flow rate comparison at AT=67.5K for various values of ¢, a:, a, for Ar

Argon
AT=67.5K
Experimental[1]: M=5.75E-12 ‘ 7.32E-12 8.01E-12 1.21E-11
Numerical
0=1.85 2.16 2.81 7.03
a; a, M (Kg/s) M [%] M (ka/s) M [%] M (kg/s) M [%] M (ka/s) M [%]
0.79 0.1 8.9E-12 5475 | 9.54E-12 | 30.34 | 1.07E-11 | 34.07 | 1.45E-11 | 19.72
0.79 1 8.63E-12 | 50.10 | 9.34E-12 | 27.66 | 1.07E-11 | 33.13 | 1.49E-11 | 23.52
1.9 1 7.88E-12 | 37.05 8.6E-12 17.48 | 9.95E-12 | 2424 | 146E-11 | 20.66
1 1 8.58E-12 | 49.29 9.3E-12 27.02 | 1.06E-11 | 3256 | 1.49E-11 | 23.30
0.1 1 1.02E-11 | 76.90 | 1.08E-11 | 47.88 1.2E-11 50.29 | 1.57E-11 | 29.54
Table 5.5: Mass flow rate comparison at AT=67.5K for various values of J, a; , an for Kr
Krypton
AT=67.5K
Experimental[1]: M=6.9E-12 ‘ 9.08E-12 9.99E-12 1.19E-11
Numerical
0=2.46 3.8 5.36 8.98
a; an M(kgls) | M[%] | M(kg/s) | M[%] | M(kg/s) | M[%] | M (Kg/s) | M[%]
0.814 0.1 1.12E-11 63.03 1.34E-11 47.35 1.50E-11 49.71 1.70E-11 42.46
0.814 1 1.11E-11 | 61.12 | 1.35E-11 | 4854 | 153E-11 | 52.84 | 1.75E-11 | 47.35
1.9 1 1.03E-11 49.53 1.28E-11 41.25 1.48E-11 47.86 1.73E-11 45.30
1 1 1.11E-11 | 60.52 | 1.35E-11 | 48.14 | 152E-11 | 5254 | 1.75E-11 | 47.21
0.1 1 1.27E-11 84.21 1.48E-11 62.70 1.63E-11 62.83 1.81E-11 52.50
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Figure 5.11: Computational and experimental mass flow rates with CL boundary conditions for
various values of a, and temperature differences in the case of He

Figure 5.12: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of He
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Figure 5.13: Computational and experimental mass flow rates with CL boundary conditions for
various values of a, and temperature differences in the case of Ne

Figure 5.14: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Ne
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Figure 5.15: Computational and experimental mass flow rates with CL boundary conditions for
various values of a, and temperature differences in the case of N>

Figure 5.16: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of N2
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Figure 5.17: Computational and experimental mass flow rates with CL boundary conditions for
various values of a, and temperature differences in the case of Ar

Figure 5.18: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Ar
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Figure 5.19: Computational and experimental mass flow rates with CL boundary conditions for
various values of a, and temperature differences in the case of Kr

Figure 5.20: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Kr
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Chapter 6 CONCLUDING REMARKS AND FUTURE WORK

Summing up, the objective of the thesis is to identify the ACs for pressure and
temperature driven flows through long capillaries utilizing experimental and numerical
results. The task was partially accomplished since a value for the ACs providing good
agreement between numerical and experimental mass flow rates was extracted only for the
pressure driven flow for both boundary conditions. As the results showed, for low values of ¢
a deviation of error smaller than 2% is achieved, while moving to the hydrodynamic regime
the effect of the AC gradually diminishes. Yet the lower tested value of ¢ in pressure driven
flow is greater than 10 (8,,; = 6) meaning that the flow takes place in the transition regime,
where the number of collisions between molecules is the same order to the collisions between
molecules and wall. It would be interesting to see if moving to the free molecular regime, i.e.
the flow starts to depend more on the collisions between molecules and wall, the AC could
still match the numerical mass flow rate with the respective experimental.

Concerning the temperature driven flow the results were not satisfying, as neither
Maxwell or Cercignani-Lampis BCs manage to provide a value for the ACs that matches the
numerical and experimental data. Some of the tested gases, Helium and Neon, offer better
results than the others, i.e. the error is constant and close to zero for a tested range, but as ¢
decreases (6 < 4) the error for all gases increases exponentially. This issue impedes the
extraction of a value for Helium and Neon. A temperature driven flow experiment is much
harder to be conducted since the mass flow rates are two order smaller than to the pressure
driven flow, a counterflow due to the pressure difference is arisen and the temperatures on the
apparatus must be monitored and controlled. As already mentioned in paragraph 2.5
discrepancies may be expected in temperatures since only the smaller in volume tank was
heated. A non-heated reservoir could result in an actual lower temperature difference which
would rationalize the lower measured mass flow rate compared to the numerical. Also,
another reason for the mismatch between the results may be ought to the measuring time. For
a long enough measuring time a counterflow due to pressure difference could have been

developed which would result in a lower net mass flow rate. A procedure that could help in
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narrowing down the reasons of mismatch and provide another dataset for future comparisons
is the thermomolecular pressure difference phenomenon, where the pressure and temperature
driven flows cancel each other resulting in a zero net mass flow rate. If the difference between
these two was small (order of 10%) then the hypothesis of a smaller temperature difference

could be neglected.
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APPENDICES

Appendix A. Linearization of Shakhov model

The non-linear model after the assumption of a steady flow is given by,

of of of P
Exﬁ‘l'fya_y,-l'fzaz,_ﬁ(fs_f)

To continue, in the non-linear model VDF is replaced by the perturbed distribution

¢ [f0(1+f:;p+po>] P<fs f0<1+hxp+xp%,>>=>

Xp .o 0h Xp ., 0h Xp o
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dh
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. _ X! _ yl _ & _ _ N—-Ny _ z' _ T-Ty _
Where,x_H, y—H, (—vo, Vo = ZRTo, p= Noxp H'’ T—TOxP—O,
Q2

— — = uZ ==
v = (0;0; vz)r q= (OPOP qz); U, = vap' 4z UOPOxp

Projections
Inserting projections (A.6) & (A.16) to eq. (A.5)

v = vi; T {, he™¥"dg, (A7)
G+ gy 22 = %f G [6 (260 + 256 (2 =3) ~0) ~¢]eac (a®)

For simplicity the integral is broken in four parts

+o0 +oo
1 2 YAY 2
— —{z — -z 2 4z = A9
Il \/E_L Zz 2{zvze d(z \/E_L (z € d(z vz ( )
+00
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1
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The deduced equation is

ap

2%
(xa‘l'(ywz 6[[1""[2 +I3] _14 =

do dop 2 ) ) 1
{xa_x-l'(y@_ 6|:UZ+EqZ(€x +Zy - 1) —(P] _E
Same steps are followed for the other projection
+00
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Y 5
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A T &[5 (260 + 1g e (2 —2) ~ 1) ~ &] e g, (A18)

Calculating the integrals,
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The deduced equation is

o A
ay

(xa_x'*‘(y =6[L+L,+5]—1,

oy

Macroscopic Velocity
The macroscopic velocity is given by

wy = fff £.fdf

The VDF is substituted by the perturbed distribution

u, =%fﬁ)fzfo<1+hxp+xp%l>df

Again, the integral is broken
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The bulk velocity becomes

+00
VoX =
u, =L+l + I =—" ff ¢, he=$"d (A.34)
E 09

The dimensionless macroscopic velocity v, is introduced

_(2
v, = o, == ﬂ.f {,he=¢"d¢ (A.35)
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1
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Heat Flux
The heat flux is given by
+00
m ~ ~
0 =5 ||| 6~ w - )raz (A37)

The VDF is substituted by the perturbed distribution
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N, r
0 = 5w [[[ G = v 62 + 4,7
(2mRT,)2 ot
, (A41)
+ (ZZ - vaP)z] exp[_(z] <1 + th + xp ZE) dz
Manipulating the integrals,
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= fff (Cz - vaP) [(xz + Zyz + (zz - 2szsz + vzszZ] exp(—(z)dz = (A'43)

- j j j (62482 +02) = 2000 — v,xp(G2 + 4,2 +8,7)
e (A.44)

+ 2(szsz2 exp(—(z)dz =
I, = —2m3ux, (A.45)

L= ] j @ — 0,20) [62 + 8,2 + G — vyxp)2]hxp exp(—¢DdT = (A46)
- f f Goxp — v,302) (G2 4 )% + 8% — 28,0,%p + 1,7%52) hexp(—D)dl = (A4T)
= j j f Toxp (G2 + 8% + 42 — 28,v,xp) hexp(—(2)dT = (A.48)

- f f G162 + 8,2+ 4,2)xp — 28,v,%02] h exp(—32)dT = (A49)

68



I = f f Ooxp (G2 + 8%+ 3%) hexp(—(?)dl (A.50)
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The heat flux becomes

mNO
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where,

m N, .. _m P, ve® P, vo®  Povoxp
5 3V Xp = 3. 3/2P = 3.3/2°P = " 3.2
(2nRT,)? ksTy(2RT))Z™ 2RT,(2RTZz " T

2.60)

Inserting the dimensionless heat flux,

R fff (¢ —2) hexp(~¢)az = (A6Y)
T2~
G= ffw [0+ (2 + 62 —2) o exp(-cDacuag, (A62)

For the temperature driven flow the same steps are followed for the other perturbed

distribution.
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Appendix B. Linearization of Cercignani-Lampis boundary conditions

Projection @
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And substitute in eq. (B.31)
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= Wa=a) exp(—=;°) f exp[—4,"*) (&, + ag,")3dg,” (B.35)
\/_

[ = Cz’g exp(—(éz) a®+¢,’ exp(—(éz);a(l —a?) (B.36)

The deduced equation is
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+ (1 —a )3 ’ ’ - 1 / /
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(B.39)

3a,(1—a;) (2—a,) . N /1 o
] Rt = —0OR(6 = =0)) 07 (250,008, ) 65,
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For the temperature driven flow the same procedure is followed.
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Appendix C. Results for the Maxwell mass flow rate graphs (AT=67.5K)
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Figure C.1: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of He

Figure C.2: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of af and temperature differences in the case of He
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Figure C.3: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of Ne

Figure C.4: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a and temperature differences in the case of Ne
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Figure C.5: Computational and experimental mass flow rates with Maxwell boundary conditions for

various temperature differences in the case of N>

Figure C.6: Computational and experimental mass flow rates with Maxwell boundary conditions for

various values of a) and temperature differences in the case of N,
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Figure C.7: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of Ar

Figure C.8: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of Ar
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Figure C.9: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of Kr

Figure C.10: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of Kr
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Appendix D. Results for the temperature driven flow with Maxwell
boundary conditions (AT=58K)

The results that occurred for the two temperature differences are quite similar for each

gas, e.g. Helium presents good results, but in Argon oscillations exist. More specific:

>

Helium: For the lower values of ¢ the error starts from a maximum value of 90% and
starts decreasing. In the range of § € [6,12] the error is almost constant and smaller
than 10%

Neon: Similarly, Neon’s error for the lower values of 6 starts from a maximum error
of 90% and decrease to 20% at § = 4. For § € [4,16] the error ranges between 15-
20%. In the case of AT=50K the error in this range is near zero.

Nitrogen: Presents oscillations in error through the graph with an average value
around 25%, if the lower values are neglected where the error starts from 60% and
decreases. For AT=45K the error gives the best results. For lower value of the
coefficient, near a¥ = 0.1, the error is greatly improved at AT=58K.

Argon: In the range of § € [5,15] the error varies between 0-15%. In the rest values a
greater error is presented or wider oscillations. The error in the range § € [5,15]
seems to improve at AT € [50,55]K. For a lower value of the coefficient, a}! ~ 0.5,
the error range approaches zero at AT=58K.

Krypton: The error curve has a constant decreasing course as value of & increases. A
stabilization in the value seems to appear in the range of § € [5,12] with an average

value of 30%. This value approaches zero at AT=45K.
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Figure D.1: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of He (AT=58K)

Figure D.2: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a) and temperature differences in the case of He

(AT=58K)
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Figure D.3: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of Ne (AT=58K)

Figure D.4: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of af and temperature differences in the case of Ne

(AT=58K)
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Figure D.5: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of N, (AT=58K)

Figure D.6: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a) and temperature differences in the case of N
(AT=58K)
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Figure D.7: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of Ar (AT=58K)

Figure D.8: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}f and temperature differences in the case of Ar

(AT=58K)
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Figure D.9: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various temperature differences in the case of Kr (AT=58K)

Figure D.10: Relative difference between experimental and computational mass flow rates with
Maxwell boundary conditions for various values of a}f and temperature differences in the case of Kr
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Mass flow rate graphs
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Figure D.11: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of He (AT=58K)

Figure D.12: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a)f and temperature differences in the case of He (AT=58K)
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Figure D.13: Computational and experimental mass flow rates with Maxwell boundary conditions for

various temperature differences in the case of Ne (AT=58K)

Figure D.14: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of Ne (AT=58K)
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Figure D.15: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of N2 (AT=58K)

Figure D.16: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of N, (AT=58K)
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Figure D.17: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of Ar (AT=58K)

Figure D.18: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of Ar (AT=58K)
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Figure D.19: Computational and experimental mass flow rates with Maxwell boundary conditions for
various temperature differences in the case of Kr (AT=58K)

Figure D.20: Computational and experimental mass flow rates with Maxwell boundary conditions for
various values of a) and temperature differences in the case of Kr (AT=58K)
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Appendix E. Results for the temperature driven flow with Cercignani-

Lampis boundary conditions (AT=58K)

Concerning the comparison for AT=58K, Helium’s curve has again the smallest
deviations but for a shorter range than before, § € [3,8]. The minimum error occurs at
AT=55K, which as before is close with the measured one. Neon presents a smooth curve in
the range of § € [6,12], with most suitable temperature difference AT=45K, where the error
ranges between -5% and 2% depending on an. Nitrogen’s results are improved compared to
the previous and in the range of § € [10,25] the curve is quite smooth. The minimum error is
achieved at AT=45K and regarding the value of coefficient an, the error is between -4% and
4%. Argon once more presents bad results with error curve filled with oscillations, while
Krypton’s curve is almost linear, but constantly diminishes from positive to negative values of
error. Only in the range of § € [7,13] the error remains steady and for AT=45K is close to

Zero.

Figure E.1: Computational and experimental mass flow rates with CL boundary conditions for various
values of a, and temperature differences in the case of He (AT=58K)
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Figure E.2: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of He (AT=58K)

Figure E.3: Computational and experimental mass flow rates with CL boundary conditions for various
values of a, and temperature differences in the case of Ne (AT=58K)
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Figure E.4: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Ne (AT=58K)

Figure E.5: Computational and experimental mass flow rates with CL boundary conditions for various
values of a, and temperature differences in the case of N, (AT=58K)
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Figure E.6: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of N, (AT=58K)

Figure E.7: Computational and experimental mass flow rates with CL boundary conditions for various
values of a, and temperature differences in the case of Ar (AT=58K)
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Figure E.8: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Ar (AT=58K)

Figure E.9: Computational and experimental mass flow rates with CL boundary conditions for various
values of a, and temperature differences in the case of Kr (AT=58K)
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Figure E.10: Relative difference between computational and experimental mass flow rates with CL
boundary conditions for various values of a, and temperature differences in the case of Kr (AT=58K)
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