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ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Μελέτη υπολογιστικής αξιοποίησης απομακρυσμένων

εικονικοποιημένων καρτών γραφικών.

Χρήστος Κωνσταντίνος Ματζώρος

Η εικονικοποίηση συστημάτων αξιοποιείται για τη μείωση των δαπανών και τη βελτίωση της

αποτελεσματικότητας των υπολογιστικών εγκαταστάσεων. Η ίδια ιδέα μπορεί να επεκταθεί και

για τις κάρτες γραφικών. Η εικονικοποίηση των GPUs είναι ένας σχετικά καινοτόμος τομέας
μελέτης και παραμένει μια απαιτητική προσπάθεια, καθώς οι πληροφορίες για τους drivers των
GPUs δεν είναι προσβάσιμες για τροποποίηση λόγω προστασίας της πνευματικής ιδιοκτησίας.
Η προσέγγιση του API Remoting, η οποία εφαρμόζεται σε υψηλότερο επίπεδο από τον driver,
ξεπερνά τον παραπάνω περιορισμό. Το rCUDA είναι ένα από τα πιο καθιερωμένα frameworks
εικονικοποίησης απομακρυσμένων καρτών γραφικών. Σε αυτή τη διπλωματική εργασία, διερευ-

νούμε την απόδοση και τους περιορισμούς του rCUDA σε σύγκριση με την εγγενή εκτέλεση με
CUDA, σε διαφορετικά σενάρια και εφαρμογές με ξεχωριστά χαρακτηριστικά. Κατασκευάσαμε
μια εφαρμογή πολλαπλασιασμού πινάκων που κάνει ταυτόχρονη χρήση πολλαπλών GPUs, για να
αναδείξουμε τα πλεονεκτήματα και τους περιορισμούς της ταυτόχρονης εκτέλεσης σε πολλαπλές

απομακρυσμένες συσκευές με την χρήση του rCUDA. Η προαναφερόμενη έρευνα αποκαλύπτει
την ανάγκη ανάπτυξης εργαλείων που θα μας επιτρέψουν να ελέγξουμε καλύτερα την απομακρυ-

σμένη εκτέλεση κλήσεων. Προτείνουμε, σχεδιάζουμε και υλοποιούμε ένα απλό middleware που
στοχεύει να παρέχει στον rCUDA client μία απόφαση σχετικά με την επιλογή απομακρυσμένου
rCUDA server και συσκευής την στιγμή της εκτέλεσης.Πολλά προγράμματα CUDA έχουν την
δυνατότητα να εκτελούνται ταυτόχρονα σε πολλές GPUs. Αυτό οδηγεί σε προβλήματα χρο-
νοπρογραμματισμού, επειδή πρέπει να λάβουμε υπόψη με ποιό τρόπο τα μέρη του κώδικα που

εκτελούνται σε διαφορετικές GPUs, αλληλεπιδρούν μεταξύ τους. Για να αποκτήσουμε γνώση
σχετικά με αυτήν την αλληλεπίδραση, πρέπει να λάβουμε πληροφορίες σχετικά με τις κλήσεις

CUDA. Δημιουργούμε ένα μηχανισμό που βασίζεται στην διαμεσολάβηση του middleware κατά
την εκτέλεση των CUDA Runtime API κλήσεων. Με αυτό τον μηχανισμό μπορούμε να αποθη-
κεύουμε τα δεδομένα των κλήσεων και να καθυστερήσουμε την πραγματική εκτέλεση τους. Η

ανάληση αυτών των δεδομένων θα μας επιτρέψει να εφαρμόσουμε περαιτέρω πολιτικές χρονοδρο-

μολόγησης που αφορούν την διαχείριση πόρων, ενώ επίσης πετυχαίνουμε μεγαλύτερη διαφάνεια

για τον χρήστη.
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iii

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Diploma Thesis

A Study on the Computational Exploitation of Remote
Virtualized Graphics Cards

by Christos Konstantinos Matzoros

Systems virtualization is used to reduce costs and improve the efficiency of computer sys-
tems. The same idea can be extended to virtualize GPUs. Virtualizing graphic processing
units is a relatively innovative area of study and remains a challenging endeavor as the im-
plementations of GPU drivers are not accessible for modification due to intellectual property
protection reasons, and the information about them is limited. The API remoting approach,
which runs at a level higher than the driver, overcomes the limitations mentioned above and
is now the most common approach to GPU virtualization. rCUDA is one of the most well
established remote GPU virtualization frameworks. In this Thesis, we investigate the perfor-
mance and limitations of rCUDA compared with native execution with CUDA on different
scenarios and distinct applications. We create a multi-GPU matrix multiplication CUDA ap-
plication to highlight the advantages and identify the limitations of executing on multiple
remote devices with rCUDA simultaneously. The aforementioned characterization reveals
the need to develop tools that will enable us to control better the remote execution of remote
CUDA Runtime API calls. We propose an implementation of a simple client/server mid-
dleware that aims to provide the rCUDA client with a decision considering the selection of
remote rCUDA server and device at that current time. Also, many CUDA programs are ca-
pable of running concurrently on multiple GPUs. This leads to scheduling problems because
we need to take into account the way parts of the code executed on different GPUs affect each
other. To gain insight on this interaction, we need to acquire information about the CUDA
calls. We create a mechanism to intercept the CUDA Runtime API calls and store the their
information, while delaying the actual execution of the calls. That mechanism will enable us
to implement further support resource management policies and greater transparency for
the user.
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Chapter 1

Introduction

In the recent decades, many-core specialized processors and accelerators, a popular
class of which are graphics processors (GPUs), enjoy increased adoption as an ap-
pealing approach to diminish the time-to-solution in domains as diverse as finance
and physics simulations, image and video processing, machine learning algorithms
and many others. The foremost difference between the CPU and GPU architecture is
that CPUs are intended to manage a wide variety of tasks, but are restrained in the
concurrency of tasks that can be running. A traditional CPU includes only a small
number of computing units. The design of traditional processors is optimized for
reducing the execution time of sequential code on every core, hence adding com-
plexity to each core at the cost of offering fewer cores in the processor.

GPUs was primarily intended to render high-resolution images and video quickly
by exploiting concurrency. The newer concept of GPGPU (General-Purpose Graph-
ics Processing Unit) computing refers to the relatively modern trend of re-purposing
GPUs for executing non-specialized computations in order to achieve higher per-
formance on parallel applications, beyond their traditional purpose of rendering
computer graphics. GPUs can perform parallel operations on multiple sets of data
very quickly. Composed of thousands of processor cores working concurrently,
GPUs facilitate massive parallelism where every core is focused on making efficient
calculations. GPUs have a massively parallel array of integer and floating-point
units and a dedicated, high-speed memory. This massively parallel architecture
is what provides the GPU with its high computing performance. GPUs are based
on a throughput-oriented model. This design empowers maximizing the execution
throughput of applications with a high level of data parallelism, which are expected
to be decomposable into a vast number of threads operating on several points in the
program data space. Therefore, applications that produce a high degree of compu-
tations per data point could achieve higher performance.

The rapid growth in virtualization technologies has resulted in a paradigm shift to-
wards on-demand computing, cloud computing, and Software as Service models.
Smaller institutions lease computing resources from cloud vendors like Google and
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Amazon, which use virtualization to facilitate efficient resource sharing among dis-
parate applications/users to maintain high overall system utilization. Virtualization
technologies are currently broadly deployed, as their application yields essential ad-
vantages such as resource sharing, isolation, and decreased management costs [19].
System virtualization allows several operating systems to run simultaneously on a
single physical machine, achieving effective sharing of system resources. A hyper-
visor virtualizes physical resources such as the CPU, memory, and I/O devices.

We can extend this idea to accelerators, by virtualizing a GPU. With GPU virtual-
ization, infrastructure operators can better manage the GPU accelerated virtualized
devices while maintaining existing workflows for users and lowering overall oper-
ational expenses. We can transform a physical GPU to create virtual GPUs that can
be shared across multiple virtual machines, providing a sense of isolation for every
host, and sharing one or more powerful physical GPUs. A fundamental fallacy is
often thinking that having more resources will help in getting better results, but this
is surprisingly not the case. The reality is that we have to find ways to maximize the
utilization of the resources that we already have.

Virtualizing GPUs is a relatively innovative area of study and remains a challenging
endeavor. A fundamental limitation to this has been the implementations of GPU
drivers, which are not accessible for modification due to intellectual property pro-
tection reasons. Furthermore, GPU architectures are not regulated, and GPU com-
panies have introduced architectures with immensely diverse levels of support for
virtualization. For these purposes, conventional virtualization techniques are not
suitable for virtualizing GPUs. GPU companies do not give the necessary informa-
tion considering the source code of their GPU drivers. Thus, it is challenging (using
reverse engineering), if not impossible, to virtualize GPUs at the driver level. For
that reason, the approach of API Remoting is increasingly used. This method aims
to virtualize GPUs at a higher level in the GPU execution stack. API Remoting uses
an RPC-like model to achieve higher-level GPU virtualization of the desirable API
calls execution. There are plenty of frameworks that support GPU API Remoting
like rCUDA [17], GVirtuS [12], and DS-CUDA [15]. Recent work discusses the per-
formance efficiency of rCUDA among them [18].

The fundamental advantage of employing a framework like rCUDA is that it allows
us to execute CUDA applications on nodes that do not have a GPU. With rCUDA,
we can access a GPU even if we do not have one physically connected to our system,
expanding our capabilities in computational power by running heterogeneous code
for a given application. Furthermore, we have access to more devices that are being
offered by a cluster, making more resources available for the user at a given time.
Hence, we can run more compute-intensive applications that require more resources
and computing units than the ones we have locally, which can be achieved only by
a more significant number of devices. We can also increase the potential problem
size that we have to solve by scaling it and split it to a higher number of remote
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GPUs (scale-out approach). Having more devices available in our arsenal, we could
combine our program executions in a way that provides better overall performance.
The user can choose which devices the application will be executed on, enjoying
more flexibility.

Even if we can utilize the rCUDA framework to execute CUDA applications on re-
mote devices, the entire operation is performed "blindly", without knowing how the
client interacts with the server. We do not know what and how much information
would be exchanged between the two and how it can affect the overall performance
of program execution. As soon as the user chooses the desirable remote device,
the whole program will be scheduled to be executed on the specific device. That
will happen even if the particular device is already full by other requests and even
if other devices are fully available. In that way, it may overload an already con-
gested with requests GPU. GPUs typically do not provide the information on how
long a GPU request occupies the GPU, which creates task accounting problems. For
that reason, GPU virtualization software faces several challenges in applying GPU
scheduling policies.

In our pursuit of finding solutions to the aforementioned problem, the following
questions need to be answered:

• What level of performance does the rCUDA framework achieve, relative to the
native CUDA execution?

• What are the characteristics and useful information of rCUDA executions, and
what are the limitations that impede us from achieving better results?

• What attributes of rCUDA make it useful to us?

• In what ways could we possibly control and automate the selection of the des-
tination devices of the remote executions with rCUDA?

• What mechanisms do we need in order to acquire the critical CUDA call infor-
mation in order to optimize CUDA job-to-node mapping?

• What mechanisms do we need to allow the implementation of further schedul-
ing policies?
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1.1 Contributions

The thesis is focusing on exploiting the relationship between the rCUDA clients and
servers and on identifying what conditions can cause possible latencies on our ap-
plication’s remote execution. With that information in mind, we create a mecha-
nism that will enable us to acquire and store CUDA calls information and to redirect
rCUDA calls. This mechanism can be used to implement further scheduling policies
for the remote execution of rCUDA calls to the desired remote device, based on that
information.

The contributions of our work are the following:

• We create several realistic scenarios concerning the use of the rCUDA frame-
work to test the applicability of it to different situations. We characterize the
rCUDA framework with several simple applications of the CUDA SDK sam-
ple programs. Those programs are executed both with CUDA and rCUDA, to
characterize the behavior of rCUDA and detect possible problems.

• After having completed rCUDA characterization, we implement a simple multi-
GPU CUDA application to show the potential advantage of rCUDA against the
use of CUDA applications that require the use of only local GPUs.

• We implement a middleware that supports the rCUDA framework and aims
to control the execution when using many rCUDA clients and many rCUDA
servers in our system, by redirecting whole CUDA applications to a selected
remote device in our system if needed.

• We design and implement a mechanism that allows us to intercept CUDA Run-
time API calls to control our program execution better and access all the in-
formation of the CUDA calls before the actual deployment and execution of
kernel invocations. By batching the API calls and exploiting inherent synchro-
nization points in the program, we can attain information that allows more
educated code-to-device mapping decisions in order to deliver a higher level
of utilization during remote execution. Moreover, our mechanisms provides
a platform on top of which sophisticated scheduling policies can be imple-
mented.
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1.2 Thesis structure

The rest of this Thesis is organized as follows:

Chapter 2 provides background on GPU architectures and on the popular NVIDIA
CUDA parallel computing platform. It also provides a quick review of GPU virtual-
ization and API remoting. We close this chapter by explaining the architecture and
various characteristics of the rCUDA framework.

Chapter 3 discusses the characterization of the main attributes of rCUDA, which
is achieved by various performance evaluations on different setups and scenarios
using rCUDA. We also present a Multi-GPU application to provide insight regarding
the main benefit of rCUDA, which is its scalability due to being able to use multiple
remote devices.

Chapter 4 introduces a middleware that supports the rCUDA framework by letting
a central authority/coordinator decide on which remote device the rCUDA client
will be deployed based on a specific algorithm. We present the different parts and
functionality of the middleware, and we experimentally evaluate it.

Chapter 5 fist discusses how we can intercept a CUDA Runtime API call. We con-
tinue by implementing a mechanism that gathers information about the individual
calls and delays the actual execution of them up to a specific synchronization point.
We adjust the implementation to support multi-GPU applications by either using
CUDA streams only, or with the use of POSIX threads as well.

Chapter 6 concludes with a summary of our main findings and presents directions
for future work.
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Chapter 2

Background

2.1 GPU Architecture

GPUs embrace a fundamentally different model for executing parallel applications
in comparison with conventional multi-core processors. GPUs are based on a through-
put oriented model and provide thousands of single cores and a high bandwidth
memory scheme. In that model, when some of the threads are anticipating for the
completion of memory accesses with high latency, different threads can be scheduled
by the hardware scheduler to hide this latency. This mechanism may increase the ex-
ecution time of individual threads, however it significantly improves total execution
throughput. On the contrary, conventional processors typically use complex control
logic and large cache memories in order to efficiently handle conditional branches,
pipeline stalls, and poor data locality [1]. The two models are depicted in Figure 2.1.

Modern GPUs can also manage complicated control flows, have adequately large
SRAM-based local memories, and implement some additional features of conven-
tional processors, maintaining the fundamental properties of allowing a higher de-
gree of thread-level parallelism and higher memory bandwidth.

FIGURE 2.1: General model of a conventional CPU versus a conven-
tional GPU [9]

Figure 2.2 depicts the architecture of a traditional heterogeneous system that in-
cludes a GPU. The GPU component is based on the basic architecture of NVIDIA
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GPUs but is not restricted to NVIDIA architectures, as modern GPUs assume a sim-
ilar high-level design. A GPU has numerous streaming multiprocessors (SMs), each
of which has 32 computing cores. Each SM has an L1 data cache, and a low la-
tency shared memory. Each core owns local registers, an integer arithmetic logic unit
(ALU), a floating point unit (FPU) and several “special function units” (SFUs) that
perform transcendental functions such as exponential or trigonometric calculations.
A GPU memory management unit (MMU) provides virtual address spaces for GPU
applications. A GPU memory reference by an application is resolved into a physical
address by the MMU using the application’s page table. Memory accesses from each
application, cannot refer to other applications’ address spaces. The host attaches the
discrete GPU utilizing the PCI Express (PCIe) interface. Data transfers between the
host memory and the GPU device memory can be initiated by the direct memory ac-
cess (DMA) engine. Heterogeneous systems require substantial programming effort
to control data handled by the CPU and the GPU.

FIGURE 2.2: Architecture of a traditional heterogeneous system that
includes a GPU

2.2 CUDA Programming Model

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming model created by Nvidia [23]. CUDA leverages the par-
allel compute engine in NVIDIA GPUs to solve complex computational problems
more efficiently. Using CUDA, we can access the GPU for computation, as has been
traditionally done on the CPU. The CUDA platform is available through CUDA-
accelerated libraries, compiler directives, application programming interfaces, and
extensions to industry-standard programming languages. In this thesis, we use
CUDA C/C++ programming. CUDA C is an extension of standard C with some
language additions to facilitate heterogeneous systems programming and straight-
forward APIs to handle devices, memory, and other tasks [9].

CUDA provides two API levels for controlling the GPU device and organizing threads.
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The CUDA Driver API and The CUDA Runtime API. The respective structure is de-
picted in Figure 2.3.

FIGURE 2.3: CUDA API structure [9]

The driver API is a lower level API and
is relatively arduous to program, but
it provides more control over how the
GPU device is used. The runtime API
is a higher-level API, implemented on
top of the driver API. Each function of
the runtime API is broken down into
basic operations assigned to the driver
API. The Runtime API is used more of-
ten by the programmers. There is no
visible performance difference between
runtime and driver APIs.

The CUDA programming model is a
heterogeneous model in which both the

CPU and GPU are used. In CUDA, the term host applies to the CPU and its memory,
while the device refers to the GPU and its memory. The code that runs on the host
can control both host and device memory. Also, it can launch kernels, which are
functions executed on the device (kernel invocations). Many GPU threads execute
these kernels in parallel. A kernel is defined using the “global” declaration speci-
fier. The number of CUDA threads that execute that kernel for a given kernel call
is specified using a the «<arg1,arg2,...»> execution configuration syntax along with
some optional arguments. Each thread that executes the kernel is assigned a differ-
ent thread ID accessible within the kernel through built-in variables. Threads are
arranged as a grid of thread blocks, as depicted in Figure 2.4. Different kernels can
have different grid/block configuration. Threads from the same block have access
to shared memory, and their execution can be synchronized [20].

FIGURE 2.4: Grid of thread blocks in CUDA
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The CUDA programming model implies a system comprised of a host and a device,
each with their distinct memory. Kernels operate out of device memory. Thus, the
CUDA runtime provides the appropriate API calls to allocate, deallocate, and copy
device memory, as well as transfer data between host and device memory [4].

There are numerous different types of memory that each CUDA application has ac-
cess to. For each different memory type, some trade-offs must be considered when
designing the CUDA kernel for a given algorithm. Global memory offers ample ca-
pacity, but the latency to access this memory type is high. Shared memory has low
access latency, yet the memory capacity is small compared to Global memory [16].

A typical sequence of operations for a CUDA C program is [6]:

1. Allocate host and device memory.

2. Initialize data to Host memory.

3. Transfer data from the host memory to the device memory.

4. Execute the kernel function (kernel invocation).

5. Transfer the results of the computation from the device to the host memory.

There are two main ways of attaining concurrency in CUDA simultaneously on mul-
tiple GPUs. The first one is by using multiple threads from the host environment,
each one of them invoking a CUDA kernel. The most common way to do that is
using POSIX threads (pthreads) or with the help of OpenMP. The second way is
by solely using the CUDA API and with the help of CUDA Streams. CUDA ap-
plications manage concurrency by executing asynchronous commands in streams,
sequences of commands that are executed in order. CUDA operations are placed
within a stream such as kernel launches and memory copies.

The host places work in the queue and continues on immediately without block-
ing. Operations within the same stream are ordered (FIFO) and cannot overlap.
Operations in different streams are unordered and can overlap while Operations in
different streams are unordered and can overlap. Unless otherwise specified all calls
are placed into a default stream, often referred to as Stream 0, is used. Operations in
Stream 0 cannot overlap other streams, thus we must create non-default streams to
achieve concurrency.[21] [11] [7].

To also achieve concurrent memory copies using CUDA Streams:

1. CUDA operations must be in non-default streams

2. We must use asynchronous API calls along with pinned (Page-Locked) allo-
cated memory on the host

3. Sufficient resources must be available

(a) cudaMemcpyAsyncs in different directions
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(b) Device resources (SMEM, registers, blocks, etc.)

2.3 Virtualization

Virtualization is a set of techniques that enable more efficient utilization of systems
by creating a virtual computing environment, as opposed to a physical environment.
The notion of virtualization can be implemented at different levels, as presented be-
low. The virtualization mechanism can be employed at the node level, leading to
popular and broadly used virtual machine frameworks. Examples of this technol-
ogy are solutions such as VMware [22], Xen [24], or KVM [10], where numerous
virtual machines can be concurrently executed in a real computer, sharing its re-
sources and, hence improving overall utilization. The concept of virtualization can
also be implemented at the device level, providing support to virtual machines. For
instance, network adapters for technologies as different as InfiniBand or Ethernet
offer virtualization features, which allow the network adapter to be replicated, at
the logic level, so that distinctive replicas of the network card are assigned to differ-
ent virtual machines. Similarly, graphics processing units (GPUs) have also recently
been equipped with some virtualization support. For instance, the GRID K2 GPU by
NVIDIA [13] can be shared among up to 32 virtual machines (per board), although
it is intended for desktop virtualization.

The novel remote GPU virtualization technique also mentioned as API Remoting,
implemented in frameworks like rCUDA, enables a set of GPUs to be simultane-
ously shared among several cluster nodes. In general, CUDA based virtualization
frameworks offer the same or similar API as the CUDA Runtime API. As GPU ven-
dors do not provide the source code of their GPU drivers, it is challenging to virtual-
ize GPUs at the driver level. The main concept is that GPUs are logically separated
from nodes, and an inventory of available GPUs is created. These GPUs can be ac-
cessed from any node in the cluster. Furthermore, a GPU may simultaneously serve
more applications at once. This sharing of GPUs increases overall GPU utilization
and reduces the total energy required to operate a computing facility, thus partially
addressing the significant energy and power consumption concerns of future data
centers and other computing facilities. Remote GPU virtualization also enables eas-
ier system upgrades, given that a cluster without GPUs can execute GPU-accelerated
applications just by attaching one or more GPU servers to the cluster.

Virtualizing GPUs has been considered a more difficult task than virtualizing I/O
devices, such as network interfaces or disks. Numerous reasons increase the com-
plexity to the sharing of GPU resources between VMs. Firstly, GPU vendors tend
to not reveal the source code and implementation details of their GPU drivers for
practical reasons. Such technical specifications are crucial for virtualizing GPUs at
the driver level. Secondly, even when driver implementations are revealed, GPU
vendors still introduce significant advances with every new generation of GPUs to
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enhance performance. As a consequence, specifications unveiled by reverse engi-
neering soon become useless. Besides, some OS vendors provide proprietary GPU
drivers for virtualization, but these exclusive drivers cannot be used across all OSs.
In summary, standard interfaces for accessing GPUs do not exist, which are needed
for virtualizing these devices.

The API remoting approach overcomes the limitations mentioned above and is now
the most common approach to GPU virtualization. The premise of API remoting is
to provide a guest OS with a wrapper library with the equivalent API as the origi-
nal GPU library. In most cases, a "split-device" scheme is used, where the frontend
drivers are inhabited in the guest OS, and the backend drivers are inhabited in the
host OS. The wrapper library of the guest OS intercepts a GPU call from the ap-
plication and delivers it to the frontend driver. The frontend wrapper serializes and
batches the GPU call parameters along with other essential information, into a trans-
ferable message and sends it to the backend in the host OS via shared memory or
through the network. In the host OS, the backend driver parses the information and
converts it into the original GPU call. The call handler executes the required action
on the GPU through the GPU driver. The call handler delivers the result back to the
application via the reverse path. This technique basically implements the logic of an
RPC (remote procedure call) with the wrapper libraries being the stubs for both the
client and the server side.

The main advantage of this approach is that it can support applications using GPUs
without recompilation in most cases. The wrapper library can be dynamically linked
to existing applications at runtime. API remoting provides much versatility to the
way GPUs are utilized in a cluster, because this mechanism allows them to sepa-
rately schedule, for a given application, the use of CPUs and GPUs [8]. The applica-
tion can be assigned CPU cores in some nodes of the cluster while using the GPUs in
a different set of nodes. Moreover, GPUs can be concurrently shared among distinct
applications.

2.4 rCUDA Framework

rCUDA (or remote CUDA) is one of the commonly used API Remoting frameworks.
It is a GPU virtualization framework that enables GPU acceleration by the use of
remote CUDA-compatible GPUs. By leveraging the GPU virtualization approach,
rCUDA achieves the disassociation of CUDA accelerators from the nodes where they
are installed. This middleware supports up to version 9.0 of CUDA, implements the
basic CUDA API, and provides support for the libraries included within CUDA,
such as cuFFT.

rCUDA focuses on remote GPU-based acceleration, which offloads parts of CUDA
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computations onto GPUs located in remote hosts. rCUDA claims that previous vir-
tualization research based on emulating local devices is not suitable for HPC ap-
plications, because of unacceptable virtualization overhead. Instead of device em-
ulation, rCUDA implements virtual CUDA-compatible devices by adopting remote
GPU-based acceleration without the hypervisor layer.

This framework is organized following a client-server model. The applications con-
tact the client middleware, requesting GPGPU services. More concretely, rCUDA
provides a CUDA API wrapper library to the client-side. The rCUDA client offers to
the application the same interface as the NVIDIA CUDA Runtime and Driver APIs.
Upon receiving a call request from the application, the client middleware processes
it and forwards the corresponding requests to the rCUDA server. In turn, the server
evaluates the requests and performs the expected processing by accessing the phys-
ical GPU to execute the corresponding request. Once the GPU has finished with
the requested call’s execution, the results are collected by the rCUDA server, which
packs and sends them back to the client middleware. There, it eventually forwards
the results to the application. The middleware’s underlying architecture is depicted
in Figure 2.5 [17].

To optimize client/server data exchange, rCUDA employs a customized application-
level communication protocol and supports several underlying network technolo-
gies and interconnects. This is achieved by using a set of runtime-loadable, network-
specific communication modules. Currently, three modules are available, one in-
tended for TCP/IP compatible networks, another one designed explicitly for Infini-
Band, which uses the RDMA feature of this network, and a third one intended for
RoCE networks. The latter also leverages RDMA features [17].

The client-side of the rCUDA middleware is a library of wrappers that replaces
the CUDA Toolkit dynamic libraries. Thus, CUDA applications that use rCUDA
are not aware of accessing an external device. Also, they do not need any source
code (or even binary) modifications. The rCUDA client is distributed in a set of
files: libcuda.so.m.n, libcudart.so.x.y , libcublas.so.x.y, libcut.so.x.y, libcusparse.so.x.y,
libcurand.so.x.y and libcudnn.so.x.y. These shared libraries should be placed in those
machines accessing remote GPGPU services. The user must set the LD_LIBRARY_PATH
environment variable to point to the location of these files (with priority over the
original CUDA libraries). Furthermore, as the nvcc compiler links with CUDA static
libraries by default, compilation flags enforcing the use of dynamic libraries are nec-
essary to enable the use of the rCUDA software. The rCUDA server-side is config-
ured as a daemon (rCUDAd) that runs in those nodes offering GPGPU acceleration
services.
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FIGURE 2.5: Basic architecture of rCUDA execution stack [17]
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Chapter 3

rCUDA Framework:
Experimentation and Performance
Characterization

3.1 Overview

In this section, we test various scenarios considering the use of rCUDA, and we
evaluate multiple characteristics of the rCUDA framework.

• We begin by outlining the characteristics of the devices that will be used for
our experiments.

• We test the rCUDA framework against the CUDA SDK sample programs to
recognize the framework’s possible limitations considering the use of the CUDA
API calls.

• Afterward, we test the functionality of rCUDA against different client/server
setups and configurations.

• We expose a potential bug considering the utilization of the rCUDA frame-
work.

Thenceforth, we characterize rCUDA performance. We again use the CUDA SDK
sample programs which contain many distinctive CUDA calls and attain deviant
behaviors in terms of computations and data transfers.

• We start by quantifying the cost of using the rCUDA framework versus using
a GPU directly (overhead of virtualization)

• We discuss the overhead of using the rCUDA framework with the client and
server being on the same machine versus being on different machines (over-
head of communication).

• We proceeded by examining the impact of the framework on the bandwidth
for both pageable and pinned memory.
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• We consider scenarios in which we make use of the same GPU simultaneously
by many clients and try to reverse-engineer the scheduling performed by the
rCUDA server.

• We evaluate the advantages of rCUDA on programs capable of using more
than one GPUs concurrently, by creating a simple multi-GPU program that
performs a tilled matrix multiplication by splitting the computation to the
available devices. We start by explaining the algorithm and its CUDA im-
plementation. We continue by evaluating the performance using the rCUDA
framework versus a local native execution, and we quantify the advantage
of using rCUDA for multi-GPU applications. We conclude by revealing an
rCUDA bug considering the use of CUDA streams and discuss how we can
bypass it.

3.2 GPU characteristics and setups for the experiments

We employed four different heterogeneous computing nodes/machines that host
one to four GPU devices each. All the nodes can communicate over the same net-
work using TCP/IP. Table 3.1 summarizes the main characteristics of each one of
these nodes.

System Code Name Artemis Venus Mars 1 Mars 2
Number Of

Available (same) Devices
2 2 4 4

Models of Each Device Tesla K80 Tesla K80 GeForce GTX 690 GeForce GTX 690
CUDA Driver Version 10.2 10.2 10.2 10.1

CUDA Runtime Version 9.0 9.0 9.0 9.0
CUDA Capability 3.7 3.7 3.0 3.0

Number of Multiprocessors 13 13 8 8
CUDA Cores 2496 2496 1536 1536

Max Number of Threads
per Multiprocessor

2048 2048 2048 2048

Global Memory (MB) 11441 11441 2000 2000
Max Dimension Size

per Block
(1024,1024,64) (1024,1024,64) (1024,1024,64) (1024,1024,64)

Memory Clock Rate (Mhz) 2505 2505 3004 3004

TABLE 3.1: GPU Characteristics

3.3 Testing the capabilities of the rCUDA framework

3.3.1 Functionality testing of the rCUDA framework

The rCUDA middleware aspires to imitate the functionality and behavior of the en-
tire CUDA Runtime API [17]. There are, however, some calls that are not supported
yet. The best way to identify unsupported API calls is to execute programs with dis-
tinct behaviors, using all calls in the CUDA API. We, therefore, experimented with
most of the NVIDIA CUDA Toolkit program samples, which contain a wide variety
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of different calls. Appendix A summarizes the resulting behavior for the executions
with rCUDA. The "Ok" indicates that everything works fine for the specific appli-
cation and that it is executed as expected, giving the same results that we got by
executing directly with CUDA. On the other side, if we deal with unexpected be-
havior in any program execution, we display the error code or the reason that the
particular code does not work correctly.

From the results of the samples execution, we can confirm what is being reported
in the documentation, namely that the graphics interoperability is not implemented
yet. The following modules are not supported:

• OpenGL extensions (API for rendering 2D and 3D vector graphics)

• Direct3D 9, Direct3D 10, Direct3D 11 (also for supporting 3D rendering)

• VDPAU (Video Decode and Presentation API for Unix)

• Graphics (CUDA calls for graphics interoperability)

Also, as we can see the cudaMallocManaged() call is not supported so Unified Mem-
ory Management is not supported as well.

3.3.2 rCUDA Prerequisites and troubleshooting

In order to be able to use the rCUDA framework, we first have to satisfy two re-
quirements. CUDA must be available to the rCUDA server running on the server
node and specifically CUDA version 8.0 or CUDA version 9.0. Also, communica-
tions must be properly working between the nodes where the rCUDA clients and
rCUDA server are employed, either for TCP/IP based communications (Ethernet)
or for RDMA-based communications (InfiniBand or RoCE). There are simple steps
to verify that everything works as expected. Firstly, we can use CUDA to execute
the deviceQuery and bandwidthTest samples included in the CUDA distribution on
the nodes where we intend to run the rCUDA servers. To check if communications
are working properly between the client and server nodes (in case of RDMA-based
communications) use the ib_write_bw and ib_read_bw tests included in the Mel-
lanox OFED.

After the first run with rCUDA we may experience unexpected behavior, with two
possible error codes appearing:

Error 1: “mlock error: Cannot allocate memory”

UNIX/Linux operating systems have the ability to limit the amount of various sys-
tem resources available to a user process. These limitations include how many files
a process can have open, how large of a file the user can create, and how much mem-
ory can be used by the different components of the process such as the stack, data
and text segments. ulimit is the command used to accomplish this. For the ulimits
to persists across reboots we need to set the ulimit values in the configuration file
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/etc/security/limits.conf. In order to bypass the aforementioned error the rCUDA
documentation suggests the following steps.

We must raise the locked memory size without limit. To set unlimited memlock we
should add the following lines at the end of file /etc/security/limits.conf in both
client and server nodes:

* hard memlock unlimited

* soft memlock unlimited

After rebooting the system, we can run the following command to verify that the
limits have been changed:

$ ulimit -a | grep "max locked memory"

We should get an output similar to max locked memory (kbytes, -l) unlimited.

Error 2: “function cuGetExportTable not supported”

This error is caused because the application was compiled to use static libraries. The
rCUDA framework needs applications to be compiled to use CUDA as a dynamic
library. Therefore, a compilation using CUDA dynamic libraries is needed to allow
the use of the rCUDA software. This requirement can be satisfied in two different
ways:

1. If nvcc compiler is used, the argument -cudart=shared is needed.

2. If gcc/++ compiler is used, the -lcudart argument is needed.

3.3.3 Cross Execution

To further validate the functionality of the rCUDA framework by testing some more
complicated scenarios, we employed two nodes, artemis and venus, enabling the
device 0 (default) for each of them (Device 1.0 and Device 2.0). The two nodes are
connected to the same network using a TCP/IP connection. We enable one rCUDA
server and one rCUDA client on both of them. We made a successful cross-execution
of the matrixMul CUDA sample problem, where the rCUDA client of artemis was
using the device of venus and vice versa, concurrently, as depicted in Figure 3.1.
By cross-execution, we refer to the scenario where node X uses the device of node
Y, and node Y uses the device of node X. That experiment proves that we can use
multiple rCUDA clients and rCUDA servers simultaneously and complete multiple
cross executions of CUDA programs without interfering with one another.
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FIGURE 3.1: Cross-execution scenario using rCUDA

3.3.4 Simultaneous execution on the same rCUDA server

As a next step, we simultaneously executed the same program on the same device
from multiple rCUDA clients started on different nodes. We enable device 0 (de-
fault) and initiate an rCUDA server on artemis. In this setup, we use six clients from
three different nodes (venus, mars1 and mars2) with every one of them executing
the matrixMul CUDA SDK sample simultaneously, as depicted in Figure 3.2. Ev-
ery request was completed as expected, without any problem on either the server’s
or the clients’ side. This experiment verifies that the rCUDA server can simulta-
neously handle multiple requests from different clients and create a point-to-point
connection between one rCUDA client and an rCUDA server thread that satisfies
the demands from the specific rCUDA client.

To reverse-engineer the potential scheduling applied on the server’s side when exe-
cuting simultaneously kernels from multiple clients on the same device, we created
the following experiment: We set up on the same node (artemis), an rCUDA server
that uses one device, and four rCUDA clients that run the same program at ap-
proximately the same time. The order of kernels’ execution on the server side was
different and unexpected, with every repetition of the same experiment. In the sec-
ond phase, we set up four threads that run directly with CUDA, the same program
on the same GPU. The behavior was very similar to the first experiment that uses
the rCUDA framework.

The conclusion was that the rCUDA framework does not perform yet any kind of
scheduling in the rCUDA server but rather follows a First Come First Served (FCFS)
approach. When requests from several clients arrive, they are managed by inde-
pendent processes (forked from rCUDA server) to guarantee isolation among the
several clients. Since they are separate processes, the scenario is the same as when
we run several CUDA applications using the same device.
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FIGURE 3.2: Simultaneous use of the same device by many clients
using rCUDA

3.3.5 Multi-GPU scalability

To take full advantage of the rCUDA framework, we need to execute scalable appli-
cations that use more than one GPUs and therefore achieve better performance as we
increase the number of available devices. Figure 3.3 depicts a scenario where we use
the simpleMultiGPU CUDA SDK sample, which splits a vector addition problem
into sub-problems deployed on the available devices. After all the separate com-
putations have completed on the different devices, the host merges the intermediate
results to create the final result. For the first experiment, we used two remote servers
(on artemis and venus), enabling only device 0 on each one of them, and we executed
the program with the rCUDA client being on a different node. For the second ex-
periment, we enabled one more device for each of the servers, making four devices
available in total. During the second scenario, we achieved almost half the execution
time in comparison to the first experiment as the problem was scaled even further
with double the initial devices. This scenario shows the advantage of the rCUDA
framework, which is able to use multiple devices to scale a multi-GPU program and
achieve better overall performance.



Chapter 3. rCUDA Framework: Experimentation and Performance
Characterization

20

FIGURE 3.3: Multi-GPU program scaling with rCUDA

3.4 Performance Evaluation of rCUDA

3.4.1 Overhead of Virtualization

To evaluate the overhead of virtualization caused by employing the rCUDA frame-
work, we set up an experiment where we compare the average execution time of
the NVIDIA CUDA SDK sample programs using the rCUDA framework versus us-
ing CUDA directly to a GPU, to execute the same programs. In the first case, we
employed the rCUDA server and rCUDA client on the same machine (artemis) to
ensure that there is no network overhead involved. We then repeated the same ex-
ecutions using CUDA on the same device and node (artemis). Appendix B reports
the average execution time on each of the two scenarios and overhead (%) of average
execution time using the rCUDA framework over the simple native execution with
CUDA.

From the outcome of the measurements, we can conclude that for all the programs of
the CUDA samples, the average execution time is increased when we use the rCUDA
framework, which is a very reasonable behavior considering that the rCUDA mid-
dleware appends an additional layer to the execution stack.

An unexpected result is that the overhead (even though the client and the server
are at the same machine) is substantially higher for some applications. These ap-
plications mainly stress data transfers and make use of the CUDA streams (sim-
pleStreams, simpleMultiCopy). We enlist a summary of the measurements in Table
3.2.
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CUDA SDK Samples
Average execution time

(seconds) executing
directly with CUDA

Average execution time
(seconds) executing
locally with rCUDA

Percentage increase
of average execution
time of using rCUDA
over directly CUDA

matrixMul 0.330 0.365 10.606
simpleStreams 2.787 57.856 1975.923

vectorAdd 12.198 12.208 0.081
simpleMultiCopy 0.502 2.514 400.796
convolutionFFT2D 4.287 4.557 6.298

convolutionSeparable 2.083 2.173 4.320
binomialOptions 31.427 31.503 0.241

BlackScholes 1.334 1.441 8.020

TABLE 3.2: Summary of Appendix B measuring the overhead of vir-
tualization of rCUDA for the sample programs from NVIDIA

3.4.2 Local vs Remote Execution Evaluation

To evaluate the overhead of applying the rCUDA framework remotely, we designed
an experiment where we measure the cost of using a remote GPU from an rCUDA
server that is being placed on a different node from the one that the rCUDA client
is located. In the first setup, we measure the average execution time of the NVIDIA
CUDA SDK sample programs using the rCUDA framework with the rCUDA client
located on the same machine (artemis) as the rCUDA server. In the second experi-
ment we executed the same programs again, but this time we deployed the rCUDA
client and rCUDA client on different nodes (artemis and venus respectively). Ap-
pendix C summarizes the average execution time on each of the two scenarios and
the overhead (%) of using a remote rCUDA server over a local rCUDA server.

The objective of that experiment was to identify how much the network stack can
affect performance. The results suggest that on all the different programs, the av-
erage execution time is increased when using the rCUDA server on a remote node
versus using an rCUDA server on a local machine. This behavior was expected,
as the network overhead (TCP/IP stack) is now a significant part of the execution
flow. Once again, we can conclude from the percentage increase of average remote
execution time that the programs that achieve lower performance are the ones that
undergo more data transfers, as more data transfers are needed to be routed over
the network. We enlist a summary of the measurements in Table 3.3.
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CUDA SDK Samples
Average execution time

(seconds) executing
locally with rCUDA

Average execution time
(seconds) executing

remotely with rCUDA

Percentage increase
of average execution
time of using rCUDA

locally over using
rCUDA remotely

matrixMul 0.365 0.367 0.547
simpleStreams 57.856 428.251 640.201

vectorAdd 12.208 12.236 0.229
simpleMultiCopy 2.514 8.043 219.928
convolutionFFT2D 4.557 4.973 9.128

convolutionSeparable 2.173 2.540 16.889
binomialOptions 31.503 31.549 0.146

BlackScholes 1.441 1.912 32.685

TABLE 3.3: Summary of Appendix C measuring the network over-
head by executing remotely with rCUDA for the sample programs

from NVIDIA

3.4.3 Bandwidth evaluation

To measure the effect of rCUDA framework on memory bandwidth, we set up an
experiment where we use the bandwidthTest program from CUDA SDK sample
programs. We compare the host to device copy bandwidth for pageable and page-
locked (pinned) memory, and the device to host copy bandwidth for pageable and
page-locked memory (pinned).

Allocated host memory is by default pageable (it is mapped as pages), which means
that it can be swapped out by other processes or the OS. Virtual memory offers the
illusion of much more main memory than is physically available. The GPU cannot
safely access data in pageable host memory because it has no control over when the
host operating system may choose to transfer that data physically. When moving
data from pageable host memory to device memory, the CUDA driver initially allo-
cates temporary page-locked or pinned host memory, copies the source host data to
pinned memory, and then transfers the data from pinned memory to device mem-
ory, as illustrated on the left side of Figure 3.4. The CUDA runtime allows us to
allocate and use pinned memory directly. In general, Pinned memory is more ex-
pensive to allocate and deallocate than pageable memory, but it provides higher
transfer throughput for large data transfers [9].
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FIGURE 3.4: Pageable memory data transfer versus pinned memory
data transfer illustration

For this experiment, we used device 0 (default) at the server side on artemis. In
Setup 1, we measure the bandwidth in the case of executing directly with CUDA.
n Setup 2, we run the bandwidthTest program using the rCUDA framework with
the rCUDA client and the rCUDA server being on the same node (artemis). n Setup
3, we again use the rCUDA framework, with the rCUDA client on a different com-
puter (venus) from the rCUDA server (artemis). For both the pinned and pageable
memory, we transfer the default bytes (33554432 bytes) using quick mode (which
performs a quick measurement of the bandwidth) [2].

For the pinned memory we execute for the host to device (–htod) and device to host
(–dtoh) bandwidth:

./bandwidthTest –memory=pinned –mode=quick –htod

./bandwidthTest –memory=pinned –mode=quick –dtoh

As we can see in Figures 3.5 and 3.6, the bandwidth is decreased from Setup 1 to
Setup 2. This is caused due to the overhead of virtualization and the internal func-
tionality of rCUDA. We have a decrease in bandwidth from Setup 2 to Setup 3 due
to the network stack overhead. We present a summary of the measurements in Table
3.4.

Average host to device memory transfers
bandwidth (MB/sec) using pinned memory

Average device to host memory transfers
bandwidth (MB/sec) using pinned memory

Setup 1 5789.30 6440.65
Setup 2 2802.84 186.14
Setup 3 114.88 75.27

TABLE 3.4: Summary of pinned memory bandwidth measurements
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FIGURE 3.5: Average host to device Bandwidth for different setups
using pinned memory

FIGURE 3.6: Average device to host Bandwidth for different setups
using pinned memory

Interestingly, in Figure 3.7 we can see a significant difference for the second setup.
When we use the rCUDA framework, the Device to Host bandwidth reduction is in
the order of 97.11%, significantly worse than the respective penalty in Host to Device
bandwidth, which equals 51.58%. This behavior can only be explained by the way
in which the framework is designed internally.
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FIGURE 3.7: Comparison between average host to device bandwidth
and device to host Bandwidth using pinned memory

For the pageable memory we execute for the host to device(–htod) and device to
host(–dtoh) bandwidth:

./bandwidthTest –memory=pageable –mode=quick –htod

./bandwidthTest –memory=pageable –mode=quick –dtoh

Figures 3.8 and 3.9 show that the bandwidth is reduced from Setup 1 to Setup 2 due
to the overhead of virtualization. We have also a bandwidth reduction from Setup 2
to Setup 3 due to the network stack overhead.

FIGURE 3.8: Average host to device Bandwidth for different setups
using pageable memory
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FIGURE 3.9: Average device to host Bandwidth for different setups
using pageable memory

Figure 3.10 depicts that when we use the rCUDA framework, the reduction in Host
to Device bandwidth which equals 97.45%, is significantly worse than the reduction
in Device to Host bandwidth, which equals 54.31%. That is exacttly the reverse be-
havior compared to the pinned memory experiment. There is no obvious reason for
this behavior and again it can only be explained by the way in which the framework
is functioning internally.

FIGURE 3.10: Comparison between average host to device band-
width and device to host Bandwidth using pageable memory
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3.5 Implementation of a multi-GPU matrix multiplication ap-
plication in CUDA

We can take advantage of the rCUDA framework by using scalable applications that
take less execution time by combining multiple GPUs. rCUDA can use all the GPUs
of the cluster, instead of using the devices that are directly connected to a node which
is the case when using CUDA natively. In some cases, rCUDA can achieve better re-
sults than executing only with CUDA. To expose and test the scalability that rCUDA
can offer, we created a program that performs a matrix-matrix multiplication on
multiple GPUs.

3.5.1 Algorithm Explanation

Before analyzing the multi-GPU implementation, it is helpful to recap how a matrix-
matrix multiplication is computed. If we have two matrices, matrix A and matrix B,
A is an n · k matrix (n rows and m columns), and B is a k ·m matrix. The result of the
multiplication A · B is an n · m matrix which we call C. To calculate the cell c11 (on
the first row and first column) of matrix C, we have to calculate the inner product
of the elements of row 1 in matrix A, with the elements of column 1 in matrix B, as
depicted in Figure 3.11.

FIGURE 3.11: Illustration of matrix-matrix multiplication algorithm’s
inputs and output
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So, in order to compute the cell c11 (where n=4 and m=4 for matrix C), we proceed
with the following equation:

c11 = a11 · b11 + a12 · b21 + a13 · b31 + a14 · b41

3.5.2 Multi-GPU implementation in CUDA

There is a steadily growing interest in using multiple GPUs concurrently to over-
come the memory limitations of the single device and to further reduce execution
times. The idea is to divide the problem further into individual computations that
will be conducted simultaneously on different GPUs. The calculation of matrix-
matrix multiplication will be divided into independent computations that will pro-
duce different parts of the final matrix, which will eventually be merged into the
final matrix.

Our implementation divides the matrices A and B into four parts, allowing us to
perform eight distinct computations in eight different GPUs. More precisely, to per-
form these computations, the host must first create the appropriate sub-matrices for
the matrices A (A1, A2, A3, A4) and B (B1, B2, B3, B4) as shown in Figure 3.12. The
ratio r ∈ [0,1] selects the right number of rows and columns for the submatrices and
is given by the user. For example, to divide the matrices into four submatrices with
equal dimensions, the ratio should be equal to r = 0.5. After the creation of the sub-
matrices, the computation is mapped to the different devices available. Figure 3.13
shows how the computation will be split. The equations for the resulting submatri-
ces will be the following:

• C1 = A1 · B1 + A2 · B3

• C2 = A1 · B2 + A2 · B4

• C3 = A3 · B1 + A4 · B3

• C4 = A3 · B2 + A4 · B4
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FIGURE 3.12: Division of matrices to distinct sub-matrices based on
ratio r

FIGURE 3.13: Flow of computations and data transfers for the algo-
rithm running with CUDA

To implement this functionality in CUDA, we used the command cudaSetDevice(
int device) [3], which specifies the device on which the active host thread executes
the device code. We also use the concept of CUDA Streams to invoke the kernels
simultaneously on many streams rather than the default. In that way, we can achieve
concurrency.

The simplified CUDA code in Appendix D showcases the use of streams to achieve
the desirable concurrency. The main functions that are being used are the cudaS-
treamCreateWithFlags() which creates an asynchronous stream, cudaMalloc() which
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allocates device memory, cudaMemcpyAsync() which copies data from the host to
device memory and back, and cudaStreamSynchronize() which waits for a specific
stream’s tasks to complete. Listing 3.1 outlines the kernel function.

__global__ void matrixMult iply ( double ∗ A, double ∗ B , double ∗ C, i n t
numARows, i n t numAColumns , i n t numBRows, i n t numBColumns , i n t
numCColumns) {
i n t Row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
i n t Col = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f ( (Row < numARows) && ( Col < numBColumns) ) {
f l o a t Cvalue = 0 ;
f o r ( i n t k = 0 ; k < numAColumns ; ++k )

Cvalue += A[Row∗numAColumns + k ] ∗ B [ k ∗ numBColumns + Col ] ;
C[Row∗numCColumns + Col ] = Cvalue ;

}
}

LISTING 3.1: Matrix-Matrix Multiplication kernel implementation in
CUDA

3.5.3 Evaluation using CUDA

As a next step, we executed this application and evaluated its performance on many
GPUs. To assess the scalability of our application, we run it with 1,2 and 4 devices on
mars1. Figure 3.14 shows the computation performance of the application executed
with CUDA natively for different matrix sizes. As “Matrix Size” we assume to be
the number of elements of the final matrix (C), that is equal to the size of the starting
matrices (both A and B).

The results indicate a definite improvement in average execution time when we use
more GPUs. For example, for problem size 6000x6000, the speedup in average ex-
ecution time when we use 4 Devices is 3.804 times the one we get with only one
Device. From Figure 3.14 it is evident that when we use more GPUs, the amount
of problem size that can support is getting bigger since we have more available re-
sources (such as memory). For example when we use 1 GPU we can only support
problem size up to 6000x6000 ( equals to 36 · 106 elements on the final matrix), while
when we use 4 GPUs we can reach a problem size of 12000x12000 (equals to 144 · 106

elements on the final matrix).
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FIGURE 3.14: Computation performance of the multi-GPU matrix
multiplication application using CUDA (natively)

3.5.4 Evaluation using rCUDA

To evaluate the performance that we achieve with the use of rCUDA, we performed
the following experiment. We first created an rCUDA server (on mars1) with up to
4 devices at its disposal and one rCUDA client to execute our application. We tested
our program’s performance for 1,2 and 4 devices, respectively, and got the program’s
average computation time over different problem sizes. Again more remote devices
allow us to compute bigger problem sizes. Figure 3.15 summarizes the execution
flow when using rCUDA. Here we use all four available devices, and we see that
the eight different sub-computations are distributed and executed simultaneously.
When the computation is completed for the two corresponding submatrices such as
the submatrices A1 · B1 and A2 · B2, we add these to create the submatrix C1, a piece
of the final matrix C. Finally, we merge the submatrices to form the final matrix C.

In Figure 3.16, it is apparent that the computation time decreases as we increase the
available devices in our system. For e problem size equal to 6000x6000 the speedup
in average execution time when we use 4 devices is 3.610 times the one we get with
only one device.
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FIGURE 3.15: Flow of computations and data transfers for the algo-
rithm running with rCUDA

FIGURE 3.16: Computation performance of the multi-GPU matrix
multiplication application using rCUDA (locally)

3.5.5 Comparison between CUDA and rCUDA performance

We continued by comparing the performance of using CUDA directly versus the
scenario where we use the rCUDA framework for the aforementioned application.
Based on the results that are depicted in Table 3.5 we can conclude that when we
use rCUDA, the execution time is increased than the one we got by using CUDA
natively. More precisely, by executing the program with only one available device,
the execution time may increase. However, the speedup of executing with rCUDA is
similar to the speedup of direct execution with CUDA, especially when we evaluate
weak scaling (increase the problem size together with the number of GPUs). This
is due to the fact that when scaling problem size, the part of execution time asso-
ciated with computation scales faster than the part of the execution time related to
data transfers. Similar behavior is observed when we use four devices for the same
application, as depicted in Table 3.6. When we use rCUDA, the execution time is
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higher than the one we got by using CUDA natively. The execution time of using 4
GPUs are also smaller than using 1 GPU, as expected.

Finally, we examine the case where the use of rCUDA would provide higher perfor-
mance. At first, we assume that we can execute the application directly with CUDA,
considering that we have only one device available locally on our system. With
the help of rCUDA, we can use four devices being offered by a cluster of devices.
The measurements depicted in Table 3.7 suggest that when we use rCUDA with
four available devices, the execution time is lower than when using only one device
natively after a specific problem input size(approximately over 2500x2500), which
gives us a ratio of executing with rCUDA versus executing natively with CUDA
which is higher than one. For example the ratio is equals 1.281 when we use a prob-
lem size equal to 3000x3000. That ratio continues to increase further as we increase
the problem input size. This is caused because when we use more devices, the de-
lays due to the rCUDA data transfers do not affect us as much. In this scenario, we
can scale our problem and split the computation into many devices, thus achieving
concurrency that we could not acquire in any other way. Figure 3.16 displays the
difference between the two setups.

2000x2000 3000x3000 4000x4000 5000x5000 6000x6000
Executed natively on 1 GPU 0.378 1.253 3.013 5.904 10.128
Executed with rCUDA on 1 GPU 0.426 1.362 3.170 6.175 10.520

Ratio of executing with rCUDA
executing natively with CUDA 0.888 0.919 0.950 0.956 0.962

TABLE 3.5: Comparison between native execution using one device
and rCUDA execution using one device

2000x2000 3000x3000 4000x4000 5000x5000 6000x6000
Executed natively on 4 GPU 0.161 0.388 0.828 1.577 2.662
Executed with rCUDA on 4 GPU 0.496 0.977 1.770 2.913 4.404

Ratio of executing with rCUDA
executing natively with CUDA 0.324 0.397 0.467 0.541 0.604

TABLE 3.6: Comparison between native execution using four devices
versus rCUDA execution using four devices

2000x2000 3000x3000 4000x4000 5000x5000 6000x6000
Executed natively on 1 GPU 0.378 1.253 3.013 5.904 10.128
Executed with rCUDA on 4 GPUs 0.496 0.977 1.770 2.913 4.404
Time reduction (%) -30.931 21.986 41.259 50.652 56.510

Ratio of executing with rCUDA
executing natively with CUDA 0.763 1.281 1.702 2.026 2.299

TABLE 3.7: Comparison between native execution with one device
versus rCUDA execution using four devices
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FIGURE 3.17: Comparison on computational performance of the
multi-GPU matrix multiplication application executed natively with

CUDA on 1 GPU versus executed with rCUDA on 4 GPUs

3.5.6 Unexpected behavior of rCUDA streams implementation

Throughout the implementation of the matrix multiplication application, we en-
countered an unexpected behavior considering the use of CUDA streams when we
used rCUDA versus when we used the native execution with CUDA, which worked
as expected.

The expected behavior, when we only use CUDA natively, is everything to be exe-
cuted asynchronously. Therefore, all the data transfers and kernel invocations should
be executed asynchronously, leading to the simultaneous execution of the kernel
code among the available devices. The single point of synchronization in our code
is when we use the call cudaStreamSynchronize (streamId) for every stream at the
end of the program, where we wait for all the data transfers between the GPU and
the host to be completed for each stream. When we execute the program, nothing
blocks until this point, as expected.

On the contrary, when we use the rCUDA framework, the entire program blocks on
cudaMemcpyAsync (DeviceToHost) without any reason, producing a serialized ex-
ecution of our program. This is caused because we use that particular call between
several kernel invocations for every stream. The symptom / result is an unexpected
delay for the cudaMemcpyAsync (DeviceToHost) requests and blocking of each of
them. This is an unexpected behavior that is not documented into any official docu-
ment of rCUDA. We reported the specific bug to the rCUDA team.

To bypass this problem, we make sure to execute all the cudaMemcpyAsync (Device-
ToHost) calls at the end of our program, after all the kernel invocations and before
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the cudaStreamSynchronize (streamId) calls. In that way, we achieve the desired
parallelism among the multiple devices.
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Chapter 4

Implementation of middleware for
supporting rCUDA execution

4.1 General middleware design

A weakness of the rCUDA framework is that the rCUDA client (or the system ad-
ministrator) needs to be aware of the architecture of the system and needs to explic-
itly specify which GPU each application is going to execute on. At the same time,
rCUDA does not provide the clients with information on the status of remote servers
/ devices to allow them make educated decisions. We discuss an implementation of
a simple middleware (in C++) that is employed to support rCUDA executions and
aims to solve the aforementioned problem at execution time.

We propose a general architecture, as depicted in Figure 4.1. The system consists of
a set of clients, a collection of servers, and a single broker/coordinator. The middle-
ware client is employed at the same machine as the rCUDA client. he same applies
for the middlewars server, which is employed at the same machines that the rCUDA
servers are employed. The coordinator may be placed on any machine. The coor-
dinator maintains the global view of the system state. It is responsible for commu-
nicating with all the servers to collect information for their individual state and for
taking code-to-device mapping decisions on behalf of the clients. Each client com-
municates directly with the coordinator based on a simple request-reply protocol.
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FIGURE 4.1: Basic middleware design

4.2 Middleware client

At the middleware client side, we start by executing the client program, which cre-
ates a new Linux Shell. The client’s design is depicted in Figure 4.2. The users have
different options and can use specific commands to proceed with the desired ac-
tion. The environment waits for the user to enter a command. The user’s two main
options are detailed below:

- $ native /absolute/path/to/CUDA/program
This command will execute the CUDA program specified by the user locally on the
same node, directly with CUDA if there is any available device.

- $ remote /absolute/path/to/CUDA/program
With this command, the middleware will first communicate with the coordinator
with a request message asking for information about the address and identifier
of a remote device. The coordinator will eventually respond with a reply mes-
sage containing information about the chosen device. With that information, the
client process creates a new process that executes a bash script. This script is re-
sponsible to set the required environment variables for rCUDA execution such as
LD_LIBRARY_PATH=../rCUDA/lib and RCUDA_DEVICE_X=server_ip_address: de-
viceId. The same bash script will initiate the CUDA program will be executed using
the rCUDA framework. The communication protocol that is used here between the
client and the coordinator is an at-least-once delivery protocol, which means that for
each request handed to the mechanism, multiple attempts are made at delivering
it, such that at least one succeeds. In more casual terms, messages may be dupli-
cated but not lost. That requires maintaining state at the sending end and having an
acknowledgment mechanism at the receiving end.
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FIGURE 4.2: Middleware client design

Some other useful command options are the following:

- [ H ] or [ h ]

It provides a simple explanation for the user on how to execute a simple program as
well as some command examples for both native and remote execution.

- [ C ] or [ c ]

It gives the user the ability to change the coordinator’s address information (IP ad-
dress and port).

4.3 Middleware server

On the server side, the middleware server’s primary responsibility is to provide
the coordinator with useful information about the status of the available devices at
the particular machine. The functionality is depicted in Figure 4.3. To launch our
server, we must first initiate the main program by giving a specific IP address and
port on which a thread is waiting to receive request messages from the coordinator.
Simultaneously, another thread collects information about the available devices of
the system by executing a bash script periodically every second.

This script uses the nvidia-smi [14] command-line utility tool, which monitors and
manages NVIDIA devices such as Tesla, Quadro, GRID, and GeForce. It is installed
along with the CUDA toolkit and provides us with meaningful insights, such as the
"Memory-Usage", which reports the memory allocation on GPU out of total memory
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and the "GPU-Util", which indicates the percent of GPU utilization (percent of the
time during which a specific device was occupied executing CUDA kernels).

When we assemble this information from all the server’s devices, we can identify the
device with the minimum utilization at that specific time. This information is stored
in a global structure. When a new request is received, coming from the coordinator,
the receiving thread fetches the data from the global structure and responds to the
coordinator by sending back a reply message, which includes information about the
device with the lowest utilization. The coordinator can then use this information to
drive application-to-device allocation decisions.

FIGURE 4.3: Middleware server design

4.4 Middleware coordinator

The coordinator’s primary responsibility is to decide, on behalf of the clients, the
server and device client rCUDA code should be executed on. To do that, it uses in-
formation continuously collected from rCUDA server nodes. Its main functionality
design is depicted in Figure 4.4.

At first, we create a thread that anticipates request messages from clients. These
messages ask the coordinator to specify a target device for rCUDA code execution,
based on the scheduling algorithm the coordinator applies and its overview of sys-
tem status. When the algorithm finds a suitable device, it sends a reply message
back to the client, which contains information about the IP address and port of the
chosen server and the device id of the selected device. In the current implemen-
tation, the coordinator assigns devices to the different clients in a round-robin way,
without considering the information we have from the servers. However, the coordi-
nator is an excellent platform for implementing adaptive scheduling policies based
on runtime information.
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Secondly, the coordinator can collect valuable information from the servers. This
functionality is optional, based on the needs of the scheduling algorithm. The schedul-
ing algorithm may apply this information to reach more sophisticated scheduling
decisions, according to system status. If we want to collect and use the data from the
servers, we spawn a second thread. This thread has the responsibility of periodically
asking all the servers for information considering their local devices. In our imple-
mentation, the coordinator sends a request message to all the servers. Each server
responds with a reply message that contains the device with the lowest utilization
on that server at a particular time1.

If one or more servers are not available or if there is any connection error, then the co-
ordinator does not consider the respective servers and devices as part of the system.
Moreover, it notifies the administrator so that corrective action can be taken.

FIGURE 4.4: Middleware coordinator design

4.5 Middleware evaluation

We executed an experimental scenario in which we quantify the performance of mul-
tiple executions of a CUDA application using two different setups. In the first ex-
periment, we use rCUDA to execute all instances on the same remote device. On
the second one, we use multiple remote devices, and we let the middleware select
one of the available remote devices2. In both cases, we execute the FDT3D CUDA

1It is straightforward to adapt the server- and the coordinator-part of the middleware to collect
additional information.

2As we discussed earlier, at this point the scheduling algorithm is a naive, non-adaptive round-
robin implementation.
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SDK sample program. This program applies a finite differences time domain pro-
gression stencil on a 3D surface. We concurrently run this program ten times, and
we measure the overall execution time on both experiments.

For the first experiment, we use the rCUDA framework, as depicted in Figure 4.5.
We set an rCUDA server at artemis, and we execute the FDTD3D program ten times
from mars1, employing ten rCUDA clients at the same time. The execution is taking
place concurrently, and the only scheduling performed is being done by the CUDA
driver internally on the rCUDA server’s device. The total execution time is 86.71
seconds.

FIGURE 4.5: Experiment setup using directly rCUDA

For the second experiment, we use the middleware, as depicted in Figure 4.6. We
set two rCUDA servers, on artemis and venus (one on each node), each of them
controlling two GPU devices. We also deploy the coordinator on artemis. We de-
ploy the middleware client on mars1, and after entering the necessary information
about the coordinator, we execute the FDTD3D program ten times, using the "re-
mote" keyword. All the executions start at the same time as we spawn a new thread
for every execution to avoid blocking. For every remote program execution, the
client requests the coordinator for a device address and id, based on the protocol
discussed earlier. In our case, the coordinator responds to the clients with a device
id using the round-robin algorithm. The result is for the multiple executions to be
distributed on all the available devices rather than being executed on a single GPU.
Thus, this approach achieves a better overall performance as the needs for resources
are distributed among the different devices, and we also achieve concurrency as we
use more than one GPUs at the same time. The total execution time equals to 67.31
seconds, reaching a speedup of 1.29 over the total execution time observed during
the first experiment.
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FIGURE 4.6: Experiment setup using the middleware
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Chapter 5

Implementation of a CUDA
Runtime API handling mechanism

5.1 Overview

The only approach to execute a CUDA program using the rCUDA framework, even
when using the middleware introduced in the previous chapter, is by running the
whole program remotely as a monolithic entity. The only approach to execute a
CUDA program using the rCUDA framework, even when using the middleware
introduced in the previous chapter, is by running the whole program remotely as
a monolithic entity. Many CUDA programs are capable of running concurrently
on multiple GPUs, which introduces inner interactions to take place between the
executions of the individual calls on these GPUs. This perplexes the scheduling
problem because one needs to take into account the way parts of the code executed
on different GPUs affect each other. In order to gain insight into this interaction, we
need to at least have information considering the memory footprint of kernels, the
thread geometries, and the degree of data sharing among kernels. This information
is only available if someone intercepts CUDA calls. For that reason, we introduce a
mechanism to intercept the calls and collect this information so that it can be used to
drive scheduling policies. In this chapter, we will cover:

• How to intercept and modify a simple function call of the standard C library.

• How to intercept and modify CUDA Runtime API calls.

• The design and implementation of a mechanism to delay, store and process
lazily the actual execution of CUDA API calls.

• The design and implementation of a mechanism to execute a batch of CUDA
Runtime API calls on a selected device.

• The extensions of these mechanisms to support multi-GPU programs that use
CUDA streams and asynchronous calls.
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• The extensions to support multithreaded programs that run CUDA from sev-
eral POSIX threads.

• The possible limitations of the aforementioned mechanisms and extensions.

5.2 CUDA Runtime API calls interception

On the following section we provide a review on how to intercept API calls to a
dynamic library. We begin by showing how to intercept standard C library functions
by providing an example. Then, we present how we can expand this concept to
intercept CUDA Runtime API calls.

5.2.1 Call interception in C/C++

As an example, we use a simple C program that opens a socket. The program creates
a socket without binding it to an address, as displayed in Listing 5.1. We want to
intercept the socket() function to modify the behavior of the call. We start with the
shared library socket_hook.so that will override the socket() function, as presented
in Listing 5.2.

LD_PRELOAD is an optional environment variable, containing one or more paths
to shared libraries or shared objects that the loader will load before any other shared
library, including the C runtime library (libc.so). This is called preloading a li-
brary. With the use of LD_PRELOAD, we can easily have our socket_hook.so library
loaded before the standard C libraries. The first occurrence of the socket() function
is in the shared library that we have already created. This enables library functions
to be intercepted and replaced (overwritten.) As a result, program behavior can be
modified in a non-invasive manner. Up to this point, we discussed how to override
a standard socket() call with our function from our shared library. In the next step,
we will also call the original socket() function from our shared library. This will en-
able us to easily add additional functionality to existing standard C libraries without
modifying or rewriting the original libraries. Additionally, when implemented cor-
rectly, function call interception is completely transparent to user software that calls
the original function.

To achieve that, we will use the dlsym function ( void* dlsym( void* handle, const
char* name )). The dlsym() function lets a process obtain the address of the symbol
specified by name defined in a shared object. The dlsym is available only to dy-
namically linked processes. If the handle is equal to RTLD_NEXT, dlsym() searches
the objects loaded after the object calling dlsym(). We use the dlsym function with
RTLD_NEXT (from <dlfcn.h>) to find the next occurrence of the socket() function
and store the location in o_socket. Hence, in our example, o_socket can from then
on be used as a pointer to call the original socket() function. _GNU_SOURCE has to
be specified to be able to use RTLD_NEXT [5].
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We compile as:

$ gcc -Wall -fPIC -shared socket_hook.c -o socket_hook.so -ldl

and using our new shared library gives us the following:

LD_PRELOAD=./socket_hook.so ./simple_client
socket() call have been intercepted
Socket successfully created

# include < s t d i o . h>
# include <sys/socket . h>

i n t main ( i n t argc , char ∗argv [ ] ) {
i n t sockfd ;
// Create socket and check f o r e r r o r
i f ( ( sockfd = socket ( AF_INET , SOCK_STREAM, 0) ) < 0) {

perror ( " Error : Could not c r e a t e socket\n " ) ;
re turn 1 ;

} e l s e {
p r i n t f ( " Socket s u c c e s s f u l l y crea ted\n " ) ;

}
re turn 0 ;

}

LISTING 5.1: A simple client that opens a socket in C

# def ine _GNU_SOURCE
# include < s t d i o . h>
# include <sys/socket . h>
# include <dl fcn . h>

i n t (∗ o_socket ) ( in t , in t , i n t ) ; // return_type i n t , type_name
o_socket , arguments ( in t , in t , i n t )

i n t socket ( i n t domain , i n t type , i n t protoco l ) {
// f ind the next occurrence of the socket ( ) func t ion
o_socket = dlsym (RTLD_NEXT, " socket " ) ;

i f ( o_socket == NULL) {
p r i n t f ( " Could not f ind next socket ( ) funct ion occurrence " ) ;
re turn −1;

}
p r i n t f ( " socket ( ) c a l l have been i n t e r c e p t e d \n " ) ;

// return the r e s u l t of the c a l l to the o r i g i n a l C socket ( ) func t ion
return o_socket ( domain , type , pro toco l ) ;

}

LISTING 5.2: A simple socket interception using a dynamic library
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5.2.2 Call interception of CUDA Runtime API

The next step is to apply the aforementioned call interception technique to intercept
the CUDA Runtime API calls. In the same way as above, we begin by creating a
shared library "lib_cuda_intercept.so" that will override every supported function
call of the API. Listing 5.3 shows the interception of cudaMalloc(void ** devPtr,
size_t size). In the same way as previously, we extract a function pointer to the
original function call. Here we use typedef to alias types such as “cudaMalloc_t” by
using the following syntax:

When the call is intercepted, we can modify its behavior. We can access and store the
arguments of each call and control its execution. We can either execute the original
function, trigger other functions to be executed, or even skip the execution of the
original function alltogether.

typedef cudaError_t (∗ cudaMalloc_t ) ( void ∗∗ devPtr , s i z e _ t s i z e ) ;

s t a t i c cudaMalloc_t native_cudaMalloc = NULL;

extern "C" cudaError_t cudaMalloc ( void ∗∗ devPtr , s i z e _ t s i z e ) {

//Here we can modify i t s behavior

// return ( cudaSuccess ) I f we want nothing to happen

// Cal l the a c t u a l cudaMalloc ( ) funct ion
i f ( native_cudaMalloc == NULL) {

native_cudaMalloc = ( cudaMalloc_t ) dlsym (RTLD_NEXT, " cudaMalloc " ) ;
}

a s s e r t ( native_cudaMalloc != NULL) ;
re turn native_cudaMalloc ( devPtr , s i z e ) ;

}

LISTING 5.3: cudaMalloc call interception code in C++

To test the functionality of our library, we used a simple “toy program” in CUDA
that performs a vector addition of 10 element arrays. The CUDA Runtime API calls
that are used by the program are three calls to cudaMalloc(), three calls to cudaMem-
cpy(), one kernel invocation, and three calls to cudaFree().

When we launch a kernel with the <<<>>> notation the compiler injects three
different calls to the binary. Firstly, it runs the cudaConfigureCall(), which specifies
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the grid and block dimensions for the kernel call. The second call is cudaSetupArgu-
ments(arg, size, offset) and is executed N times, where N is the number of arguments
passed to the kernel function. It pushes size bytes of the argument pointed to by arg
at offset bytes from the start of the parameter passing area, which starts at offset 0.

FIGURE 5.1: Execution results after the interception of a simple vector
addition CUDA program

The arguments are stored in the top of the execution stack. The third call is cud-
aLaunch(entry), which launches the function entry on the device. The parameter
entry must be a character string naming a function that can execute on the device.
The parameter specified by entry must be declared as a __global__ function. In Fig-
ure 5.1, we can see the execution and results of the interception of this program.
Every time we intercept a call, we print “ » call_name “ to the screen, and we exe-
cute the call without any further modification.

5.3 Handling of CUDA Runtime API calls interception

In this section we will discuss how we use the aforementioned function call intercep-
tion mechanisms to intercept CUDA calls, analyze their arguments to extract useful
information for scheduling policies, potentially rewrite the arguments, and lazily ex-
ecute those CUDA function calls later. Figure 5.2 depicts the general lazy execution
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mechanism supported by our implementation. Whenever we intercept a CUDA call,
we store information about the type of that call and the value of its arguments. The
data structure used to store this information is discussed in Section 5.3.1. We return
a success code to the user program, without executing the real function without any
delay. A more sophisticated way to produce return values, especially for functions
returning pointers, is discussed in Section 5.3.1. The program does not know when
the actual execution of the call is completed and considers that it has been executed
successfully, even if it its execution has actually been delayed.

We execute lazily postponed CUDA functions when we intercept special CUDA calls
that have synchronization point semantics. To achieve execution, we have to restore
the information about the actual functions and change a flag that indicates that the
functions must be executed and not recorded and postponed.

Another feature that we use is the ‘__attribute__(constructor)’ in C++. This construc-
tor runs when a shared library is loaded during program startup. Its destructor runs
when the shared library is unloaded, typically on program exit. As presented in List-
ing 5.4, we use this constructor to create a thread that begins to run when we first
load the dynamic library. This thread can be used for accounting and scheduling
purposes as it has a global view. The thread is terminated on program execution.

void ∗ func ( void ∗data ) {
while ( 1 ) {

// Do something use fu l
}
p thread_ex i t (NULL) ;

}

_ _ a t t r i b u t e _ _ ( ( c o n s t r u c t o r ) ) s t a t i c void i n i t _ f u n c t o n ( void ) {
pthread_t handle ;

i f ( ! p thread_create (&handle , NULL, func , NULL) ) {
// I n i t thread c r e a t e s u c c e s s f u l l y
i f ( ! pthread_detach ( handle ) ) {

// I n i t thread detached s u c c e s s f u l l y
}

}
re turn ;

}

LISTING 5.4: Creating a thread from the constructor when the shared
library is loaded
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FIGURE 5.2: General mechanism of storing call information and delay
real execution of the call

5.3.1 Data Structure used for storing CUDA call information

In order to analyze the information from CUDA API calls, we need a data structure
where we store information for each of the calls that get intercepted. Figure 5.3
depicts the central data structure for the calls, which is a vector of structures in C++.
Each element of the vector represents a CUDA call. Each member includes some
type of information about the particular CUDA call.

FIGURE 5.3: Data structure to store CUDA calls information

More specifically, seq_id designates the sequence number of this call that is called
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from a particular thread (thread_id). We obtain the identifier of the thread of which
we intercepted a call, with pthread_self() function. The member call_id is an identi-
fier with distinct value for every type of call and is used to recognize which is the
actual CUDA call name/type later. The member executed is an integer value, which
shows if a particular call has been truly executed already or not. The num_of_args
member is equal to the number of arguments of the particular call. The member
byte_array is an array where we store the actual values of arguments as bytes (or
characters). This type of structure allows us to store and acquire the arguments of
the calls flexibly and quickly, regardless of their type.

Every time we intercept a CUDA call, we create a new instance of call_info structure,
we store the appropriate information in the members of the structure based on the
information about the actual call, and we push the element to the vector of calls. If
we later need to access the information about the particular call, we can access it in
constant time if we know its position in the vector.

5.3.2 Lazy, batch execution of delayed CUDA calls at synchronization
points

The objective of collecting the arguments of all the CUDA calls is to acquire knowl-
edge on the required resources prior to the actual execution of the calls. This a priori
knowledge is a prerequisite for the design of sophisticated CUDA code to (local or
remote) GPU mapping policies. To achieve that, we must delay the actual execution
of the calls until a predefined synchronization point, in order to gather enough infor-
mation before executing the calls. On the synchronization points, however, we are
obliged to execute the previous calls, in order to maintain consistency with program-
mer view up to this point. When we eventually intercept a synchronization call, the
scheduling policy in effect can analyze the information collected from previously in-
tercepted calls to select a (local or remote) GPU device based on that information.
After selecting a device, our framework injects a cudaSetDevice() function call to se-
lect the new device, and executes the set of calls that have been delayed up to the
synchronization point. Figure 5.4 depicts the concept described above, where we
store the information of the calls and we return a success code without executing the
code, until we reach a synchronization point. The user is not aware of this process.
The CUDA calls that carry synchronization semantics are the following:

• cudaLaunch()

• cudaDeviceSynchronize()

• cudaStreamSynchronize()
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FIGURE 5.4: Concept of synchronization points/calls

There is one main obstacle that we had to overcome to implement this idea. In
CUDA, some function calls pass their arguments by reference as a pointer and ex-
pect a value to be stored as a value in this pointer. The problem is that when the user
executes this kind of calls, it assumes that after the completion of the call, the content
of the pointer is an actual value. That value may be used later on in other calls. A
typical CUDA call with that behavior is the cudaMalloc (void** devPtr, size_t size)
function. The user expects *devPtr to point to the newly allocated device memory
area after the call. The value of *devPtr will be then used by functions such cud-
aMemcpy(void *Ptr, . . . ). When we delay the actual execution, we have to return a
value for this pointer, even though we have not actually executed the call because
we have not met a synchronization point yet.

To solve this problem, we introduce another layer of virtualization. Our framework
returns values to these pointers. The user has only knowledge of these virtual ad-
dresses over the actual virttual addresses of the GPU, and continue to use them in
other function calls. This concept is depicted in Figure 5.5. When we first intercept
a CUDA call such as cudaMalloc, we create a unique handle returned to devPtr as
the “pointer” to the newly allocated area. That value actually indicates a position on
a mapping array that stores 64-bit addresses, called virtual_addr. This array will be
used later, when the memory allocation call is actually executed, to maintain the as-
sociation between the handle and the actual virtual address. The programmer treats
these handles as actual virtual addresses (the whole process is transparent to the
programmer). When execution reaches a synchronization point and the cudaMalloc
function is eventually executed, we acquire the actual virtual address on the device,
and we match the handle with the actual address.
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We use the handle as an index to the position of the virtual address in the mapping
array.

The following CUDA calls that have handle value as a virtual address argument
will be rewritten with the actual virtual address at the time of execution. The search
for the handle to virtual address mapping is performed in constant time as we use
the handle as an index in the mapping array. When we meet a function such as the
cudaFree(void* devPtr) that frees memory on the device using a handle, we both
free the memory area starting from the corresponding virtual address and we also
erase the handle to virtual address mapping in the table.

FIGURE 5.5: Use of virtual address handles

5.3.3 Support for multi-GPU CUDA applications with CUDA streams

We can apply the aforementioned mechanism to support the scheduling of the CUDA
function calls on different devices when using multiple GPUs. One way to execute
CUDA programs on multiple GPUs is by using specific CUDA API calls. The main
calls that are used are the cudaSetDevice(int device) function, functions for streams
such as the cudaStreamCreate() function and asynchronous functions such as the
cudaMemcpyAsync() call. The user sends a set of functions to be executed on a spe-
cific device after using the cudaSetDevice() function. By intercepting the arguments
of the calls prior to any synchronization point, we can make more educated deci-
sions on the (remote or local) device to use for executing these calls. The main idea
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is depicted in Figure 5.6. After the interception of all the calls, we have gathered in-
formation about that batch of CUDA calls. When launching the kernel function, we
decide on which device to execute these calls and overwrite the destination device
value that has been given by the user.

FIGURE 5.6: Concept of selecting a device to execute a set of delayed
CUDA calls

There is an obstacle that we have to workaround to implement the aforementioned
idea. First of all, the user designates a sequence of calls to be executed on a spe-
cific device by calling the cudaSetDevice(deviceId) function before any call in the
sequence. Therefore, we cannot just redirect every CUDA call to every device we
desire. That would change the semantics and result in unexpected behavior as some
of the calls that must be executed on the same device would be split on different de-
vices. The single parameter that we can control and rewrite is deviceId (in a manner
similar to handles and virtual addresses discussed earlier). We can, thus, transpar-
ently substitute (rewrite) the deviceId with another device that best fits the execution
of that set of calls, based on the information that we have collected and the schedul-
ing policy in effect.

This idea is depicted in Figure 5.7. We use an array where we store the association
between the selected device and the deviceId. We use the same technique as before,
where the value deviceId indicates the position on the array in which we store the
value of the selected device. Hence, the deviceId value is used as an indexing value.

The same process will be repeated if we meet another cudaSetDevice function with
different deviceId value. If the user ever reuses the same deviceId in a cudaSetDe-
vice function, then we match the deviceId with the previously selected device and
execute it with that device. The association between the deviceId values, and the
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values of the selected device can not change until the end of the program execution,
in order to avoid breaking the semantics (and thus compromizing the correctness)
of the original CUDA program.

FIGURE 5.7: Use of virtual device identifiers

We have to address a similar problem to the one discussed in Section 5.3.2, with
the creation of a CUDA stream. When creating a stream with either cudaStream-
Create(cudaStream_t * pstream) or cudaStreamCreate WithFlags (cudaStream_t *
pstream, ...), we expect a new stream identifier to be stored in pstream after the
completion of the call. In our case, as we do not execute the actual function right
away, we return a stream identifier handle to that address. The programmer will be
only aware of the handle, and she will use it as argument to other functions such
as cudaMemcpyAsync(. . . , cudaStream_t stream). When we reach a synchroniza-
tion point, we have to execute these calls. When we get the actual stream identifier,
we map it with the stream handle. After this process, at execution time, when we
detect a stream handle as an argument, we substitute it with the actual stream iden-
tifier. We remove the information about a particular identifier when we execute the
cudaStreamDestroy() call.

5.3.4 Support for multi-GPU CUDA applications that use POSIX threads

The second most popular approach to execute CUDA programs on multiple GPUs is
to use many different threads, as depicted in Figure 5.8. Each thread has, by default
its own GPU context, and the CUDA calls issued by the thread are associated with
the respective context. Therefore, it is trivial to support simultaneous, multi-GPU



Chapter 5. Implementation of a CUDA Runtime API handling mechanism 55

execution by simply calling cudaSetDevice by each thread to associate its GPU con-
text with a specific GPU device. If a thread does not use the cudaSetDevice call, it
will execute its commands on the default device.

FIGURE 5.8: Basic flow of a multi-GPU CUDA program execution
using POSIX threads

In order to design our implementation correctly, we must have in mind the concept
of CUDA Contexts. Every device is accessed through a construct called its context
and is distinct for every device. It encapsulates all CUDA resources and actions such
as the Streams, Memory objects, and Kernels. It occupies a separate address space.
It is created by runtime on the first Runtime API call during initialization, and it is
shared among all threads in the same CPU process. Each thread accesses a device
through its context, and a single thread can swap amongst different contexts using
the cudaSetDevice() call, as depicted in Figure 5.9. A multi-threaded application can
hold multiple CUDA contexts simultaneously on the same GPU, but these contexts
cannot perform operations concurrently. When active, each context has sole use of
the GPU and must yield before another context access the GPU. We can only have
one context on a GPU at a time. We design our implementation without affecting the
semantics of CUDA contexts, and the programmer has the responsibility to follow
the rules correctly to achieve the desired outcome [25].

FIGURE 5.9: CUDA device contexts viewed by a thread
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To support these types of multi-threaded programs, we need to extend the imple-
mentation of our interception mechanism and our data structures. First of all, we
add another dimension (host thread id) to all data structures, so that each thread can
work on an isolated subset of the data structures. In that way, we limit the use of
locking and achieve better performance. As depicted in Figure 5.10, this data struc-
ture is a vector of structs in C++. Each position of this vector refers to a specific
thread. The struct includes a member value which is equal to the thread identifier. It
also includes a member of type call_info_vector, which is used to store information
about the calls that have been intercepted from the particular thread. Finally, the
structure also contains a member that maintains the sequence id of the calls for the
specific thread.

Every time we intercept a new CUDA call, we identify the thread that issued the
call. If it is the first call for this particular thread, then we create a new instance
of the structure thread_info, and we push it to the thread_vector vector. We follow
the same process as before, by applying the concept of batch execution of delayed
CUDA calls at synchronization points, at the granularity of each thread.

FIGURE 5.10: Data structure to support multiple threads

5.3.5 Limitations

One limitation that we have to consider when employing this library is that the pro-
grammer must explicitly indicate with a synchronization point/call, that the mem-
ory transfers between the device and the host, must be forced to be completed up to
that point, in order for the host to use these data. Figure 5.11 depicts the problematic
situation where, after a synchronous cudaMemcpy (DtoH), we expect that the mem-
ory transfer is completed after the call is performed. Thus, we proceed to use the
host memory. The problem is that we have not yet truly executed the cudaMemcpy
up to this point, as we haven’t met any synchronization point after that the cud-
aMemcpy call. This would lead us to an unexpected error (even worse, potentially a
silent data corruption), since the host memory does not (yet) contain the right data.

The solution to that problem is to explicitly indicate that the execution of the call
that is responsible for the memory transfer to the host is being actually executed
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before the host use the host data. This can only be achieved by using a synchro-
nization point. In our case, after the use of cudaMemcpy, we must use either a cu-
daDeviceSynchronize() call or a cudaStreamSynchronize() call based on the CUDA
program implementation.

FIGURE 5.11: Explicit use of synchronization points for correctness

In our current implementation, we support the most common CUDA Runtime API
functions. These calls are the following:

• cudaMalloc

• cudaMemcpy

• cudaMemcpyAsync

• cudaMemset

• cudaFree

• cudaConfigureCall

• cudaSetupArgument

• cudaLaunch

• cudaStreamCreate

• CudaStreamCreateWithFlags

• cudaStreamSynchronize

• cudaSetDevice

• cudaDeviceSynchronize

• cudaGetErrorName

• cudaGetErrorString

• cudaGetLastError

• cudaPeekAtLastError
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this Thesis we started by characterizing the rCUDA API remoting GPU virtual-
ization framework to gain insight on its performance and functionality in multiple
scenarios, when executing a multitude of CUDA calls on virtualized GPU resources.
We created a middleware which monitors the utilization of all GPU resources in
the system and alleviates programmers from having to statically define which GPU
resources (local, remote, on which node) are going to be used at execution time.
Based on the characterization, we also created mechanisms to collect and analyze
performance-critical information about the CUDA calls before the actual remote ex-
ecution of them. CUDA calls are executed lazily after the analysis, which identifies
the appropriate mapping of kernels to devices. These mechanisms can be used as
the basis to build adaptive policies for execution on clusters of virtualized GPUs.

Our characterization confirmed that rCUDA does not support the unified memory
management API calls and graphics libraries yet. We experimentally confirmed that
rCUDA supports multiple programs simultaneously on the same remote device. It
also enables the concurrent use of many remote devices for scalability and better
performance. We then evaluated the performance overhead of rCUDA due to vir-
tualization, as well as the effect of network (for execution to remote nodes). Data-
intensive applications suffer more overhead compared with the direct use of CUDA
in the local node. A less expected result was that applications using CUDA streams
are effected the most. Another unexpected result was that the bandwidth between
the host and the GPU is significantly decreased when we use the rCUDA framework,
even if we deploy both the rCUDA client and the rCUDA server locally, on the same
node. Also, when we use pinned memory with rCUDA, the average device to host
bandwidth is much lower than the average host to device bandwidth. On the other
side, when we use pageable memory, the average host to device bandwidth is lower
than the average device to host bandwidth, which is exactly the opposite. By using
a multi-GPU-capable application we observed that rCUDA does not implement any
scheduling policy by itself (beyond any scheduling performed by the CUDA driver).
We also revealed an unexpected behavior (which we reported as a bug to rCUDA
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developers) concerning the use of asynchronous calls such as cudaMemcpyAsync()
in CUDA streams under rCUDA.

We continued by discussing the design and functionality of a middleware that sup-
ports the rCUDA framework. The purpose of this middleware is to offer sugges-
tions to rCUDA clients at runtime, concerning the device in which it should execute
a CUDA program, based on continuously monitoring of server / device status and
on the decision of a central authority.

In order to make educated scheduling decisions one should have insight into appli-
cation characteristics, beyond just monitoring server / device status. We followed
the approach of intercepting CUDA calls in order to gain this additional information.
We intercept CUDA API Runtime function calls to acquire knowledge by observing
the parameters of CUDA functions and making scheduling decisions before their ac-
tual invocation. To achieve that, we designed and implemented a mechanism which
delays the calls’ execution until a synchronization point. When we intercept a syn-
chronization point/call, we analyze the collected data, and we can feed the results
of the analysis to the scheduler to make intelligent scheduling decisions. Then we
can lazily execute these calls on the selected device, after performing rewriting of
CUDA call parameters wherever necessary. We also extended our mechanism to
support multi-GPU-capable CUDA programs, which either use CUDA streams or
Pthreads to achieve concurrency.

6.2 Future work

Future work will explore the following directions:

First, we plan characterize rCUDA on top of high-bandwidth, low-latency network
interconnects, such as InfiniBand. Using such high-end interconnects will reduce
network overhead, shifting the focus to the effects of the virtualization overhead of
rCUDA and motivating the development of methods to reduce it.

In the middleware that supports rCUDA execution, we plan to implement and com-
pare different scheduling / redsource management algorithms in the coordinator.
These algorithms may make use of machine learning models, beyond conventional
scheduling techniques.

The interception mechanism can be extended to support all the CUDA Runtime API
calls. We also plan to design, implement and evaluate scheduling policies capable
of exploiting the additional information collected by CUDA call interception. Fi-
nally, we will combine the middleware along with the interception mechanism to
support more intelligent resource management policies and to enable end-to-end
transparency for the programmer.
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Chapter 7

Appendices

Appendix A: Eligibility of rCUDA for programs with distinct
behaviors

NVIDIA CUDA SDK Sample Programs Availability or Possible Problem
0_Simple
matrixMul Ok
cdpSimpleQuicksort Ok
simpleStreams Ok
vectorAdd Ok
simpleVoteIntrinsics Ok
matrixMulCUBLAS Ok
simpleMultiCopy Ok
UnifiedMemoryStreams cudaMallocManaged not supported
simpleOccupancy Ok
simpleTemplates Ok
simpleP2P Ok
simplePitchLinearTexture Ok
1_Utilities
bandwidthTest Ok
deviceQuery Ok
deviceQueryDrv Ok
p2pBandwidthLatencyTest Ok
topologyQuery Ok
2_Graphics

openGL is not supported
3_Imaging
convolutionFFT2D Ok
convolutionSeparable Ok
convolutionTexture Ok
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NVIDIA CUDA SDK Sample Programs Availability or Possible Problem
dct8x8 Ok
dwtHaar1D Ok
dxtc Ok
histogram Ok
HSOpticalFlow Ok
4_Finance
binomialOptions Ok
BlackScholes Ok
quasirandomGenerator Ok
5_Simulations

openGL is not supported
6_Advanced
alignedTypes Ok
c++11_cuda Ok
cdpAdvancedQuicksort Ok
cdpBezierTessellation Ok
cdpLUDecomposition Ok
concurrentKernels Ok
eigenvalues Ok
fastWalshTransform Ok
FDTD3d Ok
interval Ok
mergeSort Ok
newdelete Ok
reduction Ok
scalarProd Ok
scan Ok
shfl_scan Ok
simpleHyperQ Ok
sortingNetworks Ok
StreamPriorities Ok
threadFenceReduction Ok
transpose Ok
warpAggregatedAtomicsCG Ok



Chapter 7. Appendices 64

Appendix B: Characterization of the overhead of virtualiza-
tion of rCUDA framework for the CUDA SDK sample pro-
grams

CUDA SDK Samples
Average execution time
(seconds) executing
locally with rCUDA

Average execution time
(seconds) executing
remotely with rCUDA

Percentage increase(%)
of average execution
time by using rCUDA
over natively CUDA

matrixMul 0.330 0.365 10.606
transpose 0.400 0.479 19.750
simpleStreams 2.787 57.856 1975.923
vectorAdd 12.198 12.208 0.081
simpleVoteIntrinsics 0.203 0.208 2.463
matrixMulCUBLAS 0.842 0.887 5.344
simpleMultiCopy 0.502 2.514 400.796
simpleOccupancy 0.233 0.278 19.313
simpleTemplates 0.206 0.253 22.815
simplePitchLinearTexture 0.383 0.424 10.704
deviceQuery 0.097 0.152 56.701
deviceQueryDrv 0.092 0.160 73.913
convolutionFFT2D 4.287 4.557 6.298
convolutionSeparable 2.083 2.173 4.320
convolutionTexture 1.186 1.269 6.998
dct8x8 0.665 0.692 4.060
dwtHaar1D 0.221 0.268 21.266
dxtc 0.252 0.270 7.142
histogram 1.912 2.698 41.108
HSOpticalFlow 14.251 14.487 1.656
binomialOptions 31.427 31.503 0.241
BlackScholes 1.334 1.441 8.020
quasirandomGenerator 1.063 1.130 6.302
alignedTypes 2.672 3.248 21.556
c++11_cuda 0.515 0.516 0.194
cdpAdvancedQuicksort 0.259 0.273 5.405
cdpBezierTessellation 0.236 0.286 21.186
cdpLUDecomposition 0.856 1.028 20.093
concurrentKernels 0.222 0.253 13.963
eigenvalues 2.416 2.408 0.041
fastWalshTransform 3.849 4.037 4.884
FDTD3d 14.527 14.656 0.888
interval 1.835 1.944 5.940
mergeSort 0.509 0.541 6.286
newdelete 0.217 0.219 0.921
reduction 0.805 0.885 9.937
scalarProd 0.277 0.283 2.166
shfl_scan 0.232 0.266 14.655
simpleHyperQ 0.277 0.432 55.956
sortingNetworks 7.286 7.536 3.431
StreamPriorities 1.488 2.142 43.951
threadFenceReduction 0.259 0.261 0.772
warpAggregated
AtomicsGC

0.442 0.575 30.090
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Appendix C: Characterization of the network overhead of us-
ing the rCUDA framework over TCP/IP for the CUDA SDK
sample programs

CUDA SDK Samples
Average execution time
(seconds) executing
directly with CUDA

Average execution time
(seconds) executing directly
with rCUDA

Percentage increase (%)
of average execution time
by using rCUDA
over natively CUDA

matrixMul 0.365 0.367 0.547
transpose 0.479 1.107 131.106
simpleStreams 57.856 428.251 640.201
vectorAdd 12.208 12.236 0.229
simpleVoteIntrinsics 0.208 0.241 15.865
matrixMulCUBLAS 0.887 0.896 1.014
simpleMultiCopy 2.514 8.043 219.928
simpleOccupancy 0.278 0.317 14.028
simpleTemplates 0.253 0.267 5.533
simplePitchLinearTexture 0.424 0.891 110.141
deviceQuery 0.152 0.165 8.552
deviceQueryDrv 0.160 0.163 1.875
convolutionFFT2D 4.557 4.973 9.128
convolutionSeparable 2.173 2.540 16.889
convolutionTexture 1.269 1.387 9.298
dct8x8 0.692 0.720 4.046
dwtHaar1D 0.268 0.272 1.492
dxtc 0.270 0.280 3.703
histogram 2.698 2.990 10.822
HSOpticalFlow 14.487 14.644 1.083
binomialOptions 31.503 31.549 0.146
BlackScholes 1.441 1.912 32.685
quasirandomGenerator 1.130 1.141 0.973
alignedTypes 3.248 7.931 144.18
c++11_cuda 0.516 0.519 0.581
cdpAdvancedQuicksort 0.273 0.305 11.721
cdpBezierTessellation 0.286 0.292 2.097
cdpLUDecomposition 1.028 1.690 64.396
concurrentKernels 0.253 0.263 3.952
eigenvalues 2.408 2.634 9.385
fastWalshTransform 4.037 4.121 2.080
FDTD3d 14.656 18.954 29.325
interval 1.944 2.826 45.370
mergeSort 0.541 1.005 85.767
newdelete 0.219 0.268 22.374
reduction 0.885 1.457 64.632
scalarProd 0.283 0.286 1.060
shfl_scan 0.266 0.349 31.203
simpleHyperQ 0.432 0.521 20.601
sortingNetworks 7.536 7.787 3.330
StreamPriorities 2.142 10.337 382.586
threadFenceReduction 0.261 0.359 37.547
warpAggregatedAtomicsCG 0.575 1.112 93.391
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Appendix D: Part of the Multi-GPU matrix-matrix multiplica-
tion implementation of the host code in CUDA

i n t N = 1000 ; // d e f a u l t number of elements (A dims :1000 x1000 , B dims : 1000 x1000 )
double r = 0 . 5 ; // d e f a u l t r
double inv_r = (1− r ) ; // d e f a u l t r_ inv
cudaGetDeviceCount(&ndev ) ; //f i n d s the number of a v a i l a b l e devices in our

system

/// To compute A 1 B1
id =0;
cudaSetDevice ( ( i n t ) ( id%ndev ) ) ;
cudaStreamCreateWithFlags(& streams [ id ] , cudaStreamNonBlocking ) ;

cudaMalloc ( ( void ∗∗ )&dA1 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) ) ;
cudaMalloc ( ( void ∗∗ )&dB1 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) ) ;
cudaMalloc ( ( void ∗∗ )&dC11 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) ) ;

cudaMemcpyAsync (dA1 , hA1 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) , cudaMemcpyHostToDevice , streams
[ id ] ) ;

cudaMemcpyAsync ( dB1 , hB1 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) , cudaMemcpyHostToDevice , streams
[ id ] ) ;

m = ( i n t ) (N∗ r ) ; n = ( i n t ) (N∗ r ) ; // determines s i z e of output matrix

matrixMultiply <<< dimGrid , dimBlock , 0 , streams [ id ]>>> (dA1 , dB1 , dC11 ,m, ( i n t ) ( i n t ) ( r∗N)
, ( i n t ) ( i n t ) ( r∗N) ,n , ( i n t ) ( r∗N) ) ;

cudaMemcpyAsync ( hC11 , dC11 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) , cudaMemcpyDeviceToHost ,
streams [ id ] ) ;

// To compute A 2 B2
id =1;
cudaSetDevice ( ( i n t ) ( id%ndev ) ) ;
cudaStreamCreateWithFlags(& streams [ id ] , cudaStreamNonBlocking ) ;

cudaMalloc ( ( void ∗∗ )&dA2 , ( i n t ) (N∗N∗ r∗ inv_r∗ s i z e o f ( double ) ) ) ; cudaMalloc ( ( void ∗∗ )&dB3
, ( i n t ) (N∗N∗ r∗ inv_r∗ s i z e o f ( double ) ) ) ;

cudaMalloc ( ( void ∗∗ )&dC12 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) ) ;

cudaMemcpyAsync (dA2 , hA2 , ( i n t ) (N∗N∗ r∗ inv_r∗ s i z e o f ( double ) ) , cudaMemcpyHostToDevice ,
streams [ id ] ) ;

cudaMemcpyAsync ( dB3 , hB3 , ( i n t ) (N∗N∗ r∗ inv_r∗ s i z e o f ( double ) ) , cudaMemcpyHostToDevice ,
streams [ id ] ) ;

matrixMultiply <<< dimGrid , dimBlock , 0 , streams [ id ]>>>(dA2 , dB3 , dC12 ,m, ( i n t ) (N∗ inv_r ) , (
i n t ) (N∗ inv_r ) ,n , ( i n t ) ( r∗N) ) ;

cudaMemcpyAsync ( hC12 , dC12 , ( i n t ) (N∗N∗ r∗ r∗ s i z e o f ( double ) ) , cudaMemcpyDeviceToHost ,
streams [ id ] ) ;

. . .
id =0;
cudaSetDevice ( ( i n t ) ( id%ndev ) ) ;
cudaStreamSynchronize ( streams [ id ] ) ;
id =1;
cudaSetDevice ( ( i n t ) ( id%ndev ) ) ;
cudaStreamSynchronize ( streams [ id ] ) ;
. . .
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